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Abstract. We report on the study of bifurcations of multi-circuit homoclinic loops in two-
parameter families of vector fields in the neighbourhood of a main homoclinic tangency to
a saddle-focus with characteristic exponents (—X = iw, y) satisfying the Shil’nikov condition
Ay <1 (&, o,y > 0). We prove that one-parameter subfamilies of vector fields transverse to
the main homoclinic tangency (1) may be tangent to subfamilies with a triple-circuit homoclinic
loop; (2) may have a tangency of an arbitrarily high order to subfamilies with a multi-
circuit homoclinic loop. These theorems show the high structural instability of one-parameter
subfamilies of vector fields in the neighbourhood of a homoclinic tangency to a Shil’nikov-
type saddle-focus. Implications for nonlinear partial differential equations modelling waves in
spatially extended systems are briefly discussed.

PACS number: 0545

1. Introduction

The classification of vector fields according to their topological properties is a major
preoccupation in the theory of dynamical systems. Many works have been devoted to
the topological description of the orbits of families of vector fields such as

¥ =X, (x). (1

Early works have shown that hyperbolic systems are structurally stable in the sense that
there exists a homeomorphism of phase space which maps the orbits of a system X, onto
the orbits of a perturbed system X, in the neighbourhood of X, [1]. It was also discovered
that hyperbolic systems may sustain chaotic dynamical behaviours which have become a
central theme in natural sciences [2].

On the other hand, vector fields may undergo abrupt transitions between different
dynamical regimes, for instance, through the Andronov—Hopf bifurcation or the tangent
bifurcation which provide the simplest examples of structural instability. Generic families
of vector fields undergoing such simple bifurcations were found to be locally topologically
equivalent to universal families of vector fields which are completely described by a finite
number of bifurcation parameters [1]. Therefore, a complete topological description is
available, on the one hand for the hyperbolic systems and, on the other for the simple
bifurcations.
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However, it turns out that most dynamical systems are non-hyperbolic and display
structurally unstable homoclinicities leading to intrinsically complex bifurcations between
different chaotic dynamical behaviours. A systematic and comprehensive study of
structurally unstable homoclinic orbits was pioneered and developed by Shil’nikov and
co-workers since the mid-1960s [3-6]. Today, the methods developed by Shil’nikov and
co-workers have become essential to our understanding of chaotic attractors both in discrete-
time mappings [7] and in continuous-time systems such as the Lorenz and the Rdssler flows
[8-11]. Of considerable importance in this context is also the work of Newhouse on the
existence of infinitely many sinks in nonhyperbolic systems [12—14].

The present paper is devoted to the problem of the completeness of the description of
bifurcations near structurally unstable homoclinic orbits. By completeness, we mean the
possibility of finding a generic family of vector fields depending only on a finite number of
parameters. The impossibility of complete description of three-dimensional systems with
homoclinic tangencies was proved in [14] (a similar result has been announced in [15] for
the general multi-dimensional case). In the present paper, we report a study of this problem
for homoclinic loops of a saddle-focus stationary point.

Consider a smooth three-dimensional dynamical system, X, satisfying the following
conditions:

(a) X possesses a stationary point O of the saddle-focus type; i.e. the characteristic
exponents vy, vz, v3 of O are such that v; =y > 0, vj, = —-A xiw(A > 0, > 0);

(b) the saddle index p = A/y is less than 1.

The unstable manifold W* of O is one-dimensional. The point O divides it into two
branches called separatrices. All orbits of the two-dimensional stable manifold W* have a
shape of spirals tending to O as t — +00. We suppose that the following condition is also
satisfied.

(c) One of the separatrices (we denote it as I') comes back to O as t — 400, forming
a homoclinic loop (figure 1).

Let us consider a sufficiently small neighbourhood, U, of the loop in the form of a
solid torus composed by a small neighbourhood, Uy, of the point O and a handle U,
glued to Uy. We are interested in the bifurcations of orbits lying in U. Since systems
with homoclinic loops of a saddle-focus form surfaces of codimension one in the space of
dynamical systems, the standard way to study bifurcations of such a system is to include it

Figure 1. Schematic representation of a homoclinic loop I' to a saddle-focus O.
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within a one-parameter family X, where 1 controls the splitting of the loop. The parameter
w can be defined as the distance between the point of intersection of I' with some surface of
section and the line of intersection of W* with the same surface of section. In this respect,
the system forms a loop when u = 0.

