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Computer Models in Astronomy and Statistics

Computer Models

@ Complex scientific phenomena can often only be modeled
via simultaneous mathematical equations.

@ E.g., Pharmacokinetics, Meteorology, Climatology,
Seismology, Transportation, Immunology, Astronomy, etc.

@ Like a statistical likelihood these computer models involve

e unknown input parameters and
e prediction or simulation of observations.

—Deterministic and Stochastic Computer Models.
@ Require sophisticated and time consuming computation.
@ Goal: Use data to learn about parameters and models.
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Computer Models in Astronomy and Statistics

Computer Models in Astronomy

Computer Models are used to
@ model stellar evolution,

@ describe properties of
planetary and stellar
atmospheres,

@ simulate chemical reactions
in interstellar clouds, -

@ calculate the emergence of clusters and superclusters of
galaxies in the early Universe,

@ determine the yield of the elements during the Big Bang

Imperial College
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Computer Models in Astronomy and Statistics

Computer Models in Statistics

Statistical literature focuses on Computer Models in isolation:

Emulation: A statistical model (e.g., a Gaussian Process) is
used for interpolation and extrapolation of the
computer model.

Calibration: Tuning/Fitting of the input parameters to observed
data via a discrepancy measure.

Prediction: Use of calibrated and/or emulated computer model
for experiments in place of actual physical process.

Uncertainty: Careful quantification of uncertainty is key:
parameter uncertainty and variability, model
inadequacy, residual variance, observation error.

Imperial College
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Computer Models in Astronomy and Statistics

Embedding in a Fully Bayesian Analyses

We aim to use computer models
@ as a component of a statistical likelihood function or
© to generate from a sampling distribution.

Build multi-level models

@ Combine computer models with other model components
via multi-level or hierarchical models,

@ Combine multiple computer models via parametric models,

@ Enable standard techniques for model fitting, checking,
comparison, and improvement.

Computation becomes the real issue!

Strategy: Combine sophisticated models with efficient
emulation. ‘Ifl1perla! College
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Model for Stellar Evolution
Stellar Evolution Computer Models for White Dwarf Evolution
Statistical Computation and Numerical Results

Stellar Formation

e

Stars form when the dense parts of a molecular cloud collapse
into a ball of plasma. Imperial College

London
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Model for Stellar Evolution
Stellar Evolution Computer Models for White Dwarf Evolution
Statistical Computation and Numerical Results

Evolution of a Sun-like Star
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@ Fusion of Hydrogen into Helium in the core can last millions
or billions of years, depending on the initial stellar mass.

@ When H is depleted, He may fuse into heavier elements.

@ At the same time the star goes through dramatic physical
changes, growing and cooling into a red giant star.

@ The star undergoes mass loss forming a planetary nebula.
@ Eventually only the core is left, a white dwarf star.

@ White dwarf is a stellar ember and cools slowly via
conduction, convection, and/or radiation. Imperial College
1
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Compter Model for Sun-Like Stellar Evolution

Computer
Model
for
Stellar
Evolution

@ Computer model predicts how the emergent and apparent
spectra evolve as a function of input parameters.

@ We observe photometric magnitudes, the apparent ool Collece
luminosity in each of several wide wavelength bands. n ’
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Model for Stellar Evolution
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The Data: Color Magnitude Diagrams

£ " Red Giants Color-Magnitude Diagram
’ @ Plot Magnitude Difference vs.
Magnitude.
: @ |dentifies stars at different
oS stages of their lives.

@ Evolution of a CMD.

@ Facilitates physical intuition as
to likely values of parameters.

White Dwarfs [+ “Chi—by—eye" flttlng

Imperial College

Apparent Magnitude Difference (Color)
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Model for Stellar Evolution
Stellar Evolution Computer Models for White Dwarf Evolution
Statistical Computation and Numerical Results

Computer Models for MS/RG Evolution

Computer Models Predict Magnitudes From Stellar Parameters
@ Must iteratively solve set of coupled differential equations.

@ This creates a static physical model of a star, which is how
a star of a particular mass and radial abundance profile
would appear in terms of its luminosity and color.

@ Stars are evolved by updating the mass and abundance
profile to account for the newly produced elements.

@ Finally interstellar absorption and distance can be used to
convert absolute magnitudes into apparent magnitudes.

Imperial College
London

David A. van Dyk Complex Analyses with Computer Models in Astronomy
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Embedding Computer Model into Statistical Model

Computer
Model
for
Stellar
Evolution

@ Typically more parameters than measurements per star.

@ We study stellar clusters with (nearly) common age,
metallicity, distance, and absorption.

@ Magnitudes observed with Gaussian measurement errors.

Imperial College
London
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Multi-Star Systems and Field Star Contamination

Computer Model
for Star 1

Computer Model
for Star 2

Computer Model
for Star 3

@ Between 1/3 and 1/2 of “stars” are unresolved binaries.
e Sum luminosities from multiple computer model runs.

