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Introduction

Massive new data streams are opening up a
world of opportunities for data scientists!

1 Astrostatistics: Data quality and quantity lead to more
interesting statistical models

2 Data-driven versus Science-driven methods
3 Predictive models versus Descriptive models
4 Tradeoff: computational speed and statistical principles
5 These issues are not unique to astronomy!

Joint work with:

CHASC International Center for Astrostatistics
(Includes researchers at Harvard, Univ of California, NASA, Imperial, Crete, etc.)

Imperial Centre for Inference in Cosmology
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Outline

1 Statistical Learning in Astronomy

2 Example I: Identifying Thermal Structure in Solar Corona

3 Example II: Stellar Evolution

4 Example III: Calibration of X-ray Detectors
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Massive Data Sets and Data Streams

Dramatic increase in the quality and quantity of data:
massive new surveys: catalogs containing T/PBs of data,
high resolution spectrography and imaging across the
electromagnetic spectrum,
incredibly detailed movies of dynamic and explosive
processes in the solar atmosphere,
massive number of items and/or features,
space-based telescopes tailored to specific scientific goals,
data are not just massive: they are rich, deep, & complex.

Massive Challenges
for Data Scientists!!
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Example I: Thermal Structure in the Solar Corona1

Solar Corona: Highly energetic and violent, characterized
by sunspots, solar flares, and coronal mass ejections.
Solar storms can affect space weather, earth satellites,
communication systems, and electric grids.
Goal: Track solar activity with the aim of predicting storms
and their effects on Earth.

1N Stein, D Stenning, T Lee, XL Meng, V Kashyap, and CHASC
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Space Weather Effects

Artist illustration of
events on the sun chang-
ing the conditions in
Near-Earth space.
Image Credit: NASA

The highly energetic particles released by solar flares and
CMEs can impact the Earth’s magnetosphere.
These impacts cause radio interference and can damage
satellites and electric power transmission.
1859 geomagnetic storm: Worldwide Aurorae, gold miners
thought it was morning, telegraph machines failed,
shocked operators, threw sparks, even if unplugged.
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The Data: Pixel-by-Pixel Spectra
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The Data: Pixel-by-Pixel Spectra

The Solar Dynamics Observatory
NASA satellite launched February 2010
Massive Data Stream: 1.4 TB/day of compressed data
High Spatial and Temporal resolution
Low Spectral resolution
White light and magnetigram images
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The Differential Emission Measure

λi = PAµi

1

Spectra DEM 

Exposure 
Matrix 

Response 
Matrix 

DEM: expected emission due to plasma of a given temperature.
A: expected spectra of plasmas at each temperature.
Challenge: Inversion is ill-posed.

Normalized Spectra: πi =
PAµi

1>PAµi
, MLE is trivial.

Goal: Cluster pixels with similar spectra.
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How Should we Cluster Probability Vectors?

K-means Algorithm:
Assignment: Assign units to clusters by minimizing the

Euclidean distance to the centroid.
Update: Compute new centroids by minimizing the total

Euclidean distance within each cluster.

The H-means Algorithm:

Replace Euclidean distance with Hellinger Distance:
appropriate for probability vectors.
Hellinger distance between π̂i and cj :

d2
H(π̂i ,cj) =

1
2

∑
k

(√
π̂ik −

√
cjk

)2
= 1−

∑
k

√
π̂ikcjk .

Both steps remain in closed form.
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Never Before Seen Structure2

Grey Scale Images of Clusters: 2 Oct 2010 at 05.57
2

Stein, N., Kashyap, V., Meng, X. L., and van Dyk, D. A. (2012). H-Means Image Segmentation to Identify
Solar Thermal Features. Proceedings of the 19th IEEE International Conference on Image Processing, ICIP 2012
.
Stein, N., Kashyap, V., and van Dyk, D. A. (2015). Clustering Latent Features: A Case Study in Solar Image
Segmentation, in preperation
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Never Before Seen Structure

Grey Scale Images of Clusters: 2 Oct 2010 at 18.43

Goal: Model, Track, & Forecast structures.
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Mt Wilson Classification of Sun Spots

α class β class

βγ class βγδ class
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Automatic Classification of Sun Spots3

Classification is predictive for activity in solar corona
Sunspots are typically classified manually
Automate classification: science-driven feature selection
Features from mathematical morphology (e.g., area of
overlap of polarities, roughness of separating line, etc.)
Features have physical meaning beyond classification
Goal: Use to model, track, and forecast evolution (movie)

3
Stenning, D. C., Lee, T. C. M, van Dyk, D. A., Kashyap, V. L., Sandell, J., and Young, C. A. (2013).

Statistical Analysis and Data Mining, 6, 329–345.



