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CHAPTER 10

Accounting for Absorption Lines in
Images Obtained with the Chandra
X-ray Observatory

D.A. van Dyk  C.M. Hans

10.1 Statistical Challenges of the Chandra X-ray Observatory

In recent years, new telescopes have dramatically improved the ability of
astrophysicists to image X-ray sources. The Chandra X-ray Observatory,
for example, was launched by the space shuttle Columbia in July 1999 and
provides a high resolution tool that produces images at least thirty times
sharper than any previous X-ray telescope. The X-rays themselves are pro-
duced by matter that is heated to millions of degrees, e.g., by high magnetic
flelds, extreme gravity, or explosive forces. Thus, the images provided by
such high resolution instruments help astrophysicists to understand the hot
and turbulent regions of the universe.

Unlocking the information in these images, however, requires subtle anal-
ysis. The detectors aboard Chandra collect data on each X-ray photon that
arrives at the detector. Specifically, the (two-dimensional) sky coordinates,
the energy, and the time of arrival of each photon are recorded. Because
of instrumental constraints each of these four variables is discretized; the
high resolution of Chandra means that this discretization is much finer than
what was previously available. For example, one of the instruments aboard
Chandra has 4096 x 4096 spatial pixels and 1024 energy bins. Because of
the discrete nature of the data, it can be compiled into a four-way table
of photon counts. We refer to this four dimensional data as the image; it
is a moving ‘colored’ picture. {Because of the high energy of X-rays the
‘colors’ are not in the visible spectrum.) Spectral analysis models the one-
way marginal table of the energy data; spatial analysis models the two-way
marginal table of sky coordinates; and timing analysis models the one-
way marginal table of arrival times. As we shall see, however, because of
subtleties in the instrumentation and the data itself, spatial and spectral
analysis cannot be fully separated and both are crucial for a full under-
standing of the image; in other settings, similar concerns arise for spatial
and temporal analysis (see Chapter 12).
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The data gathered by Chandva, although high-resolution, present a num-
ber of statistical challenges to the astronomer. For spatial data, the images
are convolved with instrment characteristics which blur the image. For ex-
ample, the point spread function characterizes the probability distribution
of a photon’s recorded pixel location relative to its actual sky coordinates.
The situation is further complicated because the shape of the scatter dis-
tribution varies across the detector; it is symmetric and relatively tight in
the center and becomes more asymmetric, irregular, and diffuse towards
the edge. Moreover, the scatter distribution can vary with the energy of
the incoming photon. Like the sky coordinates the energy of a photon is
subject to “blurring”; there is a distribution of potential recorded energies
given the actual energy of a particular photon. Thus, we have three di-
mensional blurring of the image. Given the sky coordinates and energy of a
phaoton, there is a distribution of the recorded sky coordinates and recorded
energy of the photon. Since there are, for example, 4096 x 4096 pixels on
the detector and 1024 energy bins, the resulting blurring matrix can have
over 2.9 x 1070 cells. Clearly some sirplification is required. For spectral
analysis using a small region of the detector, the blurring of energies is
more-or-less constant, which results in 2 reasonably sized (1024 x 1024)
matrix. Thus, utilizing sparse matrix techniques results in efficient compu-
tation for marginal spectral analysis. Spatial analysis often involves only a
subset of the pixels, reducing the dimension of the problem. Also the blur-
ring matrix can be taken to be constant across a large number of pixels and
energy bins. Thus, we might divide the energy bins into 4 groups and the
pixels into 16 groups and assume the shape of the energy cross sky coor-
dinate scatber is constant in each of the resulting 64 cells. Such techniques
aim at computational eficiency while hoping the compromise in precision
is minor, A careful analysis of this trade off has yet to be tackled.

Another complication for image analysis involves the absorption of pho-
tons and the so-called effective area of the telescope. Depending on the en-
ergy of a photon, it has a certain probability of being absorbed, for example
by the inter-stellar media between the source and the detector. Effective
aren is an instrumental effect, but has a similar effect on the data—the
probability that a photen is recorded by the detector depends on its en-
ergy. Because the spectrum can vary across the source, the rate of this
stochastic censoring also varies and can distort the image. Again, this em-
phasizes that a careful analysis of the image must involve spectral analysis.
In this paper, we take up the task of modeling photon absorption—with
the understanding that it has direct implications for spatial analysis. In
particular, we introduce new models that aim to account for absorption
lines in spectra. An absorption line is a narrow range of energies where a
relatively high proportion of photons are absorbed. Because these lines are
caused by an abundance of a particular element near the surface of the
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source, it is possible for the intensity of an absorption line to vary across
the source, thus distorting the image.

The data are also degraded by the presence of background counts, X-ray
photons which arrive at the detector but do not correspond to the source
of interest. In spectral analysis, a second observation that consists only of
background counts is compared with the primary observation. The back-
ground observation is obtained by looking into an area of space near the
source but which contains no apparent X-ray sources. After adjusting for
exposure time, in some analyses the background observation is subtracted
from the source observation, and the result is analyzed as if it were a source
observation free of background. This procedure is clearly questionable, es-
pecially when the number of counts per bin is small. It often leads to the
rather embarrassing problem of negative counts and can have unpredictable
results on statistical inference. A better strategy is to model the counts in
the two observations as independent Poisson random variables, one with
only a background intensity and the other with intensity equal to the sum
of the background and source intensities (Loredo 1993, van Dyk et al. 2001).

