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Highly-Structured Statistical Models in High-Energy Astrophysics

David A. van Dyk
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I recent years, an innovative trend has been growing in applied statistics—it is becoming ever more feasible
to build application-specific models which are designed to account for the hierarchical and latent structures
inherent in any particular data generation mechanism. Such highly-structured models have long been advocated
on theoretical grounds, but recently the development of new computational tools (e.g., hardware, software, and
algorithms) for statistical analysis has begun to bring such model fitting into routine practice. In this paper,
we describe these methods in the context of empirical high-energy astrophysics. A new generation of scientific
instruments such as the Chandra X-roy Observatory are opening a whole new window to the study of the
cosmos. Unlocking the informatien in the data generated with these complex high-tech instruments, however,
requires sophisticated statistical models, methods, and computation. Here we discuss the techniques that
the California-Harvard AstroStatistics Collaboration have been using to develop application-specific highly-

structured statistical models to address these problems in high-energy astrophysics.

1. THE CHANDRA X-RAY OBSERVATORY

The Chandra X-ray Observatory took its place
along side the Hubble Space Telescope and the Comp-
ton Gamma-ray Telescope as part of NASA’s fleet
of Great Observatories when it was launched by the
Space Shuttle Columbic in July 1999, Chandra is by
far the most precise X-ray telescope ever constructed;
it is able to produce images over thirty times sharper
than those available from previous X-ray telescopes.
Although Chandra is a good example of a modern
complex scientific instrument, it is but one of a host
of such instruments. The complexity of these instru-
ments along with the complexity of the objects that
they study and the scientific questions they aim to an-
swer demand sophisticated statistical methods. Off-
the-shelf statistical techniques are simply not up to
the inferential tasks involved in the scientific explo-
ration of such data. In this paper we use Chandra as
an example, to show how sophisticated application-
specific statistical methods can be designed to meet
the scientific challenges posed by modern instrumen-
tation.

Chandra collects data on each photon that arrives
at its active detector. The two-dimensional sky coor-
dinates, energy, and time of arrival of each photon
are recorded. Because of instrumental constraints,
each of these quantities is rounded or binned into a
discrete variable. Thus, in principle, the data can
be represented by a four-way table of counts. Spec-
tral analysis investigates the one-way marginal table
of energy counts; image analysis focuses on the two-
way marginal table of coordinates; and timing analysis
studies the one-way table of arrival times. More so-
phisticated analysis might look at joint distributicns
to study, for example, how the spectrum varies across
an extended source. In this paper we confine our at-
tention to speciral analysis and image analysis. As we
shall see, even these marginal analysis pose significant
challenges.

A typical spectrum is modeled as a mixture of a
smooth broad continuum ferm and a number of nar-
row emission lines. The continuum is formed by ther-
mal (heat) radiatior or by non-thermal processes in
relativistic plasmas. The continuum is modeled us-
ing a smooth parametric form that includes emission
across the entire width of the spectrum. Emission
lines, on the other hand are narrow features in the
spectrum that can be modeled with Gaussian distri-
bution, Lorenizian distributions, or delta functions.
When an electron jumps down from one quantum
state of an atom to another, the energy of the electron
decreases. This energy is radiated away from the atom
in the from of a photon with energy equal to differ-
ence of the energies associated with the two quantum
states. Unlike the emission that forms the continuum,
the energies associated with these differences are dis-
crete and from the emission lines in a spectrum.

Taken together, these features of the spectrum give
subtle clues as to aspects such as the temperature and
composition of the physical environment of the cos-
mological source. A stellar corona, for example, is
made of numerous ions which can be recognized in
a spectrum from their identifying emission lines. If
the corona is relatively hot, the emission lines that
correspond to more energetic quantum states will be
relatively strong. Thus, the relative strength of the
emission lines corresponding to a particular ion carries
information as to the temperature of the source. Fig-
ure 1 shows an ultra high-resolution Chandra observa-
tion of the spectrum of the star Capella (o Aur). The
spectrum is composed of a forest of spectral emission
lines. Taken along with prior information obiained
from detailed quantum mechanical computations and
ground-based laboratory measurements, this data can
be used to construct the physical environment of
Capella’s coronae. These calculations require sophis-
ticated application-specific statistical methods. We
do not discuss the details here. Instead we refer the
interested reader to van Dyk et al. [2004] and detail a
much simpler example in Section 3.
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Figure 1: The Spectrum of Capella (o Aur). This high-resolution spectrum was collected using Chandra’s
high-resolution camera along with its low-energy transmission grating spectrometer. Notice the numerous emission
lines that compose the spectrum. A scientific goal is to use this forest of emission lines to reconstruct the composition
and the distribution of the temperature of Capella’s coronae, where the X-ray emission is produced.