When p varies, multi-circuit homoclinic loops can appear, which are orbits coming back
to O after several passages along the handle U;. In a one-parameter family, bifurcations of
such loops have already been studied in [16—19]. In the present paper, we study bifurcations
of homoclinic loops in two-parameter families, and we choose the saddle index p as a second
control parameter.

This choice is justified by the fact that the structure of the non-wandering set of systems
with homoclinic loops of a saddle-focus depends essentially upon the saddle index p [3,4].
Systems with different values of p are not topologically equivalent, so that p is a genuine
bifurcation parameter. Moreover, we shall show that the bifurcations of multi-circuit loops
in a one-parameter family, X, depend on the value of the saddle index p.

We start with the bifurcations of double-circuit loops. As shown in [16], the region
w > 0—which corresponds to the inward splitting of the loop—possesses a countable set
of smooth curves L.‘]?‘(oz = 0,1) of the form u = fj“(p) ~ exp[—z%(j — 1’T‘Y)] which
correspond to the existence of double-circuit loops I'; (where the index j means that the
loop circles j times around O, see figure 2). In the cases where p is close to 1 and to 0
(the last case corresponding to a pair of pure imaginary characteristic exponents of O) the
behaviour of the curves LY was studied in [20,21] (see also [22]). It turns out that L‘} and
L;) merge at some value p = p; (the greater j, the closer p; is to 1). On the other hand,
Lj and LY have different terminating points at p = 0 (figure 3).

We see that if p lies between 0 and 1, the sequence of bifurcations of double-circuit
loops is the same for all the values of p in ]0, 1[. However, this property does not extend
to the triple-circuit loops. We show that for sufficiently large j, in the region bounded by
L), and Lj there exist smooth curves L%, « = 0, 1, corresponding to the existence of

,l
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b

Figure 2. Double-circuit homoclinic loop I'; to the saddle-focus O. The integer j denotes the
number of rounds during the intermediate passage around O.
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Figure 3. Bifurcation diagram of the double-circuit homoclinic loops I'; in the parameter plane
(u, p). L‘,’ with « = 0, 1 are the lines where the double-circuit homoclinic tangencies occur.

j ROUNDS

k ROUNDS

-————

Figure 4. Triple-circuit homoclinic loop I'j to the saddle-focus O. The integers j and k denote
the numbers of rounds during the first and second intermediate passages around O.

triple-circuit loops I'j; i.e. loops which start from O, pass along the handle U, circle j
times around O, pass along U; again, circle k times around O, pass along U; once more
to finally reach O (figure 4). Each of these bifurcation curves lies entirely at the left-hand
side of a vertical line at some value p = pj,, where a tangency occurs (figure 5). The
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Figure 5. Bifurcation diagram of the triple-circuit homoclinic loops I'j; in the parameter plane
(u, p). L;k with @ = 0, 1 are the lines where the triple-circuit homoclinic tangencies occur.
,oj " are the critical parameter values where the curves L G terminate as parameter p increases.

following asymptotic behaviours hold

. k N a7l :
Pike = i + [T(ija) - 5] I +-e for j >k ()
and, when j <k,
J a7l .
P =1 + [t(pfka) + 5] L forj<k 3)

where t(p) is a smooth function determined by the system at © = 0 (see equation (26)
below) These 1mpl1c1t equations admit solutions when j and k are large enough such that
, or respectwely , remain separated from 0 and 1.

Therefore, the following picture emerges within any given small segment 0 < p; < p <
p2 < 1: in any strip between L;’ 1 and L}, there is a finite number of curves L%, consisting
of two components which are either ‘parallel’ to the p-axis or are connected together and
have a parabola-like shape.

The number of curves of both types grows linearly with the integer j. The set {p},}
taken for j, k large enough is a dense set in the segment [0, 1]. Therefore, we have

Theorem 1. Let X,, be a one-parameter subfamily of X, , with the curve {(i, p)|p = @ (1)}
being transverse to the line u = 0. There exists a small variation p = () 4+ which makes
X, to be tangent to some line of existence of a triple-circuit homoclinic loop.