A final degradation of the data is known as pile up and poses a .par-
ticularly challenging statistical problem. Pile-up occurs in X-ray detectors
(generally charged coupled devices, i.e., CCDs) when two or more pho-
tons arrive at the same location in the detector (i.e., in an event detection
island, which consists of several pixels) during the same time bin. Such
coincident events are counted as a single higher energy event or lost alto-
gether if the total energy goes above the on-board discriminators. Thus, for
bright sources pile-up can seriously distort the count rate, the spectrum,
and the image. Moreover accounting for pile up is inherently a task of joint
spectral-spatial modeling. A diffuse extended source may have no appre-
ciable pile up because the count rate is low on any one area of the detector.
A point source with the same marginal intensity, however, may be subject
to severe pile up. Model based methods for handling pile up are discussed
in Kang et al. {2002); see also Davis {2001}. :

We propose using model-based Bayesian methods {0 handle these com-
plex imaging problems; other Bayesian approaches to image analysis ap-
pear, for example, in Chapters 6, 7, 8, 11 and 14 of this volume. Models
can be designed to handle not only the complexity of the data collection
process (e.g., blurring, effective area of the instrument, background contam-
ination, and pile up) but also the complex spatial and spectral structures
of the sources themselves. For example, as discussed in Section 10.2, we
are interested in clustering photons into spatial and spectral features of
the source. Because of their complexity, the models are in turn complex
and require sophisticated computational methods for fitting. A Bayesian
perspective is ideally suited to such highly structured models in terms of
both inference and computation. For example, the high dimensional pa-
rameter space and numerous nuisance parameters highlight the attraction
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of Bayesian marginal posterior distributions of parameters or groups of pa-
rameters. Astrophysicists are often interested in testing for the presence of
a particular model feature. Many such tests, such as testing for the presence
of an additional point source in an image, correspond to testing whether
a parameter is on the boundary of its space. It is well known that the
likelihood ratio and related tests fail in this setting. However, appropriate
Bayesian model fitting and model checking procedures are readily available
(e.g. Protassov et al. 2001).

From & computational point of view, such tools as the EM algorithm
(Dempster et al. 1977a), the Data Augmentation Algorithm (Tanner and
Wong 1987), the Gibbs sampler (e.g. Gelfand and Smith 1990, Smith and
Roberts 1993), and other Markov chain Monte Carlo methods are ide-
ally suited to highly structured models of this sort; see van Dyk {2002).
The modular structure of these algorithms matches the hierarchical struc-
ture of our models. For example, the Gibbs sampler samples one set of
model parameters from their conditional posterior distribution given all
other model parameters. This allows us to fit one component of the over-
all model at a time, conditicnal on the others. Thus, a complex model
fitting task is divided into a sequence of much easier tasks. This modu-
lar structure also allows us to take advantage of well known algorithmms
+hat exist for fitting certain components of our model. For exarmple, using
the EM algorithm to handle a blurring matrix and background contami-
nation in Poisson image analysis is a well known (and often rediscovered)
technique (Rickardson 1972, Lucy 1974, Shepp and Vardi 1982, Lange and
Carson 1984, Fessler and Hero 1994, Meng and van Divk 1997). Even though
this standby image reconstruction algorithm is unable to handle the rich-
ness of our highly structured model, we utilize it and its stochastic gener-
alization as & step in our mode finding and posterior sampling algorithms.

Detailing how we (or how we expect to) handle all of the modeling,
computational, and inferential aspects of image analysis of Chandra data
is wel! beyond the scope of this chapter. Instead, we outline some of our
models to give the reader a flavor of our Bayesian analysis and highly
structured models. In some cases, the details can be found in one of several
references; in other cases, methods are still being developed. To give the
reader a flavor of the statistical details that are involved, however, we go
into some depth in our description of absorption lines.

The remainder of this chapter is organized into four sections. In Sec-
tion 10.2 we outline our marginal spatial and spectral models, paying par-
ticular attention to the model based clustering. We discuss absorption lines
in Section 10.3, describing the science behind them, the models and compu-
tational methods we propose, and a simulation study which illustrates some
of the statistical dificulties involved. In Section 10.4, we incorporate ab-
sorption lines into the spectral model discussed in Section 10.2 illustrating
our methods with a data set. Concluding remarks appear in Section 10.5.
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Figure 10.1 This X-ray émage of the Crab Nebule is one of the first imoges sent
back by Chandra. The Crab Nebula is one of the youngest and most energetic of
about 1000 known pulsars; in fact this supernova remnant produces energy ot the
rate of 100,000 suns. The image illustraies the extended irregulor spatial structure
that is fypical of Chandra images (The tmage waes adaptively smoothed; image
credit: the National Aeronoutics & Space Administration (NASA), the @rp:mﬂa
X-ray Center (CXC), and the Smithsonian Astrophysical Q@mmﬂegmo@_ (SAQ)).

10.2 Modeling the Image
10.2.1 Model-Based Spatial Analysis

We _umm.“.E by modeling the true source counts in each pixel, X = {X,.,i ¢
T}, as independent Poisson random variables,

Xit ~ Poisson(Ay) for i € T, {10.1)

where .H is the set of pixels and the *+’ in the subscript indicates that we are
summing over the time and energy bins; in the remainder of Section 10.2.1
we suppress the ‘4. Because the data are degraded by factors such as image
blurring and background contamination as discussed in Section 10.1, X is
not observed. Thus, we discuss both the constraints on A that we EWUOmm
to represent structure in the image and how we model data distortion. We
begin with A.

To motivate our parameterization of A we examine several Chandra im-
ages. Figure 10.1 illustrates an X-ray image of the Crab Nebula, the rem-
nant of a supernova explosion that was observed on Earth in 1054 A.D; im-
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Figure 10.2 X-ray imege of the Cat’'s Eye Nebula (left) observed by Chandra,
and a composite X-ray/optical observed by Chandra and the Hubble Space Tele-
scope (HST) (right). The image on the left shows a bright ceniral star, which
corresponds to a high densily cluster of photons. The composite image on the
right illustrates the relative locotions of hotter and cooler regions of the planetary
nebula. (The X-ray tmage is adeptively smoothed. The color composite of optical
and X-ray images was made by Zoltan G. Levay (Space Telescope Science In-
stitute). The optical images were taken by J.P. Horrington and K.J. Borkowski
(University of Maryland} with HST. Imoge credits: NASA, University of Illinois
at Urbana-Champaign, Chu et al. (2001), and HST).

age brightness corresponds to X-ray intensity. At the center of the nebuls
is a rapidly spinning pulsar that emits a pulse of photons thirty times per
second. The Crab Nebula is a very bright X-ray source and illustrates the
extended irregular structure that is typical of X-ray images. The structure
in the extended source can sometimes be predicted from optical or radio
images but often containg unique features. For example, the iet that ex-
tends towards the lower left from the center of the nebula was first observed
by Chandra. Although model based methods are not required to identify
some of the important structures in the Crab Nebula, such methods have
broad application for analyzing weaker X-ray sources, understanding how
the energy spectrum varies across a source, and identifying weak features
in the source.

