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Efficient EM-type algorithms
for fitting spectral lines in
high-energy astrophysics

David A. van Dyk and Taeyoung Park’

26.1 Application-specific statistical methods

In recent years, a progressive new trend has been growing in applied statistics: It is
becoming ever more popular to build application-specific models that are designed
to account for the hierarchical and latent structures inherent in any particular data
generation mechanism. Such multilevel models have long been advocated on the-
oretical grounds, but the development of methodological and computational tools
for statistical analysis has now begun to bring such model fitting into routine prac-
tice. In this chapter, we discuss one such application, the use of highly structured
models to analyze spectral and spatial data obtained with modern high-resolution
telescopes that are designed to stady the high-energy end of the electromagnetic
spectrum (e.g., X-rays and Gamma-rays). In particular, we consider the high-
resolution data that is available from the space-based Chandra X-ray Observatory.
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include A. Connors, D. Esch, P. Freeman, H. Kang, V. L. Kashyap, X. L. Meng, A. Siemiginowska,
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Launched in 1999 by the space shuttte Columbia, Chandra provides a new clasg
- of high precision instrumentation that allows for much more precise imaging of
distant X-ray sources. The first anthor has been working on developing methods
for handling this data since before Chandra was launched; there are a number of
citations listed below that fill in many details of what is presented here and discuss
related topics in astrostatistics.
X-ray telescopes such as Chandra can map nearby stars with active magnetic

fields, the remnants of exploding stars, areas of star formation, regions near the
event horizon of a black hole, very distant but very turbulent galaxies, or even
the glowing gas embedding a cosmic cluster of galaxies. The production of X-ray
emission requires temperatures of millions of degrees and indicates the release of
stored energy such as that in very strong magnetic fields, extreme gravity, explo-
sive nuclear forces, or shock waves in hot plasma. Thus, X-ray observations give
astrophysicists a window into the physical processes involved in these turbulent
regions of the universe, which is unavailable from observations of visible light.
Because of the complexity of the sources themselves as well as the data collection
process, however, unlocking this window tequires sophisticated statistical model-
ing and analysis. For example, the recorded X-rays are a mixture of X-rays from
a number of physical processes within the source. The X-rays are also subject
to the so-called effective area, a nonignorable stochastic censoring process: The

probability that an X-ray is observed depends on its energy, one of the variables of
primary interest. The energy and the originating sky coordinates of each X-ray are

observed with error and X-ray observations are subject to background contamina-

tion. (More background on the relevant astrophysics and instrumentation appears

in van Dyk et al. (2004)). To handle these various factors we generally adopt a

Bayesian perspective and construct highly structured multileveled models. Sophis-

ticated computational tools such as EM-type algorithms and MCMC samplers are

required for model fitting.

In this chapter, we describe a particular applied question that has come up in
our work in astrophysics. Namely, we describe computational methods for fitting
narrow emission lines in high-energy spectral analysis. Spectral analysis aims to
describe the distribution of the energy of photons emitted from a particular source;
here we focus on a high-energy interval of energies, the X-ray band. An emission
line is a narrow range of energy with excess electromagnetic emission, relative ta
nearby intervals of energy. Such emission lines appear as sharp jumps in the distri-
bution over a narrow range of energies. Emission lines are formed when electrons
of energized ions fall down to lower energy shells and the excess energy is emitted
in the form of a photon. Because of the distinct quantum differences between the
energies of the electron shells of a particular ion, photons are emitted with one of a
number of particular energies. Thus, we observe excess electromagnetic emission
at these energies. The emission lines can be used to identify the ions and thus
the composition of the source. The redshift of the emission lines can be used to
compute the relative velocity of and the distance to the source. For these reasons,
the precise fitting of emission lines is of key interest to astrophysicists.
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This chapter is organized into four sections. In mmomw: 26.2, we nnmoﬁﬂo H.wo
statistical issues involved with the Chandra’s Qmﬁ?mom.ﬂm::m En.orm:_ma an MnMSm
duce a highly structured model that accounts for this EoomemH:...Oﬁ mo nm i
formulated in terms of several levels of missing data, which are critical in o_w:; or-
mulation of the necessary computational techniques. The mmmﬂmo problem that we
address in this chapter is introduced in Section 26.3, érﬁ..m we n:.mnsmm %m. computa-
tional challenges that are involved with fitting narrow m::mm_on lines in Emwsadmam%
spectral analysis. In Section 26.4, we discuss model checking techniques based on
the posterior-predictive distribution.