When multi-circuit homoclinic loops are considered, the structure of the corresponding
set of bifurcation curves becomes more complicated in the plane (i, p). Indeed, folded
lines of nine-circuit loops accumulate at the lines of triple-circuit loops in a way similar
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Figure 6. Formation of a cubic tangency between a one-parameter family of vector fields
transverse to ;4 = 0 and a line of nine-circuit homoclinic tangency.

to the accumulation of the folded (parabola-like) lines of triple-circuit at the line of single-
circuit loops (u = 0). It is geometrically evident (see figure 6) that any curve transverse to
@ = 0 can be varied (in a more general way than in theorem 1) in order to achieve a cubic
tangency with some of these lines of nine-circuit loops.

Actually, the following general statement holds:

Theorem 2. Consider a one-parameter subfamily of vector fields, X, , with p = @(u),
which is transverse to the line yu = 0 in the plane (p, ). Then, a small smooth perturbation
of the curve p = () may have a tangency of an arbitrarily high order with some of the
lines of existence of homoclinic loops.

This theorem shows the arbitrarily high structural instability of one-parameter families of
vector fields near homoclinic loops of a saddle-focus. As discussed below, this result turns
out to have interesting consequences for nonlinear partial differential equations modelling
travelling waves in spatially extended systems.

The paper is arranged as follows. In section 2, the homoclinic flow is reduced to a
Poincaré map. The double circuit loops are analysed in section 3. Section 4 contains the
study of the triple-circuit loops and the proof of theorem 1. We proceed to the study of
multi-circuit loops and to the proof of theorem 2 in section 5. We conclude with some
remarks in section 6.

2. The construction of the Poincaré map

Now, we proceed to the proof of the results presented above. The first step is to reduce the
problem to the study of the Poincaré map. To construct this map we first note that, near
the saddle-focus, the system X, , can be written in the following form [23,24]:

¥ = —Ax — oy + O[(x* + y))z]
¥ =+4wx — iy + O[(x* + y)z] (4)
Z=vyz.
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W[ Figure 7. Geometric construction in the phase space (x, y, z) of
ot the Poincaré map T : [T — [~ — II" generated by the flow
X near the homoclinic loop I

In these coordinates, the stable manifold coincides locally with the plane z = 0 and the
unstable manifold with the axis x = y = 0. We chose these coordinates because it is known
[23,24] that the solutions of the system behave near O as if the system was locally linear.
Thus, the solution starting from the point (xg, yo, zo) at ¢ = 0 can be written in the form

x(t) = e M[xg cos(wt) — yg sin(wt)] + o(e™)

y(1) = e M[yg cos(wt) + xq sin(wt)] + o(e™) 5)
7(t) = e"zy.

When u = 0, the orbit I' intersects the semi-axis x = 0,y > 0 in a countable set
of points. We choose one of these points M (0, y*, 0) and consider a two-dimensional
cross-section TTT{(x, y,z)|x = 0, |y — y7| < €p, 0 < z < €g}. We choose another point
M=(0,0,z7) on Wy, with z= > 0, and consider another two-dimensional cross-section
O {(x, y. Dllx| < €1, Iyl < €, z =27} (figure 7).

If € and €; are small enough, then the orbits of the system generate a map Tp : 17 —
I1~. According to (5), this map can be written as
X1 = —e My sin(wty) + o(e™0)

o ©)

y1 = ey cos(wto) + o(e™")

where 1y is the time of flight from the point (0, yg, z9) € ITT to the point (x;, y;,z7) € IT™.
This time can be found from the last equation in (5):

To:n+—>n:

7~ =¢e""z
1 20
fp=——1In—.
Yy

After the rescaling (x — xy™, y — yyt, z = zz7), we obtain

o
X = yozg sin ( lnz0> + o(zg
T, : " — M- v %)

w
Y1 = Yoz( c0s <y IHZO) +0(z).