A second image appears in Figure 10.2 and illustrates X-ray (left panel)
and optical (right panel) images of the Cat’s Eye Nebula. A bright central
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Figure 10.3 Centaurus A, o nearby galazy, as observed by Chandra. The several
features of the galazy — a super-massive black-hole, a jet emanating from the core
and the point-like sources scattered about the image — have been clearly resolved
for the first time due to the imeging resolution of Chandra and illustrate the
variety of photon clusters that might be present in @ Chandra image. {The image
ts adaptively smoothed and exposure corvected; imoge credil: NASA, SAO, and
Kraft et al. (2001)}).

star is apparent in the center of the multi-mililon-degree nebula. Apain
the nebula exhibits extended irregular structure that is only partially pre-
dictable from the optical image. A final image appears in Figure 10,3, this
one of a nearby elliptical galaxy, Centaurus A. The image shows a bright
central source, which is believed to include a super-massive black hole, a
Jet emanating from the center, and numercus point-like X-ray sources all
surrounded by a diffuse hot gas.

Figures 10.1-10.3 illustrate the wide variety of images that we hope to
model. A useful model must both allow for the extended diffuse nebula with
its irregular and unpredictable structure and include one or more highly
concentrated X-ray emitter (i.e., point sources). An important objective is
to cluster photons into these various sources. To accomplish this, we model
X; as a mixture of independent Poisson random variables. In particular

?

K
Aj = A 43 " ASpy fori € 7, (10.2)
k=1
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where APS represents the expected count due to smooth irregular extended
source in pixel 7, K is the number of point sources, ALS is the total expected
count due to point source k, and p; is the proportion of point source k
that fails in pixel 4. The added point sources might be modeled as Qaussian
distributions, in which case p;; is a bivariate Gaussian integral. We can
easily handle larger elliptical Gaussian point sources, or more irregular
point source models. Information as to the location and spread of the point
source is often forthcoming (e.g., from optical or radia observations) and
thus informative prior distributions are often available for these parameters.

A Markov Random Field (MRF) model can be used to describe the irreg-
ular extended sources represented by AFS in (10.2) (and perhaps irregular
added point sources), Our MRF models each pixel’s log inensity as a Gaus-
sian deviate centered at the mean of the log intensities of its neighboring
pixels. In particular,

log(AF¥) ~ Normal ‘HI M log(AF%),

- for i € I, {10.3)
b sl

v
Tig
where (i) is the set of pixels neighboring pixel 4, n; is the number of pixels
in (i), and v is the user-specified between pixel variance. This specifica-
tion allows for flexibility in defining each pixel’s neighborhood, as well as
specifying the variance of the Gaussian density. In principle, the variance
parameter can be fit or can be allowed ta vary across the detector field, so
as to give the capacity for sharp edges. The variances themselves can then
be modeled, perkaps via a common prior distribution with fitted hyperpa-
rameters, letting the data in effoct determine the values of the smoothing
parameter. An alternative to the MRF is the multiscale method proposed
by Kolaczyk (1999), which aims to provide wavelet like models for Pois-
son data and has performed well in a variety of applications (Nowak and
Kolaczyk 2000); the methods described in Chapters 6 and 7 may also be
helpful in identifying regions of relative homogeneity in an extended source.

We turn now to models for the degraded observed data. As discussed
in Section 101, the observed counts are blurred because of instrumental
effects and contaminated by background counts. Thus, we modify (10.2)

to model the obgerved count in pixel 4, ¥;, as independent Poisson random
variables,

Y; ~ Poisson | Y MyA; +92 | forieZ, (10.4)

J€T
where My; is the probability that a photon with actual sky coordinates
corresponding to pixel j is recorded in pixel ¢, A; is given in (10.2), and
&w the expected counts in pixel 4 attributed to background contamination.
The blurring matrix (M;;) and generally the background vector (0F) are
assumed known from calibration. As discussed in Section 10.3, the model
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given in (10.4) is well known and has been the subject of much study. What
is new here are the constraints we put on the source mode! and the spectral
models to which we now turn.

10.2.2 Model-Based Spectral Analysis

In this section we briefly outline a class of spectral models; more details of
the models and the algorithms used to fit them can be found in van Dyk et
al. {2001}, Protassov et al. {2001}, and Sourlas et al. {2002). The spectral
model aims to describe the distribution of the photon energies emanat-
ing from & particular source. Generally speaking, the distribution consists
of several clusters of photons including a smooth continuwm term and a
number of added emission lines, which are narrow ranges of energy with
more counts than would be expected from the continuum. The continuum
is Tormed by radiation of heat from the hot center of stars to the cold space
that surrounds them, a process known as thermal Bremsstrahlung. The
emission lines are due to parficular ions in the source and the abundance
of the extra emission indicates the abundance of the ion in the source.
Known spectral lines can tell us about the speed at which the source is
moving by examining the Doppler shift of the line location.

