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ABSTRACT
Over the past 10 years Bayesian methods have rapidly grown more popular in many scientiÐc disci-

plines as several computationally intensive statistical algorithms have become feasible with increased
computer power. In this paper we begin with a general description of the Bayesian paradigm for sta-
tistical inference and the various state-of-the-art model-Ðtting techniques that we employ (e.g., the Gibbs
sampler and the Metropolis-Hastings algorithm). These algorithms are very Ñexible and can be used to
Ðt models that account for the highly hierarchical structure inherent in the collection of high-quality
spectra and thus can keep pace with the accelerating progress of new space telescope designs. The
methods we develop, which will soon be available in the Chandra Interactive Analysis of Observations
(CIAO) software, explicitly model photon arrivals as a Poisson process and thus have no difficulty with
high-resolution low-count X-ray and c-ray data. We expect these methods to be useful not only for the
recently launched Chandra X-Ray Observatory and XMM but also for new generation telescopes such as
Constellation X, GL AST , etc. In the context of two examples (quasar S5 0014]813 and hybrid-
chromosphere supergiant star a TrA), we illustrate a new highly structured model and how Bayesian
posterior sampling can be used to compute estimates, error bars, and credible intervals for the various
model parameters. Application of our method to the high-energy tail of the ASCA spectrum of a TrA
conÐrms that even at a quiescent state, the coronal plasma on this hybrid-chromosphere star is indeed at
high temperatures ([10 MK) that normally characterize Ñaring plasma on the Sun. We are also able to
constrain the coronal metallicity and Ðnd that although it is subject to large uncertainties, it is consistent
with the photospheric measurements.
Subject headings : methods : data analysis È methods : statistical

1. INTRODUCTION

The ever-increasing power and sophistication of todayÏs
high-energy instruments give access to a new realm of high-
quality data that is quickly pushing beyond the capabilities
of the ““ classical ÏÏ data analysis methods in common use. In
this paper we present an innovative implementation of
state-of-the-art statistical methods for Ðtting high-
resolution spectra from the Chandra X-Ray Observatory.
The common ““ folk wisdom ÏÏ of how to bin data, subtract
background counts, propagate errors, and, for example,
estimate the signiÐcance of a spectral line proÐle are unreli-
able and can lead to unacceptable results (for discussion see
Loredo 1993 ; Nousek 1993 ; Feigelson & Babu 1997 ; Siemi-
ginowska et al. 1997 ; Zimmerman 1997). For example,
binning data sacriÐces the resolution of the instrument, sub-
tracting background can lead to negative counts with
unpredictable results, and statistical black boxes such as the
s2 and Cash statistics (Lampton, Margon, & Bowyer 1976 ;
Cash 1979), although often useful, may not be equipped to
answer standard questions (e.g., Protassov et al. 2001).
Some authors have suggested solutions to such problems,
which involve ad hoc adaptations of commonly used

1 Alanna Connors is currently affiliated with Eureka ScientiÐc, 2452
Delmer Street, Suite 100, Oakland, CA 94602-3017.

methods (e.g., Gehrels 1986 ; Collura et al. 1987 ; Mighell
1999). Unfortunately, when such solutions are not rooted in
a theoretical framework, they have no justiÐcation beyond
problems that are more or less the same as the simulation
studies that justify them, and we are often forced into addi-
tional ad hoc adaptations. This approach is difficult to
justify in light of modern statistical methods that address
reasonable model assumptions directly. Thus, in recent
years, astrophysicists have increasingly turned to
likelihood-based (e.g., Lucy 1974 ; Cash 1979 ; Schmitt 1985 ;
Sciortino & Micela 1992) and Bayesian methods (e.g.,
Bijaoui 1971 ; Richardson 1972 ; Gregory & Loredo 1992 ;
Loredo 1993 ; Connors 1997 ; Siemiginowska 1997 ;
Kashyap & Drake 1998 ; Freeman et al. 1999 ; see also
Appendix C). The primary purpose of this paper is to illus-
trate how Bayesian methods can provide practical answers
to outstanding real problems that standard methods are not
able to handle. The methods described here are equipped
with readily available parameter estimates, credible inter-
vals, error bars, model-checking techniques, methods for
combining information from multiple sources, etc., all
within a Ñexible theoretical framework and without reliance
on asymptotic Gaussian approximations.

We illustrate Bayesian data analysis via two detailed
examples. The analysis of quasar S5 0014]813 o†ers a
straightforward introduction to our methods, and the
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TABLE 1

INDEX OF VARIOUS TERMS DISCUSSED AND DEFINED IN THE PAPER

Terms DeÐned and/or Discussed

Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . °° 3.1 and 3.4
BayesÏs Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equation (1)
Conjugate prior distribution . . . . . . . . . . . . . . . . . . . Footnote 12
Credible interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ° 2.1
Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . °° 1, 2.3, and B1
Data augmentation algorithm . . . . . . . . . . . . . . . . . °° 2.3 and A1
E†ective area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Footnote 4
Equivalent width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Footnote 15
Gamma distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . Footnote 8
GLM or generalized linear model . . . . . . . . . . . . Footnote 5, ° 3.2
Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . °° 2.3 and A3
Hierarchical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Footnote 6
Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ° 2.1
Improper distribution . . . . . . . . . . . . . . . . . . . . . . . . . . Footnote 9
MCMC or Markov chain Monte Carlo . . . . . . °° 2.3, A1, A2, A3, and A4
Marginal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . ° 2.1, Equation (6)
Maximum e†ective area . . . . . . . . . . . . . . . . . . . . . . . . Footnote 10
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ° 1
Monte Carlo integration . . . . . . . . . . . . . . . . . . . . . . . ° 2.2
Multinomial distribution . . . . . . . . . . . . . . . . . . . . . . . Footnote 19
Noninformative prior distribution . . . . . . . . . . . . ° 2.1
Nuisance parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . ° 2.1, Equation (6)
Observed data model . . . . . . . . . . . . . . . . . . . . . . . . . . . ° 1
Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . Footnote 3
Posterior distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . Equation (1)
Prior distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equation (1)
PHA or pulse-height amplitude . . . . . . . . . . . . . . . Footnote 2
Source model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ° 1

extremely low count hybrid-chromosphere supergiant star a
TrA observation shows how we tackle a previously intrac-
table analysis. Together, these examples demonstrate the
power of Bayesian methods to handle highly structured
models designed to reÑect the structure in both the source
spectrum and the data collection process. Our methods
avoid the binning of counts and thus the sacriÐcing of high-
resolution information required by standard data analysis
methods. The analysis of S5 0014]813 is consistent with
the available standard analysis, which relies on extra
binning and the removal of the high-energy low-count tail.

We emphasize that we model not only the source spec-
trum but also other stochastic components of data collec-
tion and the instrument such as background contamination
and instrument response. In general, we refer to our sto-
chastic representation of the entire process as the
(statistical) model. For clarity we refer to the spectral or
physical model as the source model and to the model for the
observed (PHA2) counts as the observed data model. In our
detailed example, we develop a model and algorithms for
spectral analysis of high-energy (or other) data using a
Poisson3 process for photon arrivals. We allow for (1) sto-
chastic instrument response via a photon redistribution

2 Pulse-height amplitude, originally in proportional counters, the
number of electrons produced by a photon, hence the amplitude of the
current pulse registered by the detector electronics. The term now refers to
the measure of the energy deposited on the detector (as opposed to the true
energy).

3 Recall, a random variable X is said to follow a Poisson distribution
with parameter or intensity j if Pr (X \ x)\ e~jjx/x !. In this case
E(X)\ j and we often write (j) (read as X is distributed asX Dd Poisson
Poisson with intensity j). This representation conditions on the intensity
parameter, j, which in turn may vary.

matrix, (2) the absorption of photons, (3) the e†ective area4
of the telescope, and (4) background contamination of the
source. In particular, we model information on background
emissions as the realization of a second Poisson process (see
Loredo 1993), thereby eliminating the need to subtract o†
directly the background counts and the rather embarrass-
ing resulting problem of negative photon counts. The
source energy spectrum is modeled as a mixture of several
(Gaussian) line proÐles and a generalized linear model5
(GLM) (e.g., McCullagh & Nelder 1989), which accounts for
the continuum. GLMs have become the standard statistical
method for incorporating information contained in inde-
pendent variables (as in regression) into many non-
Gaussian models and are thus an obvious but innovative
choice in this setting.

In addition to several Markov chain Monte Carlo
(MCMC) algorithms, we describe and use data augmenta-
tion, an important statistical method for Bayesian (and
other) analyses. Data augmentation is an elegant computa-
tional construct allowing us to take advantage of the fact
that if it were possible to collect additional data, statistical
analysis would be greatly simpliÐed. This is true regardless
of why the so-called missing data are not observed. For
example, if we were able to record the counts due to back-
ground contamination in addition to total counts in each

4 The e†ective area of the telescope is the fraction of the true geometric
area that the telescope presents to sky. This varies with energy.

5 In a GLM we assume that a transformation (e.g., log) of the model is
linear in a set of independent variables. We emphasize that this is not
equivalent to transforming the data and proceeding with linear regression.
A generalized linear model utilizes the likelihood of the assumed model,
which may not be Gaussian (e.g., the assumed model may be Poisson). See
° 3.3 for details.
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bin, it would, of course, be a trivial task to account for the
background. There is a large class of powerful statistical
methods designed for ““ missing data ÏÏ problems. With the
insight that ““ true ÏÏ values of quantities recorded with mea-
surement error can be regarded as ““ missing data,ÏÏ these
methods can usefully be applied to almost any astrophysical
problem. In particular, we can treat the true image (before
instrument response), the absorbed photon counts, and
unbinned energies as ““ missing data ÏÏ to account for instru-
ment response, absorption, and binning, respectively.

