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VOS 

The existence of the confidence interval described in the title is of theoret- 
ical interest. However, there are difficulties with this interval that should be 
considered before using this interval in practice. 

Wall, Boen, and Tweedie (WBT) considered confidence intervals C,,, of the 
form 

C2, ={~. ?- \xl\l <_ _< X + \x\1}, (1) 

where C( > 1 is chosen so that C ,a covers the true value with probability at 
least 1 - a. The test derived from this interval rejects Ho : 0 = -/o at level a 
if and only if C^,, does not contain Jo, and is defined by the rejection regions 

Rp0,a = {x: ILo C,c} 

-It, Itol 
= {x - sign(o) 

< < 
+ sign(Lo) } 

where sign(0) = 0 and sign(/o) = Ato//Ilo for /Po : 0. 
These are very unusual rejection regions. Consider the two-sided test of Ho: 

I = 10 at a = .10. Using (.lo = 4.84 gives rejection region {x : -2.6 < 
x < 1.7}. If = -2, Ho : , = 10 is rejected, but if = -3, Ho is accepted. 
The confidence intervals (1) order the sample space so that observations near 
zero are evidence against Ho for any po 0 0. In fact, if /o $ 0 and x = 0, then 

Ho is rejected at any level a. On the other hand, Ho : pL = 0 is accepted at any 
level a no matter what the value x is observed. Thus, this inferential procedure 
tells us nothing about the hypothesis that the mean is zero. 

In contrast, the t interval (available for sample sizes n > 2) provides a 
sensible ordering of the sample space for any po : values of x that are far from 

/io (on the estimated standard error scale) are evidence against Ho. I disagree 
with the authors' suggestion that (1) be used in practice because it may have 
shorter average length than the t interval. I agree with WBT that "there is a 

good use for this example in the classroom." However, I would use this example 
to show that in defining an effective confidence interval, one needs to consider 
more than interval length. 

Paul VOS 
Biostatistics Department 
East Carolina University 

Greenville, NC 27858 
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WITTKOWSKI 

Wall, Boen, and Tweedie suggested x ? clxl as a confidence interval (CI) for 

,1 with c = 4.84 for the 90% level. This gives rise to two "counter examples": 
First: If x = 0 has been observed, this yields a CI of width 0, regardless of 

the level. 
Second: The 90% CI for 10?C is (-38?C ... 48?C) or (-37?F ... 

119 ?F), while the 90% CI for 50 ?F (= 10 ?C) is (-192 ?F ... 292 ?F). 
Clearly, some explanation is warranted. 
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The Rockefeller University Hospital 

1230 York Ave 121B, Box 322 
New York, NY 10021 

REPLY 

I am very glad to see that this article sparked much interest (as it did for 

me). Just before his untimely death, Richard Tweedie joked with me that the 12 
e-mail responses and inquiries we received within a month of this little four- 

page article appearing were more than he had ever seen for any of his papers 
in his distinguished career. This article started as a lunchroom conversation (or 
sparring) between Jim Boen and myself and I am grateful to Richard Tweedie 
for encouraging and helping us to turn it into an article. 
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The letter by Hodge and Huang points out that the intuition we provided in the 
conclusion is not satisfactory (perhaps even incorrect) for explaining why this 

implausible approach works. We struggled with giving an intuitive explanation 
for the results. Unlike most problems I have worked on where intuition comes 
first followed by difficult mathematical theorems and proof, in this case, the 

theorem/proof came relatively easy yet the intuition is still somewhat foggy. 
Hodge and Huang add to the discussion by arguing that our confidence interval 
demonstrates that a confidence interval does not necessarily give information 
about the variability. Although true, it is not clear that this discussion lends to 
the intuition of why this confidence interval works in the first place. Perhaps 
intuition can better be gained by emphasizing that the confidence interval we 

present is not equivariant (i.e., its coverage probability depends on the ratio of 

|,tl/a as seen in Equation 2), and all we are guaranteeing with the interval is 
that the coverage probability will be at least 100(1 - a)% for all ( 11l, a) pairs. 