The orbits passing inside the handle U, generate another map 7; : II~ — IT1*. Since
the time of flight is bounded for the map 7, this map is a diffeomorphism and can be
written (in the rescaled coordinates) as

—1l=axy+by;+---
0 N b L ®)
Zo=pm+cx;+dy;+---
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a b
det (c d) # 0.
The Poincaré map T = T Ty : [1T — I1* can now be defined. Combining equations (7)
and (8), we obtain

where

yo =1+ Ayoz) cos(Q1Inzo + ¥) + o(z)) ©)

T:MI" - It b ps
Z0 = i — Byozy sin(R1Inzo + ¢) + o(zy)

where @ = w/y, A = Ja?+b%, B = ~/c2+d? cosy = b/A, siny = —a/A,
cos¢ = —c/B, sing = —d/B. After the rescaling (z — ze %% A — Aer¥/%,
B — Be'=P9/% 1 — 11e?/?) and omitting the lower indices, we finally obtain the
following expression for the Poincaré map:

y =14+ Ayz°cos(QInz +0) + o(z”
I e yecos(@inz +0) + o) (10)
7 =u— Byz’sin(QInz) + o(z”)

where A 20, B #0,0 =9 — ¢, cosf #0.

3. The double-circuit loops

According to equation (8), the separatrix I" intersects TIT at the point: M+ (1) = (0, 1, ).
The next point of intersection (i.e. the point T M ™ (u)) has the coordinates

{y =1+ Au’ cos(QInp + 0) + o(u”) (11)

Z=pu— Busin(QInw) + o(u”).

The condition of existence of a double-circuit homoclinic loop is TM* € W, ; ie. 2 =0.

It follows from equation (11) that the bifurcation set corresponding to the existence of
double-circuit loops is defined by the equation

w=Bu’sin(QInw) + o(u”). (12)
To isolate its solutions, we assume

Qlnp = —27j +&

or
w= e i/ RE/ Q2 (13)
where j is an integer (large enough since p should be small), and & belongs to the interval
(-3, 37”[. Equation (12) is rewritten as
i L 2oy sl )
smé:EG al7Pesm fole” = VTP (14)

Since p < 1, the quantity ¢~ # (=) is small when j is large. Hence, equation (14) has

exactly two solutions on the interval —7 < § < 3.

2
&Zﬂ_éf%wwg%+“.
L e-ma-n
El:Ee Q 4



Complexity in the bifurcation structure of homoclinic loops 417

Substituting these expressions into equation (13), we find that an infinite series of bifurcation
curves {L;}, L}} corresponds to the existence of double-circuit loops:

L0 = Hed |1 -
j¢[Jy—e <€ Bf

2 1—p
—g (I=p) o7 5~
e 9 e’ e +

2 | (15)
1. = — 24 (1—p)
Litu=e 9|:]—|—BQe Q 1’_|_...:|_

Note that, in the region bounded by L? and L} (the shaded regions in figure 5), the
system X, , does not have homoclinic loops since here z < 0 (see equation (11)) which

means that the separatrix I" passes below W and leaves U after the first passage along

U,. On the other hand, there is a complicated set of bifurcation curves of triple- and higher
multi-circuit loops between L}) 1 and L}, as shown below.

4. The triple-circuit loops
A triple-circuit loop intersects I1T at the three points: M = (0,1, ), TM™ = (0, y1, 2)
and T2M™ = (0, y,0) € W} .. From equation (10), we have

yi=1+Au’cos(QInu + 6) + o(u”)

7z =p — Bu’sin(QInp) + o(u”)

0=pu — Bz”sin(Q1Inz) + o(z”).

Expressing y; by the first equation, we arrive at the following equations determining the
bifurcation curves of triple-circuit loops

7= —Bu’sin(Qlnp) + o(u)

16
u=Bz”sin(QInz) + o(z”). (16)
We study these equations by means of the following assumption
3
Qlnpu=-2nj+& where —§<§<% amn

QInz =-2nk+n where 0 < n <27

which is similar to the assumption we used while studying double-circuit loops in the
previous section. We choose the interval [—37”, 7 to be the range of & since we are
interested in the values of © lying between L;) 41 and L} (see equation (15)). Equations (16)
take the form

siné — é(e—an/QeE/Q _ e—271k/Qen/Q)GZﬂj/)/Qe—pE/Q 4.

