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Fitting Mixed-Effects Models Using Efficient 
EM-Type Algorithms 

David A. VAN DYK 

In recent years numerous advances in EM methodology have led to algorithms 
which can be very efficient when compared with both their EM predecessors and other 
numerical methods (e.g., algorithms based on Newton-Raphson). This article combines 
several of these new methods to develop a set of mode-finding algorithms for the popular 
mixed-effects model which are both fast and more reliable than such standard algorithms 
as proc mixed in SAS. We present efficient algorithms for maximum likelihood (ML), 
restricted maximum likelihood (REML), and computing posterior modes with conjugate 
proper and improper priors. These algorithms are not only useful in their own right, but 
also illustrate how parameter expansion, conditional data augmentation, and the ECME 

algorithm can be used in conjunction to form efficient algorithms. In particular, we illus- 
trate a difficulty in using the typically very efficient PXEM (parameter-expanded EM) for 

posterior calculations, but show how algorithms based on conditional data augmentation 
can be used. Finally, we present a result that extends Hobert and Casella's result on 
the propriety of the posterior for the mixed-effects model under an improper prior, an 

important concern in Bayesian analysis involving these models that when not properly 
understood has lead to difficulties in several applications. 

Key Words: EM algorithm; ECME algorithm; Gaussian hierarchical models; Poste- 
rior inference; PXEM algorithm; Random-effects models; REML; Variance-component 
models; Working parameters. 

1. INTRODUCTION 

The EM algorithm (Dempster, Laird, and Rubin 1977) has long been a popular 
tool for statistical analysis in the presence of missing data or in problems that can be 
formulated as such. Fitting mixed-effects models is among the most important uses of 
the EM algorithm as illustrated by the great variety and number of applications (see, 
e.g., Meng and Pedlow 1992; Meng and van Dyk 1997) and its development in the 
statistical literature (e.g., Laird 1982; Laird and Ware 1982; Dempster, Selwyn, Patel, 
and Roth 1984; Laird, Lange, and Stram 1987; Liu and Rubin 1994; and Meng and 
van Dyk 1998). There is no doubt that the reason for EM's popularity compared with 
other numerical methods (e.g., Newton-Raphson, as developed by Thompson and Meyer 
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1986; Lindstrom and Bates 1988; and Callahan and Harville 1991; see also Harville 1977) 
which can be much faster than the early EM implementations is EM's superior stability 
properties (e.g., monotone convergence in log-likelihood or log posterior). For example, 
without extra computational effort, such numerical methods can converge to negative 
variance estimates (e.g., Thompson and Meyer 1986; Callahan and Harville 1991). Even 

implementations released in standard software which incorporate special monitoring can 

converge to a point outside the parameter space (e.g., SAS; see Section 4) or to the 

wrong point within the parameter space (e.g., S-Plus; see Meng and van Dyk 1998 and 
Section 4). The primary goal of this article is to build algorithms that are very fast but 
maintain the stability properties of EM-type algorithms. 

This goal maintains the spirit of several recent advances in EM methodology. For 

example, Meng and van Dyk (1998) (see also Foulley and Quaas 1995) developed an 
alternative EM-type implementation (i.e., an ECME algorithm) for the mixed-effects 
model that substantially reduced the computational effort for obtaining maximum likeli- 
hood (ML) and restricted maximum likelihood (REML) estimates compared with earlier 

implementations (e.g., Laird, Lange, and Stram 1987). This adaptation was further im- 

proved by Liu, Rubin, and Wu (1998) in the special case of ML estimation with univariate 

response (i.e., a type of regression with heterogeneous residual variance) using the PXEM 

algorithm. In this article, we show how PXEM can be used for ML and REML model 

fitting of much more general mixed-effects models. We also show how ECME method- 

ology can be used to eliminate data augmentation for the residual variance parameter in 
addition to the fixed-effects parameters while maintaining an algorithm which is com- 

pletely in closed form. This extends Liu and Rubin's (1995) ECME algorithm which 
starts with the less efficient algorithm of Laird, Lange, and Stram (1987) and requires 
nested iterations for the ECME update of the residual variance. 

This article is organized into four additional sections. In Section 2, after a brief 
review of EM, ECME (Liu and Rubin 1995), and working parameters (Meng and van 

Dyk 1997), we extend parameter-expanded EM (PXEM; Liu, Rubin, and Wu 1998) to 

compute posterior modes and illustrate why this efficient algorithm can be difficult to 
use in this setting. Section 3 uses the methods developed and reviewed in Section 2 to 
construct several new algorithms for fitting variations of the mixed-effects model. Section 
4 illustrates briefly the computational speed and stability of the algorithms relative to 

commercially available software. Finally, Section 5 contains concluding remarks and 
an Appendix proves a result on the propriety of the posterior distributions when using 
certain improper priors. 

2. EFFICIENT DATA AUGMENTATION 

2.1 BACKGROUND ON EM-TYPE ALGORITHMS 

The EM algorithm is designed to compute a (local) mode, 0*, of ?(01Yobs) 
logp(Yobs\0) + logp(0), where the parameter 0 is allowed to vary over some space 1 
and Yobs is the observed data. For likelihood calculations, logp(0) = 0 for all 0 C 9 and 

e(0IYobs) is the log-likelihood; for Bayesian calculations t(0IYobs) refers to the log poste- 
rior. Throughout this article, the notation f is used for a log posterior or a log-likelihood. 
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A data-augmentation scheme, p(Yaug 0) is a model defined so that 

{/ 
Y p(Yaug I)dYaug = P(YobS 0), (2.1) 

