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David A. van Dyk!

ABSTRACT The ever increasing power and sophistication of today’s high
energy astronomical instruments is opening a new realm of high quality
data that is quickly pushing beyond the capabilities of the “classical” data-
analysis methods in common use. In this chapter we discuss the use of highly
structured models that not only incorporate the scientific model {e.g., for a
source specirum) but also account for stochastic components of data coliec-
tion and the instrument (e.g., background contamination and pile up). Such
hierarchical models when used in conjunction with Bayesian or likelihood
statistical methods offer a systematic solution to many challenging data an-
alytic problems (e.g., low count rates and pile up). Hierarchical models are
becoming increasingly popular in physical and other scientific disciplines
largely because of the recent development of sophisticated methods for sta-
tistical computation. Thus, we discuss such methods as the EM algorithm,
data augmentation, and Markov chain Monte Carlo in the context of high
energy high resolution low count data. ’

This paper is followed by a commentary by astronomer Michael Strauss.

3.1 Introduction

Today’s highly sophisticated astronomical instruments offer a new window
into the complexities of the visible and invisible universe. As the state of
instrumentation evolves to produce ever finer resolution in spectral, spa-
tial, and temporal data ever more sophisticated statistical techniques are
required to properly handle this data. For example, standard off-the-shelf
methods such as x? fitting and background subtraction are ill-equipped
to handle the high resolution low count per bin data available from such
instruments as the Chandra X-ray Observatory. See Siemiginowska et al.
(1997) and van Dyk et al. (2001) for a general discussion of such issues. The
Gaussian assumptions implicit in such methods are not justified with low
counts and the resulting fits and error bars are therefore unreliable. Testing
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for model features such as spectral lines or a source above background is
always a challenging task and standard methods such as the F-test, likeli-
hood ratio test, and Cash statistic though commonly used in practice are
inappropriate (Protassov et al. 2002). An even greater challenge is properly
accounting for pile-up in X-ray detectors, a task that confounds standard
techniques and thus demands more sophisticated statistical methods.

In this chapter, we outline a paradigm for dats analysis that we believe
is robust enough to systematically handle these and many other statistical
chalienges presented by modern astronomical instruments. Tt is important
conceptually to break any data analysis scheme into (at least) three com-
ponents, all of which are critical and must be done thoughtfully to ensure
sound inference. These components are model building, statistical inference,
and statistical computation.

The importance of careful model building is evident in the complexity
and subtlety of the physical mechanisms giving rise to the observed data,
of modern instrumentation. The instrument response blurs the energy and
sky coordinates of photons, counts are contaminated with background, the
effective area of the instrument and the propensity of photons to be gh-
sorbed vary with energy, pile-up masks the energy and count of Incoming
photons, source spectral models are complex and may include emission and
absorption features as well as a continuum. A statistical model should aim
to describe all such components of data generation. Thus, by a model we
mean much more than a parametric description of how the mean source
flux varies with energy and/or sky coordinates. Models that inclnde sta-
tistical deseriptions of the processes that degrade the data can guide us
in accounting for thege degradations and eliminate the need for ad-hoc
corrections, e.g., for pile-up and background. Because of the complexity
of these models, we organize them into a hierarchical structure, which is
formulated in terms of various unobserved quantities (e.g., counts without
background contamination). Such uncbserved quantities are often called
sugmented date and play an important role in the computational methods

we suggest.

