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Abstract

It is shown that every symplectic diffeomorphism of R*" can be approximated,
in the C*-topology, on any compact set, by some iteration of some map of
the form (x,y) — (y +n,—x + VV(y)) where x € R", y € R", and V
is a polynomial R"” — R and n € R" is a constant vector. For the case of
area-preserving maps (i.e. n = 1), it is shown how this result can be applied to
prove that C"-universal maps (a map is universal if its iterations approximate
dynamics of all C"-smooth area-preserving maps altogether) are dense in the
C"-topology in the Newhouse regions.

Mathematics Subject Classification: 37J10, 37E30, 37C15, 37G25

1. Polynomial approximations by Hénon-like maps

It is shown here that almost every symplectic dynamics in R?" can be realized by iterations of
Hénon-like maps, i.e. symplectic maps of the following special form

X =y, y=—x+VV(y), (H

where x € R", y € R" and V is a smooth function R” — R. The precise formulation is
given in theorem 1, an interesting application is discussed in section 2. The main step of the
construction is based on the fact that an arbitrary symplectic diffeomorphism of R** admits,
on any compact set, arbitrarily good approximations by polynomial symplectic maps of a
special form —by compositions of polynomial Hénon-like maps, in fact. The possibility of
a symplectic polynomial approximation to any symplectic map is not immediately obvious,
though it is possible that somebody could have proved this before. However, I failed to find
a corresponding reference, and my discussions with many experts in symplectic dynamics
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showed that the possibility of such an approximation is not widely known. Therefore, a
detailed proof of the symplectic polynomial approximation theorem is also included.

Hénon-like maps (1) are quite special. They are reversible, so the inverse of any of them
is again a Hénon-like map. The compositions of polynomial Hénon-like maps form a group
which is known [1] to coincide, in the two-dimensional case, with the so-called Cremona group
of the symplectic polynomial maps with a polynomial inverse. The general interest in Hénon-
like maps is explained simply by the fact that (1) gives, probably, the easiest way to define
a polynomial map which preserves the standard symplectic form dx A dy (see also [2,3]).
Maps of type (1) also appear in symplectic discretizations of natural Lagrangian systems (see
e.g. [4,5,30] and formulae (7), (8) below). My interest in Hénon-like maps is due to the fact
that they appear as rescaled first-return maps at homoclinic bifurcations, near a homoclinic
tangency in particular (see [6,7, 11, 8,9] and section 2).

The main result of the paper is the following theorem.

Theorem 1. Let U be a ball in R*, and let F be a C"*$mooth symplectic diffeomorphism
U — R¥. Then, for any compact set C C U and for any & > 0 there exists a polynomial
V : R" — R, a constant vector n € R" and an integer N > 0 such that the 4Nth iteration of
the symplectic map f : (x,y) — (X, y), where

X=y+n, y=-x+VV(y), (x e R',yeR"), 2)
approximates F with the accuracy € in the C"-topology:

sup [[F(x,y) — fN@ I +IIVF G, y) = VN y)l +-

(x,y)eC
-t F(x,y) — fN@E | <e
a(x, y) a(x, y)
where we denote f*N = fo---o f.
—_—
4N

Before we start to prove the theorem, note that the map (2) is not a Hénon-like map at n # 0,
but it coincides with a Hénon-like map (namely, withthemap (X =y, y = —x+VV(y—n)+n))
after the shift of coordinates y +— y + . It will also be clear from the proof that if the map F
depends continuously, or smoothly, on some parameters p, then the approximation by the map
(2) with n constant and ® depending, respectively continuously or smoothly, on 1 can be done
uniformly on any compact set of parameters 1, and along with the derivatives with respect to
w (in the case of smooth parameter dependence). With this remark, theorem 1 thus tells us
that every dynamical phenomenon which is robustly present in any symplectic map or in any
finite-parameter family of symplectic maps can indeed be found in iterations of polynomial
Hénon-like maps (up to a shift of coordinates).

Theorem 1 is, in fact, easily derived from the following formally weaker statement.

Theorem 2 (Symplectic polynomial approximation). Given any C™-smooth symplectic
diffeomorphism F : U — R?", for any compact set C C U and for any & > 0 there exists a
sequence of polynomial Hénon-like maps f\, ..., fan such that the map F is approximated
on C by the composition fan o --- o f| with the accuracy € in the C"-topology.