This introduction foreshadows the tone of the paper : in
the process of developing new Bayesian methods, we
describe and utilize state-of-the-art statistical reasoning,
methods, and algorithms, whereby we explore a larger sta-
tistical framework for our problem of interest. Although we
introduce many new tools and use terminology that may be
unfamiliar, we endeavor to write in a manner accessible to
astrophysicists and believe the resulting methods justify the
required interdisciplinary work. Table 1 indexes termino-
logy used in the paper that may be unfamiliar to some
readers. To aid in the translation from standard statistical
notation to standard astrophysical usage, many equations
have been written according to both standards when nota-
tion is introduced. One notational convention is worthy of
mention : we use superscripts to identify model components
(e.g., background or absorption).

The paper is organized as follows. After a brief overview
of the fundamentals of Bayesian analysis in ° 2, we lay out
our hierarchical statistical model,6 which summarizes the
photon collection process and parameterizes many relevant
aspects of the energy spectrum in ° 3. Two examples that
aim to illustrate a typical data analysis and the advantages
of Bayesian methods in this setting are given in ° 4. Section
5 contains brief concluding remarks. Finally, in two appen-
dices, we outline such important general MCMC methods
as data augmentation, the Gibbs sampler, the Metropolis-
Hastings algorithm, and judging convergence using multi-
ple chains. We also describe in detail how we use these
algorithms to Ðt the hierarchical source model of ° 3.

2. BAYESIAN ANALYSIS

In this section we outline several important methodologi-
cal and computational issues involved with Bayesian
analysis using a simple model that accounts for background
in a simpliÐed Poisson process to motivate and illustrate
ideas. Our introduction is brief, and we encourage inter-
ested readers to consult one of the several high-quality
recent texts on the subject such as Gelman et al. (1995),
Carlin & Louis (1996), Gilks, Richardson, & Spiegelhalter
(1996), and Sivia (1996). In ° 3 we show how the ideas devel-
oped here can be used for a detailed spectral analysis.

2.1. Prior, Sampling, and Posterior Distributions
Bayesian probability analysis is fundamentally based on

one simple result known as BayesÏs Theorem, which allows
us to update a probability distribution based on new data
or other information. In particular, knowledge about a

6 A hierarchical (statistical) model is formulated in terms of unobserved
quantities, which are themselves statistically modeled. For example, we
may assume that photons Ðrst arrive at a detector according to a Poisson
process and then are randomly redistributed according to a photon redis-
tribution matrix. A hierarchal model separates these two random processes
into two levels of a structured model.

(vector) model parameter, h, is summarized by a probability
distribution, p(h), such that for anyPr (h ½ R) \ /

R
p(h)dh

region7 R. BayesÏs Theorem states

p(h o Y, I ) \ p(Y o h, I )p(h o I )
p(Y o I )

, (1)

where Y are the observed data or other new information
pertaining to h and I represents any initial information
known before Y is observed. Here p(h o I ) represents our
knowledge prior to observing Y and is called the prior dis-
tribution. The sampling distribution or likelihood, p(Y o h, I ),
represents the likelihood of the data given the model
parameters, and p(h o Y, I ) represents our updated know-
ledge regarding h after observing Y and is called the poste-
rior distribution. Finally, p(Y o I ) represents the un-
conditional distribution of Y and acts as the normalizing
constant for p(h o Y, I ). The functional form of BayesÏs
Theorem describes how our prior knowledge should be
updated in light of information contained in the data. The
likelihood or sampling distribution is the basis for many
standard statistical techniques, while the prior and poste-
rior distributions are speciÐc to Bayesian analysis.

To illustrate BayesÏs Theorem, suppose we have observed
counts, Y , contaminated with background in a (source)
exposure and have observed a second exposure of pure
background. Throughout this section, we assume that the
source exposure is qS minutes and the pure background
exposure is qB minutes with both exposures using the same
area of the detector. (We generally use superscripts to rep-
resent photon ““ sources,ÏÏ e.g., source or background.
Occasionally we use superscripts for powers ; for clarity we
place powers outside parentheses.) To model the source
exposure, we assume that Y follows a Poisson distribution
with intensity jB] jS, where jB and jS represent the
expected counts during the source exposure due to back-
ground and source, respectively. Thus, the likelihood is

p(Y o jB, jS, I ) \ e~(jB`jS)(jB]jS)Y
Y !

for Y \ 0, 1, 2, . . . .

(2)

We wish to estimate jS and treat jB as a nuisance parameter,
a parameter that is of little interest but must be included in
the model. As is detailed below, an important advantage of
Bayesian methods is their ability to handle nuisance param-
eters by computing the marginal posterior distribution of
the parameters of interest. The name ““marginal ÏÏ distribu-
tion originates with two-way tables of counts where the
table margins sum over one of the variables to give the
distribution of the other variable alone (i.e., its marginal
distribution). Likewise, the marginal distribution of the
parameter of interest is computed by integrating over (i.e.,
averaging over) the nuisance parameter.

At this point, we specify a prior distribution that allows
us to include a priori knowledge (e.g., ““ allowed parameter
ranges ÏÏ) from other experiments or other scientiÐc informa-
tion. One of the primary advantages of Bayesian analysis is
a well-deÐned mechanism for the inclusion of information

7 The notation Pr (h ½ R) represents the probability that h is in the
region R and is computed as the integral of the probability distribution of h
over R.
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outside the current data set. In the absence of prior informa-
tion, we use di†use or so-called noninformative priors,
which are ordinarily Ñat and have minimal inÑuence on the
Ðnal analysis. The prior distribution itself may be conve-
niently parameterized using a set of hyperparameters that
can be varied to represent the researcherÏs knowledge about
the value of the model parameters and the degree of cer-
tainty of this knowledge. For example, we use the c
distribution8 to parameterize prior information for jB and
jS :

jB o I Dd c(aB, bB) ,

jS o I Dd c(aS, bS) , (3)

that is,

p(jB o I )\ (bB)aB(jB)aB~1e~bBjB
!(aB)

,

p(jS o I )\ (bS)aS(jS)aS~1e~bSjS
!(aS)

, (4)

where the notation is read ““ follows the distribution ÏÏDd
and jB and jS are assumed a priori independent. The c prior
on jB is mathematically equivalent to a Poisson likelihood
resulting from a count equal to aB[ 1 obtained with an
exposure of bB times that of the source exposure. (By mathe-
matically equivalent, we mean that the prior on jB is pro-
portional to a Poisson likelihood as a function of jB.) This
leads to a natural choice of p(jB o I )\ c (aB\ Y B] 1,
bB\ qB/qS), where Y B are the counts from the background
exposure. Notice that here (and throughout the paper) we
explicitly incorporate information from the background
exposure into the analysis via the prior distribution on jB.
Thus, the counts from the source exposure, Y , are treated as
the observed data Y in equation (1). We refer interested

8 The c (a, b) distribution is a continuous distribution on the positive
real line with probability density function p(Y )\ baY a~1e~bY/!(a),
expected value a/b, and variance a/b2 for positive a and b.

readers to Gelman et al. (1995), ° 2.7, for further discussion
and examples of the c prior distribution with Poisson data.

The equivalence of the c prior for jS and aS [ 1 counts
during an exposure of qSbS minutes leads to a natural inter-
pretation of the hyperparameters : for a relatively nonin-
formative prior we choose bS much less than 1. To illustrate
this, we consider two priors : one noninformative and
improper,9 p(jS o I )*1+\ c(1, 0)P 1 (dotted line in the Ðrst
plot of Fig. 1) ; and one informative, where, let us say, we
know from other means that three counts are to be expected
in the same exposure time, hence p(jS o I )*2+\ c(4, 1) (solid
line in the Ðrst plot of Fig. 1). This choice of informative
prior is only an example : c(4, 1) corresponds to Poisson
likelihood resulting from three counts with an exposure
time equal to the source exposure (10 minutes). This is a
rather informative prior distribution and is chosen to illus-
trate the e†ect of very informative prior. The nonin-
formative prior contains information equivalent to zero
counts in an exposure of 0 minutes.

Using BayesÏs Theorem, with h \ (jB, jS), we can
combine the c priors and the likelihood given in equation
(2) to compute the posterior distribution,

p(jB, jS o Y , I ) P e~*jB(bB`1)`jS(bS`1)+

] (jB] jS)Y(jB)aB~1(jS)aS~1 , (5)

for jBº 0, jS º 0.
Nuisance parameters such as jB pose a monumental diffi-

culty for classical statistical analysis, which often relies on
Ðxing nuisance parameters at estimated values. Unfor-
tunately, this does not account for uncertainty in their esti-
mates and thus tends to be anticonservative. (Likewise,
Ñoating nuisance parameters or ““ propagating errors ÏÏ when
computing error bars are essentially a Gaussian assump-
tion, which can lead to unpredictable results when such an

9 An improper distribution is a distribution that is not integrable and
thus is not technically a distribution. One should use improper prior dis-
tributions only with great care since in some cases they lead to improper
posterior distributions which are uninterpretable.

FIG. 1.ÈCombining information. The Ðgure illustrates the combination of the information contained in the data and the prior distribution into the
posterior distribution. The less informative dotted prior has less inÑuence on its (dotted) posterior, which matches the low source count more closely than
does the solid posterior. The joint posterior indicates the region of high posterior probability for both parameters under the noninformative prior for jS.
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assumption is not justiÐed.) The Bayesian solution averages
over the posterior distribution (i.e., the uncertainty) of the
nuisance parameter by computing the marginal (posterior)
distribution of the parameters of interest without Gaussian
approximations. For example, the marginal posterior dis-
tribution of jS can be computed by (numerical) integration,

p(jS o Y , I )\
P
0

=
p(jB, jS o Y , I )djB , (6)

and is illustrated for the two priors for jS in the second plot
of Figure 1, where we assign Y \ 1 and Y B\ 48 with
qs\ 10 minutes and qB\ 2 hr. In this example, direct sub-
traction of background would leave a ““ negative count ÏÏ of
[1 ; no such difficulty occurs with the Bayesian analysis.
(See Loredo 1993 for another derivation of the marginal
distribution of jS in this setting.)

