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Outline

1. Review the propensity score of Rosenbaum and Rubin (1983) for causal

inferences in observational studies.

2. Introduce the Propensity Function, a generalization of the propensity

score: applicable beyond binary treatment regimes.

3. Establish the key theorem: Strong Ignorability of Treatment Assignment

Given Propensity Function.

4. Monte Carlo experiments: comparison with standard regression approaches.

5. Examples:

⋆ Effect of smoking on medical expenditure (bivariate continuous

treatment).

⋆ Effect of education on wages (ordinal instrumental variable).
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Salk’s Polio Vaccine Trials

• Background

⋆ What is polio?

⋆ When was the epidemic?

⋆ How did it end?

⋆ How would people respond to the vaccine before it was proven effective?

• Goal: Compare polio rates between

1. Children given the vaccine (treatment group)

2. Children not given the vaccine (control group)

• National Foundation of Infantile Paralysis 1954 Polio Vaccine Trials

Treatment Group: Children whose parents give consent

Control Group: Children whose parents do not give consent

What problems are there with this design?
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The Results

The randomized controlled
double-blinded experiment The NFIP study

Size Ratea Size Rate

Treatment 200,000 28 Vaccine (consent) 225,000 25

Control 200,000 71

No Consent 350,000 46 No Vaccine/consent 125,000 44

a per 100,000

• The Treatment/consent and No-Treatment/No-Consent groups are

comparable between the studies.

• Using the No-Consent group as a Control biases the causal effect.

Consent (treatment indicator) is correlated with polio rates in the
absence of treatment (potential outcome).
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Causal Inference in Observational Studies

1. The general setup with a binary treatment:

Treatment Potential Outcomes

Covariates Group Control Treatment

1 X1 1 Y1(0) Y1(1)

2 X2 1 Y2(0) Y2(1)

3 X3 0 Y3(0) Y3(1)
...

...
...

...
...

2. E.g.: National Foundation of Infantile Paralysis 1954 Polio Vaccine Trials

Higher risk of polio

Higher Income

More likely to consent to
vaccine and receive treatment

• The treatment is correlated

with the potential outcomes.

• Biases results.

• Key: Control for the (cor-

rect) covariates.
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Formalizing Causal Inference

• Causal effect: e.g., Y (tP1 ) − Y (tP2 ).

⋆ Y (tP ) is potential outcome with potential treatment, tP ∈ T .

• Problem: Treatment assignment, TA, is not random and is correlated with

potential outcomes.

⋆ Yi(T
A
i = tP1 ) − Yj(T

A
j = tP2 ) does not correspond to causal effect.

• Key assumption (Strong Ignorability of Treatment Assign.; Rubin, 1978):

p{TA |X} = p{TA |Y (tP ), X} ∀ tP ∈ T .

Under this assumption, we must adjust for the covariates
in our analysis

6



Adjusting for Covariates in Causal Inference

• Standard regression approach: Y (tP ) ∼ N(α+Xβ + tP γ, σ2).

⋆ common assumptions, e.g. linearity, are often violated.

⋆ leads to biased causal inferences.

• Matching and Subclassification reduce bias more effectively:

⋆ non/semi-parametric methods.

⋆ diagnostics directly related to causal inferences.

⋆ but, difficult when the dimensionality of X is large.
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Propensity Score of Rosenbaum and Rubin (1983)

• If the treatment is binary, the propensity score,

e(X) = Pr(TA = 1 |X),

fully characterizes p(TA |X).

• Key Theorems:

1. The propensity score is a balancing score:

Pr{TA = 1 |X, e(X)} = Pr{TA = 1 | e(X)}.

2. Strong Ignorability of Treatment Assignment Given e(X):

E{Y (tP ) | e(X)} = E{Y (tP ) |TA = tP , e(X)} for tP = 0, 1.

• Unbiased estimate of causal effect is possible conditional on e(X).