@ Cluster data is contaminated with field stars. Imperial College
e Finite mixture model. Fondon
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Model for Stellar Evolution
Stellar Evolution Computer Models for White Dwarf Evolution
Statistical Computation and Numerical Results

Study of WDs: Age of Galactic Structures

@ Age of galactic halo or )
diskcan only be est- I
imated with older stars.

@ Stellar clusters are
pulled apart as they p
interact gravitationally BT T Globulr
with other stars and
clusters.

@ Older stars tend to be “in the field” — not in clusters.

@ The colors of a single white dwarf are much more
informative as to its age than are the colors of a MS star.

Schematic Side View of the Galaxy

We would like to model white dwarf colors.

Imperial College
1
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Model for Stellar Evolution
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White Dwarfs Physics

@ White dwarf spectra are not predicted from MS/RG models
@ Different physical processes require different models:

@ Computer Model for White Dwarf Cooling
@ Computer Model for White Dwarf Atmosphere
© Initial Final Mass Relationship (IFMR)

Imperial College
London
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Computing the Progenitor Age

Computer
Model
for
Stellar
Evolution

Begin with the MS / RG model:

@ Rather than running the MS/RG model for a fixed age, we
run it until the giant evolves into a white dwarf.

@ This gives us the progenitor age of the MS / RG star.
@ Subtract from total cluster age to get White Dwarf Age.

Imperial College
London
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Model for Stellar Evolution
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The White Dwarf Cooling Model

Computer Model for White Dwarf Cooling
Compute WD
Latent Heat

A White Dwarf is a Cooling Ember

@ Heat passes to the surface via some combination of
conduction, convection, and/or radiation.

@ Depends on the local temperature.

@ Numerically modeling these processes yields the imperial College
surface temperature and radius. rondon
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The White Dwarf Atmosphere Model

Computer Model for WD Atmosphere

Emergent
Spectrum \

@ Predicts the distribution of the wavelength of emitted
electromagnetic radiation.

@ We account for the filters used in photometric magnitudes.
@ We account for absorption and distance. imperial College
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The Missing Link: White Dwarf Mass

Computer Model for White Dwarf Cooling

Compute WD ( j
Latent Heat ‘

Computer Model for WD Atmosphere

\
Emergent
Spectrum \
Imperial College
n

We must model the white dwarf mass.

Computer
Model
for

Stellar
Evolution
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A Simple Model for the WD Mass

The Initial Final Mass Relationship (IFMR):

@ Predict the White Dwarf mass as a function of Initial Mass.
@ With narrow range of mass, relation is approximately linear:

White Dwarf Mass = a + 3 Initial Mass

e More massive stars evolve into white dwarfs sooner.
e Progenitors of visible cluster white dwarfs had similar mass.

@ Goals:
@ Account for IFMR uncertainty in a coherent model.
e Fit IFMR over a wide range of masses using several
clusters, each with (different) linear models.

Parametric Bridge between Computer Models.

Imperial College
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Opening Up the Black Box: The Final Model

Computer Model for
Stellar Evolution

Main Sequence
Comp Model

White Dwarf
Comp Model

Imperial College
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Model Fitting: Complex Posterior Distributions
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Highly non-linear relationship among stellar parameters.
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Model for Stellar Evolution
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Model Fitting: Complex Posterior Distributions
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The classification of
certain stars as field
or cluster stars can
cause multiple
modes in the
distributions of other
parameters.
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Model for Stellar Evolution
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Statistical Computation

@ Hundreds of parameters

Stellar: Mass, Mass Ratio, Cluster Membership
Cluster: Age, Metallicity, Distance, Absorption
General: IFMR slope, IFMR intercept

@ Strategy: numerically integrate out stellar parameters and
use Metropolis on remaining six parameters.

@ Marginal posterior factors into Ny, 2D integrals.
@ Computer code for MCMC is easy to parallelize.

Result: Fast Mixing but computationally
expensive code.

Imperial College
London
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Model for Stellar Evolution
Computer Models for White Dwarf Evolution
Statistical Computation and Numerical Results

Simulation: Recovering the Masses

Initial Mass Final Mass
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Simulated 8 clusters of varying age—and white dwarf mass.

Imperial College

London

@ Resulting fits recovery of the masses well.
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Simulation: Sensitivity to MS / RG Model Choice
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@ Checking Computer Models: Use different computer
models in simulation (YY) and fit (Dotter et al.). imperial College
@ Measure of bias relative to “True Model”? ronden
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Fitting the IFMR
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@ How best to combine results from three clusters?
. . . Imperial College
@ Is there one relationship? Depend on other variables? tondon
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The Basic Statistical Model

Computer
Models Background .
A4

Basic - Parametric 4 Photon . =
N i y » > k > 5
Physics Y Models Iy - Observed Data
e High-Energy Telescope: Qnfical Telescope.
Models * Stochastic Censoring * Gaussian
* Blurring Measurement Errors

@ Embed physics models into multi-level statistical models.

@ X-ray and ~-ray detectors count a typically small number of
photons in each of a large number of pixels.

@ Must account for complexities of data generation.

