DISCUSSION ARTICLE

The Art of Data Augmentation

David A. vaN DYK and Xiao-Li MENG

The term data augmentation refers to methods for constructing iterative optimization
or sampling algorithms via the introduction of unobserved data or latent variables. For de-
terministic algorithms, the method was popularizedin the general statistical community by
the seminal article by Dempster, Laird, and Rubin on the EM algorithm for maximizing a
likelihood function or, more generally, a posterior density. For stochastic algorithms, the
method was popularized in the statistical literature by Tanner and Wong's Data Augmenta-
tion algorithm for posterior sampling and in the physics literature by Swendsen and Wang's
algorithm for sampling from the Ising and Potts models and their generalizations; in the
physics literature, the method of data augmentationis referred to as the method of auxiliary
variables. Data augmentation schemes were used by Tanner and Wong to make simulation
feasible and simple, while auxiliary variables were adopted by Swendsen and Wang to im-
prove the speed of iterative simulation. In general, however, constructingdata augmentation
schemes that result in both simple and fast algorithms is a matter of art in that successful
strategies vary greatly with the (observed-data)models being considered. After an overview
of data augmentation/auxiliary variablesand some recent developmentsin methods for con-
structingsuch efficientdataaugmentationschemes, we introducean effectivesearch strategy
that combines the ideas of marginal augmentation and conditional augmentation, together
with a deterministic approximation method for selecting good augmentation schemes. We
then apply this strategy to three common classes of models (specifically, multivariate ¢,
probit regression, and mixed-effects models) to obtain efficient Markov chain Monte Carlo
algorithms for posterior sampling. We provide theoretical and empirical evidence that the
resulting algorithms, while requiring similar programming effort, can show dramatic im-
provement over the Gibbs samplers commonly used for these models in practice. A key
featureof all these new algorithmsis that they are positiverecurrentsubchains of nonpositive
recurrent Markov chains constructed in larger spaces.
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1. DATA AUGMENTATION AND AUXILIARY VARIABLES

Suppose Yoy, is our observed data and we want to sample from the posterior p(6]Yops)
p(Yops|0)p(6), where p(Yops|0) is a probability density with respect to a measure p(-) and
p(0) is ourprior densityon © C R<.1tis well known thateven with common models, such as
those discussed in this article, the posterior sampling required for Monte Carlo integrations
may not be trivial. Indeed, until recently, this burden was a major block in the routine use
of Bayesian techniques in practice. The situation has changed considerably in the last ten
years or so, thanks to powerful Markov chain Monte Carlo (MCMC) sampling methods. The
relevant literature on MCMC is simply too extensive to list, but the book edited by Gilks,
Richardson, and Spiegelhalter (1996) is worthy of being singled out, because it provides
a fairly general picture of MCMC techniques and illustrates them in a variety of real-data
applications.It also contains accessible theoretical background as well as a fairly extensive
list of references up to 1996. Another useful resource is Neal (1993), especially because it
contains an insightful overview of many MCMC methods developed outside of statistics. For
the most recent developments in MCMC methodologies in statistics, the MCMC preprint
service at http://www.statslab.cam.ac.uk/~mcmc is an excellent resource. For some of the
most advanced recent developments in physics, Ceperley's (1995) long review article, in
the context of simulating boson superuid, is essential reading. For detailed illustrations
and discussions of MCMC in Bayesian and likelihood computation, the books by Gelman,
Stern, and Rubin (1995), Carlin and Louis (1996), and Tanner (1996) cover many models
that are routinely encountered in practice.

One very effective tool in the MCMC toolkit is the so-called data augmentation tech-
nique. The technique was popularized in general for constructing deterministic mode-
finding algorithms by Dempster, Laird, and Rubin (1977) in their seminal article on the
EM algorithm, but the term data augmentation originated with Tanner and Wong's (1987)
Data Augmentation (DA) algorithm, which provides a perfect illustration of this technique
in a simulation setting. The DA algorithm starts with the construction of the so-called
augmented data, Y,,,, which are linked to the observed data via a many-to-one mapping
M : Yyg — Yobs. A data augmentation scheme is a model for Y, p(Yaug|9), that satisfies
the following constraint

/ p(nugle)ﬂ(dnug) :p(K)bSW)- (1.1)
M (Yaug)=Yobs

Thatis, to be qualified as an augmentation scheme, the marginal distributionof Y, implied
by p(Yaug|@) must be the original model p(Yops|6). The necessity of this requirement is
obvious because p(Yy,|0) is introduced purely for computational purposes and thus should
not alter our posited analysis model. (Throughout this article, whenever appropriate, all
equalities and inequalities, such as (1.1), are understood to hold almost surely with respect
to an appropriate dominating measure.)

The utility of the DA algorithm stems from the fact that with an appropriate choice of
P(Yaug|0), sampling from both p(0|Yaye) and p(Yaug|Yobs, @) is much easier than sampling
directly from p(f|Yyys). Consequently, starting with an initial value, #®) € ©, we can
form a Markov chain {(#(®), nﬁtg)), t > 1} by iteratively drawing Yaﬁtgﬂ) and (1 from
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P(Yaug| 0, Yops) and p(60 |n$.§j”), respectively. Thisis simply a two-step version of the more
general Gibbs sampler (Geman and Geman 1984), and thus under the standard regularity
conditions for the Gibbs sampler [see Roberts (1996) or Tierney (1994, 1996)], the limiting
distribution of (), Y‘Sg) is given by p(6, Yaug| Yobs)-

Besides simple implementation, another desirable requirement for the data augmen-
tation scheme is that the resulting Markov chains mix quickly, thus reducing the required
computation time. In fact, in some cases a data augmentation scheme has been introduced
mainly to improve mixing. This is the case with the well known Swendsen and Wang
(1987) algorithm for simulating from the Ising (1925) and Potts (1952) models. Their al-
gorithm is a special case of what Neal (1997) termed slice sampling, a general class of
which can be formulated as follows. Suppose we want to simulate from a density f(z),
which can be written as f(z) « m(x) HkK:1 I (x). We then can introduce an auxiliary
variable uw = (uy, ..., ur) € (0,00)¥ such that the joint density of x and u (with respect
to Lebesgue measure) is given by

K
F@u) o () [ Huw < (@)}, (1.2)

k=1

where I{-} is the indicator function. It is clear that the marginal density of = implied by
(1.2)is f(x). The Gibbs sampler can then be implemented by (a) simulating u from f(u|z),
which amounts to independently simulating uy, from Uniform(0, ix(x)), k= 1,..., K, and
(b) simulating z from f(x|u), whichis 7(x) truncated to the region ﬂle {z: () > upl;
when z is multidimensional, further Gibbs steps may be needed to sample from f(z|u).
In some applications, such as the Ising model where x is a lattice, 7(z) is a simple distri-
bution with independence structures among the components of x, and therefore is easy to
sample from. The factor HkK:1 Ik (x), however, reects the dependence structure among the
components of x (e.g., the neighborhood interaction structure in the Ising and Potts mod-
els, where k indexes adjacent pixels). This dependence is responsible for the slow mixing
when one implements the Gibbs sampler or the Metropolis—Hastings algorithm directly on
f(x) « m(x) HkK:1 Ik (x). The use of the auxiliary variable u effectively eliminates such
interactions and thus reduces the strong autocorrelation in the MCMC draws, as discussed
by Besag and Green (1993), Green (1997), and Higdon (1998).

The success of the Swendsen—Wang algorithm has stimulated much interest in the
general use of the method of auxiliary variables in the physics literature, most importantly
in Edwards and Sokal (1989). In the statistical literature, there also has been growing general
interest in this method, apparently starting from the overview article of Besag and Green
(1993); important methodological and/or theoretical papers include Damien, Wakefield
and Walker (1999), Higdon (1998), Mira and Tierney (1997), Neal (1997), and Roberts
and Rosenthal (1997). It is worthwhile to note that the statistical literature on auxiliary
variables has grown largely independently of the literature on data augmentation, despite
the fact that the two methods are identical in their general form. The general form of the
former, of which (1.2) is a special case, is to embed our target distribution (or density) f(z)
into f(x,w), where u is an auxiliary variable of arbitrary dimension. This is the same as in
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(1.1) if we express (1.1) in the equivalent form:
/ p(ea Kiuglx)bs)ﬂ(dnug) = p(elx)bs)a (13)
M (Yaug) =Yobs

and identify 6 with x, Yy, with u, and p(-|Yops) with f(-), where “-” can be either z or {x, u}.
In other words, we can either view the method of auxiliary variables as data augmentation
without any observed data (or equivalently by fixing the observed data to be constant), or
view data augmentation as introducing an auxiliary variable into p(6]Yops).

The lack of communication between these two literatures could be due to the “back-
wards” nature of (1.1) compared to (1.3), and/or due to the initial difference in emphasis
between the two methods, namely, the easy implementation from data augmentation versus
the improved speed from auxiliary variables. Indeed, until recently, common experience
and belief have held that there is a general conict between simplicity and speed. This is
evident, for example, in the literature on the EM algorithm, the predecessor and the deter-
ministic counterpart of the DA algorithm, where it is well known that the theoretical rate of
convergence of EM is determined by the so-called “fraction of missing information” (see
Section 2). Thus, in terms of the augmented-data Fisher information, the less we augment,
the faster the algorithm will be as measured by its theoretical rate of convergence. On the
other hand, the less we augment, the more difficult the implementationis expected to be. For
example, in the extreme case of no augmentation, Yy, = Yo, we are faced with sampling
from p(6|Yyps) directly.

Although the conict between speed and simplicity is a common phenomenon with
many standard augmentationschemes, we demonstrated recently (Meng and van Dyk 1997,
1998) that with more creative augmentation schemes it is entirely possible to construct EM-
typealgorithmsthatare both fast and simple. Finding such an efficient augmentationscheme,
however, is largely a matter of art in the sense that it needs to be worked out on a case-by-
case basis, sometimes with substantial effort (for those of us who create algorithms, not for
the users). For example, while the “slicing” techniquein (1.2) is a general strategy, it can be
difficult to implement when p(z|u) is not easy to sample from and can result in extremely
slow algorithms when certain asymmetries arise in the target density (e.g., Gray 1993;
Green 1997). Much recent work has been devoted to the development of general strategies
for constructing MCMC algorithms that are both fast and simple; see, for example, the
work by Damien et al. (1999), Higdon (1998), and Neal (1997) on auxiliary variables and
in particular on slice sampling.

Likewise, this article introduces a constructive search strategy for improving stan-
dard augmentation schemes and then applies this strategy to construct efficient MCMC
algorithms for three common classes of models. This constructive strategy combines the
conditional augmentation and marginal augmentation approaches developed by Meng and
van Dyk (1999), which were inspired, respectively, by Meng and van Dyk's (1997) work-
ing parameter approach and Liu, Rubin, and Wu's (1998) parameter expansion approach,
both designed to speed up EM-type algorithms. The marginal augmentation approach was
developed independently by Liu and Wu (1999) under the name parameter-expanded DA
algorithm; see also C. Liu (1999) for a related method called the “covariance-adjusted DA
algorithm.” Our strategy includes a method we call the deterministic approximation for
choosing optimal or nearly optimal data augmentation schemes. This method circumvents
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the difficulties of directly comparing the theoretical rates of convergence of stochastic DA
algorithms by comparing the rates of their deterministic counterparts; thatis, EM-type algo-
rithms. An interesting phenomenon in all three applications presented in this article is that
the resulting algorithms use positive recurrent subchains of nonpositive recurrent Markov
chains.

The remainder of this article is divided into eight sections. Sections 2 and 3 review
the basic ideas underlying conditional and marginal augmentation respectively. Section 4
discusses the use and theory of improper priors for marginal augmentation, which leads
to nonpositive recurrent Markov chains containing properly converging subchains with
the desired limiting distributions. Section 5 provides some comparisons of conditional
augmentation and marginal augmentation,and introduces our general search strategy which
uses the two approachesin tandem. Sections 6—8 apply this general strategy, respectively, to
three common models: multivariate ¢, probit regression, and mixed-effects models. Section
9 concludes with discussion of limitations and generalizations of our search strategies and
calls for more theoretical research on nonpositive recurrent Markov chains.

2. CONDITIONAL AUGMENTATION AND THE EM CRITERION

The key to the methods discussed in this article is the introduction of a “working
parameter” that is identifiable under the augmented model but not under the observed-data
model. Specifically, we introduce a working parameter « into (1.1),

/ P(Yaug
M (Yaug)=Yobs

That is, we create a class of augmentation schemes, p(Yaug 6, «) or, equivalently, a class of
auxiliary variables indexed by o € A. In real applications, such as those in Sections 6-8,
the working parameter is chosen so that a common augmentation scheme corresponds to a

0, ) p(dYaug) = p(Yobs|0). @2.1)

specific value of a (e.g., & = 1) and thus direct comparisons can be made with the common
augmentation scheme when we search for better schemes.