Once a model is formulated, statistical inference involves drawing infor-
ences (e.g., point estimates and error bars) regarding unobserved quantities
such as the model parameters describing the flux of the source, Tuportant
model-based modes of statistical inference include maxirnum likelihood and
Bayesian inference. With large samples the asymptotic Gaussian behavior
of the maximum Lkelihood estimate can be the basis for sound frequen-
tist inference, Nevertheless, we generally take a Bayesian perspective for a
number of practica) reasons such as a ready mechanism for combining infor-
mation from multiple sources, mathematical justification in small samples,
and an obvious framework for handling nuisance Parameters. Despite the
placement of thig chapter im a Bayesian section, we say very little about
the relative merit of Bayesian and frequentist methods; our emphasis is on
model building and statistical computation. Because of the aforementioned
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practical advantages of Bayesian methods, they m:.m.w o?.mb wrm.oa.u\ ﬁamoggm
methods available for fitting complex anm_mgégov is :Eoﬂdmﬂom.msocm
for many practical minded statisticians to “be Bayesian. ﬂmam Sm give on_%
enough details of Bayesian and likelihood Emﬁ.poam to Boﬁ.iﬁﬁm ﬁ,ﬂ O%BW M-
tational tools, giving somewhat more emphasis to Bayesian Emw ods. M
further reading on Bayesian methods, we recommend one of Hmmmm?%“
high-quality recent texts on the subject such as Gelman et mm. ﬁa vw -
lin & Louis {1996) and Gilks et al. (1996), as well as other chapters i i
volume including those by Connors, Loredo & meg.om., and wmam@:@ al..
Because of the highly-structured nature of the statistical Eommr.w w mﬂﬁﬂm
propose, sophisticated computational Eﬁ.wam. (e.g., the EM algorit mM.P m
data augmeniation algorithm, and Markov chain Monte Omlow m:w% mﬁa _Mw
quired. The methods we suggest are &mmmm.‘bmn.m to be cogwﬁwﬁog mmm m.m Hm
and geperally easy to implement. The dem:.m of .SE m.pmo.wﬁrg o M.uﬁ.ow
low directly from the hierarchical model specification via simple statistica
nm%WWﬂMMMMEQQ of this chapter is organized 5.3 five sections. HM Sec-
tion 3.2 we introduce a simple example, pooozﬁﬁmm for vameﬂch_ oom.
tamination of counts. We use this example to anéam. hierarchica. ﬂo m
eling and the method of data augmentation, which are in turn mmﬂmﬁw EM .
and muore fully developed in Section 3.3. _H.,wm .85@5@205& met wo s a M
introduced and illustrated using the motivating 9.8.5@8 of bac mwwcw
contamination in Section 3.4. In Section 3.5 we outline woé these Em % s
can be used to tackle the difficult problem of @r.oﬁ.os EE.EP. Conclu ing
remarks regarding the direction of modern statistical analysis appear in

Section 3.6.

3.2 A Motivating Example

In this section we introduce a simple example that is .mmm.a throughout &ﬁw@
nwm%ﬂm.ﬁ to motivate ideas and methods. The mNpE.Eo is m:Eu.F. 50 83 SOm mo
distract attention from the statistical methods. .>m illustrated in Section H.L ,
however, hierarchical models, data augmentation, and MCMC can tackle
e complicated problems. .

BMMWMQMM@%M r%ﬁ owmmswmm counts, ¥, contaminated with WPnWMHoMSQ :w M
{source) exposure and have observed a second exposure of pure bac maw%ﬂ

resulting in counts, Z. Throughout we assume the source wxwmoumﬁﬂu i ,,m._
seconds and the pure background exposure is 75 seconds with both expo
sures using the same area of the detector. w.Ho .Eon& §.m source Mxvowiwm
we assume ¥ follows a Poisson distribution® with intensity Ag + Ag, whe

2Recall ¥ < Poisson (A} (read as V is distributed as Poisson with Eﬁws.m?% >3.H?
dicates that Y follows the Polsson distribution with intensity and expectation X, i.e.,
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Ap and Ag represent the expected counts during the source exposure due

to background and source respectively. Thus, the distribution function for
Y given Ap and Ag is

YA, Ag) = e Cobrs)n o As)Y /Yl for ¥V =0,1,2,. ... (3.1)

We wish to estimate Mg and treat Ap as a nuisance parameter, a parameter
that is of little interest, but must be included in the model. The expected
counts during the background exposure are assumed to be the same as in
the source exposure, but corrected for the exposure time, Ag7g [reiTe,

P(Z1Ag, Ag) = mph\,ma\agmﬂm\im\mq for 7=0,1,2,.... (3.2)

Maximum likelihood estimation involves estimating Ap and Ag by the
values the maximize the likelihood function, i.e., the product of Equa-
tions 3.1 and 3.2. Under certain regularity conditions (e.g., Ap, Ag > 0,
maximum likelthood estimates asymptotically follow a Gaussian distribua
tion. This result leads to confidence intervals and error bars with {asymp-
totic) frequentist properties.