Learning in Astronomy Example I: Solar Features Example II: Stellar Evolution Example III: Calibration

Big Data Methods in Solar Physics

Use science-driven models to inform data-driven methods.
E.g., cluster spectra for DEM; optimal choice of distance.
E.g., tuning feature extraction to Mt. Wilson classification.

Reduce the complexity of data to understandable features.
E.g., summarize images w/ feature for secondary analysis.

More efficient to split initial and secondary analyses.
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Example II: Stellar Evolution4

Complex Data and Sophisticated Models
1 Complex computer models and simulations are taking the

place of the analytic likelihood function.
2 Sophisticated data allows us to fit such models, but an

entirely new set of statistical methods is required.
3 This sort of modeling, computing, and inference is coming

to many more areas of Astronomy.
4 I will discuss one example in detail: stellar evolution.

Challenge is acute when complex models are
combined with massive data streams.

4N Stein, S DeGennaro, E Jeffery, W Jefferys, S Si, D Stenning, and T von Hippel
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Compter Model for Sun-Like Stellar Evolution
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Computer model predicts how a the spectrum of a sun-like
star evolves as a function of input parameters.
We aim to embed these models into a sophisticated
multi-level model for statistical inference.
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The Data: Color Magnitude Diagrams

Apparent Magnitude Difference (Color)

A
pp

ar
en

t M
ag

ni
tu

de

br
ig

ht
er

fa
in

te
r

hotter cooler

Main Sequence

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

White Dwarfs
●

●

●

●

●

●

Red Giants

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

Color-Magnitude Diagram
Plot Magnitude Difference vs.
Magnitude.
Identifies stars at different
stages of their lives.
Evolution of a CMD.
Facilitates physical intuition as
to likely values of parameters.
“Chi-by-eye” fitting.
Can we avoid ad hoc methods?
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Embedding Computer Model into Statistical Model5
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Between 1/3 and 1/2 of “stars” are unresolved binaries.
Star clusters: same age, metallicity, distance, & absorption.
Cluster data is contaminated with field stars.
Data observed with Gaussian measurement errors.

5
van Dyk, D. A., DeGennaro, S., Stein, N., Jefferys, W. H., and von Hippel, T. (2009).

Statistical Analysis of Stellar Evolution. The Annals of Applied Statistics, 3, 117–143.
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White Dwarfs Physics

Sun-like stars are powered by thermal-nuclear reactions.
White dwarfs are the cooling embers after reactions cease.
Different physical processes require different models.
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The Missing Link: White Dwarf Mass

Computer 
Model  

for 
Stellar 

Evolution 

Metallicity 
Initial Mass 

Progenitor Age 

(Total) Age 

White Dwarf 
Age 

Compute WD 
Latent Heat 

WD Age 
WD Mass 

WD Radius 
Surface Temp 

Computer Model for White Dwarf Cooling 

Emergent 
Spectrum 

WD Radius 
WD Mass 

Surface Temp 

Expected 
Magnitudes 

Computer Model for WD Atmosphere 

We must model: white dwarf mass = f (initial mass).
Parametric Bridge between Computer Models.
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Opening Up the Black Box: The Final Model6

Age 
Metallicity 

Initial Mass 
Distance 

Absorption 

Observed 
Magnitudes 

Gaussian  
Measurement 

Error 

Field Star 
Contamination 

+ 

Computer Model for  
Stellar Evolution 

Main Sequence 
Comp Model 

White Dwarf 
Comp Model 

IFMR 

WD mass 
Age 

on MS 

Age 
Distance 

Absorption 

Initial Mass 

6
Stein, N. M., van Dyk, D. A., von Hippel, T. , DeGennaro, S., Jeffrey, E. J., and Jefferys, W. H. (2013).

Combining Computer Models to Account for Mass Loss in Stellar Evolution. Statistical Analysis and
Data Mining, 6, 34–52.
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Model Fitting: Complex Posterior Distributions7

Highly non-linear relationships among stellar parameters.

7
O.Malley, E. M., von Hippel, T., and van Dyk, D. A. (2013). The Astrophysical Journal, 775, 1–11.
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Model Building and Learning

External
distance

information
is very

informative!