Once such a class of augmentation schemes is constructed, we can search for the
best value of o according to some sensible criterion. This strategy was referred to as the
conditionalaugmentation approach by Meng and van Dyk (1999) because, once a desirable
value of « is found, it is conditioned upon throughout the algorithm. Meng and van Dyk
(1999) discussed three criteria for choosing «, in the order of decreasing theoretical appeal
but of increasing practicality. The first is to minimize the geometric rate of convergence of
the DA algorithm (see Amit 1991 and Liu, Wong, and Kong 1994)

MA (@) =1— }M[h(lg)fm:l E[var(h(0)|Yaug, @)[Yops, @], (2.2)
where the expectationis with respect to the stationary density p(6, Yaug|Yobs, «). The second
is to minimize the maximum autocorrelation over linear combinations (Liu 1994)

SCTVaI'[E(meg, a) D/Obsa O‘]x

supcorr(z' 0, 279 FD) = sup Von)
obs )T

240 240 x Tvar(d
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where Fg(«) is the so-called Bayesian fraction of missing information
FB(O[) =1- [Var(QD/obs)]_lE[Var(ehfauga a)D/Obsa O[], (24)

and p(A) is the spectral radius of A. Thus, if we have two augmentation schemes indexed
by a and «;, the second criterion will prefer the scheme with larger expected conditional
variance, E[var(6|Yyue, &) [Yobs, @] (using a positive semidefinite ordering when 6 is a vec-
tor). This autocorrelation criterion is more general than the geometric-rate criterion as it
can be applied to Markov chains that do not converge at a geometric rate.

The third criterion is based on the intrinsic connection between the DA algorithm and
its deterministic counterpart and predecessor, the EM algorithm. Specifically, given a condi-
tional augmentation scheme p(Yyye|0, @), the corresponding EM algorithm for computing
the posterior mode(s) of p(8|Yops), denoted by 6*, has a theoretical rate of convergence
given by (Dempster, Laird, and Rubin 1977)

Fem(e) =1 — Iy (),

aug
where

9108 p(6]Yaug @)
00 - 00

Tag(a) =E Yops, 0, a} 2.5)

0=0*

is the expected augmented Fisher information matrix, and

_ 9% 10gp(0] Yary)
00 - 00

is the observed Fisher information matrix. Here we adopt the traditional terms (e.g., Fisher
information) of the EM literature, which primarily focuses on the likelihood computation,
even though we are dealing with the more general posterior computation. In particular,
Fem(«), which is called the matrix fraction of missing information, can be viewed as the
likelihoodanalogueof 5 (v). Indeed, when p(6, Yaue|Yobs, @) isnormal, Fpy (o) = Fp(a)
(e.g., Sahu and Roberts 1999). We propose the EM criterion for choosing o. Namely,
we suggest minimizing I,,,(cv) via a positive semidefinite ordering and thus minimizing
p(Fem(a)). Strictly speaking, we should call this the matrix-rate EM criterion in contrast
to the global-rate EM criterion which directly minimizes p(Fgyp(«)). The latter is more
general since I, () may not exhibit the positive semidefinite ordering (see Section 8), but
is often much more difficult to implement. See Meng (1994) and Meng and Rubin (1994)
for discussion on the relationship between the matrix rate and the global rate.

In general, it is a weaker requirement for the minimizer of p(Fgym(«)) to approximate
that of p(Fp(«)) well than for Frm(«r) to approximate Fp(«) well as functions of «;
empirical evidence is provided by Meng and van Dyk (1999) as well as in this article
(e.g., in Sections 6 and 7 the deterministic approximation method finds the exact optimal
algorithms as defined by Liu and Wu's group theoretic formulation). The essence of this
method is that whenever it is too difficult to compare two stochastic algorithms (e.g., DA)
directly, we compare their deterministic counterparts (e.g., EM) to decide which stochastic
algorithm to use. This does not necessarily lead to the best stochastic algorithm even if we
find the optimal deterministic algorithm, but it often leads to good stochastic algorithms

Iobs =
0=0*
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with reasonable analytical effort. The utility of the EM criterion is that it is much easier to
handle analytically and typically does not require knowing the value of 6*, as demonstrated
in Sections 6-8.

We emphasize that whereas the EM criterion is a useful strategy for finding good
choices of «, it is not always applicable. And, obviously, there are other ways of finding
suitable choices of «, especially when aided by considerations for specific applications.
For example, Higdon (1993, 1998) proposed the method of partial decoupling to combat
the slow mixing of both the direct Gibbs sampler and the Swendsen—Wang algorithm for
Ising-type models with multiple modes. His method introduces a working parameter o =
(a1,...,ak) € [0,1]¥ into (1.2):

f(z,ula) < 7(z l_Il1 (@) H{uy < 12F(x)} (2.6)

He discussed many methods for choosing o so that the resulting algorithm is faster than
either the direct Gibbs sampler (with o = (0, ..., 0)) or the Swendsen—Wang algorithm
(with « = (1,...,1)). In particular, Higdon (1998) demonstrated empirically a dramatic
improvement by setting ovy; ;3 = 1/(1+ |y; — y;|) where {y;, y; } are recorded data from a
pair of adjacent pixelsindexed by k = {i, j }, which are used to formulate 7(z). This choice
is not based on the EM criterion, which in fact is not applicable here because log f(x, u|)
is undefined, but rather it is based on heuristic arguments and empirical evidence including
more rapid jumps between modes. It is conceivable, however, to work directly with AP («/)
to determine optimal or near optimal choices of «, though it is unclear whether such effort
will pay off as the computation needed for finding a (nearly) optimal choice of o may
completely wipe out the savings offered by this choice.

3. MARGINAL AUGMENTATION AND A MARGINALIZATION
STRATEGY

A second method for using the working parameter « is to integrate both sides of (2.1)
with respect to a proper working prior p(«); that is,

/ [ / P(Youg 6, a)p(daﬂ 1(dYag) = p(Yors|6). G.1)
M (Yaug)=Yobs

Meng and van Dyk (1999) referred to this as marginal augmentation because it creates a
new data augmentation scheme by marginalizing out the working parameter «:

p(Yaqu) = /p(YaUgWa a)p(da). (3.2)

Note thatin (3.1) we have implicitlyassumed that # and « are a priori independent. Although
this assumption simplifies certain theoretical results and appears to be adequate for practical
purposes (see Meng and van Dyk 1999 and Liu and Wu 1999), it is not necessary. That is,
(3.1) still holds if p(«) is replaced by p(a9).
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Initially, it may appear that we have accomplished nothing, since (3.1) is symbolically
identical to (1.1) via the notationin (3.2). As discussed by Meng and van Dyk (1999), this
symbolic equivalence is both correct and deceptive. It is correct because p(Yyue|6) in (3.2)
is a legitimate data augmentation scheme (when p(«) is proper) and thus should satisfy
the general definition given by (1.1). It is deceptive because in the context of (3.1) and
(3.2), the dependency of the conditional augmentation scheme on the working parameter is
suppressed in (1.1).

The following identity given by Meng and van Dyk (1999) and Liu and Wu (1999) is a
key to understanding the marginal augmentation approach. Under the joint distribution of
(0, v, Yayg) given by

p(eaaaKiug) :p(nugleaa)p(e)p(a)a (33)
we have

E [Var(h(9)|YaUg)|Yob5] =E {E[Var(h(9)|yauga a)|Yobsa a] |Yobs}
+E {Var[E(h(e)D/auga O‘)Dfaug] D/obs} y (3.4)

for any square-integrable h(6). Consequently, if E[var(h(6)|Yaue, )| Yops, ] does not de-
pend on «, the expected conditional variance of h(6) under the marginal augmentation
scheme (i.e., E[var(h(6)[Yau,)|Yobs)) cannot be smaller than the expected conditional vari-
ance under any conditional augmentation scheme (i.e., E[var(h(0)|Yag, )| Yops, ). It fol-
lows then from (2.2) that the rate of convergence of the DA algorithm under marginal aug-
mentationcannotexceed its rate under the conditionalaugmentationscheme. Note that when
E[var(h(0)|Yaug, @)|Yops, @] does not depend on «, all conditional augmentation schemes
are equivalentin terms of the rate of convergence of the resulting DA algorithms (see (2.2)).
We emphasize that when E[var(h(60)|Yaug, @) |Yobs, @] does depend on ¢, maximizing this
quantity can be beneficial, and thus in general the marginal augmentation approach does
not dominate the conditional augmentation approach (see Section 5 of this article and Liu
and Wu 1999).

Meng and van Dyk (1999) proved that, starting from any augmentation scheme of the
form ﬁug = {Yaps, Yimis }» the following strategy ensures that E[var(h(0)|Yaug, ) |Yobs, ]
is free of a.

A Marginalization Strategy

Step 1: For « in a selected set A, construct a one-to-one mapping, D,,, on the Yinis space
and then define Yyu, = {Yops, Da(fmis)}. The set A should include some o such
that the corresponding D,,, is an identity mapping. The distribution of Y, induced
by the distribution of ijs and D,, gives aclass of conditionalaugmentationschemes
indexed by a.

Step 2: Choose a proper prior distribution p(«) (independent of 6) to define a marginal
augmentation scheme as in (3.2).

Promising choices of D,, include rescaling (e.g., Da(Ymis) = aYpis), recentering (e.g.,

D, (Vmis) = o+ Ypmis), and more generally the affine transformation, Da(ijS) = ay YVomis +
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v, as discussed in the rejoinder of Meng and van Dyk (1997) and illustrated in Sections
6-8.

In practice, the integration in (3.2) is avoided by first drawing « from the prior distri-
bution p(c) and then drawing Yy, from p(Yyye|6, o). When using marginal augmentation,
there are (at least) three ways to implement a Gibbs sampler, corresponding to the three
schemes of Liu, Wong, and Kong (1994). The three schemes iteratively sample from the
following distributions

Scheme 1:  p(Yayu|0, Yobs) and p(6]Yaye)
(inducing a Markov chain for 6);

Scheme 2:  p(Yaugl0, @, Yobs) and p(6, | Yayg)
(inducing a Markov chain for (6, «));

Scheme 3: p(Kiug|97 Q, }/obs), p(9|01, Kiug)’ and p(ahlauga 9)
(inducing a Markov chain for (6, «)).

As discussed by Meng and van Dyk (1999), Scheme 1 is preferable to Scheme 2 when using
aproper working prior, but Scheme 2 is useful when using improper priors for « (see Section
4). Scheme 3, which no longer is a DA algorithm but rather is a three-step Gibbs sampler,
typicallyhas a slower rate of convergence than either Scheme 1 or Scheme 2. In fact, Scheme
3 can completely wipe out the benefit of marginal augmentation; see Section 9.1. But this
scheme can be useful in some applications as a trade-off between easy implementation and
a fast mixing rate, when it is easier to draw from p(c|Yayg, 0) and p(6|Yayg, ) than from
p(0, a|Yaug) or p(]Yaye ). More generally, for simpler implementation, any of Yy, 0, and o
can be further split into their respective subcomponents to be sampled via Gibbs sampling
steps or Metropolis—Hastings steps.

4. MARGINAL AUGMENTATION WITH AN IMPROPER PRIOR

Because our goal is to increase the expected conditional variance of h(8) (see (2.2)),
one may expect that with certain choices of D, the maximum of this variance is achieved
when the prior density p(«) becomes very diffuse, or even improper. An example was
given by Meng and van Dyk (1999), and further examples appear in Sections 6—-8. When
using an improper prior p(«), however, any induced Markov chain involving « cannot be
positive recurrent because p(a|Yops) is the same as p(«) and thus it is improper. This is not
necessarily a problem, however, since our interest is in the marginal posterior distribution
p(0]Yobs), not the improper joint posterior distribution p(6, | Yops)-

Currently, there are two types of theoretical results that guide the choices of improper
working prior. The more general type of results involves a limiting argument obtained
independentlyby Meng and van Dyk (1999) and Liu and Wu (1999). Briey, if an improper
prior p(«) results in a transition kernel for ¢ that is the limit of a sequence of transition
kernels each resulting from a proper prior, then the stationary distribution of the subchain
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{6t > 0} is our desired posterior p(6|Yqps). Often this limiting condition can be verified
by explicitly deriving the stochastic mapping under Scheme 1, 8¢+1) = M, (), where
w indexes a class of proper working priors, {p(ajw), w € Q}, and then showing that
the stochastic mapping under Scheme 2 using an improper working prior is the limit of
Mw(ﬁ(t)) as, say, w — oo. This is the approach taken by Meng and van Dyk (1999) and
Liu and Wu (1999), and is further applied in Sections 6—7. When it is not convenient to
explicitly express M,,, as in the application in Section 8, the following lemma offers an
alternative method of establishing the limiting condition [i.e., the two conditions of the
lemma are sufficient for the conditions of Lemma 1 of Liu and Wu (1999) and of Theorem
2 of Meng and van Dyk (1999)].

