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~ It is known that a rapid development of the qualitative theory of multidimensional dynamical
systems began in 1960s, which was stimulated, to a large extent, by the works of Anosov and
Smale who laid the foundations for the hyperbolic theory. It was discovered, in the same years,
that in contrast to two-dimensional vector fields, structurally unstable multidimensional fields can
form domains in the space of dynamical systems. Smale [1] was the first to point out that fact.
He constructed an example of three-dimensional diffeomorphism where structural instability was
present on a wandering set, i.e., a structurally unstable one-dimensional manifold of a fixed saddle
point unremovably touched the stable foliation of Anosov’s torus. Somewhat later, the researchers
discovered open domains of systems in which the instability was concentrated on nonwandering sets.
Here we must, first of all, point out domains of everywhere dense structural instability connected
with homoclinic tangencies (Newhouse domains [2, 3]) as well as systems with Lorenz attractors
(4, 5]. However whereas only two invariants, kneading invariants, are required in a nonsymmetric
case (one in a symmetric case) in order to describe Lorenz attractors [6], the situation is considerably
more complicated in Newhouse domains [7, 8, 9], namely, infinitely many invariants (in particluar,
the so-called Q-moduli‘[10, 11]) are required. The materialization of the latter fact is that in
Newhouse domains systems with a countable set of periodic motions of any order of generation
_- are dense as well as systems with a countable set of homoclinic tangencies of any order. Another

’i-ﬁporta.nt‘jcfla.racteristic property of systems in Newhouse domains is the property of coexistence
" -of a countable set of periodic orbits of different topological types. As applied to two-dimensional
diffeomorphisms, this property manifests itself as follows: in Newhouse domains connected with a
homoclinic tangency of a fixed saddle point diffeomorphisms which, along with the saddle periodic
orbits, have a countable set of stable (completely unstable) periodic orbits if the saddle value o
of the fixed point is smaller than unity (larger than unity) are everywhere dense. Here o = |Av|,
where A and 7 are eigenvalues of the mapping linearized at a fixed point.

In this work, we consider two-dimensional diffeomorphisms with structurally unstable hetero-
clinic cycle which contains fixed saddle points and heteroclinic orbits. We assume that-exactly one
of the latter orbits is structurally unstable and, along it, a stable and an unstable manifold have
a quadratic targency. When the saddle values of all fixed points of the cycle are simultaneously
less than or larzer than unity, the resluts do not differ, in principle, from the known results in the
case ot diffeomorphisms with a homoclinic tangency. However, if there are at least two fixed points
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ON NEWHOUSE DOMAINS OF TWO-DIMENSIONAL DIFFEOMORPHISMS 71

in a cycle, one of which has a saddle value larger than unity, then a new phenomenon appears,
namely, there are Newhouse domains in the vicinity of the diffeomorphism with such a cycle where _
the diffeomorphisms which have simultaneously a countable set of saddle orbits, a countable set of
saddle orbits, and a countable set of completely unstable periodic orbits are dense. In their totality,
these orbits are “unseparable” from one another since the closures of both the sets of stable and
of the sets of completely unstable periodic orbits also contain saddle periodic orbits of nontrivial
hyperbolic subsets.

Note that these statements are also valid for general one-parameter families of two-dimensional
diffeomorphisms and three-dimensional flows. The last circumstance is especially important for
problems of nonlinear dynamics since these new phenomena can be found in dynamical models
with an alternating divergence (for instance, in Chua’s circuits, see [12]).

Since homoclinic tangencies naturally appear upon small smooth perturbations of a diffeomor-
phism with a structurally unstable heteroclinic cycle, we shall first give a short review of some
results connected with homoclinic bifurcations. :

1. A SHORT REVIEW OF HOMOCLINIC BIFURCATIONS IN THE CASE OF
TWO-DIMENSIONAL DIFFEOMORPHISMS

Let a C™-smooth (r > 2) two-dimensional diffeomorphism go have a structurally stable fixed
saddle point O, whose stable W§ and unstable W3 manifolds have a quadratic tangency at the
points of a certain homoclinic orbit I'g. Suppose that the point O has eigenvalues A\g and -, where -
[Xo] < 1, |70] > 1. We assume that the saddle value og = |Ao| |70| of the point O is different from
unity. Diffeomorphisms, close to go, which have a structurally unstable homoclinic orbit close to
I'o form, in the space of two-dimensional diffeomorphisms, a locally connected bifurcation surface
Hp of codimension 1. Let g, be a one-parameter family of C™-smooth diffeomorphisms which is

1

transversal to Hyg for u = 0.
Here is a brief review of some most important and well known properties of homoclinic bifur-

cations given with the use of the example of the family g,.

Note, first of all, the property of nonisolatedness of homoclinic tangencies. In the simplest
version, it can be formulated as the following statement.

Let g be a point of the orbit I'g. There ezists a sequence u; of values of the parameter u, such
that the diffeomorphism g,, has, at the point z,,, a quadratic homoclinic tangency of manifolds of
- ﬂre fized saddle point O,,,, where u; = 0, z,; = 2o, Oy; = O as i — co. '

.- This statement is obvious, and its geometric meaning can be seen from Fig. 1 in which it is
demonstrated how the secondary (quadratic) homoclinic tangency arises.

Note, however, that the condition of genericity of the family g, does not yet guarantee that
in its bifurcation set all values of the parameter are associated with only nondegenerable bifurca-
tions, in particular, if there are homoclinic tangencies, then they are only quadratic. As is shown
in [8, 13],

any generic family, which contains a system with homoclinic tangency, can be reduced, by an
arbitrarily small smooth perturbation, again to a generic family in whose bifurcation interval there
erist values of the parameter corresponding to an arbitrarily generate bifurcations.

It is shown in Fig. 2 how, for instance, cubic tangencies of manifolds of the point O, can arise.
Thus the question concerning the type of new homoclinic tangencies arising at p # 0 requires a
special attention since they are not automatically quadratic. '
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Quadratic tangency

Fig. 1.

The property of nonisolatedness of homoclinic tangencies is also manifested in the fact that
systems with homoclinic tangencies densely fill up whole domains (Newhouse domains) in the space
of dynamical systems. Moreover, such domains can be found in generic one-parameter families
containing a system with a homoclinic tangency, namely, the following result is proved in [3].

Newhouse theorem. On the interval [—po, pio], for any po > 0 there ezists intervals where
the values of the parameter p for which the diffeomorphism g, has a quadratic tangency of invariant
manifolds of a certain periodic saddle orbit are dense.

This result is generalized in [14] to a multidimensional case for generic parametric families
containing a system with a homoclinic tangency.

The property of coezistence of periodic orbits of different topological types is another important

property which demonstrates homoclinic bifurcations. In the case of two-dimensional diffeomor-

.- phisms, which are close to a system with a homoclinic tangency, it is manifested in the fact that

‘besides petiodic saddle orbits belonging to nontrivial hyperbolic subsets [15], diffeomorphisms of
“this kind can also contain either stable or completely unstable periodic orbits according as the
saddle value og of the point O is smaller or larger than unity respectively. For the first time, the
statement concerning the coexostence of stable periodic orbits in the vicinity of a homoclinic tan-
gency, which is often called a theorem of the ezistence of a cascade of sinks (sources), was obtained
in [15] and can be formulated as follows.