{Yaug:M ( Yaug ) = Yobs} 

where M is some many-to-one mapping. EM iteratively computes 0 by setting 0(t+) = 

argmax0EoQ(0l0(t)), where Q(010(t)) = fS (IYlaug)p(Yaugl(t), Yobs)dYaug, with 

e(0lYaug) = logp(Yaug 0) + logp(0). (Here and henceforth integration over Yaug is over 
the set {Yaug M(Yaug) = Yobs}.) Computing the expectation, Q(010(t)), is known as 
the E-step, while the maximization operation is known as the M-step. It can be shown 
that this procedure assures that ?(0(t+l) IYobs) > ((t) lyobs) and typically converges to a 

(local) maximum of t(0IYobs) (Dempster, Laird, and Rubin 1977; Wu 1983). 
The choice of the data-augmentation scheme, p(Yaugl0), in (2.1) is not unique. In 

fact, this choice can greatly affect the rate of convergence of EM-type algorithms (Meng 
and van Dyk 1997; Liu, Rubin, and Wu 1998) and their stochastic counterparts such 
as the data augmentation algorithm (Tanner and Wong 1987; Meng and van Dyk 1999; 
Liu and Wu 1999; van Dyk and Meng in press). In order to choose p(Yaugl0) to result 
in efficient algorithms, the working parameter approach (e.g., Meng and van Dyk 1999) 
parameterizes the data-augmentation scheme so that 

j MY Yb/ P(Yaug0O, a)dYaug = P(Yobs 0), (2.2) 
{Yaug: M (Yaug) = Yobs } 

for each a in some class, A. (Likewise, we sometimes index Q(010') by the working 
parameter for clarity-that is, Q,(010').) The method of conditional augmentation sug- 
gests choosing a to minimize (i.e., optimize) the global rate of convergence (e.g., Meng 
and Rubin 1994) of EM-that is, the largest eigenvalue of the matrix fraction of missing 
information, 

DMEM(C) = I- IobsIaul (Oa), (2.3) 

where Iobs is the observed Fisher information and 

Iaug(a) =E 2e(Y T aug) Yobs, X 

ithepceag t- a0=0* 

is the expected augmented Fisher information. Note that we adopt the traditional terms 

(e.g., Fisher information) of the EM literature, which focuses on likelihood calculations, 
even though we also deal with more general posterior computations. If we choose a to 
minimize Iaug(C) in a positive semidefinite ordering sense we optimize the global rate 
of convergence. This idea has led to a number of very efficient algorithms for fitting 
multivariate t models, probit regression models, mixed-effects models, Poisson models 
for image reconstruction, and factor analysis models either directly (Fessler and Hero 
1994, 1995; Meng and van Dyk 1997, 1998; van Dyk in press a) or indirectly through 
the PXEM algorithm (which is discussed in detail in Section 2.2; see also Liu, Rubin, 
and Wu 1998). 

Liu and Rubin (1994) also realized that reducing Iaug(a) is the key to speeding up 
EM. In their ECME algorithm, the augmented information is reduced to the observed 
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information for some of the parameters. For example, a simple ECME algorithm di- 
chotomizes the model parameter, 0 = (01, 02). The M-step of EM is then broken into 
two steps. In the first step we set 0(t+1/2) to the maximizer of Q(00o(t)) as a function 
of 0, subject to the constraint 02 = (t). In the second step 0 is set to the maximizer 

of ?(0Y,obs) subject to the constraint 01 = a(t+'/2) Since there is no data augmentation 
in the second step, we expect the algorithm to converge more quickly than EM, as was 
verified by Liu and Rubin (1994, 1995) in several examples. 

We use both ECME and conditional augmentation to build efficient algorithms for 

fitting mixed-effects models in Section 3. First, however, we turn our attention to an 

important extension of conditional augmentation, namely the PXEM algorithm. 

2.2 PXEM FOR BAYESIAN CALCULATIONS 

Liu, Rubin, and Wu (1998) presented the PXEM algorithm as a fast adaptation of 
conditional augmentation in the special case when p(O) oc 1; for example, in maximum 
likelihood estimation. Simply speaking, instead of conditioning on an optimal value of 
the working parameter, a, PXEM fits a in the iteration. Here we outline a generaliza- 
tion of this algorithm by using this same novel idea to compute posterior modes. We 
start by defining Qpx (0, a |', ao) = Slog[p(Yaug0, o)P(0)]P(YauglYobs, 0', ao0)dYaug. We 

then define (O(t+l), (t+l)) as the maximizer of Qpx(0, a l(t), ao), where ao is some 
fixed value. (Note a(t+l) is not used subsequently.) Since p(Yobsl0) = p(Yobs 0, a) = 

p(Yaug\0,a)/p(Yaug\Yobs, , a) for any a E A and any Yaug such that M(Yaug) = Yobs, 
we have 

t(0lYObs) = Qpx(0, ao|0t), ao) - /log[(YauglYobs, 0, a)]P(Yaug|Yobs, 0(t), ao)dYaug. 

Since the first term on the right is maximized by (0,a) = (0(t+l),a(t+l)), and the 

second is minimized by (0, a) = (0(t),ao), we have ?(0(t+1)IYobs) > t (0(Y)obs). That 

is, this generalization of the PXEM algorithm converges monotonically in log posterior. 
Following Wu (1983) we can further obtain that this algorithm converges to a stationary 
point or local maximum of the posterior. These results hold for any value of ao such that 
all quantities exist. In fact, the value of ao is generally irrelevant for a PXEM iteration 
and is simply set to some convenient value (e.g., ao = 1 for scale working parameters 
and ao = 0 for location working parameters). 