26.2 The Chandra X-ray observatory

Data are collected on each X-ray photon that arrives at one of .Em detectors on board
Chandra; the time of arrival, the two &Bw:mmosm_. sky coordinates, and ﬁ.:o a.mmcﬂm«
are all recorded. Because of instrumental constraints, each of these four varia Nm
is discrete. Thus, the data can be complied into a four-way table ow. m:cﬂosm nowhmw
with margins corresponding to time, energy, m:..“_ the two sky noomaﬁmﬁommaw_m e
analysis focuses on the one-way energy margin .m:a image analysis m > he
two-way marginal table of sky coordinates. In ihis chapter, we focus om MMV o
analysis; see van Diyk and Hans (2002), Hsch Boowv“. mmo:._ Ooﬁm.oa, oL mmm,
and van Dyk (2004), and van Dyk et al. (2004) for discussion of image y
o QMQMMH“MWNOQQ aims to describe the &m.ﬁ__u.:n.jc of the epergy ,,.ww wwoﬁo:w
emitted from an astronomical source. This n:w_&,ozzo_._ can be .mo,,.ac mw ﬂ Mm
finite mixture model, in which the photon count in amo: energy vE is :Mo % e mw
the sum of several independent Poisson random <m:m£mm. > m:.zn:mm: oHﬁB Om
this model might consist of a continuum term and an .mB,m,n:o: .r:.o. H mmmsm“%s
represent two physical processes in the source; the ooE.Sd..EB wE_HwEo.: Wm_ a M o
function across a wide range of energies, while the emission H.Sm is hig y oo:H
at a particular energy. Thus, we might model the expected Poisson count in energy

bin j as
A0 = ) F(8C, Ejy+hpip, o), for =1, 7 (26.1)

where A; is the width of bin j, £(8%, E;) is the expected counts per unit m.:o...ﬂ%
.\— H r
due to the continuum term at energy E;. g% is the set ﬁ.vm .@mw .HumBBQQ.m. in ﬁQav
continuum model, A is the expected counts due to the emission xmm, and p; c:m .
is the proportion of an emission line centered at 2 maa with width ¢ s:% HM:M
into bin j. A Gaussian or Lorentzian density function 1s o?oj s.wog to mode e
emission line, in which case ¢ might represent the standard deviation or some 0
of variability. There are a number of gtandard forms for the continuum
o e . C E) =aE?, with 8¢ = (@, 8).
term; here we use a power law, f(9-, )= 2y wit oex
While the model in (26.1) is of primary scientific ::m:wm.r a more m % *
model is needed to address the data distortion introduced by instrumenial ellec
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and other aspects of the data collection procedure. For example, photons have a
certain probability of being absorbed by interstellar or intergalactic media. -Since
this probability depends on the energy of the photon, the missing-data mechanism
is nonignorable (Rubin, 1976a). A similar effect occurs inside the detector; rather
than being reflected onto the detector, some photons are reflected away from or
pass right through the mirror. The likelihood of this oceurring again depends on
the energy of the photon; this effect is known as the effective area of the detector,
Even for photons that are recorded, their energy may be recorded with error; given
the energy of the photon, there is a multinomial distribution that characterizes
the likely energy that is recorded by the instrument. {in practice, the number of

- cedls in these multinomial distributions is different from J; we jndex the cells that
correspond to the observed data with [ = 1, .., , L.) To account for these processes
along with background contamination, (26.1) is modified via

J

Bi0) =3 Mybj(@)du®*, E;) + 1P (262)
=t

where My; is the probability that a photon with true energy in bin j is recorded in
the multinomial cell /, d; is the effective area of bin j, u(67, Ej} is the probability .
that a photon with energy F ; 18 not absorbed, and ﬁw is a Poisson intensity of the
background counts in channel /. The multinomial distributions and effective area
are presumed known from calibration. The absorption probability is parameterized
using a smooth function, see van Dyk and Hans (2002) for details. Background
contamination is quantified using & second observation from an area of black space
near the source of interest, where all counts are assumed to be due to background
contamination. More details, more general forms, and applications of this model can
be found in van Dyk, Conners, Kashyap, and Siemiginowska (2001) and van Dyk
and Kang (2003).

