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The EM algorithm is a popular method for computing maximum likelihood estimates or posterior
modes in models that can be formulated in terms of missing data or latent structure. Although easy im-
plementation and stable convergence help to explain the popularity of the algorithm, its convergence is
sometimes notoriously slow. In recent years, however, various adaptations have significantly improved
the speed of EM while maintaining its stability and simplicity. One especially successful method for
maximum likelihood is known as the parameter expanded EM or PXEM algorithm. Unfortunately,
PXEM does not generally have a closed form M-step when computing posterior modes, even when
the corresponding EM algorithm is in closed form. In this paper we confront this problem by adapting
the one-step-late EM algorithm to PXEM to establish a fast closed form algorithm that improves
on the one-step-late EM algorithm by insuring monotone convergence. We use this algorithm to fit
a probit regression model and a variety of dynamic linear models, showing computational savings
of as much as 99.9%, with the biggest savings occurring when the EM algorithm is the slowest to
converge.

Keywords: dynamic linear model, EM algorithm, MAP estimates, one-step-late methods, PXEM
algorithm, posterior modes, probit regression, rate of convergence, working parameters

1. Introduction

Computing maximum likelihood (ML) or maximum a posteri-
ori (MAP) estimates in highly structured models involving latent
variables, missing data, random effects, etc., can be a challeng-
ing computational task. The EM algorithm (Dempster, Laird
and Rubin 1997), however, has proved to be a powerful tool in
such complex settings. The primary advantages of the EM algo-
rithm over Newton-Raphson-type algorithms are numerical and
computational stability (see Dempster, Laird and Rubin 1997,
Meng and van Dyk 1997). In particular, the EM algorithm is
often easy to implement and is known to increase the loglikeli-
hood or log posterior function at each iteration. Unfortunately,
in some cases the EM algorithm can be very slow to converge.
Thus, in recent years a number of extensions and adaptations of
the algorithm have been proposed to improve its rate of conver-
gence while maintaining its simplicity and stability (e.g., Liu
and Rubin 1994, van Dyk 2000b, c). An especially promis-
ing set of algorithms for ML involves the method of working
parameters (Meng and van Dyk 1997) and the PXEM algo-
rithm (Liu, Rubin and Wu 1998). These EM-type algorithms
and their stochastic counterparts have been used to significantly
improve computational speed in a wide range of models (Liu
and Rubin 1994, 1995, Gelfand, Sahu and Carlin 1995, Meng

and van Dyk 1997, 1998, 1999, Higdon 1998, Pilla and Lindsay
1999, Foulley and van Dyk 2000, van Dyk 2000b). Although
the PXEM algorithm is a powerful tool for fast stable com-
putation of ML estimates, when prior information is available,
PXEM is not very useful. This is because PXEM generally does
not result in a closed form M-step even when the correspond-
ing EM algorithm is in closed form (van Dyk 2000b). In this
paper, we show how a variant of the one-step-late EM algo-
rithm (Green 1990) can be combined with PXEM to establish
a fast closed form algorithm. Our proposal is more stable than
Green’s one-step-late algorithm in that it guarantees monotone
convergence, at least when the corresponding EM algorithm is in
closed form.

The main results appear in Section 2, where we show how
the EM, PXEM, and one-step-late EM algorithms are com-
bined in the one-step-late PXEM algorithm. In Section 3
we apply the one-step-late PXEM algorithm to compute
MAP estimates in probit regression, illustrating the compu-
tational gain over EM. A more extended example, apply-
ing our methods to compute MAP estimates in the dynamic
linear model (DLM), is presented in Section 4 and illus-
trated numerically in Section 5. Concluding remarks appear in
Section 6 and details of the DLM implementation appear in
Appendix A.
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2. The PXEM and OSL-PXEM algorithms

2.1. The EM algorithm

The EM algorithm (Dempster, Laird and Rubin 1997) is an it-
erative method designed to calculate ML or MAP estimates in
models with missing data or latent structure. Suppose, for ex-
ample, we wish to compute ξ̂ = argmaxξ �(ξ |Yobs), where Yobs

is the observed data, ξ is a model parameter, and � represents
the log posterior distribution. The method of data augmenta-
tion embeds the observed-data model into a larger augmented-
data model, via a many-to-one mapping, M(Yaug) = Yobs,
such that ∫

p(Yaug | ξ ) dYaug = p(Yobs | ξ ); (1)

here and throughout the paper we integrate Yaug over the set
{Yaug :M(Yaug) = Yobs}.

EM uses the augmented-data model to maximize �(ξ | Yobs)
by computing the sequence

ξ (l+1) = arg max
ξ

QEM
(
ξ

∣∣ ξ (l )
)

≡ arg max
ξ

E
{

log p(Yaug | ξ ) + log p(ξ )
∣∣ Yobs, ξ

(l )
}
, (2)

for l = 0, 1, . . . , where p(ξ ) represents the prior distribution
of ξ . Under certain regularity conditions, this sequence con-
verges to a, perhaps local, maximum of �(ξ | Yobs) and increases
�(ξ | Yobs) at each iteration (Dempster, Laird and Rubin 1997,
Wu 1983). Typically, each iteration involves two steps, the ex-
pectation or E-step computes QEM(ξ | ξ (l )) and the maximization
or M-step maximizes QEM(ξ | ξ (l )). The global rate of conver-
gence of the algorithm is the smallest eigenvalue of the frac-
tion of observed information, Iobs I −1

aug, where Iobs is the ob-
served Fisher information and Iaug = − ∂2

∂ξ ·∂ξ ′ Q(ξ | ξ̂ )|ξ=ξ̂ is the
expected augmented-data Fisher information. In Section 2.2
we discuss recent advances which introduce a creative choice
of p(Yaug | ξ ) to speed convergence while maintaining easy
implementation.

2.2. Working parameters and the PXEM algorithm

The working parameter method (Meng and van Dyk 1997)
can dramatically improve the convergence rate of EM by tak-
ing advantage of the many potential augmented-data models,
p(Yaug | ξ ), which satisfy (1). In particular, we can parame-
terize a class of such models using a working parameter, α,
such that∫

p(Yaug | ξ, α) dYaug = p(Yobs | ξ ) for each α ∈A. (3)

Generally, we construct A such that there exists α0 ∈ A cor-
responding to the “standard data augmentation” scheme, i.e.,
p(Yaug | ξ, α0) = p(Yaug | ξ ). Meng and van Dyk (1997) show
how α can be chosen to optimize the rate of convergence of the

resulting EM algorithm by minimizing the expected augmented-
data Fisher information as a function of α. The method of ef-
ficient augmentation implements the EM algorithm with the
working parameter fixed at this optimal value; see Meng and
van Dyk (1998) and van Dyk (2000a) for applications of this
method.

As a variant of the working parameter method, Liu, Rubin
and Wu (1998) suggest fitting α during the iteration rather
than optimizing over α before running the algorithm. In
particular, at iteration l, the E-step of the PXEM algorithm
computes

QPXEM
(
ξ, α

∣∣ ξ (l ), α0
) =

∫
{log p(Yaug | ξ, α) + log p(ξ )}

× p
(
Yaug

∣∣ Yobs, ξ
(l ), α0

)
dYaug,

and the M-step sets (ξ (l+1), α(l+1)) ≡ argmax(ξ,α) QPXEM(ξ, α |
ξ (l ), α0); α(l+1) is not used subsequently. Like the EM algorithm,
PXEM increases the loglikelihood at each iteration (Liu, Rubin
and Wu 1998, van Dyk 2000b), but PXEM’s global rate of con-
vergence is at least as good as that of the algorithm that fixes α

at α0, i.e., the standard EM algorithm. Heuristically, condition-
ing on α = α0 increases the augmented-data information. By
eliminating this conditioning, the augmented-data information
decreases and the rate of convergence is improved. As pointed
out by Liu, Rubin and Wu (1998), the larger the dimension of
α, the larger the potential gain of PXEM; see also Foulley and
van Dyk (2000), van Dyk and Meng (2000).

2.3. Extending PXEM for Bayesian calculations

Although Liu, Rubin and Wu (1998) illustrated the dramatic im-
provement of PXEM over EM for computing ML estimates in
a number of examples (see also van Dyk 2000b), PXEM is not
generally useful for computing MAP estimates or penalized ML
estimates even in cases when the corresponding Bayesian EM
algorithm can be easily implemented. To identify the difficulty
with Bayesian calculations and to illustrate the working param-
eter method and PXEM, we consider the simple random-effects
model

yi | θi
indep∼ N (θi , σ

2) with θi ∼ N (0, τ 2) and τ 2 iid∼ ητ 2
0

χ2
η

,

(4)

for i = 1, . . . , n, where η and τ 2
0 are fixed hyperparameters.