We expect this algorithm to perform at least as well as an algorithm that fixes a (i.e., 
conditional data augmentation) in terms of the global rate of convergence because it es- 

sentially removes the conditioning on a in the data-augmentation scheme. Removing this 

conditioning reduces Iaug (in a positive semidefinite ordering sense) and thus improves 
the rate of convergence of EM (see Meng and van Dyk 1997 and Liu, Rubin, and Wu 
1998 for details). Liu, Rubin, and Wu (1998) gave an alternative explanation-that by 
fitting a, we are performing a covariance adjustment to capitalize on information in the 

data-augmentation scheme. They also illustrated the substantial computational advantage 
PXEM can offer over other EM-type algorithms for ML estimation. 

Unfortunately, this algorithm can be difficult to use for some Bayesian computations 
since the maximizer of Qpx(0, a10(t), ao) may not exist in closed form, even when the 
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corresponding maximum likelihood PXEM algorithm is in closed form and a conjugate 
prior is used. A simple random-effects model illustrates both this difficulty and the 

potential computation advantage. Suppose 
iid iid 072) Y = aZibi + ei with b i N(0, T2/Ol2) and ei id N(0, a2) (2.4) 

for i = 1,..., m, where bi and ei are independent, {(Y, Zi), i = 1,..., m} are the 
observed data, a is a working parameter, and all quantities are scalars. (It can easily 
be verified that p(YobslO, a), with 0 = (U2, T2), does not depend on a.) We set Yaug = 

{(Yi, Zi, bi), i = 1,..., m} and ao = 1 to define the data-augmentation scheme via (2.4). 
We consider the independent priors a2 ~ v0.0/X2 and T2 ,~ T-0/X2, which are conjugate 
for p(Yaug l, ao), in which case 

+ logog (\2) Z b QpXe(0, a0O', ao) = E 2 (III&ga 
2 

- 2u2 2(Yi - aZb)2 + 02log( 
2i=1 

m ( l ce E b2- `7 + 1 log Yo2 Ybso 0 

(2.5) 

In the absence of prior information, the usual strategy is to reparameterize (e.g., set 

5 = T2/a2) in order to simplify the optimization of Qpx(0, a oO', ao). Although this works 

nicely with maximum likelihood it clearly does not work with (2.5). It can be shown 
that introducing a proper prior for a destroys the computational advantage of parameter 
expansion, while introducing a dependent prior (e.g., r21a r r 02a2/X2) alters the model 
and 0*. Thus, it seems difficult to optimize (2.5) without resorting to iterative numerical 
methods, the cost of which is likely to outweigh the benefit of PXEM. (This is certainly 
true with multiple random effects, in which case, the scalar T2 is replaced by a variance- 
covariance matrix.) Thus, we typically use conditional augmentation for Bayesian mode 

finding, at least when we use fully proper priors. 
In cases where Qpx(0, Oa ', ao) is easy to maximize, however, the algorithm can 

be very fast. Suppose for example we use the improper prior p(O) oc (o2)-1 (2)-1/2 
(i.e., r2 = 0, r = -1). Hobert and Casella (1996) verified that this prior results in 
a proper posterior as long as m, n > 2; see also the Appendix. In this case (2.5) is 
unbounded for T2 near zero. Thus, the PXEM algorithm converges in one step to the 

global mode r2 = 0. Figure 1, for example, shows a contour plot of the posterior surface 
for an artificial dataset of size 100. For this dataset, a standard EM algorithm which fixes 
a = 1 converges with global rate equal to one (empirical result) and thus takes many 
iterates to coverage. The second plot in Figure 1 shows a cross section of the posterior 
surface with a2 = 1. The conditional posterior is bimodal and a standard EM algorithm 
which computes (72)* given a2 = 1 with a fixed at one converges to a (local) mode 
for (72)(0) > .026, the local minimum (again this is an empirical result). The PXEM 

algorithm, on the other hand, again converges to the global mode in one step for any 
(T2)(0). 

We emphasize that Figure 1 is included to compare the behavior of PXEM and 
the standard EM algorithm. It is not necessarily better to converge to the global mode. 
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In particular, the local (conditional) mode contains more of the posterior probability 
and is driven by the data rather than the prior. Our conclusion is that this improper 
prior should be used only with great care-the mode is not a sufficient summary of the 

posterior, at least on the original scale. It is noteworthy that using PXEM brings attention 
to this difficulty with the posterior. 

3. ALGORITHMS FOR FITTING MIXED-EFFECTS MODELS 

3.1 EFFICIENT ALGORITHMS WITH PROPER PRIORS 

We begin in the fully Bayesian setting because the model notation is the most general 
and the algorithms that rely on conditional augmentation are simpler and serve as building 
blocks for the algorithms for computing REML estimates, posterior modes with improper 
priors (both in Section 3.2), and ML estimates (Section 3.3). 

We consider the mixed-effects model of the general form 

Yi = Xip + Zibi + ei with bi id N(O, 2D) and ei id N(O, 2Ri), (3.1) 

where Yi is ni x 1 for i = 1,..., m, Xi and Zi are known covariates of dimension ni x p 
and ni x q, respectively, 3 is a p x 1 vector of fixed effects, bi = (bil,..., biq)T are 
q x 1 vectors of random effects, Ri are known ni x ni positive definite matrixes, and bi 
and ei are independent for each i. We parameterize the variance of the random effects 
in terms of the residual variance o2 to facilitate computation but have occasion to use 
both the parameterizations T = a2D and LLT = D, where L is the Cholesky factor 
of D (i.e., L is a lower triangular matrix). We introduce the standard priors which are 
conjugate for the data-augmentation schemes defined below 