Remark 1. We will prove, in fact, that when F depends continuously on some parameter
uw € W, where W is a finite-dimensional ball, the functions f;, i = 1,...,4N, depend
continuously on u as well, and the approximation is uniform on any compact subset of W.
When F is C"*smooth with respect to (x, y, u), the functions f; are C"-smooth with respect
to (x, y, u) as well, and the composition fyy o --- o fi is e-close to F on C along with all the
derivatives with respect to (x, y, ), uniformly on any compact set of the parameter values.
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The rest of this section is occupied by the proof of these two theorems.

Proof of theorem 1. Assume for a moment that theorem 2 is proven, then theorem 1 is obtained

as follows. Fixany ¢ > Oandlet f1, ..., fuy be the corresponding sequence of the Hénon-like
maps from theorem 2:
Jit (x,y) > (v, —x + VVi(y)). (3)

Let (xo, yo) be an arbitrary pointin C and let (x;, y;) = fio---o fi(xo, yo). Notethatx; = y;_4
ati > 1, according to (3). Let L be such that the image f; o --- o f1(C) lies inside the ball
of radius L around the point (x;, y;), foreveryi = 1,...,4N (if F depends on parameters,
we assume that this holds true for all parameter values under consideration). Choose some
n and take a sequence of points (x;, y/) (i = 0,...,4N) such that (x7, y5) = (X0, Yo),
(X3n> Yay) = (xan, yan), and x7 =y +nfori > 1. If we take n > 2L + |[xan — yoll,
then we can always choose y; such that ||y — y|| > 2L forall 0 <i < j < 4N — 1 (our
assumptions fix y;y_,; = x4y — 17, s0 we must have 5 sufficiently large in order to push y;,_,
on a distance larger than L from y; = yo). Now, define the function V such that
V) =Vily =y +yim) + (6 — Ximi + ¥ = vy

on the cylinder ||y — y; ||| < L,i = 1,...,4N (the functions V; are defined by (3)). Due
to our choice of y}, the cylinders corresponding to different i do not intersect, therefore,
such C"*'-smooth functions V can indeed be defined. By construction (recall that x; = y;_,
and x7 =y, +mn), themap f : (x,y) = (y +n,—x + VV(y)) acts on the cylinder
ly —yi,l < LG =1,...,4N) as a composition of the parallel translation (x,y)
(X — X' +Xi_1,y — ¥/, +yi_1) (that takes the cylinder ||y — y/ || < L onto the cylinder
ly—yi—1ll < L;ati = 1thisis just the identity map since (x;, y3) = (xo. Yo)), the map f;, and
the parallel translation (x, y) = (x —x; +x;, y —y; +y;). Since every image fio---o fi(C)
lies in the cylinder ||y — y;_1|| < L, it follows that f'|¢ is a composition of f; o --o f] and the
parallel translation (x, y) = (x —x;+x/, y —y;+y]). Since (x}y, yiy) = (Xan, yan), we have
finally that f*¥|c = fay o---o filc. Hence, f*" indeed gives the required approximation to
the original map F on C (as the composition fqy o --- o fi does according to theorem 2). By
construction, the map f has the required form (2) (the function V can be made polynomial by
an arbitrarily small perturbation — this will make approximation only slightly worse). ]

Remark 2. Note that one cannot assume 7 = 0 in theorem 1, because any Hénon-like map f
of the form (1) (i.e. with n = 0) is reversible with respect to the involution R : (x, y) <> (y, x),
i.e. f~! = R o f o R, and the same holds true for any iteration of such a map. So, if the map
F which is to be approximated is not reversible with respect to R and if it, for example, has
a non-parabolic fixed point Q(x, y) while the point RQ(y, x) is not a fixed point of F, any
sufficiently close C'-approximation of F must have a fixed point Q* close to Q while R Q*
cannot be a fixed point. Hence, any sufficiently close C'-approximation of such map F cannot
be reversible with respect to R, i.e. any iteration of any Hénon-like map must be far from F in
C!-topology on a neighbourhood of the points Q and R Q.