For simplicity, we also assume σ 2 is fixed. A simple EM algo-
rithm defines Yaug = {y = (y1, . . . , yn), θ = (θ1, . . . , θn)} and
can be extended to a PXEM algorithm using Yaug = {y, φ =
(φ1, . . . , φn)}, where φi = θi/α and α is the working parameter.
Thus, the model can be rewritten as

yi | φi ∼ N (αφi , σ
2) with φi ∼ N (0, τ 2/α2) and τ 2 ∼ ητ 2

0

χ2
η

,
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which yields the same marginal distribution, p(y | τ 2), as (4),
for any α �= 0. With α0 = 1, we can write

QPXEM
{
τ 2, α

∣∣ (τ 2)(l ), α0
}

= E

{
−

n∑
i=1

(yi − αφi )2

2σ 2
− α2φ2

i

2τ 2

∣∣∣∣∣ y, (τ 2)(l ), α0

}

−n

2
log

(
τ 2

α2

)
−

(
η

2
+ 1

)
log τ 2 − ητ 2

0

2τ 2
.

For ML calculations, we setη = −2 and τ 2
0 = 0 to induce a flat

prior distribution. We can then introduce the reparameterization
(τ̃ 2, α) with τ̃ 2 = τ 2/α2 in order to obtain a closed form M-step,

(τ̃ 2)(l+1) =
n∑

i=1

E
{
θ2

i

∣∣ y, (τ 2)(l )
}
, (5a)

α(l+1) =
∑n

i=1 yi E
{
θi

∣∣ y, (τ 2)(l )
}

∑n
i=1 E

{
θ2

i

∣∣ y, (τ 2)(l )
} , (5b)

and (τ 2)(l+1) = (α(l+1))2(τ̃ 2)(l+1). The expectations in (5) are
standard Gaussian calculations and are computed in the E-step;
here we use the simplification E{φi | y, (τ 2)(l ), α = α0} = E{θi |
y, (τ 2)(l )} and likewise for the expectation of φ2

i . Reparametriz-
ing the model parameter, ξ , is the standard method for obtain-
ing a simple M-step in PXEM. Unfortunately, we cannot find a
closed-form M-step using this method when a prior distribution
is used; e.g., if we use other values of (η, τ 2

0 ) in this example.
This difficulty was noted by van Dyk (2000b) who suggested

using the efficient augmentation when PXEM is difficult to im-
plement. Here, we adopt a different strategy, a variant of the one-
step-late method of Green (1990). We consider the typical case
where the M-step of a PXEM algorithm for ML solves the score
function via an invertible transformation (ξ̃ , α) = g(ξ, α); in our
example, this corresponds to (τ̃ 2, α) = g(τ 2, α). In the one-step-
late PXEM algorithm, which computes a MAP estimate, we
set (ξ (l+1), α(l+1)) = g−1(ξ̃ (l+1), α(l+1)), where (ξ̃ (l+1), α(l+1)) ap-
proximately maximizes

QPXEM
(
ξ, α

∣∣ ξ (l ), α0
) = E

{
log p(Yaug | ξ̃ , α)

∣∣ Yobs, ξ
(l ), α0

}
+ log p(g−1(ξ̃ , α)); (6)

the distribution in the second term is p(ξ ), the prior on ξ , which
depends on (ξ, α) only through ξ . To approximately maximize
(6), we set (ξ̃ (l+1), α(l+1)) to the solution of

∂

∂(ξ̃ , α)
E

{
log p(Yaug | ξ̃ , α)

∣∣ Yobs, ξ
(l ), α0

}
(7a)

+ ∂

∂(ξ̃ , α)
log p(g−1(ξ̃ , α))

∣∣∣∣
α=α0

= 0. (7b)

This is a one-step-late algorithm since we fix α at its input value
in the reparametrized prior distribution for ξ ; coincidentally, the
input value is also the convergent value. Since (ξ̂ , α0) is a fixed
point of PXEM (see Liu, Rubin and Wu 1998), it is also a fixed
point of this algorithm. This procedure is generally in closed

form when the corresponding EM algorithm is in closed form,
i.e., with suitable choice of conjugate prior distribution. If this
is not the case, it may be helpful to evaluate (7b) at (ξ̃ , α) =
g(ξ (l ), α0) so that only (7a) depends on (ξ̃ , α). In some cases,
we evaluate only certain factors of (7b) at α0. Generally some
creativity is required to derive useful algorithms; this is in the
spirit of other EM-type algorithms, which rely on a creative
choice of Yaug. The emphasis is on arriving at a simple M-step;
several examples appear in Sections 3 and 4.

Unfortunately, this one-step-late algorithm is not guaranteed
to increase the log posterior distribution at each iteration (see
Green 1990). However, it is often easy to replace the one-step-
late update with the update from EM if the log posterior distri-
bution decreases, thus guaranteeing monotone convergence. We
define the one-step-late PXEM algorithm in this way; at iteration
l, this algorithm proceeds as follows:

E-step: Compute QPXEM(ξ, α | ξ (l ), α0);

M-step: Set (ξ (l+1)
prop , α

(l+1)
prop ) = g−1(ξ̃ (l+1)

prop , α
(l+1)
prop ) where (ξ̃ (l+1)

prop ,

α
(l+1)
prop ) solves (7b);

Correction-step: If l(ξ (l+1)
prop | Yobs) ≤ l(ξ (l ) | Yobs), set ξ (l+1) =

arg maxξ QEM(ξ | ξ (l )), otherwise set ξ (l+1) = ξ
(l+1)
prop .

In the correction step, it is often the case that arg maxξ QEM(ξ |
ξ (l )) = ξ̃

(l+1)
prop , a quantity that has already been computed. Thus,

this algorithm results in a simple monotone adaptation of PXEM
for computing posterior modes and is generally quite efficient,
especially in the important case when the prior distribution is
weak relative to the likelihood. Generally, we find that, as with
the ordinary PXEM algorithm, this algorithm offers the most
gain when EM is the slowest to converge, see Liu, Rubin and Wu
(1998). In the remainder of the paper, we refer to this algorithm
as the OSL-PXEM algorithm.

We illustrate the OSL-PXEM algorithm by fitting model (4).
The E-step is exactly as in EM and PXEM for ML: we compute
E{θi | y, (τ 2)(l )} and E{θ2

i | y, (τ 2)(l )}. In the M-step, we solve
(7) via

(τ̃ 2)(l+1)
prop =

∑n
i=1 E

{
θ2

i

∣∣ y, (τ 2)(l )
} + ητ 2

0

n + η + 2
,

α(l+1)
prop

=
∑n

i=1 yi E
{
θi

∣∣ y, (τ 2)(l )
} − σ 2

{
(η + 2) − ητ 2

0

/
(τ̃ 2)(l+1)

prop
}

∑n
i=1 E

{
θ2

i

∣∣ y, (τ 2)(l )
} ,

and set (τ 2)(l+1)
prop = (α(l+1)

prop )2(τ̃ 2)(l+1)
prop .

To illustrate the efficiency of this strategy, 1500 data sets, each
of size 1000 were generated according to model (4) with τ 2 = 1.
The value of σ 2 was set to one of ten values (0.25, 1, 4, 9, 16,
25, 36, 49, 64, 81) in equal proportion. Model (4) was fit using
both EM and OSL-PXEM with one of three prior distributions
on τ 2, p(τ 2) ∝ 1, τ 2 ∼ 0.5/χ2

1 , and τ 2 ∼ 10/χ2
20, again in equal

proportion. With a flat prior distribution (i.e., ML fitting), the
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Fig. 1. The computational gain of OSL-PXEM over EM when fitting a random-effects model. The boxplots illustrate the efficiency of OSL-PXEM
for fitting model (4) with various values of σ 2. The first column plots log10 (SPXEM/SEM ), the computational time required by OSL-PXEM in units
of that required by EM and the second column plots the fitted value of τ 2, also on the log10 scale. The rows correspond to three prior distributions,
p(τ 2) ∝ 1, τ 2 ∼ 0.5/χ 2

1 , and τ 2 ∼ 10/χ 2
20. In the second column, the dotted lines represent the true value of τ 2 and the dashed lines the prior

mode of τ 2. The gain offered by OSL-PXEM grows with σ 2 but is dampened as the prior distribution becomes strong relative to the likelihood

one-step-late method was not required and we used the stan-
dard PXEM algorithm. The value of σ 2 was assumed known
in model fitting. Each algorithm was started at (τ 2)(0) = 1 and
run until the log posterior distribution increased by less than
10−7. The results of the simulation appear in Fig. 1, where the
rows correspond to the three prior distributions. The box plots
in the first column show the log (base 10) of the time required by
OSL-PXEM in units of the time required by EM to fit the same
model to the same data set. Notice that for ML fitting with large
values of σ 2, EM took about 100 times longer than PXEM. A
similar trend can be seen with proper prior distributions except
the advantage of OSL-PXEM vanishes for large values of σ 2.
The second column of Fig. 1 explains this phenomenon by plot-
ting the fitted values of τ 2 on the log10 scale. Here the dotted

line represent the value of τ 2 used to generate the data and
the dashed line the prior mode. As σ 2 grows, the prior distri-
bution becomes more influential. When the prior specification
swamps the likelihood, OSL-PXEM offers little or no advantage
over EM.