l3\a2 - Np p(,O2EC), a2 , 2 and T inverseWishart(, To), (3.2) 
Xv 

where the inverse Wishart is parameterized so that E(T) = (r7 - q - 1)-~ To, with r7 the 

degrees of freedom. On occasion we replace the inverse Wishart prior for T with 

vecT(L) Nq(q+l)/2(2L', -2L), (3.3) 

where vecT(M) is a vector containing the elements on or below the diagonal of M; the 
subscript T stands for triangular. Depending on the data-augmentation scheme one or the 
other of these priors is conjugate. Although the priors do not exactly coincide, either can 
be used to incorporate similar prior information. With the second prior, this is facilitated 
by noting that the diagonal element of aL are prior conditional standard deviations of the 
components of bi (i.e., sd(bijIbil,..., bi,j1) is the jth diagonal element of aL), while 
the jkth element of aL (j > k) is the square root of the variance in bij not explained 
by (bil,..., bi,kc-) that is explained by bik. 

We use an EM-type algorithm to compute the mode of either p(T, r2Yobs) or 
p(L, u21Yobs), where Yobs = {(Yi, Xi, Zi), i = 1,..., m}. We are interested in a marginal 
mode, since working in smaller parameter spaces typically leads to modes with better 
statistical properties (e.g., Gelman, Carlin, Stem, and Rubin 1995, sec. 9.5). We then use 

p(bl,..., bi, /1,X Yobs) with ( = (c2, D) as derived below to draw inferences regarding 
the mixed effects. 

Using the working parameter, oa, we define Yaug {(Y, Xi, Zi, L bi), i = 1,..., 
m; ,3} and derive two ECME algorithms to compute the marginal mode. Both of the 
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algorithms dichotomize the parameter ( = (D, a2) into D and J2, first updating D by 
maximizing either Qa=o(T, a21(/) or Q,a= (L, -21(/) subject to the constraint that U2 is 
fixed and second updating a2 by maximizing either g(T, -2lYobs) or ?(L, -2IYobs) subject 
to the constraint that D is fixed. That is, the algorithms do not use data augmentation 
when updating a2 but do require data augmentation to update D. Because of the choice 
of prior, the first algorithm computes the posterior mode of p(T, a21Yobs), while the 
second computes the posterior mode of p(L, a2 Yobs), hence the notation Qa=o(T, 021l') 
and Q=l (L, a21'). Since the algorithms differ in the value of the working parameter 
a, we call them ECMEo which corresponds to a = 0, and ECME1 which corresponds 
to a = 1. As is illustrated in Section 4, the relative efficiency of ECME1 and ECMEo 
depends roughly on the relative size of (a2)* and ZiTT*Zi (see Meng and van Dyk 
1998 for details). 

We begin with ECMEo which updates D by optimizing 

Q(T, 21(t)) = (n 2)+ v ) vo- o 

m 

2-2 
E 

[(Yi 
- Xi3- Zibi)TRi 1(Y- Xi3- Zibi)YobS,(t) 

i=l 

m r+ q+ 1 + o D 1 t 
2 1 2l2 (r 

(D 
( To + E[bibT lYobs 0])) 

(3.4) 

To compute the expectations, we use standard calculations to compute the following 
conditional distributions: 

/31(,Yobs N ((D),72 E +(X Ui(D)Xi , (3.5) 
i= 1 ] 

where 3(D) = (S1 + Em= XTi(D)Xi)-l1( + ml XT Ui(D)Yi) and 

Ui(D) = (Ri + ZiDZT)-'; 

bi,l(, ,Yobs N (b(D, 3), 2(D - DZTUi(D)ZiD)) , (3.6) 

where i (D, /3) = DZTUi(D)(Yi - Xi3); and 

bil, Yobs - N (bi(D, /(D)), 2(D - DZiPi(D)ZiD)) , (3.7) 

where Pi(D) = D U ,(D (D)Xi ( jl I+ Z x, ( XiTU()xXi x TUi (D). Using 

(3.7) to compute the second expectation in (3.4), it is easy to verify that Q(T, 221((t)) 
is maximized as a function of D by 

m 

D(t+l 
(^(.^ ^l)-) 

_ (3.8) D(t+) = (u2)(t)(m +q+ TO1) + BiWO) (3.8) 

where B(C) = E[bibT Ys, (] = bi(D, (D))bfT (D, 3(D)) + U2(D -DZ Pi(D)ZiD). 
To update a2, we write, 
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T?(2, TIYbs) = logp(c2,T)- log lo-2 XTU U(D)Xi + SE 
2 1 

m 

(2)(t1 
m 

1 

2 2E?log l 2Ui- (D)i P log 2 2 

m 

X (Yi - Xi)(D))T D XUi(D)( -Xi(D)) + (p - 
(D))TE1(i -(D)) , 

_i-= 

which is maximized as a function of a2 wi th D fixed at i Dbet+ by 

(.2)(t+1) = + a2L' 

+ E (Yi 
- Xi (D(tl))) Ui ((t+l)) (r / 

- Xi (D(t+l))) 
i=1 

+( D(m(t+l)))T (- (t+l))) 
. (3.9) 

This completes a single integration of ECMEo. We note the relationship between this 
ECME algorithm and the one given by Liu and Rubin (1994) for maximum likelihood 
estimation. Although they used the same data-augmentation scheme (i.e., a = 0), Liu 
and Rubin's update for a2 is not in closed form because they use the parameterization, 
(, a2, T) in place of (P, a2, D) in the constraint functions. The required numerical 
optimization slows down the algorithm substantially (see van Dyk and Meng 1997). The 
Liu and Rubin algorithm also does not include prior information and does not integrate 
out the fixed effects. Although their algorithm could be adapted to the Bayesian setting, 
it is unlikely to be fruitful since the numerical optimization in the update for a2 is slow. 
The utility of the parameterization (,3, a2, D) was also noted by Schafer (1998) (see also 
Lindstrom and Bates 1988). 