Statistically, the models are designed to summarize the relative frequency
of the energy of photons arriving at the detector and to separate the pho-
tons into clusters corresponding to the continuum and emission lines. In-
dependent Poisson distributions are more appropriate to model the counts
than the commonly used normal approximation {e.g., x* fitting), espe-
clally for a high resolution detector. We parameterize the intensity in bin

je J=11,...,J}, a8 a mixture of the continuum term and K ermission
lines,
K
Ay =8 XC0C, By + Y Mipiw, J€ T, (10.5)
k=1

where §; is the width of bin 4, A¥(8°, E;) is the continuum term and is a
function of the continuum parameter, 6%, E; is the mean energy in bin f,
MY is the expected counts from emission line k, and p;i is the proportion of
emission line & that falls in bin 7. (Here and in the rest of the chapter we re-
fer to the spectral margin, although this is suppressed in the notation.) The
smooth continuum term generally is parameterized according to physical
models with several free parameters. Many of these models are amenable
to standard statistical techniques, e.g., log linear models. Occasicnally, a
less parametric fit is desired, in which case a one dimensional Markov ran-
dom field can be applied. The emission lines are generally parameterized
as Gaussian or ¢ distributions.

As discussed in Section 10.1, the counts are degraded by background
contamination, instrument (i.e., the detector) response, and photon absorp-
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tion. Instrument response is a characteristic of the detector that results in
a blurring of the photens, i.e., a photon that arrives in bin 7 has probability
My of being detected in cbserved binl € £ = {1,...,L}. The L x J ma-
trix {M};}, which may not be square, is determined by calibration of the
detector and presumed known. Because of these degradations, we model
the observed counts as independent Poisson variables with parameters

J
Hp o= Mgﬁh\{&mommmxfmmv + mmmu {erl, Go.mv

i=1

where (6%, E;) is the probability that a photon of energy F; is not ab-
sorbed, &w is the Poisson intensity of the background which is often known
from calibration in space, and d; is the known effective area for photons
with energy Fj, with d; normalized so that max; d; = 1. In the absorp-
tion model a8, E;) is typically taken to be a generalized linear model
with #* denoting the model parameter. The absorbed photons form one or
more clusters that are completely unobserved. An important special case
involves so-called absorption lines, which are the topic of the remainder of
the chapter.

10.3 Absorption Lines
10.3.1 Scientific Background

Absorption lines are downward spikes in the spectral contimium, which
represent wavelengths where photons from the continuum have been ab-
sarbed by atoms of elements in the source. Because the specific energies
at which photons are absorbed are unique to each element, examining ab-
sorption lines of a source can help to determine its composition. In order
to motivate the physical models we employ and the statistical models we
formulate, we begin with some scientific background. Photons are emitted
from the hot center of a source (e.g., a star) in a continuous spectrum, and
due to their high energy radiate toward the relatively colder region near the
“surface” of the source (e.g., the corona of a stax). In these cooler regions
the continuum photons are in a higher energy state than their surroundings
and thus are readily absorbed by surrounding atoms to keep the energy of
the system in balance. When this occurs, the absorbing atom necessarily
enters a higher, less stable, energy state. Any given atom, however, prefers
a lower, maore stable energy configuration, so with high likelihood the atom
will shed the excess energy and return to its original state.

If the energy of the absorbed photon is eventually rcleased by the ab-
sorbing atom, one may wonder why we observe a dip in the continuum. The
answer is in part due t0 two processes called collisional deexcitation and
radiative deexcitation. In collisional deexcitation the excited atom collides
with another atom, and the “extra” energy due to the absorbed photon is
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converted into kinetic energy. The previously excited atom is thus back to
its original state, and we still observe a downward spike in the continuum.
In radiative deexcitation the atom simply emits a photon of energy equal
to the absorbed photon. However, the chance that we observe this photon
with the detector is very small: there are many possible directions which the
emitted photon can take, and the probability is minute that its path will
be along our line of observation. Therefore, even though the excited atoms

- eventually return to lower energy states, we still observe an absorption line.

Absorption lines can be parameterized in terms of their location, width,
and intensity. The location, p, denotes the center of the absorption line and
is of interest because the absorption wavelength {(or equivalently, energy}
indicates the absorbing element. Absorption lines generally have some pos-
itive width, o2, because they are “broademed” by several effects. One of
these effects, Doppler broadening, occurs because the velocity at which a
photon is moving when it is absorbed is a random variable, causing us to
observe a Doppler “shifted” absorption energy. This causes some photons
to appear to be absorbed at a slightly higher energy and others at a slightly
lower energy, hence the broadening of absorption lines. The third parameter
is the infensity parameter, M. Astronomers often refer to the absorption
mechanism that produces a line with small A* as being “optically thin,”
which means that the line does not absorb all of the continuuwm photons at
its peak; an example appears in plot {(a) of Figure 10.4. The intensify and
width parameters together give an indication of the structure of the line,
from which astronomers can learn about the relative concentration of the
absorbing element in the scurce.

10.3.2 Statistical Models

In terms of the model specification in Section 10.2.2, formulating an ab-
sorption model requires us to specify the probability that a photon is not
absorbed as a functicn of energy, i.e., QG,P_ ;) in (10.6). Generally there
may be several types of absorption that act independently, e.g., absorption
by the inter-stellar media over a broad energy range along with several
relatively narrow absorption features. Thus, we can specify c(04, ;) as a
product,

,\wb
ol8%, E;) = | ] o562, B2, (10.7)
i=1

where J# is the number of independent absorption components.