Bayesian inference is based on the posterior distribution,

P(As, AsBIY, Z) o (Y| A5, As)p(Z 1Az, As)p(Az, As), (3.3)

where p(Ag, Ag) is the prior distribution which quantifies information re-
garding the values of the Ag and A 5 available prior to observing the data.
The posterior distribution combines such prior information with the infor-
mation in the observed counts. The posterior distribution is a complete
summary of our information, but if it is similar to Gaussian in shape, it
is often summarized by its mean vector and variance matrix that can be
used as point estimates and to compute error bars. The posterior distri-
bution can also be used to compute a (-level credible region, £, such that
Jar(As, AslY, Z)ddsd\ s = ¢- Such probability statements should be re-
garded as summaries of the available information for the model parameters,
in contrast to the frequentist interpretation of a confidence interval.
Implicitly, the counts from the source exposure, ¥, are made up of two
components, ¥ = ¥g + Yg, where Ys are counts from the source exposure
due to the source and Yp are the counts due to background. Siuce neither
- Yg nor ¥z are observed, we call these counts missing dote. We note that
if Y5 and Y5 had been observed, our statistical analysis would be greatly
simplified since we could confine alttention to ¥g < Poisson(\s). Of courge,
it is impossible to observe Yo and V5. Nonetheless, this “thought experi-
ment” offers insight into computational methods that are useful both for
Bayesian and likelihood-based inference, In particular, the method of data,
augmentation is an elegant computational construct allowing us to take

PY =y) =Ryt
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advantage of the fact that if it were possible to collect additional data,
statistical analysis could be greatly simplified. This is dﬁ.sm regardless of
why the so-called “missing-data” are not ohserved. There is a large class of
powerful statistical methods designed for ,ﬂawmmwﬁmﬁmﬂ: E.oEmEm.. Hsmm.m
methods have broad application in astrophysics (and in .gm physical sci-
ences generally) once we note that quantities observed with measurement
error can be regarded as “missing-data”. . .

To illustrate the method of data augmentation, we begin by Hmmog.pima-
ing our model in terms of ¥g and Yp. In particular, consider the multi-level
or hierarchical model

LeEvEL 1: Y|Y3, As EJ Poisson{Ag) + Yz,

d o .
LeveL 2: Yg|ip 3 Poisson(Ag) and Z|Ag ~ Poisson{Ag7g/7g),
Lever 3 {(optional): specify a prior distribution for Ag and Ag.

Notice that in each level of the model, we specify the &mﬁilaﬂwo.s om. ran-
dom guantities conditioning on unobserved quantities whose n:mﬁﬁvsa.ow is
specified in lower levels of the model. For example, in LEvEL 1, we condition
on ¥z, the distribution of which is specified in LEVEL 2. ﬁ;m power of such
a hierarchical model is that it separates a compler model into o number of
easy to handle smaller parts. o

Hw_ Y5 and Yp were observed, LEVEL 1 specifies the form of the likelihood
for Ag, i.e.,

L{Ag|Ys) = eTS 2K, (3.4)
and LEVEL 2 specified the form of the likelihood for Mg, ie.,
LnlYn, Z) = e FATEH, (3.5)

where k = (7g¢ + 7g)/7s. Notice that Equations 3.1 and 3.2 are wmwmﬁ.?&
complex functions of Ag and Ap and are harder to, for example, maximize
than are Equations 3.4 and 3.5. . o .

It is also easy to estimate the “missing data” in this Fm.m.ﬁ.owﬁm_ model.
In particular, if Ag and Ag were known, the conditional distribution of Yz
given ¥ can be computed using Bayes Theorem,

p(Y|Yr, As, A5) p(¥rirs, )

= 3.6)
Eﬁw\m_w\v vfm‘uy.Wv - ﬁ_ﬁu\iy.m...ymv , m
pg
(XY (.2e vxmm s v ")
- u\m v:w + v:w y.m, + vrm.
That is,
Y5lY, As, A < Binomial® [V, A /(s + Ag)). (3.8)

3Recall ¥ & Binomial{n, P} indicates that Y follows & binomial distribution with
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Thus, given the model parameters, we can predict the “missing data”
{e.g., by its conditional expectation with error bars based on its conditional
standard deviation). Likewise, given the “missing data” we can estimate the
model parameters (e.g., using maximum likelihood or a Bayesian estimate).
This leads to an iterative strategy that updates the “missing data” given
the model parameters and then the model parameters given the “missing
data.” Such computational methods include the EM algorithm and the
Data Augmentation (DA) algorithm and are referred to generally as the
method of data angmentation.