Different computer models imply different parameter
constraints: combining external information for many stars
may be a powerful tool for model selection.
Learn the age of galactic structures by combining
information from multiple stars in a hierarchical model.8

8
Si, S., van Dyk, D., et al. (2015). Using White Dwarf Populations to Estimate Age of the Galactic Halo, in prep.
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Model Fitting: Complex Posterior Distributions
Multiple Modes

The classification of
certain stars as field
or cluster stars can

cause multiple
modes in the

distributions of other
parameters.
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Fitting the Initial-Final Mass Relationship9
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How best to combine results from three clusters?
Is there one relationship? Depend on other variables?

9
Stein, N. M., van Dyk, D. A., von Hippel, T. , DeGennaro, S., Jeffrey, E. J., and Jefferys, W. H. (2013).

Statistical Analysis and Data Mining, 6, 34–52.
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Diagnosing Complex Models10

Double-Line Eclipsing Binaries:
direct measures of component
masses.
Double line Spectroscopic:
direct measure of mass ratio.
Direct check of a quantity that
resides deep in our statistical
model and is highly model
dependent.
Use discrepancies to diagnose
and tune computer models,
and/or build a joint model.

10
DeGennaro, S., von Hippel, T., Jefferys, W. H., Stein, N., van Dyk, D. A., and Jeffery, E. (2009).

The Astrophysical Journal, 696, 12–23.
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Big Data Methods in Stellar Evolution
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Massive data sets allow us to cherry pick data that is most
informative for a particular scientific question

E.g., estimating the age of galactic structures.
E.g., checking models using external data.

Splitting initial & secondary analyses is more efficient.
E.g., learning about IFMR from cluster-specific analyses.

Science-driven models are absolutely essential.
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Example III: Calibration of X-ray Detectors11

Embed physics models into multi-level statistical models.
Must account for complexities of data generation.
State of the art data and computational techniques enable
us to fit the resulting complex model.

11V Kashyap, D van Dyk, J Xu, A Connors, A Siegminowska, and CHASC
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Derivation of Calibration Products

Effective area records
instrument sensitivity as a
function of energy
Complex computer models of
subassembly components.
Calibration scientists provide
a sample representing
uncertainty
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Simple Emulation of Computer Model12

We use Principal Component Analysis to represent uncertainly:

A ∼ A0 + δ̄ +
m∑

j=1

ej rjv j ,

A0: default effective area,
δ̄: mean deviation from A0,

rj and v j : first m principle component eigenvalues & vectors,
ej : independent standard normal deviations.

Capture 95% of variability with m = 6− 9.

12
Lee, H., Kashyap, V., van Dyk, D., Connors, A., Drake, J., et al. (2011). Accounting for Calibration

Uncertainties in X-ray Analysis: Effective Areas in Spectral Fitting. The Astrophysical Journal, 731, 126–144.
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Two Possible Target Distributions13

We consider inference under:
A PRAGMATIC BAYESIAN TARGET: π0(A, θ) = p(A)p(θ|A,Y ).
THE FULLY BAYESIAN POSTERIOR: π(A, θ) = p(A|Y )p(θ|A,Y ).

Concerns:
Statistical Fully Bayesian target is “correct”.

Cultural Astronomers have concerns about letting the
current data influence calibration products.

Computational Both targets pose challenges,
but pragmatic Bayesian target is easier to sample.

Practical How different are p(A) and p(A|Y )?

With MCMC we sample a different effective area curve at each
iteration according to its conditional distribution.

13
Xu, J., van Dyk, D., Kashyap, V., Siemiginowska, A., et al. (2014). A Fully Bayesian

for Jointly Fitting Instrumental Calibration and X-ray Spectral Models. The Astrophysical Journal, 794, 97.
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Implementing the Fully Bayesian Analysis

Direct MH sampling is difficult. (Case-by case tuning of jumping rules.)

Pragmatic Bayesian posterior
We can easily sample from π0(A, θ).
Well suited proposal dist’n: over-dispersed relative to π(A, θ).

But π0(A, θ) cannot be evaluated

π0(A, θ) = p(θ|Y ,A)p(A) =
p(Y |θ,A)p(θ)

p(Y |A)
p(A)

This is a doubly intractable distribution.
We construct a normal approximation (∼ 20 dimensional).
Use as jumping rule in an independence MH sampler.
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Sampling From the Full Posterior
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Spectral Model (purple bullet = truth):

f (Ej) = θ1E−θ2
j

Pragmatic Bayes is clearly better than standard method,
but a Fully Bayesian Method is the ultimate goal.
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How it Works on a Sample of Radio-Loud Quasars

Pragmatic Bayes Fully Bayes
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Big Data Methods in X-ray Analysis
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Represent high-dimensional complexity with low-
dimensional summaries

E.g., use PCA to emulate uncertainty in effective area;
use same variance structure for all effective area curves.