This data generation process can be described in terms of a number of steps
and intermediate unobservable quantities. Bach step starts with the output from the
previous step and updates it in some possibly stochastic fashion. We begin with the
energies of the continuum photons and the energies of the emission line photons. In
the first step, these energies are mixed together, Next, a Berpoulli random variable
is generated for each photon, with the probability of success depending on the
energy of the photon. If this random variable comes up- positive, the photon is
observed,; otherwise the photon is lost to absorption or the effective area of the
instrument. In another step, error is added to the remaining photon energies via
the conditional multinomial distributions. Finally, the data is contaminated with
Poisson background counts.

This formulation of the data generation process leads naturally to a multilevel
model that formalizes each of these intermediate quantities as missing data. Given .
the layers of missing data, the model falls into a sequence of simple standard
models. For example, we might use a loglinear model for the Poisson counts
from the continuum, or a hinomial regression to account for absorption (van Dyk,
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Connors, Kashyap, and Siemiginowska, 2001 ; van Uw.w. m:.a Im.:m. 2002). .r;“méumm,m
given the parameters for each of the stochastic mﬁ.m@mw it is a simple mﬁ%:ﬂm Momnwm
the Bayes theorem to compute the conditional .Emﬁw:.ﬁo: of each w tl nr mu_\m -
of missing data. Thus, from a computational point of view, such Sw 8 ww qﬁ% ™
or w%mnﬁmmoi%mﬁaﬁmao: algorithm (Dempster, Laird, and .w&g:, ﬁ ﬁ
Data Augmentation algorithm (Tanner and Wong, 1987), the Gibbs mm_ﬂ@ QMS n.mﬁw
Gelfand and Smith, 1990; Smith and Roberts, Gouv_ and other Markov ¢ w:w Mon ¢
Carlo (MCMC) methods are ideally suited to highly m:do:.ﬁma models om m. is %owm
see van Dyk (2003). The modular structure of E.omm algorithms mﬁ.m .:m: ing m
with the hierarchical structure of our models. ,?._m allows us to divide a ooEm ex
model-fitting task into a sequence of much easier Emwm. The anﬂmﬂmﬁﬂ%ﬁﬁm
also allows us to take advantage of well-known Emo:a:nm that o.xwme 9.: .a:_m
certain components of our model. For omeEm.u mm,.am %.@ EM .Emo:ﬁ m Ho .mam :
a blurring matriz and background contamination in Poisson image mﬂﬂ ysis 1 -
well-known (and often rediscovered) technique Qnmmm_mm.mna Hero, Eogw mm:mm a <
Carson, 1984: Lucy, 1974; Meng and van Dyk, 1997; W_Q.Eamo:, .quu. n_um_mﬂ
Vardi, 1982). Even though this standby image reconstruction mmmo:ﬁ:q._ is z:m: mﬂ,m
handle the richness of our highly structured model, we .E:mwo it .Ea its mﬁﬂ asti
generalization as a step in our mode-finding and posterior-sampling .mwmon Bm.“&
In this short chapter, we only present one mode! that we hope :Emﬂwﬁw on.
complexity of the data generation process, Em. Eon_ﬁ_m of this ?oom%uw Mmowm:
rithms required to fit the models, and the 8@::.3. inference and Eo:o M ) m:m
techniques. We emphasize, however, that the E.c_E@,e_m_ structure in ﬁ.nm 2 m&m%m
eration process is inherent to the complex scientific processes studied an "
instruments used in high-energy astrophysics. Thus, the B_mmm:m-&mmm Mam:_oﬁo nw
the reiated computational techniques, and Eo_&w%.moﬂ Bayesian in _mwm.:no an
model checking have many waiting applications in high-energy astrophysics.

26.3 Fitting narrow emission lines

In this section, we outline some of the difficuldes 5402& in .mﬁsm. the _mmsos
of a narrow emission line in {26.1). Our _unouwmwn wo_.czo:m EnEa:..mrma HMWWM
algorithms, MCMC samplers, and data-analysis techniques mﬂ.gm. ,.Sm Mm lec
examples can be found in Park and van Dyk (2004) and Park, Siemiginowska,

<m:%wwaﬂ% omwémamz density function is used to model the emission line in
the simplified spectral model given in Bo..:, the .2@%& mz_ m_wop,%wmwwmw.n
ders straightforward calculation of the maximam likelihood estima e O o
the posterior mode; to streamline our discussion, we focus o:.E.&ME kel
hood estimation in this section. We construct a BEEE@ missing- mﬁ.m sty -
that accounts for background contamination, Em effective area of the Bms,wn_mﬁm
photon absorption, the blurring of photon energies, and the mixture .om con ﬁmwm
and emission line photons, see van Dyk, Connors, Kashyap, and m_mn:m:ng%ﬁ a
(2001). Tor clarity, we consider an ideal instrument that produces counts tha
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a mixture i : issi i
P :Mo MM_ WOMHMHMNE and emission _Sm photons, but these counts are not sub-
e the ¢ rtion Eo.nommmm described in Section 26.2. Accounting for

