Embedding Astronomical Computer Models into Complex Statistical Models

David A. van Dyk

Statistics Section, Imperial College London

International Applied Statistics Conference Slovenia, September 2013

Outline

- Computer Models in Astronomy and Statistics
- Stellar Evolution
 - Model for Stellar Evolution
 - Computer Models for White Dwarf Evolution
 - Statistical Computation and Numerical Results
- Calibration of X-ray Detectors
 - Computer Models for Instrument Calibration
 - Statistical Methods
 - Empirical Illustration

Outline

- Computer Models in Astronomy and Statistics
- Stellar Evolution
 - Model for Stellar Evolution
 - Computer Models for White Dwarf Evolution
 - Statistical Computation and Numerical Results
- Calibration of X-ray Detectors
 - Computer Models for Instrument Calibration
 - Statistical Methods
 - Empirical Illustration

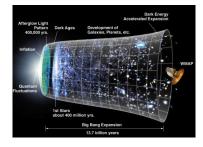
Computer Models

- Complex scientific phenomena can often only be modeled via simultaneous mathematical equations.
- E.g., Pharmacokinetics, Meteorology, Climatology,
 Seismology, Transportation, Immunology, Astronomy, etc.
- Like a statistical likelihood these computer models involve
 - unknown input parameters and
 - prediction or simulation of observations.
 - —Deterministic and Stochastic Computer Models.
- Require sophisticated and time consuming computation.
- Goal: Use data to learn about parameters and models.

Computer Models in Astronomy

Computer Models are used to

- model stellar evolution,
- describe properties of planetary and stellar atmospheres,
- simulate chemical reactions in interstellar clouds.



- calculate the emergence of clusters and superclusters of galaxies in the early Universe,
- determine the yield of the elements during the Big Bang

Computer Models in Statistics

Statistical literature focuses on Computer Models in isolation:

Emulation: A statistical model (e.g., a Gaussian Process) is

used for interpolation and extrapolation of the

computer model.

Calibration: Tuning/Fitting of the input parameters to observed

data via a discrepancy measure.

Prediction: Use of calibrated and/or emulated computer model

for experiments in place of actual physical process.

Uncertainty: Careful quantification of uncertainty is key:

parameter uncertainty and variability, model

inadequacy, residual variance, observation error.

Embedding in a Fully Bayesian Analyses

We aim to use computer models

- as a component of a statistical likelihood function or
- to generate from a sampling distribution.

Build multi-level models

- Combine computer models with other model components via multi-level or hierarchical models,
- Combine multiple computer models via parametric models,
- Enable standard techniques for model fitting, checking, comparison, and improvement.

Computation becomes the real issue!

Strategy: Combine sophisticated models with efficient emulation.

Outline

- Computer Models in Astronomy and Statistics
- Stellar Evolution
 - Model for Stellar Evolution
 - Computer Models for White Dwarf Evolution
 - Statistical Computation and Numerical Results
- Calibration of X-ray Detectors
 - Computer Models for Instrument Calibration
 - Statistical Methods
 - Empirical Illustration

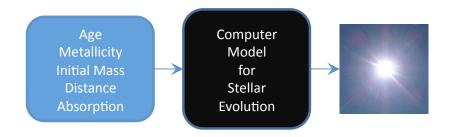
Stellar Formation

Stars form when the dense parts of a molecular cloud collapse into a ball of plasma.

Evolution of a Sun-like Star

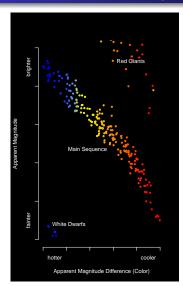
- Fusion of Hydrogen into Helium in the core can last millions or billions of years, depending on the initial stellar mass.
- When H is depleted, He may fuse into heavier elements.
- At the same time the star goes through dramatic physical changes, growing and cooling into a red giant star.
- The star undergoes mass loss forming a planetary nebula.
- Eventually only the core is left, a white dwarf star.
- White dwarf is a stellar ember and cools slowly via conduction, convection, and/or radiation.

Compter Model for Sun-Like Stellar Evolution



- Computer model predicts how the emergent and apparent spectra evolve as a function of input parameters.
- We observe photometric magnitudes, the apparent luminosity in each of several wide wavelength bands.

