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Example 2: Spectral Calibration
Calibration Uncertainty: Instrumental characteristics such as
the point spread function are subject to uncertainty. Since inference
depends on these quantities, it should account for calibration uncer-
tainty. Here we discuss the effective area of the instrument, which
quantifies its varying sensitivity as a function of photon energy.

Uncertainty in the effective area can be described by a calibration
sample, a set of curves provided by calibration scientists that aims
to capture the possible range of curves. Figure 5 illustrates a cali-
bration sample. From a Bayesian perspective, we can view the cali-
bration sample as a sample from the prior of the effective area curve.
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Fig. 5: The point wise range of an effective area calibration sample
(top) and the mean-subtracted sample (bottom). The darker region
contains 68% of the curves. Five sample curves are highlighted.

Statistical Computing: We use an MH within Gibbs sampler.
Letting A represent the effective area curve and θ the parameters:

STEP 1: Sample A given θ and Y .

STEP 2: Sample θ given A and Y using an MH step.

STEP 2 is the standard algorithm with known A. We consider:

PRAGMATIC BAYES TARGET: π0(A, θ) = p(A)p(θ|A, Y ).

FULLY BAYESIAN TARGET: π(A, θ) = p(A|Y )p(θ|A, Y ).

Sampling π0(A|θ, Y ) is complicated, but sampling π0(A) = p(A) is
trivial. This leads to an MH within PCG sampler with the wrong
stationary distribution, see Illustration II. To avoid this, we iterate
STEP 2, so that it does not depend on θ?. The advantages of account-
ing for calibration uncertainty in general, and the Fully Bayesian
solution in particular are illustrated in Figure 6.

0.90 0.95 1.00 1.05

1.
96

2.
00

2.
04

Default Effective Area

θθ1

θθ 2

●

0.90 0.95 1.00 1.05

1.
96

2.
00

2.
04

Pragmatic Bayes

θθ1

θθ 2

●

0.90 0.95 1.00 1.05

1.
96

2.
00

2.
04

Fully Bayes

θθ1

θθ 2

●

Fig. 6: The posterior distribution of θ when fixing A at a default
(left), using the pragmatic Bayes target (middle), and using the fully
Bayesian target (right). The purple circle marks the true value of θ.

Example 1: Image Analysis
Image Analysis in High-Energy Astrophysics: The small
number of photons in an X-ray or γ-ray image are best modeled
with a Poisson process, see schematic in Figure 2:

1. We observe a photon count in each of a large grid of spatial pixels.

2. The counts are blurred; they may be recorded in the wrong pixel.

3. A known point spread function characterizes the blurring.

4. The detector sensitivity may vary across the detector.

NGC 6240, a galaxy that is the product of the collision of two
smaller galaxies, is illustrated in Figure 3. The pixelated X-ray im-
age shows far lower resolution than the Hubble image, but high-
lights the two bright black holes near the galaxy’s center.

Fig. 3: Optical (left) and x-ray (right) images of NGC 6240.

Model based Analysis: We frame image analysis as a statistical
inference problem to facilitate the quantification of uncertainty and
the evaluation of evidence for scientific hypotheses. (E.g., the exis-
tence of particular structures in the image’s source.) Our multi-level
statistical model involves:

1. µ: The matrix of underlying poisson intensities;

2. α: The smoothing parameter for µ; and

3.Z: The ideal image of de-blurred photon counts.

Our Multi-Scale smoothing uses a sequential division of the image
into quadrants and models the quadrant counts as multinomials with
Dirichlet priors. The Dirichlet parameters may differ at different
scales, are tabulated in the parameter α, and are fit to the data.

Statistical Computing: A three-step MH within Gibbs sampler
can be used to sequentially update µ, α, and Z, using a Metropolis-
Hasings step for the Dirichlet parameter, α:

STEP 1: Sample Z given µ, α, and Y

STEP 2: Sample µ given Z, α, and Y .

STEP 3: Sample α given Z, µ, and Y using an MH step.

The result, however, is unsatisfactory as is illustrated by the time-
series plot of one of the components of α in the top panel of Figure 4.

By eliminating the conditioning on µ when updating α and permut-
ing the steps, however, we can dramatically improve convergence:

STEP 1: Sample Z given µ, α, and Y

STEP 2: Sample (α, µ) given Z and Y using an MH step.

STEP 3: Sample µ given Z, α, and Y .

The µ sampled in STEP 2 is not used and can be eliminated.