Assume that o < 1 { resp. 0 > 1). Then, on the interval [—pqg, po] for any po > O there ezists a
sequence of nonintersecting intervals §; = (u, ul™) contracting to p = 0 as i — co and such that for
i € &; the diffeomorphism g, has an asymptotically stable (completely unstable, resp.) one-circuut
periodic orbit.! For p = u} the diffeomorphism g, has a one-circuit simplest structurally unstable

'We can say that a periodic orbit, which lies entirely in a small fixed neighborhood of the contour O U I's, is a
k-circuit if its intersection with the small neighborhood of the point zo of the homoclinic tangency consists exactly
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Cubic tangency

Fig. 2.

periodic orbit of the saddle-node type and, for p = put*, it has a one-circuit simplest.structurally

unstable periodic orbit with the multiplicator —1.
A similar result for a generic one-parameter famliy of multidimensional diffeomorphisms, in the

case, where the unstable manifold of the point O is one-dimensional, was established in [16] (see
also [17], where the existence of a cascade of sinks was established for special families). o
The existence of a cascade of sinks (sources) and the existence of Newhouse intervals associated
with a homoclinic tangency make it possible to formulate the following result (theorem on the
coezistence of a countable set of sinks (sources)).
Let o9 < 1 (00 > 1, resp.). Then, in Newhouse intervals, the values of the parameter p, for
which g,, has a countable set of stable (completely unstable, resp.) periodic orbits, are dense.

.- ..- Note that the authors of [9, 13] found, for multidimensional systems which are close to a
:.';;zstem mtﬁ a homoclinic tangency, conditions for the existence as well as the absence, in a small
~ neighborhood of a structurally unstable homoclinic orbit, of periodic orbits of some topological °
type.2 In particular, for the case of two-dimensional diffeomorphisms with a homoclinic tangency
it follows that if og < 1, then neither gg nor diffeomorphisms close to go have completely unstable
periodic orbits in the small neighborhood, U(OUT) and if o¢ < 1, they do not have stable orbits.

Thus, under general conditions, two-dimensional diffeomorphisms with a structurally unstable
homoclinic orbit and diffeomorphisms close to them cannot contain simultaneously stable and
complelely unstable orbits in its small neighborhood. As is shown in the present article, the

of k points.

2For instance, it was established in [9, 13] that stable periodic orbits could appear even in the case, where the
dimension of the unstable manifold of the point O was 2 (in this case its unstable multiplicators must be complex
conjugate) and that these orbits unremovably appeared only in two- or even three-parameter families. Correspond-
ingly, the attainment of the boundary of stability can be followed by the appearance of orbits with two or even

three, respectively, multiplicators modulo unity.
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countable sets of these orbits can coexist for diffeomorphisms which are close to diffeomorphisms
with a structurally unstable heteroclinic cycle.

2. STATEMENT Oi“ THE PROBLEM AND FORMULATION OF THE MAIN RESULTS

In this article we shall study the bifurcations and the structure of the set of nonwandering
orbits of two-dimensional diffeomorphisms which are close to a diffeomorphism with a structurally

unstable heteroclinic cycle.

Let us recall how a heteroclinic cycle is interpreted. Let a dynamical system have structurally *
stable periodic saddle orbits Py, ..., P, and heteroclinic orbits I'12,...,I'n-1n and I'5; such that
Tiig1 C WE(L)NW?3(Ligy). i = 1,...,n— 1, Tpy € W¥(L,) "W?*(Ly). A heteroclinic cycle is
a set of orbits C = {L1,....Ln,T12,...,Fn-1n,Tn1}. The cycle is structurally stable if all indi-
cated intersections of invariant manifolds along heteroclinic orbits are transversal and structurally
unstable if at least one of the intersections is nontransversal.

Examples of two-dimensional diffeomorphisms with structurally unstable heteroclinic cycles are
shown in Fig. 3. In the first case (Fig. 3a) the cycle contains several fixed saddle points (or periodic
.- saddle orbits in the general case) and several heteroclinic orbits of which exactly one orbit (namely,

Ta)is strl'.ic’t-:urally unstable. In the second case (Fig. 3b) a simple structurally unstable heteroclinic
‘ 'cy;:le is shoﬁfn. Here O, and O, are fixed saddle points, the manifolds W*(0O,) and W*(O,) intersect
transversally at the points of the orbit I';2, and the manifolds W*(QO2) and W*(0;) have a quadratic

tangency at the points of the orbit I'p;.
The main attention will be paid to diffeomorphisms with the simplest structurally unstable

cycles. Let fo be a diffeomorphism of this kind from the class C™ (r > 3) on the two-dimensional
smooth manifold M2. We denote by A;,7; the eigenvalues of the point O; such tha.tblz\,-l < 1,
[vil > 1, i = 1,2, and by o; the saddle value of the point O;, i.e., 0; = |A;7;]. We assume that
o; # 1. Let U be a sufficiently small neighborhood of the heteroclinic cycle C = O;UO2UI'12Ul2;. .

The diffeomorphisms which are close to fy and have a structurally unstable heteroclinic orbit
form a locally connected bifurcation surface H of codimension 1 in the space Diff"(M?) of two-
dimensional CT-diffeomorphisms on M2. When investigating the bifurcations of systems with a
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structurally unstable heteroclinic cycle, it is natural to begin with the bifurcation in the one-
parameter family f, of diffeomorphisms which includes fy and is transversal to H.

As is shown in the article, the solution of the problem concerning the coexistence in the neigh-
borhood U of stable and completely unstable periodic orbits in systems which are close to fy
essentially depends on the conditions satisfied by the saddle values o, and ;. It seems to be
natural (and is proved, see Statement 2 in Section 7) that if the saddle values oy, and o, are both
smaller than unity (both larger than unity, resp.), then neither fy nor diffeomorphisms which are

close to it have completely unstable (stable, resp.) periodic orbits in U. Quite a different situation

is observed in the case when the saddle values o1 and o5 are on different sides of unity. Here stable
and completely unstable periodic orbits may coexist. Moreover, we establish the follwing general

result (Theorem 4).

The fundamental theorem. Let f, be a one-parameter family of two-dimensional diffeo-
morphisms from the class CT (r > 3). We assume that for p = 0 the family f, is transversal to H,
and fo € H. We also assume that one of the saddle values 0y and o, of fy is smaller than unity,
and the other is larger than unity. Then, on any interval [—uq, o] of the values of the parameter u
there exists a countable set of intervals A} which accumulate to p = 0 as i — co and are such that

(1) on A} the values of the parameter p, for which f, has a structurally unstable homoclinic to
O, orbit, are dense and the values of of the parameter p for which f, has a structurally unstable
homoclinic to O9 orbit are also dense;

(2) on A} the values of the parameter p, for which f, has a structurally unstable heteroclinic
cycle containing the points Oy, O, and the heteroclinic orbits T'yo(u), where I'12(0) = T'y;. and
Ta1(p) C W2 (O2) " W;(0,) are dense (the orbit T'12(p) is structurally stable and at the points of

the orbit T'y; (i) the manifolds W3 (02) and W;(O1) have a quadratic tangency);

3) on A! the values of the parameter u, for which f, have simultaneoulsy a countable set c;l
t [ Y

stable and a countable set of completely unstable periodic orbits, are dense.