The Data: Color Magnitude Diagrams



Color-Magnitude Diagram

- Plot Magnitude Difference vs. Magnitude.
- Identifies stars at different stages of their lives.
- Evolution of a CMD.
- Facilitates physical intuition as to likely values of parameters.
- "Chi-by-eye" fitting.

Computer Models for MS/RG Evolution

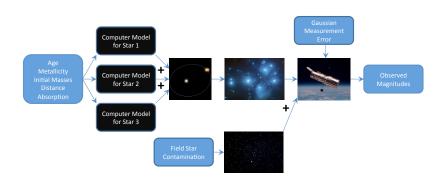
Computer Models Predict Magnitudes From Stellar Parameters

- Must iteratively solve set of coupled differential equations.
- This creates a static physical model of a star, which is how a star of a particular mass and radial abundance profile would appear in terms of its luminosity and color.
- Stars are evolved by updating the mass and abundance profile to account for the newly produced elements.
- Finally interstellar absorption and distance can be used to convert absolute magnitudes into apparent magnitudes.

Embedding Computer Model into Statistical Model

- Typically more parameters than measurements per star.
- We study stellar clusters with (nearly) common age, metallicity, distance, and absorption.
- Magnitudes observed with Gaussian measurement errors.

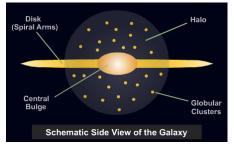
Multi-Star Systems and Field Star Contamination



- Between 1/3 and 1/2 of "stars" are unresolved binaries.
 - Sum luminosities from multiple computer model runs.
- Cluster data is contaminated with field stars.
 - Finite mixture model.

Study of WDs: Age of Galactic Structures

- Age of galactic halo or disk can only be estimated with older stars.
- Stellar clusters are pulled apart as they interact gravitationally with other stars and clusters.



- Older stars tend to be "in the field" not in clusters.
- The colors of a single white dwarf are much more informative as to its age than are the colors of a MS star.

We would like to model white dwarf colors.

White Dwarfs Physics

- White dwarf spectra are not predicted from MS/RG models
- Different physical processes require different models:
- Computer Model for White Dwarf Cooling
 - Computer Model for White Dwarf Atmosphere
 - Initial Final Mass Relationship (IFMR)

Computing the Progenitor Age

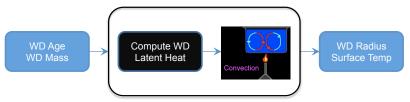


Begin with the MS / RG model:

- Rather than running the MS/RG model for a fixed *age*, we run it until the giant evolves into a white dwarf.
- This gives us the progenitor age of the MS / RG star.
- Subtract from total cluster age to get White Dwarf Age.

The White Dwarf Cooling Model

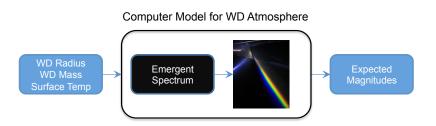
Computer Model for White Dwarf Cooling



A White Dwarf is a Cooling Ember

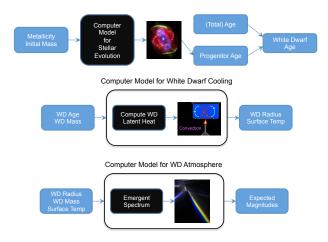
- Heat passes to the surface via some combination of conduction, convection, and/or radiation.
- Depends on the local temperature.
- Numerically modeling these processes yields the surface temperature and radius.

The White Dwarf Atmosphere Model



- Predicts the distribution of the wavelength of emitted electromagnetic radiation.
- We account for the filters used in photometric magnitudes.
- We account for absorption and distance.

The Missing Link: White Dwarf Mass



We must model the white dwarf mass.

A Simple Model for the WD Mass

The Initial Final Mass Relationship (IFMR):

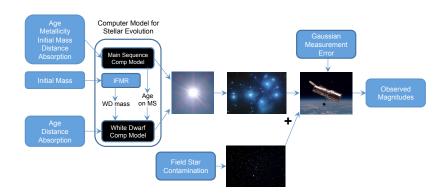
- Predict the White Dwarf mass as a function of Initial Mass.
- With narrow range of mass, relation is approximately linear:

White Dwarf Mass = $\alpha + \beta$ Initial Mass

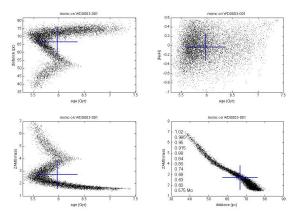
- More massive stars evolve into white dwarfs sooner.
- Progenitors of visible cluster white dwarfs had similar mass.
- Goals:
 - Account for IFMR uncertainty in a coherent model.
 - Fit IFMR over a wide range of masses using several clusters, each with (different) linear models.