For simplicity, we focus on the case when J* = 1 with the understanding
that we can repeatedly apply the methods we describe to handle multiple
components. This is a particularly useful exercise because of the modular
structure of our mode} and fitting algorithms. For example, the Gibbs sam-
pler fits the model one component at a time. Thus, a method for fitfing the
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(8) (b)
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Em:nw 10.4 Twe ...wepSEmm of the physical flewibility of o(E;,6*). The wertical
axis i the probability that a photon is not absorbed by the line, which is the
probability that a photon is observed.

spectral models deseribed in Section 10.2.2 without absorption lines (see
van Dyk et al. 2001} can be combined with the methods described here to
fit the entire model, as we discuss below and illustrate in Section 10.4.
There are several models for absorption lines used by astrophysicists;
some lines are modeled with dat edges on one side, and others are taken to
have a symmetric or even Gaussian shape. Here, we limit our attention to
a specific but important formulation of an absorption line; van Dyk et al.
{2001) discuss models for absorption over a broad range of energy. Specifi-

cally, we consider the exponentiated Gaussian form described by Freeman
et al. (1999),

A — (& — p)?

a(8*, B;) = exp ﬁrﬁ, exp ﬁi_ W _ (10.8)
both because it is accepted as a useful description of physical phenomena
and because, as discussed is Section 10.3.3, it Is computationally tractable;
see also Hans and van Dyk (2002). In this model, the absorption line @ma“
rameter is 84 = (1,52, \), where p is the location parameter, o? is the
,.,i%w parameter and A\® is the intensity parameter. This parameterization
is attractive for both physical and, as discussed below, statistical reasons.
From a physical perspective, {10.8) provides a flexible way to describe the
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absorption line. The inner exponential quantity gives the line a somewhat
Gaussian shape, while the outer exponential and the intensity parameter
control the strength of the line. Figure 10.4 illustrates this HAexibility. Notice
that in plot (&), the absorption line maintains a Gaussian shape but never
reaches o{0%, E;) = 0, where all the photons from the continuum would
be absorbed. For this plot, s = 1.25, 02 = 0.002 and A* = 1.5. Plot (b)
shows the outer limits of the line maintaining a Gaussian shape while all of
the photons from the continuum are absorbed over the central bins; here,
g =125 02 = 0.002 and X* = 85.
We specify the likelihood of the observed counts as

Y, indep- poisson(S;) for L€ L, . (10.9)

with =; given in (10.6). (Currently, it is common practice to account for
absorption lines by modeling Y7 as independent Gaussian random variables
with mean E;, for example, via x* fitting. Such models are inappropriate for
high-resolution, low-count detectors.) To complete the specification of the
model, prior distributions must be assigned to the absorption line parame-
ters. When prior information is available either from previous observations
or other scientific knowledge, we use parameterized independent prior dis-
tributions on (62, 4, M); in particular we use sealed inverse x?, Gaussian,
and gamma distributions respectively. Improper prior distributions should
only be used with great care; there is a possibility of an improper poste-
rior digtribution when we consider the more general model described in
Section 10.2.2.

Data Augmentation. We can augment model {10.9) to a larger, only par-
tially observed sample space, which simplifies computation. The basic data
augmentation is the idealized image that is undistorted by blurring, back-
ground contamination, or absorption,

X; indep. Poisson{h;) fori €T, (10.10)

with A; given in (10.5). To account for absorption, we introduce an inter-
mediate data augmentation, the idealized image after absorption,

Z:1X, 6% 5P Binomial [ Xy, 0(6%, Ei)] fori €T, (10.11)
where a0, E;) is the probability that a photon in not absorbed and is
given in (10.8). Combining (10.10) with (10.11} and marginalizing over X;
vields

7164 "X Poisson[Asa(6*, B;)| for i € 1. (10.12)
Ordinarily we treat both X = {X;,i € T} and Z = {Z;,i € T} as missing
data, along with a number of other quantities; see van Dyk et al. (2001). For

the remainder of Section 10.3, however, we focus attention on absorption
lines and treat 7 as obzerved data and X as the unobserved idealized
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image. In particular, we act as if there were no blurring of photon energies
or background contamination and assume A = {A,,i € T} is specified with
no unknown parameters. All of these simplifications are to focus attention
on absorption lines and will be relaxed in Section 10.4.

A Generalized Linear Model. The model specified in {10.11) can be for-
mulated as a generalized linear model (McCullagh and Nalder 1989) using

the link function, ; = — log/— log (8%, E;)], where ¢ is given in (10.8). In
this case,

. R - vm 2
o= log (AN BT [ Ay !
" omﬁ v F 207 log my v+mQL+TN_ it TQL mw

o . {10.13)
is linear in E; .@sm_ EZ. We can identify the coefficients of the generalized
linear model with £ = (3, 51, 82)7, via the invertible transformation

1 2

= LA — A H
Po=5—g, Bi= ey 9113&»?%. (10.14)

10.3.83 Model Fitting

Our goal is to base inference on summaries of the posterior distribution,
A
p0M17) = [ 0(0h, X|2)aX  [p(210% X)p(X6V)ix,  (1015)

where the factors under the final integral are given in (10.11), (10.10)
and the prior distribution of * respectively. Because of the complexity cm
Co.umv we rescrt to iterative methods to summarize the posterior distribu-
tion. Here we discuss both an EM algorithm that can be used to compute
the posterior mode and MCMC methods that can be used o obtain a sam-
ple from the posterior distribution. Both of these methods are based on
the data-augmentation scheme discussed in Section 10.3.2. In particular
v.oﬂg computational tools take advantage of the fact that the two oon&.,
tional distributions, p(X|Z, 6*) and p(0*|2, X), are well-known statistical
models. Simple probability calculus shows that the first is

indep.
Xz, 6% "SSPz, 4 Poisson (A1 — (0™, E))]. (10.16)

The second is the pesterior distribution under the generalized linear model
described in Section 10.3.2.

EM &Eoiwrs. ..H_?w EM algorithm is a well-known iteraiive method for
computing marginal posterior modes, such as the mode of p(#4|2) as ex-

pressed _5 {10.15). Starting with some starting value mmwf EM proceeds by
computing

A
8% 1) = argmaxgs E To@ab_m‘ﬁ_m" ﬁi fort=1,2,... (10.17)
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This procedure is guaranteed to increase the log posterior at each iteration
and takes a particularly simple form in this case. The expectation in (10.17)
can be written as

E MN& log[a{(6%, )] + (Z; — X4)logll ~ a(6®, B + log p(8™)| Z, mmu
iel )
. (10.18)
Since (10.18) is linear in X, we can simply replace the missing data by its
expectation under model (10.16) and update the parameter by fitting the
generalized linear model, e.g., via Newton-Raphson; see Hans (2001) for
details.