Like spectra X-ray images can be cormposed of ex-
tended smooth features along with local bright fea-
tures. At one extreme an image might reveal a smooth
extended source such as a nebula without bright stars.
There may also be a few bright point sources in the
smooth extended emission, or the extended emission
may be peppered with numerous peint sources. Ir-
regular and unpredictable structure is the rule rather
than the exception when examining cosmological im-
ages. Figure 2 is a Chandra image of the central region
of the galaxy NGC 6240, the product of the collision
of two smaller galaxies. The center of this galaxy is
dominated by two massive black holes; one is clearly
visible as a white pixel in Figure 2. There appears to
be additional structure in the extended source. A loop
of hot gas appears toward the upper right of the im-
age, and a larger fainter loop appears off to the right.
Because of the high variability of the low-count per
pixel data that typifies Chandrae’s high-resolution im-
ages, however, it is difficult to distinguish features in
the galaxy from artifacts of the statistical noise. As
we shall discuss next, the situation is further compli-
cated by a number of processes inherent in the data
coliection mechanism that degrade the quality of the
data.

Both spectral and spatial characteristics of the data
are degraded in a number of ways that must be ac-
counted for in any principled data analysis. For exam-
ple, the effective area of the detector varies with the
energy of the photon. Chandre focuses X-rays with
mirrors. Unfortunately, high-energy photons do not
reflect uniformiy and simply; some are absorbed and
some pass right through the reflector, with a prob-
ability that is a function of their energy. A similar
process occurs before the photon reaches the detec-
tor; lower energy photons are more likely to be ab-
sorbed by inter-stellar or inter-galactic media. Thus,
the probability that an X-ray reaches the detector de-
pends on the X-ray’s energy. In statistical terms, we

refer to the photons that are absorbed or undetected
because of a relatively small effective area as missing
data. Because ignoring the missing data mechanism
would result in biased spectral analysis, it is called
non-ignorable missing data Rubin [1976]. The likeli-
hood that a photon is recorded also depends on where
it lands on the detector. Photons landing near the
boundary of the CCDs, for example, are less likely to
be recorded. This effect is calibrated by the so called
eTposure Map.

Because the focusing of the mirrors is not perfect
the image of a point source is blurred; the character
of the blurring is recorded in the point spread func-
tion. Another form of data degradation is due to a
detector response, which results in a blurring of the
photon energies. The recorded energy of a photon
that arrives with a particular energy and location on
the sky has a probability distribution. Finally, the
source photons are generally contaminated by back-
ground counis. Common methods for handling data
distortion can be guite ad hoc. For example, in spec-
tral analysis a second data set is collected that is as-
sumed to consist only of background counts. This
background data is often directly subtracts from the
source data and the result is analyzed as if it were a
source observation free of background contamination.
This procedure can lead to negative counts and esti-
mates with questionable statistical properties.

The complexity of the cosmological sources, of the
instrumentation, and of the scientific questions com-
bine to result in sophisticated data analytic chal-
lenges. In the following sections we discuss how
we propose to address these challenges using sophis-
ticated application-specific highly-structured models.
More details about Chandre and the analysis of Chan-
dra data can be found in van Dyk et al. [2004]. The
application of our methods to spectral analysis is the
topic of van Dyk et al. [2001], Protassov et al. [2002],
and van Dyk and Kang [2003]; image analysis is dis-
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Figure 2: An X-ray Image of NGC 6240. The bright spot at the center of this galaxy is massive black hole. A second
black hole appears above and a bit to the left of the brighter black hole. A loop of hot gas appears in the upper right
quadrant of this image, and there appears to be a second larger loop off to the right. Whether these are actual features
in this galaxy or artifacts of the highly-variable low-count Poisson data is an important astrostatistical question.

cussed in van Dyk and Hans [2002] and Esch et al
[2004].