Parametric Bridge between Computer Models.

Opening Up the Black Box: The Final Model

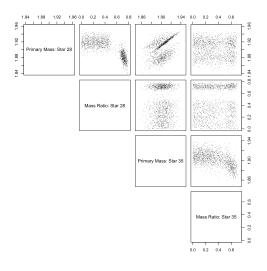


Model Fitting: Complex Posterior Distributions



Highly non-linear relationship among stellar parameters.

Model Fitting: Complex Posterior Distributions



The classification of certain stars as field or cluster stars can cause multiple modes in the distributions of other parameters.

Statistical Computation

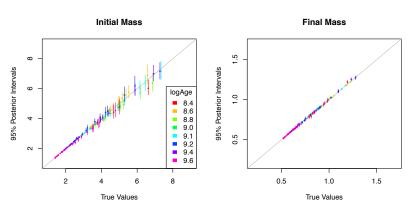
Hundreds of parameters

Stellar: Mass, Mass Ratio, Cluster Membership Cluster: Age, Metallicity, Distance, Absorption General: IFMR slope, IFMR intercept

- Strategy: numerically integrate out stellar parameters and use Metropolis on remaining six parameters.
- Marginal posterior factors into N_{stars} 2D integrals.
- Computer code for MCMC is easy to parallelize.

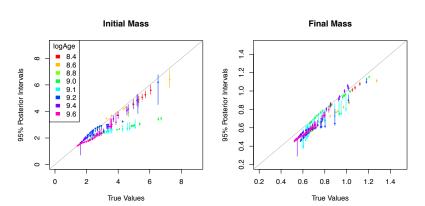
Result: Fast Mixing but computationally expensive code.

Simulation: Recovering the Masses



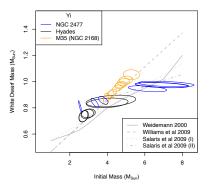
- Simulated 8 clusters of varying age-and white dwarf mass.
- Resulting fits recovery of the masses well.

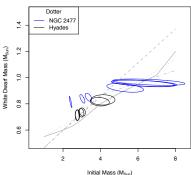
Simulation: Sensitivity to MS / RG Model Choice



- Checking Computer Models: Use different computer models in simulation (YY) and fit (Dotter et al.).
- Measure of bias relative to "True Model"?

Fitting the IFMR



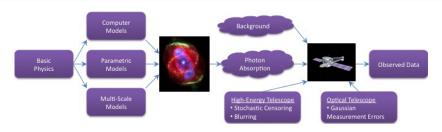


- How best to combine results from three clusters?
- Is there one relationship? Depend on other variables?

Outline

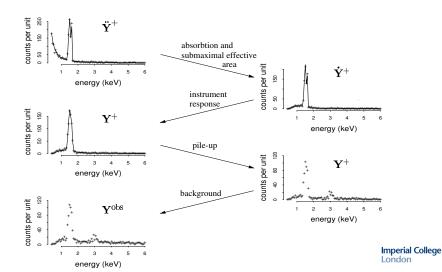
- Computer Models in Astronomy and Statistics
- Stellar Evolution
 - Model for Stellar Evolution
 - Computer Models for White Dwarf Evolution
 - Statistical Computation and Numerical Results
- Calibration of X-ray Detectors
 - Computer Models for Instrument Calibration
 - Statistical Methods
 - Empirical Illustration

The Basic Statistical Model



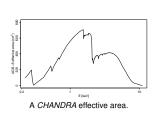
- Embed physics models into multi-level statistical models.
- X-ray and γ -ray detectors count a typically *small number of photons* in each of a *large number of pixels*.
- Must account for complexities of data generation.
- Sophisticated data and computational techniques enable us to fit the resulting complex model.

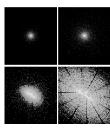
Degradation of the Photon Counts



Calibration Products

- Analysis is highly dependent on Calibration Products:
 - Effective area records sensitivity as a function of energy
 - Energy redistribution matrix can vary with energy/location
 - Point Spread Functions can vary with energy and location
 - Exposure Map shows how effective area varies in an image
- In this talk we focus on uncertainty in the effective area.