In addition to the Newhouse intervals indicated in the fundamental theorem (we shall call
them interval of the first type), there can exist, in the family f“,-Newhouse intervals of two more
types which are characterized by the following main property which distinguish them from the
intervals A}: in the intervals of the second and the third type the values of the parameter p, for
~ -which f, has a structurally unstable homoclinic orbit of only one fixed saddle point (the point
01 or thé‘-})oint O; according as the type of the heteroclinic contour), are dense, and, in these
interva.ls;‘thei'e are no values of the parameter p for which the diffeomorphism f, would have a
homoclinic orbit of the other fixed saddle point. It should be also pointed out that the existence
of Newhouse domains of the second and third types is possible not for any diffeomorphism with a
structurally unstable heteroclinic cycle, namely, domains of this kind can only be in the vicinity of
certain diffeomorphisms of the third class according to our classification. In Section 6 (by analogy
with a structurally unstable homoclinic situation [15]) we divide diffeomorphisms with structurally
unstable heteroclinic cycles into three classes according to the types of description of the set Vo of
orbits which lie entirely in the neighborhood U. Figure 4 shows four types of diffeomorphisms with
the structurally unstable cycle in the case where A; and v;, i = 1, 2 are positive. For diffeomorphisms
of the first class (such as shown in Fig. 4a), as is proved in [18], the set Np has a trivial structure:

No = {01,0,,T'12, T2, }; for diffeomorphisms of the second class (Fig. 4b) the set Ny admits a full .
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description in terms of symbolic dynamics (see Section 5); for diffeomorphisms of the third class
(examples of these diffeomorphisms are given in Figs. 4c and 4d) the set Ny, in general, does no "’
longer admit a full description, contains nontrivial hyperbolic subset (Theorem 3), and, on the
bifurcation surface H3 of these diffeomorphisms (see Sections 8 and 9) systems with structurally
unstable periodic and homoclinic orbits are dense.

We introduce the quantities
, _ _InjA
CTT LR In |m|

o =olo,.

Note that the invariant # is a modulus of Q-conjugacy (i.e., a continuous invariant of the
topological conjugacy in a set of nonwandering orbits) of diffeomorphisms of the third class with a
structurally unstable heteroclinic cycle (Theorem 6), and the quantity o characterizes the type of

stability of one-circuit periodic orbits.
We assume that a < 1 since the case a > 1 reduces to the case under consideration for the
diffeomorphism f~!. Note that the condition @ < 1 is one of the sufficient conditions for the

existence of stable periodic orbits for diffeomorphisms on H3 (Theorem 12). In particular, for
a < 1 in Newhouse domains of all three types the values of the parameter u corresponidng to the.
existence of a countable set of stable periodic orbits are dense.
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In order to give a general idea of Newhouse intervals of the second and third types and charac-
terize the dynamical properties of the diffeomorphisms f, for the values of the parameter p from
these intervals, we shall consider, for definiteness, the family f, containing for x = 0 the diffeomor-
phism shown in Fig. 4c. We agree that the parameter x belongs to the family in such a way that,
for p > 0, f, does not have heteroclinic orbits which are close to I'y;, and for p < 0 it has exactly
two structurally stable heteroclinic orbits which are close to I'z; (Fig. 5). We have the following
statement for this generic family (see Theorems 15 and 16):

(1) Irrespective of the quantity «, on the interval (—po,0] there ezists, for any po > 0, a
countable set of intervals A} from the fundamental theorem.

(2) For u > 0, the diffeomorphism f, does not have in U any homoclinic orbits of the point O,
or heteroclinic cycles which include the points Oy and O,. )

(3) In the case a < 1, 01 > 1, 02 < 1, on the interval (0, o] there exists a countable set .of
intervals A? which accumulate to po = 0 and are such that in A? the values of the parameter y, fc:r
which f, has a structurally unstable homoclinic orbit of the point O, are dense, and the values of
the parameter p, for which f, has a countable set of stable peiodic orbits, are dense. In this case,
the diffeomorphisms f, for p > 0 do not have in U any completely unstable periodic orbits.

(4) In the case a < 1, oy < 1, o3 > 1, on the interval (0, po) there exists a countable set of

_ intervals A} which accumulate to pg = 0 and are such that in A? the values of the parameter p,
' ".f_ér which f, has a structurally unstable homoclinic orbit of the point O, are dense and the values
- -'Ao.'_f the parameter p, for which f, has simultaneously a countable set of stable and a countable set

of co’mpletely unstable periodic orbits, are dense.

Here is the plan of this work. In Section 3 we describe some general geometric and analytic
properties of diffeomorphisms with the simplest structurally unstable heteroclinic cycle. In particu-
lar, we give here the definition of the generic one-parameter family f, containing a diffeomorphism
with a structurally unstable heteroclinic cycle, describe the properties of local mappings defined
in the neighborhoods of the fixed saddle points O; and O,, and of global mappings defined in the
neighborhoods of the heteroclinic orbits I'y2 and I'2;, we also introduce special neighborhoods. In
Sections 4 and 5 we study the question of the existence and the structure of nontrivial hyperbolic
subsets of the diffeomorphisms f,. In Section 6 we divide diffeomorphisms with a structurally un- )
stable heteroclinic cycle into three classes according as the structure of the set Ny of orbits which
lie entirely in the neightborhood of the contour. In Section 7 we prove the main result of the article,
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namely, the theorem on the existence of Newhouse intervals of the first type in the family f, which
contains a diffeomorphism with the simplest structurally unstable heteroclinic cycle (Theorem 4)
and generalize this theorem to the case of diffeomorphisms with an arbitrary structurally unstable
heteroclinic cycle (Theorem 3). In Sections 8—10 we study certain dynamical properties of dif-
feomorphisms of the third class with a structurally unstable heteroclinic cycle (on the bifurcation
surface Hj).

We prove in Section 8 that the diffeomorphisms on H3 have moduli of Q-conjugacy (in par-
ticluar, the invariant @ is the principal modulus of this kind (Theorem 6)) and that on Hj the
diffeomorphisms with a countable set of 2-moduli are dense (Theorem 9). In Sections 9-10 we
study the main bifurcations of periodic and homoclinic orbits of systems on Hj in the framework
of one-parameter families where 8 is a parameter. On this basis, we establish in Section 10 the
conditions for the existence and absence in U of stable and completely unstable periodic orbits of
the difeomorphisms on Hj3. Finally, in Section 11, we prove the existence of Newhouse intervals of
the second and third types.