Lemma 1. Consider implementing Scheme 2 under the Marginalization Strategy
with an improper working prior, po(c). Let p(0, a|Yye) be the corresponding (proper)
Jjoint posterior of (6, ) given the augmented data, Yy,g = D (Ydué) = {Yobs, O((leb)}
Suppose

1. there exists a sequence of proper working priors indexed by w, p(a|w), and an wy

such that the corresponding p(0, | Yyue, w) converges to py(0, | Yyue) as w — wo;
and

2. po(0|Dal d%)) is invariant to o.

Then the subchain {6Y) t > 0} induced by Scheme 2 under po(a) is Markovian and its
transition kernel is the limit, as w — wy, of the transition kernel for 0 from Scheme 1 with
the working prior p(a|w).

Proof:  Atthe (¢t + 1)st iteration, the transition kernel from Scheme 1 under a proper
prior p(ajw), pM (D100 W), is given by the following two steps:

1.1 draw ngijl) from p( dUI2>|9 , Yous) and oY from p(alw); and

1.2 draw tD from p(9|Yaug = DQL(dt+1) (Yagg 1))’ w).
Similarly, for Scheme 2 under py (), the transition kernel p() (941 oD |9(1) (1)) is
given by:

2.1 draw ng;l) from p( dUI2>|9 , Yous); and

2.2 draw (04+D) (1) from p0(9, o|Yyue = Dy (Vals™).
Under Condition I and by the Fatou Lemma, po (0| Yaue) = lim,, .., p(0]Y,
given the same value of Y,,,,
that of Step 1.2 when w — wy. However, because of Condition 2, the transition kernel
for 0+1) in Step 2.2 is unchanged if we replace a® with a{!*" from Step 1.1 for any
w. Consequently p@ (41101 o1 =1im,,_,,, p(V(*+D]0*) | w), and hence we have
both conclusions. O

The simplicity of applying Lemma 1 is that Condition 1 is typically automatic when
we obtain the improper working prior as the limit of a sequence of proper working priors,
as is the case in all of the applicationsin this article, and that Condition 2 deals only with
the limiting case. It is also clear that Scheme 2 differs from Scheme 1 when using the same
proper prior p(ajw), since it sets ot = o4O instead of drawing ol from p(alw).
Note also that in practice it is often easier to implement Step 1.2 in the manner of Step 2.2
and then discard a(**t1),

The second class of theoretical results justifying the use of improper working priors are
due to Liu and Wu (1999) and involve the use of an invariant measure (i.e., Haar measure)

ug> ). Therefore
the transition kernel under Step 2.2 for (1) is the limit of
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on {a~ !, a € A}, where A is a unimodular group (Nachbin 1965). Here o~ ! is defined
through D,-1 = D !; note that Liu and Wu's (1999) “data transformation” is defined
through Yaug =1, (Yaug) and thus their ¢, is our D;l. The beauty of the group formulation
of Liu and Wu (1999) is that it not only guarantees the validity of the choice but also a
type of optimality—within a single data augmentation scheme no proper working prior can
produce a faster rate of convergence than the Haar measure. A restriction is that this result
does not cover applicationslike the one givenin Section 8 because the affine transformation
does not form a unimodular group. More recent work by Liu and Sabatti (2000) has proved
the validity, but not the optimality, of using right Haar measure of « [corresponding to the
left Haar measure in Liu and Wu's (1999) notation]. Establishing the optimality of the right
Haar measure remains an open problem, in particular when compared to other improper
priors (see the examples in Sections 6—8). Furthermore, no general theoretical results that
compare the performance of different data augmentation schemes are currently available
(see Section 9).

5. COMPARING AND COMBINING CONDITIONAL AND
MARGINAL AUGMENTATION

The previous discussion on the use of improper prior distributions for o hinted that
the marginal augmentation approach is also conditional in the sense that it conditions on
a particular choice of p(c) (or more generally, p(a|f)). Thus, mathematically speaking,
for a given working parameter «, we can consider optimizing over the choice of p(«).
However, optimizing over all possible priors is not always practical nor desirable in real
applications—recall that our goal is to find algorithms that are both easy to implement
and fast to converge. A more fruitful approach, in general, is to optimize over a class of
conveniently parameterized prior distributions, say, p(ajw) for w € Q. That is, we move
the conditioning to a higher level in the augmented-data model when we condition on the
optimal value of w rather than the optimal value of «. In other words, we can extend the
Marginalization Strategy to

A Combined Strategy:

Step 1: Same as Step 1 of the Marginalization Strategy (p. 8).

Step 2: Same as Step 2 of the Marginalization Strategy except that p(«) is now p(a|w),
w € Q. A convenient and useful choice of p(ajw) is the (conditional) conjugate
prior for the augmented model p(Yo,|6, ).

Step 3: Use a conditional augmentation criterion to select a desirable value of w € €2, by
treating

(Vg6 0) = / P(Yaugl6, 0)p(dafw) 5.1)

as the class of conditional augmentation schemes.
Although any sensible criterion can be used in Step 3, in practice it is often convenient
to use the EM criterion. Further simplification is needed, however, when implementing
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the EM criterion at the level-two conditional augmentation (i.e., Step 3) in order to avoid
the integration in (5.1). We found the following normal approximation quite useful in our
applications (see Sections 6—8).

Typically, since we start with p(Yaug|9), a standard data augmentation scheme, it is nat-
ural to consider the reductionin the augmented Fisher information from the Marginalization
Strategy compared to that resulting from p(Yaug|9). The augmented information from the
original augmentation is given by (2.5) with o = « (recall that Step 1 requires that Yaug
correspond to the conditional augmentation scheme when o« = o) and the augmented in-
formation resulting from the augmentation scheme given by (5.1) is defined the same way
but with p(Ya,|6, ) replaced by p(Yaue|6, w). (That is, the level-one working parameter «
is replaced by the level-two working parameter w, which indicates the change of augmen-
tation schemes as well.) To distinguish between these two different levels of conditioning
more explicitly, we use Lgl}g(a) for the level-one augmented information and quzg (w) for
level-two augmented information. We also denote by

ASH(w) = I8 (ag) — I(w) (5.2)

the absolute reduction achieved by (5.1). Clearly, minimizing Lsuzg (w) as suggested by the

EM criterion for the level-two working parameter is equivalent to maximizing Ag\i(w)
Likewise, we have:

Criterion 5.1.  The EM criterion for selecting «, the level-one working parameter
(exactly as described in Section 2), is equivalent to maximizing

A (@) = Ly (o) — I (). (5.3)

We suggest a normal approximation to compute A](ﬁ\?[(w) and thus to avoid the inte-
gration in (5.1). Under the assumption that p(6, &Yy, w) is normal, it is easy to verify
that

A (®) = Ta (@) T2 (@) Tga (@), (5:4)
where Zy,(w) and 7, (w) are submatricies of the augmented Fisher information for the
joint parameter 0 = {0, o} given by

5 I I
_ 0 logp(0]Yaus, ) ole) Toele)
06 - 90

Lug(w)=E

Yobs, 0, w} (5.5)

G=6~ If;ra (W) Tya(w)

using the standard submatrix notation, where §* = {#*, &(w)} with &(w) being the mode
of p(alw).

Criterion5.2  We select w by maximizing the right side of (5.4) even when the normal
assumption is not true (which is typically the case in practice).

In other words, although we arrived at (5.4) under a normal assumption, in practice we
will treat maximizing (5.4) as a criterion in its own right; the effectiveness of this criterion
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Figure 1. Marginalizing out a Conditional Augmentation Working Parameter. Shown is the (approximate) lag-one
autocorrelationfor o* as a function of the width of the uniform prior for the working parameter o in model (5.6).
Note that the autocorrelation increases with w, the level-two working parameter, and thus the optimal value of w
is zero.

is demonstrated in Sections 6—8. Note that we do not need to compute Zgy(w) in order to
use this criterion, which can be a real boon in practice (e.g., Section 6).

Similar to the situation discussed in Section 2 (p. 6), under the further assumption that

P(Yaug, 0, a|Yops, w) is normal, Ag\i(w) in (5.2) is the same as
{E[Var(8] g, 0) [Yobs, o]} " = {E[var(6|Yaug, )| Yavs, ]} ™'
Consequently,in general, we can view maximizing Agg{ (w) overw as an attempt to approxi-
mately maximize E[var(6|Yaug, w)|Yobs, w] and thus approximately minimize the maximum

lag-one autocorrelation, as discussed in Section 2.

Logically, one may wonder about putting a hyper-working prior on the hyper-parameter
w, instead of optimizing over w—indeed, conditional augmentation is a special case of
marginal augmentation with a point-mass prior. Although it is clear that one has to stop at
some point, another reason for not marginalizing at level two (i.e., averaging over w) is that
itis not guaranteed to be beneficial since E[var(h(6)|Yaug, w)|Yobs, w] will generally depend
on w. This is in contrast to level-one, where E[var(h(6)|Yaug, )| Yobs, @] is invariant to «
when we follow the marginalizationstrategy. The importance of this invariance is seen from
(3.4), where max,, E[var(h(6)|Yaue, )|Yobs, @] can be larger than E[var(h(6)|Yaue)|Yobs)
when the invariancefails, in which case conditionalaugmentation may outperform marginal
augmentation.

An illustration of this possibility is displayed in Figure 1 using the common ¢ model.
Algorithms using data augmentation to fit ¢ models typically use the well known decom-
position, t = u + 0 Z/\/q, where Z ~ N(0, 1) and ¢ ~ x2 /v with Z and ¢ independent.
The data augmentation scheme employed to produce Figure 1, with v = 1, introduces a
working parameter into this decomposition,

2(1—a) —2a, 2
yz-lqu(ﬂ,U—) and g~ Z—X2 for i=1,...,100. (5.6)

i 14

This working parameter was introduced by Meng and van Dyk (1997) to implement the EM
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algorithm for the ¢ model, and they showed that « = 1/(1 + v) is optimal and leads to a
faster EM implementation than the standard implementation which corresponds to o = 0.

Since no simple conjugate prior exists for o (with respect to the augmented-data log-
likelihood), we used a ~ Uniform ((1 —w)/2, (1 + w)/2) . Here w is the length of the
interval and o = 1/2 is chosen as the prior mean since it satisfies the EM criterion (when
v = 1) for conditional augmentation and (approximately) minimizes the geometric rate
of the corresponding DA algorithm (see Meng and van Dyk 1999). Figure 1, which was
obtained via simulation, indicates that the optimal value of w is zero, and thus there is no
gain in averaging over «, at least within the class of uniform priors we considered.

The foregoing comparisons assume a fixed augmentation scheme with the same work-
ing parameter. A more difficult comparison is between different augmented-data schemes
with working parameters of different forms. For example, in the ¢ model, an alternative
working parameter formulation of the augmented-datamodel is (Liu, Rubin, and Wu 1998)

2 2
Yilgs ~ N </L, ag > and ¢q; ~ X for = I,...,n. (5.7)
; v

K2

Empirical comparisons suggest that conditionalaugmentationwith « = 1 /(v 4 1) in model
(5.6) has the same rate of convergence as the marginal augmentation scheme from (5.7)
using an improper prior on «, p(a) x 1/« (see Meng and van Dyk 1999 for details). Al-
though currently we do not have a theoretical proof (or disproof) of this equivalence, the A
quantities defined previously (i.e., (5.2) and (5.3)) are useful, because they allow compar-
isons between the improvements resulting from different working parameter formulations
that share a common special case. For example, the common augmentation scheme for
the ¢ model (Rubin 1983) corresponds to &« = 0 in (5.6) and o = 1 in (5.7). In Section
9.1, we show that for slice sampling the very successful marginalization strategy via affine
transformations used in the next three sections turns out to be useless, whereas the condi-
tional augmentation approach using the power transformation givenin (2.6) [e.g., Higdon's
(1998) partial decoupling method] is quite fruitful. We also emphasize that the A quantities
can be very useful for providing insight into when (e.g., as a function of the fitted model
parameters) the improvement over the standard algorithms is likely to be substantial, as
demonstrated in Section 7.

6. APPLICATION: THE MULTIVARIATE ¢ DISTRIBUTION

6.1 DATA AUGMENTATION AND ALGORITHMS

As our first example, we consider the multivariate version of the ¢ model introduced in
Section 5. As a generalization of the marginal augmentation scheme (5.7) we write

Jasiz
\/a )

and would like to draw from the posterior p(0|Yyps) where 6 = (i, 2), Yops = {Vi,71 =
1,...,n}, Yae = {(Ys,q),7 = 1,...,n}, and the degrees of freedom, v, is assumed

Y =pu+ Z ~Ng(0,1), q~ax’/v, Z lg, 6.1)
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known. Since g; = aq;, where ¢; corresponds to ¢; when o = 1, Step 1 of the Marginaliza-
tion Strategy (p. 8) is accomplished. Consequently, we expect marginal augmentation with
a working prior independentof 6 to improve the rate of convergence over the corresponding
standard augmentation scheme, Yo = {(¥3,Gi),i = 1,...,n}.