The map f; given by (2) with n # 0 is also reversible: fn‘1 = R, o f; o R, where R, is
the involution (x, y) +— (¥ + 1, x —n). However, by taking ||| large enough one can always
achieve that R,C N FC = ¢ where C is the compact set on which we want to approximate
the map F. This means that the reversibility of the approximating map f,;‘N does not create
obstacles anymore (by approximating the map F on the set C one automatically obtains an
approximation to F~' on the set FC; on the other hand, if the approximation is reversible, its
inverse is uniquely defined on the set R, C — this would obviously create a problem if F'C and
R, C had a non-empty intersection, so we cancel this problem by taking ||n|| large enough).
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Proof of theorem 2. It is well-known that for any C"“smooth symplectic diffeomorphism F
taking an open 2n-dimensional ball U into R?", for any compact set C C U there exists a
time-dependent Hamiltonian H (x, y, t) defined at all x € R", y € R", continuous in ¢ and
C*'-smooth in (x, y) (and its gradient is C”-smooth with respect to (x, y, 1) if the map F is
C”-smooth with respect to some parameter p as well), such that F coincides on C with the
time-1 shift by the flow defined via

. 8H . BH
X = (x»)’»t)» )’:_ (xvyvt)' (4)
ay dax

Thus, every symplectic diffeomorphism can be understood as a shift by a non-autonomous
Hamiltonian flow, so we will work with the flow given by (4) from the very beginning. Since
polynomials are dense among smooth functions, it is enough to prove the theorem for the case
when H is polynomial in (x, y) (with the coefficients continuously depending on time and
continuously or smoothly depending on parameters 1), so let this be our standing assumption.
Let F; ; denote the map defined by the flow (4) from the moment time 7 to the moment 7 +t. Itis
obvious that we will prove the theorem if we can show that any map F; , can be approximated,
as T — 0, by the composition of Hénon-like maps with the accuracy O(t?), uniformly for any
compact interval of values of ¢ and on any compact set in the (x, y, u)-space. Indeed, since

F=F,=F_1mimo-0Foim

for any integer m, it follows that if all the maps Fj/y, 1/, admit, uniformly for all [ =
0,....m — 1, an O(1/m?)-approximation by the compositions of Hénon-like maps, then
the composition of these compositions will provide an O(1/m)-approximation to Fp ;: if we
denote the approximation to Fy;,. 1/, as Gy, then

m
IFo1 —Guo10Gp_no0---0 G0||C§ Z V) 1 /m ||C,.' IEa—1y/m.1jm = Gl .,
=1

1 1
m m

(we use the fact that all the derivatives of the map F; |, are uniformly bounded forall ¢ € [0, 1]).
It follows then immediately that the theorem holds true for the Hamiltonians of the type

H=1y"+V(x.1), (3)
i.e. for systems of the type

i=y, y=—W(x,t), (6)
where ¥ = V, V. Indeed, the time-t shift by the flow of (6) has the form

Xive = X + Ty +O(7h), Ve = Ve — TV (x,, 1) + O(T?),
i.e. it is uniformly O(z?)-close to the symplectic map (x, y) > (X, 7):

X=x+71y, y=y—t¥(x+71y,t1). @)

Now note that the latter map is the composition of four Hénon-like maps: (x, y) — (x1, y1),
(xlv ,YI) g (xz’ }’2), (x27 YZ) = (x3? J’3), (x3» )’3) = ()?? f), Where
(X =y3,y=—x3), (3 = y2, y3 = —x2), ®)
(2 =y1, 2 = —x1 + ¥ (=y1. 1)), (X1 =y, y1=—x—1y).

Below we will prove the following lemma.



Polynomial approximations of symplectic dynamics 127

Lemma 1. Given any H(x, y, i, t), polynomial in (x, y), there exists a function V(x, i, s),
polynomial in x, such that the time-t map F, ; of system (4) is uniformly O(t?)-close (on any
compact domain in the (x,y, i)-space and any compact interval of the values of t) to the
time-2mw map of the Hamiltonian system:

d :
szyj» .}.)jZ_Qixj_tgv(xl’x2a~-~»xnaﬂ»s)» (]:1,...,}'1) (9)
J

for some appropriately chosen integers 21, ..., Q.

Note that the theorem follows from this lemma immediately: since (9) is a Hamiltonian
system of type (6), its time-27 map can be arbitrarily closely approximated by a composition
of Hénon-like maps; hence, F, , can be O(t?)-approximated by such composition as well,
which gives the theorem as was explained above. (]

Proof of lemma 1. Let us, first, consider the case n = 1, when x and y are scalars. Take
@, = 1. Equations (9) take the form