Since the source count is small relative to the background
count, we expect a small jS. Although this is evident in both
posterior distributions in Figure 1, the highly informative
prior distribution centered at jS \ 3 pulls the (solid) poste-
rior toward higher values, thus illustrating the e†ect of an
informative prior distribution. Such sensitivity analyses
often play an important part in Bayesian (or other) data
analyses, since they investigate the sensitivity of the results
to the statistical assumptions (e.g., the choice of prior
distribution).

The posterior distributions should be interpreted as
probability distributions representing the combined infor-
mation in the prior and data. For example, a region, R, such
that is called a f-level credible interval/

R
p(h o Y, I )dh \ f

(or credible region if h is multidimensional), and we can say
Pr (h ½ R o Y, I )\ f (e.g., a 67%, 90%, or 95% credible
region). The 90% credible regions for the posterior distribu-
tions illustrated in Figure 1 are (0.77, 4.24) using the infor-
mative prior and (0.04, 3.84) using the noninformative prior.
Such probability statements are measures of our informa-
tion regarding the value of the parameter h, given the data
and prior information. This is in contrast to the more tradi-
tional frequentist deÐnition of probability, which deÐnes a
probability to be the long-term frequency of an event gener-
ally involving the data given h. The posterior distribution
is a complete summary of our information but is often
summarized by its mean, and variance,hü \ E(h o Y, I ),
var(h o Y, I ), or its modes and the curvatures at these modes.
(The curvatures are most useful when the posterior is
[locally] approximately Gaussian, as is asymptotically true
under certain regularity conditions ; e.g., see Gelman et al.
1995) In the following two sections we describe Monte
Carlo methods for computing posterior means, posterior
variances, and credible regions. To compute posterior
modes (e.g., maximum likelihood estimates), van Dyk (2001)
develops several expectation maximization (EM) algo-
rithms for use in astrophysical applications. Posterior
modes are often used to compute starting values for the
more robust but computationally demanding Monte Carlo
methods (see Appendix A, ° A2). The EM algorithm gets its
name because it iteratively maximizes the expected log pos-
terior distribution of h given the augmented data.

Although a detailed description is beyond the scope of
this paper, Bayesian methodology is well equipped for
problems involving model selection. Methods based on
BayesÏs factors, computing the relative posterior probabil-
ities of various competing models, and Bayesian ““ p-values ÏÏ
are all important and remain areas of active statistical

research (e.g., Gregory & Loredo 1992 ; Protassov et al.
2001).

2.2. Evaluating the Posterior via Monte Carlo Sampling
For univariate or small dimensional parameter spaces,

we can usually compute the posterior mean, variance, cred-
ible regions, and other summaries either analytically or via
nonstochastic numerical methods (e.g., Gaussian quadra-
ture or LaplaceÏs method). In higher dimensions, however,
these methods can be difficult to implement partially
because of the difficulty in Ðnding the region where the
integrand is signiÐcantly greater than zero. Thus, we often
resort to Monte Carlo integration. In particular, if we can
obtain a sample from the posterior, Mh*t+, t \ 1, . . . , T N,
Monte Carlo integration approximates the mean of any
function, g, of the parameter with

E(g(h) o Y, I ) B
1
T

;
t/1

T
g(h*t+) , (7)

where we assume E(g(h) o Y, I ) exists. For example, g(h)\ h
and g(h) \ [h [ E(h o Y, I )][h [ E(h o Y, I )]@ lead to the pos-
terior mean and variance, respectively. Probabilities, such
as f\ Pr (h ½ R), can be computed using g(h) \ IMh ½ RN,
where the function I takes on the value of 1 if the condition
in curly brackets holds and 0 otherwise. Likewise, quantiles
of the distribution can be approximated by the correspond-
ing quantiles of the posterior sample. In short, a robust data
analysis requires only a sample from the posterior distribu-
tion. A general strategy is Ðrst to sample from the posterior
distribution and then approximate various integrals of
interest via Monte Carlo.

2.3. Obtaining a Sample from the Posterior
The Monte Carlo approximation methods depend on our

ability to obtain a sample from the posterior distribution.
Although in some cases the posterior distribution is a well-
known distribution and trivial to sample, we must often use
sophisticated algorithms to obtain a posterior sample. In
Appendix A, we discuss three algorithms that have pro-
ven widely applicable in practice, the data augmentation
algorithm (Tanner & Wong 1987), the Gibbs sampler
(Metropolis et al. 1953), and the Metropolis-Hastings algo-
rithm (Hastings 1970). All of these algorithms construct a
Markov chain with stationary distribution equal to the pos-
terior distribution (e.g., Gelfand & Smith 1990), i.e., once the
chain has reached stationarity, it generates samples that are
identically (but not independently) distributed according to
the posterior distribution. These samples can then be used
for Monte Carlo integration as described above ; hence,
these algorithms are known as MCMC methods (see
Tierney 1996 for regularity conditions for using eq. [7] with
MCMC draws). From the onset then, it is clear that three
important concerns when using MCMC in practice are (1)
selecting starting values for the Markov chain, (2) detecting
convergence of the Markov chain to stationarity, and (3) the
e†ect of the lack of independence in the posterior draws.
These issues are addressed in ° A2.

The algorithms used to Ðt the models described in ° 3 rely
on the method of data augmentation. The term ““ data
augmentation ÏÏ originated with computational methods
designed to handle missing data, but the method is really
quite general and often useful when there is no missing data
per se. In particular, for Monte Carlo integration we aim to
obtain a sample from the posterior distribution, p(h o Y, I ).
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In some cases, we can augment the model to p(h, X o Y, I ),
where X may be missing data or any other unobserved
quantity (e.g., counts due to background). With the judicial
choice of X, it may be much easier to obtain a sample from
p(h, X o Y, I ) than directly from p(h o Y, I ). Once we have a
sample from p(h, X o Y, I ), we simply discard the sample of
X to obtain a sample from p(h o Y, I ). In Appendix B, ° B1,
we describe how this method can be used for Ðtting the
models described in ° 3.

3. FITTING HIGH-RESOLUTION LOW-COUNT SPECTRA

3.1. Model Overview
In this section we describe a new class of (statistical)

structured models, which simultaneously describes high-
resolution source spectra using Gaussian line proÐles and a
GLM for the continuum and accounts for background con-
tamination of the image, instrument response, and absorp-
tion. The model may easily be generalized to account for
di†erent line proÐles such as the Lorentzian distribution
(e.g., Meng & van Dyk 1999). The statistical model is
designed to summarize the distribution of photon energies
arriving at a detector, which are recorded as counts in a
number of energy channels (e.g., as many as 4096 on
Chandra/ACIS). Newly developed detectors have much
higher resolution than their predecessors and thus smaller
expected counts per bin. Independent Poisson distributions
are therefore more appropriate for the counts than the com-
monly used Gaussian approximation (e.g., s2 Ðtting). We
parameterize the intensity in bin j ½ J\ M1, . . . , JN as the
sum of a continuum term and K Gaussian lines. That is, the
expected true counts per bin for a ““ perfect ÏÏ instrument
with e†ective area everywhere equal to the maximum pos-

sible e†ective area10 are

model intensity \ [continuum ] lines] absorption,

for each energy bin, or more formally,

j
j
(h) \ [dE

j
f (hC, E

j
) ] ;

k/1

K j8 kp
j
(kk, tk)]u(hA, E

j
)

(8)

for j ½ J, where is the known width of bin j ; f (hC, isdE
j

E
j
)

the expected number of counts per keV per maximum e†ec-
tivearea from the continuum and is a function of the contin-
uum parameter, hC ; is the known mean energy in bin j ;E

j
j8 k

are the expected counts per maximum e†ective area from
line k ; is the probability that a Gaussian randomp

j
(kk, tk)

variable with mean kk and variance tk falls in bin j ; and
u(hA, is the probability that a photon in bin j is notE

j
)

absorbed. SpeciÐc forms for the continuum and absorption
terms are discussed below in °° 3.2 and 3.4, respectively. The
superscripts on the model parameters (h) are mnemonic and
represent absorption (A), background (B), continuum (C),
and the lines k \ 1, . . . , K. The collection of parameters, hC,

kk, tk) for k ½ K\ M1, . . . , KN, and hA (along withhk\ (j8 k,
hB deÐned below), are represented by h. An artiÐcial
example with power-law continuum, two spectral lines, and
no absorption appears in the Ðrst plot of Figure 2.

Since data collection is degraded by e†ective area, instru-
ment response, and background contamination (see Fig. 2),
we model the observed counts as independent Poisson vari-

10 We use the maximum value of the e†ective area over the spectral
energy range of interest in this stage of the analysis. This is only a matter of
convenience, and the full e†ective area variations are included in eq. (9).

FIG. 2.ÈDegradation of counts. The Ðgure illustrates the various physical processes that signiÐcantly degrade the source model and result in the observed
PHA counts. In particular, an artiÐcial data set is used to illustrate (1) the absorption of (mostly low-energy) counts, (2) the blurring of spectral features due to
instrument response, (3) the shadows caused by pile-up, and (4) the masking of features due to background. The solid lines represent the assumed model (in
the Ðrst three plots) and the plus sign the simulated data. The Ðrst plot illustrates the counts per maximum e†ective area per total exposure time per bin ; the
remaining plots illustrate degraded counts per e†ective area per total exposure time per bin. Note that the e†ects of pile-up are included here for the sake of
completeness ; we do not deal with this aspect of the analysis in this paper. The symbols in the upper right of each plot are deÐned in ° B.1.
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ables with intensity

observed
intensity

\ instrument
response

A model
intensity

]
e†ective

area
B

] background ,

for each energy channel, or more formally,

m
l
(h)\ ;

j | J

M
lj
j
j
(h)d

j
] j

l
B(hB) (9)

for l ½ L. L\ M1, . . . , L N, where the L ] J matrix M \
represents instrument response : a photon arriving inMM

lj
N

bin j has probability of being detected in observed bin l ;M
ljis the e†ective area of bin j, normalized sod \ (d1, . . . , d

J
)

that and is the expected counts due tomax
j | J

d
j
\ 1 ; j

l
B(hB)

the background that may be known from calibration in
space or parameterized in terms of hB. As with J, L may be
any subset of detector bins. In general, the counts are also
degraded by pile-up (e.g., Knoll 1989 ; see also Fig. 2). Here
we ignore pile-up, which is justiÐable for low-intensity or
spatially di†use sources (see the discussion in ° 5).

