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M. MANDELKERN 

Comment 
David A. van Dyk 

1. A PRIORI UNLIKELY DATA OR MODEL 
MISSPECIFICATION? 

The seemingly poor properties of standard confi- 
dence intervals given a priori unlikely data described 
by Professor Mandelker have received much atten- 
tion in physics. I am delighted that the author has so- 
licited the advice of the statistical community through 
this publication and that the editors of Statistical Sci- 
ence have given me the opportunity to comment. 

It seems to me that the basic difficulty is summarized 
well in the final question of Mandelker's discussion, 
namely, "Is it reasonable to obtain a more restrictive 
measure of confidence for a priori unlikely data than 
for the most probable data." To answer this question, 
we consider the Poisson case with N ~ Poisson(,z + 
b), where b is assumed to be known from background 
calibration. Figure 1 illustrates the sampling distribu- 
tion of the 95% confidence interval for /u when ,t = 
1.25 and b = 2.88. The simulation values are taken 
from the description of the KARMEN 2 experiment 
given in the article and in Roe and Woodroofe (1999). 
The confidence intervals were computed using the fre- 
quentist method of Garwood (1936) for A/ + b and sub- 
tracting off b. In Figure 1 the horizontal range of each 
rectangle corresponds to the confidence interval for the 
given observed value of N and the height of each rec- 
tangle corresponds to the sampling probability of the 
confidence interval; the dashed vertical line indicates 
the supposed value of /u = 1.25. That the confidence 
interval grows longer as N increases is readily apparent 
in Figure 1. Thus, unlikely values of N that are small 
can result in highly restrictive measures of confidence, 
that is, narrow intervals. Of course, this is wholly de- 
pendent on the choice of scale; the corresponding in- 
tervals for log(A) have finite length only for N > 8. 
Even on the original scale, this property is not sur- 
prising; smaller values of N make smaller values of 
/L + b and the correspondingly smaller Poisson vari- 
ability more credible. Although the situation is intensi- 
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confidence interval for p 

FIG. 1. The sampling distribution of the standard 95% Poisson 
confidence interval for Ax with b = 2.88 and ,i = 1.25. The 
horizontal width of each rectangle is the confidence intervalfor the 
corresponding value of N; the height of each rectangle indicates 
the sampling probability for the interval. The figure illustrates that 
if the model is correctly specified, very short intervals should be 
rare. 

fled by the known background intensity, since ,t + b is 
bounded below not by zero but by b, the confidence in- 
tervals remain a reasonable frequentist summary under 
the model. The reason these frequentist intervals are so 
short when N = 0 is that under the model and given b 
only very small values of iu make N = 0 at all likely. 

I emphasize that it is unquestionably reasonable that 
smaller values of N result in shorter frequentist inter- 
vals but only if the model is a plausible representa- 
tion of the data generating mechanism. The italicized 
caveat is critical. For any probability calculations (fre- 
quentist or Bayesian) to be meaningful and relevant the 
statistical model must adequately represent the data. In 
theory, this means that if the experiment were repeated 
many times, the resulting counts would follow a Pois- 
son distribution with intensity , + b for some / > 0. 
Of course, models should be viewed as tools that offer 
a parsimonious summary of the relevant aspects of the 
data, rather than a complete and full description. Thus, 
model selection is inherently a subjective art: it is de- 
pendent not only on the characteristics of the data and 
data collection process but also the aims and intentions 
of the scientist. Nonetheless, to be useful a model must 
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FIG. 2. The posterior distribution of (first panel) and log(,u) (secondpanel) under a point mass priorfor f (b = 3) and with N = 1. The 
figure illustrates the effect of the symmetrizing log transformation. 

offer a credible summary of the character and variabil- 
ity of the scientifically interesting aspects of the data. 

