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Massive Data Sets and Data Streams

Dramatic increase in the quality and quantity of data:
massive new surveys: catalogs containing T/PBs of data,
high resolution spectrography and imaging across the
electromagnetic spectrum,
incredibly detailed movies of dynamic and explosive
processes in the solar atmosphere,
massive number of items and/or features,
space-based telescopes tailored to specific scientific goals,
data volume is growing.... astronomically!!

Massive statistical
learning challenges!!
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Scaling up to Massive Data Streams

Basic Techniques
Dimension Reduction: Transform high dimensional data to
simpler forms more amenable to standard analyses.
Speed up “inner loop” computation of many methods for
application to massive surveys (Alex Gray, Georgia Tech).
Algorithm-based methods that can handle massive data.

Examples
CMU and Berkeley Astrostat: Reduce high dimensional data
(e.g., light curves) to automatically identify and classify objects
(e.g., variable stars).
Imperial Astrostat: Search for anomalies in multiple massive
semi-incompatible surveys–found most distant known quasar.
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Complex Data and Sophisticated Models

A great leap forward:
Large Synoptic Survey
Telescope (1.28 petabytes/year).
But data are not just massive:
they are rich, deep, & complex.
LSST: Trigonometric Parallax,
Proper Motion, and Photometric
data in 5 bands.
Require specialized models,
methods, and computation.
Idiosyncratic statistical
challenges.
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Example I: Thermal Structure in the Solar Corona1

Highly energetic and violent solar corona is characterized
by sunspots, solar flares, and coronal mass ejections.
Solar storms can affect space weather, earth satellites,
communication systems, and electric grids.
Goal: Track solar activity with the aim of predicting storms
and their effects on Earth.

1N Stein, XL Meng, V Kashyap, and iCHASC
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The Diffuse Emission Measure

λi = PAµi

1

Spectra DEM 

Exposure 
Matrix 

Response 
Matrix 

DEM: expected emission due to plasma of a given temperature.
A: expected spectra of plasmas at each temperature.

Normalized Spectra: πi =
PAµi

1>PAµi
, MLE is trivial.

Goal: Cluster pixels with similar spectra.
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The Data: Pixel-by-Pixel Spectra

High-Resolution Images with Low-Resolution Spectra
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How Should we Cluster Probability Vectors?

K-means Algorithm:
Assignment: Assign units to clusters by minimizing the

Euclidean distance to the centroid.
Update: Compute new centroids by minimizing the total

Euclidean distance within each cluster.

A Generalized K-means Algorithm:

Replace Euclidean distance with appropriate alternative.
Ideally both steps remain in closed form!!
What distance should we use for probability vectors?
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H-means

H-means Algorithm:
Assignment: Assign units to clusters by minimizing the

Hellinger distance to the centroid.
Update: Compute new centroids by minimizing the total

Hellinger distance within each cluster.

Hellinger distance between π̂i and cj :

d2
H(π̂i ,cj) =

1
2

∑
k

(√
π̂ik −

√
cjk

)2
= 1−

∑
k

√
π̂ikcjk .

Update centroid for cluster j , (cj1, . . . , cjK ):

cjk =

(∑
i∈ cluster j

√
π̂ik

)2

∑
k ′

(∑
i∈ cluster j

√
π̂ik ′

)2 .
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Never Before Seen Structure

Grey Scale Images of Clusters: 2 Oct 2010 at 05.57
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Never Before Seen Structure

Grey Scale Images of Clusters: 2 Oct 2010 at 18.43
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Current Work

Like K-means, H-means assumes cluster shapes and
sizes are all the same. What is the effect?
Ultimately we want to include spatial structure, track
clusters, and predict events.
Over time clusters evolve spatially and spectrally.
Reconstruct the underlying DEM in individual clusters.
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Example II: Stellar Evolution2

Complex Data and Sophisticated Models
1 Complex computer models and simulations are taking the

place of the analytic likelihood function.
2 Sophisticated data allows us to fit such models, but an

entirely new set of methods is required.
3 This sort of modeling, computing, and inference is coming

to many more areas of Astronomy.
4 I will discuss one example in detail: stellar evolution.

Challenge is acute when complex models are
combined with massive data streams.

2N Stein, D van Dyk, S DeGennaro, E Jeffery, W Jefferys, and T von Hippel
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Compter Model for Sun-Like Stellar Evolution
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Computer model predicts how a the spectrum of a sun-like
star evolves as a function of input parameters.
We aim to embed these models into a sophisticated
multi-level model for statistical inference.
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The Data: Color Magnitude Diagrams

Apparent Magnitude Difference (Color)
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Color-Magnitude Diagram
Plot Magnitude Difference vs.
Magnitude.
Identifies stars at different
stages of their lives.
Evolution of a CMD.
Facilitates physical intuition as
to likely values of parameters.
“Chi-by-eye” fitting.



Learning in Astronomy Example I: Solar Features Example II: Stellar Evolution Example III: Calibration

Embedding Computer Model into Statistical Model

!"#$%&'()*"+',)

-"().&/()0)

!"#$%&'()*"+',))

-"().&/()1)

23')

*'&/,,454&6)

7849/,)*/::':)

;4:&/85')

2<:"($9"8)

!"#$%&'()*"+',)

-"().&/()=)

><:'(?'+)

*/384&%+':)

@/%::4/8))

*'/:%('#'8&)

A(("()

!"

!"

B4',+).&/()

!"8&/#48/9"8)

!"