In the next several sections we describe the stochastic
models for each of the sources of photons in turn. This
includes both likelihoods that describe the sampling
distribution of the data (parameterized by h) and prior
distributions that allow us to incorporate scientiÐc
information about the likely parameter values. As described
below, the prior distributions are parameterized using the
hyperparameter /.

3.2. T he Continuum
The photon counts due to the continuum are modeled via

a GLM (McCullagh & Nelder 1989), speciÐcally a loglinear
model. That is, the log expected counts per keV per
maximum e†ective area are assumed to be a linear function
of a set of independent variables, which in turn areX

j
C,

typically functions of hence the notation f (hC, InE
j
, E

j
).

particular, we model the counts in bin j due to the contin-
uum, denoted asY

j
C,

Y
j
C Dd Poisson (dE

j
f (hC, E

j
)) , (10)

i.e.,11

p(Y
j
C o hC)\ e~jjC(j

j
C)YjC

(Y
j
C) !

with j
j
C\ f (hC, E

j
)dE

j
, (11)

independently for j ½ J. Here log f (hC, with hCE
j
)\ X

j
C hC,

a (PC] 1) vector parameter, a (1] PC) vector of inde-X
j
C

pendent variables, and PC the number of parameters in the
continuum model. Note that we are explicitly using a
Poisson process for the photon counts as opposed to an
often poor Gaussian approximation.

The Ñexible framework of the GLM allows us to adjust
the expected counts in bin j for any set of independent
variables. For example, several standard continuum models
are easily available. In particular, a power-law model is
obtained by setting for j ½ J so thatX

j
\ [1, log (E

j
)]

f (hC, E
j
)\ eh1CE

j
h2C \ aE

j
~b for j ½ J , (12)

where the familiar form of the power-law model in the last

11 Here and in the remainder of the paper we suppress the conditioning
on the initial information, I. That is, it should be understood that all
distributions implicitly condition on I.

expression is obtained by identifying (a, b) with (eh1C,[ h2C).It is easy to generalize this to handle more complicated
models. A break in the power law (i.e., a change point) can
be added at by setting log logE

*
X

j
\ [1, (E

j
),

so that(E
j
/E

*
)IME

j
[E

*
N],

f (hC, E
j
) \
Geh1CE

j
h2C

eh1CE
j
h2C`h3CE

p
~h3C

for E
j
¹ E

*
for E

j
[ E

*
for j ½ J . (13)

The factor ensures that f (hC, is continuous atE
p
~h3C E

j
) E

j
\

As a Ðnal example, we obtain an exponential continuumE
*
.

representing bremsstrahlung emission by setting X
j
C\ (1,

so[ E
j
)

f (hC, E
j
) \ eh1Ce~Ejh2C \ a

JT
e~Ej@kT for j ½ J , (14)

where (a, T )\ [eh1C(kh2C)~1@2, 1/kh2C].It is convenient to assume that the prior distribution on
hC is multivariate Gaussian with a diagonal variance
matrix. That is, withh

p
C Dd N(k

p
C, t

p
C) /C\ M(k

p
C, t

p
C) for

p \ 1 , . . . , PCN. The hyperparameter, /C, is set by the user
where is a ““ best guess ÏÏ of and is a measure (ink

p
C h

p
C t

p
C

squared standard deviations) of the error of this ““ best
guess.ÏÏ Large values of reÑect little prior information fort

p
C

h
p
C.

3.3. Emission L ines
Lines reÑect deviation in the smooth spectrum due to the

continuum because of photon emissions from various ions
present in the source. In particular, we model the energies of
photons due to line k ½ K, denoted asY

i
k,

Y
i
k Dd N(kk, tk) , (15)

i.e.,

p(Y
i
k o kk, tk) \ 1

J2ntk
e~(Yik~kk)2@2Òk , (16)

independently for i \ 1, . . . , Nk. Equation (15) represents a
line with intensity normalized to 1. The total line counts for
a perfect instrument (i.e., with e†ective area everywhere
equal to its maximum possible value) are denoted (N1, . . . ,
NK) and assumed to be independent Poisson random vari-
ables,

NkDd Poisson (j8 k) independently for k ½ K . (17)

Proper prior information for the lines and the continuum
is important for a reasonable Ðt when the spectral model
includes emission lines. In particular, prior information is
especially important for relatively weak lines, since it is diffi-
cult to distinguish a weak line from a chance Ñuctuation in
the continuum. Luckily, such prior information is often
scientiÐcally forthcoming in the form of knowledge (e.g.,
laboratory measurements and physics theory) of probable
sizes and locations of the various lines. We begin with the
line location and width (actually the variance), (kk, tk), for
which priors12 are assigned independently for each line

12 We choose this prior distribution partially because it is the so-called
conjugate prior distribution, i.e., the resulting posterior distribution is from
the same family as the prior distribution (e.g., Gaussian with updated
parameters). This property signiÐcantly simpliÐes model Ðtting with no
cost in terms of the accuracy of parameter estimation.
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k ½ K,

tkDd
l0k t0k
sl02

, and p(kk o tk)\ N
A
k0k ,

tk
i0k
B

, (18)

where is a variable that follows the s2 distribution withsl02degrees of freedom. We interpret the hyperparameter,l0 using the mean and variance of the/k \ (k0k , t0k , i0k , l0k ),distributions in equation (18). For example,

E(tk o/k)\ l0k t0k
l0k [ 2

for l0k [ 2 (19)

and

var (tk o/k)\ 2(l0k t0k )2/(l0k [ 2)2(l0k [ 4) for l0k [ 4 . (20)

(Recall that the units here are keV for means and keV2 for
variances.) Thus, the mean and variance of the prior for tk
may be tuned using and a small value of results int0k l0k ; l0ka wide, relatively noninformative prior. Since the data are
discrete, a priori we cannot allow the standard deviation of
the line to become too small (say below the PHA bin width
of the bin that contains the center of kk) since there is not
information in the data about the width of a line that is
narrower than one PHA channel. This is accomplished by
truncating the prior distribution of tk. For the prior on kk,
the mean and variance are given by and is thek0k i0k ; k0kmost probable location of the kth line, and calibrates thei0kuncertainty in the location of the kth line relative to the
width of the line.

An alternative interpretation of the priors is in terms of
additional hypothetical photons. Heuristically, the e†ect of
the prior on kk if tk were known would be the same as i0kphotons all known to be from line k and equal to Like-k0k .
wise, the e†ect of the prior on tk is the same as adding l0kphotons with average squared deviation from the center of
the line equal to t0k .We now turn to the prior distribution on and setj8 k
(independently) which has meanj8 k Dd c(/1k , /2j

8 ),13 /1k //2j
8

and variance Roughly speaking, the c prior con-/1k /(/2j
8 )2.

tains the same information as Poisson observations/2j
8

(with exposure equal to the source exposure) with a total of
counts. Since the data consist of a single observation/1k [ 1

(for each bin), can be interpreted as the weight put on/2j
8

the prior relative to the data ; induces a prior as/2j
8 \ 1

inÑuential as the data in the absence of absorption, blurring,
background, and lines. Thus, values of are typically/2j

8 > 1
recommended for noninformative priors. The hyperpara-
meters can be interpreted as the prior relative sizes of the/1klines. That is, is the prior proportion of line/1k /£k8

/1k
8

photons from line k. We deÐne the hyperparameter for line
k as the last element is not/k \ [k0k , i0k , lk, (p02)k, /1k , /2j

8 ] ;
indexed by k since it is constant for k ½ K.

3.4. Absorption and Correction for E†ective Area
From the viewpoint of our statistical algorithm, both the

telescope e†ective area and astrophysical absorption (e.g.,
absorption due to the ISM) are handled in the same way.
These two processes act independently on individual
photons and randomly prevent an (energy-dependent) pro-
portion of photons from being observed. The only essential
statistical di†erence is that only the absorption process has

13 We choose a c prior partially because it is conjugate to the Poisson
distribution.

unknown parameters. In particular, we suppose that the
probability that a photon is not absorbed (statistically
speaking ““ censored ÏÏ) by either of these two processes is

d
j
u(hA, E

j
) , where log u(hA, E

j
) \ X

j
A hA for j ½ J ,

(21)

where hA is a (PA ] 1) parameter, is a (1] PA) vector ofX
j
A

independent variables, and PA is the number of parameters
in the absorption model, u(hA, As an example, simpleE

j
).

exponential absorption can be written in this linear form
with hA a scalar and i.e., u(hA,X

j
A \ [1/E

j
, E

j
)\ e~hA@Ej.

For more complicated absorption models, typically con-X
j
A

sists of a tabulated absorption function.
The prior for hA is multivariate Gaussian, h

p
A Dd

independently for p \ 1, . . . , PA. The prior isN(k
p
A, t

p
A),

interpreted similarly to that for the continuum parameter
hC. We, however, truncate this prior to ensure

for each j, to ensure that the proportion ofexp MX
j
A hAN\ 1

photons not absorbed is less than 1. With appropriately
chosen this can be accomplished by assuming that eachX

j
A,

component of hA is negative.

