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Introduction

Massive new data streams are opening up a
world of opportunities for data scientists!

1 Astrostatistics: Data quality and quantity lead to more
interesting statistical models

2 Data-driven versus Science-driven methods
3 Predictive models versus Descriptive models
4 Tradeoff: computational speed and statistical principles
5 These issues are not unique to astronomy!

Joint work with:

CHASC International Center for Astrostatistics
(Includes researchers at Harvard, Univ of California, NASA, Imperial, Crete, etc.)

Imperial Centre for Inference in Cosmology
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Outline

1 Statistical Learning in Astronomy

2 Example I: Mapping Thermal Structure in Solar Images

3 Example II: Testing Unexpected Features in X-ray Images
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Massive Data Sets and Data Streams

Dramatic increase in the quality and quantity of data:
massive new surveys: catalogs containing T/PBs of data,
high resolution spectrography and imaging across the
electromagnetic spectrum,
incredibly detailed movies of dynamic and explosive
processes in the solar atmosphere,
massive number of items and/or features,
space-based telescopes tailored to specific scientific goals,
data are not just massive: they are rich, deep, & complex.

Massive Challenges
for Data Scientists!!



Statistical Learning in Astronomy Mapping Thermal Structure in Solar Images Testing for Unexpected Features

Example I: Thermal Structure in the Solar Corona1

Solar Corona: Highly energetic and violent, characterized
by sunspots, solar flares, and coronal mass ejections.
Solar storms can affect space weather, earth satellites,
communication systems, and electric grids.
Goal: Track solar activity with the aim of predicting storms
and their effects on Earth.

1N Stein, D Stenning, V Kashyap, T Lee, XL Meng, , and CHASC
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Space Weather Effects

Artist illustration of
events on the sun chang-
ing the conditions in
Near-Earth space.
Image Credit: NASA

The highly energetic particles released by solar flares and
CMEs can impact the Earth’s magnetosphere.
These impacts cause radio interference and can damage
satellites and electric power transmission.
1859 geomagnetic storm: Worldwide Aurorae, gold miners
thought it was morning, telegraph machines failed,
shocked operators, threw sparks, even if unplugged.
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The Data: Pixel-by-Pixel Spectra
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The Data: Pixel-by-Pixel Spectra

The Solar Dynamics Observatory
NASA satellite launched February 2010
Massive Data Stream: 1.4 TB/day of compressed data
High Spatial and Temporal resolution
Low Spectral resolution
White light and magnetigram images
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The Differential Emission Measure

λi = PAµi

1

Spectra DEM 

Exposure 
Matrix 

Response 
Matrix 

DEM: expected emission due to plasma of a given temperature.
A: expected spectra of plasmas at each temperature.
Challenge: Inversion is ill-posed.

Normalized Spectra: πi =
PAµi

1>PAµi
, MLE: π̂i =

y i

1>y i
.

Goal: Cluster pixels with similar spectra.
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How Should we Cluster Probability Vectors?

K-means Algorithm:
Assignment: Assign units to clusters by minimizing the

Euclidean distance, d2, to the centroid.
Update: Compute new centroids by minimizing the total

Euclidean distance within each cluster.

The H-means Algorithm:

Replace Euclidean distance with Hellinger Distance:
appropriate for probability vectors.
Hellinger distance between π̂i and cj :

d2
H(π̂i ,cj) =

1
2

∑

k

(√
π̂ik −

√
cjk

)2
= 1−

∑

k

√
π̂ikcjk .

Both steps remain in closed form.
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Never Before Seen Structure2

Grey Scale Images of Clusters: 2 Oct 2010 at 05.57

2
Stein, N., Kashyap, V., Meng, X. L., and van Dyk, D. A. (2012). H-Means Image Segmentation to Identify

Solar Thermal Features. Proceedings of the 19th IEEE International Conference on Image Processing, ICIP 2012
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Never Before Seen Structure

Grey Scale Images of Clusters: 2 Oct 2010 at 18.43

Goal: Model, Track, & Forecast structures.