We now turn our attention to a = 1 in the conditional-augmentation scheme and 
use the alternative prior given in (3.3) in order to maintain a closed-form algorithm. We 
rescale the random effects by L-1 and consider {ci L-lbi,i = 1,..., m} to be the 
missing data. In order to update D, we rewrite (3.1) in terms of (cl,... ,c), 

q q 

Yi = Xi + ZiLci + ei = Xi + CijZiklkj +ei, (3.10) 
j=l k=j 

where ci ~ N(0, a2I), ei ~ N(0, a2Ri), L = (lkj), and Zi = (Zil,.., Ziq) with Zik 
an ni x 1 vector to obtain 

Q(L, 7a21(*)) 

-2a2 (,E [(Yi 
- Xi - ZiLci)TR l(Y - X - ZiLci) Yobs, 7)] 

20'2 =l+ (L -L) L i)) 

+ (L- -L)TE1 (L-I) 
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as a function of L. Thus, 

vecT(L(+)) = i(() _ + ,L1 
i=l 

x ~~:=R-1 (Yi - xi) Yobs, C( + sI~ , (3.11) i -- 

where Xi is an ni x (q(q + 1)/2) matrix with columns CijZik for j = 1,..., q and k = 
j,..., q in the ordering that corresponds to vecT(L) and Oi(E) = E[X_TRi XiY obs, C1, 
the elements of which are calculated using 

E[cijZ R- Zik'Cij' Yobs, ] [L-l Bi(C)(L-)T]jj, ZT R-1Zik (3.12) 

where [M]jj, if the (j,j')th element of the matrix M. To compute the expectation in 

(3.11) we note 

E[cij ZRi 
- 

(Yi - Xif3) Yobs, (] 

= [L-'bi(D, (D))]jZkRi RYyi- Z4R71XiT[Hi(4)], (3.13) 

where [v]j is the jth component of the vector v and [Hi(()]j is the jth row of E[ci3T 

IYobs, (], 

fi(C) = L- bi( (D)) [((D)]T 
~ 
m --1 

-0u2LTZTUi'(D)Xi XE TUi(D)Xi + .31 (3.14) 
i=l1 

The iteration is completed by setting D(t+l) = L(t+l)(L(t+l))T and computing 

(a2)(t+l) = a2v + (L - L)T -'L1 (L - )T) 

-+-(~ -a (D(t+l))) 
1 

(Ha-dL (D(t-1L))) 
m - T 

+ (Y - (D(t+)) Ui D(t+)) ( - X (D(t+))) , 
i=l 

(3.15) 

which adjusts (3.9) for the prior. The matrix inversions here and in the various algorithms 
can be facilitated with the SWEEP operator (Beaton 1964; Little and Rubin 1987; Meng 
and van Dyk 1998). 

We conclude this section with one final data-augmentation scheme. Above we con- 
sidered the reparameterization LLT = D, where L is a lower triangular matrix. If instead 
we allow L to be an arbitrary invertible matrix, we can derive an even more general 
class of algorithms (see also Foulley and van Dyk in press). Unfortunately, since there 
is no ready interpretation of the elements of L in this case, establishing a meaningful 
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prior distribution is difficult. Nonetheless, we derive the resulting algorithm, since it is a 

simple modification of ECME1 and serves as a useful building block for algorithms with 

improper priors. 
This algorithm, ECME2, can be expressed easily if in (3.11)-(3.14) we consider L 

to be a q x q invertible matrix with prior vec(L) ~ Nq2(pL, EL), where vec(M) is a 
vector containing all the elements of M. We also substitute Xi with Xi, an rni x q2 matrix 
with columns cijZik for j = 1,..., q and k = 1,..., q in the ordering corresponding 
to vec(L). With these changes in notation, vec(L(t+l)) is given in (3.11)-(3.14) and 

(o1)(t+1) in (3.15) with the denominator replaced by n + v + 2 + q2 to account for the 

change in prior. 

3.2 REML CALCULATION AND IMPROPER PRIORS 

Here we again consider model (3.1) but replace the prior for T with p(T) oc 1. 

Although this corresponds to setting To = 0 and r7 = -(q + 1) in (3.2), and therefore 
can be fit with ECMEo, in this important special case we can use the data-augmentation 
scheme used for ECME2 to derive a parameter-expanded ECME2 algorithm that is more 
efficient than ECMEo, ECMEL, or ECME2. (An ECME1 or ECME2 algorithm can be used 
if we consider the prior p(L) oc 1.) The algorithms derived here assume the improper 
prior 

p(3, c2, T) oc (72)-(1+(P+v)/2)exp {- 2[ ( + ( - ) ( L )]}. 
p (Blb23, T ) cx expiu)/2)Cl( 2102 IV) f 

) 

If in addition, we set .0 = 0, v = -(2 +p) and E-1 = 0, the posterior mode of (o2, D) 
corresponds to the REML estimate (Laird and Ware 1982). 