3.5. Background
We assume the availability of a separate observation con-

taining background counts that can be used to model the
background spectrum and correct the source spectrum.
Rather than simply subtracting o† (a scalar multiple of) the
background counts, however, we account for the variation
due to the Poisson character of the counts. In particular, we
suppose that the background count in PHA channel l is

Y
l
B Dd Poisson (h

l
B) independently for l ½ L , (22)

where the unobserved quantity, is the counts in PHAY
l
B,

channel l that are due to background. We parameterize the
prior for as which we expect to be informa-h

l
B c(/

l,1B , /
l,2B ),

tive based on a pure background exposure. In particular, a
reasonable prior based on background counts wouldY

l
obs,B

be where q is the background exposure timec(Y
l
obs,B ] 1, q),

and area relative to the source exposure time and area.
In an extreme case, when the background is very well

determined, e.g., via a very long exposure, we may Ðx h
l
B\

and discard the prior distribution ; here we areY
l
obs,B/q

e†ectively setting the prior variance to 0. Note this is not
equivalent to subtracting o† the background because we
still allow for Poisson variability in the background counts
that contaminate the source counts. An alternative strategy
is to Ðt a parameterized model to the background. For
example, we might assume whereY

l
B Dd Poisson (j

l
B(hB, E3

l
)),

for l ½ L with a row vector oflog j
l
B(hB, E3

l
) \ X

l
B hB X

l
B

independent variables depending on the energy of PHA
channel This allows the background counts to bel, E3

l
.

modeled as a power law, broken power law, or any other
loglinear model.

4. APPLICATIONS

In this section we illustrate our methods and algorithms
using two data sets. We Ðrst analyze ASCA/SIS data of
high-redshift (z\ 3.384) quasar S5 0014]813 (Elvis et al.
1994) to illustrate the various summaries available in a rela-
tively straightforward MCMC analysis. The second
analysis involves an extremely low count stellar coronal
source (a TrA) and illustrates the power of Bayesian
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TABLE 2

FITTED VALUES AND CREDIBLE REGIONS FOR THE QUASAR DATA

Parameter Estimate 95% Interval

Power law . . . . . . . . . . . . . . . . . . . . 2.23 (1.90, 2.58)
Normalization . . . . . . . . . . . . . . . . 2.47E[3 (1.37E[3, 4.55E[3)
Absorption . . . . . . . . . . . . . . . . . . . 2.05 (1.43, 2.71)
Equivalent width (keV) . . . . . . 0.0282 (0.0023, 0.0788)

methods to combine information from various sources and
quantify the weak information available in this data.

4.1. Quasar S5 0014]813
A typical quasar X-ray spectrum can be described by an

absorbed power law. A Ñuorescent iron line (Fe Ka) emitted
at energy between D6.4 and 6.8 keV if detected can be a
signature of a reÑection component and its ionization state
(George et al. 2000). Quasar S5 0014]813 et al. 1981)(Ku� hr
at redshift z\ 3.384 is among the highest X-ray Ñux
quasars known with zD 3. S5 0014]813 was observed with
ASCA on 1993 October 29 with an exposure time of 22.8 ks
in the SIS0 detector (Elvis et al. 1994). Here we apply our
model to this data to illustrate the method and look for
signatures of the iron emission line.

The spectral data were extracted with the standard
screening criteria (Elvis et al. 1994), and standard response
matrices were used.14 We use all of the original 512 PHA
instrument channels except the unreliable channels below
D0.5 keV and above D10 keV. In addition, we do not
group any channels. (Channels are usually grouped in order
to justify the use of the default s2 techniques with their
Gaussian assumptions.) As is allowed with a Poisson model,
we instead use only the original PHA bins. The source
model included the exponential shape of Galactic absorp-
tion (see ° 3.4) and a power-law continuum (i.e., eq. [12])
with a narrow emission line at 1.45 keV (observed frame ;
D6.7 keV rest frame). We accounted for background using
a background Poisson process with intensity equal to the
(rescaled) background counts in each PHA channel. Flat
priors were used on all model parameters.

To estimate the four model parameters (i.e., the power-
law, normalization, and exponential absorption parameters
and the equivalent width15 of the line), a sample from their
posterior distribution was obtained by running three
MCMC chains using dispersed starting values. The chains
showed excellent mixing (as measured with see ° A2)RŒ 1@2 ;
after 2000 draws. In the Monte Carlo evaluation, the second
half of each of the chains was used along with an additional
run of 2000 draws from each chain, for a total of 9000
draws.

Summaries of the model Ðt appear in Table 2 and Figures
3 and 4. The parameter estimates are posterior means com-
puted using a transformation that makes the marginal pos-
terior distributions more symmetric and hence the posterior
mean a more informative summary [i.e., ln(normalization)
and sqrt(equivalent width)]. In particular, if we represent
the draws of the normalization parameter as Mh*t+, t \

9000N, the point estimate of this parameter was com-1, . . . ,

14 ftp ://legacy.gsfc.nasa.gov/caldb/data/asca/sis/cpf/94nov9.
15 The equivalent width is deÐned as j8 k/f (hC, kk).

puted as

exp
G 1
9000

;
t/1

9000
ln (h*t+)

H
\ 9000S

<
t/1

9000
h*t+ , (23)

the geometric mean. The credible intervals are computed
using the 0.025 and 0.975 quantiles of the draws and are
invariant to (monotonic) transformations. Pairwise credible
regions appear in Figure 3. The scatter plots illustrate the
regions of highest posterior probability by plotting the
Monte Carlo draws : Pr (h ½ R) is approximately equal to
the proportion of points in that region. The gray-scale
images give Monte Carlo estimates of the (darker) 50% and
(lighter) 90% marginal posterior regions. The grainy char-
acter of the images is due to the Monte Carlo approx-
imation. Even with this relatively large data set and with the
use of transformations, the non-Gaussian character of the
posterior is evident. We expect that higher dimensional
marginal posterior distributions are even less Gaussian in
character. Figure 4 compares the Ðtted source model cor-
rected for e†ective area and absorption with the PHA
counts and illustrates the residual for each PHA channel
and the stability of the estimated continuum.

4.2. Hybrid-Chromosphere Supergiant Star a TrA
Unlike the simple power-law spectrum of the quasar in

the previous section, stellar coronal spectra are complicated
by a bremsstrahlung continuum and the presence of numer-
ous emission lines. Such complex spectra are much more
difficult to model, and in addition, the intensity of the
bremsstrahlung continuum drops exponentially at high
energies, resulting in very few counts. Analyzing such
spectra is however crucial to the understanding of coronal
structure, mechanisms of coronal heating, etc. A case in
point is the corona of the hybrid supergiant star a TrA (HD
150798, K4II, B[V \ 1.44, which shows evi-V \ 1m. 92),
dence of both strong magnetic activity as indicated by
X-ray emission (Brown et al. 1991 ; Kashyap et al. 1994) and
stellar outÑow seen in absorption proÐles (Hartmann,
Dupree, & Raymond 1981). X-ray observations with the
ROSAT /PSPC (Kashyap et al. 1994) indicate that its
corona is dominated by transient, unstable plasma that is
conÐned by magnetic loops that are closed on short length
scales (Rosner et al. 1994). Constraining the maximum tem-
peratures present in the corona is therefore of primary
importance. Here we use data obtained with ASCA, at
higher energies than ROSAT , to model the spectrum. The
low number of counts detected at high energies makes this
spectrum difficult to analyze by traditional means, and we
must bring to bear the full power of a hierarchical Bayesian
analysis in order to constrain the maximum temperatures
present in the corona.

Supergiant star a TrA was observed with ASCA in 1995
March for B34 ks. During this observation, the source
exhibited no Ñares. The count rate was steady and corre-
sponded to the quiescent state identiÐed with ROSAT .

We model the high-energy region of the ASCA spectrum
(2.5È7.5 keV) as a combination of a bremsstrahlung contin-
uum

Norm

JT
e~E@kBT , (24)

where T is the electron temperature, E is the energy in keV,
is the Boltzmann constant, and Norm is a normalization ;kB
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FIG. 3.ÈPosterior distributions of pairs of parameters obtained via MCMC. The plots show pairwise marginal posterior distributions for the model
parameters in the analysis of quasar S5 0014]813. The plots in the upper right are scatter plots of the Monte Carlo draws and indicate areas of highest
posterior probability. The plots in the lower left are gray-scale images of the Monte Carlo approximations to 50% (darker) and 90% (lighter) credible regions.
The text along the diagonal labels the axes for each of the plots.

and a number (D10) of narrow emission lines located at the
positions of known strong lines whose widths and
locations16 are Ðxed, but intensities are allowed to vary.
The units of Norm are counts keV~1 cm~2 s~1. Because of
the low counts, we Ðt a power law to the background.

We apply the above model to SIS0 data (D28 ks) and the
combined data from the 2 GIS detectors (D33 ks in each).
Note that the very low counts present in these data (D150
counts in SIS0, D300 in GIS) preclude any ““ traditional ÏÏ
analysis : it is only by using the full Bayesian machinery that
we can derive useful results from such data.

We carry out the analysis in two steps :

1. Choose highly noninformative priors on the parame-
ters to analyze SIS0 data : (1) on normalization, p(Norm/

16 Line location can be known only to the resolution of the instrument,
and hence each of the model lines represents the sum of a large number of
lines within the resolution element ; we Ðnd that we only exclude less than
5% of the line Ñux in the energy range considered by this approximation.

T 1@2) is such that it lies in between 10~9 and 10~1 with a
90% probability ; (2) on temperature, p(1/kT ) is such that it
is always positive and also is nearly Ñat in the temperature
range of interest ; and (3) on line intensity, is such that ap(j8 k)
priori all the lines have the same intensity and the
maximum total counts due to lines are 100. (The total of
source]background counts for the SIS0 observation is
only 154 ; atomic emission-line models indicate that for the
temperature and energy range of interest, 100 corresponds
to the maximum possible contribution to the spectrum from
lines.) We choose Gaussian forms for the Ðrst prior distribu-
tion and a gamma prior for the last ; these priors are illus-
trated as solid lines in Figure 5. Thus,

p
A
ln
ANorm

JT

BB
\ N(k \ [9.21, p \ 5.58) , (25)

p
A 1
kT
B

\ N(k \ 0.95, p \ 2.5) , (26)



FIG. 4.ÈQuasar S5 0014]813 model Ðt. This plot gives an overview of the Ðtted model. The Ðrst panel compares the Ðtted source model (corrected for
e†ective area and absorption, but not the instrumentÏs photon response matrix) with the observed PHA counts. The second panel gives the residual for each
PHA channel, which were computed by subtracting o† background and standardizing by the model standard deviation. The Ðnal plot illustrates the stability
of the continuum estimate.

