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Outline of Presentation.

This talk has three components:

A. Highly Structured Models in High-Energy Astrophysics

e Astrostatistics:
Complex Sources, Complex Instruments, and Complex Questions

Key: All three are the domain of Astrostatistics
e Model-Based Statistical Solutions
e Monte Carlo-Based Bayesian Analysis

B. Examples
1. The EMC2 package for Image Analysis (A detailed example.)
2. The BRoaDEM package for DEM Reconstruction
3. The BLoCXS package for Spectral Analysis
4. The BEHR package for computing Hardness Ratios

C. Using Incompatible Conditional Distributions in Gibbs Samplers
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Complex Astronomical Sources.
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Images may exhibit Spectral, Temporal, and Spatial Characteristics.




WISIBLE
Hubble can

Astrostatistics: Complex Data Collection.

NASA'S Great Observatovries
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Astrostatistics: Complex Questions
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e What is the composition and temperature structure?




Astrostatistics: Complex Questions'

e Are the loops of hot gas real?




Scientific Context I

The Chandra X-Ray Observatory

e Chandra produces images at least thirty times sharper then any previous

X-ray telescope.

e X-rays are produced by multi-millions degree matter, e.g., by high magnetic

fields, extreme gravity, or explosive forces.

e Images provide understand into the hot and turbulent regions of the universe.

Unlocking this information requires subtle analysis:

The California Harvard AstroStatistics Collaboration (CHASC)
van Dyk, et al. (The Astrophysical Journal, 2001)
Protassov, et al. (The Astrophysical Journal, 2002)
van Dyk and Kang (Statistical Science, 2004)
Esch, Connors, van Dyk, and Karovska ( The Astrophysical Journal, 2004)
van Dyk et al. (Bayesian Analysis, 2006)
Park et al. (The Astrophysical Journal, 2006)




Data Collection I

Data is collected for each arriving photon:
e the (two-dimensional) sky coordinates,
e the energy, and
e the time of arrival.

All variables are discrete:

e High resolution — finer discretization.
e.g., 4096 x 4096 spatial and 1024 spectral bins

The four-way table of photon counts:
e Spectral analysis models the one-way energy table;
e Spatial analysis models the two-way table of sky coordinates; and

e Timing analysis models the one-way arrival time table

The Image: A moving ‘colored’ picture




NGC 6240 '

HuBeLE OPTICAL CHAMDRA X-RAY

Image Credits.
X-ray: NASA/CXC/MPE/, Komossa et al. (2003, ApJL, 582, L.15);
Optical: NASA /STScl/R.P.van der Marel & J.Gerssen.
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Highly Structured Models.

Modelling the Chandra data collection mechanism.

e The method of Data
Augmentation: EM algo-
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We wish to directly model the sources and data collection mechanism and use
statistical procedures to fit the resulting highly-structured models and address the

substantive scientific questions.
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A Model-Based Statistical Paradigm.

1. Model Building

e Model source spectra, image,

and/or time series

e Model the data collection process
background contamination
instrument response
effective area and absorption
pile up

Results in a highly structured
hierarchical model

2. Model-Based Statistical Inference
e Bayesian posterior distribution

e Maximum likelihood estimation

What are Prior distributions?

1. Priors can be used

e to incorporate information

from outside the data, or
e to impose structure.
2. Priors offer a principled compro-

mise between “fixing” a param-
eter & letting it “float free”.

. Setting min and max limits in
XSPEC amounts to using a flat

prior over a specified range.

3. Sophisticated Statistical Computation Methods Are Required

e (Goals: computational stability and easy implementation

e Emphasize natural link with models: The Method of Data Augmentation
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Bayesian Inference Using Monte Carlo.