MCMC Methods. The posterior distribution in (10.15) can be summarized
via Monte Carlo by obtaining a sample from p(04, X|Z) and discarding the
draws of X. We obtain a sample from the joint posterior distribution using
the Gibbs sampler, an iterative algorithm that constructs a Markov chain
which under mild regularity conditions converges to the joint posterior
distribution (for convergence results see Roberts 1996).

We implement the following Gibbs sampler: given a starting value mmwu”
we iterate,
StePl: Draw X1y from p(X|Z, mmuu"

STEP2: Draw mwtu from p(8*|Z, Xry)-

For sufficiently large Ty we can consider va,uﬁzum =Ty,...,T} to be a
sample from (10.15) and summarize the posterior via Monte Carlo integra-
tion. .

StEr 1 in the Gibbs sampler can be easily accomplished according to
{10.16). Although the probability distribution in STE? 2 is not of a standard
form, we can use the Metropolis-Hastings algorithm within each iteration of
the Gibbs sampler to construct a Markov chain with stationary distribution
as given in STeP 2. We construct the Metropolis-Hastings jumping distribu-
tion using a wide-tailed approximation of the target density given in STep 2.
The wide tails enable the sampler o jump across the parameter space, and
if the approximation is good many proposals will be accepted. Our choice
for the jumping density is a multivariate location-scale t-distribution with
4 degrees of freedom. We use the posterior mode of p(04]Z, X) (e.g, as com-
puted in the M-step of EM) and the corresponding second derivative matrix
to construct the center and scale of the jumping distribution respectively.
Thus, the jumping distribution does not change within a single iteration of
the Gibbs sampler. Because the Metropolis-Hastings algorithm is computa-
tionally quick once the jumping distribution has been computed, we iterate
five times within each iteration of the Gibbs sampler, using the final draw
as the draw for STep 2 of the Gibbs sampler. This strategy has negligible
costs but potentially can improve the overall convergence properties of the
Markov chain.
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Figure 10.5 Data simulated with A® = 50, The plot on the right shows the expected

number of counts per bin in the area of the absorption line.

10.8.4 A Simulation-Based FExample

In this section we investigate how the characteristics of the fitted ab-
sorption line are affected by its actual parameters. We use a series of
simulated data sets, generated according to {10.5) over the energy range
[0.63 keV, 8.85 keV] using a bin width of 0.01 keV, giving a totel of 822 bins.
The continuum model was taken to be a power law, AC(¢°, E) = 60 E~%
with the physically reasonable parameters 6% = 80 and 65 = 2.23. We sim-
ulated five datasets with the same line location, 4 = 1.5 keV, and width,
o? = 0.0003, but differing intensities, A* = 1,5, 10,25, and 50. The data
set generated with A = 50 is illustrated in Figure 10.5; the absorption
line covers about ten bins. We used a flat prior distribution on 84 in all
analyses.

For each analysis we first ran the EM algorithm from five starting values
dispersed about the parameter space to search for posterior modes. We
then used these modes to select starting values for three MCMC samples.
We begin with our analysis of the data set illustrated in Figure 10.5, gen-
erated with A* = 50. We fit the model to the data in two ways: first we
allowed all three parameters in 64 to be fit and second we fit only u and
M fixing o2 at 0.0003. The convergent values of EM for all five starting
values for both fitting schemes appear in Table 10.1, which illustrates the
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Run Fit p, 02, and 3* Fit only p and M
uoo oo x 10t AN 1)) 7] b 28
{i) 1.50 Wi 26.0¢ 29936.3 1.30  0.23 29651.5

(i) 150 377 2609 29936.3  1.97 0.30  29650.6
(i) 150 377  26.00 29936.3 150 52.09 29950.2
(iv) 150 377 2609 299363 250 0.63 296541
) 150 3.77 2609 299363 100 0.15  20650.5

Table 10.1 Convergence of the EM algorithm for wvarious starting wval-
ues with M = B0 for the underlying model mtﬂc?qmsuym;v chogen os:
(i) (1.25, 5x10™%45); (i) (2.0,2.0x107%,80); (ii) (1.46,2.5x107%,25); (iu)
(2.5,8.0<107%,100) and (v) (1.0,5.0<107°,10). The left side of the table shows
convergence for the model which fits all three parameters, and the right side shows
convergence when o s fixed at $x107%. The reported log-likelihosd, £(6), does
not include the normalizing constant. ,

multi-modal character of the posterior distribution. The natural Poisson
variability of the photon counts can lead to random dips in the continuum
which are not due to an absorption line, but create modes in the posterior
distribution. Given our knowledge of the true model, the four small values
of A*, and the value of the loglikelihood at each of these modes, it is evident
that there is one major mode due to the absorption line and four minor
modes that result from random fluctuations in the continuum. In practice
these minor modes cause two difficulties. Computationally, MCMC sam-
plers can get caught in a minor, relatively uninteresting mode. Thus, we
generally recommend using the EM algorithm to first identify interesting
modes and then construct MCMC starting values alming to sample from
these modes; see also Gelman et al. (1995). Secondly, it can be difficult to
distinguish actual absorption lines from chance Poisson fluctuations in the
continuum. The standard formulation of a formal hypothesis test involves a
null value (i.e., no absorption line) that is on the boundary of the parame-
ter space. Thus, the standard null distribution of the likelihood ratio test is
inappropriate. In this case, we recommend using model checking techniques
such as posterior predictive p-values to help distinguish between random
fluctuations and weak lines; see e.g., Protassov et al. (2001}.