=y, y=-x—tV(x.s) (10)
(we suppress, notationally, the dependence on the parameters u from now on). Solutions of
(10) at small T can be written as

x(s) =x(0)coss +y(0)sins — 7 /s Vx’(x"(cr), o)sin(s —o)do + O(tz),
0

s (11)
y(s) = —x(0)sins + y(0) coss — ‘L'/ V/(x(0),0)cos(s — o) do +0(7?),
0
where x{o)=x(0) coso+ y(0)sino .
Thus, the time-27r map is written as
9 2n
X=x+ r—/ V(xcoss+ysins,s)ds +0(1?),
ay Jo 12
P 2 ( )
y=y—T— V(xcoss+ysins,s)ds+0(1:2).
0x 0
The time-t map F; ; of the Hamiltonian system (4) has the form
0] 0]
F=x+t1—H(x,y,t)+0(t?), j=y—1—H(x,y,t)+0(t?. (13)

dy ox
By comparing (12) and (13) we see that to prove the lemma we must show that for every
polynomial function H (x, y) there exists a polynomial in z function V (z, s) such that

2
H(X,y)E/ V(x coss + ysins, s)ds. (14)
0

Let H be a polynomial of degree M: H(x,y) = Z hpgx?y?t.

0 p+gsM
We will look for V (z, s) in the form

Vi) = ) w9,
0<ks<M

where the coefficients v, (s) have to be defined in such a way that (14) would be satisfied.
It is easy to see that relation (14) is fulfilled if and only if, for every k =0, ..., M,

27
hyg = C] f v (s) cos? s sin? s ds (15)
0
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forall p > 0,q > 0 such that p + g = k. We will look for the function vy (s) in the form
V() = ) gga(s),

0<g<k
where we denote g, (s) = cosk=7 s sin s, and o, are coefficients to be defined. So, the
problem reduces to finding such coefficients «,, which satisfy the following system of linear
equations:

hc{_); = Z oy (8gk 8qk )
ko ogg<k

where (-, -) denotes the inner product of functions: (g,«, g4) = f02” 84'k(5)841(s) ds. This
system has a solution if and only if the system of the functions g, (s) (here k is fixed and
g runs integer values from O to k) is linearly independent. Moreover, the coefficients «, are
determined uniquely and depend linearly on the coefficients /, involved. Now note that the
linear independence of the system of functions cosF s, cost~lgsins, ..., cosssin*" !, sin®s
is equivalent to the linear independence of the system of functions 1, tans, .. ., tan® s, and the
latter is obvious, of course. This gives the lemma in the case n = 1.

Consider now the case n > 1. It is more involved: we should be careful with the choice
of the frequencies 2, ..., 2,. At small t the solution of system (9) has the form

1 s
xj(s) = x;(0) cos Qs + Eyj(O) Sin Qs — QL / V;(x(0),0)sinQ;(s —o)do + o(t?),
J J (i (16)
yj(s) = —Q;x;(0)sin ;5 +y;(0) cos 25 — 1:/ V;(x(0),0)cosQj(s —o)do +O(1:2),
0
where );;(a) = x;(0) cos Q2o + éy_/ (0)sin o,

and we denote ¥; = (9/0x;)V. Since Q; are integers, the time-27r map is written as

2
.)Ejzxj'+'f_ W(-xv}}7s)ds+o(t2)’
ay; Jo
, . (17)
yi=y—t1— W(x,y,s)ds+0(1'2),
BX]' 0
where we denote
1 1
Wx,y,s) =V (xl cos 215 + Q—yl sin 215, ..., X, cos 2,5 + Q—y,l sin 2,5, s) . (18)
1 n

The time-t map F; ; of the Hamiltonian system (4) is still given by the formula (13) (but
x and y are not scalars now). By comparing (17), (18) with (13) we see that to prove the
lemma we must find for every polynomial function H (x, y) a polynomial in z function V (z, s)
such that

2
1 1
H(x,y)E/ Vix; cosle+Q—y1 sians,...,x,,cosQ,,s+Q—y,zsinQ,,s,s)ds, (19)
0 1

n

for some set of integers Q1, ..., Q.
Let H be a polynomial of degree M:
PP 4 n
H(x,y) = Z Popreprtroeas ¥l X2 o XYY Y
0<Ipl+lgl<M

Take 2 =1,Q; = (M7 —1)/(M — 1), j =2,.... What is important for us in this choice
is that for every n > 1

Q, > M max (2, -+, Q,—1). (20)
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We will look for V (z, s) in the form
Vi(z,s) = Z Uk ky (s)zl 22 z,’j