Statistical Learning in Astronomy Mapping Thermal Structure in Solar Images Testing for Unexpected Features

A Family of the Dissimilarity Functions3

Cosine Dissimilarity

dcos(y i ,y j) =
1
2

d2
2

(
y i
||y i ||2

,
y j

||y j ||2

)
= 1−

y>i y j

||y i ||2 ||y j ||2
;

(One minus cosine of angle between y i and y j .)

Starting with power transform: T j(y i ;β, γ) = (yij + γ)β,
we construct a parameterized family of dissimilar functions

Dcos(y i ,y j ;β, γ) = dcos

(
T (y i ;β, γ),T (y j ;β, γ)

)
.

This family includes
(L1-normalized) Hellinger distance and
(L2-normalized) Euclidean distance.

3
Stein, N. M., van Dyk, D. A., and Kashyap, V. L. (2015). Tuning the Preprocessing of Solar Images

to Preserve their Latent Structure. Statistics and Its Interface, submitted.
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Optimizing the Dissimilarity Function

Bayesian decision theoretic approach

L2 Loss: L(π, π̂β,γ) = ||π − π̂β,γ ||22 (π is the normalized spectra)

Risk: R(φ, β, γ) = E
{

L(π, π̂β,γ)
∣∣∣ π
}

[E over sampling dist’n of π̂]

Bayes Risk: B(β, γ) = E
{

R(φ, β, γ)
}

[E over prior dist’n of π]

Choose β and γ to minimize B(β, γ).

Implementation:
A given (β, γ) determines a partition of the pixels
Partition can be found via K-means (Dcos related to d2)
π̂β,γ is assumed constant in each cluster of pixels
Using prior on DEM, minimize B(β, γ) via Monte Carlo
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Simulation Study
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Simulation setup and results:
50 pixel images; 2 clusters (homogeneous/heterogeneous)

Compare with dcos (β = 1, γ = 0 and dH (β = 1/2, γ = 0).
Advantage of added pseudo counts with Hellinger dist
Similar results with Rand index (measure of true partition recovery)
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A Closer Look at a Coronal Hole (Feb 26, 2015)

20 clusters with (a) β = γ = 1/2; (b) standard K-means
off-limb: funnel shape structures versus horizontal striations
boarder: gradual versus abrupt transition
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Can we Predict Coronal Activity?

Left arrow marks bulb-shaped region of hot plasma
Indicative of stressed magnetic field and energy release
Right arrow: an eruption becomes visible ∼ 1

2 hour later
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Fast Image Segmentation

Comparing two segmentations; (β, γ) = (0.3, 0.5), (0.5, 0.5).
Differences are highlighted in pink: adj Rand index = 0.91.
Direct DEM reconstruction: 3-5 hours + bootstrap errors

(2.5GHz machine; 1024×1024 image)

Our segmentation: quick (∼ 2 min); enhances thermal
structure; spatial cohesion not imposed
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Mt Wilson Classification of Sun Spots

α class β class

βγ class βγδ class
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Automatic Classification of Sun Spots4

Classification is predictive for activity in solar corona
Sunspots are typically classified manually
Automate classification: science-driven feature selection
Features from mathematical morphology (e.g., area of
overlap of polarities, roughness of separating line, etc.)
Features have physical meaning beyond classification
Goal: Use to model, track, and forecast evolution (movie)

4
Stenning, D. C., Lee, T. C. M, van Dyk, D. A., Kashyap, V. L., Sandell, J., and Young, C. A. (2013).

Statistical Analysis and Data Mining, 6, 329–345.
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Big Data Methods in Solar Physics

Use science-driven models to inform data-driven methods.
E.g., cluster spectra for DEM; optimal choice of distance.
E.g., tuning feature extraction to Mt. Wilson classification.

Reduce the complexity of data to understandable features.
E.g., summarize images w/ feature for secondary analysis.

More efficient to split initial and secondary analyses.
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Example II: Testing for Unexpected Features

Supermassive black holes at
the center of distant galaxies
appear as Quasars.
X-ray jets extend millions of
light years from some quasars
Chandra X-Ray Observatory
counts photons in pixels
We observe a low-count
images with a possible jet

Can we infer jet structure and quantify the
significance of a jet detection?
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How to infer jet structure?