4

¥

l‘L l

@ Sophisticated data and computational techniques enable
us to fit the resulting complex model.

Imperial College
London
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Computer Models for Instrument Calibration
Statistical Methods

Empirical lllustration

Degradation of the Photon Counts
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Calibration Products

@ Analysis is highly dependent on Calibration Products:
o Effective area records sensitivity as a function of energy
e Energy redistribution matrix can vary with energy/location
e Point Spread Functions can vary with energy and location
e Exposure Map shows how effective area varies in an image

@ In this talk we focus on uncertainty in the effective area.

e <

B

100000 2000
EGERT exposure map Imperlal College
Sample Chandra psf’s (area x time) Le
(Karovska et al., ADASS X)

Elev]

A CHANDRA effective area.

David A. van Dyk

Complex Analyses with Computer Models in Astronomy



Computer Models for Instrument Calibration
Statistical Methods
Calibration of X-ray Detectors Empirical lllustration

Derivation of Calibration Products

800

@ Instrumental sensitivity varies
as a function of energy.

@ Prelaunch ground-based and
post-launch space-based
empirical assessments. :

@ Complex computer models of .
subassembly components.

@ Calibration scientists provide a
sample representing uncertainty

@ Calibration Sample is typically
of size M ~ 1000.

(em’)
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-50

02 1 Imperial Cdflege
London
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Simple Emulation of Computer Model

We use Principal Component Analysis to represent uncertainly:

m
A~ A+8+) gnv,
j=1
Ap: default effective area,
d: mean deviation from Ag,
ri and v;: first m principle component eigenvalues & vectors,
g;. independent standard normal deviations.

Capture 95% of variability with m = 6 — 9.

Imperial College
London
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Checking the PCA Emulato
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Two Possible Target Distributions

We consider inference under:
A PRAGMATIC BAYESIAN TARGET: mo(A,0) = p(A)p(|A,Y).
THE FULLY BAYESIAN POSTERIOR: 7(A,0) = p(A|Y)p(0|A,Y).

Concerns:
Statistical Fully Bayesian target is “correct”.

Cultural Astronomers have concerns about letting the
current data influence calibration products.

Computational Both targets pose challenges,
but pragmatic Bayesian target is easier to sample.

Practical How different are p(A) and p(A|Y)?

Imperial College
London
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Implementing the Fully Bayesian Analysis

Direct MH sampling is difficult. (Case-by case tuning of jumping rules.)

Pragmatic Bayesian posterior
@ We can easily sample from mg(A, 6).
@ Well suited proposal dist’n: over-dispersed relative to (A, 6).
@ But mp(A, #) cannot be evaluated

p(Y10. A)p(6)
p(Y|A)
This is a doubly intractable distribution.

@ We construct a normal approximation (~ 20 dimensional).

@ Use as jumping rule in an independence MH sampler.

mo(A,0) = p(0]Y, A)p(A) = p(A)

Imperial College
London
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Sampling From the Full Posterior
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Spectral Model (purple bullet = truth):
f(E)) = b1~ "B E "

Pragmatic Bayes is clearly better than current practice,
but a Fully Bayesian Method is the ultimate goal. mperial Coliege
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The Effect in an Analysis of a Quasar Spectrum
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Results: 95% Intervals Standardized by Standard Fit
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Thanks...

Stellar Evolution: Instrument Calibration
@ Nathan Stein @ Vinay Kashyap
@ Steven DeGennaro @ Jin Xu
@ Elizabeth Jeffery @ Alanna Connors
@ William H. Jefferys @ Hyunsook Lee
@ Ted von Hippel @ Aneta Siegminowska

@ California-Harvard Astro-
Statistics Collaboration

Imperial College
London
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The Simulation Studies

Simulated Spectra
@ Spectra were sampled using an absorbed power law,

f(E)) = ae” "WEIETT,

accounting for instrumental effects; E; is the energy of bin j.
@ Parameters (I and Ny) and sample size/exposure times:

Effective Area Nominal Counts Spectal Model
Default  Extreme 10° 10% Hard™  Soft*
Sim 1 X X X
Sim 2 X X X
Sim 3 X X X
tAn absorbed powerlaw with I = 2, N = 1023 /cm?
tAn absorbed powerlaw with I = 1, Niy = 102" /cm? lmpsfiég College
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30 Most Extreme Effective Areas in Calibration Sample

(o] 50

A-A, (cm?

-50

E (keV)

15 largest and 15 smallest determined by maximum value

Imperial College
London
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The Effect of Calibration Uncertainty

Np(10%2cm2)
10.0 11.0

9.0

Density
012 3 4

@ Columns represent
two simulated spectra.

@ True parameters are

— horizontal lines.

@ Posterior under
default calibration is

: plotted in black.

@ The posterior is highly
sensitive to the choice
of effective area!
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The Effect of Sample Size

Computer Models for Instrument Calibration
Statistical Methods
Empirical lllustration

10* counts
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The effect of Calibration Uncertainty is more
pronounced with larger sample sizes.

lyses with Computer Models
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