As suggested by the Combined Strategy (p. 11), we choose p(«) to be the conditional
conjugate prior for p(Yyye|6, o), namely, ﬁX;Z, where 5 > 0,y > 0 are level-two working
parameters and ng is an inverse chi square random variable with + degrees of freedom.
Under this proper prior for « and the standard improper prior p(u, ) o< |S|~(@+D/2 the
joint posterior density of 6, v, and ¢ = {qy, ..., qn} is given by

n
_ratn(dtu)42 div_ g _ntd+l
P00 q|Yops, 7, B) a7 g0 BT

=1

L alYi—p) TSNy -
Xexp{_Zz_lq[( 1) ~ ( N)+V]+ﬁ}. 62)
It follows that
12 Ve o ~ Nita 6.3)
qi |y 245 X obs, (3/1 _ ﬂ)TZ_l(m _ﬂ) +I/’ .
independently for: = 1,...,n,
~ a ~ 27-11 qz-YZ-
ﬂ‘zanu'aa ~ Nd <NJ7 n—> ’ where n= 171—7 (64)
£ Zizl qi Zizl qi

n _l-l
57 Yaug, @ ~ aWishart,, {<Z a(Yi = )(Y; — p)T> : (6.5)
A= J
and
S ©6)

2
X7+nu

where Wisharty, (A) denotes the Wishart distribution with scale matrix A and k degrees of
freedom.

To implement Criterion 5.2 for selecting w = {+, 3}, we first note that the terms of
log p(0, @|Yaye, w) involving {6, o, w} are linear in the missing data ¢ = (g1, ..., qn); see

(6.2). Thus, I (w) of (5.5) can be computed by first calculating second derivatives of
log p(0, @|Yaye, w) as a function of {6, a}, replacing ¢; with

a(d+v)
v+ (Y =) TSN (Y — )

q; (0) = E(q:|Yi, 0, o) = aE(Gi|Y;, 0) = (6.7)
and evaluating the resulting expression at § = 6*, the observed-data posterior mode of 6,
and at « = & = (3/(y + 2), the mode of the prior p(a|w). (This is actually the general
scenario when the augmented-data model is from an exponential family, and q corresponds
to appropriate augmented-datasufficient statistics.) In fact, we do not even need to compute
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any derivatives with respect to 8, nor do we need the value of #*. This is because, from
(6.2),

810gp(9504|}/augaw) o _’Y + n(d+ I/) +2

oo o 2c0
S G[(Yi=p) ST (YVi—p) + v+ 8
202 '

+

(6.8)

This implies, together with (6.7), that the Zy,, (w) of (5.5) must be of the form /&, where
V is a nonzero vector of length d(d + 3)/2 that is free of w, and

_ytn(d+v)+2
202
S @ (OOYe =) TS TN Ye — ) v+ 8
3
o

Toalw) =

+

vy+n(d+v)+2
202 '

Consequently, Ag\z{(w) of (5.4)is2VV T [y +n(d+v)+2]~!, which achieves its maximum
asy | 0; note that Ag\z{(w) is free of 3, and thus Criterion 5.2 suggests that the optimal rate
doesnotdependon 3. Thisresultcovers the d = 1 case treated in Meng and van Dyk (1999),
where the optimal algorithm was found by numerically inspecting an autocorrelation as a
function of ~.

When v | 0, the prior distribution for a becomes improper: p(aly = 0,3)
a”! exp(—%), B > 0. As in Meng and van Dyk (1999), to prove that the choice {y =
0,8 = 0} yields a valid algorithm, we first provide the explicit stochastic mappings un-
der Scheme 1, (u®,2®) — (ut+1) 2E+D) and under Scheme 2, (p(V), M o)) —
(pttD) B+ o (+D) The mappings are given by the following steps:

Step 1: Make n independent draws of x7,,, and denote them by {X§+U,’i’i =1,...,n}.
And independently, draw x7,,,, x3. Z ~ Ng(0,1), and W ~ Wishart,,—(I). For
Scheme 1, also independently draw another ng’ denoted by )Z?y

Step 2: Set

2
~ Xd+l/,i
q; =

for i=1

v+ (Vi = )T O]1(Y; = u®) et

)

Y ; A A @Y
B = Chol (Z Gi(V; = pHD)(v; — W”)T) with () = ZZ——Q
i=1 =13

and

N(t+l) :h(t+1) + —Chol (BW_IBT) Z,

1
V Z?:] qi

where Chol( A) represents the lower triangular matrix in the Choleskidecomposition
of A (one can also use any other appropriate decomposition).
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Step 3: For Scheme 1, compute

2 2
_l’_
1) %BW_IBT.
Xﬂy + VZi:] q’b

For Scheme 2, compute

n ~ 2 2
NCUNNCALCD VST SN T RS
Xi, + X3 Bla®) + v G

Since ng becomes a point mass at zero when v — 0, itis clear from Step 3 that the transition
kernel under Scheme 2 with the choice 3 = = 0 is the limit of the corresponding kernels
under Scheme 1 with v — 0 (and with any fixed 3 > 0), and the limiting mapping is given

by

2
ntr) = _Xow  py-igT
V2ii=1%
Since the mapping in Step 2 for y is invariant to the choice of either 3 or 7y, we have verified
the limiting condition of Theorem 2 of Meng and van Dyk (1999) and thus we know that
the subchain {x®, 2" ¢ > 1} induced by Scheme 2 with the choice f = v = 0 will
converge in distribution to the desired posterior distribution.

The validity and optimality of the choice v = (3 = 0 is also confirmed by Liu and
Wu's (1999) group-theoretic results because p(a) < o~ ! is the Haar measure for the scale
group. This agreement illustrates the effectiveness of Criterion 5.2. It is also interesting to
note that Criterion 5.2 suggests more than the group theoretic optimality results of Liu and
Wu (1999), which do not cover the class of priors p(a|3) < a~!exp(—3/2a) with 3 > 0
because they are neither proper nor invariant. In fact, under this class of priors, the subchain
{#™ ¢ > 0} is not even Markovian because X(**t1) depends on a(*), as indicated in Step
3. Nevertheless, {6(*), ¢ > 0} has the correct limiting distribution and has the same optimal
convergence rate as the chain generated with the Haar measure (see Meng and van Dyk
1999).

6.2 COMPUTATIONAL PERFORMANCE

The standard and the optimal (marginal augmentation) algorithms (i.e., with g = v =
0) were applied to a simulated dataset with n = 100 observations from a ten dimensional £
distribution, t19(0, I19, v = 1). With each algorithm three chains were run, each with one of
three starting values: (p(©), £©)) = (0, I;9), (10, 1001,¢), and (—10, I;y/1000). Figure 2
compares, for all 65 model parameters, the lag one autocorrelation, lag two autocorrelation,
and the minimum £ to obtain a lag-k autocorrelation less than .05. The computations are
based on 2,000 draws (from one chain) after discarding the first 1,000 draws for both
algorithms. The symbols in Figure 2 distinguish between mean, standard deviation, and
correlation parameters, and it is evident that the optimal algorithm substantially reduces
the autocorrelations for the standard deviation parameters while maintaining them for the
other two groups of parameters. This effect is not too surprising given that the working
parameter is a rescaling parameter, though it is not clear how general this phenomenon
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Figure2. Comparing the Improvement for the 65 Model Parameters in the Multivariatet Example. The three plots
compare the lag one autocorrelation, lag two autocorrelation, and minimum k such that the lag-k autocorrelation
is less than .05 for each of the 65 model parameters. The symbols “+ ', “x', and “e' represent mean, standard
deviation, and correlation parameters, respectively. In the last plot, the symbols are plotted with Unif (—.5, .5)
Jjittering. The figure emphasizes the reduction in autocorrelation for the ten standard deviation parameters.

is; namely, that rescaling working parameters have a direct effect only on the scale model
parameters. However, this does not imply that our optimal algorithm only improves the
convergence of the standard deviation (or variance) parameters, because these three groups
of parameters are not a posteriori independent, and the overall algorithm converges only if
each component does so.

To illustrate the improvement at a more detailed level, Figure 3 shows several graphical
summaries of the draws of the first diagonal element of >. The columns in the figure corre-
spond to the two algorithms and the rows, from the top to bottom, contain an autocorrelation
plot, a time series plot, a lag-one scatterplot, and Gelman and Rubin's (1992) \/E statistic
as a function of iteration (computed on the log of the first diagonal element of XJ). The \/E
statistic is a measure of the between-chain variance relative to the within-chain variance and
values close to one indicate acceptable mixing (when the starting values are over dispersed
relative to the target distribution). Judging from the various plots, the optimal algorithm
is a substantial improvement over the standard algorithm. In particular, we see that \/E
stabilizes near one and the autocorrelation function dies out much more rapidly.

The convergence results described here and in the remaining examples are in terms of
the number of iterations required for convergence [although the global rate is sometimes a
poor predictor of the actual number of iterations required for convergence; see van Dyk and
Meng (1997)]. For a fair comparison, we need to consider the computationalburdenrequired
by each iteration and it is clear that the marginal DA algorithm is somewhat more costly per
iterationsimply because it samples more variables at each iteration. For the current problem,
the additional cost is essentially zero (e.g., an additional x? variable needed by (6.6)). In
general, with sensible choices of the working parameter, the additional computational load
required by marginal augmentation algorithms is a very small premium for the substantial
improvement in reliability and efficiency of the resulting chains. Such improvements, as
seen in Figures 2-3, are even more pronounced in the next two applications.
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Figure 3. Convergence of Posterior Sampling Algorithms for Fitting a Multivariate t Model. The columns of
the figure correspond to the standard algorithm and the optimal algorithm, respectively. The rows of the figure

illustrate the autocorrelation plot, a time-series plot, a lag-one scatterplot, and Gelman and Rubin's (1992) \/E
statistic as a function of iteration, all computed using the first diagonal element of 2. (A log transformation was

used to compute \/RT .) The dashed lines in the final row correspond to the convergence value of 1 and a threshold
of 1.2. Note that the autocorrelation dies out and the chains mix more quickly with the improved algorithm.
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7. APPLICATION: PROBIT REGRESSION

7.1 DATA AUGMENTATION AND ALGORITHMS

As a second application, we consider a probit regression model that we formalize
by assuming we observe n independent Bernoulli random variables, Y; ~ Ber(®(x, 3)),
where ®(-) is the standard normal cumulative distribution function, z; a p x 1 vector of
observed covariates, and 3 a p X 1 parameter. Here we code successes of the Bernoulli
random variable as 1 and failures as —1. We assume the standard non-informative prior
p(B) o 1 and denote the common data augmentation scheme as ﬁug = {(Y;, $:),7 =
1,...,n}, where ¢; ~ N(sciTﬁ, 1) is a latent variable of which we only observe its sign
Y; (see, e.g., Albert 1992; Albert and Chib 1993; McCulloch and Rossi 1994; and Meng
and Schilling 1996). The complete conditional distributions for the corresponding Gibbs
sampler are given by

BlYae ~ N(B,(XTX)7") with §=(X"X)"'X ",
where X is an n X p matrix with ith row equal to =,/ and ¢ = (¢1,...,¢,)", and by
¢Z|57}/’L in/(i?p TN(SU;rﬁ,l,K), for izla"'anv

where TN (1, 0%, Y;) specifies a normal distribution with mean y and variance o2 truncated
to be positive if Y; = 1 and negative if Y; = —1. This algorithm was studied in detail in
Albert and Chib (1993), and we will label it Albert and Chib's algorithm in our comparison,
as suggested by reviewers.

Liu, Rubin, and Wu (1998) identified the variance in the prior (and posterior) dis-
tribution for ¢; as a candidate working parameter in this model. To formalize this, we
define a family of data augmentation schemes to be Yy = {(V;,&),%4 = 1,...,n}, where
E=(&,...,6)" =Dy(¢) = (0¢1,...,06,) . Aclass of conditional conjugate priors
for o under the augmented-datamodel is 0% ~ 153/ XLZ,O’ where {1y, s3} are the level-two
working parameters to be determined. The resulting complete conditional distributions are
given by

Blo?, Vg ~ N(ﬁ, <XTX)“> with (= (XTX)"'x7¢, (7.1)
ag
_ 2 2 1 n n
B il ) L L LS e—alhr a2
Xn+u L i
and
&18,0%Y; " IN(z] (08),0,Y;), for i=1,...,n. (1.3)

Criterion 5.2 suggests that the optimal algorithm is obtained when we set vy = 0, because
Lyg(w) of (5.5) with § = 8, a = 02, and w = (v, 3) is

~ XTX ;Oa#XTXﬁ*
Iauy(w) — . sy0 :
) 22 (XTXA)T D2 40+ w) + (X5) X
o (10}
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where 3* is the observed-data posterior mode of 3. Thus,

XTXﬁ*(XTXﬁ*)T

A () = Zoa(Taa@)T5u(w) = 55 s S T

(7.4)

which is free of s3 and maximized on the boundary of the parameter space as 1y — 0. This
leads to an improper prior given by p(c?) o< o2.