We fit a hierarchical Bayesian model that accounts for:
Poisson noise
Point spread function
Detector inefficiencies
Spatial correlations at multiple resolutions

Jet structure not well specified a priori→ difficult to
parameterize
The full hierarchical model includes a baseline model for
quasar+background, and allows for nonparametric
departures from this baseline
Implemented in the R package LIRA (Low-count Image
Reconstruction and Analysis), available at

github.com/astrostat/LIRA
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Statistical model: Likelihood

Observe photon counts (y1, . . . , yn) in n pixels

ZJ � 1PJTTPO

�
�

O�

K=�

1JK"K(ç�K + ç�K)

�
�

Point spread
function (PSF)

detector
efficiency

baseline model
(e.g., quasar with no jet)

added
component
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Statistical model: Multiscale smoothing prior on µ1

Model:

yi ∼ Poisson




n∑

j=1

PijAj(µ0j + µ1j)




Parameterize µi = τiΛi for i = 0 or 1, where τi =
∑n

j=1 µij

Λ0 is specified according to baseline model
for example: quasar + constant background

Wavelet-like smoothing prior on Λ1:

Λ1i =


 ∑

j∈Qk(i)

Λ1j



(

Λ1i∑
j∈Qk(i)

Λ1j

)
���

5� 5�

5� 5�
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Statistical model: Multiscale smoothing prior on µ1

We consider 2D × 2D images and write

pixel probability =
D∏

k=1

conditional probability at resolution k

We use a hierarchical model to allow different amounts of
smoothing at different resolutions:

(Conditional probability at resolution k) ∼ Dirichlet{(ψk , ψk , ψk , ψk )}
(ψ1, . . . , ψD) ∼ π(ψ)

This multiscale representation and the choice of prior π(ψ)
on the smoothing parameters are from Esch et al. (2004).5

5
Esch, D. N., Connors, A., Karovska, M., and van Dyk, D. A. (2004). An Image Reconstruction

Technique with Error Estimates. The Astrophysical Journal, 610, 1213–1227.
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Some jets are obvious, and some are not ...

An obvious jet:

X-ray image of the quasar PKS 1127-145 with
a ∼million light year jet

Credit: NASA/CXC/
A.Siemiginowska(CfA)/J.Bechtold(U.Arizona)

Not so obvious:

X-ray image of the quasar 0730+257
Source: Stein, van Dyk, Kashyap,

Siemiginowska (2015+)
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Quantifying Detection Significance6

Hypothesis testing framework
Null hypothesis: point source + constant background
Alternative hypothesis: null model + LIRA model

Procedure:
1 Fit full model to observed image (to account for PSF, etc.)
2 Fit same model to images simulated from null model: no jet
3 Compare scalar summaries of posterior distributions

Problem: complicated model fitted via MCMC, must limit N

How to quantify the significance of jet detection
under computational constraints?

6
Stein, N. M., van Dyk, D. A., Kashyap, V. L., and Siemiginowska, A. (2015). Detecting Unspecified

Structure in Low-Count Images. The Astrophysical Journal, tentatively accepted.
McKeough, K., Siemiginowska, A., Kashyap, V. L., Stein, N. M., van Dyk, D., et al. (2015).

Chadra X-ray Imaging of the Highest-Redshift Quasar Jets The Astrophysical Journal, in preperation.
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Naive Monte Carlo p-values

Suppose we have a test statistic S
Sobs is the test statistic computed from the observed image
S1, . . . ,SN are the statistics computed from N null images
Two common Monte Carlo p-values:

p̂0 =
1
N

N∑

i=1

I(Si ≥ Sobs), p̂1 =
1 +

∑N
i=1 I(Si ≥ Sobs)

N + 1

Problems when N is not very large

p̂0 leads to too many false positives: e.g., Pr(p̂0 = 0|H0) =
1

N+1

p̂1 ≥ 1/(N + 1), so impossible to achieve high significance
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Hypothesis Testing and Type I Error