. ms of data distortion causes ni conceptual difficulty, but o_um%c%ma EM
iceas an . unts from an ideal ips
monocﬂm MoM Mwmoﬁhwmmm mm :.amm.Em data in our formulation of the model _MMW _%MH
e i a ¢ : om h_o? we om:. these counts the ideal counts. Notationally, we
e oM:: m_.m n.H_.: ! ;W Mﬂa cach j, where yjdeal, Y{, and ¥ ' are the total mwm&
o respestively. o1 o _n continuum, m:.a the counts due to the emission line in
o m.ﬁ oty e &_.mm_.w_ws QH me %meg nom%a, it is easy 6 construct an EM algorithm
Q.:mmmﬁon. line counts, H:MH is, ((¥YF, mmvow_._ Mowsa mﬁ.ww _mﬁ.o o the et and
log-likelihood is linear in’these no:snm m:@ E mﬁ,n_.u.m.m“BE.u\ oEnn e mﬁmﬂmzﬁma-amﬁm
et ar | > the E- omputes the conditi
Q:M o Eozm_wm H_M _“mmumam data. w.momzmm m:a.s the ideal counts, the ﬁ,:oﬁo: nommm
expectation o u.mm in a_mn: bin qu:o,v.q binomial distributions, the conditional
it oF 15 simply H.ro ﬁoﬁ.m_ (ideal) photon counts times the relati

& emission line lntensity and the combined continuum and @:m“m

sion line intensities ar that bin. Speci i
. Specifical 'ent i
parameters, §) = (9C0) () t% o' %mmm\wmﬂmwrwn%ﬂw“ﬂw:m&ﬂn ol the mode
5 E] . %

E-step: L i
p: Compute mT\g_. |g®, ﬂ%mq foreach bin j =1, .. J, that is

Nﬁ = m_uﬁm%‘mﬁc, M\\wammJ = yideal PS_G&. mte, O.Su
ded_____ AT 0Wy
N i AjfEcn), E;) + A0 p (@) O (26.3)
ext, th .
85@::%%7% MHMW.OM mw\_ completes the update of the emission line location b
ighted average of the bin energies using the photon counts Qmw

to the emission line at e i
e very bin as the weights i
the emission line location using s I pasticlar,the e updais

M-step: Compute 0+ . T B Y P
= j j=14;>

where E; i in bin j
e MH Mmmwww me%ww:mﬁ« inbin j. Generally the model includes other unknown
e also o o o%\_EE:cE barameters and the emission line intensity, which
what e e e Mamq%m@ Mﬂﬁ.mm.wm w__wﬁéoo: S.n E-step and the E-mﬁw forms
O?m:.w:ww.oa constraints on mmmmmmmz %W@“mméacﬁ 1 sopamion
the Gaussian line profile with a delta func
EM .mu.mo:.SB breaks down. A delta func
Qw:m:w that results when the G
binned, the success probability
zero for all of the bins except t

3, it is often appropriate to replace
on. b.g this case, however, the standard
: .:os 18 a limiting case of a Gaussian
aussian variance goes (o zero, Since the data are
of the binomial random variable in the E-step is
he one containing the previous iterate of the line
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the bin closest to the starting value in one iteration; the standard EM algorithm
does not return the maximom likelihood estimate in this case.
To avoid this difficulty, we can update the line location at each iteration by
maximizing the observed-data log-likelihood conditional on the other parameters
in the model. To accomplish this, we simply compute the conditional cbserved-data
log-likelihood at each possible value of the line location; because of the binning
of the data, possible line locations within each bin are indistinguishable, and thus
we are left with a finite number of possible distinguishable line locations. That is,
this strategy wpdates the other model parameters by maximizing the augmented-
data log-likelihood conditional on the line location using an EM iteration, and then
updates the line location given the other model parameters without a missing-data
formuiation; this is an example of the ECME or expectation/conditional maxi-
mization either algorithm (Liu and Rubin, 1994). This algorithm allows groups of
parameters to be updated by maximizing either the augmented-data log-likelihood
or the observed-data log-likelihood while conditioning on the other parameters.
The BCME algorithm is especially easy to formulate in this case because the con-
ditional independence between the line location and the other parameters given
the augmented data means that the E-step and conditional M-steps (CM-STEPS)
for the other parameters are the same as in the standard EM algorithm, A diffi-
culty with the ECME algorithm when used with real data that are subject to the
data distortion processes described in Section 26.2, however, is that each itera-
tion of the algorithm is computationally expensive, requiring the computation of
the observed-data log-likelihood at each possible line location. Each evaluation
involves computing, (26.2) which is time consuming because of the large dimen-
sion of the blurring matrix, M; this difficulty persists even when sparse matrix
techniques are implemented.