The Building Block of Bayesian Analysis
1. The sampling distribution: p(Y|v).
2. The prior distribution: p(1)).
3. Bayes theorem and the posterior distribution: p(|Y) o< p(Y|y)p(¥)

Inference Using a Monte Carlo Sample:

prior posterior joint posterior
with flat prior

0 2 4 6 8 10
lamS lamS lamS

We use MCMC (e.g., the Gibbs Sampler) to obtain the Monte Carlo sample.
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Bayesian Deconvolution'

e The Data Collection Mechanism
{ Blurring Matrix

* known from
calibration

N
A=PAp+¢,

f D

( Non—HomogeneoJ ( Background
Contamination

Stochastic

Censoring * often fit using

* known from background
calibration observation

&

&

The observed counts are modeled as independent Poisson
variables with means given by \.
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Parameterized finite mixture models

(source models w/ several components)

The Source Models'

Smoothing prior distributions Compound deconvolution models

(Multiscale models for diffuse emission) (simultancous instrumental & physical

“deconvolution” of complex sources)

Photon Counts
0 200 400 6?0 800 1000
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Outline of Presentation.

This talk has three components:

A. Highly Structured Models in High-Energy Astrophysics

e Astrostatistics:
Complex Sources, Complex Instruments, and Complex Questions

Key: All three are the domain of Astrostatistics
e Model-Based Statistical Solutions
e Monte Carlo-Based Bayesian Analysis

B. Examples
1. The EMC2 package for Image Analysis (A detailed example.)
2. The BRoaDEM package for DEM Reconstruction
3. The BLoCXS package for Spectral Analysis
4. The BEHR package for computing Hardness Ratios

C. Using Incompatible Conditional Distributions in Gibbs Samplers
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Example 1: The EMC2 package for Image Analysis'

The Source Model

e A Poisson Process for the missing ideal counts.
Z; ~ Poisson(u;)

e A useful source model must allow for
1. extended diffuse nebula with irregular and unpredictable structure

2. one or more concentrated X-ray emitters.

K
i = i+ Z HkDik
k=1

The point sources can be modeled as delta functions, Gaussians or

Lorentzians.
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Additional Model Components'

We can add additional model components

A jet can be modeled as a

string of elongated Gaussian

distributions.
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A Smoothing Prior for the Extended Source'

The Nowak-Kolaczyk Multiscale Model:

Low Resolution High Resolution

z.. ~ Poisson () z,.|z.. ~ Multinomial(p,) zi,|zi. ~ Multinomial(p,;)

pu ~ Gammad{ (o, 51)} p; ~ Dirich.{(a1,a1,a1,a1)}  py; ~ Dirich.{(a2, a2, a2, a2)}

Wavelet like model in a fully Bayesian analysis.
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Setting the Smoothing Parameters'

The Multiscale prior distribution is specified in terms of a number of Dirichlet
smoothing parameters (a1, as, . ..).

e There is one parameter at each level of resolution.

e Larger values of each a encourage more smoothing
@ .

0.0 0.2 0.4 0.6 0.8 1.0
p

e Some researchers suggest parameterizing the o, e.g., setting a; = ak’.

e Based on statistical properties of the model, e.g., correlation functions and
posterior concavity (Nowak and Kolaczyk; Bouman, Dukic, and Meng).

Instead, we propose a strateqy that fits the smoothing parameters to
the data.
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Fitting the Smoothing Parameters'

We may fit the smoothing parameters (ay) if we regularize their values.

The exact shape of the prior matters less than

e We use a common prior its general features.
exp(=a) exp(-a“)

— Too much mass near zero
leads to numerical insta-
bility. (Priors that put all
mass in 1 quadrant.)

I I I I I I I I I I I I
— Too much mass far from 00 05 10 15 20 25 30 00 05 1.0 15 20 25 3.0

zero results in too much aexp(-a) exp(=a®)

smoothing.

e A compromise:

oL exp(—5oz3/3) T — T — T T | I | |

00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0

These priors can be viewed as a smoother way of setting the “range” of the
smoothing parameters, with 6 specifying the range.
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Prior Correlation Structure.

A mixture prior distribution
Our prior specification depends on the choice of coordinates.
For each choice there is a corresponding multiscale prior distributions.
We propose using an equally weighted mixture of each of these priors.
Removes the checker-board pattern in the results.

This “cycle-spinning” strategy is analogous to what is done with wavelets.
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Sensitivity Analysis I

simulated data

and PSF
e A data set was

simulated using a
binary source. results under
Fit using 2 priors.

Significance

1000 3
maps plot pos- p(a)ocexp(__a

terior mean over

Contours are at
levels 3 and 10.

p(a) o exp(—L2a?

posterior std dev. .

