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Abstract
We give an analytic (free of computer assistance) proof of the existence 
of a classical Lorenz attractor for an open set of parameter values of the 
Lorenz model in the form of Yudovich–Morioka–Shimizu. The proof 
is based on detection of a homoclinic butterfly with a zero saddle value 
and rigorous verification of one of the Shilnikov criteria for the birth of 
the Lorenz attractor; we also supply a proof for this criterion. The results 
are applied in order to give an analytic proof for the existence of a robust, 
pseudohyperbolic strange attractor (the so-called discrete Lorenz attractor) 
for an open set of parameter values in a 4-parameter family of 3D Henon-
like diffeomorphisms.
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1.  Introduction

The main goal of the paper is a proof of the birth of the Lorenz attractor in the following model:

( )λ γ δ
α β

=
= − + − −

= − +

X Y

Y Y X Z X

Z Z X

˙ ,
˙ 1
˙ ,

3

2

�

(1)

where parameters α, β, γ, δ and λ can take arbitrary finite values. It is well-known [1–3] that 
the classical Lorenz equations
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can be always brought to form (1) by the transformation = = +
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r
r,

2

1
, 1 , 1, 1. We there-

fore call system (1) the extended Lorenz model.

Not all values of parameters in system (1) correspond to real values of the parameters 
( )σr b, , , so the proof of the Lorenz attractor in model (1) may not always imply the existence 
of the Lorenz attractor in the classical Lorenz model. In particular, the values of α and λ, for 
which the existence of the Lorenz attractor is proved in the present paper (see theorem 1),  
do not correspond to the Lorenz model; instead, for these parameters values one can trans-
form system (1) to the system obtained from the Lorenz model by the time reversal.

Nevertheless, system (1) is interesting by itself because it is a normal form for certain codi-
mension-3 bifurcations of equilibria and periodic orbits [4, 5]. Thus, our result on the exist-
ence of the Lorenz attractor in system (1) automatically proves the emergence of the Lorenz 
attractor (or its discrete analogue) in a class of such bifurcations and, hence, in a large set of 
systems of various nature. In particular, in this paper, using theorem 1 we prove the existence 
of discrete Lorenz attractors in a class of 3D polynomial maps (3D Henon maps).

We consider the case γ> 0, so by scaling the time and the coordinates we can make γ = 1. 
When αβ> 0, with the scaling /β αδ= B one can bring system (1) to the form:

( )
λ
α

=
= − − −
= − −
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˙ ,
˙
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2

� (3)

In [4] it was shown numerically that system (3) possesses the Lorenz attractor in an open set 
of values of ( )α λ,  for each ( / )∈ − +∞B 1 3, . In this paper we obtain an analytic proof of the 
same fact for sufficiently large B. The idea is that for = +∞B  equations (3) can be solved 
explicitly5. Therefore, for large B the system can be analysed using asymptotic expansions.

We perform such expansion for system (1) with γ> 0, δ> 0. By coordinates and time scal-
ing, it can be brought to the form:

λ
α β

=
= − − −
= − +

X Y

Y X Y XZ X
Z Z X

˙ ,
˙
˙ .

3

2

�
(4)

5 The same holds for B  =  −1/3, which case will be considered in a forthcoming paper; the case of arbitrary 
B  >  −1/3 remains out of reach.
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Obviously, large B in system (3) corresponds to small β in (4). The following theorem is our 
main result.

Theorem 1.  For each sufficiently small β, in the ( )α λ, –plane there exists a point 
( ) ( )α α β λ λ β= =,  for which system (4) possesses a double homoclinic loop (a homoclinic 

butterfly) to a saddle equilibrium with zero saddle value. This point belongs to the closure 
of a domain ( )βVLA  in the ( )α λ, –plane for which system (4) possesses an orientable Lorenz 
attractor.

In section  2 we give a definition of the Lorenz attractor, following [6]. This definition 
requires a fulfilment of a version of a cone condition at each point of a certain absorbing 
domain. We verify this condition by using one of the Shilnikov criteria [7, 8]. A partial case of 
these criteria was proven by Robinson [9, 10], however it was done under additional ‘smooth-
ness of the foliation’ assumption which is not fulfilled by system (4) at small β. Therefore we 
provide a full proof of the part of Shilnikov criteria relevant to our situation, see theorem 2. In 
section 3 we prove theorem 1.

In section 4 we prove (theorem 3) the existence of discrete Lorenz attractors in a class 
of 3D Henon maps. A discrete Lorenz attractor is a generalization of the strange attractor 
in the period map of a time-periodic perturbation of an autonomous flow with a Lorenz 
attractor [11, 12]. It is a pseudo-hyperbolic attractor in the sense of [13, 14]; like in the 
continuous-time Lorenz attractor, each orbit in the discrete Lorenz attractor has positive 
maximal Lyapunov exponent, and this property is robust with respect to small smooth per-
turbations of the map.

