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Calibration in High-Energy Astrophysics

Scientific Goals and Instruments
Instrumental Calibration

High-Energy Astrophysics

@ Produced by multi-million
degree matter, e.g., magnetic
fields, extreme gravity, or
explosive forces.

@ Provide understanding into EGERT ~-ray counts >1GeV
the hot turbulent regions of (enire sky and mission fe).
the universe.

@ X-ray and ~-ray detectors
typically count a small
number of photons in each of
a large number Of pixels' Dispersion grating spectrum of an Active Galactic

Nucleus; emission from matter accreting onto a
massive Black Hole.
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Scientific Goals and Instruments
Instrumental Calibration

The Basic Statistical Model
Col t
s .
“JE 3
il il Qptical Telescope.
Models * Stochastic Censoring * Gaussian
* Blurring Measurement Errors

@ Aim to formulate models in terms of specific questions of
scientific interest.

@ Must account for complexities of data generation.

@ Embed complex physics-based and/or instrumental
models into multi-level statistical models.

@ State of the art data and computational techniques enable
us to fit the resulting complex model. imperial College

London
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Degradation of the Photon Counts
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Scientific Goals and Instruments
Instrumental Calibration

Calibration Products

@ Analysis is highly dependent on Calibration Products:
o Effective area records sensitivity as a function of energy
e Energy redistribution matrix can vary with energy/location
e Point Spread Functions can vary with energy and location
e Exposure Map shows how effective area varies in an image

@ In this talk we focus on uncertainty in the effective area.
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Scientific Goals and Instruments
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Derivation of Calibration Products

800

@ Prelaunch ground-based and
post-launch space-based
empirical assessments.

@ Aim to capture deterioration of
detectors over time. :

@ Complex computer models of
subassembly components.

@ Calibration scientists provide a
sample representing uncertainty

@ Calibration Sample is typically of
size ~ 1000.
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Bayesian Analysis
Statistical Methods Bayesian Computation
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Bayesian Statistical Analyses: Likelihood

Likelihood Functions: The distribution of the data given the

model parameters. E.g., Y ~ Poisson(\g):

likelihood(\s) = e *sA\%/ Y!

Maximum Likelihood Estimation: Suppose Y = 3

likelihood

0.20

0.10

0.00

The likelihood
and its normal
approximation.
0 2 4 6 é 10 12
lambda

Imperial College
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Can estimate \s and its error bars.
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Bayesian Analyses: Prior and Posterior Dist'ns

Prior Distribution: Knowledge obtained prior to current data.

Bayes Theorem and Posteror Distribution:
posterior(\)  likelihood(\)prior(\)

Combine past and current information:
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Bayesian analyses allows us to incorporate
external information via the prior distribuiton. — mperial cotege
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The Standard Approach

In high energy astrophysics the effective area
curve is invariably assumed known:

p(0]A, Y) o< p(Y10, A)p(6]|A).

0: Model parameters, of primary scientific interest.
A: Effective area curve, typically assumed known.
Y: Observed data—bin counts.

Treating A as known is a V@I'Y strong prior!!

Imperial College
Londor
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Our Approach

800

We

@ introduce a Bayesian approach
to reduce prior assumptions,

@ propose to the use the )
calibration sample to represent 02 S o
the prior distribution for A, and

@ base analysis on:
p(0, AlY) o p(Y|0, A)p(6]A)p(A).

pIY) = [ plo. AY)aA
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Two Possible Target Distributions

We consider inference under:
A PRAGMATIC BAYESIAN TARGET: mo(A,0) = p(A)p(|A,Y).
THE FULLY BAYESIAN POSTERIOR: 7(A,0) = p(A|Y)p(0|A,Y).

Concerns:
Statistical Fully Bayesian target is “correct”.

Cultural Astronomers have concerns about letting the
current data influence calibration products.

Computational Both targets pose challenges,
but pragmatic Bayesian is easier to fit.

Practical How different are p(A) and p(A|Y)?

Imperial College
Londor
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Model Fitting via Monte Carlo

Consider a contaminated Poisson count:
Source: Y ~ Poisson(As + Ap)
Background: X ~ Poisson(CAp)

Exploring the posterior distribution via Monte Carlo:

prior posterior joint posterior
with flat prior
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A Gibbs Sampler for Calibration Uncertainty

A Markov chain Monte Carlo sampler iterates:

Step 1: Sample the effective area curve given the current
value of model parameters.

Step 2: Sample the model parameters given the current
value of the effective area.

@ Step 2 samples under standard approach.

@ Step 1 swaps in a different effective area at each iteration.
@ Fully Bayes: Step 1 samples 7(A|9).

@ Pragmatic Bayes: my(A) is easier to sample than my(A|6).
@ Both effectively average over calibration uncertainty.

Imperial College
Londor
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MH within Partially Collapsed Gibbs Samplers

MCMC for Pragmatic Bayes
Step 1: Sample the effective area curve from my(A).

Step 2: Sample the model parameters from 7y(6|A).
This requires an MH update.