Hypothesis Testing

Choose level α and calculate p-value: p
Reject the null hypothesis if p ≤ α

Suppose N = 50 and we reject if p̂0 ≤ α:

α

Pr
(T

yp
e 

I e
rro

r) 
/ α

10−4 10−3 10−2 10−1

1

10

100

. α

With the Monte Carlo p-value, p̂0,
Pr(Type I error) may be significantly larger than α
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Our Approach

How to achieve high significance when N is not very large?
Use a posterior tail probability as a test statistic
Estimate an upper bound on a p-value

Estimate an upper bound û on a p-value
Reject null hypothesis if û ≤ α
We can test at high significance levels (small α) if we
can obtain small û even when N is not large
Rejecting when (p ≤) û ≤ α guarantees Pr(Type I error) ≤ α
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A novel test statistic

Model:

yi ∼ Poisson




n∑

j=1

PijAj (τ0Λ0j + τ1Λ1j )




Choose a scalar parameter ξ, e.g., ξ = τ1/(τ0 + τ1)

Test statistic: a posterior probability under the full model:

Sc(yobs) = Pr(ξ ≥ c | yobs)

Large ξ̂ favor HA −→ large Sc(yobs) favor HA.
How large? Use the p-value

p = Pr{Sc(y0) ≥ Sc(yobs)}, with y0 ∼ H0
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Constructing an upper bound on p

By Markov’s inequality:

p = Pr{Sc(y0) ≥ Sc(yobs)} ≤ E{Sc(y0)}
Sc(yobs)

=
Pr0(ξ ≥ c)

Pr(ξ ≥ c | yobs)
= u

[Pr0(ξ ≥ c) is with respect to g(ξ) ≡ E{π(ξ | y0)} =
∫

p(ξ|y0)p(y0|H0)dy0.]

The Procedure

Sample y (1)
0 , . . . ,y (N)

0 from the null model

Obtain samples from each posterior: π(ξ | y (n)
0 ), π(ξ | yobs)

Fix γ = Pr0(ξ ≥ c) and Estimate

1 ĝ(ξ) = N−1∑N
i=1 π(ξ | y (i)

0 )
2 ĉ as the (1− γ) quantile of ĝ(ξ)
3 Ŝĉ(yobs) = P̂r(ξ ≥ ĉ | yobs)
4 û = γ/Ŝĉ(yobs)
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The estimated upper bound:

û = γ/Ŝĉ(yobs)

P
os

te
rio

r 
D

en
si

ty

ξ c
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The estimated upper bound:

û = γ/Ŝĉ(yobs)

P
os

te
rio

r 
D

en
si

ty

ξ c

γ
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The estimated upper bound:

û = γ/Ŝĉ(yobs)

P
os

te
rio

r 
D

en
si

ty

ξ c

Sc(yobs)
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Simulation

HA yobs E(Λ1|yobs)

H0 : point source + background
HA : point source + background + two elliptical sources

N = 50 null images for each of 1000 simulation yobs

Compared three methods, rejecting the null hypothesis if
1 û ≤ α
2 p̂1 ≤ α
3 p̂0 ≤ α , each for a variety of choices of α, γ
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Simulation Results

Expected count in simulated jet = 40

Type I error rate (%) Power (%)
γ (%) α (%) û p̂1 p̂0 û p̂1 p̂0
1.0 2.0 0.1 2.0 3.9 99.7 100.0 100.0

0.5
2.0 0.3 2.0 3.9 99.7 100.0 100.0
1.0 0.1 0 2.0 97.6 0 100.0

0.1
2.0 0.8 2.0 3.9 99.6 99.8 100.0
1.0 0.2 0 2.0 98.4 0 99.8
0.5 0.1 0 2.0 96.2 0 100.0

Because û ≥ γ, it is impossible to reject if γ > α.