3. GEOMETRIC AND ANALYTIC PROPERTIES OF DIFFEOMORPHISMS WITH A
STRUCTURALLY UNSTABLE HETEROCLINIC CYCLE

Let fo be a CT-smooth (r > 3) diffeomorphism which is defined on the two-dimensional smooth
manifold M2 and has the simplest structurally unstable heteroclinic cycle (Fig. 3b), i.e., fo has
two structurally stable fixed saddle points O, and O2 whose invariant mainfolds behave as follows:
W*(0,) transversally intersects W*(O,) at the points of a certain heteroclinic orbit I'y2 and W*(O5)
has a quadratic tangency with W*(0,) at the point of a certain heteroclinic orbit I'2;. Let A;,v;
be eigenvalues of the point O; such that |A;] < 1, |y > 1, i = 1,2. We denote by o; the saddle
value of the point Oy, i.e., 0; = |Aiv;|. We assume that o; # 1. ‘ i

We denote by Diff” (M?2) the space of CT-smooth diffeomorphisms on M? with a C"-topology. -
Diffeomorphisms, which are close to fo and have a structurally unstable heteroclinic orbit which is
close to I'y;, form in Diff"(M?2) a locally connected bifurcation surface H of codimension 1.

When investigating the bifurcations of systems with a structurally unstable heteroclinic cycle, it
is natural to begin with bifurcations in a one-parameter family of diffeomorphisms which includes fg
- and is transversal to H. We give the definition of these families and describe some of its properties.

3.1, Pri)perties of transversal one-parameter families. Let g, be a one-parameter family
of two—diménsiona.l Cr-diffeomorphisms (r > 2) which is smooth with respect to the parameter .
We assume that for sufficiently small g the family y“ has two CT-smooth invariant curves /;(u)
and {2(u) which smoothly depend on g and are such that for g = 0 the curves /;(0) and {3(0)
have tangency at a certain point zo. It stands to reason that, first of all, we mean that /;(z) and
l3(p) are, respectively, compact pieces of the invariant stable and unstable manifolds or of different
periodic saddle orbits of the diffeomorphismg,, or of the same orbit. Then, for 4 = 0 we have,
respectively, either a heteroclinic or homoclinic tangency at the point zg.

Definition 1. We say that for up = 0 the family g, unfolds generically the tangency between
the curves {;(p) and l3(u) if the following conditions are fulfilled.

1. The curves [;(0) and /2(0) have a quadratic tangency at the point zg.

2. For p # 0 the curves Iy(u) and l2(p) have no points of tangency in the vicinity of zo..
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Moreover, for a sufficiently small zzg > 0 the interval [—uq, o] of values of p is divided by the point
4 = 0 into two parts such that for 4 < 0 (or for o > 0) the curves /;(u) and l2(1) have no points
of intersection close to zg and for u > 0 (or for p < 0 respectively) they have exactly two points
z1(p) and z2(u) of transversal intersection, where z;(1) = 20 as g — 0.

3. The splitting function p(u) of the curves (1) and I3(u) relative to the point zg is a smooth
monotonic function of the parameter g, and p’(0) # 0.

When [(p) and l3(u) are, respectively, the pieces of a stable and an unstable manifold or of
different periodic saddle orbits or of the same orbit, we say that for 4 = 0 the family g, unfolds
generically a heteroclinic or homoclinic tangency respectively.

We can define the splitting function p(u) for all sufficiently small g, say, in the following way.
Let V be a certain small fixed neighborhood of the point zg. Then

(a) p(0) = 0 for p =0; :

(b) if (li(z) Nlz(1)) NV = @, then p(u) is the distance between the curves l;(p) NV and
L(p)NV;

(c) if (l(p) Niz(r))NV = {z1(n), z2(1)}, then p(u) is defined as follows: let I; (1) and Ip(z) be
closed segments of the curves l;(¢) NV and l3(u) NV with the endpoints z;(u) and z2(p). Then

p(p) = — max d(z,l2(n)) = — max_d(y,h(p)),
z€ly(u) y€la(u)

where d(-, -) is the distance between the indicated point and the curve.

The important property of these generic families is their stability against smooth perturbations,
namely, if for g = 0 the family /(1) and l(g), then the close family §, (CT-close with respect ta
the coordinates and C!-close with respect to the parameter) unfolds generically a tangency between
the curves [;(u) and lp(p), which are close to Iy(i) and l2(u), respectively, for the values of the
parameter pu close to zero.

Definition 2. Let [(4) be a smoothly dependent on p one-parameter family of C"-smooth -
curves. We say that the curves l;(u) accumulate in a regular .way to l(u) as j — oo if I;(p)
~.aceumulates. to /() as j — 0o in the C?-sense with respect to coordinates and in the C!-sense with
_respect to the parameter. '

The fo'llowing statement is a simple consequence of the genericity of the family.

Statement 1.Let {Ii(¢)} and {I%(u)} be two families of curves which accumulate in a regular
way to the curves ly(u) and lo(u) respectively. Then there exist k) and k,, such that if i > k; and
J > ks, then the family g, unfolds generically a tangency between any of the curves {li(x)} and
{l%(p)} for p = p;;, where p;; = 0 as i = oo and j — oo.

3.2. Local and global mappings. Let U be a sufficiently small heighborhood of a heteroclinic

cycle C = 01U02UT 12Ul It is the union of two small disks Uy and U containing the points
O; and O and of a certain finite number of small neighborhoods of those points of the orbits I'12

and I'y;, which are outside of Uy and U» (Fig. 6).

As is established in [10, 11], we can introduce on U,, s = 1,2, coordinates (z,, ys) such that the
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mapping Tos(pt) = f),, can be written as

Iy = ’\s(/‘)za + fs(zm yu.u)zsyu (3 1)
Ys = 7:(,“).1/: + gs(Zs) Ysy 1) TsYs, )

where f,(0,ys, 1) = 0, gs(z,,0,p) = 0, and, in addition, the functions on the right-hand sides
of (3.1) are C"~l-smooth with respect to the coordinates and C'-smooth with respect to the
parameter. In accordance with (3.1), the equations of the manifolds W3 .(O,(u)) and Wit (Os(1)) -
in these coordinates are y, = 0 and z, = 0 respectively. The mappings To(p) and To2(p) are
callled local mappings. '

For p = 0, in the diffeomorphism fo we choose in U; a pair of points M7 (zf,0) and My (0, y7)

belonging to the orbits I'y; and I'yp respectively. In U, we shall also consider a pair of points’

M (z$,0) and M5 (0,y;) belonging to the orbits ' and Iy respectively. Let II¥ C U, and
II; C U, be a sufficiently small rectangular neighborhoods of the points M} and M. We dentoe
the coordinates on II} and I by (zo, Yos) 2and (214, y15) respectively.
For sufficiently large i and small x4 the mapping T§,(u): IIF — IIT can be written in the form
[10, 11]

[
~

""? “ -i'la = /\i('u)zm(l + (IAJ,‘ + I7sl—i).€;',(370.n gl.n “"))1 (3 2)
' .yOJ = 7;' (“)gla(l + (IAJP + I‘Ysl,—')nf(xo.n !71;1 ,U)), )

where (zog, Yos) € I, (Z15,15) € II7, and the functions & and 57 are uniformly bounded with
respect to i together with the derivatives with respect to the coordinates up to the order (r — 2)
and with respect to the parameter. In addition, the derivatives of the order (r — 1) with respect to
the coordinates of the functions on the right-hand sides of (3.2) tend to zero as i =& co. Thus, in .
these coordinates, the mapping T§, for large k will be asymptotically close to a linear mapping.
We denote by N, the set of orbits of the diffeomorphism f, which lie entirely in U. Note
that all orbits of the set N,, except for O; and O,, must intersect the neighborhoods I} and
IT; (otherwise these orbits will not be close to those of the cycle C). As we can easily see from
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Fig. 7.