In the spirit of significance testing, if we are looking for evidence of an extended
source, we pick a prior distribution that favors a point source.
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Statistical Computation'

e We use a three-step Gibbs sampler to construct a Markov chain with

stationary distribution equal to the target posterior distribution:
STEP 1: Sample Z given u, o, and Y
STEP 2: Sample p given Z, o, and Y.
STEP 3: Sample a given Z, u, and Y.

Here, Z is the ideal counts, u is the image

Y is the data, and « is the smoothing parameters.

200 400 B00 800 1000

1000 draws of a smoothing parameter using two starting values.

Poor Mixing!
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The Advantage of Blocking'

Original Sampler:

STEP 1: Sample Z given u, o, and Y
STEP 2: Sample p given Z, a, and Y.
STEP 3: Sample ¢ given Z, u, and Y.

e A simple change:
STEP 1: Sample Z given u, a, and Y
STEP 3: Sample a given Z and Y.
STEP 2: Sample p given Z, a, and Y.

4 1Y
R e R
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0 200 400 600 800 1000

1000 draws of a smoothing parameter using two starting values.

Much Better Mizing!
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NGC 6240 '

HUBBLE OFPTICAL CHANDRA X-RAY
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The Effect of Nowak-Kolaczyk Multiscale Smoothing Prior'

original EMC2 image

R-L: 20 iterations R-1. 100 iterations
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Evaluating the Fit'
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The Significance Maps'

original EMC2 image

EMC?2 significance map: 3 sigma EMC2 significance map: 1 sigma
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Mira: The Wonderful Star'

An EMC2 image on “Astronomy Picture of the Day” (May 5, 2005)

Credit: X-ray Image: M. Karovska (Harvard-Smithsonian CfA) et al., CXC / NASA
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Exam. II: The BRoaDEM package for DEM Reconstruction'

Optical, Extreme UV,
and X-ray Images

Reveal different layers of

atmosphere

Higher Energy Emission
— Hotter source
— Extended atmosphere

X-ray: Hot plasma arch-
ing high above the solar
surface inside the loops of

magnetic fields.
March 2001: Largest Sunspot Group in a Decade.

The complex structure in the X-ray emission across the solar corona

s a tracer of the temperature and density of the plasma.
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The Environment of the Solar Corona.

active sun

element abundance (%/%H)
H 1.00000
He 0.07943
vs 5o 55 6o s 70 1 C 0.00039
Temp (10g10 K) 0.00010
0.00077
0.00012
0.00014
0.00001
0.00013
‘ ‘ ‘ ‘ ‘ ‘ 0.00002

4.5 5.0 55 6.0 6.5 7.0

Temp (log10 K) 000013

quiet sun

Temp density of coronal plasma
(DEM: Diffuse Emission Measure)

There 1s MUCH less information available for stellar corona.
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Data for a Stellar Corona.

e No star except the sun can be imaged.

e Ultra-high resolution spectral data is available from the Chandra X-ray
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e Chanda counts photons in a large number of narrow spectral bins.

Unlocking the information in this forest of spectral lines requires

subtle statistical analysis.
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Physics of a Stellar Corona.

e A stellar corona is made up of very hot plasma (> 10°K).
e Jons are in an excited state: The electrons populate higher energy states.

e An (inelastic) collision of two ions:
The ions slow down;
Electrons jump to higher energy states;
Ions spontaneously decay to a lower more stable energy state; and
The difference in energy between the two states is emitted in the form of
a photon.

e The energy difference is unique to the state transition of a particular ion.

e The frequency of a particular state transition is informative as to the
temperature and density of the source.

Fach line in the forest can be identified with a particular ton, and

thus we obtain information on the environment in a stellar corona.
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Reconstructing the DEMI

e DEM = marginal distribution of temperature
e A given ion at a given temperature emits a known distribution of X-rays

e X-rays appear as a forest of lines, representing a mixture of ions & temps
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Reconstructing Capella’s DEMI

Capella is an
X-ray bright

star.

Photon Counts
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Reconstruction:

log(DEM)

6.0 6.5

log-Temperature
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Examples 3 and 4: Spectral Analysis and Hardness Ratios'

High-Resolution Spectra

e High resolution detectors such as those aboard Chandra herald a quantum
leap forward for empirical high-energy astronomy

e Unfortunately, standard methods (e.g., x? fitting) rely on Gaussian

assumptions and thus require a minimum count per bin.

e Ad-hoc procedures that group bins are wasteful and sacrifice the desirable
high-resolution inherent in the data.