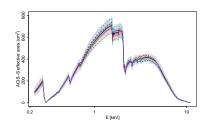


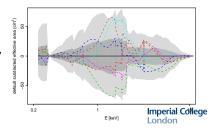


EGERT exposure map imperial College (area × time) Imperial College

Derivation of Calibration Products

- Instrumental sensitivity varies as a function of energy.
- Prelaunch ground-based and post-launch space-based empirical assessments.
- Complex computer models of subassembly components.
- Calibration scientists provide a sample representing uncertainty
- Calibration Sample is typically of size $M \approx 1000$.





Simple Emulation of Computer Model

We use *Principal Component Analysis* to represent uncertainly:

$$A \sim A_0 + \bar{\delta} + \sum_{j=1}^m e_j r_j \mathbf{v}_j,$$

 A_0 : default effective area,

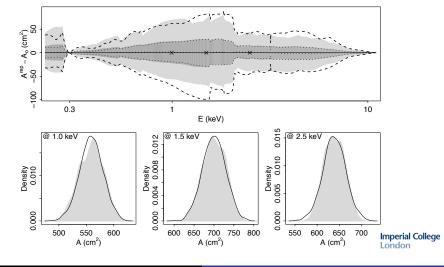
 $\bar{\delta}$: mean deviation from A_0 ,

 r_j and v_j : first m principle component eigenvalues & vectors,

e_i: independent standard normal deviations.

Capture 95% of variability with m = 6 - 9.

Checking the PCA Emulator



Two Possible Target Distributions

We consider inference under:

A PRAGMATIC BAYESIAN TARGET: $\pi_0(A, \theta) = p(A)p(\theta|A, Y)$. THE FULLY BAYESIAN POSTERIOR: $\pi(A, \theta) = p(A|Y)p(\theta|A, Y)$.

Concerns:

Statistical Fully Bayesian target is "correct".

Cultural Astronomers have concerns about letting the current data influence calibration products.

Computational Both targets pose challenges, but pragmatic Bayesian target is easier to sample.

Practical How different are p(A) and p(A|Y)?

Implementing the Fully Bayesian Analysis

Direct MH sampling is difficult. (Case-by case tuning of jumping rules.)

Pragmatic Bayesian posterior

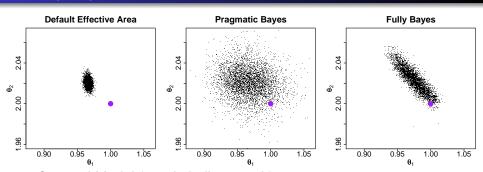
- We can easily sample from $\pi_0(A, \theta)$.
- Well suited proposal dist'n: over-dispersed relative to $\pi(A, \theta)$.
- But $\pi_0(A, \theta)$ cannot be evaluated

$$\pi_0(A, \theta) = p(\theta|Y, A)p(A) = \frac{p(Y|\theta, A)p(\theta)}{p(Y|A)}p(A)$$

This is a doubly intractable distribution.

- We construct a normal approximation (\sim 20 dimensional).
- Use as jumping rule in an independence MH sampler.

Sampling From the Full Posterior

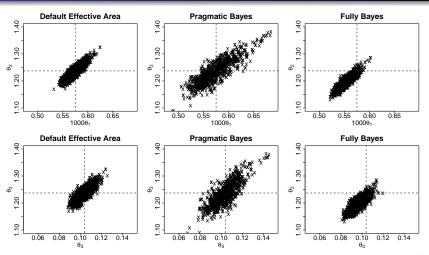


Spectral Model (purple bullet = truth):

$$f(E_j) = \theta_1 e^{-\theta_3 x(E_j)} E_j^{-\theta_2}$$

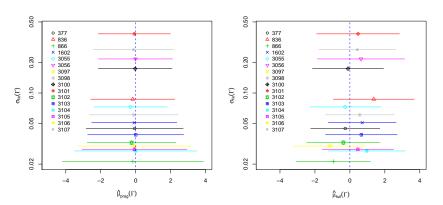
Pragmatic Bayes is clearly better than current practice, but a Fully Bayesian Method is the ultimate goal. Imperial College

The Effect in an Analysis of a Quasar Spectrum



Fully Bayes Shifts Posterior Without Increasing SD.