The discrete Lorenz attractors were found numerically in several 3D Henon maps [11, 12, 15]  
and in certain models of non-holonomic mechanics [16, 17]. The 3D Henon maps are par
ticularly important because they serve as a zeroth order approximation to the rescaled first-
return maps near various types of homoclinic and heteroclinic tangencies [18–23]. Therefore, 
because of the robustness of the discrete Lorenz attractor, by showing that a 3D Henon map 
has such attractor, we also show that the corresponding homoclinic or heteroclinic tangency 
bifurcation produces such attractor; moreover, when the corresponding tangency is persistent 
(e.g. due to the Newhouse mechanism [24–27]) one obtains infinitely many coexisting dis-
crete Lorenz attractors in a generic map from the corresponding Newhouse domain (see [22] 
for examples and more explanation). Obviously, in order to implement this construction com-
pletely rigorously, the numerical evidence is not enough, i.e. an analytic proof of the existence 
of the discrete Lorenz attractor in various classes of Henon maps is needed. Our theorem 3 in 
section 4 is the first example of such proof.

We find that a certain codimension-4 bifurcation happens at certain parameter values 
to the fixed point of a 3D Henon map and show that the normal form for this bifurcation 
is given by the period map of a small time-periodic perturbation of system (4) at small β. 
Then, theorem 1 implies theorem 3 immediately. A less degenerate bifurcation (of codi-
mension 3) that also occurs in the same class of maps produces, as a normal form, system 
(3) with B  =  0. This particular case is known as the Morioka–Shimizu system [28]. While 
a very detailed numerical analysis of the dynamics of this model is available [29–33] and 
the existence of the Lorenz attractor in the Morioka–Shimizu system causes no doubt, a 
rigorous analytic proof of this fact is lacking (see discussion in [34]). Its absence impedes 
the further development of the mathematical theory of the discrete Lorenz attractors. 
Obtaining such proof is a challenging and important problem; in particular, it would be 
interesting to know if a rigorous numerical proof of the existence of the Lorenz attractor in 
the Morioka–Shimizu system is possible, similar to that reported in [41, 42] for the clas-
sical Lorenz model.
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2.  Shilnikov criterion of the birth of Lorenz attractor

Let us recall a definition of the Lorenz attractor. There are several approaches to it, which 
include classical geometric models by Guckenheimer–Williams [47, 48] and Afraimovich–
Bykov–Shilnikov [6, 35] and their later generalisations [49, 50]. Here we define the Lorenz 
attractor in the Afraimovich–Bykov–Shilnikov sense.

Consider a smooth system of differential equations which has a saddle equilibrium state O 
with one-dimensional unstable manifold. Take a cross-section Π transverse to a piece of the 
stable manifold Ws(O) (for system (4) the cross-section will be the plane /β α=z ). The 1D 
manifold Wu(O) consists of three orbits: O itself, and two separatrices, Γ+ and Γ−. Let both Γ+ 
and Γ− intersect the cross-section at some points M+ and M−. Let Π0 be the first intersection 
of the cross-section with Ws(O), and Π+ and Π− be the regions on the opposite sides from 
Π0, so Π = Π ∪Π ∪Π+ − 0. Assume that in the cross-section there is a region ⊂ΠD 0 which 
is forward-invariant with respect to the Poincare map T defined by the orbits of the system. 
When a point M approaches Π0 from the side of Π+ we have → +TM M , and when it tends to 
Π0 from the side of Π− we have → −TM M  (see figure 1). Thus, the invariance of D implies that 
∈+M D and ∈−M D. Let us introduce coordinates (u, v) in Π such that Π0 has equation u  =  0, 

Π+ corresponds to u  >  0, and Π− corresponds to u  <  0. We write the map T in the form

¯ ( ) ¯ ( )= =± ±u f u v v g u v, , , ,

where ‘+’ corresponds to u  >  0 and ‘−’ corresponds to u  <  0. The map is smooth at ≠u 0 
but it becomes singular as →u 0 because the return time to the cross-section tends to infinity 

Figure 1.  Afraimovich–Bykov–Shilnikov geometric Lorenz model.
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as the starting point approaches the stable manifold of the equilibrium O. One can analyze the 
behaviour of the orbits that pass a small neighbourhood of O by solving Shilnikov boundary 
value problem (see e.g. formulas from [36], section 13.8). The result gives us the following 
asymptotics