Bold indicates the best power (up to simulation precision) among
methods with appropriately bounded Type I error rates.
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Simulation Results

Expected count in simulated jet = 20

Type I error rate (%) Power (%)
γ (%) α (%) û p̂1 p̂0 û p̂1 p̂0
1.0 2.0 0.1 2.0 3.9 29.8 74.0 81.7

0.5
2.0 0.4 2.0 3.9 41.4 70.9 80.7
1.0 0.0 0 2.0 18.1 0 72.0

0.1
2.0 0.8 2.0 3.9 48.8 67.8 78.6
1.0 0.5 0 2.0 33.2 0 66.8
0.5 0.0 0 2.0 19.3 0 66.8
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Discussion: The Big Picture

Principled methods offer statistical optimality and allow
us to incorporate the complexities of real-world science
But may be computational expensive: statistical
optimality may not be affordable
Pragmatic perspective: trade statistical for computational
efficiency to achieve feasible nearly-optimal methods

Reduce data complexity: segmenting solar images
Let science-based understanding inform data reduction and
preprocessing (e.g., cluster normalized spectra)
Trade statistical power for faster computing: for fixed com-
puting time, û allows valid tests with smaller α than p̂0 or p̂1
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Thanks...

Solar Thermal Structure:
Nathan Stein
Vinay Kashyap
Xiao-Li Meng

Classifying Active Regions:
David Stenning
Vinay Kashyap
Thomas Lee

X-ray Feature Detection:
Nathan Stein
Vinay Kashyap
Aneta Siegminowska
Kathryn McKeough

And

The CHASC International
Astrostatistics Center
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For Further Reading I

Esch, D. N., Connors, A., Karovska, M., and van Dyk, D. A.
An Image Reconstruction Technique with Error Estimates.
The Astrophysical Journal, 610, 1213–1227, 2004.

Stenning, D., Lee, T., van Dyk, D., Kashyap, V., Sandell, J., and Young, C.
Morphological Feature Extraction for Statistical Learning [in Solar Images]
Statistical Analysis and Data Mining, 6, 329–345, 2013.

Stein, N., Kashyap, V., Meng, X. L., and van Dyk, D. A.
H-Means Image Segmentation to Identify Solar Thermal Features.
Proceedings of the 19th IEEE Intern’l Conf. on Image Processing, ICIP 2012

Stein, N. M., van Dyk, D. A., and Kashyap, V. L.
Tuning the Preprocessing of Solar Images to Preserve their Latent Structure.
Statistics and Its Interface, submitted, 2015.

Stein, N. M., van Dyk, D. A., Kashyap, V. L., and Siemiginowska, A.
Detecting Unspecified Structure in Low-Count Images.
The Astrophysical Journal, tentatively accepted, 2015.

McKeough, K., Siemiginowska, A., Kashyap, V. L., Stein, N. M., van Dyk, D., et al.
Chadra X-ray Imaging of the Highest-Redshift Quasar Jets
The Astrophysical Journal, in preperation, 2015.
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Get Involved!

Association of Astrostatisticians

New ASA Interestgroup:
http://community.amstat.org/astrostats/home

International Astrostatistics Association (New! Working Groups!)

Astrostatistics and Astroinformatics Portal:
http://asaip.psu.edu

Data Challenges Competitions

Banff Challenge 1 & 2: Davison and Sartori (Stat Sci, 2008)
http://www.birs.ca/events/2010/5-day-workshops/10w5068

GREAT08 & GREAT10: arXiv:0908.0945v1 arXiv:1202.5254v2

Strong Lens Time Delay: http://timedelaychallenge.org

Vast Public Data Resources

The Virtual Observatory: http://www.usvao.org

The Sun Today: http://www.thesuntoday.org
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Mathematical Morphology for Solar Features
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Figure 3 The original �� white light image (a) is cleaned (b) and thresholded to produce a binary representation
of the sunspot group (c). This image is then dilated (d) and has a convex hull placed around the result (e) and
the area inside the hull becomes the sunspot area (f) in the magnetogram. Then, in the �� magnetogram (g),
morphological opening followed by thresholding on both the image and inverse image yields the trinary primal sketch
of the active region in (h). Region growing gives the separating boundary in (i). Convex hulls are utilized to measure
polarity mixture in (j). We smooth the white light image in (k) and apply thresholding iteratively in (l) to produce
a representation of the umbrae and penumbrae that can be used to detect delta spots.
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