Results: 95% Intervals Standardized by Standard Fit



For large spectra calibration uncertainty swamps statistical error.
In large spectra fully Bayes identifies A and shifts interval.

Thanks...

Stellar Evolution:

- Nathan Stein
- Steven DeGennaro
- Elizabeth Jeffery
- William H. Jefferys
- Ted von Hippel

Instrument Calibration

- Vinay Kashyap
- Jin Xu
- Alanna Connors
- Hyunsook Lee
- Aneta Siegminowska
- California-Harvard Astro-Statistics Collaboration

For Further Reading I

O.Malley, E. M., von Hippel, T., and van Dyk, D. A. A Bayesian Approach to Deriving Ages of Individual Field White Dwarfs. *The Astrophysical Journal*, to appear, 2013.

Stein, N, van Dyk, D., von Hippel, T., DeGennaro, S., Jeffery, E., Jeffreys, W. H. Combining Computer Models in a Principled Bayesian Analysis: From Normal Stars to White Dwarf Cinders. *Statistical Analysis & Data Mining*, **6**, 34–52, 2013.

Jeffery, E., von Hippel, T., DeGennaro, S., van Dyk, D., Stein, N., and Jefferys, W. The White Dwarf Age of NGC 2477.

The Astrophysical Journal, 730, 35–43, 2011.

Lee, H., Kashyap, V., van Dyk, D., Connors, A., Drake, J., Izem, R., Min, S., Park, T., Ratzlaff, P., Siemiginowska, A., and Zezas, A. Accounting for Calibration Uncertainties in X-ray Analysis: Effective Area in Spectral Fitting. *The Astrophysical Journal*, **731**, 126–144, 2011.

van Dyk, D. A., DeGennaro, S., Stein, N., Jefferys, W. H., von Hippel, T. Statistical Analysis of Stellar Evolution.

The Annals of Applied Statistics 3. 117-143. 2009.

The Simulation Studies

Simulated Spectra

Spectra were sampled using an absorbed power law,

$$f(E_j) = \alpha e^{-N_H x(E_j)} E_j^{-\Gamma},$$

accounting for instrumental effects; E_i is the energy of bin j.

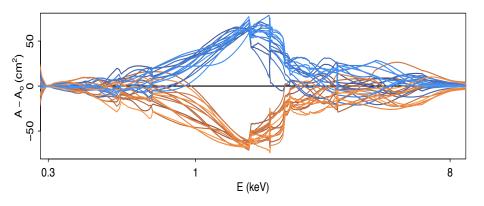
• Parameters (Γ and N_H) and sample size/exposure times:

	Effective Area		Nominal Counts		Spectal Model	
	Default	Extreme	10 ⁵	10 ⁴	Hard [†]	Soft [‡]
SIM 1	Х		X		X	
SIM 2	X		X			Χ
Ѕім З	X			Χ	X	

 $^{^{\}dagger}$ An absorbed powerlaw with $\Gamma = 2$, $N_{\rm H} = 10^{23}/{\rm cm}^2$

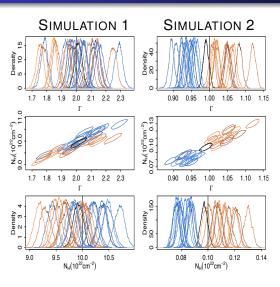
 $^{^{\}ddagger}$ An absorbed powerlaw with $\Gamma = 1, N_{H} = 10^{21}/\text{cm}^{2}$

30 Most Extreme Effective Areas in Calibration Sample



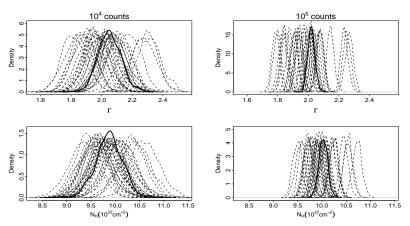
15 largest and 15 smallest determined by maximum value

The Effect of Calibration Uncertainty



- Columns represent two simulated spectra.
- True parameters are horizontal lines.
- Posterior under default calibration is plotted in black.
- The posterior is highly sensitive to the choice of effective area!

The Effect of Sample Size



The effect of Calibration Uncertainty is more pronounced with larger sample sizes.