2. APPLICATION-SPECIFIC STATISTICAL
MODELS

Any principled analysiz of Chandra data must ac-
count for the complexity of the data generation mech-
anism. Thus, we propose designing application-
specific models that accounts not only for the spec-
tra or images that are of primary scientific inter-
est, but also for the complexities of the instrumen-
tation. These models can be formulated via a hi-
erarchical set of levels that allow us to separate a
complex data generation mechanism into a number of
well-understood comuponents each of which on its own
can be addressed via standard statistical techniques.
When these levels are combined they form a highly-
structured model that specifically addresses the com-
plexities of the problem at hand. This multi-level
approach not only allows us $o formulate a highly-
structured model using simple tools, but also gives us
access to computational techniques that take advan-
tage of the multi-level structure to combine a num-
ber of simple steps to fit a highly-structured model.
In this article we outline the use of highly-structured
multi-level models; a more thorough introduction can
be found in Gelman et al. [2003].

One way to formulate these models in terms of miss-
ing data. In a spectral analysis, for example, we might
consider the ideal counts to be a mixture of continuum
and emission line counts that are unaffected by the ef-
fective area of the instrument, by photon absorption,
by blurring of the photon energies, or by background

contamination. These ideal counts are unobserved,
and, in this sense can be regarded as missing data.
Each ideal count can be modeled as a finite mixture of
Poisson random variables, each of which corresponds
to one of the emission lines or the continuum term.
The key here is that this model can be formulated ig-
noring all of the mechanisms that degrade the data,
thereby separating the complexity of the instrumen-
tation from that of the cosmological sources. Thus,
we are able to separate the task of modeling a sophis-
ticated data generation mechanism into a sequence of
simple tasks.

Adding a level to this model, we can account for
photon absorption by modeling the ideal counts sub-
ject to absorption given the idesl counts. There is a
parameterized absorption probability in each bin that
depends on the energy corresponding to the bin. Be-
cause absorption operates independently on each pho-
ton, the counts in each bin after absorption are bino-
mial given the corresponding ideal counts. In statis-
tical terms, we use a generalized linear model that is
akin to logistic regression for this level of the model.
What is important here is that this is again a standard
well-understood statistical model.

Similarly we can add levels to the model to account
for the effective area of the instrument, the blurring
of the phonon energies, and background contamina-
tion. Each of these levels incorporates what is known
about the instrumentation {e.g., from instrument cal-
ibration) inte a standard statistical model.

The discussion in this section is a broad overview of
how multi-level models can be built for spectral anal-
ysis of Chandre data; details of this approach in this
specific application can be found in van Dyk ef al
[2001] and van Dyk and Kang [2003]. The key here,
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however, is the principle that a statistical model can
be designed to incorporate specific features of any sci-
entific data generation mechanism. The goal should
be to formally model as much as this mechanism as
possible. The mathematics of probability modeling
ensures that properly modeled variability in the data
generation mechanism will be reflected in the result-
ing uncertainty in the fitted model and the error bars
on the model parameters. Preprocessing the data and
ad hoc data manipulation do not properly account
for variability and can have unpredicted consequences
on the statistical properties (e.g., bias and coverage)
of the resulting estimates. In practice, there is always
some data preprocessing that must occur, but it is im-
portant to consider the effects on model unecertainty
and generally to avoid preprocessing when possible.

A Simple Ezample. TFor the purpose of illustra-
tion, we consider a simple example; we emphasize
that this example is not meant to illustraie the power
of highly-structured models, but rather to show how
they work. More sophisticated examples appear in the
papers cited in this article.