Hardness-Ratios

e A rough summary of a spectrum is a comparison of the expected hard and
expected soft counts.

e This is the lowest resolution spectral analysis, but can be useful for
classifying faint sources.

e Again, the validity of standard methods depends on Gaussian assumptions.

e For faint sources either the hard or soft counts can be very small.
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Solution: Poisson Statistics'

e Rather than basing statistical techniques on Gaussian assumptions, we can

use the Poisson Distribution as a statistical model for low-count data.

e Specifically, we replace the Gaussian likelihood with a Poisson likelihood:

i Teol; : _ (z; — Mz‘)2
Gaussian Likelihood: — Z o; — Z X

g;

bins bins

Poisson Likelihood: — Z i + Z x; log u;

bins bins

e Bayesian Methods combine the likelihood with a prior distribution that can
— Model the dist’n of spectral characteristics in a population of sources.
— Include information from outside the data as to the spectral shape.

— Smooth the reconstructed spectrum.

Requires Sophisticated Statistical Computing.
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BLoCXS '

Bayesian fitting of High Resolution X-ray Spectra.

BLoCXS Functionality

Uses Poisson models and no Gaussian assumptions. Thus, BLoCXS has no
trouble with low count data.

Corrects for instrument response as quantified by .rmf or .rsp files.
Corrects for effective area using .arf files.

Uses a Poisson model-based strategy to correct for background

contamination. There is no background subtraction and no negative counts.
Can fit absorption due to the ISM or IGM.

Allows for (broken) powerlaw, bremsstrahlung, and blackbody continuums.
Can include Gaussian, Lorentzian, and delta function emission lines.

Can compute principled p-values to test for emission lines.

An extension that will allow for pile-up correction is under development.

BLoCXS Availability: Scheduled for release in the next version of CIAO.
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Principled P-values to Test for a Model Component.

Fallible F-tests

The F-test commonly used by Astronomers is a special case (under a Gaussian
assumption!) of the Likelihood Ratio Test.

e The LRT is valid for comparing nested models. But the smaller model’s

parameter must be in the interior of the larger model’s parameter space.

e T'his is not the case when testing for a model component in a spectral model.
The F-test is not properly calibrated for this problem.

e We conducted a survey of papers in ApJ, ApJL, and ApJS (1995-2001)

Type of Test Number of Papers
Null Space on Boundary 106

Comparing Non-Nested Models 17
Other Questionable Cases 4
Seemingly Appropriate Use of Test 56

Protassov et al. develops a method based on posterior predictive p-values to
properly calibrate a test. This paper has already been cited 44 times.
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BEHR '

Bayesian Estimation of Hardness Ratios.

BEHR Functionality

e BEHR uses Poisson models background contaminated soft and hard counts.
Thus, BEHR has no trouble with low count data.

e BHER computes hardness ratio estimates and intervals with reliable
frequency properties. (See simulation study.)

BEHR Availability

e BEHR will soon be available on the CXC contributed software page

(cxc.harvard.edu/cont-soft/soft-exchange.html).

BEHR Examples and References

van Dyk, D. A. et al. (2005). Deconvolution in High-Energy Astrophysics: Science,

Instrumentation, and Methods. Bayesian Analysis, to appear.

Park, T., van Dyk, D. A., Kashyap, V. L., & Zezas, A. (2004). Computing Hardness
Ratios with Poissonian Errors. CHASC Technical Report.
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Veritying BEHR I

Simulation Study

e S = H = 3; each with expected background contamination = 0.1.

e Background exposure is 100 times longer.

e R=S5/H, HR=(H-S)/(H+)Y9), C = logy(R)

Table 1: Coverage of Bayesian and Standard Methods.

Hardness True Coverage Mean Mean Square Error

Method .
Ratio Value Rate Length by mode by mean

R 95.0% 7.30 0.59 12.34
HR 91.5% 1.23 0.53 0.42
C 98.0% 1.53 0.42 0.46

R 96.5% 138.29 73.58
HR 99.5% 3.44 0.63
C 100.0% 7.26 5.58

Standard
Method
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Outline of Presentation.