3. Computing the MAP estimate
in probit regression

3.1. Probit regression model

In this section, we describe a fast new OSL-PXEM algorithm
for computing MAP estimates of the coefficients in probit
regression. Probit regression is a generalized linear model for
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Bernoulli data, which uses a probit link function. Specifically,
we assume

Yi | ξ
indep∼ Bernoulli{�(X ′

i ξ )}, for i = 1, . . . , n, (8)

where Yi is an observed binary response, Xi is a (p × 1) vector
of observed covariates, ξ is a (p × 1) vector of coefficients, and
� is the cumulative distribution function of the standard normal
distribution. Model (8) is routinely fit with a proper prior distri-
bution on ξ , for example, in economics (McCulloch and Rossi
1994, Imai and van Dyk 2003).

A well-known data-augmentation scheme that is useful for
fitting (8) using EM can be written

Yi = sign(Zi ) with Zi | ξ ∼ N (X ′
i ξ, 1), (9)

for i = 1, . . . , n, where Z = (Z1, . . . , Zn)′ are unobserved latent
Gaussian responses and are treated as missing data (see, e.g.,
Albert and Chib 1993). Liu, Rubin and Wu (1998) describe the
standard EM algorithm based on (9) and a much faster PXEM
algorithm for computing the ML estimate for model (8). An ad-
vantage of these EM-type algorithms over other methods (e.g.,
iterative reweighted least squares) for probit regression is that
they are easily generalized to accommodate missing data or other
model components such as random effects. EM-type algorithms
can also be used as a starting point for constructing a Gibbs sam-
pler for posterior simulation and exhibit more stable convergence
when computing posterior modes. Here we generalize the stan-
dard EM algorithm and derive a new faster OSL-PXEM; both
algorithms are designed to account for proper prior information
for ξ . In particular, we allow for the standard multivariate normal
(semi-conjugate) prior distribution, ξ ∼ N (ξ0, T ). We conclude
with an example that demonstrates the superior convergence
properties of the OSL-PXEM algorithm.

3.2. An EM algorithm

An EM iteration for computing a MAP estimate is given
by (2). For probit regression, using Yaug = (Y, Z ) with Y =
(Y1, . . . , Yn)′, this iteration takes the form

ξ (l+1) = arg max
ξ

E

{
−1

2

∑
i

(Zi − X ′
i ξ )2

−1

2
(ξ − ξ0)′T −1(ξ − ξ0)

∣∣∣∣ Y, ξ (l )

}
, (10)

which we compute using the familiar two-step formulation:

E-step: Compute the expected value in (10) which simplifies to
computing the expected value of each Zi under the truncated
normal distribution, p(Zi | Yi , ξ

(l )),

Z (l+1)
i = E

(
Zi

∣∣ Y, ξ (l )
)

=
{

X ′
i ξ

(l ) + φ
(
X ′

i ξ
(l )

)/{
1 − �

(− X ′
i ξ

(l )
)}

if Yi = 1

X ′
i ξ

(l ) − φ
(
X ′

i ξ
(l )

)/{− �
(− X ′

i ξ
(l )

)}
if Yi = 0,

where φ is the probability density function of the standard
normal distribution. (Here we take advantage of the fact that
as a function of ξ , the augmented-data log posterior is linear
in Z .)

M-step: Compute the maximization in (10), ξ (l+1) = (X ′ X +
T −1)−1(X ′ Z (l+1) + T −1ξ0), where Z (l+1) = (Z (l+1)

1 , . . . ,

Z (l+1)
n )′.

We use the SWEEP operator (as discussed in Little and Rubin
1987, pages 53–57) to accomplish the matrix inversion in the
M-step. In particular, we sweep out the first p columns and rows
of the matrix( ∑n

i=1 Xi X ′
i + T −1

∑n
i=1 X ′

i Z (l+1)
i + T −1ξ0∑n

i=1 Xi Z (l+1)
i + ξ ′

0T −1 γ + ξ ′
0T −1ξ0

)
(11)

and obtain ξ (l+1) as the upper right (p × 1) submatrix of the
result. Since we are only interested in the regression coefficients,
we may set γ to any value.

3.3. An OSL-PXEM algorithm

We give a more detailed description of the OSL-PXEM algo-
rithm. We begin by introducing the working parameter as in
Liu, Rubin and Wu (1998), by setting Z̃i = αZi for each i . The
augmented-data model is

Yi = sign(Z̃i ) with Z̃i | (ξ̃ , α) ∼ N (X ′
i ξ̃ , α2), (12)

for i = 1, . . . , n, where ξ̃ = αξ . The marginal distribution
of the observed data implied by the joint distribution on (Y, Z̃ )
given in (12) is Yi | (ξ̃ , α)

indep∼ Bernoulli{�(X ′
i ξ̃ /α)}. Since this

is the same as is implied by the joint distribution given in (9),
condition (3) is satisfied.

The OSL-PXEM algorithm consists of the three steps given in
Section 2.3. In the E-step, we compute QPXEM(ξ, α | ξ (l ), α0) as

−n

2
log α2 − 1

2α2

n∑
i=1

{
B (l+1)

i − 2Z (l+1)
i X ′

i ξ̃ + ξ̃ ′(Xi X ′
i )ξ̃

}

−ξ ′
0T −1ξ0

2
+ ξ̃ ′T −1ξ0

α
− ξ̃ ′T −1ξ̃

2α2
, (13)

where B (l+1)
i = E(Z̃2

i | Y, ξ (l ), α0) and Zi
(l+1) = E(Z̃i | Y, ξ (l ),

α0). Because of the working parameter, the augmented-data
log posterior is no longer linear in Z and we are required to
compute Bi

(l+1) for each i .
In the M-step, we approximately maximize (13) by solving

(7). To this end, we differentiate (13) with respect to ξ̃ and α,
yielding

∂ Q

∂ξ̃
= − 1

α2

n∑
i=1

{− Z (l+1)
i Xi + (Xi X ′

i )ξ̃
}

− 1

α2
(− αT −1ξ0 + T −1ξ̃ ) (14)
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and

∂ Q

∂α2
= − n

2α2
+ 1

2(α2)2

n∑
i=1

{
B (l+1)

i − 2Z (l+1)
i X ′

i ξ̃ + ξ̃ ′(X ′
i Xi )ξ̃

}

− ξ̃ ′T −1ξ0

2(α2)3/2
+ ξ̃ ′T −1ξ̃

2(α2)2
. (15)

We compute ξ̃
(l+1)
prop by setting α = α0 = 1 in the numerator of

(14), setting the result equal to zero, and solving. This is a slight
adaptation of (7), which specifies that α be set to α0 in both the
numerator and denominator of (14). This adaptation is in the
spirit of the one-step-late strategy and simplifies calculations
in this problem. The result is that we compute ξ̃

(l+1)
prop exactly as

ξ (l+1) was computed in the EM algorithm. To compute α (l+1) we
replace ξ̃ with ξ̃

(l+1)
prop in ∂ Q/∂α2, set the denominator of the first

term of (15) equal to α2(α2
0)1/2, set the resulting score function

equal to zero, and solve. Again we are not setting all the factors
of α = α0 in the two terms in (15), but as few as are necessary
for simple computation.

The OSL-PXEM iteration is completed with the correction
step:

E-step: For each i , compute Z (l+1)
i exactly as in the EM algo-

rithm and

B (l+1)
i = E

(
Z̃2

i

∣∣ Yobs, ξ
(l ), α0

)
= (

X ′
i ξ

(l )
)2 + 1 + X ′

i ξ
(l )

(
Z (l+1)

i − X ′
i ξ

(l )
)
.