A sample from the posterior distribution was generated by running each
of three MCMC chains for 2500 iterations. We discarded the initial 500
draws of each chain and computed /\m (Gelman and Rubin 1992} on the

remaining draws to determine convergence to stationarity. Values of v R
close to one signify that the several chains represent draws from the same
distribution; values for three estimands (i, o2 and log(A*)) are reported in
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Figure 10.6 6000 draws from the posterior distribution of 8 for the data gener-
ated with A* = 50; the median and 95% credible intervals are reported. On the

original scale, the posterior median for the intensity poremeter is 23.374 with
95% CI = [10.223 , 79.794).

Table 10.2. The z\m statistic and visual inspection of the chains indicate
good mixing. Figure 10.6 illustrates the marginal posterior distributions of
i, o2, and log(A\*) and reports their median and 95% credible intervals;
the true value of each is contained in its interval.

Finally, we tepeat the above analyses for the datasets generated with
A = 95, 10,5, and 1; see Table 10.2. Figure 10.7 shows that 95% credi-
ble intervais cover the true parameter value in all cases. We also notice a
negative association between the estimates of 6% and A; wher 2 is under-
estimated, A is overestimated and vice versa. In either case, the expected
absorption count is maintained.

10.4 Spectral Models with Absorption Lines
10.4.1 Combining Models and Algorithms

"In this section we relax the model simplifications of Section 10.3.2, fitting
absorption lines and the continuum jointly in the presence of background
contamination, absorption due to the inter-stellar media, and blurring of
photon energies. The idealized spectrum after absorption, Z, is treated as
one level in a hierarchical data augmentation scheme; the observed data,
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model  summary L a2 log(A%) A

median  1.4998 3.7x107%  3.1516 23.374
A%t =50 lower 1497 25x107%  2.3246  10.223
upper 1.502  5.27x107%  4.3794  79.794

VvE 10002  1.0000  1.0003 1.0023
median 15008 3.61x10~% 27186  15.150

M =25  lower 1.499  2.53x10°¢  2.0737  7.954
upper 1.503  4.99x10™%  3.6074 36.871

VR 1.0000 1.0000 1.0054 1.0182
median  1.4993 2.54%x107¢ 24543  11.839

10 lower 1.498  2.03x107%  1.8867  6.597
upper 1.502  3.89x107%  3.1804  24.056

vE 10061 1.0000 1.0000  1.0001
median 14992 228x10—% 1.9280  6.876

A =5 lower 1.497  1.58x107% 1.5022  4.492
upper 1502 3.17x107% 25070 12.268

VR 1.0008 1.0000 1.0007  1.0006
median  1.5005 3.46x10~1  0.02317  1.023

AA =1 lower 1.494  1.97x107%  -0.3654  0.694
upper 1.507  B.22x10%  0.3469  1.415

VR 10026 1.0024  1.0006  1.0007

\/..P

Table 10.2 Posterior summaries for dote generated according to five simulotion
models where lower and vpper reloate to the lower and upper bounds of the 95%
confidence intervel for the parameter.

Y, is modeled as in (10.9). Because of the modular structure of our compu-
tational tools, it is not difficult to compose posterior sampling and mode
finding algorithms in this more general setting. Using the notation of Sec-
tion 10.3.2, the joint probability model factors as

p(X,Y,Z,6%,67%) = p(Y|Z,07*)p(Z| X, 6%)p(X |0~ *)p(6~)p(6*),
(10.19)
where Y is the observed data, X is the ideal data, Z is the ideal data
after absorption, and §—* are all mode! parameters not involved in the
absorption line. The first factor on the right-hand side of (10.19) represents
the effects of blurring, background, effective area of the instrument, and any
other abscrption components in the model; the second factor represents the
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Figure 10.7 Medians and 95% credible intervals for the five simulations. The hor-
izontal azes represent the five simulations. Intervals in the third graph are trans- :
lated (by substracting by the logarithm of the true value} so as to be comparable.
In each case the dashed lines are the true volues.

absorption line; the third factor is the distribution of the ideal data given
in (10.10); and the last two factors are independent prior distributions.
Thus, we can construct a two step Gibbs sampler, perhaps with Metropolis-
Hastings approximations, to obtain a sample from p(X, Z,0~4,04|Y) as
follows:

STEP 1: Draw Amwv,mm%v from

pl6™, 078 X, Y, Z) = p(82] X, Y, Z)p(03|X, Y, 2)

SyteP 2: Draw (X, Zyy) from

p(X,Z|Y,6%07%) = p(X|Y,Z,6%,67M)p(ZIY, 0,0
= p(X|Z,0%,67M)p(zZ]Y,0*,07%)  (10.20)
The equalities follow from the factorization in (10.19). Because the draws
of 04 and of X are exactly as described in Section 10.3 while the draws of m

6~ and Z are given in van Dyk et al. (2001) we can easily implement this
MCMC sampler. EM can be adapted using similar arguments.
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10.4.2 An Example

To explore the effect of an absorption line on the spectral model of Sec-
tion 10.2.2 we analyze the X-ray spectrum of Quasar S5 0014+813 (Kiihr
et al. 1981}, using data observed with the ASCA instrument in 1993 (Elvis
et al. 1994). We used ali 512 of the instrument energy bins, except for the
unreliable bins below ~ 0.5 keV or above ~ 10 keV. We model the contin-
uum as a power law, Le., AC(6C, E;) = m%m‘_‘,_l 2 and add an inter-stellar
absorption component, ¢q{08 E) = exp(—##/E). We account for back-
grounid by seiting 0F equal to the ?mmo&w& counts in the corresponding
bin of the background observation. Because the data are relatively informa-
tive for 8% and 02, we use flat prior distributions on a variance stahilizing
transformation of each parameter. A sample from the posterior distribution
was obtained by running three MCMC chains according to the algorithm
deseribed in van Dyk et al. (2001} for 1000 iterations each. {We use the
nesting methods described by van Dyk and Meng {2000} to reduce the
autocorrelation in the resulting chains and produce three draws per itera-
tion.) We then combined the last 2000 draws of each chain to form a sample
of 6000 draws, The marginal posterior distributions of 67,65 and 87 are
represented by the shaded histograms in Figure 10.8.