• Match or subclassify on e(X), a scalar variable.
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The Power of Conditioning on Propensity Scores

The problem with (non-randomized) observational studies:

Treatment assignment is correlated with potential outcomes.

E.g., subjects who are more likely to respond well without treatment are more

likely to be in the control group.

The power of propensity scores:

In a subclass with the same value of the the propensity score,

Treatment assignment is UNcorrelated with potential outcomes.

We can classify subjects based on their propensity score,
and analyze the data separately in each class.
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Use of the Propensity Score in Observational Studies

• The propensity score, e(X), is unknown in observational studies.

• Estimate e(X) using a statistical model, e.g., logistic regression.

• Advantages:

1. Diagnostics: check balance of X between treatment and control groups

after matching or subclassifying on e(X).

p{X |TA = 0, e(x)} = p{X |TA = 1, e(x)}

2. Robust to misspecification of functional forms for estimating propensity

score (Drake, 1993; Dehejia and Wahba, 1999).

• Disadvantage: vulnerable to unobserved confounders.
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General Treatment Regimes

• Propensity score is confined to binary treatment scenarios.

• Researchers have no control over treatment in observational studies.

⋆ Continuous treatment: dose response function.

⋆ Ordinal treatment: effects of years in school on income.

⋆ Event-count, duration, semi-continuous, etc. . . .

⋆ Multivariate treatments

Goal: Generalization of propensity score to non-binary treatment.

Existing literature:

1. ordinal treatment (Joffe & Rosenbaum, 1999),

2. categorical treatment (Imbens, 2000).

Our method encompasses both and other types of treatments.
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Framework of Causal Inference via Potential Outcomes

Set of potential outcomes: Y = {Y (tP ), tP ∈ T }.

Assumptions:

1. Stable Unit Treatment Value (Rubin, 1990):

p{Yi(t
P
i ) | tPj , T

A
j , Xi} = p{Yi(t

P
i ) |Xi} ∀i 6= j and tPi , t

P
j ∈ T .

2. Strongly Ignorable Treatment Assignment (Rubin 1978):

p{TA |Y (tP ), X} = p(TA |X) ∀tP ∈ T .

Quantity of primary interest:

p{Y (tP )} =

∫

p{Y (tP ) |X} p(X) dX.
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Propensity Function: Generalization of Propensity Score

Definition: Conditional density function of the actual treatment given observed

covariates, e(· |X) ≡ pψ(TA |X).

Uniquely Parameterized Propensity Function Assumption:

• e(· |X) depends on X only through θψ(X).

• θ = θψ(X) uniquely represents e{· | θψ(X)}.

θ fully characterizes p(TA |X) and is typically of low-dimension.

Examples:

1. Continuous treatment: TA |X ∼ N(X⊤β, σ2).

ψ = (β, σ2) and θψ(X) = X⊤β.

2. Categorical treatment: Multinomial probit model for Pr(TA |X).

ψ = (β,Σ) and θψ(X) = X⊤β.

3. Ordinal treatment: Ordinal logistic model for Pr(TA |X).

ψ = β and θψ(X) = X⊤β.
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Theoretical Properties of Propensity Function

Theorem 1: Propensity Function is a Balancing Score.

p(TA |X) = p{TA | e(· |X), X} = p{TA | e(· |X)}.

Theorem 2: Strongly Ignorable Treatment Assignment Given Propensity

Function.

p{Y (tP ) |TA, e(· |X)} = p{Y (tP ) | e(· |X)} ∀ tP ∈ T .

Estimation of causal effects via subclassification:

p{Y (tP )} =

∫

p{Y (tP ) |TA = tP , θ} p(θ) d θ

≈
J

∑

j=1

p{Y (tP ) |TA = tP , θj}Wj .
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Monte Carlo Experiment 1: Continuous Treatment

• Number of simulations: 5,000.

• Sample size per simulation: n =1,000.

• Observed covariates:

X1
indep.
∼ N(1, 1), X2

indep.
∼ N(2, 1).