FIG. 5.ÈUsing ASCA/SIS to compute the prior. Here Lambda is the expected model counts from lines and omega is the ratio of the total counts in the
lines to the total counts in the spectrum (correcting for the e†ects of absorption and instrument response). Transformations of the parameters that produce a
distribution near to the Gaussian are displayed. The listed means and credible intervals, however, refer to the original parameters. The solid lines in these
plots represent the relatively di†use priors used to compute the posterior distributions represented by the histograms based on the SIS0 observation. These
posterior distributions were in turn used to choose the priors for the GIS data after some dispersion was added, as represented by the dotted curves. We do
not specify the prior for the proportion of source photons from the lines, ), but rather this prior is implied by the other priors. The solid line is an
approximation based on sampling from the prior and distributing the SIS0 counts to the continuum and lines after correcting for background.
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FIG. 6.ÈSome marginal posterior distributions. Using the priors computed with SIS0 data (solid lines) we Ðtted the source model to the GIS data. The
resulting marginal posterior distributions are illustrated here using normalizing transformations. The estimates and credible intervals are on the original
scales.

and

p(j8 k)\ c(/1k \ 0.11, /2j
8 \ 0.0033) for k \ 1, . . . , 10 .

(27)

2. Use the posterior distribution resulting from the above
step to deÐne more informative priors to analyze GIS data.
These priors also correct for the di†erence in exposure time
and average e†ective area between the SIS0 and the GIS

FIG. 7.ÈSome bivariate marginal posterior distributions. These plots are as described in Fig. 3 and illustrate pairwise credible regions for the various
model parameters. Again the text along the diagonal labels the axes for each of the plots.
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FIG. 8.ÈModel Ðt. These plots are as described in Fig. 4, except the plot of residuals is replaced by a plot of the estimated continuum. Note the instability
of the continuum due to the low counts.

data. The posterior variances from the initial analysis were
increased somewhat when computing the priors for the
second analysis. These priors are illustrated as solid lines in
Figure 6. Thus,

p
A
ln
ANorm

JT

BB
\ N(k \ [9.97, p \ 1.74) , (28)

p
A 1
kT
B

\ N(k \ 0.41, p \ 0.43) , (29)

and

p(j8 k)\ c(/1k \ 0.12, /2j
8 \ 0.025) for k \ 1, . . . , K .

(30)

We ran three Markov Chains in each analysis to obtain
draws from the posterior distribution of [ ln (Norm/T 1@2),
1/kT , In both analyses there was excellentj8 1, . . . , j8 10].
mixing after 6000 draws, and we used the second half of
each chain for a total of 9000 Monte Carlo draws.

The results of the analysis are shown in Figures 5È8. (In
the Ðgures the parameter ) refers to the proportion of
source photons from the lines and We Ðndj \ £

k/110 j8 k.)
that the plasma temperature is K (Fig. 4).D19

;11:64 ] 106
Such a large value (cf. D2 ] 106 K in the quiet solar
corona) clearly lends credence to the idea that the corona
on a TrA is dominated even in quiescence by Ñarelike
events.

As a by-product of our analysis, we also obtain the Ñux in
the modeled lines relative to the continuum. In principle,
this allows us to constrain the metallicity for the Ðrst time in
the corona of a TrA by comparing the observed ratio of the
line and continuum Ñuxes17 with that derived from thermal
emission models computed over the same temperature
range (Drake & Kashyap 1998 ; Kashyap et al. 1998). The
photospheric metallicity (Taylor 1999) is [Fe/H]\ 0.3, and

17 Incompleteness in atomic line databases (see Brickhouse 1998) con-
tributes to an error of less than 5% on the line-to-continuum ratios calcu-
lated here. They are negligible compared to the measurement error.
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we derive for the coronal metallicity [Fe/H]\ 0.4~0.6`1.1,
where the quoted range represents posterior deviations at 1
p. While the uncertainty on our measurement is quite large
(it is essentially unbounded at high metallicity), it is encour-
aging that the corona does not appear to be metal abun-
dance deÐcient (see Drake 1996).

5. DISCUSSION

The power of the Bayesian methods illustrated here lies in
their ability to combine information and to model directly
the highly structured hierarchical features of the data, both
in a principled manner. These features are illustrated in the
a TrA example. First, by combining information from
several detectors, we are able to extract information from
the data regarding the plasma temperature. More generally,
Bayesian methods allow for the incorporation of various
forms of quantiÐable prior information through the prior
distribution. Of course, results are then conditional on the
prior information : if these priors are not trusted, the conclu-
sions cannot be trusted either. On the other hand, if the
prior information is accepted as reasonable, the posterior
distribution should be accepted as a conglomeration of
prior scientiÐc information and the data. Second, the
extremely low counts in the a TrA data, along with many
free parameters (10 emission-line intensities and two contin-
uum parameters), illustrate a situation in which methods
based on the Gaussian distribution and the central limit
theorem are simply without justiÐcation. Methods that
account for the Poisson (e.g., highly variable) character of
the data have a sound mathematical basis and, in contrast
to standard methods such as s2 Ðtting, are equipped to
handle such data.

The hierarchy in the model described in ° 3 can be
extended to account for various more complicated features
in the data, e.g., absorption lines, pile-up, and joint spatial,
spectral, and temporal structure. Dealing with pile-up is
perhaps the most important outstanding data-analytic chal-
lenge for Chandra. Conceptually, however, there is no diffi-
culty in addressing pile-up in a Bayesian framework. After
accounting for other features in the data such as instrument
response, background, and absorption, we simply need to
separate the observed counts into multiple counts of lower
or equal energy based on the (current draw of the) spectral
and spatial model. The difficulty lies in computation.
Simply enumerating the set of photons that could result in a
particular observed event, let alone their relative probabil-
ities, is an enormous task. Thus, we believe there is great
promise in Monte Carlo techniques, which, if carefully
designed, can automatically exclude numerous possibilities
with minute probability. Although there remains much
work to be done, Bayesian methods in conjunction with
MCMC algorithms o†er a practical and innovative solu-
tion to many outstanding data-analytic challenges in astro-
physics.
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algorithms, Richard Edgar and Paul Gorenstein for helpful
comments on an earlier draft, and the referee, Je† Scargle,
whose careful reading and detailed suggestions have greatly
improved the paper.

APPENDIX A

MARKOV CHAIN MONTE CARLO METHODS

A1. THE DATA AUGMENTATION ALGORITHM

The data augmentation algorithm is designed to obtain a sample from the posterior distribution for use in Monte Carlo
integration. The strategy of the algorithm is to embed the posterior distribution, p(h o Y ), into a distribution in a large space,
p(h, Ymis o Y). If we can obtain a sample from this second distribution, we need only discard the sampled values of Ymis to
obtain the desired sample from the posterior. The quantity Ymis can be any unobserved quantity ; it is referred to as ““ missing
data ÏÏ for historical reasons. For clarity we denote the observed data Y obs and the augmented data Y aug \ (Y obs, Ymis). In
order to obtain a sample from p(h, Ymis o Y obs), the data augmentation algorithm uses an iterative sampling scheme that
samples (1) Ymis conditional on the model parameters and Y obs and (2) the model parameters given Y aug. Clearly, the
algorithm is most useful when both of these conditional distributions are easily sampled from. The iterative character of the
resulting chain naturally leads to a Markov chain, which we initialize at some starting value, For t \ 1, . . . , T , where T ish*0+.dynamically chosen, we repeat the following two steps :

1. Draw from p(Y aug o Y obs,Y *t+aug h*t~1+).2. Draw fromh*t+ p(h o Y *t+aug).

Under certain regularity conditions (for details see Meyn & Tweedie 1993 ; Roberts 1996 ; Tierney 1994, 1996) the stationary
distribution of the resulting Markov chain is the desired posterior distribution, i.e., for large t, approximately followsh*t+p(h o Y obs).

To illustrate the utility of the data augmentation algorithm, we return to the simple background contamination model
introduced in ° 2.1. The choice of Y aug is clear in the example ; we set Y aug \ MY , Y S, Y BN, where Y is the total counts, Y S is the
unobserved source counts from the source exposure, and Y B is the counts from the pure background observation. (i.e., we can
consider Y S to be the missing data). With this choice of Y aug, both p(Y aug o Y obs, h) and p(h o Y aug) are easy to sample, and thus
the data augmentation algorithm is easy to use ; here Y obs\ MY , Y BN and h \ (jB, jS). Given some the twoh*0+\ (j*0+B , j*0+S ),
steps of the data augmentation algorithm at iteration t become as follows :
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1. Draw fromY *t+S

Y S o h*t~1+, Y obsDd binomial
A
Y ,

jS

jB] jS

B
, (A1)

i.e.,

p(Y S o h*t~1+, Y obs)\(
t
:

Y
Y S

)
t
;
(Y S)jS@(jB`jS)(Y [ Y S)jB@(jB`jS) . (A2)

2. Draw

j*t+B o Y *t+aug Dd c(aB] Y[ YS, bB] 1) , (A3)

i.e.,

p(j*t+B o Y *t+aug)\
[j*t+B (bB] 1)](aB`Y~YS)e~jB*t+(bB`1)

j*t+B !(aB] Y [ Y S)
, (A4)

where aB and bB are typically chosen using the pure background observation as described in ° 2.1, and

j*t+S o Y *t+aug Dd c(aS] Y S, bS ] 1) . (A5)

In the Ðrst step, we stochastically divide the source count into source counts and background counts based on the current
values of jB and jS. In the second step, we use this division to update jB and jS. Markov chain theory tells us that the iteration
converges to the desired draws from the posterior distribution.