To derive the parameter-expanded ECME2 algorithm, we define Yaug = (Y,Xi, Zi , 

L-lbi), i = 1,...,m}; here and in the remainder of the article, L is an arbitrary 
invertible q x q working parameter. We emphasize that L is not a transformation of T, 
but a free working parameter. We set Lo = I at each iteration, thus the E-step is the same 
for ECMEo and the parameter expanded ECME2 algorithm. We update the parameters 
using the same conditioning scheme as in the fully Bayesian setting. That is, we update 
(T, L) by maximizing Qpx(T, or2, Ll(t), Lo) with a2 fixed and update a2 by maximizing 
?(T, 021Yobs) with D fixed. In particular, if we replace bi with Lci, Qpx(T , '2, L(t), Lo) 
is given by (3.4) which we maximize jointly as a function of D and L to update these 

parameters. This is accomplished via the transformation from (D, L) to (D, L), where 
D = L-ID(L-')T. In particular, we maximize Qpx(T, 2, LI(t),Lo) by computing 
L(t+l) using (3.11) and setting D(t+l) to the right side of (3.8). In these calculations 

we set EL1 = 0, To = 0, and r = -(q + 1) throughout, and set L = Lo = I and Xi 
to Xi in (3.11)-(3.14). Finally, we update D with D(t+l) = L(t+l)D(t+l)[L(t+l)] and 

complete the iteration by updating a2 with (3.9). 

3.3 MAXIMUM LIKELIHOOD CALCULATIONS 

Computing the maximum likelihood estimate is similar to computing the posterior 
mode with an improper flat prior, (as described in Section 3.2) except we regard f3 as 
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a model parameter and seek 0* that maximizes ?(0OYobs), with 0 = (a2, T, ), rather 
than the mode of the marginal posterior (e.g., (a22, TIYobs)). This simplifies calculations 
somewhat since / is regarded as a constant rather than a random variable in the E-step. In 

particular, we update L and D to compute D(t+l) and then compute /3(t+) and (r2)(t+1) 
with two separate conditional maximizations. (In all formulas we replace Xi with Xi 
and set EL1 = 1 To= To = c z2 =O = -(p + 2), and r7 = -(q + 1) and in (3.12) we 
fix L = Lo = I.) We begin by computing L(t+l) using (3.11) with two simplifications. 
First P(D) is replaced with U(D) in the definition of Bi(() used to compute i(((t)) 
(this change reflects the difference between (3.6) and (3.7)). Second, the expectation is 

computed conditional on 0(t) = (((t), /(t)) using 

E[cijZ,R- (Yi( - Xi/)lYobs, 0] = [bi(D,/3)jZTRT Y (Y - Xif). 

We then compute D(t+l) using (3.8) again substituting U(D) for P(D) in the definition 
of Bi(() and set D(t+l) = L(t+l)D(t+l)(L(t+l))T. Next we maximize the observed 
data likelihood as a function of 3 with D fixed at D(t+l) and a2 fixed at (2)(t), with 
/(t+l) = (D(t+1)). Likewise, in a final conditional maximization, we update a2 with 

n) i=l 

This completes the parameter-expanded ECME2 iteration. 

4. SIMULATIONS 
In this section we illustrate the relative computational efficiency of ECMEo, ECME1, 

ECME2, and parameter-expanded ECME1 and ECME2. (Parameter expanded ECME1 is 
analogous to parameter-expanded ECME2, but with a lower triangular working parame- 
ter.) We fit a REML model to a number of datasets generated from the model 

Yi=X/3+Zibi+ei, for i=1,...,30, (4.1) 

where Yi is 3 x 1 for each i, X = (1, 1, 1)T, = 1, Zi is a 3 x 3 matrix with elements 

generated as independent standard normals, bi i" N(O, variance = diag(1,4,9)), and 
iid 

ei O'- N(0, ), with bi and ei independent. 
As will be seen in the simulation results (see also Meng and van Dyk 1998 for 

theoretical arguments), the relative efficiency of ECMEo and ECME1 depends on the 
relative sizes of the fitted values of the variance of Zibi and the residual variance r2, 
which we quantify via a measure of the overall coefficient of determination, 

A* _ E i tr(ZiT*ZT)/m 
(a2)* + Em I tr(ZiT* ZT)/m 

In order to vary A in the simulations, 50 datasets were generated with each of several 
values of a2 (.25, 1, 4, 9, 16, 25, 36, 49, 64, and 81). For each of these 500 datasets, 
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REML estimates were computed using each of five algorithms, ECMEi, i = 0, 1,2, and 

parameter-expanded ECMEi, i = 1,2 using flat priors. The starting value (a2)(0) was 
obtained by fitting (4.1) ignoring the random effects, and T(O) was set to the identity 
matrix. Each algorithm was run until ?((a2)(t),T(t) Yobs)- e((c2)(t-1),T(t-l1)Yobs) < 
10-7. 

The results of the simulation appear in Figures 2 and 3. Figure 2 contains five plots 
which record the time required for each of the five algorithms (ri for ECME, i = 0, 1, 2, 
and rpx-i for parameter-expanded ECMEi, i = 1, 2, in seconds on the logo1 scale). All 

computations were run on a Sun UltraSparc computer. Judging from the first plot in 

Figure 2, ECMEo performs well when A* is large, but often required more than 20 
seconds to converge when A* was relatively small. Conversely, ECME1 and ECME2 
perform well when A* are small, but occasionally are very slow when A* is large. 
Finally, the parameter-expanded ECME algorithms converge quickly for all values of A* 
in the simulation. Nonetheless, increasing the dimension of the working parameter results 
in further advantage; compare parameter-expanded ECME1 with parameter-expanded 
ECME2. Parameter-expanded ECME2 performs very well overall, requiring more than 
four seconds only twice and less than one second in 84% of the replications. 