This talk has three components:

A. Highly Structured Models in High-Energy Astrophysics

e Astrostatistics:
Complex Sources, Complex Instruments, and Complex Questions

Key: All three are the domain of Astrostatistics
e Model-Based Statistical Solutions
e Monte Carlo-Based Bayesian Analysis

B. Examples
1. The EMC2 package for Image Analysis (A detailed example.)
2. The BRoaDEM package for DEM Reconstruction
3. The BLoCXS package for Spectral Analysis
4. The BEHR package for computing Hardness Ratios

C. Using Incompatible Conditional Distributions in Gibbs Samplers
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Generalizing the Gibbs Sampler.

The standard two-step sampler iterates between

Y1 ~ p(Y1lh2) and g ~ p(1ha|thr),

to form a Markov chain with stationary distribution

p(wb ¢2)

Consider a more general form using incompatible conditional distributions:

Y1 ~ K(1]h2) and by ~ K(12|th1)

QQuestions:
1. Does the resulting Markov chain have a stationary distribution?
2. If so, what is it?

3. Why use such a chain?

I cannot fully answer these questions, but can offer tantalizing examples....
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The Simplest ExampleI

A simple 2-step sampler:
StEP 1: Y1) ~ p(t |y )

STEP 2: ¢§t) ~ p(1h). ../%7,_07,_07,_?%" draws of 1/;
(@ ° ° 3

) -------- draws of

The Markov chain

M= {6y, e =01, o

~ e e 1teration t

has stationary distribution

o o g iteration ¢ 4 %
p(¥1)p(12) "./« i/ﬁ/ i/('"

e with target margins but

e without the correlation
of target distribution,

AND is “quick” to converge!

We regain the joint target distribution with a one-step shifted chain.
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Empirical
Illustration with
a t model

e The loss of the correla-
tion structure is our key
to success.

e Two ‘data sets’ of size
two are fit with 10 and 2
degrees of freedom.

e These algorithms are
based on the method
of Marginal Augmenta-
tion (Meng and van Dyk,
1999; van Dyk and Meng,
2001). e We omitted de-

tails and

e return to astrophysics...

Marginal Augmentation Standard Algorithm
ten degrees of freedom ten degrees of freedom

Standard Algorithm
one degree of freedom

Marginal Augmentation
one degree of freedom
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Back to Astrophysics'

e Recall that our (simplified) latent Poisson Process,

X,; ~ Poisson (Ai = )\;ES + )\Pspi) .

e Using Data Augmentation to fit this finite mixture model:

(indicator that photon [ in cell z)
il =

corresponds to the point source
1. Given Z = {Z;} we can sample § = {\F5 (A\FS p,)}

PS,
2. Given 0 we can sample Z, via Z;; ~ Ber ()\ES)\—i——)\];Sp>

e We sometimes construct a delta function point source model so as
1. the point source is contained entirely in one pixel, but
2. we do not know which pixel.

i.e., {p;} can be parameterized in terms of a single unknown parameter,

6 = the location of the point source.

In This Case Data Augmentation Fails.
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Why Data Augmentation Fails'

Consider this simple (spectral) model

with given (latent) cell counts.

X = (latent) Cell Counts

Extend Src Counts(Z=0)

Point Src Counts (Z=1)
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Why Data Augmentation Fails'

Consider this simple (spectral) model

with given (latent) cell counts.

X = (latent) Cell Counts

Extend Src Counts(Z=0)

Point Src Counts (Z=1)
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Why Data Augmentation Fails'

Consider this simple (spectral) model

with given (latent) cell counts.

X = (latent) Cell Counts

10

Extend Src Counts(Z=0)

10

Point Src Counts (Z=1)

o)

Given Z, what is the location of the point source?
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The Standard Gibbs Sampler'

Recall we do not observe the latent Poisson Process,

X,; ~ Poisson (AZ- = )\;-ES + )\Psp@-) :

Rather we observe, Y; ~ Poisson (ozj Z M;;iN; + 9?)