By selecting a starting value and iteratively sampling according to equations (A1), (A3), and (A5), we obtain a Markov chain
that delivers a dependent sample from the posterior distribution upon convergence. In the next section we use the data
augmentation algorithm to illustrate the important practical issues of selecting starting values, detecting convergence, and
accounting for the dependency in the sample.

A2. STARTING VALUES, CONVERGENCE, AND MULTIPLE CHAINS

An important and difficult aspect of MCMC methods in practice is ascertaining convergence to stationarity. Since the
stationary distribution of the Markov chain is the posterior distribution of interest, we can consider to be aMh*t+, t [ T0N(dependent) posterior sample, which can be used for Monte Carlo integration. Thus, determining and is critical forh*0+ T0valid inference. There is a large and growing literature on these related subjects, and we refer interested readers to recent texts
on the subject by Gelman et al. (1995), Carlin & Louis (1996), and Gilks et al. (1996), as well as the review article on
convergence by Cowles & Carlin (1996). Here we brieÑy outline the approach that we Ðnd most fruitful.

As proposed by Gelman & Rubin (1992), we suggest running multiple Markov chains with a variety of starting values
spread throughout the parameter space. This is a useful procedure since a single chain can appear to have converged when
actually it has only settled temporarily in one region of the parameter space. This is illustrated with the Markov chain in
Figure 9. The three chains show the draws of a variance parameter for a random e†ects model (for details see van Dyk &
Meng 2001). Note that although chain 3 appears relatively stable, it is far from convergence during the Ðrst 10,000 draws. This
is evident when it is compared with the other chains, but less so when we look only at the beginning of chain 3. It is
recommended that the starting values for the several chains be spread broadly in the parameter space (relative to the region of
high posterior probability). This can often be accomplished by roughly mapping the posterior, for example, using estimates
and errors based on the s2 estimates, posterior modes, or maximum likelihood estimates. (See van Dyk 2001 for details on the
computation of posterior modes and maximum likelihood estimates for our spectral model.) Once such ““ overdispersed ÏÏ
starting values are obtained, we can run the several chains until all converge to the same region of the parameter space. (There
may be more than one mode in the posterior, in which case the chains may converge to di†erent modes, i.e., di†erent regions

FIG. 9.ÈSeveral chains from a random e†ects model. Notice that chain 3 appears to have converged during the Ðrst 10,000 iterations. Comparison with
chain 1 and chain 2, however, makes it clear that chain 3 did not converge until after iteration 10,000.
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of the parameter space.) The statistic of Gelman & Rubin (1992) measures the relative size of the total variance in theRŒ 1@2
draws of a univariate function of the parameter and the average within chain variance of the same function, i.e.,

JRŒ \
S[(T [ 1)/T ]W ] (1/T )B

W
, (A6)

where B is the between chain variance, W is the mean within chain variance, and T is the number of draws. If the variance
within each chain is as great as the total variance in all the draws, i.e., is near 1, then we can be conÐdent that all theRŒ 1@2
chains have converged to the same region of the parameter space. Typically we compute using the last half (or two-thirds)RŒ 1@2
of each of the chains. Once an acceptable level of is obtained (say below 1.2), we omit the Ðrst half (or third) of the chain inRŒ 1@2
all further analysis. If we have several starting values that cover a large enough region of the parameter space, we can be
conÐdent that the chains sample all areas with high posterior probability and thus the Monte Carlo approximations are
unbiased estimators of the quantities they estimate.

The variance of the Monte Carlo approximations is a function of the posterior variance of the quantity being approx-
imated, the posterior sample size (i.e., and the autocorrelation function of the Markov chain. Typically Monte CarloT [ T0),errors are small relative to the posterior variance with several thousand posterior draws and thus are of little consequence.
Monte Carlo error can be quantiÐed by repeating the analysis for the Ðrst half and second half of the Markov chain and
noting if the results are substantively di†erent. See Roberts (1996) and references therein for details and extensions.

A3. THE GIBBS SAMPLER

In this and the next section we describe two additional MCMC methods, which are designed to deliver a sample from the
posterior distribution and are often useful when the data augmentation algorithm is not practical. The Gibbs sampler can be
viewed as an extension of the data augmentation algorithm in which we wish to sample from p(h o Y obs), and the vector, h, can
be viewed as a combination of model parameters and ““missing data.ÏÏ (In many instances, there is no ““missing data.ÏÏ) We
partition h into where may be a scalar or vector quantity for each p. The Gibbs sampler again starts with some(h1, . . . , h

P
), h

pstarting value and at iteration t samples according to the following conditional distributions :h*0+
1. Draw (h1)*t+ Dd p(h1 o (h~1)*t+, Y obs) ,

2. Draw (h2)*t+ Dd p(h2 o (h~2)*t+, Y obs) ,

<

P. Draw (h
P
)*t+ Dd p(h

P
o (h~P

)*t+, Y obs) ,

where That is, we draw each component of h in turn conditional on(h~p
)*t+\ [(h1)*t+, . . . , (h

p~1)*t+, (h
p`1)*t~1+, . . . , (h

P
)*t~1+].the current values of the rest of h and the data.

The advantage of the Gibbs sampler over the data augmentation algorithm is that in many settings additional conditioning
results in simpler draws. The disadvantage is that the resulting Markov chains tend to have higher autocorrelation and are
slower to converge to stationarity as P, the number of steps per iteration, increases.

A4. THE METROPOLIS-HASTINGS ALGORITHM

As a Ðnal extension, we consider the case in which one (or more) of the steps in the Gibbs sample involves a conditional
distribution that is not easy to sample. The Metropolis-Hastings algorithm (Metropolis & Ulam 1949 ; Metropolis et al. 1953 ;
Hastings 1970) replaces the conditional distribution by some convenient ““ jumping rule ÏÏ that approximates the conditional
distribution. A proposal draw is sampled according to the jumping rule and is either accepted or rejected (in which case, the
Markov chain is Ðxed at the previous draw) according to a rule that maintains the desired stationary distribution (see, e.g.,
Gelman et al. 1995 for details).

APPENDIX B

DETAILS OF THE MCMC ALGORITHM

B1. DATA AUGMENTATION

The algorithms used to Ðt the model described in ° 3.1 rely on the method of data augmentation. In this section we detail
the layers of the data augmentation scheme we use. We aim to construct an idealized data set for which model Ðtting is a
relatively easy task. That is, given the augmented data, we can easily sample the model parameters. Likewise, given the model
parameters, we can easily sample the augmented data, and thus we can construct a data augmentation algorithm as described
in ° A1. Suppose, for example, that a data set uncontaminated by background or instrument response were available. Clearly,
model Ðtting would be easier. We deÐne an even larger data set that contains the unbinned, true, and blurred energies of all
photons that would have arrived at the detector if there had been no absorption and if we were using a perfect instrument with
the e†ective area equal to its maximum value over all energies used. This data set also includes a variable indicating
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absorption and loss to reduced e†ective area18 and a variable indicating the source of each photon, i.e., background (B),
continuum (C), and each of the K line proÐles ; the set of sources is denoted as S\ MB, C, 1, 2, . . . , KN. This idealized data set
is summarized in Table 3.

The data augmentation scheme is illustrated in Figure 10, in which squares and circles represent observed and unobserved
(““ augmented ÏÏ) quantities, respectively. Given the model parameter h, we obtain a sample set of photon energies, DY s\

for s ½ S (see the third column of Fig. 10), representing the undegraded ““ augmented ÏÏ data ; Ns is the total(DY 1s , . . . , DY
Nss )@

count for source s. (As a mnemonic device, more dots in the accent above Y signiÐes further removal of a quantity from
actual observable quantities.) Here contains the exact energy of all photons attributed to line k before absorption, withDY k
maximum e†ective area and no background contamination. (The background photon energies, do not appear in Fig. 10DYB,
because we model the detected counts [e.g., in PHA channels] rather than true counts ; see ° 3.5.) The Ðrst two columns of
Figure 10 represent the hyperparameters and model parameters detailed in °° 3.2È3.5.

18 Absorption and e†ective area are handled together, so we need only one indicator variable ; see ° 3.4.

TABLE 3

VARIABLES ASSOCIATED WITH EACH PHOTON, FOR i\ 1, . . . , N

Variable Notation Range

Photon energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DY
i

Positive, measured in keV
Indicator for background . . . . . . . . . . . . . . . . . . . Z

i
B 1 for background photons

0 for other photons
Indicator for continuum . . . . . . . . . . . . . . . . . . . . Z

i
C 1 for continuum photons

0 for other photons
Indicator for line k, for k \ 1, . . . , K . . . . . . Z

i
k 1 for photons from line k

0 for other photons
Indicator for absorption . . . . . . . . . . . . . . . . . . . . Z

i
A 1 for absorbed photons

0 for other photons

FIG. 10.ÈGraphical representation of the data augmentation scheme. Here / represents hyperparameters, h model parameters, true photon energies,DY Y�
binned energies, binned true photon energies after absorption accounting for e†ective area, Y source counts in PHA channels, Y obs the observed counts, MY0
the instrument response matrix, d the e†ective area vector, and XA and XC independent variables describing absorption and continuum, respectively ; circles
represent unobserved quantities, and squares observed quantities ; details of the subscripts and superscripts are given in the text. The Ðgure illustrates the
interplay of the various model parameters, hyperparameters, observed quantities, and data augmentation. As an example, the Ðrst arrow in the row labeled
““ background ÏÏ corresponds to the relationship between the background hyperparameters, /B, and the background intensities, hB, e.g., Theh

l
B Dd c(/

l,1B , /
l,2B ).

second arrow corresponds to the Poisson nature of the background counts (see eq. [22]). The Ðnal background arrow illustrates the background contami-
nation of the observed PHA counts.
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TABLE 4