In the next two sections we abstract and generalize the important fea-
tures of this example to construct robust tools for analysis of the high res-
olution high quality data available with today’s sophisticated instruments.
In Section 3.4 we show how data augmentation can be used to compute
maximum likelihood estimates, Bayesian posterior maodes and means, as
well as error bars. Generally these methods involve maximizing, simulat-
ing, and computing expectations of standard distribution functions. Such
simple distributions often arise naturally from a hierarchical model ex-
pressed in terms of the “missing data,” e.g., Equations 3.4, 3.5, and 3.8.
Details of the computation stability as well as examples which illustrate
the computational simplicity appear in the following sections.

3.3 Data Augmentation and Hierarchical Models

The term “data angmentation” originated with computational methods de-
signed to handle missing data, but as illustrated in Section 3.2, the method
is really quite general and often useful when there is no missing data per
se. In particular, for Monte Carlo integration in Bayesian data analysis we
aim to obtain a sample from the posterior distribution, p(8|Y). In some
cases, we can augment the model to p(6, X|Y), where X may be missing
data or any other unobserved quantity {e.g., counts due 4o background),
With judicious choice of X, it may be much easter to cbtain a sample from
2(8, X|Y) than directly from P(B]Y). Once we have a sample from {8, X|Y),
we simply discard the sample of X to obtain a sample from p{@|Y). The
notation here is more general, but the idea is exactly that of Section 3.2;
we use statistical insight to construct p(8, X[Y) so that both p(0|X,Y) and
p(X|6,Y) are simple or at least standard distributions,

Absorption Lines. Absorption can be accounted for by supposing the
expected counts in energy bin ¢ are Fym;, where F; would be the expected
counts if there were no absorption and m; is the expected proportion of

independent trials each with probability p, ie., Pr{y = y) = @vﬁzﬁ —p)*¥. As an
example, ¥ may be the random number of heads in n independent flips of a {possibly
unfair) coin that has probability p of coming up heads on each flip.
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counts in energy bin ¢ that are not absorbed. {We might, for exampie,
parameterize F; as a power law.} In particular, we might model the counts
in energy bin ¢ as ¥; & Poisson (Fim;). To formulate this model using
data augmentation, we let Nmr be the unobserved counts that the detector
would have detected i no photons were absorbed. We can then formulate
the hierarchical model,

Lever L: YY", Fi,m & Binomial (¥;7,m),

Lever 2: YHF L Poisson (F),
Lever 3 {optional): specify prior distributions for 7; and ;.

Again, the power of the data augmentation is the mvw:.@ 8. partition mrm
model complexity into simpler pieces, in this case a binomial absorption
model and a Poisson spectral model with no m_umoﬂuﬂoﬁ. .

Many standard absorption models (including absorption lines) mﬁ.n_ con-
tinuum speciral models (e.g., power laws and bremssirahiung wﬂ:mm:u.ﬁu
can be formulated using simple transformations of m; and 7; that are lin-
car functions of energy. In this case, given the “missing” absorbed photon
counts both LEVEL 1 and LEVEL 2 specify Generalized Linear Models that
are well studied and generally easy to fit. Likewise, given the Eo&& param-
eters and the observed data, the absorbed photons follow a simple model,

v+ A Poisson {1 - m) )+ Y

Emission Lines. Spectral models often include emission lines,
K
Fy o= c(By) + Mm:n
k=1l

where ¢( E;) is the expected continuum counts in energy bin ¢ and §; is the
expected counts from emission like & in energy bin 1. H.uoﬂ. each photon, we
postulate a variable that specifies whether the photon is due .8 the mouSH.T
uum or a particular emission line. This unobserved specification MSEmEm is
treated as “missing data.” Given this variable we can fit .ﬁWm.oanms.S us-
ing the counts due to the continuum without the complication of emission
lines. Likewise we can fit each of the emission lines (e.g., memBmﬁwwm. speci-
fying a Gaussian or Lorenzian distribution) using Fm counts wgz_ucﬁ.ma. to
that line. Conversely, given the parameter of continuum and the m.m:mmumvb
lines, the specification variable for each photon follows a simple multinomial
distribution.