{Yj} = obs cell cnts The standard Gibbs sampler simulates:

{X;} = latent cell cnts 1. p(X, Z|6)

point src indicators 2. p(0|X, Z) = p(6°|X, Z)p(0"|X, Z)

location of point src We tacitly condition on Ygp,s throughout.

other model parameters

With a delta function point source model, this sampler fails.
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An Incompatible Gibbs Sampler.

e Recall the “Simplest Example”:

p(Y1]12) . p(11]12) . p()2)
p(h2|v1) p(12) p(1]v2)

e Following this we construct:

— P(%a%)

Sampler 1: (A Blocked Version of the Original Sampler.)

X, 7|0 X, Z|0 o9
p( | ) p( ‘ ) p( ‘ ) p(@L,X,Z‘QO)

T p(6°)et, X, Z)

p(0°10%, X, Z) — p(0°10%, X, Z) — p(X, Z|6)
p(0"10°, X, Z) p(6"]6°) p(6°10%, X, Z)

Sampler 2: (Cannot be Blocked: An Incompatible Gibbs Sampler.)
p(X, Z16) p(X, Z|0) p(8"]6°, X)
p(0°10", X, Z) — p(6°10", X, Z) — p(X,Z|0)
p(0t10°, X, 2) p(6]0°, X) p(6°10F, X, 2)
It can be shown that both samplers have the correct stationary
distribution and are faster to converge than the standard sampler.
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Computational Gains I

Compare Standard Sampler, Sampler 1, and Sampler 2 in a spectral analysis.

Standard sampler doesn’t move from its starting value.

Sampler 1 has much better convergence characteristics than Sampler 2.

However, each iteration of Sampler 1 is more expensive.
Sampler 1 Sampler 1

0 2000 6000 10000 1 2 3 4 5 6
Iterations Lag Energy (keV)

Sampler 1

Autocorrelation

Posterior density function

Sampler 2 Sampler 2

i J

T T T T T T T
0 2000 6000 10000 1 2 3 4
Iterations Energy (keV)

Sampler 2

Autocorrelation

Posterior density function
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Verifying the Stationary Distribution of Sampler 2.

p(X, Z|0) (X, Z|0) We move Z to the left of the condition-
p(eowL X Z) N p(@O\QL X Z) ing sign in Step 3. This does not al-

p(@L\QO, X, Z) p(@L, Z|90, X) ter the stationary distribution, but im-
proves the rate of convergence.

p(@L, Z\QO, X) We permute the order of the steps. This

can have minor effects on the rate of

p(X, Z|0)
p(6°10%, X, Z)

convergence, but does not affect the sta-

tionary distribution.

We remove Z from the draw in Step 1,

p(6-16°, X)
p(X, Z|0)
p(6°16%, X, Z)

since the transition kernel does not de-

pend on this quantitity.

We refer to these three steps tools as Marginalizing, Permuting, and
Trimming. They form a general strategy for constructing
incompatible Gibbs samplers.
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Summary I

I hope I have given you a taste of my strategy of utilizing
Highly Structured Statistical Models and
Sophisticated Statistical Computation

to solve outstanding substantive scientific questions

in High-Energy Astrophysics.

54



Selected References I

The Astrophysics Spectral and Image Models

van Dyk, D. A., Connors, A., Esch, D. N., Freeman, P., Kang, H., Karovska, M.,
and Kashyap, V. (2006). Deconvolution in High-Energy Astrophysics: Science,

Instrumentation, and Methods (With Discussion). Bayesian Analysis, to

appear.

Esch, D. N., Connors, A., Karovska, M., and van Dyk, D. A. (2004). A Image
Restoration Technique with Error Estimates. The Astrophysical Journal, vol.
610, 1213-1227.

van Dyk, D. A. and Kang, H. (2004). Highly Structured Hierarchical Models for
Spectral Analysis in High Energy Astrophysics. Statist. Science, 19, 275-293.

Protassov, R., van Dyk, D. A., Connors, A., Kashyap, V. L., & Siemiginowska, A.
(2002). Statistics: Handle with Care, Detecting Multiple Model Components
with the Likelihood Ratio Test, The Astrophysical Journal, vol. 571, 545-559.

van Dyk, D. A., Connors, A., Kashyap, V. L., & Siemiginowska, A. (2001).
Analysis of Energy Spectrum with Low Photon Counts, The Astrophysical
Journal, vol. 548, 224-243.