As an alternative to ECME, we consider an AECM or alternating expecta-
tion/conditional maximization algorithm (Meng and van Dyk, 1997) that is com-
putationally-less expensive per iteration in this case. The AECM algorithm is so
named because it allows the missing-data formulation te alternate for different
groups of parameters, In terms of its use of missing data, the ABECM aigorithm
finds middle ground between the EM and ECME algorithms. The AECM algorithm
offers a more general formation than the ECME algorithm in that the CM-steps
of AECM may conditionally maximize not only the observed-data log-likelihood
or the conditional expectation of the augmented-data log-likelihood but also the
conditional expectation of a partially augmented-data log-likelihood. That is, a
portion of the missing data may be used to formulate some of the CM-steps in
AECM. Thus, in our example, the ECME algorithm uses no missing data to for-
mulate the CM-step for the emission line location, the EM algorithm uses all of
the missing data, and the AECM algorithm aliows us to formulate the CM-step
using part of the missing data. In particular, we construct an augmented-data log-
liketihood using the ideal counts as wissing data, but do not separate the ideal
counts into continuurmn and emission line counts. To update the line location in the
ABCM algorithm, we maximize this augmented-data log-likelihood conditional on
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the other model Parameters. As with the mngm‘mmmo:é? the CM-

not involve the high-dimensional blurring matrix, each iteration i
than those of the ECME algorithm,

The computationa advantage of AECM, however, comes at a price: For some
starting values, ARCM exhibits ‘the same pathological convergence as the EM
algorithm, that is, the AECM algorithm can also get stuck at a point

» We run one ECME ieration followed by a number of
AECM iterations, and repeat this procedure, rotating between ECME and AECM
until convergence. For clarity, we refer to a rotation algorithm that runs m AECM
Iterations per ECME iteration as a N.oﬁm:.o:miv algorithm. In our experience, the

of the universe, we cap estimate the distance of the Quasar from Earth, Thus,
accurate fitting of emission line locations is central to the substantive scientific
questions. We miodeled this data using a power law continuum with the absorp-
tion model of Morrison and McCammmon (1983) to account for absorption due
to the interstellar and intergalactic media, and a power law continuum for back-
ground contamination. The model was fitted via maximum likelihood using ECME

D keV. If 2 point in this plot does not lie on a horizon-

mber using the
. and Rotation(9) algorithms; all three algorithms were started
ar 4.9 keV. These plots illustrate that the use of more AECM iterations in the

ge [0 a mode significantly more
per iteration is about the same

Rotation algorithm can make the algorithm conver
quickly and that the increase of the log-likelihood

— PARK 203
SPECTRAL ANALYSIS IN ASTROPHYSICS—VAN DYK,
\)8\ \,r _\ Wr
> A ) / -8
2. Al 8o |
= sy =S
£ ] S I =
82 iy £d.
=R __‘ ) D o
g ER
Ly o |
© - T K.w T T T T
1 2 a3 4 5 @ Y91 2 3 a1 5 8
Starting vaiues (keV) Starting values (keV)
(b)
(a) N
=
& -
w |
o ol
5 o
[ g o
(o V] £ 3
% (=) T 02
g g0
59 T
o 0
S« = o
< o | |
B o T 13
& AU % 1 %
i N i fterations
Computation time (minutes)
(c) (d)
[ B
T 24 0 8 .
£+ £° R
g ” \f;\/\z\/\Sﬁ\\/\/\ f el TV
=W = |
5 o~ T S 5
.m AV At N e w o
g8 o4, pema, e | E 04
m I . < © T T T ¥ T T
C - T T T T T T