Fig. 4: Time series plot for α using an MH within Gibbs Sampler
(top) and an MH within PCG Sampler (bottom).

Fig. 2: Overview of Computer-Model Embedded Highly-Structured Models. Basic physics informs the construction of computer, parametric,
and multi-scale models for astronomical sources. Photons are partially absorbed, background contaminated and degenerated by instrumental
effective area, blurring, and errors. Sophisticated statistical models account for all of these processes.

Two Simple Illustrations:
Illustration I: Consider a two-step MH within Gibbs sampler:

STEP 1: ψ1 ∼ K(ψ1|ψ2) via MH with limiting distribution p(ψ1|ψ2)

STEP 2: ψ2 ∼ p(ψ2|ψ1) (Sampler I)

Sampler I can be slow if ψ1 and ψ2 are highly correlated and could
be improved if we use a kernel with p(ψ1) as its limiting distribution
in STEP 1 instead of p(ψ1|ψ2):

STEP 1: ψ1 ∼ K(ψ1|ψ2) via MH with limiting distribution p(ψ1)

STEP 2: ψ2 ∼ p(ψ2|ψ1) (Sampler II)

• To do this, we need only evaluate p(ψ1) = p(ψ1, ψ2)/p(ψ2|ψ1)
using the properly normalized conditional from STEP 2.

• If we were able to sample p(ψ1) directly without resorting to MH
in STEP 1 we would obtain i.i.d. draws from p(ψ1, ψ2).

• This would be a simple special case of Partially Collapsed Gibbs.
For this reason, we call Sampler II an MH within PCG sampler.

Illustration II: Consider another two-step MH within Gibbs sam-
pler, similar to Sampler I, but with a MH step is STEP 2:

STEP 1: ψ1 ∼ p(ψ1|ψ2) (Sampler III)

STEP 2: ψ2 ∼ K(ψ2|ψ1) via MH with limiting distribution p(ψ2|ψ1)

As in Illustration I, we may try to improve convergence by replacing
STEP 1 with a draw from p(ψ1):

STEP 1: ψ1 ∼ p(ψ1) (Sampler IV)

STEP 2: ψ2 ∼ K(ψ2|ψ1) via MH with limiting distribution p(ψ2|ψ1)

Surprisingly, Sampler IV does not have the correct stationary distri-
bution. To see this suppose (ψ1, ψ2) are bivariate normal with zero
means, unit variances, and correlation ρ = 0.9. Figure 1 shows the
results of Samplers III and IV using a Gaussian jumping rule with
mean ψ?2 and variance τ2 in STEP 2. (We use a star in the superscript
to represent the output from the previous iteration.)

The problem with Sampler IV is that the distribution used to update
ψ2 in STEP 2 depends on both ψ1 and ψ?2:

• The limiting distribution of the MH step depends on ψ1

• If the proposal is rejected, ψ2 is set to ψ?2 .

Because ψ1 is drawn from its marginal distribution, it is necessarily
independent of ψ?2 at every iteration and STEP 2 will never produce
samples from p(ψ2|ψ1).
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Fig. 1: Monte Carlo samples generated with Sampler III (left) and
Sampler IV (right).

The General Strategy
Starting with an MH within Gibbs sampler we can derive a correct
MH within PCG sampler by following three simple steps:

1. Marginalize: Move parameter components from being conditioned
upon to being sampled in one or more step of the sampler.

2. Permute: Reorder of sampler steps to facilitate trimming (step 3).

3. Trim: Eliminate sampled parameter components that are neither
inputs of subsequent steps nor outputs of the PCG iteration.

nAbstract: The recently proposed Partially Collapsed Gibbs
(PCG) sampler offers a new strategy for improving the conver-
gence of a Gibbs sampler (van Dyk and Park, 2008, Park and van
Dyk, 2009). PCG achieves faster convergence by reducing the
conditioning in some of the draws of its parent Gibbs sampler.
Although this can significantly improve convergence, care must
be taken to ensure the stationary distribution is preserved. The
conditional distributions sampled in a PCG sampler may be func-
tionally incompatible and permuting them may upset the station-
ary distribution. Extra care must be taken when Metropolis steps
are used. Reducing the conditioning in an MH within Gibbs sam-
pler can change the stationary distribution, even when the PCG
sampler would work perfectly if all the conditional updates were
available. We illustrate the challenges that may arise when using
an MH within PCG sampler and develop a general strategy for
using such updates while maintaining the stationary distribution.
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