Suppose we observe a single count, Y that is back-
ground contaminated, i.e., ¥ is a mixture of source
and background counts. We also observe a second
count, Z, that is a pure background count. We allow
the exposure times for the two counts to be differ-
ent and label them 7g and 7z, respectively. The goal
is to estimate the source count rate. We can easily
formulate this problem in terms of missing data by
supposing ¥ = Yg + Yp, where ¥Ys and Yp are the
source and background counts in the initial exposure.
Clearly, ¥s and Y are unobserved quantities; we re-
fer to these quantities as missing data. If the missing
data were observed, it would be easy to estimate the
source count rate, Ys/7g. Likewise if the source and
background count rates were known, we could easily
split ¥ into ¥s and Yg based on the relative inten-
sities of the two rates, Thus, identifying Y5 and Yg
as missing data simplifies the relationships among the
data and the quantities of scientific interest. Although
this discussion is heuristic, it can be formalized to for-
mulate algorithms for maximum likelihood fitting and
Bayesian methods. Details in this particular example
can be found in van Dyk [2003], & general discussion
of these topics are the subject of Section 3 and 4.

3. STATISTICAL INFERENCE

Fitting a statistical model involves not only statisti-
cal computation, the subject of Section 4, but also the
selection of a criterion for the fit. Common methods
include ¥? fitting, maximum likelihood, and Bayesian
methods.

The method of x? fitting ignores the variance struc-
ture inherent in the data by essentially making large
sample Gaussian assumptions on the errors. As

such, this method is especially inappropriate for high-
resolution low-count data which exhibit Poisson er-
Tors.

Methods based on the likelihood are more appropri-
ate in that they can explicitly account for error struc-
tures in the data. Bayesian methods take this one step
further by allowing statistical inference that combines
other scientific information with the data . The prior
distribution is used to quantify information outside
the data, the likelihood function quantifies informa-
tion in the data, and these are combined via Bayes
Theorem to form the posterior distribution. From a
Bayesian perspective, the posterior distribution is a
compete summary of the available information.

In practice, the prior distribution can be used
to quantify information available from other data
sources, from instrumental calibration, or from an-
alytical physical calculations. Prior distribution are
often used to quantify what is know about the values
of parameters that are not of primary interest, and in
some cases are used to quantify what is known about
the likely values of parameters of direct scientific in-
terest. Alternatively, prior distributions can be used
to introduce structure on groups parameters. For ex-
ample, it might be known that the values of a group
of parameters are related to each other. This is some-
times the case with the wavelength of 2 group of emis-
sion lines associated with a particular ion. In image
analysis, we can use prior distributions to encourage
a smooth reconstruction of extended emission. Thus,
we emphasizes that despite their reputation for be-
ing subjective and unscientific, prior distribution can
be used in an objective manner to quantify model as-
sumptions or concrete scientific information.

In Figure 3, we illustrate prior and posterior distri-
butions under the simple background contamination
example introduced in Section 2. The figure corre-
sponds to a simulated data set with ¥ = 1, Z = 48,
73 = 1, and 7p = 24. The first plot illustrates two
possible prior distributions on the source rate; one is
flat and the other prefers values near three. The cor-
responding posterior distributions appear in the sec-
ond plot. Since both the source and background rates
are unknown parameters, the posterior distributions
for the source rate are marginal distributions that re-
sult from integrating the joint posterior distribution
over the background rate. An attractive feature of
Bayesian methods is a simple principled prescription
for handling nuisance parameters: They can be inte-
grated out, leaving the marginal posterior distribution
of the parameters of interest.

The posterior distributions in the second plot rep-
resent a compromise between the data and the prior
distributions. The data from the background expo-
sure alone, 7 = 48 with v = 24 suggests a back-
ground rate of two. Given that ¥ is only one, di-
rect background subtraction would result in a nega-
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Figure 3: Sensitivity Analysis. The first plot shows two possible prior distributions on the source rate parameter. The
second plot represents the resulting marginal posterior distributions on the same parameter. Notice that in this case
the posterior distribution is sensitive to the choice of the prior distribution. The final plot shows the joint posterior
distribution of the source and background rates under the flat prior distribution. The marginal posterior plotted with a
solid line in the second plot is the integral of that in the third plot over the background rate.

tive source rate of —1.1 Thus, the data favors small
values of the source rate; the maximum likelihood es-
timate is zero. This is reflected in the solid posterior
distribution, which has its mode at zero. The dotted
posterior distribution, on the other hand, is a com-
promise between the dotted prior distribution which
favors slightly larger values of the source rate and the
data. The final plot illustrates the contours of the
joint posterior distribution under the flat prior on the
source rate. Integrating this joint posterior distribu-
tion over the background rate yields the solid posterior
distribution in the second plot.