As with the ¢ application in Section 6, to verify this improper working prior will yield
a properly converging subchain for 3, we explicitly express the stochastic mappings for
Scheme 1, () — B+D and Scheme 2, ([02]®), 31)) — ([¢?]¢+D), 34D under the
working prior 0% ~ I/()/Xlz,O (i.e., we have set s3 = 1). The mappings are given by the
following steps:

Step 1: Draw independently ¢(t+1) ~ TN(z; 3®,1,Y;) and denote ¢ *+1) = (¢(t+1)
o ffﬂ)) ; also draw independently x2, X2 . and Z ~Np(0,1); let [62]¢+D =
VOX;OZ.
Step 2: For Scheme 1, set
v + [&2](t+l)R(t+l)

(& +x3)

67D = : (1.5)

where R+ — Z?ZI(QSZ(HI) _ x;_FB(t+l))2 with S+ = (XTX)—lXT¢(t+1)_

For Scheme 2, set

Vo + [02](t)R(t+1)

2(t+1) _
o = (7.6)
7 0G + 1)
Step 3: For Scheme 1, set
5+
gty = Py ﬁ“* D 4 Chol[(X T X)7")Z. (1.7)
For Scheme 2, set
B+l = (H )ﬁ““) + Chol[(X " X)) (7.8)
Note that the quantities [¢2]*+!) and [52](*+1) are not part of the Markov chain under

Scheme 1 since Scheme 1 induces a marginal chain for 5. These intermediate quantities are
introduced to facilitate sampling under marginal augmentation.

Noting that when vy — 0, [¢2]¢HD = I/()XUZ becomes a point mass at 1, we see
from (7.5)—(7.8) that the transition kernel under Scheme 2 with 1y = 0 is the limit of the
corresponding kernels under Scheme 1 as vy — 0. This limiting mapping is given by

ﬁ(t+1) _ ﬁ(t+l) 4 ChOl[(XTX) ]Z (79)

R(t+1)
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Table 1. The Latent Membranous Lupus Nephritis Dataset. The table records the number of latent
membranous lupus nephritis cases (the numerator) and the total number of cases (the de-
nominator) for each combination of the values of the two covariates.

IgA

19G3—1gG4 0 5 1 1.5 2
-3.0 M - - - —
-25 003 - - - —
-2.0 o7 — — — on
—-1.5 o6 01 — — —
-1.0 o6 01 01 — 01
-5 04 - — 11 —
.0 03 — o1 11 —
5 34 — 11 11 1N
1.0 im — 11 11 44
1.5 in — — 22 —

where R(T1) and 5t as defined earlier, are stochastically determined by 5(). Conse-
quently, the Markov chain defined by (7.9) will converge properly with the target posterior
p(B|Yobs) as its stationary distribution. Section 7.2 provides empirical evidence of the ad-
vantage of this chain over Albert and Chib's chain. Additional empirical evidence can be
found in Liu and Wu (1999), whose theoretical results again confirm the validity and op-
timality of the algorithm given by (7.9) because p(c?) o o~2 is the Haar measure for the
scale group. Analogous to the finding in Section 6, theoretically more general improper
priors of the form p(o?|s3) o o2 exp(—s3/20?) also produce the optimal algorithm (7.9)
in the limit for any s3 > 0. This can be verified by replacing vy with vs3 as the scale term

in the working prior for 2.

7.2 COMPUTATIONAL PERFORMANCE

To compare empirically Albert and Chib's algorithm and the optimal algorithm (7.9),
we implemented both using a dataset supplied by M. Haas, who was a client of the Sta-
tistical Consulting Program at the University of Chicago. Table 1 displays the data with
two clinical measurements (i.e., covariates), which are used to predict the occurrence of
latent membranous lupus nephritis. The first covariate is the difference between IgG3 and
IgG4, and the second covariate is IgA, where IgG and IgA stand for immunoglobulin G
and immunoglobulin A, two classes of antibody molecules. The dataset consists of mea-
surements on 55 patients of which 18 have been diagnosed with latent membranous lupus.
Haas was interested in regressing the disease indicator on the first covariate alone, as well
as on additional covariates [the original dataset contains additional covariates that are not
used here; see Haas (1994, 1998) for scientific background].

We consider two models, the first with an intercept and the first covariate, and the
second with an intercept and both covariates. Under each model we run both algorithms,
each with three different starting values. Figures 4 and 5 give for each model the au-
tocorrelation plots, time series plots, and lag-one scatterplots of 3; (the coefficient for
the covariate common to both models) from one chain, as well as the \/E statistic for
(1 using all three chains. Looking across the plots, it is clear that the performance of
both algorithms degrades when the second covariate is added. The improvement offered
by the optimal algorithm, however, is particularly striking under the second model. This
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Figure4. Convergence of Posterior Sampling Algorithmsfor Fitting a Probit Regression Model with One Covariate.
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are asin Figure 3 with all summaries computed for 31. The improved chain significantly reduces the autocorrelation
and improves the mixing of [31.
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out o is evident in the reduction in autocorrelation in the draws of 3| and the faster mixing (e.g., as measured by

\/R?). We plot all three of the chains generated with Albert and Chib's algorithm to explain the increase in \/E
after iteration 3,000.
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Figure 6. The Reliability of Albert and Chib's Sampler and the Optimal Marginal Augmentation Sampler. This
plot compares the Monte Carlo generated draws with the posterior (target) distribution. The columns correspond
to the model fit with one and two covariates respectively. The first two rows illustrate the draws from the marginal
augmentation and Albert and Chib's sampler, respectively. (The contours represent the target posterior distribu-
tion.) In the final two rows, the shaded histograms represent the draws from the marginal augmentation sampler,
the solid lines outline the corresponding histograms using the draws from Albert and Chib's sampler, and the
dotted lines are the actual marginal posterior densities. The first two rows illustrate 5,000 draws, the third row the
first 1,000draws, and the final row the next 4,000draws. The benefit of marginal augmentation is most pronounced
in the early draws in the first column and is pronounced throughout the second column.
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is expected from the A quantity givenin (7.4), which indicates that the improvement should
increase with the magnitude of X §*; see also Liu and Wu (1999). In particular, in Figure 5,
the optimal algorithm attains acceptable values of \/E within 600 iterations, whereas Albert
and Chib's algorithm is not close to acceptable values even after 5,000 iterations. To see
more clearly the exceedingly slow convergence of Albert and Chib's algorithm, the second
row of Figure 5 includes all three chains to display the clearly separated trajectories of the
three chains, especially the third chain which wanders off.

As an additional comparison of the algorithms and to compare the Monte Carlo sample
with the target distribution, we computed the marginal posteriot/likelihood counters for
{0, B1} jointly and the posterior of 3; via numerical integration. Figure 6 compares the
Monte Carlo draws generated from both algorithms using chain 1 against the gold standard,
the actual posterior. The improvement offered by the optimal algorithm is now crystal clear,
especially under the second model. (All three chains provide essentially identical results
using the optimal algorithm, but the comparison is even more dramatic under chain 3 be-
cause it remains in the tail longer than we would like with Albert and Chib's algorithm.)
While both algorithms will eventually provide the correct answer, the optimal algorithm
does so much more rapidly. Judging from Figure 6, with 5,000 draws, the optimal algo-
rithm provided essentially correct answers under both models, whereas Albert and Chib's
algorithm provided draws with significantly less variability than the target density under
the second model. Even under the first model, its performance is visibly poorer than the
optimal algorithm. As seen clearly in the second column of Figure 6, because of its high
autocorrelation, chain 1 of Albert and Chib's algorithm has not traveled to the tail area
(roughly corresponding to 3, > 11) during the first 5,000 draws. Incidentally, chain 3 of
Albert and Chib's algorithm was able to travel to the tail area by iteration 3,000, but the
chain did not return during the simulation, again because of high autocorrelation; see the
second row of Figure 5. Neither phenomenon occurred with the optimal algorithm, which
used the same three starting values (and we did not selectively present our results—these
are the only chains we ran on this dataset).

We conclude our comparison by noting that in this real-data problem, the covariates
have strong predictive power, especially when both covariates are used. However, the two
samples do not exhibit quasi-complete separation, and thus the MLEs exist and posterior
distributions are proper (see Speckman, Lee, and Sun 1999).

8. APPLICATION: MIXED-EFFECTS MODELS

8.1 Two0 MARGINAL AUGMENTATION ALGORITHMS

In this section we use the marginal augmentationapproachto derive two new algorithms
for posterior sampling under the popular mixed-effect models (with the standard diffuse
prior), which belong to the class of Gaussian hierarchical models. In the next two sections,
we provide both theoretical evidence (Section 8.2) and empirical evidence (Section 8.3)
to demonstrate that the new algorithms can provide substantial improvement over several
existing algorithms, all of which can be derived from a common conditional augmentation
scheme.
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We consider a mixed-effects model of the following general form
Yi = XiB+ Zi& + Zibi + e, by ~N,(0,T), e; ~N(0,06°1,,), b Le;, (8.1)

fori = 1,...,m, where the observed response y; is n; X 1, X; (n; X p) and Z; (n; X q)
are known covariates (throughout we assume that the Z; are such that 7' is identifiable), b;
(g % 1) is the random effect, 3 (p x 1) and £ (¢ x 1) are fixed effects, and @ = (3, &, 0%, T).
Model (8.1) can be modified to accommodate a more general variance-covariance matrix
known up to a scalar, say 0>Z;, for the e;, by premultiplying by the Choleski factor of Z;.

We can fit model (8.1) in the ML or empirical Bayesian paradigm with a myriad of
EM-type algorithms (e.g., Dempster, Laird, and Rubin 1977; Laird and Ware 1982; Laird,
Lange, and Stram 1987; Liu and Rubin 1994; Meng and van Dyk 1998; van Dyk 2000), all
of which are based on the idea of data augmentation; some of these EM-type algorithms
have been translated (and extended) into Gibbs samplers for full posterior inference (e.g.,
Lange, Carlin, and Gelfand 1992; Gelfand, Sahu, and Carlin 1995). The standard and most
obvious data augmentation is simply to treat the random effect as missing data; that is,
Yaug = { (i, Xi, Zi, b;),i = 1,...,m}. Toimprove on this scheme, we adopt the Combined
Strategy of Section 5 using the following augmentation scheme with working parameter
a=(y,Y):

Kiug:{(yiaX’iaZ’iadi:T_lbi—i_f)/)a izla"'am}a (82)

where v is ¢ X 1 and T is ¢ X ¢. This is a generalization of the augmentation scheme
introduced by Liu, Rubin, and Wu (1998), which fixed v = 0 and assumes y; is a scalar.

We consider two choices of T, which lead to two different algorithms, each with its
own advantages. The first one is a full ¢ X ¢ nonsingular T, and the second is a lower
triangular nonsingular Y. For each choice, suggested by the conditional-conjugacy and
simple implementation, we choose the working prior to be vec(Y) ~ N(vec(l,), wly(r))
and 7| T ~ N(0,w[YY T]), where w is a positive scalar parameter serving as the level-two
working parameter. Here vec(B) isav(B) x 1 vector containing the elements of B arranged
in dictionary order with the row index listed first, but it skips elements above the diagonal if
B is lower triangular. Thus, v(B) = ¢ when By« is a full matrix and v(B) = q(¢+1)/2
when By is lower triangular. Note that the definition of vec(1,) varies accordingly with
the definition of vec(Y).

Under (8.2), (8.1) can be re-expressed as (e; is unchanged)

yi = XiB + Zi€ + Zi(di)vee(Y) + e, di ~Ng(v,T), d;i Le;, (8.3)
where § =& — Yy, T = TIT[Y™! 7T, and

i (Z“(Eldi)T, . ’Ziq(Eqdi)T)mx[q(qH)/z] , if T is lower trangular;
Zi(d;) =
(Znd] if T is a full matrix;

i

T
) Z’quz )ninz )
with (Z“, . ,Zz-q) = Z; and E; a j X ¢ matrix formed by taking the first j rows of
the identity matrix I,, j = 1,..., q. The model prior we use is the standard diffuse prior,
p(3,1og(0),&,T) o< |T|~'/2. Van Dyk (2000) verified that this prior results in a proper
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posterior if the covariates are full rank, n = Z;’;l n; > p+ ¢*, and m > 2qg — 1. [See
Hobert and Casella (1996, 1998) and Sun, Tsutakawa, and He (1997) for related conditions. ]
As in the previous two applications, Criterion 5.2 suggests a diffuse working prior for «,
namely, we let w — 00; see the Appendix for theoretical derivationsas well as verification of
the conditions of Lemma 1 for justifying the resulting algorithms. Note that the algorithms
can also be justified by Liu and Sabatti's (2000) validity result because the optimal prior
p(7, T|w = 00) « |T|~7 found by the Combined Strategy is also the right Haar measure for
the affine-transformation group (i.e., b — Y(b —~)), with Y either a full matrix or a lower
triangular matrix. However, the optimality result of Liu and Wu (1999) is not applicable
here because the affine-transformation group is not a unimodular group (Nachbin 1965, pp.
71-73).