Use simplifying assumptions when possible
E.g., pragmatic Bayesian assumption
E.g., Gaussian approximation to the pragmatic posterior

Mix science-driven models with data-driven methods.
E.g., we must understand the spectra, but only need to
predict the instrumental characteristics.
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Thanks...

Solar Features:
Nathan Stein
David Stenning
Vinay Kashyap
Thomas Lee
Xiao-Li Meng

Instrument Calibration:
Jin Xu
Alanna Connors
Vinay Kashyap
Hyunsook Lee
Aneta Siegminowska

Stellar Evolution:
Nathan Stein
David Stenning
Shijing Si
Elizabeth Jeffery
William H. Jefferys
Erin M. O’Malley
Ted von Hippel

And

The CHASC International Astro-
Statistics Collaboration



Learning in Astronomy Example I: Solar Features Example II: Stellar Evolution Example III: Calibration

For Further Reading I

Xu, J., van Dyk, D., Kashyap, V., Siemiginowska, A., Connors, A., Drake, J., et al.
A Fully Bayesian Method for Jointly Fitting Calibration and X-ray Spectral Models
The Astrophysical Journal, 794, 97, 2014.

O.Malley, E. M., von Hippel, T., and van Dyk, D. A.
A Bayesian Approach to Deriving Ages of Individual Field White Dwarfs.
The Astrophysical Journal, 775, 1–11, 2013.

Stenning, D., Lee, T., van Dyk, D., Kashyap, V., Sandell, J., and Young, C.
Morphological Feature Extraction for Statistical Learning [in Solar Images]
Statistical Analysis and Data Mining, 6, 329–345, 2013.

Stein, N, van Dyk, D., von Hippel, T., DeGennaro, S., Jeffery, E., Jeffreys, W. H.
Combining Computer Models to Account for Mass Loss in Stellar Evolution.
Statistical Analysis and Data Mining, 6, 34–52, 2013.

Stein, N., Kashyap, V., Meng, X. L., and van Dyk, D. A.
H-Means Image Segmentation to Identify Solar Thermal Features.
Proceedings of the 19th IEEE Intern’l Conf. on Image Processing, ICIP 2012

Lee, H., Kashyap, V., van Dyk, D., Connors, A., Drake, J., Izem, R., Min, S., et al.
Accounting for Calibration Uncertainties in X-ray [Spectral] Analysis
The Astrophysical Journal, 731, 126–144, 2011.
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New ASA Interest Group!

New! Astrostatistics Interest Group New!

At the JSM:
Sunday at 4 PM: Bayesian Astrostatistics
Wednesday at 8:30 AM: Big Data in Astrostatistics
Wednesday at 10:30 AM: Informal Meeting outside the
"Big Data in Astrostatistics" session room
Wednesday at 2:00 PM: Analysis of Kepler Data at SAMSI
Thursday at 8:30 AM: IOL: Astrostatistics

For more information:
http://community.amstat.org/astrostats/home
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Get Involved!

Association of Astrostatisticians

New ASA Interestgroup:
http://community.amstat.org/astrostats/home

International Astrostatistics Association (New! Working Groups!)

Astrostatistics and Astroinformatics Portal:
http://asaip.psu.edu

Data Challenges Competitions

Banff Challenge 1 & 2: Davison and Sartori (Stat Sci, 2008)
http://www.birs.ca/events/2010/5-day-workshops/10w5068

GREAT08 & GREAT10: arXiv:0908.0945v1 arXiv:1202.5254v2

Strong Lens Time Delay: http://timedelaychallenge.org

Vast Public Data Resources

The Virtual Observatory: http://www.usvao.org

The Sun Today: http://www.thesuntoday.org
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Mathematical Morphology for Solar Features
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Figure 3 The original �� white light image (a) is cleaned (b) and thresholded to produce a binary representation
of the sunspot group (c). This image is then dilated (d) and has a convex hull placed around the result (e) and
the area inside the hull becomes the sunspot area (f) in the magnetogram. Then, in the �� magnetogram (g),
morphological opening followed by thresholding on both the image and inverse image yields the trinary primal sketch
of the active region in (h). Region growing gives the separating boundary in (i). Convex hulls are utilized to measure
polarity mixture in (j). We smooth the white light image in (k) and apply thresholding iteratively in (l) to produce
a representation of the umbrae and penumbrae that can be used to detect delta spots.
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