From a Bayesian perspective, the marginal poste-
rior distribution of the source rate is a complete sum-
mary of the information available for this parameter.
The posterior mode or mean are often used as the
fitted values of the parameters, while some measure
of the posterior variability is used to generate confi-
dence intervals or error bars. Any such summary of
the posterior distribution, however, is an imperfect
representation and is less informative than the poste-
rior distribution itself. Summaries of this sort are es-
pecially problematic when the posterior distribution
is multi modal or highly skewed. This is illustrated

1The fact that this ad hoc technique results in a negative
count rate is an indication that such ad hoc methods can have
unexpected and uninterpretable results. Thus, these methods
should be avoided and model based methods such as maximum
likelihcod or Bayesian methods should be preferred.

by the marginal posterior distribution plotied by the
solid line in the second plot of Figure 3. Although
the mode of this distribution is zero, this value does
not appear to be an adequate summary of the distri-
bution. Thus, one of the primary advantages of the
Monte Carlo methods described in Section 4 is that
they summarize the entire posterior distribution.

4, STATISTICAL COMPUTATION

In this section we discuss two computational meth-
ods for posterior exploration: mode finders and Monte
Carlo methods.

Although modes can be misleading summaries of
likelihood functions or posterior distributions, mode
finders can be useful for initial exploration. For exam-
ple, a Chandra image can easily have tens of thousands
of pixel intensities. When working in very high dimen-
sional parameter spaces, algorithms that quickly find
areas of high posterior probability are a valuable tool.

There are many well-known strategies for find-
ing modes of high-dimensional posterior distributions;
Newton’s method, Fisher’s scoring, and conjugate gra-
dient are well-known examples. Here we discuss an-
other method that is especially useful with highly-
structured models. The EM algorithm {Dempster
et ol. [1977]) is a two-step iterative routine for com-
puting posterior modes (maximum a posterior, MAP,
estimates) in problems that are formulated in terms
of missing data. Details can be found in van Dyk
(2003} or McLaughlan and Krishnan [1997); here we
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Figure 4: Using the EM Algorithm to Find the Posterior Mode. The first two plots are the same as in Figure 3 except
that we consider only the flat prior distribution on the source rate. The final plot illustrates the contours of the
corresponding joint posterior distribution along with the steps of an EM algorithm designed to compute the posterior
mode. The skewed nature of the posterior distribution illustrates the potentially misleading nature of the modal

estimates.

simply discuss how the EM algorithm works in the
simple background contamination example described
in Section 2. The first step of the EM algorithm, the
Ezpectation-Step, replaces the missing values of Yg
and Yg by their conditional expectation given ¥, X,
and the source and background rates. Simple proba-
bilistic calculations show that this is accomplished by
dividing the counts, ¥ into Ys and Yp using the rela-
t1ve size of the two corresponding rates. In the second
step of this EM algorithm, the Maxzimization-Step, the
rates are updated treating (¥, Ys,Yp, X) as data, ie.,
we set; the source and background rates equal to Y /7g
and (Yp + X)/ (75 + 75), respectively. The iterates of
this EM algorithm using the simulated data set dis-
cussed in Section 3 are illustrated in Figure 4.

There are a variety of extensions to the EM al-
gorithm that significantly broaden its application in
the context of models formulated in terms of miss-
ing data (Meng and van Dyk [1997], van Dyk and
Meng [2000], McELaughlan and Krishnan [1997]). As
our example illustrates, EM-type algorithins are of-
ten easy to formulate even in highly-structured mod-
els. Another advantage of the EM algorithm is that
it exhibits much more predictable and stable conver-
gence than many other mode finders. In particular,
it is guaranteed to increase the value of the posterior
distribution at each iteration, i.e., it converges mono-
tonically, see Figure 4. The primary disadvantage of
the EM algorithm is that it sometimes can be slow
to converge. Several of the extensions of EM, how-
ever, can be used to significantly improve its rate of
convergence (van Dyk and Meng [2000], McLaughlan

and Krishnan [1997]).