Figure 3 compares ECMEo, ECME2 and parameter-expanded ECME2 by recording 
the logo1 relative time required by each pair of two algorithms (ECME2 versus ECMEo, 
parameter-expanded ECME2 versus ECMEo, and parameter-expanded ECME2 versus 

ECME2). Theory in Meng and van Dyk (1998) suggested ECMEo is faster than ECME1 
only when A* > 2/3 or logito10(*) > .30 (approximately); the simulation verifies the 
same relationship between ECMEo and ECME2. It is also clear that ECME2 can be much 
faster than ECMEo, while ECMEo shows only small relative gains over ECME2. Thus, 
we recommend using ECME2 over ECMEo (e.g., for fully Bayesian analysis) unless it 
is known a priori that A* is large. [Meng and van Dyk (1998) discussed an adaptive 
strategy which approximates A* after several initial iterations to choose between a = 0 
and a = 1; see also Section 5.] The final two plots show that parameter-expanded ECME2 
tends to be about as fast as the faster of ECMEo and ECME2. Thus, we recommend using 
parameter-expanded ECME2 whenever a flat prior is used for T (e.g., REML and ML 

calculations). 
The horizontal line in each plot of Figure 2 corresponds to four seconds, the approx- 

imate time required to fit this model using the lme routine in S-Plus on the same com- 

puter. The computation time required by parameter-expanded ECME2 is generally less 
than four seconds, but with the additional important advantage of computational stability 
(e.g., monotone convergence in log-likelihood; see Section 5). Meng and van Dyk (1998) 
compared EM-type algorithms similar to ECMEo and ECMEL with the lme routine in 
S-Plus and the xtreg routine in STATA. Both comparisons were favorable for the EM- 

type algorithms in terms of both computational time and stability. In their investigations 
lme did not always converge to a mode of the log-likelihood. As a further comparison, 
we randomly selected one dataset generated with each of the ten values of a2 and fit 
the mixed-effects model with lme, parameter-expanded ECME2, and the proc mixed 
routine in SAS. Table 1 displays the value of the restricted log,likelihood at the point of 

convergence for each algorithm applied to each of the ten datasets. Unfortunately, in six 
of the ten replications, proc mixed did not converge at all or converged to a value of 

92 



FITTING MIXED-EFFECTS MODELS 

Table 1. The Value of the Restricted Loglikelihood at the Point of Convergence for Three Algorithms 
applied to Ten Datasets Selected Randomly from the Simulation. The SAS and S-Plus rou- 
tines exhibited proper convergence in only 40% and 70% of these simulations respectively. 

Algorithm 

c2 Ime (S-Plus) proc mixed (SAS) PX-ECME2 

.25 -184.11 -184.06 -184.06 
1 -218.38 -218.39 -218.39 
4 -227.98 t -227.98 
9 -252.93 -252.93 -252.93 
16 -269.75 t -269.75 
25 -289.70t -280.62 -280.62 
36 -301.14 -301.03* -301.14 
49 -304.69 t -304.69 
64 -321.41 t -319.85* -320.64 
81 -327.40t t -325.44 

t Did not converge to a mode. 
t Did not converge, even after adjusting the 
maxfunc parameter to increase the maximum 
number of likelihood evaluations allowed. 
* Converged to a point outside the parameter 
space. 

T* that was not positive semidefinite. The lme routine again did not always converge to 
a mode of the log-likelihood. (There is now a new version of the lme routine (lme 3.0) 
that may perform better. S-Plus 5.0 for Windows includes lme 3.0-however, it is not 

expected to be included in UNIX/Linux S-Plus until Release 6.0.) Parameter-expanded 
ECME2 (and the other EM-type algorithms) exhibited no convergence difficulties. 

5. DISCUSSION 

The simulation results in Section 4 agree with theoretical arguments given elsewhere 

(e.g., Meng and van Dyk 1998). It is clear parameter-expanded ECME2 is a general pur- 
pose, reliable, and efficient algorithm for REML and ML calculations with mixed-effects 
models. For Bayesian calculation with a proper prior on the random-effects variance, 
there is unfortunately no known efficient parameter-expanded algorithm. Thus, we rec- 
ommend using either ECMEo or ECMEL. The choice between these algorithms is based 
on the size of A*, which can be approximated by replacing (a2)* and T* with a priori 
values, values computed with initial iterations from one of the ECME algorithms, or per- 
haps REML estimates computed using parameter-expanded ECME2. This final strategy is 

especially attractive when the prior distributions are very diffuse since REML estimates 
should also serve as very good starting values for ECMEo or ECME1. 

Based on the simulations, these algorithms are comparable to commercially available 
software in terms of the computation time required for convergence (see also Meng and 
van Dyk 1998) but with important advantages. The EM-type algorithms are guaranteed 
to increase ?(0[Yobs) at each iteration and to converge to estimates within the parameter 
space. Other methods (e.g., lme and proc mixed) require special monitoring and still 

may exhibit poor behavior. The lme routine, for example, was in general release for 
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years before it was discovered that without special user intervention lme can converge 
to a point that is far from a mode. This was discovered by comparing lme with EM-type 
algorithms which converged correctly (Meng and van Dyk 1998). (This lme routine 
remains in the current version of S-Plus for UNIX/Linux.) 

A third advantage of the EM-type algorithms is that they can be modified to han- 
dle more sophisticated models that cannot be fit using standard software. For example, 
missing values among {(Yi, Xi, Zi), i = 1,..., m} can be accommodated using a model 
for the missing data and a revised (perhaps Monte Carlo) E-step. Certain generalized 
linear mixed models can also be fit using efficient new data-augmentation methods (e.g., 
parameter expansion and nesting, see van Dyk 2000). For example, probit hierarchical 

regression models can be viewed as an extension of (3.1) in which we observe only the 

sign of each component of Yi, i = 1,..., m. The Yi themselves are considered to be 

missing data. We can also extend the model to a hierarchical t model by replacing the 
normal distributions for either or both of ei and bi with t distributions. This is accom- 

plished by writing the t variable as the scaled ratio of a normal variable and the square 
root of an independent chi-square variable and treating the chi-square variable as missing 
data (e.g, Dempster, Laird, and Rubin 1977). Thus, by finding very efficient EM-type 
algorithms for the mixed-effects model, we add an important building block for a variety 
of important models. 