Vos and Wittkowski both point out similar "unusual" behavior that this confi- 
dence interval exhibits given an observed x value of 0. Although this may seem 

strange, it is not incorrect. Recall that the coverage probability of a confidence 
interval is based on the random variable X, not the given data x. Once we are 

given a dataset, in this case one data point, the confidence interval either covers 
the true value of the parameter or it does not cover the parameter. That is, given 
the data, the coverage probability is 1 or 0. It is the method itself (based on the 
random sampling distribution of the statistic) that yields coverage probability 
(1-a). 

Wittkowski's second point is meant to expose the bizarre behavior of the con- 
fidence interval when the scale is changed. He shows that the interval obtained 

given x is not the same as the interval obtained given ax + b. Although this 

may seem strange, (again) it is not incorrect. As we mentioned in the article, 
X ? (lXI is not in the equivariant class of confidence intervals (it is not based 
on a pivotal quantity) and as such it will exhibit the behavior Wittkowski has 
shown. 

When we chose to use the word "effective" in our title to describe our confi- 
dence interval, we were thinking in terms of efficiency (i.e., expected margin of 

error). That is, the interval for a sample of size one has expected margin of error 
less than infinity and with a sample of size two it has margin of error less than 
Student's t (for some (I1/1, ar) pairs). For practical purposes though, it is easily 
argued that this improvement in efficiency is not worthy since it means we have 
to give up equivariance (a property we are used to having our practical statistics 

exhibit). 

Melanie M. WALL 
Division of Biostatistics 
School of Public Health 

University of Minnesota 
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As Chen and Kuo noted, a multinomial logit model can be fit as a set of Pois- 
son (log-linear) regression models, where the responses are the number of cases 
in each category. These models are parameterized with regression coefficients 
3 and an intercept parameter 0k for each covariate class (defined by common 
values of the covariates). When this model is fitted via maximum likelihood, the 

maximizing value of each Ok is the log-normalizing constant of the multinomial 
distribution. Hence, the profile of the Poisson likelihood (maximized over Ok) 
is the multinomial likelihood; maximizing this multinomial profile likelihood is 

equivalent to maximizing the Poisson likelihood. This is simpler than explicitly 
including the normalizing constant in the likelihood, and permits use of ordi- 

nary Poisson regression software after suitable manipulation of the data, a neat 

application of a technique sometimes called "Poissonization" in the categorical 
data literature. 
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Care must be taken, however, when extending these methods to a multi- 
nomial model with random effects. Suppose that we add multivariate normal 
random effects (together, a vector Uk) to the linear predictors for the various 
outcomes. Chen and Kuo proposed to include a 0k parameter for each clus- 

ter, and to maximize the marginal likelihood of the Poisson random-effects 
model over 3, 8 = {k }, and the random effects variances E. Thus, they 
calculated arg maxsE max0 f P(data/3, 0, u) P(ulE)du, where the inte- 

gral marginalizes the likelihood over the distribution of the entire set of ran- 
dom effects u = {Uk }. The integrand, however, is not the multinomial like- 

lihood, but rather a Poisson likelihood conditional on 0. The maximum like- 
lihood estimate for the desired marginalized multinomial likelihood, rather, is 

arg maxEs f [maxo P(datal[3, , u)]P(ul )du, with the order of integration 
and maximization reversed. In general these operations do not commute and the 

expressions are not equal. 
If the random effects variances are sufficiently small, integrating and then 

maximizing may not be a bad approximation to maximizing and then integrat- 
ing. In effect, maximization over 0k restricts the linear predictor (including the 
random effects terms) for the Poisson mean for the corresponding class of obser- 
vations to a (curved) manifold in which the sum of the predicted counts equals 
the observed count for each k. With a suitably chosen random effects covariance 

matrix, the predictor can be restricted to the approximating (tangent) plane for 
a particular class, but in general not for all classes at once. 

This example illustrates the computational complexities introduced by the 

implicit integration in random effects models, and the pitfalls introduced when 
maximization and integration appear in the same calculation. An alternative 

approach would be to omit 0 from the model altogether; this would induce a 
different random-effects model that might be more or less plausible in any given 
application. We note that Chen and Kuo's method using nonlinear modeling is 
not affected by the problem we describe, since the desired likelihood is expressed 
explicitly. 