A second observation that can be drawn from Fig- 
ure 1 is that very short confidence intervals are quite 
uncommon. Indeed, frequentist confidence intervals 
are not designed to behave well for particular real- 
izations of the data, but rather are designed to have 
predictable coverage in repeated realizations; if one 
is interested in conditioning on the particular realiza- 
tion of the data, in principle Bayesian methods are bet- 
ter suited. Indeed, the interval in Figure 1 resulting 
from N = 0, (0.00, 0.081) has a sampling probability 
of about 1.6%; if the probability of such a short in- 
terval is considered too high, a higher confidence co- 
efficient should be used. Of course, unlikely events do 
occur. But if they occur often, one might begin to ques- 
tion how their likelihood is being quantified. In partic- 
ular, one would expect that such unsatisfactory inter- 
vals would be quite rare in physics experiments. This, 
however, does not seem to be the case. Instead there 
are a variety of proposed statistical quick fixes and 
even capacity-crowd workshops devoted to the topic 
at CERN and Fermi Lab, all presumably motivated 
by the common occurrence of unsatisfactory inter- 
vals. (The Workshop on "Confidence Limits" was held 
at CERN January 17-18, 2000; see cern.web.cern.ch/ 
CERN/Divisions/EP/Events/CLW/Welcome.html. The 
Workshop on Confidence Limits was held at Fermi Lab 
March 27-28, 2000; see conferences.fnal.gov/c12k/.) 
I wonder if anyone has undertaken a systematic inves- 
tigation of how frequently major physics experiments 
result in unsatisfactory intervals. Such an investigation 
is clearly mandated. 

Since retaining an inadequate model can have un- 
predictable consequences for the resulting statistical 

inference, careful model checking is unavoidable. Al- 
though the methodology of model selection, checking, 
and diagnosis is among the most controversial and ill- 
defined topics of statistical science, in this case the sit- 
uation seems clear cut. If a confidence interval is empty 
(e.g., as with N = 1 in Figure 2 of the paper) the ob- 
served data is unlikely, as measured by the confidence 
coefficient,for any value of the parameter. Put another 
way, we can reject the null hypothesis that it = uto for 
any to > 0. By any measure, the model does not of- 
fer an adequate representation of the scientifically most 
interesting aspect of the data. This difficulty cannot 
be addressed by reformulating the procedure for com- 
puting the confidence interval under the same model. 
Thus, the basic notion of developing new, creative, or 
ad hoc formulations of interval estimates under the 
same model is misguided in this situation. 

Mandelker correctly points out that discarding data 
or changing the model a posteriori can bias the final an- 
swer. As we shall see, however, retaining an inadequate 
model is not the path to unbiased inference! Rather 
than worrying about the biases that are introduced by 
model checking, the science would be better served by 
learning about the form of an adequate model that can 
be used in future experimentation and analysis. 

2. RESPECIFICATION OF THE MODEL 

From my distant vantage point it is impossible to 
propose a model that might be more suitable to the 
data. Thus, my goal is this section is not to propose a 
specific solution (indeed, there is surely no all-purpose 
solution), but rather to illustrate the construction of 
highly structured models and how they can be used 
for statistical inference. A more detailed and specific 
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example from my own work in high energy astro- 
physics, which uses Poisson models and accounts for 
background contamination, blurring, absorption and 
stochastic censoring of counts can be found in van 
Dyk, Connors, Kashyap and Siemiginowska (2001), 
Protassov, van Dyk, Connors, Kashyap and Siemigi- 
nowska (2002) and van Dyk and Hans (2002). 

For illustration, I propose to generalize the Poisson 
model in two ways. First by allowing for stochastic 
censoring of the data; based on the problems outlined 
in the paper it seems plausible that some instruments 
do not detect as many events as some might hope. Sec- 
ond, I do not assume that the background intensity, b, is 
a known constant. Indeed, it is reported with error bars 
for the KARMEN experiment and Mandelker reports 
that b is "measured independently" or "estimated," pre- 
sumably with error. Thus, I propose, 

(1) N ~ Poisson{a(,u/ + /3)}, 

where a is the proportion of events that are recorded 
(e.g., not absorbed or otherwise missed), /3 is the 
background intensity, and ut is the source intensity. 
Of course, not all three parameters in (1) are jointly 
identifiable. This is not a reason to fix a = 1 and / = b 
but rather a reason to aim to design experiments that 
can identify the parameters, for example, by obtaining 
additional counts due only to background, 

(2) NB ~ Poisson(/8), 

or by producing M events and observing how many 
are detected. Undoubtedly, some such instrumental 
calibration is already done-what is important here 
is that the uncertainty involved in calibration must be 
accounted for in the final analysis. 

In the remainder of this section, for simplicity we fix 
a = 1, treat /t as the parameter of interest, and treat / 
as a nuisance parameter. We discuss Bayesian and 
frequentist intervals for ,u under (1) and investigate the 
consequences of the model misspecification of fixing 
/3 = b when really the data is generated under (1). 

