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Abstract
Systematic instrumental uncertainties in astronomical analyses have been generally ignored due to the lack of robust principled
method, though the importance of incorporating instrumental calibration uncertainty is widely realized by users and instrument
builders. Ignoring calibration uncertainty can cause bias in the estimate of source model parameters and underestimate their
variance. In this poster, we focus on incorporating uncertainty for the effective area curve into a principled fully Bayesian spectral
analysis. A principle component analyses is explored to efficiently represent the variability of the effective area curve, enabling a
fully Bayesian analysis of calibration uncertainty in spectral analysis of high-energy Chandra data. The method is compared with
standard analysis techniques and the so-called“pragmatic” Bayesian method of Lee et al(2011, ApJ). The advantage of the fully
Bayesian method is that the data itself can provide information for both the source parameters and for the effective area curve. It
is verified that implementing our fully Bayesian method can result in more accurate and efficient estimation of source parameters,
and valid estimates of uncertainty.

Calibration Products
Analysis highly depende on Calibration Products:

• Effective Area records sensitivity as a function of energy

• Energy Redistribution Matrix

• Point Spread Functions

• Exposure Map
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FIGURE 1: The left image is an example of a CHANDRA
effective area curve. The middle one is four samples of Chan-
dra psf’s (Karovska et al., ADASS X). The right one shows an
EGERT exposure map (area × time).

PyBLoCXS
Our methods are carried out using PyBLoCXS, a sophisticated
Markov chain Monte Carlo (MCMC) based algorithm designed
to carry out Bayesian Low-Count X-ray Spectral (BLoCXS)
analysis in the Sherpa environment. PyBLoCXS use a mix-
ture of a random walk Metropolis sampler and a Metropolis
Hastings Independence sampler to draw parameters from their
Bayesian posterior distribution. In principle, It can be imple-
mented in combination with all the models and methods avail-
able in Sherpa. More details about PyBLoCXS can be found in
the following link:
http://hea-www.harvard.edu/AstroStat/pyBLoCXS/

A Fully Bayesian Analysis
To incorporate calibration uncertainty into proper source parameter estimates,we develop a Fully Bayesian approach that works
in conjunction with Markov chain Monte Carlo based fitting using PyBLoCXS. Fully Bayesian analysis allows the current data to
influence the choice of calibration product, which improves estimation and error bars relative to the fixed effective area sampling
scheme and the “pragmatic” Bayesian sampling scheme.

Let θ be the source parameter vector, Y the observed data, and
L(·) the likelihood function, p(θ) is the prior distribution of θ
derived from PCA method.

Scheme One: Fixed Effective Area Curved. We assume
A = A0, where A0 is the default effective area curve. (But not
necessarily the true one.)
Sampling Step:

Sample θ from p(θ|Y,A0) ∝ L(Y |θ, A0)p(θ).
Using PyBLoCXS.

Scheme Two: Pragmatic Bayesian. This scheme incorpo-
rates the maximum uncertainty due to the calibration uncer-
tainty. By sampling from the prior distribution, p(A), rather
than p(A|Y ), it assumes that the correct data is uninformative
for the choice of effective area curve.

Step One:
Sample A from p(A).

Step Two:
Sample θ from p(θ|Y,A) ∝ L(Y |θ, A)p(θ).

Using PyBLoCXS.

Scheme Three: Fully Bayesian. This scheme uses a fully
Bayesian principled approach. It samples A and θ jointly from
their posterior distribution using a Gibbs sampler. (The update
for θ is accomplished via the mixture of Metropolis-Hastings ker-
nel used in PyBLoCXS.) In this way the data is allowed to in-
fluence the choice of effective area curve.
Step One:

Sample A from p(A|Y, θ) ∝ L(Y |θ, A)p(A).
Step Two:

Sample θ from p(θ|Y,A) ∝ L(Y |θ, A)p(θ).

Figure 3: Comparison of three sampling schemes. From left to right are separately source parameters’ sampling for Chandra
datasets ob377, ob3100, and ob3104. Red line, green line and yellow line represent the histogram density results using Fixed
Effective Area, Pragmatic Bayesian and Fully Bayesian.

We apply the three schemes to three data from Chandra observations of three quasars (see Figure 3). For dataset ob377 (first
column), the result from the Pragmatic Bayesian scheme differs from the results with a fixed effective area curve, while the result of
the Fully Bayesian scheme acts differently with different parameters. p1.gamma, p1.amp1 from Fully Bayesian scheme are similar
to Pragmatic Bayesian scheme, and abs1.nH is similar to the result with a fixed effective area curve. For dataset ob3100 (column
2), the results from the three sampling schemes are quite similar. For dataset ob3104 (column 3), the results of the Fully Bayesian
scheme is significant different from the the other two. From a Fully Bayesian perspective, the dataset is in better agreement with
a more extreme curve from the calibration sample. This has a clear effect on the best fit for the spectral parameters and their
error bars.
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Conclusions
• Fully Bayesian method owns the advantage that the data itself can provide information for both the source parameters and

for the effective area curve.

• Implementing fully Bayesian model can result in more accurate and efficient estimation of source parameters, and valid
estimate of uncertainty.
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The Calibration Sample
Drake et al. (2006), suggests generating calibration samples of
effective area curves to represent the uncertainty. We denote
Calibration Sample by {A1, A2, A3, ..., AL}.

To parameterize calibration sample, we use Principle Compo-
nent Analysis(PCA).

A = A0 + δ̄ +
�m

j=1 ejrjvj

A0 : default effective area,

δ̄ : mean deviation from A0,

rj ,vj : first m PCA eigenvalues & vectors,

ej : independent standard normal deviations.

FIGURE 2: The grey regions in the upper panel give intervals
for each energy bin that contain 100% and 68.3% of the cali-
bration sample. The dashed and dotted lines outline intervals
for each energy bin containing 100% and 68.3% of 1000 PCA
replicates of the effective area. The bottom panel details the
comparisons between the calibration sample and PCA summary
for the particular energy bins.
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