A naive Sampler:

STEP 1: ¢4 ~ p(¢1)
STEP 2: 92 ~ M(12|11) via MH with limiting dist. p(v2]1)

Simulation Study:
0
® Suppose (11) ~ Nz [(9): (ols %°)]
@ MH: a Gaussian jumping rule centered at previous draw.

Tmperial College
Londor
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Be Careful When Combining MH and PCG Sampling

MH within Gibbs Sampler The naive Sampler

Imperial College

ondc
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What Goes Wrong

The naive Sampler:

STeP 1: o) ~ p(¢1)
STEP 2: wg) ~ M(wz\wst),wg_”) via Metropolis Hastings

The update of ¥» depends on both w$ and zp(t RE
@ The limiting distribution of the MH step is p(wgywﬁt)).

@ If the proposal is rejected, - is set to w(t ",

BUT: ¢1 ~ p(1¥1)—independent of q,z)“ D at every iteration.

STEP 2 will never produce samples from p(iz|i)1).

Imperial College
Londor
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Two Simple Solutions

Two possible samplers

@ A PCG (Simple Collapsed) Gibbs Sampler:
STeEP 1: Al) ~ p(A)
STEP 2: Sample 9(=1+/L)  M(6|AD gt=1))
L times via MH to obtain 8() ~ p(9|AD).

@ A pure MH Sampler:
Jumping Rule: (A*,0*) ~ p(A*)M(6*|A*, 6(=1).

Tradeoff: MH is faster, PCG gives independent draws.

PCG has larger expected acceptance

probability and lower empirical autocorrelation
(compared with L iterations of pure MH).

Imperial College
Londor
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Multiple Imputation

A simpler solution involves Multiple Imputation:
@ Treat m effective areas from calibration sample as “imputations”.
@ Fit the model m times in standard way, once with each imputation.
@ Compute estimates & errors with Multiple Imputation Combining Rules.

1
0= > bm.
m=1
M 1 M
> =V_1 > Om—0)(Om—0)"
m= m=1

Approximate Pragmatic Bayes: Replicates of A ~ p(A). e cotese
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Sticking Point

@ We only have a sample from p(A).
@ How do we incorporate this sample into our analysis?
@ We do not want to store the entire calibration sample.

50
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Simple Emulation of Complex Variability

We use Principal Component Analysis to formulate a
degenerate Gaussian approximation to the calibration sample:

m
A~A0+5+Zejrjvj,
j=1
Ap: default effective area,
d: mean deviation from Ay,
rp and v;: first m principle component eigenvalues & vectors,
e;: independent standard normal deviations.

Capture 95% of variability with m = 6 — 9.

Imperial College
Londor
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Accounting for Uncertainty
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The Two Possible Target Distributions

We consider inference under:
A PRAGMATIC BAYESIAN TARGET: mo(A,0) = p(A)p(0|A,Y).
THE FULLY BAYESIAN POSTERIOR: w(A,8) = p(A|Y)p(0|A,Y).

@ MCMC can be used with either target distribution.
@ Fully Bayesian computation is more challenging.

@ Multiple Imputation gives valid inference under the
Pragmatic Bayesian distribution.

@ Compare results using simulation studies & data analyses.

Imperial College
Londor

David A. van Dyk Accounting for Calibration Uncertainty



Simulation Studies
Radio Loud Quasar Spectra
Empirical lllustrations The Fully Bayesian Solution

Outline

© Empirical llustrations
@ Simulation Studies
@ Radio Loud Quasar Spectra
@ The Fully Bayesian Solution

Imperial College
Londor

David A. van Dyk Accounting for Calibration Uncertainty



Simulation Studies
Radio Loud Quasar Spectra
Empirical lllustrations The Fully Bayesian Solution

The Simulation Studies

Simulated Spectra
@ Spectra were sampled using an absorbed power law,

f(E)) = ae” "WEIETT,

accounting for instrumental effects; E; is the energy of bin j.
@ Parameters (I and Ny) and sample size/exposure times:

Effective Area Nominal Counts Spectal Model
Default  Extreme 10° 10% Hard™  Soft*
Sim 1 X X X
Sim 2 X X X
Sim 3 X X X

tAn absorbed powerlaw with I = 2, N = 1023 /cm?

£An absorbed powerlaw with I = 1, Ny = 102! /em? —
Londor
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30 Most Extreme Effective Areas in Calibration Sample

(o] 50

A-A, (cm?

-50

E (keV)

15 largest and 15 smallest determined by maximum value

Imperial College
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Simulation Studies
Radio Loud Quasar Spectra
The Fully Bayesian Solution

The Effect of Calibration Uncertainty
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@ Columns represent
two simulated spectra.
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@ True parameters are

— horizontal lines.

@ Posterior under
default calibration is

: plotted in black.