(NN

where every function v, (s) is a linear combination of the functions

n
gqi(s) = [ Jcos ™ Q;s - sin® Qs Q1)
j=1
where ¢ = (qi1,...,q,) runs over all possible multi-indices such that 0 < ¢; < kj,

j=1,...,n
Relation (19) is fulfilled if and only if the following holds for every k = (k1, ..., k,) and
every p=(pi1,...,pp)and g = (q1,...,q,) suchthat p; +¢g; =k; forall j =1,....n
hpq ]_[']l'=1 Q[Jl‘/
I
In other words, given any multi-index k, the problem reduces to finding coefficients o, such
that the standard inner product of the function g, (s) with the function

Vk(8) = ) 0ty @i (s) (23)
q

2
- /0 0e(5)80x (5) ds. 22)

acquires the value £, [T}= Qq’ /TT5= qu’ This problem is equivalent to the following
system of linear equations for the coefficients o

qj
Pq 1_[] IQ
i § :O‘q 8q'k> 8qk)

1_[] 1 qu
where (-, -) denotes, as before, the inner product of functions. If the system of functions g, (s)
(here k is fixed and g runs over all possible multi-indices suchthat 0 < ¢; < k;, j =1,...,n)

is linearly independent, the coefficients «, are determined uniquely and depend linearly on the
corresponding coefficients /2 ,,. Therefore, if we prove the linear independence of the functions
gqk(s) for any fixed &, it will follow that the required function V exists and its coefficients
depend on coefficients of H smoothly. This will provide that the maps (17) and (13) are
O(t?)-close to each other, uniformly on compact intervals of values of . Hence, to finish the
lemma and the theorem, it remains to show that if

> Begai(s) =0 (24)
q

for some choice of coefficients 8,, then all B, must be zero.

We will do it by induction in n (we have already considered the case n = 1). Before
we go further, note that g, (s) = e '®* P (&%) where P, is a polynomial of degree
(k, Q) = k121 +kyQ0+- - - +k,2,. Any linear combination of the functions g, (with fixed k)
has, obviously, the same structure, so any such linear combination has no more than (k, 2)
zerosat 0 < s < 7.

If the functions g4« were linearly dependent, then at least one of the coefficients 8, in
(24) could be non-zero. Let Q be the maximal value of ¢, for which there exists a non-zero
Bai.....q.- Then, (24) can be rewritten as

sin? Q,s cos™ "2 Qs - Z,Bq’,ng’k’ (s) = Z sin? Q5 cosh = Q5 - Z By a8k (5,

q Gn=0
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or, after cancelling the common multiplier cosk =2 Q,s, in the form

0-1

sin€ Q,s - Z Byr.08yk () = — O Qs Z sin? 2,5 cos2 "1 Q.5 - Z Boran 8w (s), (25
q’ =0 q

where we denote k" = (ky,...,k,—1), ¢ = (q1, ..., q,—1) runs over multi-indices of length

(n— 1) such that 0 < ¢} < k;, j =1,...,n — 1, and at least one of the coefficients B, ¢ is

non-zero—hence, by the induction hypothesis ) o Ba'.08qk (s) 1s not identically zero.

If QO = 0, the right-hand side of (25) is zero, but the left-hand side is non-zero, as we
just mentioned, so we have Q > 0. The linear combination ), B, 08y (s) has no more
than (k/, Q) = k1 Q2 +--- +k,_12,_; zeros at 0 < s < 7, as was explained above. Hence,
the left-hand side of (25) has no more than (k’, 2) zeros different from the zeros of sin ,,s.
On the other hand, the right-hand side is a multiple of cos €2,s, so it has at least €2, such
zeros. Since |k| < M, we have that (k/, Q) < M max(Q,...,Q2,_1), so (K, Q) < @, by
virtue of (20). Hence, identity (25) cannot hold, which means linear independence of the
functions ggx. O

2. Concluding remarks: universal maps in Newhouse regions

The results above show that the dynamics of Hénon-like symplectic maps is as rich as the
dynamics of all symplectic maps. This statement can be used in proving a much more
discouraging result, as I will demonstrate now for the example of area-preserving maps of
a plane.

Let f be a C”-smooth area-preserving map of R”. Define the dynamical conjugacy class
of f asthe setofall maps f, y ofaunitdisc U; into R? obtained by therule £,y = ¥ o f" oy,
where n is an integer, f” is the nth iteration of f and v is an arbitrary C”-smooth map of
U, into R? with a constant Jacobian (so, by construction, all the maps fny in the class are
area-preserving).