With either choice of T, the resulting algorithm for sampling from the desired posterior
has the following steps, where ¢ indexes iteration and 6= (8, §~, o2, T)

Step 1: Fori = 1,...,m, draw independently
bi ~ N (?Ji(ew), (T(t) —TzT Wi(e(t))ZiT(t))) , (8.4)
where

bi(0) = TZWi(0) (g — XiB — Z:€) and  Wy(0) = [0*Ln, + ZiTZ] ]
(8.5)
Step 2: Given the output from Step 1, draw (6, ) as
Y'(I,-X(X"X)"' XY
[0,2](t+1) ~ ( n = ( ) ) ’ (8.6)
Xn—p—g—v(T)

B/
£ ~N(XTX)TXTY, PRI, @)
vec(T)

T~ ~ Wishart,,—;— {(Z(bz- — 1) (bs _M)T>_ } ’ (8.8)

and
1 -
¥~ Nipy, =T, (8.9)
m
where f1y = >0, bi/m,
Y X\ Zi Zi(b)
y=| : and X=1| @ :
Ym Xon Zm Zn(bm)

Finally, we set £¢+D) = & 4 Yy and T = YTYT,
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Table 2. Some Conditional Data Augmentation Schemes for Fitting Model (8.1). The table indicates
what parameters will be updated using regression (observation level) and the marginal distri-
bution of ¢; (system level). Here L= AU (and thus T= LLT).

Working parameter  Parameters updated or sampled at

« observation level system level
Qreg = (14, 0g, 1) B & L o? -

(0g, 0g, 1) B & A o2 u?

(0g, 14, 1) 8 A o? Al U?
as = (0g, 0g, 0) B¢ of T
Qgse = (0g, 19, 0) B_o? E T

We note that when T is a full matrix, the denominatorof (8.6) requires n > p+¢q(g+1)
to implement the algorithm. This requires n to be larger than is necessary for ensuring the
propriety of the targeted posterior distribution. In contrast, when T is lower triangular,
the degrees-of-freedom requirement of (8.6) is that n not be smaller than the number of
parameters (i.e., p + ¢(q + 3)/2 + 1), which is a necessary condition for the posterior to
be proper, so there is no additional requirement on the data size. However, the advantage
of choosing a full matrix working parameter is the improved stability and efficiency of the
algorithm, as demonstrated in Section 8.3. For the EM algorithm, the advantages of using
full T over lower triangular T are illustrated in van Dyk (2000) and Foulley and van Dyk
(2000).

8.2 CompPARISONS WITH CONDITIONAL AUGMENTATION ALGORITHMS

Several existing and alternative algorithms for posterior sampling under mixed-effect
models can all be derived from the following conditional augmentation scheme indexed by
a working parameter o = (o, ap, a3), where aj, a; € R? and a; € {0,1},

Kiug = {(y’LaX’LaZ’La Ci = Uv(_al)A_OG(bi + Q% g))al = 17 .. '7m}a (810)

T30k

where “*” indicates component-wise multiplication, 7 = AU?A T with A lower triangular
with ones on the diagonaland U = diag{uy, ..., u,},and U(ay) = diag {uf"', ..., ug"}.

It is clear that the standard augmentation, ﬁug corresponds to conditioning on @ =
agd = (0g,04,0) in (8.10), where 0, is the zero vector of length ¢. The “re-centered”
Gibbs sampler presented by Gelfand, Sahu, and Carlin (1995) corresponds to fixing o at
agse = (0g,14,0). Meng and van Dyk (1998) derived an EM-type algorithm which uses
(8.10) with @ = ayeg = (14, 0g, 1), and suggested that such a scheme can be useful for a
Gibbs sampler implementationas well. Here the subscript “reg” stands for “full regression,”
because under this choice of «, all the system level parameters are reparameterized into
regression parameters, as seen in Table 2. Table 2 also lists some other choices of a which
result in complete conditional distributions that are relatively easy to sample from.

In Table 2, the observationlevel (level 1) of the model refers to the sampling distribution
of y; conditional on the unobserved ¢;; that is,

yil0, a,ci ~ N (XiB 4 Zi((14 — aa) * &) + Zi(ci)vec(A¥U(ay)), 0°1,,). (8.11)
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The distribution of ¢; is refereed to as the system level (level 2) of the model, and is given
by
cilf, o ~ N (U(=a)) A" (aa &), U(—a))A""UHA"]TT(—q)). (8.12)

Since for any value of a in Table 2, each of the parameters falls into either the observation or
the system level of the model, drawing from p(6|Yy,, «) is typically straightforward; see the
Appendix for the actual steps with o = g, gy, and e Drawing c; from p(c;i|Yops, 0, @)
fori = 1,...,mis simple for any value of , namely, by first drawing b; accordingto (8.4)-
(8.5), and then adding and premultiplying by the appropriate function of 8 (depending on
«) to obtain ¢;.

The comparisons among the three conditional augmentation algorithms (i.e., with o =
Qsedy Olgse, and aueg) and with the marginal augmentation algorithm of Section 8.1 using T
lower triangular can be summarized as follows. Note that we choose T to be lower triangular
for the theoretical comparisons. The results are even stronger with a full matrix Y since the
larger working parameter necessarily dominates the smaller one in terms of the EM rate of
convergence (Liu, Rubin, and Wu 1998), which is our deterministic approximation criterion
underlying the following comparisons.

Comparison 1: The marginal augmentation algorithm dominates the conditional aug-
mentation algorithm with any of the values of o given in Table 2.

Comparison 2: The conditional augmentation algorithm with o = agq (i.€., the stan-
dard algorithm) is dominated by either the algorithm using o = cvg Or the algorithm using

Q= Qlpeg.

Comparison 3: The conditional augmentation algorithm with o = g is better than
the one with o = e, When the coefficients of determination (as defined in the Appendix,
(A.8)) are large. When the coefficients of determination are small, the algorithm using
Q0 = Queg s better.

The precise conditions and statements for these comparisons are given in Results A.1-
A.3 in the Appendix; empirical demonstrations are given in the next section. These com-
parisons suggest that the marginal augmentation algorithms, especially the one with full
T, should be preferred in general practice, while the standard algorithm should be avoided
whenever possible. The slight disadvantage of the marginal augmentation algorithms of
Section 8.1, especially when ¢ is large, is its requirement of drawing v and Y. This is par-
ticularly a problem when using a full matrix working parameter. Thus, it may occasionally
be more efficient to start with one of the simpler algorithms, perhaps using the conditional
augmentation algorithm with & = g Or (rgec. Based on the initial iterates we can then
determine if the extra programming effort required by the more efficient algorithm is nec-
essary. The results in the Appendix help us to see when the extra effort will be fruitful (e.g.,
when the posterior mode 7 is singular or nearly singular, or when the posterior mode [o2]*
is very small). The simpler algorithms could also be used to debug the more sophisticated
one, since they require a subset of the computations but still sample from p(8|Yops)-
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8.3 CoMPUTATIONAL PERFORMANCE

Our empirical investigation uses one real and two artificial datasets. We begin with a
dataset described by Pierson and Ginther (1987) which consists of the number of ovarian
follicles greater than 10mm in diameter recorded daily for each of 11 mares. For this dataset,
m = 11,n; varies from 25to31,and n = 308. As suggestedby Lindstrom and Bates (1988),
we fit the model

Yij = (&1 + bir) + sin(27z45) (& + bi2) + cos(2mzi5) (€3 + biz) + eij,

where y;; is the jth measurement on the ith mare, z;; records the time of this measure-
ment scaled so that 0 and 1 correspond to ovulation, b; = (b1, bi2, bi3) T ~ N(0,7T) and
ei = (€1, ., eim;) | ~ N(0,0%R;) with the (u,v) element of R; given by e =l For
our purposes, we fit p via a REML estimate and conditioned on this value in the Gibbs
samplers. Figure 7 illustrates time series plots of the first 1,000 draws of &; and log(7};)
(i.e., log(var(b;;|T))) using each of the five samplers being compared; that is, condition
augmentation using g, Qreg, and rgec and marginal augmentation with both a lower tri-
angular and a full matrix working parameter Y. The first column shows the draws of &;
and illustrates the gross autocorrelation in the standard conditional augmentation and full
regression samplers. It is clear that the sampler using v and the marginal augmentation
samplers behave much better than the other two (for this dataset, the coefficients of de-
termination are large). The second column of Figure 7 represents log(7};); although the
behavior is much better for log(7};) than for £ when o = agq, the sampler using Olreg 18
unacceptable for either parameter.

The last two rows of Figure 7 illustrate the low autocorrelationin the draws from the two
marginal augmentationsamplers. To compare these two algorithms more carefully, Figure 8
shows the lag-one autocorrelation of the ten scalar parameters in level 1 variance o> (one
parameter), level 2 variance 1" (six parameters), and level 1 means £ (three parameters),
some with transformations (e.g., log of variance). For comparison, we include conditional
augmentation with o = ayq (open triangles), & = oy, (Open squares), and o = Qg
(open diamonds) along with marginal augmentationwith Y lower triangular (filled squares)
and a full matrix (filled triangles). The marginal augmentation algorithm with a lower
triangular T is dominated by the algorithm with full matrix Y, which results in nearly
“perfect simulation,” as the lag-one autocorrelations of all the parameters are essentially
Zero.

To further investigate the performance of these samplers, two artificial datasets were
generated with 100 observations from the model

yi = (&1 + bir) + 2i(&2 + bi2) + e, (8.13)

where y; is n; X 1, b; = (bi1,b)" ~ N(0,T), e; ~ N(0,0°I,,), and b; and e;
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Figure 7. Time Series Plots of §1 and log(T11) = log(var(b,|T)) for the Mare Dataset. The plots were generated
from the Gibbs samplers using conditional augmentation with cugg, treg, and ogse and marginal augmentation
with w = oo using a lower triangular and a full matrix working parameter (in the rows in this order). As the
theoretical criterion of Result A.1 predicts when o? is relatively small (and thus the coefficients of determination
are large) choosing (avyj , ;) = (1,0) as with cugsc is preferable among the conditional DA algorithms.
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Figure 8. The Overall Improvement of Marginal Augmentation Using a Full Matrix Working Parameter. The plot
shows the lag-one autocorrelation for ten scalar parameters using conditional augmentation (o« = «gq, open
triangles; o = g, open diamonds, and o = oueg, open squares) and marginal augmentation (T a lower
triangular matrix, filled squares and a full matrix, filled triangles). The dramatic overall improvement of marginal
augmentation is evident and results in nearly “perfect simulation” with full matrix Y.

independent, with §; = & = 1, T = I, and the z;'s generated independently from
N(0, 1). The subgroup sizes, n;, varied from three to seven with ) . n; = 100. Because
the coefficients of determination play a key role in comparing the conditional augmentation
samplers, we generated one dataset with o2 = .04 and one dataset with 02 = 36, which
correspond respectively to large and small values of the coefficients of determination.

For the dataset generated with o> = .04, each of the five samplers was run with three
different starting values, the ML estimate and two values far from the ML estimate. Figure 9,
which displays the Gelman-Rubin \/E statistic as a function of the iteration number for the
six model parameters in (8.13) (some with transformations), illustrates the magnitude of
the computational gain resulting from marginal augmentation. The two solid lines, which
correspond to two marginal augmentation samplers and are hardly distinguishable, are
immediately close to one. In contrast, the \/E statistics for £; and &, with the standard
sampler (dotted line) never fall below 10 and thus are out of the range of the two plots in
the first row of Figure 9. It is evident that, in terms of \/E the two marginal augmentation
samplers dominate all three conditional augmentation samplers in this example.

To further demonstrate the extremely slow convergence of the standard algorithm (i.e.,
o = aggq), Figure 10 displays the \/E statistics of & and of log(7";) for an additional
19,000 iterations. The figure also provides the corresponding time-series plots for all three
chains, which identify the slow convergence with chain 3. It is noteworthy that initially
chain 3 appears to have converged for log(7;) at a value far from the posterior mode (see
first 10,000 iterations in chain 3), demonstrating once again the danger of using a single
chain (Gelman and Rubin 1992).

