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Complex Astonomical Sources.
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Complex Data Collection Mechanisms.

NASA'S Great Observatovries
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Complex Scientific Questions'

e Are the loops of hot gas real?




Outline of the Talk.

I will examine a particular complex scientific question:

What does an ultra-high resolution spectrum tells us about the
physical environment of a stellar source?
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In particular, I will
1. Build a statistical model the describes the physics underlying the spectrum,
2. Incorporate the data collection mechanism of the Chandra X-ray Observ.,
3. Discuss statistical inference under the model, and

4. Illustrate the method using simulation, data analysis, and model evaluation.




The Solar Corona During a Total Eclipse.

The mostly X-ray emitting corona is fainter than the surface and is normally invisible.




The Solar Atmosphere'

March 2001: Largest Sunspot Group in a Decade.

Optical, Extreme UV,

and X-ray Images

Reveal different layers of

atmosphere

Higher Energy Emission
— Hotter source
— Eixtended atmosphere

X-ray: Hot plasma arch-
ing high above the solar
surface inside the loops of

magnetic fields.

The complex structure in the X-ray emission across the solar corona

18 a tracer of the temperature and density of the plasma.




The Environment of the Solar Corona.
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(DEM: Diffuse Emission Measure)

There 1s MUCH less information available for stellar corona.




Data for a Stellar Corona.

e No star except the sun can be imaged.

e Ultra-high resolution spectral data is available from the Chandra X-ray
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e Chanda counts photons in a large number of narrow spectral bins.

Unlocking the information in this forest of spectral lines requires

subtle statistical analysis.




Physics of a Stellar Corona.

e A stellar corona is made up of very hot plasma (> 10°K).
e Jons are in an excited state: The electrons populate higher energy states.

e An (inelastic) collision of two ions:
The ions slow down;
Electrons jump to higher energy states;
Ions spontaneously decay to a lower more stable energy state; and
The difference in energy between the two states is emitted in the form of
a photon.

e The energy difference is unique to the state transition of a particular ion.

e The frequency of a particular state transition is informative as to the
temperature and density of the source.

Fach line in the forest can be identified with a particular ton, and

thus we obtain information on the environment in a stellar corona.
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Identifying the Temperature Distribution.

e The relative strength (Emissivity)

of the Oxygen lines varies with the

temperature of the plasma.

If the corona is relatively hot, we

expect the emission lines that cor-

respond to more energetic quantum

states to be relatively strong.
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The relative size of the Oxygen lines

is informative as to the temperature

of the plasma.

The data s a mizture of elements

each at a mixture of

temperatures. We aim to identify

these two mixtures.

wavelength (A)
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A Finite Mixture Distribution'

e Photons are counted in a large number of narrow energy bins.
e We use a multinomial distribution with probability vector II.

e We divide temperature into a small number of bins.

II = ZWE Z We(TEt—i—Tgt)
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e Here we add a continuum term, TS, which is the result of another physical

process in a stellar corona.
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The Complete Data'

A complete-data table

For each photo e would
Temperature Bins r p n, we wou

Element 5.0 5.1 5.2 etc.
N H 1 10

O 6 7 8 2. The temperature of the
Ne 15 10 25 plasma where that emit-
Mg 5 3 10 ting element resided.

Al 9 14 10 This complete data could be
Si 0 1 1 compiled into a two-way table

like to know:

1. The element that emitted
the photon, and

etc. of photon counts.

The cell probabilities for this table are of primary scientific interest.
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The Complete-Data Model.

e We use an independence model on the complete-data two-way table:

We assume the temperature distribution is the same for each element.
e Independent prior distributions are used on the probability vectors for the
marginal tables of elements and temperature bins.

— A Dirichlet prior could be used on the elemental probability vector to
shrink toward a particular value. Currently we use a flat prior
distribution.

— A smoothing multiscale prior distribution is used on the temperature
probability vector.

The multi-scale prior distribution smooths toward a smooth

distribution on the temperature of the coronal plasma.
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A Multiscale Prior Distribution.

Low Resolution

Tgy T4 ~ Beta(a, a)
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Unfortunately, the data collection process is further complicated by

the missing data mechanism.
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Modeling the Missing Data Mechanism.

Modelling the Chandra data collection mechanism.

e The method of Data
Augmentation: EM algo-

absorbtion and

submaximal effective
N
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We wish to directly model the sources and data collection mechanism and use
statistical procedures to fit the resulting highly-structured models and address the

substantive scientific questions.
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A Model-Based Statistical Paradigm.