When we speak about dynamics of the map, we somehow describe its iterations, and the
description should be independent of smooth coordinate transformations. Therefore, the class
of the map f, as we have just introduced it, indeed gives some representation of the dynamics
of f. Note that the coordinate transformations 1 are not area-preserving (they preserve the
standard symplectic form up to a constant factor), i.e. the image ¥ (U,) can be a disc of an
arbitrarily small radius, with the centre situated anywhere. Thus, the class of f contains
information about the behaviour of arbitrarily long iterations of f on arbitrarily fine spatial
scales.

The general intuition here is that if the class of the map is large, then the dynamics is
rich, while if the dynamics is sufficiently simple, then the class is somehow restricted. For
example, if the topological entropy of f is zero, then every map in the class of f has zero
entropy as well. Or if f possesses a uniformly hyperbolic structure (like, say the linear map
(x,y) = (Ax,A~'y)), then every map in the class is uniformly hyperbolic. It is interesting
in these examples that the uniform hyperbolicity is a robust (or rough) property—it cannot be
destroyed by a small smooth perturbation of f, whereas examples of maps of zero entropy can
be provided which can be perturbed to produce a maximally rich dynamical class (see below).

Definition. A C’-smooth symplectic map f is called universal (or C"-universal) if its
dynamical class is dense in the C"-topology among all C"-smooth symplectic diffeomorphisms
U — R
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By the definition, the detailed understanding of the dynamics of any single universal map
is not simpler than understanding of all other area-preserving maps altogether, i.¢. it is beyond
human abilities. What is surprising, is that such universal maps are, in fact, quite common.
Namely, one can expect that the following statement is valid.

Proposition A. C"-universal maps exist in any neighbourhood (in the C"-topology) of any
area-preserving map with a homoclinic tangency.

Let us discuss this claim in more detail. A homoclinic tangency is a point where the
stable and unstable manifolds of some saddle fixed point or a periodic orbit are tangent to each
other. Typically, the tangency is quadratic, although higher order tangencies are also possible.
For example, a time-1 map of a conservative flow with a homoclinic loop (an orbit which
is asymptotic to a saddle equilibrium state both as + — =£o00) has a homoclinic tangency of
infinite order (the stable and unstable curves of the saddle fixed point which corresponds to
the saddle equilibrium of the flow coincide). Such a map has zero entropy, but proposition
A says that after an arbitrarily small perturbation the dynamical class of the map can become
extremely rich.

A quadratic homoclinic tangency is a codimension-1 bifurcation: in a generic one-
parameter unfolding the tangency between the stable and unstable invariant curves is removed
near a given point. However, the stable and unstable curves are not compact, so one cannot
immediately reject the possibility that while the original tangency is removed some new
homoclinic tangencies appear. Indeed, it was proved by Newhouse [10] that maps with
homoclinic tangencies are dense in some open regions in the space of C"-maps (with r > 2).
In[11, 12] Duarte proved that in the space of area-preserving maps the Newhouse regions exist
arbitrarily close (in the C”-topology) to any area-preserving map with a homoclinic tangency.
In fact, a combination of the results of [11, 12] and [13] shows that the Newhouse regions
exist in any generic one-parameter unfolding of any area-preserving map with a homoclinic
tangency [14], e.g. in the quadratic Hénon map (x, y) — (v, M — y*> —x) (M is a parameter),
in the standard map (x, y) — (y, —x + M sin y) (see also [15]), etc.

The Newhouse regions do not just exist in popular examples, they also seem to be
quite large. In [16] Newhouse proved that maps with homoclinic tangencies are dense in
the C'-topology among all area-preserving maps which are not uniformly hyperbolic. Of
course, the C!-topology is inadequate for symplectic dynamics. However, this result suggests
a conjecture on the C”"-denseness of the maps with homoclinic tangencies among all non-
hyperbolic area-preserving maps for any r. This seems to be a very difficult conjecture to
prove. However, regardless of it, the fact that homoclinic tangencies appear in so many
models, for so many parameter values, and practically near any point in the phase plane, can
be taken as an experimental observation (see [17], or take any area-preserving map with chaotic
behaviour and follow, numerically, its stable and unstable curves; the usual picture is that, after
a number of iterations, folds in the unstable curve come sufficiently close to the stable curve,
so the tangencies can be created by fine parameter tuning).