(3.2), the set of initial points on IIF, whose orbits fall in II7, consists of a countable set of strips
0% = I} NTG 17, k = ks, k,+1,.. ., which accumulate to Wi, (O,). The method of constructing
these strips is obvious from Fig. 7. Correspondingly, the images of the strips g9* relative to the
mappings Ty, are vertical strips o}* = T§,(02*) on II; which accumulate to Wi, (O,) (Fig. 8).
It is obvious that for 4 = 0 there exist natural numbers n; and n; such that f3*(M[) = ; ,
32(M7) = M. Let us consider global mappings, namely, the mapping Ti2 = f3*: II] — U, with’
respect to orbits close to I';2. and the mapping Ty, = f3?:1I; — Uy with respect to orbits close

to Iy;.
For p = 0 the mapping T;2 can evidently be represented as

To2 — 3 = arpx1y + bia(ynn —yy) + - -, (3.3)
- go2 = c12t11 +di2(ynn —y7) +.. .,

where the Jacobian Jys = aj2d12 — by2cq2 of the mapping Ty at the point M| is nonzero since T2 -
is a diffeomorphism, and d;2 # 0 since W*(Oy) intersects W*(0,) at the point M.j' transversally.

For y = 0 the mapping T2, can be written as

Tor - zf =anzi2+bn(yiz —y3) + ..., (3.4)
Jor = ez +da(yiz —y3)% + ..., )

where dj; # 0 since the tangency W*(O;) and W*(O,) at the point M is quadratic and the

Jacobian J3; = ba)¢2; of the mapping T3; at the point M, is nonzero since T5; is a diffeomorphism.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 216 1997



82 GONCHENKO et al.

The mapping Tu(p) = fj1: Il — U, can be written as

Zoz — 23 (p) = a1z +bi2(yn1 — y7 (1))
+O[(fzua] + Iy — v (WD + |el(lzn] + |y = v5 (w)))],

Po2 = c12z211 + di2(y11 — vi ()
+O[(lz11) + lyn1 = y7 (N2 + lel(Jzna] + [y — w7 ()],

(3.5)

where z3 (0) = z7, y;(0) = 7, the points (z§ (1), 0) and (0, y; (1)) are, respectively, the points of

intersection of the orbit I'jp(u) with the neighborhoods I1} and II;.
The mapping T2 (p) = f3?:11; = U) can be wirtten as

Zo1 — 2§ (1) = anziz + b (12 — ¥3) + O[(Iz12] + [v12 — ¥5 )? + el (lz12] + {312 — ¥ )],
o1 = p + cazi2 + dn (e — v; ) ‘ : (3.6)
+Ol[z}, + [pl(|z12] + [12 — vz ) + [Z12llvn2 — v2 [+ o[ (viz — v3)7],

' ;i:h“eré xi"(())?z zf.

" Note !;h.a.t the parameter u enters into the second equation of (3.6) additively in the principal
order. This is a consequence of our requirement that the family f, should be transversal for
p# = 0 to the bifurcation surface H. Indeed, it follows from (3.6) that the equation of the piece
To1 (Wi, (02)) N1 of the unstable manifold of the point O, has the form (in (3.6) we must set

z12 equal to 0)
d .
Yo1 = p+ 3;-1'(1’01 —zf () +....
21
Thus, for d2;u > 0 the diffeomorphismf, does not have heteroclinic orbits, which would be close

to I'z1, and for daypu < 0 it has exactly two structurally stable heteroclinic orbits, which are close
to I'z; and intersect the piece W _(O;) N I'If' of the stable manifold of the point O; at points with
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coordinates

1701 -—2:1 ( 1) bgu/ dI:l +...,

where o = 1,2, and z§; — zi as g — 0. In this case, by virtue of (3 6), the splitting functlon .

relative to the structurally unstable heteroclinic point M (z7, 0) has the form

p(p) =sgnda X (1 + o(p)).

3.3. A special neighborhood of a heteroclinic cycle. It is convenient to choose, as

a neighborhood of the heteroclinic cycle C, a special neghborhood (by analogy with the special

hexghborhood of a structurally unstable homoclinic orbit [19, 20]), namely, we take sufficiently

Ia.rge mtegefs k1 and ko and consider only the orbits which (for all sufficiently small p) get from

i H+ into H during no less than k, iterations of the mapping fu- In particular, this means that

1} and I'I, contain the strips ak and ork with the numbers k > k, in their entirety, and do not

contain strips with numbers smaller than k,. Note, in addition, thé.t it suffices to choose the values
of the parameter p that belong to the “bifurcation interval”

2l < Crlim)™™ + A2l®) = po, (3.7)

where C is a positive constant such that, for instance, (for diffeomorphisms with a structurally

unstable heteroclinic cycle shown in Fig. 4c), we have T5;(u)(IIZ) N N} = o for u > po, and, for
4 < —po, the set N(u) has a hyperbolic structure (Fig. 9b).
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Then, without loss of generality, we can choose the neighborhoods II} and II such that

I = {(zo1. yo1) | lzor — zf| < Pk, ipr 1Yo1] < Jya |~ (yi +vi, 1) h
§ = {(zo2.y02) | |zoz — 23| < v, &y ly02l < 172l =2 (7 + 0z, £,) )
07 = {(z1,911) | zal S M5 (e F + o5, 5,) ) Iy — w7 < vy, 5,1

H; = {(z].z, yl2) l 'zl2l S Ilekz (zg. + VEI ,Eg)’ lylz - y2_| S pEI,EZ}i

(3.8)

where

Pik = CoIml=R + Dalfe, g, = Callral ™ + I\[R),

and C, and Cj are positive constants independent of k; and k5.

Let us prove this fact. We take, for definiteness, as initial neighborhoods I} and II7, small
square with centers at the points M} and M respectively, and with the side 2¢o long. Since special
neighborhoods must not contain points, which, during the number of iterations of the mapping f,
smaller than E,, get from II} into II7, we find from (3.2) that for sufficiently large ; and % the
neighborhoods II} can be contracted in the direction of the coordinate y, and II; in the direction

of the coordinate z so that

lorl < 1l ™™ (u7 + o), l2u1l < [Ml® (2t + o),

~W ) (3.9)
lyoz] < Jv2l7%2 (y5 + <o), |z12] < |A2]®2 (2T + &0).