Multiple Model Components. So far, we have divided Hwo. z.sodmmgmm
quantities into two groups, the model parameters and the “missing data.
More generally, we may partition & into 8 = Q.H,..;mﬁv“ where some
component of @ are model parameters of scientific interest, others may be
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nuisance parameters, and still others may be “missing data” or other un-
observed quantities. The key is that we select the unohserved quantities
and the partition of @ so that P(O:]01,...,8,_, Or41s-.,05,Y) is a stan-
dard distribution for each k. In this way we partition a complex problem
into a sequence of simpler standard problems which we handle iteratively
and one at a time. Thus, we can easily account for absorption, emission
lines, instrument respense, and background, all in the context of & Poisson
model without sacrificing numerical stability, computational simplicity, or
sound statistical inference. Details of such a model appear in van Dyk et
al. (2001); see also van Dyk’s discussion of Strauss (this volume)

3.4 Model Fitting

In Sections 3.2 and 3.3 we emphasize repeatedly that judicious choice of the
“missing data,” X, can lead to simple conditional models, p(BX,Y) and
p{X|6,Y), even when p(01Y) is much more complex. In this section we show
how these simple conditional models can be used to constrict computation
tools for likelihood-based and Bayesian model fitting. In recent years, these
tools have become popuiar throughout the social, physical biological and

engineering sciences primarily because of their computational stability and
simplicity.

3.4.1 The EM Algorithm

Dempster et al. (1977) formulated the expectation maximization (EM) al-
gorithm to compute a maximum likelihood estimate, that is

9 = argmaxg. , L(0]Y), (3.9)

where Y is the observed data, € is a model parameter, L(B]Y) is the likeli-
hood function, and @ is the maximum likelihood estimate. {(More generally,
we can replace L{0]Y) with & posterior distribution in Equation 3.9 and
use EM to compute the posterior mode, mv In particular, Dempster et al,
(1977) considered maximum likelthood estimation in the presence of in-
complete data or problems that can be formulated as such (e.g., spectral
imaging with background or degraded counts). In this context, the EM
algorithm builds on the intuitive idea that (i} if there were no “missing
data,” maximum likelihood estimation would be easy, and (ii) if the model
barameters were known, the “migsing data” could easily be imputed (i.e.,
predicted) by its {conditional) expectation.

These two steps take on a simple form in the context of the background
example described in Section 3.2, In particular, #f Y5 had been observed,
we could estimate Ag with Ys. Likewise, if A\g and Ap were known, Yg
could be estimated as the proportion of the observed cownts, ¥, implied by
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As and Ag, Le., the conditional expectation of Yg, Y s/{Ap -+ »mv.. This
leads naturally to a two-step iteration éEor. converges to the E.mwcwmcwp
likelihood estimate. 1t should be noted that this procedure necessarily MW s
to & non-negative estimate of Ag, whereas the common mmﬁ:ﬂmﬁm resulting
from “subtracting background,” ¥ — NﬂM\ﬁm“ may be negative. .

The two steps in this simple iteration ooﬁmmﬁwnn to the M-step (i.e.,
maximization step) and the E-step (i.e., .mx@mogn_ow step} of EM Bmmwoa._
tively, with the proviso that not the EmmmE.m data, but H.mgﬁ ﬁw.m .mo-ow. mM d
augmented-data log likelihood should be Hgﬁzdm&. UM .:._m con uwwﬁonﬂ o
pectation. In general, we begin by defining the massing &EE, X, Wu Emm
corresponding loglikelihood, L{8|Y,X). EM starts with an initial va
6% £ © and iterates the following two steps for t =0,1,...