M-step: First we obtain, ξ̃
(l+1)
prop = (X ′ X + T −1)−1(X ′ Z (l+1) +

T −1ξ0), using the SWEEP operator as described in
Section 3.2, but this time with γ replaced by

∑n
i=1 B (l+1)

i .
We set (s2) (l+1) equal to the lower right (1 × 1) submatrix of
(11) after sweeping, i.e.,

(s2)(l+1) =
n∑

i=1

{
B (l+1)

i − 2Z (l+1)
i X ′

i ξ̃
(l+1)
prop

+ (
ξ̃ (l+1)

prop

)′
(X ′

i Xi )ξ̃
(l+1)
prop

} + ξ ′
0T −1ξ0

− 2
(
ξ̃ (l+1)

prop

)′
T −1ξ0 + (

ξ̃ (l+1)
prop

)′
T −1ξ̃ (l+1)

prop .

And finally set

(α2)(l+1) = (s2)(l+1) − ξ ′
0T −1ξ0 + 2

(
ξ̃

(l+1)
prop

)′
T −1ξ0

n + (
ξ̃

(l+1)
prop

)′
T −1ξ0

and ξ
(l+1)
prop = ξ̃

(l+1)
prop /α(l+1).

Correction-step: If �(ξ (l+1)
prop | Y ) > �(ξ (l ) | Y ), set ξ (l+1) = ξ

(l+1)
prop ;

otherwise, set ξ (l+1) = ξ̃
(l+1)
prop .

Next, we illustrate the computational performance of this
algorithm.

Table 1. Component forms for the dynamic linear model

Component Form Ft G

Polynomial Trend
(or Growth∗) of Order p




1

0

...

0




p×1




1 1 . . . 1

0 1 . . . 1

...
...

. . .
...

0 0 . . . 1




p × p

Seasonal Effect
with p + 1 Seasons†




1

0

...

0




(p+1)×1

(
0 Ip

1 0′

)
(p+1)×(p+1)

Harmonic Component

(
1

0

) (
cos ω sin ω

− sin ω cos ω

)

Regression Component (Xt )p×1 Ip

∗The polynomial growth and trend components differ in their con-
straints on the system variance, T ; see Appendixes A.1 and A.2.
†We constrain 1′

p+1θ = 0, therefore, T 1p+1 = 0; 1p is a (p × 1) vector
of ones and Ip is the (p × p) identity matrix. Alternatively, we can
rewrite F ′

t and G as described in Appendix A.3.

3.4. Computational performance

To compare the performance of the standard EM and OSL-
PXEM algorithms we implemented both algorithms using a data
set supplied by M. Haas, who was a client of the statistics con-
sulting program at the University of Chicago. The data consists
of two covariates that are used to predict the occurrence of latent
membranous lupus nephritis. The data consists of measurement
of 55 patients 18 of whom have been diagnosed with latent mem-
branous lupus. (See Haas (1994, 1998) for scientific background;
the data appear in Table 1 of van Dyk and Meng (2001).)

We compute MAP estimates using a variety of prior distri-
butions to investigate the relative efficiency of EM and OSL-
PXEM. Using a normal prior distribution, we set the prior mean
of ξ to zero and the prior variance T = cI , varying log10 c be-
tween −1 and 3. Each of the models was fit using both the EM
and the OSL-PXEM algorithm with the same starting values
and convergence criterion. The relative efficiency of the algo-
rithms is summarized in Fig. 2. We plot log10(SOSL−PXEM/SEM),
the log (base 10) of the ratio of time (in seconds) required by
OSL-PXEM to the time required by EM, against c. Larger values
of c indicates weaker influence of the prior distribution on the
posterior distribution, as is illustrated in the middle plot where
we compared the MAP estimates with prior mode and ML es-
timates for each c. We also compared the relative time with
log10 SEM. It is clear from the plots that when the prior distri-
bution is dominant, MAP estimates are close to the prior mode,
and OSL-PXEM offers little gain over EM. However, when c
is larger, the data become more influential, EM becomes much
slower to converge, and OSL-PXEM becomes faster relative to
EM. When c is large (i.e., 103), the posterior mode is essentially
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Fig. 2. Computational gain of OSL-PXEM when fitting a probit regression model. The figure plots the relative time required by OSL-PXEM and
EM (log base 10 scale) for fitting the probit regression model to the kidney data, against log10c (first plot) and against log10 (τEM ) (final plot). The
middle plot shows how the MAP estimates of θ are affected by the prior variance; the solid lines are the MAP estimates; the long dashed lines are
the ML estimates; and the short dashed line is prior mode. When c is small, the MAP estimates are close to the prior mode and OSL-PXEM offers
little gain in computational time. However, when c is large, the MAP estimates are close to the ML estimate, and OSL-PXEM saves as much as
94% of the computational time. Fortunately, OSL-PXEM offers the greatest gain when EM is the slowest to converge

the ML estimate and OSL-PXEM offers the biggest gain, saving
about 94% of the computational time required by EM.

4. Computing the MAP estimate in the DLM

4.1. The dynamic linear model

The class of structural time series models known alternatively
as state-space models and dynamic linear models, or DLMs,
are enormously powerful for inference and forecasting in time-
dependent dynamic systems. Introduced in the 1960s (e.g.,
Harrison 1965, 1967), today these models are popular in a wide
range of applications including population dynamics, demo-
graphics, agriculture, and economics; see Harvey (1989) for a
frequentist perspective and West and Harrison (1997) and Pole,
West and Harrison (1994) for a Bayesian perspective. We con-
sider a class of Gaussian DLMs, which hypothesizes an under-
lying evolution in time of the coefficients of a Gaussian linear
model, i.e.,

Observation equation: yt = X ′
t β + F ′

t θt + νt , νt ∼ N (0, σ 2);

(16)

System equation: θt = Gθt−1 + ωt , ωt ∼ N (0, T );

Initial condition: θ0 ∼ N (0, κT ),

where t = 1, 2, . . . , n, y = (y1, . . . , yn)′ is an observed response
variable, Xt (q × 1), Ft (p × 1) and G (p × p) are known coef-
ficients, β is a (q × 1) fixed effect, and θt is a (p × 1) parameter
evolving over time. In model (16), the system equation repre-
sents a first order Markov process for the evolution of θt , which
in turn acts as a regression parameter in the observation equa-
tion. The scalar σ 2 represents the level-one variance and T the
level-two (p × p) variance-covariance matrix. The scalar κ is a
known constant, typically greater than one, which reflects un-
certainty in the initial condition. The zero mean in the initial

condition is assumed without loss of generality, since if we as-
sume an initial mean of µ, model (16) is recovered by replacing
yt and θt with yt − F ′

t Gtµ and θt − Gtµ respectively, where the
superscript t represents a power. A model including a fixed ef-
fect in the system equation can also be written in the form of
model (16) by transforming yt and θt .

Although models of this form go under various names,
we adopt the standard notation and terminology of West and
Harrison (1997) in the context of the DLM. Table 1 describes
several standard forms of the DLM, which West and Harrison
use to describe polynomial and cyclic trends and to incorpo-
rate covariate information. These so-called component forms
can be combined by introducing a block structure in G and T to
create a flexible class of models, which for example, can accom-
modate a seasonal effect around a linear growth model while
correcting for various covariates.

Various extensions to model (16) are possible and useful in
practice. For example, either F or G may be an unknown model
parameter and the observed response may be multivariate. Such
generalizations might be handled using EM-type algorithms and
the working parameter methods described here may help im-
prove convergence properties. We avoid these issues in this ar-
ticle, however, because they require creative solutions and more
complicated algorithms (e.g., with the M-step replaced by a set
of conditional M-steps) which would take us afield from our goal
of illustrating OSL-PXEM.

The popularity of DLMs has been fostered by a number of
computational tools such as the BATS package (Pole, West and
Harrison 1994) which uses the method of variance discount-
ing to estimate model parameters. The Kalman filter (Kalman
1960, Kalman and Bucy 1961) and the forward-backward algo-
rithm (Jazwinski 1970) both aim to estimate the underlying trend
given all other model parameters. ML estimation of these param-
eters can be accomplished via scoring, Newton-Raphson tech-
niques (e.g., Gupta and Mehra 1974, Ledolter 1979, Goodrich
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and Caines 1979), or the EM algorithm (Shumway and Stoffer
1982, Watson and Engle 1983). Although much work has been
devoted to methods for fitting the DLM, we know of no off-the-
shelf software for computing MAP estimates.

In the remainder of Section 4, we focus on new methods for
computing MAP estimates. The relative size of the error vari-
ance of the observation and system equations controls the system
volatility and thus the predictive power of the model. Unfortu-
nately, these parameters can be very difficult to estimate with
precision and prior information when available can be critical
for forecasting. Thus, we focus on new efficient algorithms for
computing MAP estimates.