1. Model Building

e Model source spectra, image, and/or time series

e Model the data collection process
background contamination
instrument response
effective area and absorption

— pile up
e Results in a highly structured hierarchical model
2. (Model Based) Mode of Statistical Inference
e Bayesian posterior distribution

e Maximum likelihood estimation

e Asymptotic approximations (e.g., x? fitting)

3. Sophisticated Statistical Computation Methods Are Required
e Goals: stability and easy implementation

e Emphasize natural link with models: The Method of Data Augmentation
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Bayesian Inference Using Monte Carlo.

The Building Block of Bayesian Analysis
1. The sampling distribution: p(Y|v).

2. The prior distribution: p(1)).

3. Bayes theorem and the posterior distribution: p(|Y) o< p(Y|y)p(¥)

Inference Using a Monte Carlo Sample:

prior posterior joint posterior
with flat prior

0 2 4 6 8 10
lamS lamS

Obtain a Monte Carlo sample via the Gibbs Sampler:
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Simulation 1
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How it All Works to Deconvolve a Stellar Spectrum.

A Simulation Study:

Simulation 2
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Evaluating the Fit in Simulation 4

Obs Counts(Dots) vs. Fit(Line)

Wavelength

Standardized Residual

Wavelength(A)

std residual: (fit - count)/sqrt(fit)
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Reconstruction of Capella’s DEMI

Capella DEM Reconstruction — Chandra Data Strong Smoothing
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Posterior means (blue line) and 95% pointwise posterior intervals (grey area).

DEM : the distribution of the temperature of the coronal plasma.
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Reconstructing Capella’s Elemental Abundances'

Chandra (3-30A)

Element | no. of lines Mode Mean  95% Interval
C 25 0.155 0.149 0.097, 0.205

Si 306 0.266 0.255 0.227, 0.286
500 0.122 0.118 0.110, 0.126
381 0.300 0.293 0.273, 0.315
279 0.542 0.533 0.492, 0.577
99 0.235 0.251 0.025, 0.555
345 0.599 0.591 0.540, 0.644
300 0.362  0.356 0.206, 0.517
369 0.177  0.168 0.085, 0.256
374 0.303 0.295 0.190, 0.405
5779 0.428 0.422 0.403, 0.442
1832 0.707  0.688 0.616, 0.767

N 7N 7N N 7N N N N N N /N /N
N N N N N N N N N N N N

Relative Abundances (abundance over solar abundance).
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Evaluating the Fit

Obs Counts(Dots) vs. Fit(Line)

Wavelength

Standardized Residual

17
Wavelength(A)

std residual: (fit - count)/sqrt(fit)
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Improving the Fit'

Sources of Errors

e Elements of the Emissivity Matrix are measured with error.

e There are many many weak lines, some of which are not accounted for.
Possible Solutions

e Multiple Imputation
— Impute Emissivity matrices according to their measured errors.
— Redo the analysis with each matrix.
— Average the results.

— DIFFICULTY: Errors are recorded, but correlations are not.

e F'it particular structures in the Emissivity Matrix.

— The residual plots indicate that some of the strong lines should be shifted.
These are areas of current research.
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Accounting for Errors in the Emissivity Matrix

Obs Counts(Dots) vs. Fit(Line)

Wavelength

Standardized Residual

17
Wavelength(A)

std residual: (fit - count)/sqrt(fit)
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Magnification of Counts near 15 A

Obs Counts(Dots) vs. Fit(Line)

Wavelength

Standardized Residual

Wavelength(A)

std residual: (fit - count)/sqrt(fit)
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Fitting Line Locations to Improve the EUVE Fit

WITHOUT Wavelength Correction

Std. Residual
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Fitting Line Locations to Improve the Chandra Fit
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Evaluating the EUVE Fit
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Fitting Capella’s DEM using EUVE Data.

Capella DEM Reconstruction — EUVE Data
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Data Analysis in The New Millennium!'

. Application specific model are becoming ever more prevalent.

. Model can be designed that explicitly account for complex systems and

complex data collection mechanisms—including missing data mechanisms.
. Ideally such models aim to directly answer complex substantive questions.

. A Bayesian framework allows us to incorporate information from a variety of

sources (e.g., instrumental calibration and quantum physical calculations).

. Using such models requires sophisticated statistical inference and

computational techniques.
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