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Massive Data Sets and Data Streams

Are we drowning in our own data??
1 D. Marinucci: Exponential growth, esp. in cosmology.
2 K. Borne: More data is not just more-qualitatively different.
3 New Statistical/CS methods for massive data...

ML/AI methods: scalable but ad hoc.
Statistical methods: principled but SLOW.
We need to aim for the best of both worlds!

4 We are not alone: Massive data sets are ubiquitous.
5 Progress is being made!

A. Lee: Transform high-dim data to simpler
form more amenable to standard analyses.
A. Gray: Speed up computation of many
methods for application to massive surveys.
J. Richards: Automatic light curve classif’n.
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Complex Data and Sophisticated Models

Just One Example...

A great leap forward:
Large Synoptic Survey Telescope
(1.28 petabytes per year).
Not just massive: rich & deep.
LSST: Trigonometric Parallax,
Proper Motion, and Photometric
data in 5 bands.
Rich data enables us to fit com-
plex computer/simulation models.
Echo Kirk Borne: “More data is
not just more data: it is
qualitatively different”
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Complex Data and Sophisticated Models

1 Complex computer models and simulations are taking the
place of the analytical likelihood function.

2 Sophisticated data allows us to fit such models, but an
entirely new set of methods are required.

D. Higdon: Gaussian process emulator of computer model.
C. Schafer: “Likelihood Free” / ABC: distribution of
parameters that result in simulation close to observed data.
V. Kashyap: Uses PCA to analytically summarize
calibration products generated with computer models.
D. van Dyk/N. Stein: Embedding computer models into
multilevel model in a fully Bayesian setting.

3 C. Graziani: “This kind of computing is coming to many
more areas of Astronomy”; “Challenge is acute when
complex models are mixed with massive data.”

4 Model fitting, model comparison, design, etc.
5 Future isn’t with off-the-shelf methods or standard models.
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Computer Models in a Principled Statistical Analysis
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We embed computer models into a statistical likelihood
function for a coherent analysis.
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Improving Computer Models

Age 
Metallicity 

Initial Masses 
Distance 

Absorption 

Observed 
Magnitudes 

Gaussian  
Measurement 

Error 

Field Star 
Contamination 

+ 

Computer Model for  
Stellar Evolution 

Main Sequence 
Comp Model 

White Dwarf 
Comp Model 

IFMR 

WD mass 
Age 

on MS 

1 Opening up the “black box” to improve the fit, handle errors
properly, and improve understanding.

2 Treat computer models as any other component in a
highly-structured multi-level model.
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Integration of Statisticians into Astronomy

NEED statisticians, computer scientists, and methodologists
to be a regular part of the process:

1 in design of data collection
2 in methodological development
3 in data analysis
4 funded by grants, hired as postdocs, brought in as faculty.

Models:
1 Econometricians, Psychometricians, and Biostatisticians

reside in academic departments.
2 Data/Methods experts in Business, Engineering, and

Biology departments.
3 And even in Astronomy: Imperial College London
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