Between 1/3 and 1/2 of “stars” are unresolved binaries.
Star clusters: same age, metallicity, distance, & absorption.
Cluster data is contaminated with field stars.
Data observed with Gaussian measurement errors.
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White Dwarfs Physics

Sun-like stars are powered by thermal-nuclear reactions.
White dwarfs are the cooling embers after reactions cease.
Different physical processes require different models.
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The Missing Link: White Dwarf Mass

Computer 
Model  

for 
Stellar 

Evolution 

Metallicity 
Initial Mass 

Progenitor Age 

(Total) Age 

White Dwarf 
Age 

Compute WD 
Latent Heat 

WD Age 
WD Mass 

WD Radius 
Surface Temp 

Computer Model for White Dwarf Cooling 

Emergent 
Spectrum 

WD Radius 
WD Mass 

Surface Temp 

Expected 
Magnitudes 

Computer Model for WD Atmosphere 

We must model: white dwarf mass = f (initial mass).
Parametric Bridge between Computer Models.
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Opening Up the Black Box: The Final Model
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Model Fitting: Complex Posterior Distributions

Highly non-linear relationship among stellar parameters.
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Model Fitting: Complex Posterior Distributions
Multiple Modes

The classification of
certain stars as field
or cluster stars can

cause multiple
modes in the

distributions of other
parameters.
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FItting the Initial-Final Mass Relationship
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How best to combine results from three clusters?
Is there one relationship? Depend on other variables?
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Diagnosing Complex Models

Double-Line Eclipsing Binaries:
direct measures of component
masses.
Double line Spectroscopic:
direct measure of mass ratio.
Direct check of a quantity that
resides deep in our statistical
model and is highly model
dependent.
Use discrepancies to diagnose
and tune computer models,
and/or build a joint model.
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Example III: Calibration of X-ray Detectors3

Embed physics models into multi-level statistical models.
X-ray and γ-ray detectors count a typically small number of
photons in each of a large number of pixels.
Must account for complexities of data generation.
State of the art data and computational techniques enable
us to fit the resulting complex model.

3V Kashyap, D van Dyk, J Xu, A Connors, A Siegminowska, and iCHASC
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Derivation of Calibration Products

Effective area records
instrument sensitivity as a
function of energy
Aim to capture deterioration
of detectors over time.
Complex computer models of
subassembly components.
Calibration scientists provide
a sample representing
uncertainty
Calibration Sample is
typically of size M ≈ 1000.
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Simple Emulation of Computer Model

We use Principal Component Analysis to represent uncertainly:

A ∼ A0 + δ̄ +
m∑

j=1

ej rjv j ,

A0: default effective area,
δ̄: mean deviation from A0,

rj and v j : first m principle component eigenvalues & vectors,
ej : independent standard normal deviations.

Capture 95% of variability with m = 6− 9.
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Two Possible Target Distributions

We consider inference under:
A PRAGMATIC BAYESIAN TARGET: π0(A, θ) = p(A)p(θ|A,Y ).
THE FULLY BAYESIAN POSTERIOR: π(A, θ) = p(A|Y )p(θ|A,Y ).

Concerns:
Statistical Fully Bayesian target is “correct”.

Cultural Astronomers have concerns about letting the
current data influence calibration products.

Computational Both targets pose challenges,
but pragmatic Bayesian target is easier to sample.

Practical How different are p(A) and p(A|Y )?

With MCMC we sample a different effective area curve at each
iteration according to its conditional distribution.
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Sampling the Full Posterior Distribution

Sampling π(A, θ) = p(A, θ|Y ) is complicated because we
only have a computer-model generated sample of p(A)
rather than an analytic form.
But PCA gives a degenerate normal approximation:

A ∼ A0 + δ̄ +
m∑

j=1

ej rjv j ,

where ej are independent standard normals.
PCA represents A as deterministic function of
e = (e1, . . . ,em).
We can construct an MCMC sampler of p(e, θ|Y ).
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Sampling From the Full Posterior
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j

Pragmatic Bayes is clearly better than current practice,
but a Fully Bayesian Method is the ultimate goal.
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Thanks...

Solar Thermal Structure:
Nathan Stein
Xiao-Li Meng
Vinay Kashyap

Stellar Evolution:
Nathan Stein
Steven DeGennaro
Elizabeth Jeffery
William H. Jefferys
Ted von Hippel

Instrument Calibration:
Vinay Kashyap
Jin Xu
Alanna Connors
Hyunsook Lee
Aneta Siegminowska

And

iCHASC:
Imperial-California-Harvard
AstroStatistics Collaboration
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For Further Reading I

Stein, N, van Dyk, D., von Hippel, T., DeGennaro, S., Jeffery, E., Jeffreys, W. H.
Combining Computer Models in a Principled Bayesian Analysis: From Normal
Stars to White Dwarf Cinders. Submitted.

Jeffery, E., von Hippel, T., DeGennaro, S., van Dyk, D., Stein, N., and Jefferys, W.
The White Dwarf Age of NGC 2477. Astrophysical Journal, 730, 35–43, 2011.

Lee, H., Kashyap, V., van Dyk, D., Connors, A., Drake, J., Izem, R., Min, S., Park,
T., Ratzlaff, P., Siemiginowska, A., and Zezas, A.
Accounting for Calibration Uncertainties in X-ray Analysis: Effective Area in
Spectral Fitting. The Astrophysical Journal, 731, 126–144, 2011.

van Dyk, D. A., DeGennaro, S., Stein, N., Jefferys, W. H., von Hippel, T.
Statistical Analysis of Stellar Evolution The Annals of Applied Statistics 3,
117-143, 2009.

DeGennaro, S., von Hippel, T., Jefferys, W., Stein, N., van Dyk, D., and Jeffery, E.
Inverting Color-Magnitude Diagrams to Access Precise Cluster Parameters:
A New White Dwarf Age for the Hyades. Astrophysical Journal, 696, 12–23, 2009.
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