E-step: Compute the conditional expectation of the loglikelihood corre-
sponding to the augmented data (Y, X), given the observed data and
the current parameter value,

Q(016%)) = & [log L(OIY, X)X, mﬁ : (3.10)

. t41)
M-step: Determine 0¥+ by maximizing Q(#]0%), that is, find ¢
so that Q(U+V18M) > (018 for all @ € ©;

until convergence. The usefulness of the ES mwm.oﬁga is m@wmwmhw when
both of these steps can be accomplished with EHEE.& mbm&.&o an moaw-
putation effort but the direct maximization in MQﬁ@So.ﬂ 3.9 Hm.%mmn“z_ .In
many common models (e.g., multivariate Q@cmm&:., wuoammiﬂ gnoBHM wmﬁ
vosmsﬁmr ete.) log L(#]Y, X) is linear in a set of simple m:m.bamﬁm - Nv
sufficient statistics.” Thus, as will be illustrated below, no.B@cSDm @Qmmﬁru
involves routine calculations. The M-step then only requires oogwcﬁﬁm the
maximum likelihood estimates as if there were 1o “missing data,” by Mmﬂm
the predicied augmented-data sufficient statistics from the H.w,mﬁmu @mﬁ\. al pﬁ
To illustrate these ideas, we return to the GEBUK of Section w%< um mmi
X ={V¥s, ¥}, Y = {V, Y5}, and @ = {(Ap, Ag). In this case, log L( M Q“SW =
log L{Ag|Ys)+1og{Ag|Ya, Z); see Equations 3.4 and 3.5. Thus, Q(& =

“As+E ?m? meu log hs — kAg + T YE O\m_x %i log Ag. (3.11)
Elementary calculations show the wxﬁmogﬁ.ozm in Equation 3.11 are mrmwﬁ
by YAg/(Ae+Ag) and YAg/(Ag -+ Ag), which is the E-step, and Q(8|8\)

()
is maximized by ASTY = B(Ys|Y,A§) and AGTY = [Z + B(YEIY, A/,
which is the M-step.

4Parenthetic superscripts indicate iteration number.
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3.4.2  The Data Augmentation Algorithm

In the context of Bayesian data analysis, numerical summaries of the pos-
terior distributions are often computed via numerical integration. Because
of the high dimension of the parameter space in most practical problems,
Monte Cario integration is really the only useful method. If we can ob-
tain a sample from the posterior distribution, AQS“W =1,...,T}, Monte
Carlo integration approximates the posterior mean of any function, g, of
the parameter with

1 T
EGOY] = [gopoma~ 13 509, @
i=]

where we assume E[g(8)[Y] exists. For example, g(0) = 6 and g(6) = (& —
E(@]Y))(6 — E(8]Y)) lead to the posterior mean and variance respectively.
Probabilities, such as ¢ = Pr{0 € R) can be computed using g(6) = {9 ¢
R}, where the function I takes on value 1 if the condition in curly brackets
kolds and zero otherwige, Likewise, quantiles of the distribution can be
approximated by the corresponding quantiles of the posterior sample. In
short, a robust dats, analysis requires only a sample from the posterior
distribution,

In the highly structured models we described in Section 3.3 we must use
sophisticated algorithms to obtain g posterior sample. Here we introduce
the powerful Data Augmentation (DA) algorithm (Tanner & Wong 1987).
A description of the more general Gibbs sampler (Metropolis et al. 1953)
and Metropolis- Hastings algorithms (Hastings 1970) with applications in
astronomy can be found in {van Dyk et al, 2001). All of these algorithms
construct a Markov chain with stationary distribution equal to the posterior
distribution (e.g., Gelfand & Smith 1990); i.e., once the chain has reached
stationarity, it generates samples which are identically (but not indepen-
dently) distributed according to the posterior distribution. These samples
can then be used for Monte Carlo integration; hence these algorithms are
known as Markov chain Monte Carlo or MCMC methods. (See Tierney
[1996] for regularity conditions for using Equation 3.12 with MCMC draws
[11].) From the onset then, it is ciear that three important concerns when
using MCMC in practice are (1} selecting starting values for the Markov
chain, (2) detecting convergence of the Markov chain 4o stationarity, and
{3) the effect of the lack of independence in the posterior draws. Space
does not allow us to address all of these practical issues. Instead we direct
interested readers to van Dyk et al. (2001) and the references therein.