(18)

. I 2 .
sinn = —ed Pk=DeE—pm/Q 4 ...

where the dots stand for higher-order terms.
There are three different cases: (1) j =k, (2) j > k, and (3) j < k; we consider them
separately.

Case 1. When j = k, the system (18) can be written in the form

. 1 2 £ , &
Slné = Ee_ﬁl(l_p)(eﬁ — e?’z)e_% 4+ ..

1 (19)
sinn = Ee_%“_”)e% + .-
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Since 0 < n < 2m, the second equation in (19) has exactly two solutions:

1 .
no = Eedﬂj(lfp)/ﬂeé/ﬂ + ...

1 . £—pn
m=mr— 76—2771(1—0)/96T/J + ...

for any & € [—37", 5[ and integer j large enough.
Let us substitute n = 1, in the first equation of (19). We have

siné = ée‘%(l‘p) [eé -1- %e_%“_")eé — -]e_g. (20)
This equation has two solutions in the interval [—37”, 2L
I aria—pye
&0 = _ﬁe 7j(1—p)/ 4.

1 .
§o1 = —7 + Eefz’”(l’p)/ﬂ(l — e T/ epT/R

Assuming n = n; we arrive at an equation similar to (20)

sin‘g“ — lef%(lfﬁ’) e% — e% 1 — ief%(lfﬁ’)e% —_ .. e7%
B BQ

which has also two solutions:

1 .
£10 = _Ee—zﬂj(l—ﬂ)/Q (e«’f/Q _ 1) + ..

1,
£ = -7 + EG—an—m/Q(ezn/n NS ERLIE I

When j = k, the corresponding bifurcation set therefore consists of four branches for
each integer j large enough. These four branches are given by the equation

2nj  bepap

Hojay =€ 2 € 2 with oy, @y =0, 1.

Case 2. When j > k, the system (18) can be rewritten as

sing = _ie—%“—ﬂﬂe%[l —e U .
B @1)

. | £—p
sinn = Ee_ﬁ(]_pk)e% 4+

Note that the value (j — pk) is very large since 0 < p < 1 and k < j, so that the coefficient
e~ @ U=PM) ig very small. Therefore, the second equation in (21) can be resolved with respect
to n:

1 P §
Ny = Ee_ﬁ(]_pk)eﬁ + ..

1 22)
(i ppy Epm
nlzﬂ—Ee & (=) o= + ...
Let us substitute n = no in the first equation in (21). We obtain
e® sing = —C(p, §) (23)

where

1 . <
Cp, &) = Ee—%(k—m)[l _ e—%(.z—k)e%] +eee> 0. 4)
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When C is close to zero ((k—pj) is large), equation (23) has two solutions corresponding
to the two branches of the bifurcation curve Lj-)k while the equation has no solutions when
C is large. The solutions merge at some intermediate value of C which corresponds to the
case where £ is close to pj. Since we suppose j and k to be very large, it means that (j —k)
is very large in this case. Thus, the graph of the function C (&) is close to the straight line

CE = oo 25)

at the moment of merging. Therefore, the solutions merge near the minimum point
£* = —arctan £ of the right-hand side of (23). The corresponding value of p can be
found with substituting & = £* in (23) and, after simple calculations, we obtain

p=p; —k+t+
jkO ] ]

where

U om B¢ tan 2 (26)
T=— n——— — parctan — | .
2 /92+p2 P

This value of p corresponds to the merging of the two branches p;» = ¢
curve L?k, where the curve has a vertical tangent.
Analogously, one can find that the curve L}k defined by the first equation in (21) at

n = 11, has a vertical tangent at
1
t _ =
24
J

Case 3. To complete the bifurcation diagram for triple-circuit loops we have still to consider
the case j < k. Here, the system (18) is rewritten as

— ¥ _k
P*ﬂjkl*}"‘

. | £(1-p) P -
sing = Ee’?’“’/’)e e[l —e sk e 4. ..