To explore the effect of an absorption line on our analysis, we manu-
ally subtracted counts from nine adjacent bins near 1 keV to simulate an
absorption line:

original counts 30 30 28 24 31 37 28 26 20
altered counts 15 10 5 0 0 0 5 10 15

Using the altered data we refit the model exactly as described above (not
accounting for the absorption line), yielding the marginal posterior distri-
butions depicted by the histogram with dashed lines in Figure 10.8. The
presence of the unaccounted for absorption feature has both increased the
posterior variance of all three parameters and has shifted the distributions
away from their “true” values. Clearly inference based on this posterior is
biased by the non-ignorable missing data caused by the absorption line.
Thus, we refit the altered data, this time accounting for the absorption
line component as described in Section 10.4. (We use a gamma prior on
M with B(M) = var(A\*) = 2.) The new marginal posterior (solid lines
in Pigure 10.8} maich the original marginal posterior distributions closely;
the bias caused by the absorption line has been removed.

Figure 10.9 shows the cumulative probability of membership of four
clusters as a function of energy. The clusters correspord to the photons
observed by the detector, photons lost to instrument response, photons
absorbed by the inter-stellar media, and photons absorbed in the absorp-
tion line. Although these clusters are not specifically spatial in character,
if the source were diffuse, we might expect their relative density to vary
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Figure 10.8 Marginal posterior distributions. The shaded histograms represent the
“truc” model with no abserption line present. The deshed lines show the bias that
an absorption line introduces to the parometer estimates, and the solid lines show
the posterior distributions after the absorplion line has been aecounted Jor.

across the source. Three of these clusters are completely unobserved—they
are clusters within the idealized data, Y. Similar computations can sepa-
rate the background, continunm, and emission line photon clusters, all of
which are at least partially observed. If we confine our attention to the ob-
served photons, the background, continuum, and emission line clusters are
all sub-clusters of cluster ‘A’ in Figure 10.9. We use the posterior means
of the model parameters to produce F igure 10.9; posterior variahility can
easily be used to compute error bars for the cluster probabilities.

10.5 Discussion

The statistical and computational challenges of image analysis in high en-
ergy astrophysics are truly immense, Accounting for the spatial, spectral,
and temporal structure in the data along with the complexities in the pho-
ton redistribution matrix, pile-up, background contamination, and photon
absorption requires highly structured models and sophisticated computing.
Current work focuses on incorporating these complexities one at a time,
taking advantage of the modular structure in both our models and compu-
tational techniques, The preliminary methods are useful for special classes
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Figure 10.9 Cumulative Cluster Probabilitics. The figure displays the nﬁﬁas_gﬂem
probabilities of four photon clusters as a function of Energy. Cluster ‘4’ noiﬁﬁm
observed photons; ‘B’ contains photons lost to instrumental response; 'C7 contains
photons absorbed by the smooth absorption term, an, e.g., due to the ﬁsnmﬂmﬁmﬁgﬁ
media, and ‘D’ contains photons absorbed in the absorption line. The relative
size of the cluslers vary dramatically as o function of Energy (ihe probobilities
are computed using the posterior mean of the model paramelers).

of images (e.g., the spectral models can be applied directly to point sources)
but need to be extended to be useful for more sophisticated images. Com-
bining the spectral and spatial models is a particular area of active work.
Even within the much less complicated problem of accounting for absorp-
tion lines, there are sophisticated statistical and computational challenges.
Handling the highly multi-modal posterior distribution will only become
more complex as the overall model incorporates more of the features of the
source and data collection mechanism. In some cases, the choice of prior dis-
tribution can be quite important and careful prior specification along with
sensitivity analysis is required. In general, however, we expect the three
steps of first exploring the posterior distribution with mode finding algo-
rithms, second fitting the model via MCMC, and finally checking the model
using posterior predictive checks to be a practical strategy. Thus far, we
have found that directly modeling the stochastic features in the underlying
images and data collection to be both powerful statistically and ﬁm.ﬁd&uwm
computationally, and thus, a fruitful strategy for image reconstruction.
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CHAPTER 11

Spatial Modelling of Count Data: A

Case Study in Modelling Breeding

Bird Survey Data on Large Spatial
Domains

C.K. Wikle

11.1 Introduction

The North American Breeding Bird Survey (BBS) is conducted each breed-
Ing season by volunteer observers (e.g. Robbins et al. 1986). The observers
count the number of various species of birds along specified routes. The col-
lected data are used for several purposes, including the study of the range of
bird species, and the variation of the range and abundance over time (Link
and Sauer 1998). Such studies usually require spatial maps of relative abun-
dance. Traditional methods for producing such maps are somewhat ad hoc
(e.g., inverse distance methods) and do not always account for the special
discrete, positive nature of the count data (e.g. Sauer et al. 1995). In ad-
dition, corresponding prediction uncertainties for maps produced in this
fashion are not typically available. Providing such uncertainties is critical
as the prediction maps are often used as “data” in other studies and for
the design of auxiliary sampling plans.

We consider the BBS modeling problem from a hierarchical perspective,
modeling the count data as Poisson, conditional on a spatially varying
intensity process. The intensities are then assumed to follow a log-normal
distribution with fixed effects and with spatial and non-spatial random
effects. Model-based geostatistical methods for generalized linear mixed
models (GLMMSs) of this type have been available since the seminal work of
Diggle et al. (1998). However, implementation is problematic when there are
large data sets and prediction is desired over large domains. We show that
by utilizing spectral representations of the spatial random effects process,
Bayesian spatial prediction can easily be carried out on very large data sets
over extensive prediction domains. General discussion of the role of such
Bayesian hierachical random effect modelling is given in 1, and approaches
to spatio-temporal modelling are found here in 12.