4.2. Shumway and Stoffer’s EM algorithm

Shumway and Stoffer (1982) first recognized model (16) as a
latent variable model which could routinely be fit using the EM
algorithm. In particular, they noted that given Yaug = {θ0, (θt , yt ),
t = 1, . . . , n}, computing the ML estimate of ξ = (β, σ 2, T ) re-
quires only the evaluation of two simple sums of squares, i.e., the
M-step of EM is simple. Secondly, given ξ , the Kalman filter can
be used in the forward-backward algorithm to easily accomplish
the required expectation in the E-step. Iterating these two steps
produces a sequence converging to ξ̂ , the desired maximizer of
(1). We give the details of Shumway and Stoffer’s algorithm, par-
tially as a means of introducing the notation for our algorithms.

The augmented-data loglikelihood for Shumway and Stoffer’s
algorithm can be written

QEM
(
ξ | ξ (l )

)
= −n

2
log σ 2 − 1

2σ 2

n∑
t=1

{
(yt − X ′

t β − F ′
t ht )

2 + F ′
t Ht Ft

}

−n + 1

2
log |T | − 1

2
tr(T −1V ),

where

V = D − CG ′ − GC ′ + G BG ′ + (H0 + h0h′
0)/κ,

B =
n∑

t=1

(Ht−1 + ht−1h′
t−1), C =

n∑
t=1

(Pt + ht h
′
t−1),

D =
n∑

t=1

(Ht + ht h
′
t ),

ht = E(θt | y, ξ (l )), Ht = var(θt | y, ξ (l )), and Pt = cov(θt ,

θt−1 | y, ξ (l )) are all obtained as functions of ξ (l ) via the forward-
backward algorithm in the E-step; we sometimes write ht (ξ (l )),
Ht (ξ (l )), B(ξ (l )), etc., for clarity. The parameter, ξ , is updated
by maximizing QEM(ξ | ξ (l )), i.e., the M-step consists of

(σ 2)(l+1) = 1

n

n∑
t=1

{(yt − F ′
t ht )

2 + F ′
t Ht Ft },

β (l+1) =
(

n∑
t=1

Xt X ′
t

)−1 n∑
t=1

Xt (yt − F ′
t ht ),

and

T (l+1) = V

n + 1
. (17)

(Shumway and Stoffer’s algorithm did not include β.) The final
expression assumes T is unconstrained; for some component
forms a modification is required to accommodate restrictions;
see Appendix A.

4.3. Adding a working parameter to the model

To develop a fast algorithm, we begin by introducing a working
parameter to index a family of augmented-data models via a sim-
ple transformation of the latent variable. In particular, we intro-
duce a scale transformation of θt , φt = A−1θt , for t = 0, . . . , n,
where the working parameter, A, is an element of A, the class
of (p × p) invertible matrices. Thus we generalize (16) to

Observation equation: yt = X ′
t β + F ′

t Aφt + νt ,

νt ∼ N (0, σ 2);

System equation: φt = A−1GA φt−1 + ω̃t ,

ω̃t ∼ N (0, T̃ );

Initial condition: φ0 ∼ N (0, κ T̃ ),

(18)

where T̃ = A−1T (A−1)′. Model (18) reduces to model (16) when
A = A0 ≡ Ip and it is easy to verify that p(Yobs | ξ ) is identical
for model (16) and model (18) for all A ∈A, i.e., condition (3)
holds. Thus, applying PXEM to this formulation of the model
will result in an algorithm with rate of convergence at least as
good as that of Shumway and Stoffer’s algorithm.

4.4. The PXEM algorithm for maximum likelihood

To implement the PXEM algorithm for ML calculations using
(18), we define Yaug = {φ0, (yt , φt ), t = 1, . . . , n} and thus

QPXEM
(
ξ, A

∣∣ ξ (l ), A0
)

(19a)

= − 1

2σ 2

n∑
t=1

{(yt − X ′
t β − F ′

t Aht )
2 + F ′

t AHt (F ′
t A)′}

−n

2
log σ 2 − n + 1

2
log |T̃ | (19b)

−1

2
tr[T̃ −1{(H0 + h0h′

0)/κ + D − CG̃ ′ − G̃C ′ + G̃ BG̃ ′}],
(19c)

where G̃ = A−1G A. The E-step involves computing the various
quantities in (19) and is computationally equivalent to E-step of
EM. Because of the dependence of G̃ on A, the M-step, which
maximizes QPXEM(ξ, A | ξ (l ), A0) jointly as a function of ξ and A
is a non-trivial task. However, we can typically impose structure
on A such that G̃ = G, i.e., if we choose A such that GA = AG,
the trace in (19c) no longer depends on A. In this case, A (along
with β) takes the role of a fixed-effect or regression coefficient
in (19) and the M-step is straightforward. Iteration (l + 1) of
PXEM has the form
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E-step: Compute {ht (ξ (l )), Ht (ξ (l )), Pt (ξ (l )), t = 1, . . . , n},
B(ξ (l )), C(ξ (l )) and D(ξ (l )) using the forward-backward
algorithm as described in Section 4.2;

M-step: Set(
β (l+1), A(l+1)

)
= arg max

(β,A)

n∑
t=1

{(
yt − X ′

t β
(l ) − F ′

t Aht

)2 + F ′
t AHt (F ′

t A)′
}
,

(20)

(σ 2)(l+1) = 1

n

n∑
t=1

{(
yt − F ′

t A(l+1)ht

)2

+ F ′
t A(l+1) Ht

(
F ′

t A(l+1)
)′}

,

and

T (l+1) = A(l+1)T̃ (l+1)
(

A(l+1)
)′
, (21)

where T̃ (l+1) is given by the right-hand-side of (17).

The constraint, G A = AG is always satisfied if A = α I ,
where α is a scalar working parameter. In this case, (20) reduces
to(
β (l+1)

α(l+1)

)

=
{

n∑
t=1

(
Xt X ′

t Xt F ′
t ht

F ′
t ht X ′

t F ′
t (Ht + ht h′

t )Ft

)}−1 n∑
t=1

(
Xt

F ′
t ht

)
yt .

(22)

That is, we regress yt on Xt and F ′
t φt , accounting for the miss-

ingness of φt . Thus, this choice of working parameter ensures an
easy to use algorithm which is at least as fast as the standard EM
algorithm in terms of its global rate of convergence. We can often
improve on this algorithm, however, by increasing the dimension
of the free parameters in A. Thus, in model (18), our goal is to find
the working parameter with the largest dimension that retains a
simple closed form algorithm. In Appendix A, we show how A
can be constrained in accordance with the form of G to ensure G
and A commute and that the M-step reduces to solving the sim-
ple quadratic form in (20). Additionally, if T is subject to a con-
straint, we generally require A to be chosen so that T̃ is subject to
the same constraint. This simplifies the M-step because it avoids
maximization subject to the awkward constraint on A and T̃ that
AT̃ A′ has a particular form. For example, if we constrain T to be
diagonal, requiring A to be diagonal as well avoids maximizing
(19) subject to the awkward constraint that AT̃ A′ is diagonal.

4.5. The OSL-PXEM algorithm for Bayesian calculations

We consider computing posterior modes using the independent
semi-conjugate prior distributions β | σ 2 ∼ N (µβ, σ 2�β), σ 2 ∼
νσ 2

0 /χ2
ν , and T distributed as inverse Wishart with η degrees of

freedom and scale T0. (We parameterize the inverse Wishart so
that E(T ) = (η − p − 1)−1T0, where p is the dimension of T .)

In the OSL-PXEM algorithm, we use a one-step-late iteration to
compute a proposed parameter update. In the following E-step
the log posterior distribution is produced as a by-product. If the
proposed update does not increase the log posterior distribution,
we discard it and recompute the update using the M-step of
the standard EM algorithm. Notice, that if the proposal is
accepted, the E-step for the following iteration need not be
recomputed.