In a Bayesian analysis we can replace (2) with a 
prior distribution for /. This need not be and indeed 
should not be a subjective prior distribution. Rather 
data or simulations can be used to construct the 
prior distribution; for example, with the KARMEN 
experiment the prior specification can reflect such 
information as b = 2.88 ?0.13. In this case, we specify 
a conjugate gamma prior distribution with shape and 
scale parameters 4t and *0, respectively; that is, / - 
y(t/, 1f). Likewise, we specify a prior distribution 
for it, tt - y(t,, */r.), but this prior distribution is 

ordinarily uninformative; for example, for a flat prior 
on ut we set t = 1 and /,- = +oo. The highly 
skewed character of the resulting marginal posterior 
distribution for t, 

o 
(3) p(U I N) pC-tp( t, I N) d/, 

is evident in the first panel of Figure 2, which plots 
the posterior distribution resulting from N = 1 and a 
point mass prior for /; that is, / is fixed at b = 3. Point 
estimates are computed using the posterior mean, but 
only after a transformation which aims to symmetrize 
the distribution, in this case the log transformation; 
see the second panel of Figure 2. Equal tailed interval 
estimates are invariant to transformation and should 
correspond closely to the shortest interval under a 
symmetrizing transformation, at least for unimodal 
distributions. Alternatively, highest posterior density 
intervals or upper bounds can be computed. The effect 
of the prior specification (i.e., error in b) is illustrated 
in Figure 3, which varies rP but fixes ~/ = 3/4t and 
thus fixes the prior mean of / at 3. A point mass prior 
distribution, which fixes /3 at b = 3 corresponds to 

lr/ = 0; as *P increases the intervals grow wider. 
Frequentist regions for (ut, /) can also be computed. 

In this case, however, one generally incorporates infor- 
mation regarding / through data, for example, as in (2) 
rather than via a prior distribution. A joint confidence 
region (with confidence coefficient 1 - a) can be com- 
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FIG. 3. The effect of the error in b on the 90% posterior interval 
for AL. The figure illustrates how the confidence intervals for Au 
grow wider as the error in b increases, measured here via the 
prior parameter, *1. The solid lines correspond to the upper and 
lower limits of the highest posterior density interval under the log 
transformation of it; the dotted lines corresponds to the upper and 
lower limits of the equal tailed interval; and the dashed line is an 
upper limit. 
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FIG. 4. Bias of the maximum likelihood estimate (first panel) and under coverage of the nominal 90% interval (second panel) caused by 
model misspecification. The figures assume the data are generated according to model (1) with various values of ,i and a (and a = 1), but 
is fit with P fixed at b = 3. 

puted as 3. ARE BAYESIAN METHODS TOO SUBJECTIVE? 

(4) {(L, B): (N, NB) e R(Lt, )}, 

where for each ut > 0 and 8 > 0, R(u/, /) is a set of 
values of (N, NB) such that Pr{(N, NB) E R(tu, ,) I 
A, 8I} > 1 - a. Such regions are often constructed as 

acceptance regions for a particular a-level hypothesis 
test, perhaps with attention paid to the power of the test. 

Constructing a frequentist "marginal" interval for ,/ 
is both more subjective and analytically complicated 
than for the Bayesian marginal interval. Ideally, we 
condition on a sufficient statistic for the nuisance 

parameter P (Neyman, 1937), but such a statistic is not 

always forthcoming. 
We conclude by illustrating the effect of model mis- 

specification, by computing the bias of the maximum 
likelihood estimate and the coverage of the standard 

frequentist interval of Garwood (1936). Both the es- 
timate and the interval are computed with f fixed at 
b = 3, but the data is generated under (1) with vari- 
ous values of ,u and / (and a = 1); the results appear 
in Figure 4. Although the bias induced by this simple 
model misspecification is clear, we emphasize that this 
is only an illustration of the perils of model misspeci- 
fication. In the current situation, the error in b may be 
small and the effects correspondingly small. Nonethe- 
less, frequent a priori unlikely data and empty confi- 
dence intervals are strong evidence of model misspeci- 
fication. Unfortunately, the biases resulting from ignor- 
ing the misspecification are not easily quantified. 