Alan M. ZASLAVSKY 

Department of Health Care Policy 
Harvard Medical School 

Boston, MA 02115 

David A. VAN DYK 

Department of Statistics 
Harvard University 

Cambridge, MA 02138 

SCHENKER, N., AND GENTLEMAN, J. E (2001), "ON 

JUDGING THE SIGNIFICANCE OF DIFFERENCES BY 
EXAMINING THE OVERLAP BETWEEN CONFIDENCE 

INTERVALS," THE AMERICAN STATISTICIAN, 55, 182-186: 
COMMENT BY BARTKO 

An earlier statistics article (Browne 1979) discussed the visual assessment of 
the significance of a mean difference when graphically displayed as the mean 

plus or minus the standard deviation, the standard error or by the 95% confidence 
interval on the mean. Browne presented some rules of thumb for decision making 
and discussed unequal variances, the ratio of the interval lengths, and the sample 
size of the longer interval and the role each plays in devising rules for visual 

interpretation. 

REFERENCES 

Browne, R. H. (1979), "On Visual Assessment of the Significance of a Mean 
Difference," Biometrics, 35, 657-667. 
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HANLEY, J. A., JOSEPH, L., PLATT, R. W., CHUNG, M. K., 
AND BELISLE, P. (2001), "VISUALIZING THE MEDIAN AS 

THE MINIMUM-DEVIATION LOCATION," THE AMERICAN 

STATISTICIAN, 55, 150-152: COMMENT BY LEVINE 

The enjoyable description of the Java applet in Hanley et al. (2001) stimulated 
me to write these remarks. I have no doubt that students, roused by this infusion 
of Java, are likely to connect to their proof of the median as the minimum- 
deviation location. For years I have presented to students, including those at the 
most elementary level, a simple geometric proof written in informal language. 
Students are encouraged to draw the proof and try different placements of a 

point that would minimize the sum of the distances. Their drawings usually lead 
to that "aha!" experience. Though undoubtedly a Java-enhanced proof attracts 
more student attention, there are times when the old technologies hold up. So 
whether you are technologically deprived or your Net is down and the Java won't 
brew, this proof will see you through! 

A Geometric Proof that the Sum of the Distances is Minimized by the Me- 
dian 

The following shows that, for an ordered set of n numbers yl ... Yn, a point 
that minimizes the sum of the distances from all the n numbers to that point is 
the median. 

Let yl ... yn be an ordered set of n numbers and p be a point in [Yl, yn]. 
Now assume, for the moment, n = 2. From Figure 1 we can see that the distance 
between yl andp(i.e., Iyl -p) plus the distance between Y2 andp (i.e., IY2 -PI) 
is the whole length of the interval or line, which equals the distance between yi 
and Y2. So, the sum of the distances of yi and Y2 from p equals the distance 
between y2 and yl. Thus, S = lyi - p + IY2 - = L = Y2 - ll. 

_- PI--- 

Yi P Y2 P 

Figure 1. The sum of the distances of y1 and Y2 from p when (1) p 
is within [yl, Y2] and (2) when p > Y2. 

If p > Y2, then we have a situation also depicted in Figure 1, where p is 
shown in a lighter shade. In this case the distance from Y2 to p is the short 
distance represented by the dashed line. The distance from /1 to p is 1Y2 - yi I 
plus the distance from Y2 to p. Specifically, the sum of the distances, S, is: 
S = IY2 - PI + Iyi - PI = L + 21y2 - pl. Thus, S contains an extra term and 
so is larger than L by 21|2 - pI. 

In sum, when p is outside of the interval [/1, Y2], S will be larger than L. To 
minimize S, we must have p be in the interval [/1, Y2] so that S = L. Since 
the median is in the interval it will minimize S, as will any other number in the 
interval. 