Since o2 = c12Z11 + d12(y11 — y7 ) + - .., by virtue of (3.5) and the validity of estimates (3.9)
is required for the coordinates z1; and fo2, the neighborhood II] can be narrowed so that the

coordinate yy; will stisfy the inequality
¥t

1 _ _E -
lyin - yy | < max{m(lyozl + lea| Il‘ul} < Callvz |+ AR). (3.10)

By virtue of (3.6) §o1 = p + c21212 + d21(v12 — ¥5 )% + .. .. Since da; # 0, it follows, by virtue
of (3.9), that the neighborhood II; can, in turn, be narrowed so that the coordinate y; will satisfy
the inequaltiy

T E iz = 371 < Cs/lul + In[=F + [l . ()

;)r, by virtue of (3.7), the inequality

ly12 —yz | < CG\/"YII_EI + |Ag)ka. (3.12)

Now, by virtue of (3.6) and (3.9)~(3.12) the neighborhoods IIj and 1] can be narrowed so that

the estimates

lzo1 — 2¥] < Cr/Im|=F + Palf, 202 — 2] < Ca(l72l ™ + |Adl™). (3.13)

will be satisfied for the cooridnates zg; and zgp. If we carry out the same operation for the obtainedv
neighborhoods of the heteroclinic points once again, we get relations (3.8).
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Fig. 10. s > po (a); g < —po (b).

We call the neighborhoods defined by (3.8) special neighborhoods of the points M, M}, M;
and M5 and will consider precisely these neighborhoods. We shall denote the corresponding

special neighborhood of the heteroclinic cycle either simply by U or by U (ky, k2), when we want to
emphasize the dependence of its dimensions on the minimal numbers of strips. Similarly, we shall

denote the set N,, when necessary, by Nu(El, Eg).

4. CONDITIONS FOR INTERSECTION OF HORSESHOES AND STRIPS

Since I'y2 is the orbit of transversal intersection of the manifolds W*(O;) and W*(O,), the
intersection of any strips Tj20f! with any strips a 2, for sufficiently large k and j and sufficiently
small p, consists of one connection component (Fig. 10). The images T21(c}?) of the strips o}?
are shaped as horseshoes, which accumulate, as j — oo, to the “parabola” Ty (Wi (02)) C
W*(0;) NI (Fig. 10). It is clear that the orbits of the set NV, must intersect the neighborhood
B l:Ijt at the ppjnts of intersection of the horseshoes T21(0'11-2) and the strips 0! for various ¢ > ki and
; 12 ka. Ct-ifitsequently, the structure of the set N, essentially depends on the geometric properties

‘of these intersections.
We say that the horseshoe T3;(0}?) has a regular intersection with the strip o?! if

(1) the set T2 (}?) N o' is nonempty and consists of two connection components;

(2) the mappings T2(11 )T, and Tg )T, which are defined on 0% and have their range of values
on T31(0}?) N o, are saddle mappings in the sense of [21] (roughly speaking, these mappings are
expanding along the coordinate yg2 and contracting along the coordinate zg; in H+)

Various kinds of intersections of the horseshoes T, (o 12) and the strips IT} are shown in Fig. 11..
A horseshoe has a regular intersection with the strlp 0%, an irregular intersection with the strip

o, and an empty intersection with the strip 91
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Fig. 11.

Theorem 1. There ezist a positive constant S; and sufficiently large integers k; and k;, such
that for p € [—po; po), for any i > k1, j > kz
(1) if the inequality
dn (7'~ b= endfad) < ~Sij(kr Fo), BN CRY

where Sij = Sy (Im| =+ A2l ) (IMl® + 2l =% + 71| =" +1X2|®2), is satisfied, then Ty (u)(a1?)No? =
a;
(2) if the inequality
dn(v'yy — B — 021/\21‘2 ) > Sij(k1, k2) (4.2)

is satisfied, then the intersection of the horseshoe Tz (p)(0}?) and the strip o' is regular;
(3) the inequalities
dn (1Y — 1 — eanNjzd) > =Sij (ko ko) (4.3)

and
|21} I7l_iyl— - K- ‘-'21’\21'2 I < Su(kl’ k2) (4.4) -

: -

- ‘are necessary for the horseshoe To(p)(o 1"’) to have a nonempty and an irregular intersection,

respectwely, with the strip o%1
Proof. Item (3) of the theorem is, obviously, a consequence of items (1) and (2).

By virtue of (3.2) and (3.3) the coordinates (Zo1, ¥01) of the points of the strip a?f satisfv the
inequaltites

lzor — 271 < Pz, &, lyor — 7' yT ] < A UMIP + el ™2 + Il 7, (4.5)
and the coordinates (212, ¥12) of the points of the strip 0}2 satisfy the inequalities

lyo2 — ¥5 | < PR, &y 212 — AjzF] < M (l/\llkl + I’Yzl_kz + | Azl). (4.6)
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Let us consider, for definiteness, the case A; > 0, y1 > 0, c21 > 0, d2; > 0 (in the other cases
the proof is similar). Then, by virtue of (4.6) and (3.4) the horseshoe T%;(0}?) on IIf is bounded

by two “parabolas”, the upper parabola

. - - . d )
y(()i) =p+ceni(zF + Arl*r + |72|—k2 + [A2)?) + bzﬂ(zm -z +... (4.7)
21

and the lower parabola
. . ) . 4
ut = p+endi(ef — l® - el ™ - el + 2 (o — o)+ (4.8)
21 '
It is clear that the intersection of the strip o} and the horseshoe Ty1(o}?) is empty if, for

instance, the majorizing parabolas from (4.7) and (4.8) do not intersect the strip ¢?, i.e., if the

inequality
4 cadd(zF — ™ = ™ = Aal) > T T AR+ el R+ )
is satisfied. Thus (with due account of the sign of ds1), we have the inequality
don (179 — b~ enNjzg)

< =ColAJ(IMl® + v2l™ + al?) + [ 1M 1B + ol ™ + ), (4.9)

which is similar to (4.1). ’
Let us now find the conditions for the regularity of the intersection of the strip o} and the
horseshoe Tzl(d}z). This intersection consists of two connection components if, for instance, thg

majorizing parabolas from (4.7) and (4.8) each intersects the strip ¢? and this intersection consists’
of two connection components. For d2; > 0, this ensures the inequality

g+ e M@ + AlF + el ™ + ) + C1oAT < A7y = A7 (AR + el ™® + I ),

or
da(77'yr — B — e Myz)

S > oMM+ el D) + Il T M+l 4 Il ). (4.10)

" This inequality is “similar” to (4.2). However, in order to prove the regularity of intersection -

we have to show that the mappings ngTzl defined on the inverse images of each of the connection
components of the horseshoe T3, (0}2), defined by the inequality (4.10), will be saddle mappings.
We denote these components on IIf by A?j and A:-'J- and denote the restrictions of the mapping
T51 onto the components T{II(A;’J-), s = 3,4, of the strip 0}2 by T.g). We can rewrite the mapping
Té;) as