In order to obtain a sample from p(@,X|Y), the DA. algorithm uses an
iterative sampling scheme that samples first X conditional on @ and Y and
second samples 8 given (X,Y). Clearly, the DA algorithm is most useful
when both of these conditional distributions are easily sampled from. The
iterative character of the resulting chair naturally leads to a Markov chain,
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which we initialize at some starting value, mhs. Fort=1,...,T, where T
is dynamically chosen, we repeat the following two steps:

Step 1: Draw X® from (XY, m.@l:y

Step 2: Draw 8% from p(8[Y, X)),

Since the stationary distribution of the H,mmc:ub.m Markov chain is M.ﬂw desired
posterior distribution, for large ¢, 6" approximately follows (8] WV .
To illustrate the utility of the algorithm, we H@Eﬂao the ,Um,.o MSMS
contamination model introduced in Section 3.2. Q:ﬁn mom.ﬂm starting value,

0 = gmmeu >mm8v the two steps of the algorithm at iteration ¢ become

Step 1: Draw &m& using the binomial distribution given in Equation 3.8
£
and sct M\%v =Y - Nmm ).

. &
Step 2: Draw \/mv and \/mc from independent -~y distributions

Ol & (a5 + Ve, s +1).
\/mv M\u@u 4 ~ AQE +Ys+ 4,88+ _3 and y.w M\m ¥ ﬁQm + Y5, Bs Aw“—uwv
Here o, 85, ag, and Bg are hyperparameters which quantify viﬂoﬂw%_%w
mation via a prior v distribution on Ag and Ag; see van Dyk et pwgormm-
for guidance in selecting these parameters. In the fixst mﬁm? Sma noca;_mm
tically divide the source count into source counts and bac @dcw counts
based on the current values of Ap and As. .Hz the second step Lﬂo% » s
division to update Ag and Az. Markov chain @moﬂw dm.:m us the iter
converges to the desired draws from the posterior distribution.

3.5 Accounting for Pile Up

Pile-up occurs in X-ray detectors when two or more ﬁﬁogﬂmﬁmam%dwwmvm
single spatial cell during the same time ?ﬁdm (i.e., the %m@m & :.Dm i ﬁm
Such coincident events are counted as a mE.mE event with mﬂmamum @vi o
the sum of the energies of each of the individual photons. T meroﬁ mﬂmw
sources pile-up can seriously distort both the cound wmﬁm an ) mﬁmﬂmbwuw
spectrum. Accounting for pile-up is perhaps the most importan ocw stand:
ing data-analytic challenge for Chandra. .Oogmu.g@:.ﬁ woa.am.ﬁmmu there 15
no difficulty in addressing pile-up in a hierarchical wg.mmmm%r Hmvmmgmn_
using MCMC; we must stochastically separate a subset of the o

T . . ith
istribution i i distribution on the positive real line wi
5The v (c distribution is a continucus . it
vwovm_uz._wwﬁao“%u#% function p(Y) = geYe~1eAY /T(a), expected value a/73, and vari
ance /3% for positive o and 8.
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FIGURE3.1. A Typical Energy Spectrum. We plot the expected photon count per
bin per time frame as a function of energy and illustrate the smooth continuum
with three small emission lines. This spectrum is plotted a$ low resolution {100

energy bins) to reduce the computational burden required for handling pile-up;
see Figures 3.2.

counts into multiple counts of lower energy while conditioning on the cur-
rent iteration of the model being fit. The attraction of hierarchical models
in this setting is that they allow us to handle pile up ignoring all other
model components. That is, when we separate counts into multiple counts
of lower energy, the spectral model is completely specified and all the other
degradations of the data (e.g., instrument response and background con-
tamination) are accounted for by conditioning on the appropriate “missing
data.” Thus, we can attack pile up as an isolated problem.