The same logic applies even when there are more than two points. To avoid 
extra terms in S, p must be within the interval [/1, y,n]. When p is within an 
interval, the sum of the distances to p from the ends of the interval is equal 
to the distance between the ends of the interval, as shown in Figure 1 (i.e., 
IY2 - PI + Iy 1 - P = y1 - Y2 1). Moving inward from the outermost interval 
[y1, yn], examine whether p is within each interval (Figure 2 shows an example 
where p is within all intervals). If p is within an interval [Yi, Yn+ 1-i], the logic 
above applies and the sum of the distances of yi and Yn+l-i to p will be the 
distance between the ends of the interval (i.e., Yiy - Yn+1-i 1). If p is not within 
an interval, the knowledge gained from Figure 1 is still pertinent; the sum of the 
distances is not minimized because extra term(s) are needed. The examination 
of the intervals continues until p is either not in an interval (in which case S has 
not been minimized) or p has been found to be within all intervals. If n is even, 
and p falls within each of the n/2 intervals then, using the logic from above, we 
know that \yi - pi has been minimized. 

Y1 Y2 Y3 " Yrml P Ym Yn-1 * Yr YnYl1 Yn 
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of Java, are likely to connect to their proof of the median as the minimum- 
deviation location. For years I have presented to students, including those at the 
most elementary level, a simple geometric proof written in informal language. 
Students are encouraged to draw the proof and try different placements of a 

point that would minimize the sum of the distances. Their drawings usually lead 
to that "aha!" experience. Though undoubtedly a Java-enhanced proof attracts 
more student attention, there are times when the old technologies hold up. So 
whether you are technologically deprived or your Net is down and the Java won't 
brew, this proof will see you through! 

A Geometric Proof that the Sum of the Distances is Minimized by the Me- 
dian 

The following shows that, for an ordered set of n numbers yl ... Yn, a point 
that minimizes the sum of the distances from all the n numbers to that point is 
the median. 

Let yl ... yn be an ordered set of n numbers and p be a point in [Yl, yn]. 
Now assume, for the moment, n = 2. From Figure 1 we can see that the distance 
between yl andp(i.e., Iyl -p) plus the distance between Y2 andp (i.e., IY2 -PI) 
is the whole length of the interval or line, which equals the distance between yi 
and Y2. So, the sum of the distances of yi and Y2 from p equals the distance 
between y2 and yl. Thus, S = lyi - p + IY2 - = L = Y2 - ll. 
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Figure 1. The sum of the distances of y1 and Y2 from p when (1) p 
is within [yl, Y2] and (2) when p > Y2. 

If p > Y2, then we have a situation also depicted in Figure 1, where p is 
shown in a lighter shade. In this case the distance from Y2 to p is the short 
distance represented by the dashed line. The distance from /1 to p is 1Y2 - yi I 
plus the distance from Y2 to p. Specifically, the sum of the distances, S, is: 
S = IY2 - PI + Iyi - PI = L + 21y2 - pl. Thus, S contains an extra term and 
so is larger than L by 21|2 - pI. 

In sum, when p is outside of the interval [/1, Y2], S will be larger than L. To 
minimize S, we must have p be in the interval [/1, Y2] so that S = L. Since 
the median is in the interval it will minimize S, as will any other number in the 
interval. 

The same logic applies even when there are more than two points. To avoid 
extra terms in S, p must be within the interval [/1, y,n]. When p is within an 
interval, the sum of the distances to p from the ends of the interval is equal 
to the distance between the ends of the interval, as shown in Figure 1 (i.e., 
IY2 - PI + Iy 1 - P = y1 - Y2 1). Moving inward from the outermost interval 
[y1, yn], examine whether p is within each interval (Figure 2 shows an example 
where p is within all intervals). If p is within an interval [Yi, Yn+ 1-i], the logic 
above applies and the sum of the distances of yi and Yn+l-i to p will be the 
distance between the ends of the interval (i.e., Yiy - Yn+1-i 1). If p is not within 
an interval, the knowledge gained from Figure 1 is still pertinent; the sum of the 
distances is not minimized because extra term(s) are needed. The examination 
of the intervals continues until p is either not in an interval (in which case S has 
not been minimized) or p has been found to be within all intervals. If n is even, 
and p falls within each of the n/2 intervals then, using the logic from above, we 
know that \yi - pi has been minimized. 
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