Zon — 2z =bu(yiz—v;) +anziz +...,

o=y (e [T enZiz —For ...
(2= 45) = 1)\/ - .
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Since by virtue of (4.5), (4.6) the relations
12 = My(z02 + (ol + |72l )&j2(202, 112))s o1 =71 (yur + (Ml + Il ™) ma(zor, y1)),

are satisfied for the coordinate z;2 on the strip 0{2 and for the coordinate yo; on the strip o},
respectively, it follows, by virtue of (4.11), that the mapping T(") = T3 T(’) o} — A} can be

written in the “cross-form”

_ +ec Mz + . )= G+ .. :
Foy — ot = b21(—1)’\/" 21A2(Z02 d21) 71 (I ) +anM(z0s + ..,
(4.12)

_ s lpte M(zoz+...) = 1 (G +- ..
(yn-yz)=(—1)\/ 2] (202 dﬂ) Tt

This is a saddle mapping (and contracting in cross-form coordinates) if, for instance, the inequalities

%01 ‘ 1 IZor 1 aylZ l 1 IayIZ , (4.13)

072 2’ 0 2’ Ozo2 ayn

are satisfied. It easily follows from (4.12) that these inequalities are sa.tlsﬁed if

+enX(zoz+..) =7 Gu+... - j
\/l‘ 213 (02 dzl) 71 (Fu )>2(l’)‘1| + [A). (4.14)

Note now that there obviously exists a positive constant S;, independent of i and j, such that
if inequality (4.1) is satisfied, then inequality (4.9) is also satisfied and if the inequality (4.2) is
satisfied, then inequlatities (4.10) and (4.14) are simultaneously satisfied. This completes the proof

of the theorem.

5. CODING NONWANDERING ORBITS AND NONTRIVIAL HYPERBOLIC SUBSETS

The convenient method of describing the structure of the set N, is the construction of the
codes for its orbits. We denote the sets of strips 2! on I}, o}!on IIT, 092 on IIJ, and o}2 on
- II3 by 601, 011, 002, and 0,2 respectively. We assume that the orbit A belongs to N, and is not an

_ -gymptoti.(i_"afbit to O; and O,. Then it obviously intersects the neighborhoods II7, Iy, I}, and
- ‘H; only at the points belonging to the strips from the sets o¢1, 011, 002, and 012 respectively. Let
(-- wpr - Mg --), @=0,1, 8= 1,2, be successive points of intersection of the orbit A and

the stnps from the sets g48. The relations

Mg € ol C I,

s ks s T
M = T01(1)(M01) € alt:(l) c Iy,
Mg, = Toa(M3y) = f21(M3)) € 0%, C T, (5.1)

ks s o a
My, =Ty, (2)(M02) € ‘711,2(2) C I,
Mgt = Tn(M3)) = f32(M7) € o .mC oy
s=0,%1,...,
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must obviously be satisfied for these points. Recall that in these relations n; and n, are natural

numbers such that f*'(M;) = M, 32 (M7) = M.
In accordance with (5.1) we define the coding of the orbit A as an infinite sequence of two
symbols {1, 2}
ks(1)+n1 ks(2)+n;
(.022T1...022,....51,1..), (5.2)

in which the lengths of successive full segments consisting of symbols “1” and “2” are equal to
(ks(1) + n1) and (ks(2) + n2) respectively. In other words, if a point of the orbit A falls in the
neighborhood II7, then, in sequence (5.2) this point is associated with the symbol “1.” In what
follows, the symbol “1” will be associated with every successive point of the orbit A until a certain
successive point falls in the neighborhood IT}. We put this final point in correspondence with the
symbol “2.” We shall put the points of the next iterations into correspondence with the symbol
“2” until a certain successive point of the orbit A again falls in the neighborhood IIj. We put this
final point into correspondence with the symbol “1”, and so on.

Codings of form (5.2) can be generalized to orbits from N, asymptotic to Oy and O;. The orbit
to O; will have the codix‘lg (--.»1,...,1,...), the orbit to Oz will have the coding (...,2,...,2,...),
the orbit I';j; will have the coding (...,1,...1,2,...,2,...), and the orbit T';; the coding
(---,2,...,2,1,...,1...). The orbit, which is e-limiting (w-limiting, resp.), will be associated
with a coding of form (5.2) which has an infinite sequence of symbols “1” appearing at the left
(right, resp.) end. Similarly, the orbit from N which is o-limiting (w-limiting) with respect to
O, will be associated with a coding of form (5.2) which has an infinite sequence of symbols “2”

appearing at the left (right) end.
If the heteroclinic orbit I'y; were structurally stable, then there would exist a one-to-one corre-

spondence between the set .V, of orbits (all of which would be saddle orbits in this case) and the
set of indicated codings. In our case, where I'g; is a structurally unstable heteroclinic orbit, this is

not the fact.
Note, first of all, that /N, cannot contain orbits with codings in which, for a certa.m s, the

numbers j = k,(2) and i = k,11(1) satisfy inequality (4.1) since in this case, T31(0}*) N o' = @ by

virtue of Theorem 1. Second, even if we restrict ourselves to codings in which, for all s = 0,+,1, ...

- the numbers k,(2) and k,4,(1) satisfy inequality (4.2) with j = ks(2), i = ke31(1), there will not

_ .be a one—to—one correspondence which is observed in a structura.lly stable case. To be more precise,
here we have the followmg theorem.

Theorem 2. For an arbitrary coding of form (5.2), in which co > k(1) > k1, 00 > ks(2) > ks,
and, for any s = 0,%1,..., the numbers k;(2) and k.4, (1) satisfy inequality (4.2) with j = k,(2),
i = kyy1(1), there ezists in N, a continuum of orbits of saddle type each of which has the given
coding. The set of these orbits is in a one-to-one correspondence with a set of sequences, infinite
in both directions, which are composed of two symbols.

Proof. Inequality (4.2) guarantees that the intersection of the horseshoe T3;0}? and the

strip oP! is regular and consists of two connection components, which we denote by AY; and AY.

It is clear that the orbits from N, which have the same coding of form (5.2) but have points
of intersection with different connection components of this kind, must be distinguished, namely,
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the following sequence, infinite in both directions, will represent a coding which is more exact as
compared to (5.2):

ks(2)+n2 ksg1(1)+ny ks41(2)+n;
(...,1,1,2,2,...,2,a,,1,1,...,1,2,2, ..., 2, @,41,1,1,...). (5.3)

This sequence consists of four symbols {1,2,3, 4}, where the symbol a, is either “3” or “4” depend-
ing on whether the corresponding point of the orbit from N, belongs to the component A or to -
the component A¥; of the strip o' (here i = ky41(1), 5 = k4(2)).