As in Section 7, we again performed (time consuming) numerical integration to eval-
uate some low-dimensional marginal posterior densities. Figure 11 displays the marginal
posterior densities of log(71;) and log((1 + ) /(1 — r)) and the joint posterior contours of
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these two quantities, where r is the (prior) correlation of b; and b,. The histograms and scat-
terplots display the first 5,000 draws of chain 3 for each algorithm. The first 10 draws were
removed to help unify plotting ranges. The standard algorithm completely missed the target
density, as expected from Figure 10; note that the centers of the two target marginal densities
are near zero, as expected, because the true values of log(7}) and log [(1 4+ 7)/(1 — r)] are
zero. The slow mixing in the full regression sampler is also evident. In contrast, Gelfand,

Sahu, and Carlin's (1995) and the marginal augmentation samplers perform exceptionally
well.
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Figure 9. The Gelman-Rubin \/RT Statistic for Five Algorithms for the Mixed-Effects Model. The figure shows

\/RT as a function of the iteration number for each of the six parameters in (8.13) using conditional augmentation
with agy (the dotted line), areg (the long dashed line), and agsc (the short dashed line), and the two marginal
augmentationswithw = o (thetwo nearly indistinguishablesolid lines, which are also virtually indistinguishable

from the unprinted line \/RT = 1). (The data were generated with o> = .04.) Marginalizing out the working

parameter dramatically improves the rate of convergence in terms of \/RT of the samplers. Note that the dotted
line is not visible from the plot for £, and &,—see the first row of Figure 10 for explanation and comparison.
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Figure 10. The Gelman-Rubin \/I? Statistic for the Standard Algorithm for the Mixed-Effects Model. The plots

represent \/ R as a function of iteration number and time series plots of three chains for £, and log(T1,) (again
with 0 =.04 in data generation). Notice the extremely slow convergence of &, in chain 3 and the illusion of
convergence of log(T1) in chain 3 in the first 10,000 iterations. Also note that the disappearance of the dip

around iteration 180 in the \/;plotfor log(T11), which was seen in the corresponding plot in Figure 9 (first
column, second row), was due to the coarser choice of grid used for the current plot.
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Figure 11. Comparing the MCMC Draws with Low Dimensional Marginal Posteriors. The plots compare his-
tograms and scatter plots of 5,000 draws (omitting the first 10 draws) with marginal posteriors obtained by
numerical integration. The slow convergence of the standard and full regression samplers is evident. (The data
was generated with o> = .04.)
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Figure 12. Time Series Plots of €| andlog(T1,) = log(var(b,|T)) for the Dataset Generated with o> = 36. Notice
the very large autocorrelation in log(T11) for the standard and Gelfand, Sahu, and Carlin (1995) samplers. As
the theoretical criterion of Result A.1 predicts when o is relatively large choosing (« 1j» ;) = (0,1)as in ceg
is preferable among the conditional DA algorithms.
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Figure 13. Comparing the MCM C Draws with Low Dimensional Marginal Posteriors. The plotsare as in Figure 11,
butbased on the data generated with o> = 36. The difficulty, which we believe is numerical, with the full regression
sampler and the marginal augmentation sampler with lower triangular working parameter is evident as is the
slow mixing of the standard and Gelfand, Sahu, and Carlin (1995) samplers. The marginal augmentation sampler
with full matrix working parameter, however, performs well even with such an ill-behaved posterior:
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Figure 12 contains plots corresponding to those in Figure 7 for the dataset generated
with 0> = 36. The patterns in Figures 7 and 12 are markedly different. Looking at the
plots representing log(77;) (the second column) it is clear that both Ougec and agq exhibit
high autocorrelation. This is supported by the plots for §; which reveal that oy, performs
relatively poorly when o? is large (i.e., when coefficients of determination are small). In
contrast, e as well as the two marginal augmentation samplers display more acceptable
autocorrelations for both parameters.

Figure 12 also illustrates a curious behavior of the draws of log(77;) from the full
regression sampler and the marginal augmentation sampler with lower triangular Y. In
particular, these samplers travel to very small values of 77; much more often than the other
three samplers. To investigate this behavior, we again computed several low dimensional
marginal posterior densities using numerical integration. The plots in Figure 13 correspond
to those in Figure 11 and illustrate the poor behavior of the two algorithms which travel
too often to very small values of 7. The third column of Figure 13 also illustrates the
interesting “triangularshape” of the posterior, which stretches outin three directionstowards
singularity for 7'; the marginal posterior of r is bimodal with modes at 1 and —1. We suspect
the difficulty with the full regression sampler and the marginal augmentation sampler with
lower triangular T is numerical, as computations with nearly singular matrices are known
to be unstable. This is partially substantiated by the fact that the computer code we used
for the two marginal samplers are very similar, differing only by a change in the degrees of
freedom for o and the set of covariates in the level 1 regression. It appears that by summing
over more terms with the full matrix Y has helped to circumvent the numerical instabilities
associated with the near singularity of 7', though this is speculative.

The “triangular shape” of the posterior appears to have caused the poor mixing of
the standard and Gelfand, Sahu, and Carlin (1995) samplers, even with 5,000 draws. For
example, it is seen that both samplers missed the area close to » = —1, and stayed a bit
too long in the area close to » = 1. This example was chosen to be somewhat extreme
(i.e., the residual variance is much larger than the variances of the random effects) to test
the robustness of our marginal augmentation algorithms. But it is not pathological as such
triangular shape posteriors/likelihoods do occur with real-data modeling, even for normal
one-way random effects analysis [e.g., see Pawitan (2000) for a triangular shape likelihood
contour plot for a dataset on estrogen level from postmenopausal women]. Whereas the
marginal augmentationwith lower triangular Y suffers from an apparent numerical problem,
the one with full T performs exceedingly well for all aspects we have examined for such
an apparently difficult problem.

9. WARNINGS AND FUTURE WORK

9.1 LIMITATIONS

Like any statistical or computational method, including the auxiliary variable methods
(see Liu 1994), there are limitations to the methods we propose. In addition to demon-
strating the nonapplicability of the EM criterion as discussed at the end of Section 2, slice
sampling also provides a good example of the limitations of optimal marginalization via
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affine transformations, a key to the successful strategy underlying all three applications
presented in Sections 6-8. Specifically, consider the simple case of (1.2) with K = 1, that
is, our “standard” augmentation model is

fz,a) xm(z)I{0 < u <I(x)}. .1

To implement the optimal marginalization using an affine transformation we introduce a
scale working parameter «, i.e., u = «u with the Haar measure p(«) a~!. (Since u and
4 need to have the same support (0, c0), location shift is not allowed.) This implies a joint
measure (see (3.3))

fz,u,a) o< w(z) I {u < al(x)}a™2 9.2)

It follows then that in order to implement Scheme 2 of Section 3, at the (¢ + 1)st it-
eration, we need to (I) draw u(**1) from f(ulz(®),a®) and (II) draw (z(*D at+D)
from f(z, alu®™") (and discard (D). Step (I) is trivial since f(u|x, ) is uniform on
(0, al(x)), but if we could implement Step (I), then we would not need slice sampling be-
cause under (9.2), f(z|u(*t1) o 7(z)I(z), our target density. In other words, the optimal
marginalization via scale transformation does provide an “optimal” sampler—it provides
independent draws from our target density, but only if we know how to make such draws
in the first place!

This is a good example of the “artistic” aspect of the search for efficient data augmenta-
tion schemes because it appears impossible to quantify the notion of “implementability”in
general. Therefore, the search for balance between the speed and complexity of the resulting
algorithms is largely a matter of art, at least at present. The need for balance is further high-
lighted by another aspect of this example. If implementabilitysimplicity is the only consid-
eration, then we would adopt Scheme 3 (i.e., the three-step Gibbs sampler) which replaces
Step (I) by (Ila) drawing o**1) from f(a|z®) ut+)) o [{a > D /1(2®)}a~? and
(Ib) drawing Y from f(z|a®t), ut+D) oc w(x)I{l(z) > u*tD /o)), We can
implement this algorithm, but it is (stochastically) identical to the original slice sampler
and thus the working parameter offers no improvement! This can be seen by comparing the
stochastic mapping () — z(**1 for both algorithms. Let X ~(c) represent a random draw
from the truncated density 7 (z)I{l(z) > c}. Notingthatthe o**!) from (Ila) can be written
as oD = aout+) /1(2®)), where g follows the Pareto density, a =21 {c > 1}, the map-
ping under Scheme 3 can be written as z(!T1) = X (u(*+D /o)) = X, (1(z®)/ay).
But this is the same as the mappingunder the originalslice sampler, z (1) = X (1(z®))u),
where g is a uniform variate on (0,1), because «, !'is uniform on (0,1) as well.

9.2 POSSIBILITIES AND OPEN PROBLEMS

The Combined Strategy (p. 11) illustrates how the marginal and conditional augmen-
tation strategies compliment each other and can lead to very efficient algorithms when used
in conjunction. This reects a general principle: many MCMC strategies become more ef-
fective when combined. As an example, model reduction techniques, as defined by Meng
and van Dyk (1997), can lead to algorithms that are easier to implement by replacing one
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draw with several conditional draws (e.g., the Gibbs sampler). In some cases it is possible
to use different data augmentation schemes for different conditional draws, which can lead
to algorithms that converge faster. In the context of EM-type algorithms, this possibility is
demonstrated by the ECME algorithm (Liu and Rubin 1994), the SAGE algorithm (Fessler
and Hero 1994), and more generally the AECM algorithm (Meng and van Dyk 1997). We
expect that the Combined Strategy is also effective for searching for efficient stochastic
versions of these algorithms. In this context, a needed investigation is that into the possi-
bility and the effectiveness of using the more complex formulas of the rate of convergence
of the AECM algorithm (see Meng and van Dyk 1997, Theorem 4) in place of that of the
EM algorithm in implementing the deterministic approximation component of our search
procedures.

Finally, the use of an improper working prior, which leads to a nonpositive recurrent
jointMarkov chain with positiverecurrent subchains, may provide additional motivation for
theoretical investigation of Markov chains with improper invariant distributions, a difficult
area with a number of open problems (e.g., Tierney 1996). It also adds an interesting
component to the recent debate over the use of nonpositive recurrent Markov chains in
the MCMC setting; see, for example, the paper by Casella (1996) and the discussions
by J. Berger and by E. George. The use of marginal augmentation with improper priors
demonstrates that sometimes it is beneficial to purposely construct a nonpositive recurrent
Markov chain on a larger space in order to have fast mixing positive recurrent subchains
that simulate the target densities. In fact, Hobert (in press) showed that these chains have
to be sub-subchains when the chain in the larger space is a two-step Gibbs sampler (e.g., in
Scheme 2 of Section 3, the resulting chain on 6 is a subchain of the chain on (6, «), which
itself is a subchain of the parent Gibbs sampler). This is because the direct subchains (e.g.,
the chain on (6, «)) are necessarily nonpositive recurrent as well. The construction of such
embedded subchainsor sub-subchainsmay well be a matter of art, but we hope the Combined
Strategy proposed in this article can help more people be artistic in the developmentof many
practically important MCMC algorithms that exhibit simplicity, stability, and speed.

APPENDIX: TECHNICAL DETAILS FOR SECTION 8

I. VERIFYING THE LIMITING CONDITION FOR THE ALGORITHMS IN SECTION 8.1

Following the notation and assumptions in Section 8.1, and noting that |g—g| = ||t
we have

logp(éa «, Kiuleobsa W)

& _ﬁ lys — Xif — Z:i€ — Zi(dy)vec( V)| [y; — Xiff — Zi€ — Zi(d;)vec(Y)]
i=1

m

m + 1

n ~
—(1+5)1og02— log |T|

D (di =) T (di =) + h(a), A1)
1=1

01—
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1 1

ho(a) = —=—~" (YYT) "9y — — [vec(Y) — Vec(I)]T [vec(T) — vec(I)] .
2w 2w

Since lim,, 00 11, () = 0, and exp{h,(a)} < 1 for all o, by the Dominated Convergence

Theorem, it is easy to verify Condition I of Lemma 1. Namely, the full conditional distribu-

tion for (6, «) in Step 2 is consistent with the corresponding full conditional derived from

(A.1) givend; = b;,i = 1,...,m and w = oo. To verify Condition 2, we see from (8.3)
that if we replace d; by Ab; + a, then, conditioningon b = {by, ..., by, }, we have

Comparing (A.2) with (8.3), it is clear that (assuming the same random numbers) ﬁg”l) =

C(lt+l)’ [0_2]1()t+1) _ [UZ]SFFI)’ and

Ty =Ted, & =&+ Yaq, (A.3)
where the subscript indicates which missing data (i.e., b or d) are conditioned upon in
performing Step 2. From (8.8)—(8.9), we have

Ty =A""Ty (AT and 4, = A" (v —a). (A.4)
Consequently,
ZSHI) =&+ Yoo =g+ Yaa+ TyAA T (g —a) = C(IHI),
and
T = T, 1Y) = YGAAT Ty (A™)TATY) = 7.