The subjective nature of specifying a prior distribu- 
tion, as required with Bayesian methods, has been re- 
peatedly pointed out. Here Mandelker's first desirable 
feature for confidence intervals explicitly forbids bas- 
ing intervals on arbitrary or subjective "principles." Of 
course, the principles behind Bayesian methods, that 
is, the principles of probability calculus, are anything 
but arbitrary and subjective. Indeed, the principles be- 
hind other methods may be far more subjective, espe- 
cially in the presence of nuisance parameters. When 
given a choice, basing a frequentist interval on a more 
powerful test is preferred, but not at the expense of the 
conditionality principle, for example, conditioning on 
ancillary statistics. Of course, ancillary statistics and 
the corresponding intervals may not be unique. Even 
without nuisance parameters there may be no clear op- 
timal interval; witness the variety of methods outlined 
in Section 2 of the paper. On the other hand, given the 
model (including the prior specification) the posterior 
distribution of the parameters of interest is uniquely de- 
fined by probability calculus. 

This leaves three seemingly subjective tasks in com- 
puting a Bayesian interval: reducing the inference 
to an interval, selecting the likelihood, and selecting 
the prior distribution. The first task is not unique to 
Bayesian methods and there are of course guiding prin- 
ciples; highest posterior density intervals result in the 
shortest interval for a given parameterization and equal 
tailed (or other percentile based) intervals are invariant 
to one-to-one monotone transformations. Nonetheless, 
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the real problem stems from a desire to construct an in- 
terval to summarize the posterior distribution. The pos- 
terior distribution itself is invariant to transformations 
and is a much more informative summary of the statis- 
tical inference. It should be preferred over any particu- 
lar Bayesian interval. 

The second task, specifying a model for the sampling 
distribution (or likelihood), is truly subjective. In any 
given analysis some models are clearly inappropriate, 
but there always remain models among which the data 
are unable to distinguish. In some cases we make a par- 
simonious choice and in others the choice has little ef- 
fect on the final analysis. In any case, specification of 
the sampling distribution is a subjective task common 
to all statistical analyses. The choice is critical, some- 
times highly influential, and thus should be approached 
with care and checked when possible against the data, 
rather than holding to an arbitrary initial proposal. 

I save the seemingly most potent criticism for last. 
Indeed in her discussion of Bayesian methods as a po- 
tential solution to the difficulties encountered by fre- 
quentist methods in the presence of nuisance parame- 
ters, Reid pointed to the necessary specification of a 
"prior [distribution] for a high-dimensional nuisance 
parameter" as justification for her conclusion that "the 
fact that the Bayesian approach is logically consistent 
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strikes me as somewhat irrelevant" (Reid, 1995, see 
also McCullagh, 1995). Here, however, these concerns 
do not seem to apply. In particular, the prior distribu- 
tions for nuisance parameters are neither subjective nor 
uninformative; they are based on calibration data and 
merely enable the inference to reflect uncertainty in 
the calibration variables. The parameter of interest is 
of low dimension, dimension one in the current model 
formulation, where p(/) oc 1 is an obvious choice. 
Even with higher dimensional parameters, hierarchical 
models or hierarchical prior specifications serve to mit- 
igate Reid's concern. The sensitivity of the final analy- 
sis to the choice of prior distribution as well as the fre- 
quency properties of the resulting intervals can be ex- 
plored. Indeed, in this case, a prior distribution seems 
neither difficult to specify nor subjective, at least not 
when compared with the subjective nature of the prin- 
ciples underlying the alternatives. 
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We thank Professor Mandelkem for his informative 
review of statistical problems that have been plaguing 
physicists and his attempts to address them. We have 
some minor quibbles with the "desirable features," 
some brief comments on the Bayesian and unified 
methods with known b and a2, and more extensive 
comments on treating a2 as an estimated parameter 
instead of a known one. 

Quibbles. In (i), statisticians have been searching 
for a general method that is neither arbitrary or sub- 
jective and makes intuitive sense for a long time now 
without any general consensus on what that method 
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is. In (ii), there is certainly a need for a method that 
does not require prior information; but using prior in- 
formation should not be precluded when it exists. Also, 
requiring equivariance under one-to-one transforma- 
tions, as in (iii), rules out many intuitive optimality cri- 
teria. 

Known b and a2. The unified method was devel- 

oped explicitly to deal with problems of a restricted 
parameter space. It clearly provides an improvement 
over the Neyman intervals and has attracted a wide fol- 
lowing among physicists. We agree with Mandelkern, 
however, that it can produce unbelievably short inter- 
vals. The Bayesian intervals are not especially short in 
the Poisson case, as is clear from Mandelkem's Fig- 
ure 4. In the extreme case N = 0, the length of the 
Bayesian interval is log(l/a), and this is the right an- 
swer in the absence of prior information. To elaborate, 
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