At iteration (l+1), the OSL-PXEM iteration has the following
structure

E-step: If necessary, compute �(ξ (l ) | y) using the “for-
ward” part of the forward-backward algorithm; compute
{ht (ξ (l )), Ht (ξ (l )), Pt (ξ (l )), for t = 1, . . . , n}, B(ξ (l )), C(ξ (l )),
and D(ξ (l )) using the “backward” part of the forward-
backward algorithm as described in Section 4.2;

M-step: Set (β (l+1)
prop , A(l+1)

prop ) to the solution of

− ∂

∂(β, A)

1

2

[
n∑

t=1

{(yt − X ′
t β − F ′

t Aht )
2 + F ′

t AHt (F ′
t A)′}

+ (β − µβ)′�−1
β (β − µβ)

]
+ Cα = 0, (23)

where the term

Cα = −(σ 2)(l ) ∂

∂(β, A)

[
(η + p + 1) log |A| (24a)

+ 1

2
tr
{
T0(A−1)′

(
T (l )

)−1
A−1

}]∣∣∣∣
A=A0

(24b)

corresponds to the prior distribution on T ; set

(σ 2)(l+1)
prop

= 1

n + q + ν + 2

[
νσ 2

0 + (
β (l+1)

prop − µβ

)′
�−1

β

(
β (l+1)

prop − µβ

)
(25a)

+
n∑

t=1

{(
yt − X ′

t β
(l+1)
prop − F ′

t A(l+1)
prop ht

)2
(25b)

+ F ′
t A(l+1)

prop Ht

(
F ′

t A(l+1)
prop

)′}]
, (25c)

T̃ (l+1)
prop = 1

n + η + p + 2
(T0 + V ) , (26)

and T (l+1)
prop = A(l+1)

prop T̃ (l+1)
prop (A(l+1)

prop )′;
Correction-step: Compute �(ξ (l+1) | Y ) using the “forward” part

of the forward-backward algorithm; if the proposed iterate
increases the log posterior distribution, set ξ (l+1) = ξ

(l+1)
prop ;

otherwise, set

β(l+1) =
(

�−1
β +

n∑
t=1

Xt X ′
t

)−1 (
�−1

β µβ +
n∑

t=1

Xt yt

)
,

(27)
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(σ 2)(l+1) = νσ 2
0 + ∑n

t=1

{(
yt − X ′

t β
(l+1) − F ′

t ht

)2 + F ′
t Ht Ft

} + (
β (l+1) − µβ

)′
�−1

β

(
β (l+1) − µβ

)
n + q + ν + 2

, (28)

and T (l+1) = T̃ (l+1).

The specific form of the solution to (23)–(24) is discussed
in Appendix A for various component forms; the expression
here assumes that A is chosen so that AG = G A. Since (24)
is evaluated at A = A0, computing (β (l+1)

prop , A(l+1)
prop ) reduces to

a slightly modified regression. The correction step requires
no extra computation unless the proposed update is rejected,
which is typically unusual as long as the prior distribution for
T is weak relative to the likelihood. In particular, the correc-
tion step is not needed if a flat prior distribution is used for
T regardless of the choice of prior distribution for (β, σ 2). In
some of the component forms, T is constrained, e.g., to be
diagonal. This affects both (24) and (26); details are given in
Appendix A.

The EM algorithm for computing the MAP estimate is imme-
diate from the computations above. In particular, iteration (l +1)
of EM is given by

E-step: Compute {ht (ξ (l )), Ht (ξ (l )), Pt (ξ (l )), for t = 1, . . . , n},
B(ξ (l )), C(ξ (l )), and D(ξ (l )) using the forward-backward
algorithm as described in Section 4.2;

M-step: Compute β (l+1) and (σ 2)(l+1) using (27)–(28) and set
T (l+1) to the right-hand-side of (26).

The Shumway and Stoffer algorithm is the special case result-
ing from flat prior distributions. Although the EM iteration is
simpler, we shall see in the next section that the working pa-
rameter speeds up the algorithm substantially while maintaining
monotone convergence.

Fig. 3. Annual volume of the Nile river: 1871–1970. The dotted lines correspond to the mean values in the time periods: 1871–1898 and 1899–1970

5. Computational performance

5.1. Modeling the volume of the Nile river

We begin by illustrating the dramatic improvement that PXEM
can offer over EM when fitting a DLM via ML. Figure 3 il-
lustrates the annual volume of the Nile river from 1871 to 1970
(Cobb 1978). The dotted lines represent the average level for two
time periods: 1871–1898 and 1899–1970; the sharp drop in vol-
ume in 1899 is attributed to a dramatic change in tropical rainfall.

The computational efficiency of PXEM can be seen in an
analysis of the data from 1900 to 1970. Because of the stability
of the volume in this time period, we fit a first order polynomial
trend DLM (see Table 1 and Appendix A.1),

yt = θt + νt , νt ∼ N (0, σ 2), with (29a)

θt = θt−1 + ωt , ωt ∼ N (0, τ 2), (29b)

where yt is river volume at time t , for t = 1900, . . . , 1970. The
model was fit with both EM and PXEM via ML. Both algorithms
were run until the loglikelihood increased by less than 10−6 after
starting at (σ 2, τ 2) = (12000, 55). PXEM converged in eight
steps, while even after 10, 000 iterations of EM, the loglikeli-
hood did not increase by as much as in four iterations of PXEM.
This example illustrates the extreme improvement of PXEM that
is typical of our experience in very stable systems, i.e., models
with very small system variances.
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In a second analysis, we added a regression component to
the model, which accounts for the sharp jump in 1899 by
setting xt equal to an indicator variable for 1871–1898. We com-
puted the MAP estimate using the entire data set and the inde-
pendent prior distribution, σ 2 ∼ 0.01/χ2

0.1, τ
2
reg ∼ 0.01/χ2

0.1, and
p(τ 2

pt) ∝ 1, where the subscripts ‘reg’ and ‘pt’ indicate the system
variance for the regression and polynomial trends respectively.
Using the same convergence criterion as before, OSL-PXEM

Fig. 4. The computational gain of OSL-PXEM over EM when fitting a polynomial trend DLM. The first column plots the computational time
required by OSL-PXEM relative to that required by EM; the second column illustrates the fitted value of τ 2; both are on the log10 scale. The rows
correspond to four different prior distributions. In the second column, the dotted lines represent the true value of τ 2 and the dashed lines the prior
mode. As the (true) observation variance increases the posterior mode converges to the prior mode and the computational gain of OSL-PXEM
may dissipate, as in the fourth row

required 1.29 seconds (123 iterations) to converge, while EM
required 3.79 seconds (469 iterations).

5.2. Simulation studies with polynomial trend DLMs

In this section, we describe a simulation study involving the
computation of MAP estimates in a polynomial trend model.
We generated 1000 data sets, each of size 20, according to a first
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Table 2. Convergence of the loglikelihood when fitting a second order
polynomial trend model with EM and PXEM. The step size of EM
becomes very small long before the algorithm reaches the mode

Iteration EM PXEM

start −249.450155 −249.450155
...

...
...

463 −149.661955 −148.999029
464 −149.661697 −148.999029

...
...

...
5303 −149.264276 −148.999029
5304 −149.264276 −148.999029

order polynomial trend model (see (29)) with τ 2 = 1 and 10 val-
ues of σ 2: 0.5, 4, 16, 36, 64, 100, 144, 196, 256, 324, in equal
proportion. The model was fit using both EM and OSL-PXEM
with four different independent prior distributions on σ 2 and τ 2:
(1) p(σ 2, τ 2) ∝ 1; (2) σ 2 ∼ 1/χ2

1 , τ 2 ∼ 1/χ2
0.1; (3) σ 2 ∼ 1/χ2

1 ,
τ 2 ∼ 1/χ2

1 ; and (4) σ 2 ∼ 1/χ2
1 , τ 2 ∼ 1/χ2

10. Both EM and OSL-
PXEM were started from (σ 2)(0) = 1, (τ 2)(0) = 1. OSL-PXEM
was run until the log posterior distribution increased by less
than 10−6; EM was stopped when the log posterior distribution
reached that of the last step of PXEM. We use this convergence
criterion for EM because extremely slow convergence can re-
sult in very small step sizes long before the iteration reaches the
mode; an example illustrating this phenomenon when fitting a
second order polynomial trend model appears in Table 2. The
results appear in Fig. 4, where the rows correspond to the four
prior distributions. In the first column, the boxplots show the
log (base 10) of the ratio of the time required by OSL-PXEM
to the time required by EM. In the second column, we plot the
fitted value of τ 2 on the log (base 10) scale and indicated the
true value of τ 2 and the prior mode of τ 2 with dotted and dashed
lines respectively. We can see that as σ 2 grows, the prior spec-
ification becomes more influential. When the prior distribution
dominates the likelihood, OSL-PXEM offers little advantage
over EM, similar to the result of Section 2.3. More interestingly,
when the likelihood dominates the prior, OSL-PXEM can offer
significant computational gain.

Looked at another way, OSL-PXEM offers the biggest gains
when the system equation is much more stable than the observa-
tion equation, i.e., when T is nearly singular. We emphasize the
importance of this case. A nearly singular T indicates a very sta-
ble system equation, at least for one component. This is the ideal
case for prediction. Good statistical analysis aims at including
enough structure in the model to explain as much systematic
variation as possible.