Thus, Condition 2 of Lemma 1 holds, and we can use b instead of d (i.e., taking T = I,
and v = 0) in Step 1.

II. CONDITIONAL AUGMENTATION ALGORITHMS FOR MIXED-EFFECTS MODELS

We now give the details of the Gibbs samplers for sampling from the posterior
P(0, Yaug| Yobs, ) using cvgd, (s, and cueg. After sampling from p(Yaug| Yobs, 0, ) as de-
scribed in Section 8.2, all three algorithms sample from p(6|Yyy,, @), the implementation
of which varies with «.

For o = aygq, we will use the noninformative prior distribution py (3,log(c),£,T)
|T|='/2. Given {¢;,i = 1,...,m}, we draw @ as follows. Using the system level of the
model we draw

=1

m _l-l
T e, Yiug ~ Wishart,,, _, {(Z cw?) J (A.5)
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and using the observation level of the model, we draw

02|a, Kiug Z zﬂ[j - Z Cz) ( Yi — Xzﬂ[} - Zici)a

ﬁ .

and
6|0'2,O[,KiugNNp~ (ﬂ[}a UZB_I) with N“[;:B_IZX'LT(ZJ’L_Z'LC’L)’
=1

where j=p+¢. X; = (X;,Z;).8" =(87.¢"),and B=Y" X' X;.
With o = g, We use the same noninformative prior distribution and draw 6, using
the system level of the model

m

T e, Yaue ~ Wishart,,—q— {(Z(cz — pg)(c; — Ng)T> _1} | (A.6)

=1

and
1 . 1
§|Ta Q, Kiug ~ Nq(ﬂfa ET) with He = E Z Ci.

Using the observation level of the model, we then draw

m

1
o?|r, Yaug ~ —— Z(yz — Xipp — Zici) ' (yi — Xipg — Zicy),

n—p ;=1

and, defining B = >_7" | X,;' X,
ﬁ|0’2, Q, }/aug ~ Np (ﬂﬁa UZB_I) ’ with Hp = B_l ZX'LT(y’L - Z’LC'L)

Finally when using o = e, we change the noninformative prior distribution to
p2(B,1og(o), &, L) o< 1. We use this prior for computational ease with the understanding
that the effect will be small for comparative purposes especially because the two priors are
equivalent if we constrain 7" to be diagonal. (Indeed, the effect of this different prior is not
visible in the marginal density of log[(1 4+ r)/(1 — r)] for & = e in Figure 13.) For this
implementation we draw all the parameters in 6 from the observation level. In particular,
we draw

3

2
o° o, Yaug ~
=P =1

and |02, &, Yaug ~ Ny (Ng, o*B™"), where j = P+Q(Q+3)/2 Xi = (X4, Zi, Zi(:)),

B=(B,&vec(AU)), B=>" X Xj,and g = B~' 20 X[y
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III. THEORETICAL COMPARISONS OF CONDITIONAL A UGMENTATION ALGORITHMS

Result A.1 When (I) the mean and variance structure of the model (8.1) are correctly
specified, (Il) T"is diagonalin the fitted model, and (IlT) Sx ; = Z;’;l XZ-T Z; =0and Sz =
Z;’;l Z Z; is diagonal, the asymptotically (as m — c0) optimal value of (a1, 05) €
{(0,0),(0,1),(1,0)} = Ag according to Criterion 5.1 (with oy = (a1, ..., arq) for
k = 1,2) has the following properties:

(a) The optimal value is (a5, a;) = (1,0) if

2* m
Z Z}Z; <o™, ie, D;<1/2, (A7)
where U* = diag(uf, ..., u}) and 0>* are posterior modes, and

2xym ST
D= 22y (A8)
T me? + ug* Yo Z;Jr-Zij

can be viewed as a measure of the overall coefficient of determination from the jth compo-
nent of the random effect.
(b) If
s 2
J * :
WZZZ-J-ZZ-J- >20%%, ie., D;>2/3, (A.9)

=1

the optimal value is (aj, an;) = (0, 1).
(c) If neither (A.7) nor (A.9) hold, both (c; ;, ;) = (0, 1) and (1, 0) are preferable to
(0,0). This implies that at least one of (0, 1) and (1, 0) is always superior to (0, 0).
Proof: We need only consider the submatrix

0 Igg(a)  lev(@)
o= (5 e ) (10

of Lfl}g(a) since the rest of the matrix is (asymptotically) free of «. To derive the elements

of I¢ (cr), we differentiate Q, (0|6*) = E[log (0] Yaug, )| Yobs, 0%, a] twice with respect to

&:
52Q.(0|6* 1 _
_ 2Q.007) = —:(I — 4)Sz(I — A2) + mAL[U*| 2 Ay, (A.11)
o0& - 0¢ oo © *
where A, = diag {avy, ..., azq}. Likewise we can derive the elements of IgU(a) as
82Qa(9|9*) 1 — OQk ]
- A.12
8£k8ul2 oo 20_2* 2* Z l =+ azsz) + Ckla ( )

where b*l is the [th component of the vector b* = E(b;|Yobs, 0%) and (; = 0 if ajpop, =
oo = 0. Since E(b*|9) =0,>" IZZEZ“ = 0for k # [ and (1 — asx)ay = 0 for
k =1, we find lim,,, . I¢(a) = 0. Finally, we derive the matrix Irry7 (o) as
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_9%Qa(019%)
oU? - U2
0=0*
A Q112451 Q1gZijq | o . Q11Z51 lqZijq
= = Z Z diag { u%* S ST (o )diag prant R b ,
i=1 j=1 q 1 q
m mé
di 1— 2% 2 1 L
+ 1ag {( 0111) 2u‘1‘* + (01110121) 4u?* R ,
m m§2* 1
I = i)’ 5 e L A.13
(1 — o) 2l + (a1g02) e 5 , (A.13)

where S”Z-*(ozz) = E[(b; +ay* &) (b; + ap * &) T| Y, 07, a], which can be expressed, using
(8.4) evaluated at (Y) = 9*, as

Sf(an) = T*+T*Z Wi(6%)
X [(yi = XiB* = Z:&*)(y; — Xi* — Z:£*) T Wi(0%) — 1) Z;T*
Fbi(07) (2 % €) T+ (a2 * E)bi(0) T + (a2 % ) (2 £¥) . (A14)

Since E[b;(0)|6] = 0 and E[(y; — Xi8 — Zi€)(y: — Xi — Z:£)T|0] = W;1(9),
asymptotically (as m — 00) Iy (a) is diagonal with the kth diagonalterm equal to (noting
that T = U when A = ),

m T
2 Zi:l ZikZik

2% 2 N"M ST o
Ta 2 mfk k Zi:l ZipZik 1
1k 402*ui*

+ + -
(enkear) 4ul* 4oyl 2utr
(A.15)

Thus, 1; ﬁg () is asymptotically diagonal with diagonal elements givenin (A.11) and (A.15).

m
1— 2
( o) 2u‘,‘€*

In order to minimize I 51}2(01) we need only minimize each of its diagonal terms. We are
now in a position to prove each of the statements in the result.

(a) If (A.7) holds, the kth diagonal term of I¢¢ () is minimized by a,, = 0. Noting
that if (A.7) holds then (A.9) does not hold, we see that (A.15) is minimized by o, = 1.

(b) If (A.9) holds, (A.15) is minimized by o, = 0 and (A.7) does not hold. These two
facts yield the result.

(c) The first statement follows immediately from (A.11) and (A.15). The second follows
since the suppositions of statements (a), (b), and (c) are the only possibilities. m

IV. THEORETICAL RESULTS ON MARGINAL AUGMENTATION ALGORITHMS

The search for an optimal w in the mixed-effects model is somewhat more complicated
than thatof Sections 6-7, partially because Ag\i (w) does not admit the positive semidefinite
ordering. In such cases Criterion 5.2 can still be effective and suggestive as long as a
major submatrix of Ag\i(w) can be ordered. Recall that maximizing A](ﬁ\z[(w) is only an
approximately sufficient condition for finding optimal w, and it is by no means necessary.
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If desired, one can carry out a more involved analytic search for an optimal w by directly
working with, say, p(Fgps(w)). In our experience, ignoring a relatively unimportant part
of A](ﬁ\?[(w) can be very effective, as shown in the following. Note that for the rest of this
Appendix, the marginal augmentation uses a lower triangular Y.

Result A.2 Under the conditions of Result A.1, the submatrix Ag\zl(w) correspond-
ing to (3,&,T), that is, all the parameters except o2, is an increasing function of w, in
terms of a positive semidefinite ordering. This suggests using the improper working prior
corresponding to lim,, . p(y, T|w) o |YT|79.

Proof:  Under (8.2), I, is (asymptotically) block diagonal (similar to the previous
calculations), and we need only consider the submatrix,

10.20_2 10.2§ IozUz 10.27 Io.z'r

Ipe e Ter ey lex

Loy Ly Ipewe ey Iy | (A.16)
T T T
1o, IL 1L Ly Ly

T T T T
Ipy Iy Ippy Ly Iy

By differentiating E[log p(0|Yaug)|0*, a*, Yobs] twice with respect to (o2, £, U, ), and not-
ing that v* = 0 and T* = I, it can be shown that (A.16) is of the form

N+2

204 0 0 0 2021*w1;r
0 UL Sz 0 —U%SZ 0
0 0 %LI(T*)_Z 0 —(m+1)(T*)7 |,
0 —UL Sz 0 #Sz—l-m(T*)_l —l—élq 0

sole 0 —(m+1)(T)™! 0 Iyy

and asymptotically (replacing E[d;d;’ |Yops, 6] by its expectation over Yo, evaluated at § =
0™, that is, as in (A.15))

1 [ 1 moni - 1
InzszrZLUZ*ZZIjZIZMT Zij+<;+2m—q>IqJ,

with Z;; = diag{zij1, ..., zijq }. We can now compute
.
I > I 27 —1 I I 27
o’y o I I o’y o
2 T
Am(w@) = | Iy Ier < JA o ) Iy Iex
IUFY Iy e IU'y Iyy
Ay 0 Af
= 0 Ap O ;
A 0 Aj

where Ay = T1] M1,/(0%*w?), Ajz = —(m + D)T*M1,/w, Az = (m + 1)*0** M,
. —1
and Ayy = Sy (UZ*SZ o m(TH) ™ + %Iq) Sy with M = (T°*Sz + @m —q

+l) UZ*TZ*)_I. It is clear that A](Eizl(w) is singular and that both A, and Aj; are

w
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increasing in w, but Ay; is decreasing in w (and thus, as a whole, Ag\zl(w) does not admit
the positive semidefinite ordering). O

The optimality of using w = o0 is further supported by the following result, which
suggests that the algorithms in Section 8.1 are superior, in terms of the A quantities, to all
the algorithms described in Table 2.

Result A.3 Under the assumptions of Result A.1, asymptotically

lim Aff(w) = Afyy(e) 2 0, (A17)
for any « such that (a5, aa;) € Ay for each j. The diagonal terms of (A.17) are positive
for any (ay,n) € R%.

Proof: Since Aj; and A3 are both zero in the limit as w — oo, we need only
compare the diagonal matrices, A,y and Aj;, with the corresponding terms of A](Ep[(a),
which are also asymptotically diagonal if (a5, an;) € Ap for each j. Thus, we need only
show the diagonal terms of (A.17) are positive for all (o, ) € R*9. We first compare
Ay, with (A.11). By minimizing (A.11) over (ay, o) we find that the optimal value of
Ay = diag(aw) is (Sz/0?*)(Sz/o* + m(T*)72%) for any a; € RY and that the resulting
minimally augmented information for £ is

1
52— 52 (0% Sy + o¥m(T*) 1718y, (A.18)

where the first term is the augmented information for £ when using the standard algorithm
(i.e.,using (8.10) with @ = aigq). Comparing the second term in (A.18) to Ay, (withw = 00)
we see that Ay, equals the reduction in augmented information for £ resulting from using
the optimal conditional augmentation scheme determined by the optimal value of A;. (In
fact, it can be shown that A, corresponds to incorporating the working parameter y alone.
In particular, the introduction of ~y results in an algorithm that is more efficient than using
Qv = ugec Which fixes a; = 04.)

Similar arguments can be made to show that Asj is larger than the reduction in (A.15)
resulting from a similarly defined optimal value of oy when o, if fixed at 0. (If v, is fixed
at some other value the reduction in (A.15) will be still smaller.) Thus, the result follows
since (v 5, ;) € Ao for each j, Ag\i(a) is asymptotically diagonal (see (A.11)—(A.13)),
and the reduction in the diagonal terms of . §l}g(astd) is dominated by Ay, and Aj;. O
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