55



More on Example 3: The Basic Spectral Models.

e Photon counts modeled with Poisson process.

e The Poisson parameter is a function of energy, with two basic components:
1. The continuum, a GLM for the baseline spectrum,

. Several emisston lines, a mixture of Gaussians added to the continuum.

2
3. Several absorption lines multiply by the continuum.
4

. The continuum indicates the temperature of the source while the emission
and absorption lines gives clues as to the relative abundances of elements

LAMBDA

2 3

ENERGY
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A Bayesian Spectral Analysis'

Quasars
e Among the most distant distinct detectable objects.

e Believed to be super massive black holes with mass a million times that of
the sun.

e Give glimpse into the very distant past, perhaps 90% of the way to Big Bang.
High Red-Shift Quasar PG16374706

e Red-shift: wavelengths elongated as object moves away: energy appears
lower

e By measuring the change in energy, we can recover the recession velocity,
and in a uniformly expanding universe, the velocity is a direct measure of
distance.
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The Spectral Model'

Model
e Power Law Continuum: f(0%, E;) = ozCEj_BC

e Absorption model of Morrison and McCammon (1983) to account for the
ISM and IGM.

B

e Power Law for Background counts: f(67, F;) = ozBEj_ﬁ
e Narrow Gaussian Emission Line (o = 0.125 keV)
Three Models for the Emission Line:

MobpEeL 0: There is no emission line.

MobpEL 1: There in an emission line with fixed location in the spectrum but

unknown intensity.

MobpEL 2: There is an emission line with unknown location and intensity.
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Finding the Spectral Line'

e Refit with 51 starting values for the line location between 1.0 and 6.0 keV

EM Algorithm

e ML estimate agrees with scientific expectation (between 2.74 and 2.87 keV)

Results

mode (keV) domain of convergence (keV) loglikelihood

1.059
1.776
2.369
2.807*
4.216
5.031
5.715

1.0-1.3
1.4-2.0
2.1-2.3
2.4-3.7
3.8-4.7
4.8-5.2
5.3-5.9

2589.31
2590.37
2590.19
2594.94
2589.57
2589.31
2589.74
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Maximum loglikelihood for the model with no line: 2589.31.




Sampling the Major Mode'

e A Gibbs sampler can sample the major posterior mode.

e Compute estimates, error bars, and correlations.

2.5%

median 97.5% mean

3.499e-04  3.890e-04 4.317e-04  3.895e-04

1.15683
-1.13618
-0.72395
-1.32096

33.9036

2.65657

1.34854 1.53951 1.34819
-0.72117  -0.30594 -0.7213
-0.25793 0.14292 -0.26616
-0.92721  -0.52515 -0.92561
104.127 205.525  107.831158
2.7948 2.9422 2.79551
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GO TO NEXT SLIDE!
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Model Diagnostics

Residual Plots
e Gaussian Errors

e Posterior Predictive

Errors

Counts
Gaussian Errors

K2
[]
S

i
7]
)
o

Residuals
Posterior Predictive Errors

Gaussian Errors

30

20

10

5

No Emission Line

Energy (keV)

Energy (keV)

Energy(keV)
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Model Checking I

Posterior Predictive Checks

e The Likelihood Ratio Test: T'(yrep) = log { SWPoce, L0lyrep) } . i=1,2,

Supee@o L(9|yrep)

e Sample yrep from posterior predictive distribution under model MopDEL 0.

Model 0 vs. Model 1 Model 0 vs. Model 2

p=0
T(y) =5.62

p=0.013
T(y)=5.63

T(y™P) T(y™P)
Given the prior belief that the line is near 2.81 keV, it is legitimate to use the

first ppp-value. Without such prior information, one should use the second
ppp-value.
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Conclusions I

Motivation for Model Based Methods:

e Asymptotic approximations may not be justified

— x? fitting is not appropriate for low counts
e Accounting for background contamination
e Accounting for pile up

Motivation for Bayesian Methods:

e Likelihood methods also require asymptotic approximations (e.g., to

compute error bars) which may not be reliable
e Testing for spectral or spatial features
e Computation for mode finders may be intractable
The Future of Data Analysis:
e Problem specific modeling and computing

e Less reliance on statistical black boxes and multi-purpose solutions
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