@ The posterior is highly
sensitive to the choice
of effective area!
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The Effect of Sample Size
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The effect of Calibration Uncertainty is more pronounced
with larger sample sizes. imperal Colge
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Expanded Simulation for Pragmatic Bayes

Simulated Spectra
@ Spectra were sampled using an absorbed power law,

f(E)) = ae "W EIETT,

Effective Area Nominal Counts Spectal Model
Default  Extreme 10° 10% Hard?  Soft?
SIMULATION 1 X X X
SIMULATION 2 X X X
SIMULATION 3 X X X
SIMULATION 4 X X X
SIMULATION 5 X X X
SIMULATION 6 X X X
SIMULATION 7 X X X
SIMULATION 8 X X X
TAn absorbed powerlaw with ' = 2, Niy = 1023 /cm?
*An absorbed powerlaw with ' = 1, N = 102" /cm? Imperial College
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Empirical lllustrations

Pragmatic Bayes: Higher Variance Than Default

T T T T T T T T
[SIM 1] NH=10%; r=2; N=10° [SIM 2] NH=10%;
fixed ARF fixed ARF
MCMC+PCA MCMC+PCA
MCMC+sample MCMC+sample
MI+PCA MI+PCA
Mi+sample Mi+sample
2.6 0.8 1.2
"f
fixed ARF fixed ARF
MCMC+PCA MCMC+PCA
MCMC+sample MCMC+sample
MI+PCA /’ x. MI+PCA
Mi+sample / S SV Mi+sample
2.6 0.8 0.9 1.0 1.1 1.2 Imperial College
r Londor
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Pragmatic Bayes: Better Coverage Than Default

T T y T T T T T T T
[SIM 5] NH=10%% r=2; N=10° [SIM 6] NH=10%"; T=1; N=10°
fixed ARF fixed ARF
MCMC+PCA MCMC+PCA
MCMC+sample MCMC+sample
MI+PCA MI+PCA
Mi+sample Mi+sample
2.6 0.8 0.9 1.0 1.1 1.2
r
T T y T T T T
[SIM 7] NH=10%; r=2; N=10*
fixed ARF fixed ARF
MCMC+PCA MCMC+PCA
MCMC+sample MCMC+sample
4 MI+PCA MI+PCA
4 Mi+sample Mi+sample
2.6 1.2 Imperial College
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A Simple Simulation for the Fully Bayesian Sampler

A Simple Simulation.

f(Ej)

@ Sampled 10° counts from a power law spectrum:

— e X (EVE

@ No energy blurring or backgraound contamination.
@ Effective area used in the simulation differed from default:

Auwe IS 1.50 from the center of the calibration sample.

David A. van Dyk Accounting for Calibration Uncertainty
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Sampling From the Full Posterior

Default Effective Area Pragmatic Bayes Fully Bayes

2.04
2.04
2.04

6,
6,
68,

2.00
°
2.00
2.00

1.96

©

8 |

0.80 0.85 1.00 1.05 = " 0bo 0.85 1.00 1.05 0.80 0.85 1.00 1.05
0, 6, 6

#1 = normalization, > = power law parameter
purple bullet = truth

1.96

Pragmatic Bayes is clearly better than current practice,
but a Fully Bayesian Method is the ultimate goal.

Imperial College
Londor
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Fully Bayesian:

Less Variance that Pragmatic

[SIM 1] NH=10%%; =2y N=10°
w !
g -
s
fix ARE - fix ARF
fully bayesian fully bayesian
pragmatic bayesian pragmatic bayesian
o o —— R e
T T T T T
24 2.6 28 12 13
-
< -
o
s
w
- fix ARF fix ARF
fully bayesian fully bayesian
pragmatic bayesian \gmatic bayesian
T T T T T T T T T
2.4 26 28 0.8 0.9 10 11 12 13

Imperial College
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Fully Bayesian: Better Coverage than Default

[SIM 5] NH=10%%; F=2] Nf10° 8 . L
0 ' [SIM 6] NH=107"; F'=1; N=10°
s 4
s 4
fix ARF fix ARF
fully bayesian w fully bayesian
pragmatic bayesian
° o - _ :
T T T T T T T T T
24 26 28 0.8 o8 1.0 11 12 13
-
<«
=]
o
w
fix ARF fix ARF
fully bayesian fully bayesian
pragmatic bayesian ragmatic bayesian

T T T T T T T T T
24 26 28 o8 09 10 11 12 13 i
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The Effect of Sample Size Redux

A Set of Radio Loud Quasar Spectra
@ Pragmatic and Fully Bayesian Methods were applied to a
set of Quasars.
@ Quasars are among the most distant distinguishable
astronomical objects.
@ The sixteen Quasar observations varied is size from 20 to
over 10,000 photon counts.

Imperial College
Londor
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Results

Pragmatic Bayes Fully Bayes
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For large spectra calibration uncertainty swamps statistical error.
In large spectra fully Bayes identifies A and reduces uncertainty.mperial colege
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Pragmatic Bayes Fully Bayes
o o o
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Fully Bayes Shifts Posterior Without Increasing SD.  Imperial Colege




Simulation Studies
Radio Loud Quasar Spectra
Empirical lllustrations The Fully Bayesian Solution

Results: 95% Intervals Standardized by Standard Fit
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For large spectra calibration uncertainty swamps statistical error.

In large spectra fully Bayes identifies A and shifts interval.  mperial College
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