Let us show tha.t each sequence (5.3), in which, for every s the numbers i = k,41(1) and
J = ks(2) satisfy inequality (4.2), is associated with exactly one orbit of the saddle type which

has successive points of intersection with the neighborhoods I17, 1y, 1}, and II7 for which the
following relations are satisfied:

Mg, = T(ahl)(M 1) € A::(_il)ka-x(z)ag}(l) C HT’
My =T M (Mg) € Tk, C 17,
Mg, = Tiz(M3,) € o2, C 1,

(5.4)
. k(2 -
My, = To, ®)(Mg)) € Uiz(z) c Iy,
My = Tz(f ’)(N 1) € A% (k@) € T C T
s=0,+1,.
Let us consider the sequence of mappings (in accordance with (5.4))
(Z81.381) = T (233" iz ), ( indh) = (1)(3’01:?!01)» K
(Z82: U32) = Tha(=iy, y11), (Zi2, ¥i2) = Toz( )(1'02’ Y32) (5.)
@ 55 = T (2t o),

s=0,+1,...,

and show that system (5.5) has a unique fixed point.
2l We set ko(1) = k, ks(2) = 7, ks+1(1) = i in order to simplify the calculations tha.t will follow.

- Let us cor_151der the mapping T12T01( ) = Ty,TE: 69 — 092, Since (3.2) yor = ¥ Fyn(1 +...),
Yo2 = 7{jy12(1 + ...) by virtue of (3.2), we can write the mapping T]gTé‘l as

Zo2 — 23 (1) = bra(y11 — ¥{ (B)) + Gr2M T + ...,
= . N (5.6)
T2 y12(1 +.. .) = 012/\1-’001 + dlZ(yll ;| (#)) +....

Since dy # 0, we can express the coordinate (y11 — y; ) from the second equation in (5.6), for

all sufficiently small g, in terms of z¢; and §12, namely,

—G k
- Y y12(1+---)—012/\ $01(1+...)
ym -y (1) = 2 dis L .
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Thus, we can rewrite the mapping T2 in the “cross-form”

_ 6127;j!712(1 +...) = (12 — anadiz) Mz (1 + . . )

Zoz — 23 (1) s : 5
it (1) = v g1+ .. ;1?2/\’;:01(14- ) (5.7)
Let us consider the intervals
L ={zo1| |21 — ¥ < pr, }y T2 ={z02| |20z — 23| < g, 1, )

Ji={m| -l <vpph  ={nl lpe-wl<op g}

We can see from (5.7) that the mapping 7127 in the “cross-form” coordinates has the set
I x J; as its domain of definition, and its range belongs to the set [ X J;. Note that mapping
(5.7) is also contracting for sufficiently small ¢ and j since, evidently, the estimates

3% éyu : 1

0Z¢2 Oy - 1
— |+ =< C I =
dih2 I 012 | 12072 2

are valid. '
When the conditions of Theorem 2 are satisfied, the mapping 1}59’) o) = Ag-”) C 6% can also

be rewritten in the “cross-form” (see the proof of Theorem 1 and, in particular, relation (4.12)) «

_ o +enM(zoz+...) =¥ G + - - ;
-’501—-’5'1’-(#):521(-1)( ,)\/l‘ 21A5(Z02 dn) Y1 (Ju )+a21/\;(:z:02+...),

(n2—v3) = (_1)(a.)\/# + ca1A3(zo02 + : J-r(gn+t..) ..
21

':_.Iﬁ;_“cross-fgmn” coordinates this mapping has the set I, X J; as its domain of definition, and its
.-_r'a}ige belo"nwgs to the set I; x J,. Note that mapping (5.8) is also contracting, which fact was
established in the proof of Theorem 1. .

Thus the sequence of points (5.4) and the sequence of mappings (5.5) corresponding to it
are associatied with the sequence of saddle mappings infinite in both directions, which possess
the following properties (in “cross-form” coordinates): (1) the range of each mapping belongs to
the domain of definition of the successive mapping; (2) all mappings are contracting (with the
contraction constant smaller than %) In this case, the lemma on a fized saddle point in a countable
product of spaces is applicable to this sequence [21]. According to this lemma, the sequence of
mappings (5.5) has a unique fixed saddle point, which satisfies conditions (5.4). Consequently,
when the conditions of Theorem 2 are satisfied, there exists in IV a unique orbit, which has a given
coding of form (5.3). We have proved the theorem.
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6. CLASSES OF TWO-DIMENSIONAL DIFFEOMORPHISMS WITH THE SIMPLEST
STRUCTURALLY UNSTABLE HETEROCLINIC CYCLE

In this section we show (by analogy with the homoclinic case [15]) that diffeomorphisms with
structurally unstble heteroclinic cycles can be divided into three classes according to the types of
description of the set of orbits Ng.

Note that we cén always choose coordinates on U; and U so that z'z" and y; be positive. Then,
for o = 0, the structure of the sets of solutions of inequalities (4.1)-(4.4) depends, first of all, on
the signs of quantities X2, 71, ¢21, and da;.

The simplest structure of the set of solutions of inequalities (4.1)-(4.4) for p = 0 is observed in
the case of diffeomorphisms corresponding to the following combination of signs: A, > 0, v > 0,
c21 < 0 (Figs. 4a and 4b).

We shall place the diffeomorphisms in which ds; < 0 (Fig. 4a) in the first class. It is easy to

see that in this case, for any i > k;, j > k3, and p < 0, inequality (4.1) will always be satisfied, -

ie., T1(0}?) N o' = & for all sufficiently large ¢ and j and p < 0. Moreover, in this case the
horseshoes Tzl(U}z) and strips 0% will lie on IIf on different sides of W (01). As was shown
in [18], here the srtucture of the set N, is trivial for 4 < 0, namely, Ng = {O;,03,'12,'21}, and
Ny = {01,02,T12} for g < 0. As was pointed out in [18], diffeomorphisms of the first class with
a structurally unstable heteroclinic cycle may lie on the boundary of the Morse-Smale.system and
systems with a complicated structure.

Diffeomorphisms with a structurally unstable heteroclinic cycle in which A > 0,v; > 0, ¢2; < 0,
d21 > 0 (Fig. 4b) are referred to the second class. Note that here, for 4 < 0 and for sufficiently large
k1 and ks, inequality (4.2) will always be satisfied, i.e., for any ¢ > ky and j > ko the horseshoes
T21(0}2) and strips 09! have regular intersections. Then, according to Theorem 2, for u < 0 all
orbits of the set V,, except for I'y; for 4 = 0, are saddle orbits. In this case, if 4 < 0, then the
set NV, has a hyperbolic structure and the orbits IV, are in one-to-one correspondence with the
orbits of the topological Bernoulli scheme consisting of four symbols {1,2,3,4}. In this case, the
attainment of the bifurcation surface H; for z = 0 is followed by a “merging” of two heteroclinic
orbits with codings (...,2,...,2,3,1,...,1,...) and (...,2,...,2,4,1,...,1,...) into one (namely,
the orbit I'zy).

"-"‘_f_; Diffeomorphisms with a structurally unstable heteroclinic cycle, which correspond to other )

-_Cofnbina.tic}ns of signs of the quantities Az,71, 21 and day, are referred to the third class (these
are, for instance, the diffeomorphisms shown i