27
i L -2 Gpn @7
smn:Ee Q e 4 .-
The first equation always has two solutions in the interval [—37”, 1k
& = ée—%’(l—/))[] — e—%’(k—j)e%] 4.
28
I o 1—p) —2d=p) 2T (f_jy mm ( )
& =7 — ¢ e U=Pe="a [1—e sk ea ...,

1

These solutions define the bifurcation curves L?k and L o

calculate that L;-]k has a vertical tangency at

respectively. It is easy to

=t +T+
P—ijo—k_% X
andL}kat
. 1
o T+3
p:pjkl—@‘F X 4+

We have obtained a complete description of the bifurcation set corresponding to triple-
circuit loops. Theorem 1 presented in the introduction is a direct consequence of our
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considerations: for any one-parameter family p = ¢(u) and for arbitrarily small 6 > 0
there exist large enough integers j and k such that the curve L_?k intersects the curve
p = ¢(u) and does not intersect the curve p = ¢(u) + 8 (given that pj,, €]¢(0), ¢(0) +5[)
which implies that L?k have a tangency with the curve p = ¢(u) + 8* for some §* €]0, 5[.

5. The multi-circuit loops

We have seen in the previous section that any one-parameter family transverse to the line
of single-circuit loops can be made tangential to some line of triple-circuit loops by an
arbitrarily small smooth perturbation. Before going further, we consider what happens
under small perturbations of a one-parameter family which is non-transverse to the line of
single-circuit loops.

Lemma. Let a smooth one-parameter family ;. = V¥ (p) have a tangency of order (n — 1)
with the line © = 0 of single-circuit loops at some point p = po. Then, by an arbitrarily
small smooth perturbation of the function \r, the family can be made tangential to some line
of triple-circuit loops and the tangency is of order n.

Proof. Near the point (p = pg, u = 0), the family under consideration can be written in
the form

u=(p—po)" +o(p— po)".
We consider the following perturbed family

n—2
= €p—po—87 +(p—po—8"+o0(p— p)" (29)
=0
where § and ¢;, j =0, ..., n — 2, are small values which should be determined.

Let {k,,, jm} be a sequence of pairs of integers such that j, — oo, k,, — o0, ’;— — 0o
as m — o00. Then, as it follows from the previous section, there exists in the parameter plane
a set of points {p,, tm}, Pm — Po, 4 — 0, such that a line of existence of a triple-circuit
loop T'j,, have a vertical tangency at the point {p,,, u,n}. We infer from equation (23) that,
near the point of tangency, the equation of this line is written in the form

km | T—Do(§ =)+
p=—-—+ ;
Jl’ll ]m

where the variable & is connected with u by equation (17), £* = — arctan % is the minimum

(30)

point of the function ¥ sin&, Dy is some positive constant, and the dots denote terms
smaller than those explicitly written down.

We intend to deal with a small neighbourhood of the point (0 = po, # = 0) which
means that j,, should be large enough, and also with a small neighbourhood of the top of
parabola L;-)m x, Which means that § is close to £*. In this respect, let us make a change of
variables

§=§&"+oau P =po+38+ Bv
where o and B are small scaling parameters. Equations (30) and (29) now take the form

ki T au)? o?
ﬁU=<j_p0—3+.>—D0(jl) +0<]> G

* 27 jm +&* n=2 .
6 Fhull +o@] = (c—e ) 4 X eBu) + (B0 + 08", (32)

j=1
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Assume
2 ‘
o o 2wttt
B =Do—— —e @ =p"
Jm Q
or, equivalently,
_ jm —27jm +£* _ ( jm)" =27 jm+£*
/32" 1 — : eZ G a2n 1 — - e S
Q%D QD

with « — 0 and 8 — 0 as m — oco. As a consequence, equations (31) and (32) take the
form

v=A—ut+--- (33)
n—2 i

u:ZEjv]—O—U”—O—--- (34)
j=0

where A and E; are rescaled parameters which are no longer small and can take arbitrary
values; the dots denote terms which tends to zero as @ and B tend to zero, i.e. these terms
can be made as small as necessary for j,, large enough. Our aim is now to find the values
of A and E; for which the curves defined in the plane (u, v) by equations (33) and (34)
have a tangency of order n for some (1 = u*, v = v*).