SUMMARY STATISTICS FOR THE SPECTRAL MODEL

Variable Notation Range

Unbinned energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DY s Positive, measured in keV, s ½ S

Binned energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y�
j
s Counts for j ½ JS ½ S

Binned energies after absorption . . . . . . . . . . . . . . . . . Y0
j
s Counts for j ½ JS ½ S

Blurred PHA counts without background . . . . . . Y
l
` Counts for l ½ L

Observed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y
l
obs Counts for l ½ L

The array of energies represented by are binned into instrument-speciÐc energy bins to obtain a sample spec-DY s
trum, (see the fourth column in Fig. 10). In particular,Y� s \ (Y� 1s , . . . , Y�

J
s )@

Y�
j
s \ ;

i/1

Ns
IMDY

i
s ½ B

j
N for j ½ J and s ½ S , (B1)

where is the jth energy bin. The Ðrst plot in Figure 2 illustrates the undegraded counts from the continuum and lines,B
j for the artiÐcial data set, where the notation SCB indicates set subtraction, i.e., the set S with B removed.Y�

j
` \ £

s|SkB
Y�

j
s

The solid line represents which equals the term in square brackets in equation (8). Because of absorption andE(Y�
j
` o h),

e†ective area, a portion of these photons are not detected. The sample counts after absorption (and accounting for e†ective
area) are depicted in the Ðfth column of Figure 10, by withY0 s \ (Y0 1s , . . . , Y0

J
s )@

Y0
j
s \ ;

i/1

Ns
IMDY

i
½ B

j
N(1[ Z

i
A) for j ½ J and s ½ S . (B2)

As described in Table 3, is 1 if photon i is absorbed and 0 otherwise. The second plot in Figure 2 represents withZ
i
A Y0 s

plotted as the solid line (see eq. [8]). The next two circles in Figure 10 represent the adding of sources andE(Y0
j
` o h)\ j

j
(h)d

jthe blurring (i.e., instrument response) process. In particular, The blurred data, are aY0 `\ £
s|SkB

Y0 s. Y`\ (Y 1`, . . . , Y
L
`)@,

stochastic function of (i.e., a multinomial distribution19),Y0 `
Y` Dd ;

j | J

multinomial (Y0
j
`, M

j
) , (B3)

where and is the jth column of M ; Y` appears in the third plot of Figure 2 withY0 ` \ (Y0 1`, . . . , Y0
J
`)@ M

j
E(Y

l
` o h)\

The counts due to background contamination are denoted as and the observed data are£
j|J M

lj
j
j
(h)d

j
. Y0 B\ (Y0 1B, . . . , Y0

L
B)@,

denoted as with for l ½ L ; Y obs is illustrated in the Ðnal plot of Figure 2 and hasY obs \ (Y 1obs, . . . , Y
L
obs)@, Y

l
obs\ Y

l
B] Y

l
`

expectation m(h) (see eq. [9]).

B2. THE ALGORITHMS

In this section we present the details of the MCMC algorithm that we use to sample from the posterior distribution for our
spectral model. We use an algorithm that alternately draws the ““ missing data ÏÏ given the model parameters and the
parameters given the ““ missing data.ÏÏ Both draws are conditional on the observed photon counts and the prior hyperpara-
meters, /\ M/A, /s, s ½ SN. In particular, we deÐne two groups : (1) the augmented data, Y aug \ MY obs, YB, Y`, Y0 , Y� , DYN,
where are the binned true energies, after absorption and accounting for e†ective area,Y0 \ MY0 s, s ½ SCBN Y� \ MY� k, k ½ KN
are the binned true energies, and are the (unbinned) true energies ; and (2) h \ MhA, hs, s ½ SN consists of theDY \ MDY k, k ½ KN
various model parameters. Using BayesÏs Theorem, we are able to derive the necessary conditional distributions, which are
described below.

First, we draw Y aug from p(Y aug o Y obs, h) ; the draw is broken into the following Ðve steps :

1. Independently separate the background counts,

Y
l
B o Y obs, h Dd binomial

A
Y

l
obs, h

l
B

m
l
(h)
B

for l ½ L . (B4)

2. Restore the blurred photons,

Y0 `o YB, Y obs, h Dd ;
l | L

multinomial
A
Y

l
`,

d1 j1(h)M1l, . . . , d
J
j
J
(h)M

Jl
;

j | J
d
j
j
j
(h)M

jl

B
, (B5)

where Y
l
` \Y

l
obs[ Y

l
B.

3. Independently separate the counts into line and continuum counts,

(Y0 C, Y0 1, . . . , Y0 K) o Y0 `, YB, Y obs, h Dd multinomial
A
Y0

j
`,

[d
j

f (hC, E
j
), j8 1p

j
1 . . . , j8 Kp

j
K]

d
j

f (hC, E
j
) ] ;

k/1K j8 kp
j
k

B
for j ½ J , (B6)

where see equation (8).p
j
k\ p

j
(kk, tk) ;

19 The multinomial (n, p) distribution is a distribution for nonnegative integer valued random vectors and generalizes the binomial distribution. In
particular, a vector randomly selected from this distribution sums to n and its expected value is np, where p is a probability vector that sums to 1.
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4. Independently restore the absorbed counts in the lines,

Y�
j
k o Y0 , YB, Y obs, h Dd Y0

j
k ] Poisson (j8 kp

j
k[1[ d

j
u(hA, E

j
)]) , (B7)

for j ½ J and k ½ K.
5. Independently deround the photon energies from the lines,

DY
i
k o Y� , Y0 , YB, Y obs, h Dd N(kk, tk), truncated to B

j
, (B8)

for i\ 1, . . . , and k ½ K with We note that this draw is omitted for line k if tk is Ðxed at zero, i.e., if line kY�
`
k Y�

`
k \ £

j | J
Y�

j
k.

is a delta function. (In this case kk is not Ðtted by the algorithm).

Second, we draw h from p(h o Y aug, /), taking advantage of conditional independence among several vector components of
h :

1. Independently draw the background model parameters,

h
l
B o Y aug , /Dd c(/

l,1B ] Y
l
B, /

l,2B ] 1) . (B9)

2. Draw the variance and mean independently for each line proÐle,

tk o Y aug , /Dd
1

slk0`Y> k̀
2

C
l0k tÕk ] ;

i/1

A
DY

i
k [DY

`
k

Y�
`
k

B2] i0k Y�
`
k

i0k ] Y�
`
k

A
k0k [DY

`
k

Y�
`
k

B2D
,

Y> k̀ (B10)

kk o tk , Y aug , /Dd N
Ai0k k0k ]DY

`
k

i0k ] Y�
`
k

,
tk

i0k ] Y�
`
k

B
, (B11)

where Again, this step is omitted for line k if it is assumed to be a delta function.DY
`
k \;

i/1
Y> k̀ DY

i
k.

3. Draw the line intensities independently for each k,j8 k,
j8 k o Y aug , /Dd c(Y�

`
k ] /1k , 1 ] /2j

8 ) independently for k ½ K . (B12)

4. Draw the parameters for the GLM for the continuum and absorption models. For this Ðnal step, we condition only on
Y obs, YB, Y`, and rather than Y aug. We expect this substitution to improve the rate of convergence of the sampler.Y0 `,
Because the conditional distribution is not from a standard family, we use a Metropolis-Hastings step. In particular, we note
that

Y0
j
` o h, k8 Dd Poisson

A
d
j
exp (X

j
A hA) ;

k/1

K j8 kp
j
k
B

for k ½ K , (B13)

Y0
j
C o h, k8 Dd Poisson (dE

j
d
j
exp (X

j
C hC] X

j
A hA)) for j ½ J , (B14)

where Since given (h1, . . . , hK) the log of each Poisson parameter di†ers from a linear combination of hC andk8 \ (j8 1, . . . , j8 K).
hA by a known constant, the conditional posterior mode can easily be computed using a minor modiÐcation of an iteratively
reweighted least-squares algorithm (e.g., Thisted 1988). This algorithm can also account for the prior information described in
° 3.2 and reports the curvature of the log posterior at the mode. A multivariate t-distribution with 4 degrees of freedom with
the appropriate mode and (perhaps inÑated) curvature can be used as a jumping distribution to generate a proposal for the
next sample from the conditional distribution. The relative mass of the jumping distribution and actual conditional distribu-
tion of hC and hA at the previous draw and proposed draw are combined to determine if the proposal should be accepted or
rejected (in which case the previous draw is reused). Several (Ðve to 10) proposals are drawn at each iteration. We note that the
same procedure can be used to Ðt a GLM to the background counts (as was done in ° 4.2).

Although the MCMC methods detailed above may seem inhibiting as a whole, each of the required steps is quite simple.
The power of the MCMC methods described here (e.g., the Gibbs sampler) lies in their ability to break complicated
model-Ðtting tasks into a succession of relatively simple tasks. Our general strategy is to use BayesÏs Theorem to derive a
posterior distribution that hierarchically accounts for the complexity both in the posited model and in data collection. We
then use modern statistical algorithms that devolve model Ðtting into a sequence of relatively simple steps. We believe that
this is a powerful strategy for dealing with the ever-increasing power and sophistication of todayÏs astronomical instruments.

APPENDIX C

INTERNET RESOURCES

There are several internet sites where one can Ðnd papers describing Bayesian methods and related software. The MCMC
preprint service20 and STATLIB21 Web sites are both large general statistical sites that o†er various software, preprints, and
links that may be of interest to astrophysicists. Three Web sites (that we know of) aim speciÐcally at the interface of
astrophysics and statistics.22

20 http ://www.mcs.surrey.ac.uk/Personal/S.Brooks/MCMC.
21 http ://lib.stat.cmu.edu.
22 http ://www.fas.harvard.edu/Dvandyk/astrostat.html, http ://astrosun.tn.cornell.edu/sta†/loredo/bayes, http ://www.astro.psu.edu/statcodes.
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