1 2 3 4 5 6
Starting values (keV) Starting values (keV)
{e) . ]
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i f the likelihood, the AECM algo
mode, thereby never reaching a mode o : havior o the lop
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represented by a dashed-dotte . prier o) the loe
i iterat function of computation
likelihood evaluated at the iterates as a . e and e
i i i ion(1), and Rotation(9) algorithms.
ration nurpber using the BCME, Wosmﬂi .
mm.@m:wﬁmmoi: and Rotation(9} algorithms are .nm?,nm\hmmﬁoa%w mw_%mzﬁ_wﬂﬂnw
: i pect [ the BC and Rota
and dotted lines respectively. (¢) and (f) compare . : e
i i ion ti d the number of iterations requ
9) algorithms in terms of computation time and : e
MoW M%Emamm:n@ using 51 equally spaced starting <Ec.nm. The Wﬂﬁ.:mz.mow m;mmw
rithm is the quickest to converge among all of the algorithms considered fo Y
starting value.
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required only 1/2 and 1/10 of the computation time required by ECME respectively,
While the algorithms all mﬁmm;&mmmamaoaﬁm.mmm ww<,~q9

every starting valle,
Figure 26.1(f) indicates that the nurnber of iterations required for convergence is

IN ASTROPHYSICS-—VAN DYK, PARK

» and when AECM is combined with ECME
iteration is equal to that of ECME alone,

26.4 Model checking and model selection

Residual plots and posterior-predictive methods (Gelman and Meng, 1996; Gelman,
Meng, and Stern, 1996: Meng, 1994b; Rubin, 19813, 1984) can be employed
to check our spectral model specification. Both methods aim to check the self-
consistency of the model, that is, the ability of the fitted mode] to predict the data

¢ model was fit. The methods illustrated in this section were suggested
for the spectral mode] by van Dyk and Kang (2003).

We consider the same model for Quasar PG1634+706 as discussed in Section
26,3 excepl that we compare three models for the emission line:

Model 0: There is no emtission line.

Model 1: There is an emission line with fixed location in the spectrium,

Model 2: There is an emission line with unknown location,

The top two panels of F gure 26.2 compare the observed data with the fitted models
under Models 0 and 1 in the first and second column respectively,
cownrt per channel, 5;(7), is represented by a solid line and the pr

by dotted lines; § is the maximum likelihood estimate. The BITOrs

The expected
edictive errors

that is, these panels are residual plots. To better
account for the Poisson nature of the data and the posterior variability in 8, we
can compute residual errors using the posterior-predictive distribution. These plots
appear as the final two panels in Figure 26.2; the Jjagged nature of the posterior-
predictive residual errors is due to our Monte Carlo evaluation of this distribution,
The advantage of the posterior-predictive errors is evident for the low counts in
the high-eneray tail of the Spectra as shown in the residual plots of Figure 26.2,
Comparing the two columns in

Figure 26.2 near 2.885 keV also provides evidence
for the inclusion of the emission line.

Posterior-predictive p-values can be u
to quantify the evidence in the data for th

sed to compare the three models and, thus,
¢ emission line. We base our comparisons
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Figure 26.2 Model diagnostic plots. (a) and (b) mrm%w #ﬂm Qmmw QMMQNMMHQMM
. i imation; d show the r
errors based on a Gaussian approximation; (c) an Shals v
i imation; and (¢) and (f) show the residuals
errors based on a Gaussian approximation; an ( duals with
! i ictive distribution. The two columns of the fig
errors based on the posterior predictive S g ioagure
tively. The excess counts near 2.
cotrespond to Models O and 1 respec ely. Th oss cou : : e
e for the inclusion o
ent in the top two panels, thereby indicating evidence for t
MWMMME; line in wﬁ model; the location of the emission line is represented by a
vertical line in (b).
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Figure 263 The posteriorpredivtive oheek, I each of the two Mistoproms, the

observed HkeBbood ratio test stmistic (he vertioad g 8 compared with the
pusierior-predictive distibution of the tost statistic under Mode! 0,
on the likeliwod mein tes siatstic,

[ 000, L0

Tilympt = g

where Sig, €, and € represent the parameler spaces sader Models 6 1, and
mspectively, wnd vy 1S 2 replicae duts sol. We can generale 2 sample from
the posteriorpredictive distribuiion of HFred under Model (5 we use the EM-
type alyorithms deseribed above 1o corpiie T v ), Histogramy of T [V annd
Tilyeep) appuar in Figure 263, Comparing these distributions with the ohsorved
atues of the test statistics vields the postenior-predictive p-values in Plgure 26,3,

There 3 sirong evidence for the presence of the emission i in the spectum,
Thus, Models T and 2 are preferable o Model 0.
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