APPENDIX 

There are a number of examples of Gaussian mixed-effects models being fit with 

improper priors despite the fact that the resulting posteriors are also improper (Gelfand, 
Hills, Racine-Poon, and Smith 1990; Geyer 1992; Wang, Rutledge, and Gianola 1993; 
and discussed in Hobert and Casella 1996, 1998). This is actually not surprising since it 
can be quite difficult to verify posterior propriety in a complicated model when the prior 
is not proper. Nonetheless, improper priors are often attractive since we may have little 

prior information or may be unable or unwilling to quantify what prior information we 
do have. Moreover, there are many who recommend improper priors as defaults, perhaps 
because improper priors can be "less influential" on inference than proper priors. Thus, it 
is especially important to determine precise sufficient conditions for posterior propriety 
in this context. In this Appendix, we extend Hobert and Casella's (1996) result for the 

special case where the random effects are assumed to be a priori independent to the more 

general case of correlated random effects. 
We consider the Gaussian mixed-effects model given by (3.1) using the parameteri- 

zation (a2, , T = a2D). We may rewrite the model as 

Y =X + Zb + e, with b N(0,V) and ei N(0, InU2), 

where yT = (yT, ...,YT), n = E=l i, XT = (XT ...T), bT = (bT...T 
Z = diag(Zi,...,Zm), and V = diag(T,...,T). We consider an improper prior of 

the form, p(3, '2, T) oc (cr2)-(v/2+l) lT-(R+q+l)/2. In this case, we have the following 
result. (We emphasize that the conditions of the theorem are sufficient but may be stronger 
than necessary.) 
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Theorem 1. LetPx = (I-X(XTX)-I)XT) andsuppose r =qm= rank(PxZ), 
then the following are sufficient for propriety of the posterior: (a) 7r < 1 - q, (b) m > 

q - 1 - r, and (c) n > p - qr - v. 
Proof: We wish to show that fp(O, blY)dbdO < oo, where p(O, blY) oc p(Ylb, 0) 

p(blT)p(0), with 0 = (,a2, T). Standard REML calculations show (Harville 1977; 
Laird and Ware 1982; Laird, Lang, and Stram 1987; and Lindstrom and Bates 1988) that 

Jp(0, blY)dbd3 

_ exp{- YT [M (V)XM2(V)XTM1(V) - M (V)]Y} 2 T 1 - 
(r2)(n-r-P)/2'lV1/2jO'2V-1 + ZTpXZI/2 p( ) 

where M1 (V) = (ZVZ +I2)-1, M2(V) = (XTM1 (V)X)-, and ko does not depend 
on T or a2. We bound the numerator and the denominator of (A.1) as functions of V. 
We start with the exponential term in the numerator and use the fact (proven by Hobert 
and Casella 1996) that if Vo is diagonal, 

f(Vo, Z) = exp{- yT[M (Vo)XM2(Vo)XTM1(Vo) - MI(Vo)]Y} 

< exp{-1 T[Pz - PzX(XTPzX)-IXTPz]Y} (A.2) 
_< e- ZZZ lQ2a2 

where Pz = I - Z(ZTZ)-LZT. Writing V = QVoQT, where Vo is a diagonal matrix 
with diagonal elements equal to the eigenvalues of V and Q is an invertible matrix, we 
have f(V, Z) = f(Vo, Z) with Z = ZQ. Since Pz = PZ, we have that the exponential' 
factor in (A.1) is bounded above by (A.2). 

In order to bound the denominator of (A.1), we note (using an inequality due to 
Fiedler 1971; see, e.g., Marshall and Olkin 1979, G.3.a) 

q -2 - m 

ua2V- + ZPxZZI L> [ -+ Amin 
'-Ti 

where T'1 > 7 .2 > -- > Tq are the ordered eigenvalues of T and Amin is the smallest 

eigenvalue of ZTPxZ. Using the two bounds we obtain, by averaging (A.1) over T, 

p(O, blY)dbdfdT 

kop(a2) exp{- YT[Pz - PzX(XTPzX)-lXTPz]Y} 
(a2)(n-r-p)/2 

p(T) , x p(T)2dT. (A.3) 
IVJI/2Hlq 12 [V+A~1m/2 
IV[ /2 

H%l= [? + q- min]( 

To evaluate the integral on the right hand side of (A.3) we use Theorem 2 of Hsu 
(1938) to accomplish a change of variable, namely, 
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J 
||ITI-(i_+q+l)/2 d 

vl!n2 l Hh [ i+A nn] 

q(H I l il(Ti- Tj) ITI-("+q+l)/2 
ki j=i+ldTj ... dT- = kl X ( miT11/2 dT1 ..dT 

IV1/2 I ll1 [7+i A ]m/in 

q -(?-q+1+2i)/2 

i= 
1 ((2 + TiAmin)m/2 (A.4) 

where kl does not depend on T or a2. Equation (A.4) is integrable if both (77 + 2i - q - 

1)/2 < 0 and m > -(r + 2i - q - 1) for i = 1,..., q. This is satisfied if conditions 

(a) and (b) of the theorem hold, in which case (A.4) is proportional to (a'2)-q(7+m)/2 
as a function of r2. Substituting this last expression into (A.3), we see that (A.3) is an 

integrable function of 92 if (c) holds. This completes the proof. O 
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