• Treatment variable:

TA |X1, X2
indep.
∼ N

(

1 +X1X2 +X2
1 +X2

2 , 1
)

.

• Outcome variable:

Y |TA, X1, X2
indep.
∼ N

(

1 + TA +X1X2 +X2
1 +X2

2 , 1
)

.
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Robustness to Misspecification

Two (misspecified) models for estimating the causal effects:

1. Direct regression: Y |TA, X
indep.
∼ N(αTA+X⊤β, σ2) where X = (1, X1, X2).

2. Propensity Function:

• Model: TA |X
indep.
∼ N(X⊤β, σ2).

• Subclassify data into 10 blocks based on θ̂ = X⊤β̂.

• Within each block, regress Y on TA and θ̂.

• Calculate weighted average of 10 within-block estimates.

Results:

Average Causal Effect of TA

Bias MSE

Direct Regression 0.832 0.692

Propensity Function 0.390 0.153

Reduce MSE by 75%.
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Monte Carlo Experiment 2: Interaction of Two Treatments

• Number of simulations: 5,000.

• Sample size per simulation: n =2,000.

• Observed covariates: X1
indep.
∼ N(1, 1), X2

indep.
∼ N(2, 1).

• Treatment variables:




TA1

TA2





∣

∣

∣

∣

X1, X2
indep.
∼ N2











1 +X2
1 +X2

2

1 +X1X2



 ,





1 0.5

0.5 1











.

• Outcome variable:

Y
indep.
∼ N

(

1 + TA1 + TA2 + TA1TA2 +X1X2 +X2
1 +X2

2 , 1
)

.
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Robustness to Misspecification

Two (misspecified) models for estimating the causal effects:

1. Direct Linear Regression: Regress Y on X1, X2, T
A1 , TA2 , and, TA1TA2 .

2. Propensity Functions:

• Model Specification of Propensity Function: Independently regress both

treatment variables on X1 and X2

• Stratify on θ̂ = (X⊤β̂1, X
⊤β̂2).

• Within Strata Model: Regress Y on TA1 , TA2 , TA1TA2 , and θ̂.

Direct Regression Propensity Function

Bias MSE Bias MSE

Effect of TA1 0.517 0.268 0.159 0.026

Effect of TA2 −0.340 0.118 −0.102 0.014

Effect of TA1TA2 0.0452 0.0021 −0.0074 0.0001

Reduce MSE by 90%.
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Subclassification with Two Propensity Functions

Propensity
Function Propensity Function For TA1
For TA1 lower 1/3 middle 1/3 upper 1/3

lower 1/3 Block I Block II Block III

middle 1/3 Block IV Block V Block VI

upper 1/3 Block VII Block VIII Block IX
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Example 1: Effects of Smoking on Medical Expenditure

• Data: 9,708 smokers from 1987 National Medical Expenditure Survey

(Johnson et al., 2002).

• Treatment variable, TA = log(packyear): continuous measure of cumulative

exposure to smoking:

packyear =
number of cigarettes per day

20
× number of years smoked.

⋆ previous studies apply propensity score to compare smokers with

non-smokers (Larsen, 1999; Rubin, 2001).

⋆ alternative strategy: frequency and duration of smoking as bivariate

treatment variable.

• Outcome variable: self-reported annual medical expenditure.

• Covariates: age at the times of the survey, age when the individual started

smoking, gender, race, marriage status, education level, census region,

poverty status, and seat belt usage.
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Model Specification of the Propensity Function

• Model: TA |X
indep.
∼ N(X⊤β, σ2) and θ = X⊤β where X includes some

square terms in addition to linear terms.

Balance

•

• •

•

•
•

•

• •

•
•

•

• •
• ••• ••

•

•

•

without controlling for theta

standard normal quantiles

qu
an

til
es

 o
f t

-s
ta

tis
tic

s

-2 -1 0 1 2

-2
0

0
20

40
60

• ••• •••• ••• •• ••• • •• • • ••

controlling for theta

standard normal quantiles
qu

an
til

es
 o

f t
-s

ta
tis

tic
s

-2 -1 0 1 2

-2
0

0
20

40
60

• First panel: T-statistics for predicting the covariates from the log(packyears).