Unfortunately, even in isolation handling pile up is challenging. The dif-
ficulty lies in computation. Simply emumerating the set of photons that
could result in a particular observed event, let alone their relative proba-
bilities, is an enormous tagk. Nonetheless, we believe there is great promise
in Monte Carlo techniques which if carefully designed, can automatically
exclude numerous possibilities that have minute probability. As an illustra-
tion, Figure 3.2 plots the conditional distribution of the energy of one of
two photons with energy sumiming to 10 keV, assuming the energy spectra
is as in Iigure 3.1 and the point spread {unction i uniform across some
area of the detector. The symmetry of the distribution in Figure 3.2 re-
flects the exchangeability of the component photon energies and the modes
arises from the spectral emissior lines in Figure 3.1. In practice, an ob-
served energy can be the sum of more than two actual photon energies; in
this case there is an 8% chance that there are three photons {and a 61%
chance of only one photon, 29% chance of two photons, and 1% chance of
four photons).

Care must be taken to efficiently sample from such complex distributions.
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FIGURE 3.2. Un-piling Two Photons. The plot illustrates the Q.E&Eov& dis-
tribution of the energy of one of two photons with energy summing to 10 keV,
assuming the energy spectra is as in Figure 3.1 m\ﬁou. a E:moﬁu point spread ?wﬂ?
tion. Sophisticated Monte Carlo methods are required to simulate such a highly
multi-modal distribution.

Development of Monte Carlo samplers for this Emw. is an area o.m current re-
search. Nonetheless, even with substantial simplifying m\mmjﬂ%ﬁoﬁm (e.g., at
most two photons can pile} preliminary results from our Fma%drﬁ& .Bomm_
fit via MCMC show great promise. An example is given in the contributed
paper by Kang et al. (this volume).

3.6 The Future of Data Analysis

The highly structured models described in this nﬁ@@.ﬂ.@a reflect a new J.mﬁa
in applied statistics—it is becoming ever more feasible to .UEE app Bmm
tion specific models which are designed to account for the ?mwwggnm_ an
latent structures inherent in any particular data Mmumumsou. mechanism.
Such multi-level models have long been advocated on theoretical grounds,
but recently the development of new ooaﬁiwaoﬁ&. tools mﬁor as .%.me
described here bas begun to bring such model fitting into routine Emnﬂo.m.
Although these methods offer great promise, they are by no means m.dm.:u.wmg
tical black boxes that will automatically solve any problem. The mmwﬁv;;u\
of such models and computational methods require users ﬂm be mﬂmﬁm.ﬂom:%
savvy. We, however, believe the benefits of superior m.Em.a_smo Ea&.oﬁ.bm far
outweigh these costs. Indeed the future of date analysis lies in sophisticated
application-specific modeling and methods.
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Commentary by Michael A. Strauss®

Astronomers often find themselves tackling complicated likelihood prob-
lems. With some basic knowledge of the underlying statistics of a given
astronomicat problem, and some familiarity with likelihood functions and
Bayesian statistics, we often are able to write down a likelihood function in
closed form. However, if the problem is complicated enough (read “interest-
ing”, as it usually is), we are stymied when it comes time to maximize this
likelihood, especially if there is an interesting and complicated parameter
space to fit for. This paper describes useful techniques for solving exactly
this sort of problem, which are common in astronomy, by a “divide and
conquer” approach, doing the problem iteratively. The very nasty problem
of deconvolving the effects of “pile-up” in X-ray spectra is a particularly
good example of this.

Another problem which may be amenable to this approach is illustrated
in Figure 3.3, which shows the spectrum of & quasar from the Sloan Digi-
tal Sky Survey (see my contribution to these proceedings). The spectrum
shows a blue continuum with strong superposed emission lines. Blueward
(to the left) of the Ly« emission line of hydrogen are superposed a large
number of absorption lines of Ly, due to fillaments and wisps of hydrogen
gas at redshifts between that of the quasar and zero. Asironomers very
much want to measure the statistics of the Lyo forest absorption, but are
stymied in part because of the lack of cornplete understanding of the unab-
sorbed contimuum of the quasar itself. That is, the observations represent
the convolution of two unknowns: the quasar spectrum, and the Ly for-
est absorption spectrum, and it is not clear how optimally to separate the
two. It would be interesting to know if the methods described in this paper
could allow an optimal solution to this problem.

$Princeton University Observatory
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FIGURE 3.3. The spectrum of a high-redshift quasar from the Sloan Digital Sky
Survey.