Although mode finders are useful for initial explo-
ration of a posterior distribution, more sophisticated
methods are required for thorough exploration. Fig-
ure 5 shows the same prior and posterior distributions
as Figure 4, but includes a Monte Carlo sample from
the posterior distribution. The Monte Carlo sample
can be used to summarize the full posterior distri-
bution and to easily represent marginal distributions
of interest. Thus, the histogram of the Monte Carlo
sample in the second plot of Pigure 5 contains the
same information as the plotted marginal posterior
distribution. Likewise, the scatterplot of the sample
in the third plot conveys the same information as the
contours of the joint posterior distribution. The ad-
vantage of the Monte Carlo sample is clear when one
considers high-dimensional parameter spaces. With
a Monte Carlo sample from the joint posterior dis-
tribution one can easily plot histograms of the rele-
vant marginal distributions even if the dimension of
the joint distribution is in the tens, hundreds, thou-
sands, or larger. Thus, with a Monte Carlo sample we
can numerically integrate a distribution that would
be impossible to integrate with any other numerical
method.

There is a large statistical literature on methods
to obtain a Monte Carlo sample from posterior dis-
tributions. One method that has proved to be very
useful is to construct a Markov chain with station-
ary distribution equal to the target posterior distribu-
tion. Upon convergence, the Markov chain will deliver
a (correlated) Monte Carlo sample from the posterior
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Figure 5: Monte Carlo S8amples from the Posterior Distribution. The prior and posterior distributions in the three

figures are the same as those in Figure 4. The second two

plots illustrate Monte Carlo samples from the posterior

distributions. The histogram conveys the same information as plotéed marginal posterior distribution. Likewise, the
scatter plot in the third plot contains information equivalent to that in the contour plot.

distribution. This technique is known as Markov chain
Monte Carlo or MCMC. There are a number of techni-
cal issues that arise when using MCMC. It is more dif-
ficult to determine when a Markov chain has reached
its stationary distribution than when a mode finder
has reached a mode. Multi-modal posterior distribu-
tions pose extra challenges because Markov chains can
easily be caught in one of the modes. This again high-
lights the advantage of identifying the modes using a
mode finder before running & MCMC sampler. Se-
vere correlation among the draws can also complicate
Monte Carlo integration and evaluation of the pos-
terior distribution. Thus, numercus strategies have
been developed to improve the convergence and to
reduce the autocorrelation of MCMC samplers. We
do not attempt to address these issues here. Instead
we point the interested reader to a number of refer-
ences on the subject (Gelman et al. [2003], Gilks et al.
[1996], van Dyk [2003], van Dyk and Meng [2001])
and describe how the Gibbs sampler can be used to
construct a Markov chain with stationary distribution
equal to the joint posterior distribution illustrated in
Figure 5.

The Gibbs sampler constructs a Markov chain by
partitioning the vector of unknown quantities (e.g.,
model parameters and missing data) into a number of
subvectors. Each of these subvectors is updated by
sampling from its conditional distribution given the
most recent draw of the other subvectors and the ob-
served data. In our simple example, we wish to sam-
ple from the posterior distribution of Ys, Yz, and the
source and background rates given ¥ and X. We start
by sampling Y5 and ¥ given the two rates and the

observed data. That is, we stochastically separate ¥
into source and background counts. It can be shown
that this distribution is a simple binomial distribu-
tion with probability determined by the relative sizes
of the scurce and background rates and the number
of trials equal to Y. In the second step, we sample
the rates given Yg, Y5, Y, and X. Under this con-
ditional distribution, the rates are independent and
both follow gamma distributions, the posterior distri-
bution of a Poisson rate parameter under the stan-
dard Bayesian prior distribution. Thus, we divide the
unknown quantities into two groups: the missing data
and the rate parameters. By iteratively sampling each
from their corresponding standard conditional distri-
butions, we construct a Markov chain with stationary
distribution equal to the target posterior distribution.
The result under our simulated data set is plotted in
the histogram and scatter plot in Figure 5.

5. SUMMARY

In this article we have outlined a framework for
statistical inference that designs application-specific
highly-structured statistical models, uses a Bayesian
paradigm for statistical inference, and utilizes sophis-
ticated computational methods such as EM-type algo-
rithms and MCMC. Although space does not permit
us to illustrate the power of these methods in real
problems, we hope interested readers will refer to the
several papers cited in this article that use these meth-
ods to solve outstanding challenges in empirical high-
energy astrophysics.
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