• Second panel: Same, but controlling for the linear predictor.

The Balance is Improved

The balance serves as a model diagnostic for the propensity function.
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Estimated Effects of Smoking

• Within each block, use a Two-Part model for the semi-continuous response:

1. Logistic regression for Pr(Y > 0 |TA, θ̂j).

2. Gaussian linear regression for p{log(Y ) |Y > 0, TA, θ̂j).

Propensity Function

Direct Models 3 blocks 10 blocks

Logistic Linear Regression Model

coefficient for TA −0.097 −0.060 −0.065

standard error 3.074 3.031 3.074

Gaussian Linear Regression Model

average causal effect 0.026 0.051 0.053

standard error 0.016 0.017 0.018
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A Smooth Coefficient Model

• In our analysis we fit a separate regression in each subclass, allowing for

different treatment effects in each subclass.

• An alternate strategy allows the treatment effect (and perhaps other

regression coefficients to vary smoothly with θ.

• For example, in stage two

log(Y ) ∼ Normal(α(θ) + β(θ)TA + γX, σ2),

where α and β are smooth functions of θ.
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The Smooth Coefficient Model Fit
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• The propensity score is the linear predictor for log(packyears).

• Important covariates include age and age when began smoking.

• For older people the effect of smoking on medical expenses is greater.
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Analysis with Bivariate Treatment

Now we consider the bivariate treatment

TA1 = log(average number of cigarettes per day)

TA2 = log(number of years smoked)

Analysis

• Model Specification of Propensity Function: two independent regressions

with same covariates as before (including squared terms).

• Stratify on θ̂ = (X⊤β̂1, X
⊤β̂2).

• Within Strata Model: two-part model.

Results:

TA1 TA2

Logistic Linear Regression Model -0.358 (se=7.110) 0.075 (se=4.527)

Gaussian Linear Regression Model 0.084 (se=0.026) 0.011 (se=0.036)
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Fitted effect of Smoking Frequency with 95% error bars
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Fitted effect by subclass

Propensity Function Propensity Function for Duration

for Frequency lower third middle third upper third

Subclass I Subclass II Subclass III

upper third dur: 0.317 (0.221) dur: 0.075 (0.092) dur: 0.016 (0.078)

freq: -0.223 (0.143) freq: 0.125 (0.075) freq: 0.093 (0.067)

n = 324 n = 1160 n = 1542

Subclass IV Subclass V Subclass VI

middle third dur: 0.020 (0.105) dur: -0.011 (0.092) dur: -0.182 (0.100)

freq: 0.009 (0.075) freq: 0.123 (0.076) freq: 0.208 (0.080)

n = 1162 n = 910 n = 952

Subclass VII Subclass VIII Subclass XI

lower third dur: -0.079 (0.099) dur: -0.178 (0.096) dur: 0.018 (0.138)

freq: 0.105 (0.058) freq: 0.016 (0.072) freq: 0.026 (0.106)

n = 1538 n = 954 n = 532
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The Smooth Coefficient Model Fit
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Example 2: Effects of Education on Wages

• Data: 16,193 men born between 1949 and 1953 from U.S. Current

Population Surveys used in Angrist and Krueger (1995).

• Treatment variable: highest grade completed (0–18).

• Outcome variable: annual wage in 1978 dollars.

• Covariates: race, year of birth, marital status, veteran status, Vietnam draft

lottery code, region of residence, and indicator variables for residence in a

central city and employment in a Standard Metropolitan Statistical Area.

• Following Angrist and Krueger (1995), we exclude men who did not work

and/or recorded zero earning as well as those who have missing values for at

least one variable. This yields the sample size of 13,900 for our analysis.