Proposition A says that the universal maps are as common as homoclinic tangencies
are. So, if we have any explicitly given area-preserving map with chaotic behaviour, then
by changing parameters slightly we can, probably, encounter a homoclinic tangency. Then,
if we have enough parameters to tune, we can make some iteration of our map become as
close as we want to any other area-preserving map in some carefully chosen coordinates. In
other words, it looks like any two-dimensional area-preserving dynamics can be modelled by
any non-hyperbolic map after a proper transformation of coordinates and a small variation of
parameters.
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This statement sounds strange, but proposition A strongly supports it. Something like that
can be true in the higher-dimensional case as well (here, obviously, the absence of uniform
partial hyperbolicity should be assumed to create universal maps). One can fantasize about an
infinite-dimensional case as well. Can it be true that any nonlinear wave equation with chaotic
dynamics describes any possible dynamical process after an appropriate transformation of the
variables and time and an appropriate tuning of the nonlinearity?

Proposition A is deduced from the following statement.

Proposition B. Area-preserving maps, each having, for every n > 1, infinitely many isolated
homoclinic tangencies of order n, exist in any neighbourhood (in the C’-topology) of any
area-preserving map with a quadratic homoclinic tangency.

An analogous statement about non-symplectic maps was proved in [20] by Gonchenko,
Shilnikov and myself (a very detailed version of the proof is published in [21]). The proof
of proposition B for the symplectic case is in preparation now and we will publish it in a
forthcoming paper.

The fact that, say, cubic tangencies can be obtained by a small C”-smooth perturbation
of a quadratic tangency seems to contradict the usual scheme of the singularity theory where
the order of degeneracy decreases in the unfolding. Here, of course, the order of the original
tangency does not increase, but some new tangencies appear after iterations of the map, and
the order of these tangencies can be made arbitrarily high indeed. For an illustration one may
again take, say, a quadratic Hénon map and start to iterate stable and unstable manifolds of
a saddle fixed point. Then, after some number of iterations, folds on the unstable manifold
(which appear because the nonlinearity is quadratic) are folded once again, and one can see
how ‘inflection points’ on the unstable manifold are created. Tangencies of order higher than
cubic are harder to see, but the technique of proving their existence is available from the
non-symplectic case (see [22] for more explanations and illustrations).

Ahomoclinic tangency of order n is a bifurcation phenomenon of codimension z, i.e. it may
appear in general position only in n’-parameter families of maps where n’ > n. A quadratic
homoclinic tangency is a codimension-1 bifurcation phenomenon. The main reason why
bifurcations of higher codimensions can be created by small perturbations of bifurcations of low
codimension (in proposition B: homoclinic tangencies of any order n by a small perturbation
of a map with a quadratic homoclinic tangency) is the existence of some hidden parameters,
the so-called local moduli, in the unperturbed system. The existence of moduli (continuous
invariants) of the local ©2-conjugacy, and even the existence of infinitely many independent
moduli, is a typical feature of systems with homoclinic tangency [23-25,20]. Arbitrarily small
variations in the value of any of these invariants change, by definition, the structure of the set
of orbits lying in a small neighbourhood of the orbit of the point of the homoclinic tangency,
without destroying the tangency. Thus, by varying the values of moduli one can obtain new
bifurcating orbits without destroying the original one; hence, the degeneracy of the bifurcation
can indeed be increased by an arbitrarily small perturbation (see [26] for more discussions).
The moduli which were used in [20, 21] in the proof of proposition B in the non-conservative
case do not exist (they degenerate into constants) in the area-preserving case. Moduli for the
conservative case were found in [9], and proposition B can indeed be proved with the use
of them.

Let us now show how proposition B implies proposition A. Let f be a map with infinitely
many isolated homoclinic tangencies of any order. Let P be a point of homoclinic tangency
of order n. Since P belongs to the stable manifold of some saddle periodic orbit, its forward
iterations tend to this periodic orbit (we assume, for simplicity, that this is a fixed point of
[ otherwise, one should consider some power of f for which this periodic orbit is a fixed
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point—then, the rest of the construction will be the same), i.e. P,, = f"P — Q asm — +00
where fQ = (. Analogously, since P is a homoclinic point, it belongs to the unstable
manifold of Q as well, so its backward iterations also tend to Q: P,, — Q asm — —oo.

Let P* and P~ be a pair of points of the orbit of the homoclinic point P, lying in the local
stable manifold W} . and, respectively, in the local unstable manifold W}!  of the fixed point
Q, sufficiently close to Q. Since P~ and P* are the points of the same orbit, it follows that
f"P~ = P* for some m > 1.