6. Discussion

The computational methods presented here have application well
beyond the specific two-level Gaussian DLM and probit regres-
sion model. The adaptation of the one-step-late algorithm offers

a general strategy for implementing PXEM with proper priors
distributions, while maintaining monotone convergence. Binary
time series can be modeled via a probit link that is equivalent to
assuming only the sign of yt is observed for each t . Treating yt

as missing data leads naturally to a data augmentation scheme
for model fitting which can be effectively implemented using
a working parameter approach in a manner analogous to that
presented here. Finally, Meng and van Dyk (1999) and Liu and
Wu (1999) show how the working parameter approach can im-
prove the data augmentation algorithm for posterior sampling.
Bayesian fitting of state-space and dynamic linear models would
likely be improved by this methodology. Thus, the data augmen-
tation schemes presented here promise to improve computational
performance in a wide variety of state-space and dynamic linear
models.

Appendix A: Details of OSL-PXEM for various
forms of the DLM

In this appendix we discuss the particulars of the OSL-PXEM
algorithm for the component forms given in Table 1 as well as
combinations of these forms. Both the solution to (23)–(24) and
the form of (26) when T is constrained depend on the component
form.

We focus on computing posterior modes with the under-
standing that ML estimates are a special case (i.e., if we set
�β = 0, ν = −2, σ 2

0 = 0, η = −(p + 1), and T0 = 0). Two sim-
plifications resulting from flat prior distributions should also
be noted. If p(T ) ∝ 1, we may skip the Correction-step and if
p(β) ∝ 1 (i.e., �−1

β = 0) we replace the denominator of (25) with
(n + ν + 2). As discussed at the end of Section 4.5, we can also
easily derive EM algorithms from the OSL-PXEM algorithm for
both MAP and ML calculations. In this case, we use the same
replacement in (25) if �−1

β = 0.

A.1. Polynomial trend models

To fix ideas in the polynomial trend model, we begin with the
linear trend model, where

yt | µt ∼ N (µt , σ
2)

with

µt = µt−1 + γt−1 + ωt1, (30a)

γt = γt−1 + ωt2, (ωt1, ωt2)′ ∼ N (0, T ), (30b)

and θt = (µt , γt )′ for t = 1, . . . , n. In the absence of system vari-
ance, γ is the per unit time change in the observation mean, i.e.,
the slope of the linear trend. Thus, this model is used to incor-
porate a linear drift in the system.

It can be shown that A must be of the form

Apt =




α1 α2 . . . αp

0 α1 . . . αp−1

...
...

. . .
...

0 0 . . . α1


 , (31)
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to ensure Apt and G commute; here the subscript ‘pt’ stands for
polynomial trend. To derive the OSL-PXEM algorithm, we need
only construct an explicit form of (23)–(24). Using (31),

∂ log |Apt|
∂α

∣∣∣∣
Apt=A0

= (p, 0, . . . , 0)′

and

∂tr
{
T0

(
A−1

pt

)′(
T (l )

)−1
A−1

pt

}
∂αi

∣∣∣∣
Apt=A0

= −2tr

{(
T (l )

)−1
T0

∂ Apt

∂αi

}

so that the correction term in (24) is

Cα = − (σ 2)(l )


(η + p + 1)




p

0
...

0


 (32a)

−




tr
{(

T (l )
)−1

T0∂ Apt/∂α1
}

tr
{(

T (l )
)−1

T0∂ Apt/∂α2
}

...

tr
{(

T (l )
)−1

T0∂ Apt/∂αp

}





 , (32b)

where α = (F ′
t Apt)′ = (α1, α2, . . . , αp)′. Thus, the solution of

(23)–(24) is given by(
β

(l+1)
prop

α
(l+1)
prop

)
=

{
u
(
�−1

β

) +
n∑

t=1

(
Xt X ′

t Xt h′
t

ht X ′
t Ht + ht h′

t

)}−1

(33a)

×
{(

�−1
β µβ

Cα

)
+

n∑
t=1

(
Xt

ht

)
yt

}
, (33b)

where u(�−1
β ) =

(
�−1

β 0
0 0

)
, and A(l+1)

prop can be obtained accord-

ingly using (31). The significant computational advantage of the
OSL-PXEM algorithm for the polynomial trend model is illus-
trated in Sections 5.1 and 5.2.

A.2. Polynomial growth model

In this section we briefly describe a popular variant of the polyno-
mial trend model known as the polynomial growth model which,
except for a constraint on T , is identical to the trend model; this
form of the polynomial model has long been popular in the liter-
ature (e.g., Harrison 1965, 1967). For clarity, we again consider
the second order model and rewrite (30) as

µt = µt−1 + γt + ω̃t1 and γt = γt−1 + ω̃t2,

and model (ω̃t1, ω̃t2)′ as independent Gaussian random variables
(see West and Harrison (1997), Chapter 7). For the model of
order p, the assumption of independence on ω̃ corresponds to
writing T = Up�U ′

p in (30) or (16), where Up is a (p × p) upper
triangular matrix with non-zero elements equal to one, and � is
a diagonal parameter matrix.

Because of the constraint on T , we replace its usual prior with
δi

indep∼ νδ0i/χ
2
ν , where the diagonal of � is {δ1, . . . , δp}, i.e.,

p(T ) ∝ |U−1T (U−1)′|−(ν/2+1) exp{− 1
2 tr(�0U ′T −1U )}, where

�0 is a diagonal matrix with elements {δ01, . . . , δ0p}. To en-
sure T̃ satisfies the same constraint as T , we replace Apt with
Apg = α I , where α is a scalar working parameter. These two re-
placements affect the computation of β

(l+1)
prop , A(l+1)

prop , and T (l+1)
prop

in the OSL-PXEM algorithm. In particular, (23)–(24) is satisfied
by

(
β

(l+1)
prop

α
(l+1)
prop

)
=

{
u
(
�−1

β

) +
n∑

t=1

(
Xt X ′

t Xt h′
t1

ht1 X ′
t (Ht )11 + ht1h′

t1

)}−1

(34a)

×
{(

�−1
β µβ

Cα

)
+

n∑
t=1

(
Xt

ht1

)
yt

}
, (34b)

where ht1 is the first component of ht , (Ht )11 is the (1, 1) element
of Ht , and

Cα = −(σ 2)(l )
[
(ν + 2)p − tr

{
�0U ′(T (l )

)−1
U

}]
,

and (26) is replaced by

T̃ (l+1) = 1

n + ν + 3
Up diag

{
�0 + U−1

p V
(
U−1

p

)′}
U ′

p, (35)

where diag(M) is a diagonal matrix with diagonal elements equal
to those of the matrix M .

The difficulty with using the larger working parameter Apt

for the polynomial growth model, is that it is difficult to
maximize QPXEM(ξ, A | ξ (l ), A0) under the constraint on T .
This maximization can be approximated using the standard
parametric transformation, (β, σ 2, T̃ , A), by first computing
A(l+1)

prop by maximizing (19) over A without constraint and then
over T̃ subject to the constraint that U−1

p A(l+1)
prop T̃ (A(l+1)

prop )′(U−1
p )′

be diagonal. This involves computing (β (l+1)
prop , A(l+1)

prop ) using (33)
and T̃ (l+1)

prop using (35) with Up replaced by (A(l+1)
prop )−1Up. Be-

cause this is only an approximate M-step, the Correction-step is
required to guarantee monotone convergence even when a flat
prior is used on T .

A.3. Seasonal effects models

In the seasonal effects model, we include p + 1 “seasonal” ef-
fects, e.g., 12 months or 4 quarters. Since seasonal effects are
generally used in conjunction with a polynomial trend or growth
model which accounts for overall trends over time, we assume
the seasonal effects sum to zero, i.e., 1′

p+1θt = 0. The system
equation, uses the permutation matrix, G, (see Table 1) to ap-
propriately reorder the components of θ at each time period.
Because of the symmetry of the system, we generally assume
the system variance can be written T = τ 2 I .

To account for the constraint on θt , we focus on the first p
elements of θt , θ̃t = (θ1, . . . , θp)′ and use the equivalent model
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formulation θt+1 | θt ∼ N (Gseθt , T ), where

Gse =




0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0
...

...
...