29



Propensity Function Method for Education Data

1. Model specification for propensity function: Ordinal logistic model.

• θ̂ = X⊤β̂ completely identifies propensity function.

2. Stratify data based on the scalar θ̂.

3. Within strata model: Gaussian linear regression, p(Y |TA, θ̂).

But what about the ignorability assumption?

Are TA and Y (tP ) independent given X?

for any level of education
Likely to be paid better 

Likely to be better educated
Intellectually gifted and
motivated individuals

Covariates do not measure native intelligence or work ethic.
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An Instrumental Variables Analysis

An instrumental variable:

• is independent of the potential treatments and the potential outcomes given

the covariates (i.e., ignorability),

• does not affect the potential outcome given the treatment and the covariates,

• is monotonically predictive of the treatment.

(These assumptions are required for causal interpretation, see Angrist, Imbens

and Rubin, JASA, 1996.)

The Vietnam Draft Lottery:

Income

Outcome

Education Level
Lottery Code

Veteran Status

TreatmentInstrument
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Balancing the Covariates Across the Instrument

The Lottery Code is recorded as an 14-category ordinal variable.

• We use a ordinal logistic model for the propensity function

• The model is characterized by the scalar linear predictor, θ̂ = Xβ̂.
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• First panel: T-statistics for predicting the covariates from the instrument

• Second panel: Same, but controlling for the linear predictor.

The Balance is Improved
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Estimated Effects of Education

The average effect of a one year increase in the highest grade on log weekly wage:

Direct Models Propensity Function

TSLS SSIV 5 blocks 10 blocks

average causal effect 0.109 0.040 0.062 0.063

standard error 0.034 0.037 0.015 0.010

(SSIV=Split-Sample Instrumental Variables, Angrist and Krueger (1995))
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Non-Constant Treatment Effects

The treatment effect appears to vary with the covariates, as measured by θ̂:

Block 1 Block 2 Block 3 Block 4 Block 5 Overall

estimate 0.0839 0.0628 0.0200 0.0541 0.0896 0.0621

std. error 0.0278 0.0348 0.0284 0.0357 0.0358 0.0146

Unfortunately, the heterogeneity in treatment effect is difficult to make sense of

because θ̂ is not easily interpretable.

Current Research aims at using propensity functions to identify the linear

combination of the covariates that best predicts “compliance” with the

randomized treatment. We expect this linear combination to be predictive of the

magnitude of the intention to treat causal effect.

This strategy

• uses propensity functions to (partially) identify heterogeneity of treatment

effects in IV analyses rather than to balance the instrument, and,

• provides a more interpretable causal effect than TSLS when the treatment is

not binary. (See Angrist and Imbens, JASA, 1995).
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Angrist and Imbens’ Result

Under the above IV assumptions, suppose

• Z is a binary instrumental variable,

• T1 and T2 are the two potential treatments taking values in {0, 1, . . . , J},

• Y1, . . . , YJ are the potential outcomes, and

• there are no covariates.

Angrist and Imbens showed that a population version of the TSLS estimate,

E(Y |Z = 1) − E(Y |Z = 0)

E(T |Z = 1) − E(T |Z = 0)
=

J
∑

j=1

ωjE(Yj − Yj−1|T1 ≥ j > T0), (1)

where

ωj =
Pr(T1 ≥ j > T0)

∑J
i=1 Pr(T1 ≥ i > T0).

Eqn. (1) is a weighted average of per unit change in treatment effects.

Unfortunately, the average is over overlapping subpopulations. (E.g., individuals

with T1 = J and T0 = 0 are members of all the subpopulations.)
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Concluding Remarks

• Our generalization widens the range of potential applications of propensity

score methods.

• Subclassification on propensity function allows flexible modeling strategies.

• Propensity function methods retain attractive features of propensity score

methods:

1. Low dimensional summary of high dimensional covariates.

2. Useful diagnostics: balance of covariates.

3. Relatively robust to misspecification.

4. Reduces bias and mean squared error relative to linear models.
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