The point P* lies in the stable manifold of Q, so its forward iterations never leave a
small neighbourhood of Q. However, the points arbitrarily close to P* which are not lying
in W;i . will leave the small neighbourhood of Q after sufficiently many iterations of f.
Moreover, one can show (see [27] or [21]) that for any small neighbourhoods IT* and T~
of the points P* and P~, respectively, and for any sufficiently large k there exist points in
IT* whose kth forward iteration belongs to I1~. We denote the set of these points as oy (for
an illustration: if f is locally linear, i.e. if it is written as (x, y) — (Ax, A~'y) near Q(0, 0),
where 0 < A < I, then W ={y =0}, Wi = {x =0}and P* = (x*,0), P~ = (0, y7),
for some small x*, y=; if 1= are the e-neighbourhoods of P* for some small ¢ > 0, then
or = {lx—x*| < &, |ly—rky~|| < Ake}). Recall that the map f™ takes a small neighbourhood
of P~ into the small neighbourhood of P*, and we also have that f* takes o} into a small
neighbourhood of P~. Hence, the map T, = f"* : o — II*, called a first-return map, is
defined for all sufficiently large k.

We will also consider n-parameter perturbations f, of the map f. We assume that the
perturbations are localized in a small neighbourhood of one homoclinic point (say, the point
f7'P%), ie. f, coincides with f outside this small neighbourhood. Thus, our perturbations
will not affect other homoclinic tangencies which f has (because the homoclinic tangency
we consider is isolated by assumption). We choose our perturbations in such a way that
the tangency between the stable and unstable invariant curves of Q at the point P* unfolds
generically. Itisatangency of order n, so we need n-parameters (i1, . . . , i,,) for the unfolding.
In the local coordinates (€, 1) near point P* in which the stable manifold is a curve n = ¢ (&)
and the unstable manifold is a curve n = ¥ (&), we have ¢ (§) — ¥ (&) = C£"™! + O(£™1) for
the map f itself (C is a non-zero constant) and ¢ (§) — ¥ (§) = 31—y pin1 &' +CE™ +O(E™")
for the map f),.

At small u, the first-return maps 7T} are still defined for all sufficiently large k. Since the
domain o where the map Ty is defined is very small (of size O(A*) in the direction transverse
to the stable manifold), it makes sense to rescale the coordinates in order to make the size of
the domain bounded away from zero (this has been proved to be quite useful in the study of
homoclinic bifurcations). Doing this by formulae given in [22], lemma 2 (see also [9] for the
case of quadratic tangency), one can see that there exists a rescaling (i.e. a smooth coordinate
transformation) which brings the map 7 to the following Hénon-like form

n—1
X =Y +0(1), Y:—X+2Mi+1Yi+CY”+1+O(1)
i=0

where the O(1)-terms tend to zero along with all derivatives as k — +oo, uniformly on any
compact set of values of (X, Y). The coefficients (M, ..., M,) are functions of (i, ..., y)
and k, they can be considered as free parameters, no longer small: when p run an arbitrarily
small ball around zero, M run a ball of an arbitrarily large fixed size, provided & is taken
sufficiently large (roughly, we have M; ~ ;A ~¥@+2=D/m) The domain of T} in the coordinates
(X, Y) becomes large as well and it covers all finite values in the limit k — +oo (essentially,
the rescaling blows the O(A¥)-thin strip o up to a rectangle of size O(A~%/™)).
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Hence, by taking k sufficiently large, we can find w arbitrarily close to zero, such that the
map f, will have in its dynamical conjugacy class a map which is as close as we want to any
given polynomial Hénon-like map of degree n. Our perturbations are localized, so they neither
destroy other homoclinic tangencies, nor influence the dynamics near these tangencies. We
can apply the same procedure near the rest of the homoclinic tangencies as well, and since we
have infinitely many tangencies of arbitrarily high orders, this will give us, at the end, a map
f*, arbitrarily close to the original map f, the closure of whose dynamical class contains all
Hénon-like maps. Now, we may apply theorem 1, which says that such a map f* is universal.
Since, by proposition B, our map f with infinitely many homoclinic tangencies could be taken
arbitrarily close to any map with a quadratic homoclinic tangency, proposition A follows.

I would like to note that in other (non-conservative) situations universal maps were
discussed in [18] and, in the C!-topology, in [19], more or less with the same implications;
striking results on the complexity of the closure of the invariant manifolds of a hyperbolic fixed
point of a dissipative map with a homoclinic tangency see e.g. in [28, 29].
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