The condition of the tangency is

vi= A= PPN+
l=-=2P@"HP'(v*) +---
0= —P(U*)P”(U*) _ [P/(U*)]Z 4. (35)
a" P2
dv"
where P(v) = Z;;g Ejv/ +v". It is easy to find from this equation that
P'(v") =—1/2P(w")] + -
P"(v*) = =1/{4[P (WP} + - -

0=

. 36
PO = —op/[PWHF! 4 oo

P(n)(v*) — _Gn/[P(v*)]Zn—l 4.

where o; are positive constants. We use the identity

PW) =P+ P wHWw—v)+--+ %P(’l)(v*)(v — ") (37)

valid for any polynomial of degree n. Since the coefficient of v" is equal to 1 and the
coefficient of v"~! to 0 for the present polynomial P (v), it follows from equation (37) that

P (") =n! (38)
POV = v P (%), (39
Now, we deduce from the last equation of (36) that
i} 0, \1/@n=1)
P =-(3)

!
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and we can similarly calculate the values of the derivatives P (v*) from equations (36).
Thereafter, the required values of the parameters E; are obtained from identity (37). The
last step is to find the value v* from equation (39) and, then, to calculate A from the first
equation of (35).

Accordingly, we have the parameter values for which conditions (35) are satisfied.
Returning to the non-rescaled variables, we obtain the values of ¢; and § for which the
curve (29) has a tangency of the nth order with the curve L(,-]m x,» Which proves the lemma.

At this stage, we are prepared to prove theorem 2 of this paper. Consider an arbitrary
one-parameter family transverse to the line of single-circuit loops. By a small perturbation,
we can obtain a tangency with some line £ of some triple-circuit loop I'’. We assume that
the point of tangency, M, does not coincide with the point where £ has a vertical tangency:
if it did happen we could avoid this coincidence by slightly perturbing the one-parameter
family in order to move the point M along L. Therefore, we can assume that, near M, the
value p changes monotonically along L.

Consider a small neighbourhood of M in the parameter plane and take the loop I'’ as the
initial single-circuit loop. Then, due to the lemma, there exists a small perturbation under
which our one-parameter family have a cubic tangency with some curve of homoclinic
loops which are triple-circuit with respect to I'” or nine-circuit with respect to the loop I.
Applying the lemma again, we can obtain (by small perturbation of the family) a tangency
of third order with a line of 27-circuit loops. Continuing this inductive reasoning, we obtain
a tangency of order n with a line of 3"-circuit loops, which ends the proof of theorem 2.

6. Concluding remarks

In this paper, we showed the high structural instability of one-parameter families of vector
fields near homoclinic loops to a saddle-focus. Some comments are now in order about the
consequences of these results.

It was proved elsewhere [23] that the values of p for which the system has a structurally
unstable Poincaré¢ homoclinic curve at 4 = 0 are dense. This implies, in agreement with
[14], that the bifurcations of the periodic orbits belonging to the neighbourhood U of the
homoclinic loop cannot be completely studied in any finite-parameter family. This result
showed a fundamental incompleteness in the topological description of periodic orbits in the
vicinity of structurally unstable homoclinic orbits. A complementary aspect of this result is
provided by theorem 2 of the present paper, which suggests that the complete description
of the structure of the bifurcation set corresponding to multi-circuit homoclinic loops to a
saddle-focus can never be achieved with a finite number of parameters.

Theorems 1 and 2 can also be applied to the theory of nonlinear partial differential
equations modelling travelling waves in spatially extended systems. Let us imagine that
X,.,p is a family of ordinary differential equations describing the plane travelling waves
of some distributed system in a frame moving with the wavefront; p is the wave velocity
while p is an internal parameter of the system. Let the saddle-focus O be at the origin. It is
known that homoclinic loops correspond to self-localized waves in such systems [17-19].
Suppose that the system has such a wave and that conditions A—C of the introduction are
fulfilled for some parameter value u = po. It follows from theorem 1 that bifurcations
generating ‘three-pulsed’ self-localized travelling waves occur for arbitrary small variations
of p in this system. In turn, theorem 2 implies that the complete description of bifurcations
of plane self-localized waves is impossible in systems of such kind.
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