. . . 1

−1 −1 −1 . . . −1




,

and

T = τ 2{Ip − 1p1′
p/(p + 1)},

with Gse and T (p × p) matrices. In the observation equation,
we set Ft to the (p × 1) vector (1, 0, . . . , 0)′. The standard prior
distribution for T is replaced with τ 2 ∼ ητ 2

0 /χ2
η , see West and

Harrison (1997, Section 8.4.4).
To fit the seasonal effect model with the OSL-PXEM algo-

rithm we require Ase = α I to account for the structure in Gse

and the constraint on T . The algorithm is easily formulated by
solving (23)–(24) using (34) with

Cα = −(σ 2)(l+1)

{
(η + 2) − ητ 2

0

(τ 2)(l )

}
, (36)

replacing (26) with

(τ̃ 2)(l+1)
prop = ητ 2

0 + tr[{Ip − 1p1′
p/(p + 1)}V ]

p(n + 1) + ν + 2
, (37)

and setting (τ 2)(l+1)
prop = (τ̃ 2)(l+1)

prop (α(l+1)
prop )2.

A.4. Harmonic models

Harmonic analysis models use trigonometric functions to rep-
resent cyclic trends, e.g., seasonal trends. We focus on the
DLM representation of a single harmonic function with period
2π/ω given in Table 1, where ω is a fixed constant. Higher
order harmonic functions can be obtained by blocking harmonic
functions with different periods (e.g., Pole, West and Harrison
1994), see Appendix A.6.

It can be shown that A must be of the form

Aha =
(

α1 α2

−α2 α1

)

to ensure Aha and G commute; here the subscript ‘ha’ indicates
the harmonic analysis model. Below we discuss constraints on
T , but first we allow T to be an arbitrary (2 × 2) positive def-
inite matrix, in which case we need only construct an explicit
form of (23)–(24) for the OSL-PXEM algorithm. Specifically,
we note

∂ log |Aha|
∂α

∣∣∣∣
Aha=A0

=
(

2

0

)

and

∂tr
{
T0

(
A−1

ha

)′(
T (l )

)−1
A−1

ha

}
∂αi

∣∣∣∣∣
Aha=A0

= − 2tr

{(
T (l )

)−1
T0

∂ Aha

∂αi

}
,

where α = (F ′
t Aha)′ = (α1, α2)′, so the solution of (23)–(24) is

given by (33) with

Cα = − (σ 2)(l )

[
2(ν + 3)

(
2

0

)
− 2

(
tr
{(

T (l )
)−1

T0∂ Aha
/
∂α1

}
tr
{(

T (l )
)−1

T0∂ Aha
/
∂α2

}
)]

.

If we require T to be diagonal, we replace its usual prior
distribution with τ 2

i

indep∼ ντ 2
0i/χ

2
ν , for i = 1, 2 and replace

Aha with Aha = α I to ensure T̃ satisfies the same constraint
as T . In the resulting OSL-PXEM (23)–(24) are satisfied
using (34), with Cα = −2(σ 2)(l )[ν + 2 − tr{T0(T (l ))−1}], where
T0 = diag{τ01, τ02} and (26) is replaced with (35) with �0 = T0

and Up = I .

A.5. Regression models

In regression models, in addition to the fixed effects, we correct
for p observed covariates with time varying coefficients, zt j , for
t = 1, . . . , n and j = 1, . . . , p. To formalize this in model (16),
we set Ft = (zt1, . . . , ztp)′, G = I , and allow T to be an arbitrary
positive definite matrix. For the OSL-PXEM algorithm, we allow
Areg = (α jk) to be any (p × p) invertible matrix and rewrite the
observation equation in (18) as

yt = X ′
t β +

p∑
j=1

p∑
k=1

zt jφtkα jk + νt , νt ∼ N (0, σ 2),

where φt = (φt1, . . . , φtp)′. Thus, to update Areg, we treat zt jφtk

as p2 regression coefficients in a linear model. In particular the
solution to (23)–(24) is given by(

β
(l+1)
prep

α
(l+1)
prep

)
=

[
u
(
�−1

β

) +
n∑

t=1

{
Xt X ′

t Xt E(Z ′
t (φ))

E(Zt (φ))X ′
t E(Zt (φ)Z ′

t (φ))

}]−1

(38a)

×
[(

�−1
β µβ

C − α

)
+

n∑
t=1

{
Xt

E(Zt (φ))

}
yt

]
, (38b)

where all expectations are conditional on (ξ (l ), A0, y),

αreg = vec(Areg)

≡ (α11, . . . , α1p, α21, . . . , α2p, . . . , αp1, . . . , αpp)′,

and

Zt (φ) = (zt1φt1, . . . , zt1φtp, zt2φt1, . . . , zt2φtp, . . . ,

ztpφt1, . . . , ztpφtp)′.

To compute (38), note that the elements of the matrix in
E{Zt (φ)Z ′

t (φ)} are of the form

E

(
n∑

t=1

zt jφt j ′ ztkφtk ′

∣∣∣∣∣ ξ (l ), A0, y

)

=
n∑

t=1

zt j ztk{(Ht ) j ′k ′ + (ht ) j ′ (ht )k ′ },
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where (Ht ) j ′k ′ is the ( j ′, k ′) element of Ht and (ht ) j ′ is compo-
nent j ′ of ht and the components of E{Zt (φ)} are of the form

E

(
n∑

t=1

zt jφt j ′ yt

∣∣∣∣∣ ξ (l ), A0, y

)
=

n∑
i=1

zi j (ht ) j ′ yt .

The calculation required by (38b) can be accomplished by the
SWEEP operator and are essentially equivalent to those required
for the PXEM algorithm for mixed-effect models (Meng and van
Dyk 1998, van Dyk 2000b).

Finally, to compute the correction term Cα in (38), we note

∂ log |Areg|
∂ Areg

∣∣∣∣
Areg=A0

= I

and

∂tr
{
T0

(
A−1

reg

)′(
T (l )

)−1
A−1

reg

}
∂ Areg

∣∣∣∣∣
Areg=A0

= −2
(
T (l )

)−1
T0

so that Cα = −(σ 2)(l )vec{(ν + p + 1)I − (T (l ))−1T0}. The re-
mainder of the OSL-PXEM iteration follows exactly as in
Section 4.5.

A.6. Blocking component forms

In typical data analyses, we sum component forms in the ob-
servation equation, e.g., a seasonal effect around a linear trend
model. Such blocked models are generally easy to accommodate
with EM-type algorithms. To illustrate blocking we combine a
polynomial trend model of order p1 with a seasonal effect model
with p2 + 1 seasons. The general method of combining two or
more components is completely analogous. We begin by block-
ing the various elements of the model,

Ft =
(

F[1]

F[2]

)
, G =

(
G[1] 0

0 G[2]

)
, T =

(
T[1] 0

0 T[2]

)
,

and θ is ((p1 + p2) × 1), where F[1] and G[1] are given in the first
row of Table 1 with p = p1, T[1] is an arbitrary (p1 × p1) positive
definite matrix, F[2] and G[2] are as described in Section A.3, and
T[2] = τ 2(Ip2 −1p2 1′

p2
/(p2+1)). We assume the prior distribution

for T factors, i.e., p(T ) = p(T[1])p(τ 2), block the corresponding
working parameters,

A =
(

Apt 0

0 Ase

)
,

and set α = (α1, . . . , αp1+1)′, where the first p1 components
correspond to the unique elements of Apt, (F ′

[1] Apt)′ and the last
element to the unique element of Ase.

The OSL-PXEM algorithm operates as in Section 4.5 with
the modification that (26) updates T[1] and T[2] separately. In
particular, the solution to (23)–(24) is given by(

β
(l+1)
prop

α
(l+1)
prop

)
=

{
u
(
�−1

β

) +
n∑

t=1

(
Xt X ′

t Xt h̃′
t

h̃ X ′
t H̃t + h̃t h̃′

t

)}−1

×







�−1
β µβ

Cα[1]

Cα[2]


 +

n∑
t=1

(
Xt

h̃t

)
yt


 ,

where h̃t is the first ((p1 + 1) × 1) subvector of ht , H̃t is upper
left ((p1 +1)× (p1 +1)) submatrix of Ht , and Cα[1] and Cα[2] are
the correction terms given in (32) and (36) respectively. Finally
T̃ (l+1)

prop is computed using (26) with the corresponding elements

of T0, h, and H and with p = p1; (τ̃ 2)(l+1)
prop is computed with

(37) using the corresponding elements of T0, h and H ; and

T (l+1)
prop[1] = A(l+1)

prop,ptT̃
(l+1)

prop[1]

(
A(l+1)

prop,pt

)′
,

and

(τ 2)(l+1)
prop = (τ̃ 2)(l+1)

prop

(
α(l+1)

prop,se

)2
,

where A(l+1)
prop,pt and α

(l+1)
prop,se are compiled from α

(l+1)
prop .
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