ρ ρ= ± | | + = ± | | +ν ν
± ± ± ± ± ±f u A u u v g v B u u v, , , ,1 2( ) ( )� (5)

where ( ) =+ + +u v M, , ( ) =− − −u v M, , ( ) ( )ρ = | |νu v o u,1,2  and /ν λ γ=| |1  where γ is the positive 
eigenvalue of the linearisation matrix at O and λ1 is the eigenvalue which is nearest to the 
imaginary axis among the eigenvalues with negative real part; it is assumed that λ1 is real and 
the rest of the eigenvalues lies strictly farther from the imaginary axis. We assume that the 
saddle value λ γ+1  is positive, i.e. ν< 1. This implies that if the separatrix values ±A  are non-

zero then →∞∂
∂
±f

u
, →∂
∂
± 0g

v
 as →u 0, i.e. the map near Π0 is expanding in the u-direction and 

contracting in the v-directions. The main assumption of the Afraimovich–Bykov–Shilnikov 
model [6, 35] is that this hyperbolicty property extends from the neighbourhood of Π0 to the 
entire invariant region D. For the first return map in the form (5) this assumption is written as 
the following set of inequalities:

∥( ) ∥ ∥ ∥
∥ ( ) ∥ ∥ ∥ ( ∥( ) ∥ )( ∥ ∥ )

< <

⋅ < − −

′ ′

′ ′ ′ ′ ′

−

− −

� �

� � � �

f g

g f f f g

1, 1,

1 1 ,
u v

u u v u v

1

1 1� (6)

where we omitted the indices  ±; the notation ⋅ = ⋅∈ ∩Π±� sup u v D,∥ ∥ ∥ ∥( )  is used. These inequali-
ties are an equivalent form of the so-called invariant cone conditions, which were later used 
in [37, 38] for studying statistical properties of the Lorenz attractor, in [40, 42] for the numer
ical verification of the match between the geometrical Lorenz model and the Lorenz system 
itself, etc.

In [6] it was shown that conditions (6) imply the existence of a stable invariant foliation 
Fss of D by leaves of the form u  =  h(v) where h is a certain uniformly Lipshitz function (dif-
ferent leaves are given by different functions h). One can, in fact, show that the foliation 
Fss is C1-smooth, see [43, 44]; however, this is not important here. The map T takes each 
leaf of the foliation into a leaf of the same foliation and is uniformly contracting on each of 
them. The distance between the leaves grows with the iterations of T, i.e. the quotient map T̂  
obtained by the factorisation of T over the invariant foliation is an expansive map of the inter-
val obtained by the factorisation of D over the foliation. This map has a discontinuity at u  =  0: 
ˆ ( )+ = +T u0 , ˆ ( )− = −T u0  (see figure 1). The fact that the quotient map is expansive makes an 
exhaustive analysis of its dynamics possible, see [45, 46]. The dynamics of the original map T 
and the corresponding suspension flow can be recovered from that of T̂ .

The structure of the Lorenz attractor is described by the following theorem due to 
Afraimovich–Bykov–Shilnikov.

Theorem ([6, 35]).  Let D be the closure of the union of all forward orbits of the flow which 
start at the set D. Under conditions above, the system has a uniquely defined, two-dimensional 
closed invariant set ⊂DA  ( which is called the Lorenz attractor) and a (possibly empty) one-
dimensional closed invariant set Σ (which may intersect A but is not a subset of A) such that

	(1)	the separatrices Γ± and the saddle O lie in A;
	(2)	A is transitive, and saddle periodic orbits are dense in A;
	(3)	A is the limit of a nested sequence of hyperbolic, transitive, compact invariant sets each of 

which is equivalent to a suspension over a finite Markov chain with positive topological 
entropy;
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	(4)	A is structurally unstable: arbitrarily small smooth6 perturbations of the system lead to 
the creation of homoclinic loops to O and to the subsequent birth and/or disappearance 
of saddle periodic orbits within A;

	(5)	when Σ = ∅, the set A is the maximal attractor in D;
	(6)	when the set Σ is non-empty, it is a hyperbolic set equivalent to a suspension over a finite 

Markov chain (it may have zero entropy, e.g. be a single saddle periodic orbit);
	(7)	every forward orbit in D tends to ∪ΣA  as →+∞t ;
	(8)	when Σ≠∅, the maximal attractor in D is ( ( )) ( )Σ = ∪ Σcl W A Wu u ;
	(9)	A attracts all orbits from its neighbourhood when ∩Σ = ∅A .

Let us describe one of Shilnikov criteria for the birth of the Lorenz attractor (as defined in 
this theorem) from a pair of homoclinic loops. We restrict ourselves to the symmetric case; 
namely, we consider a Cr-smooth ( ⩾r 2) system in R +n 1, ⩾n 2, and assume that it is invariant 
with respect to a certain involution R.

Let the system have a saddle equilibrium O with ( ) = −W O ndim 1s  and ( ) =W Odim 1u . 
We assume that O is a symmetric equilibrium, i.e. RO  =  O. With no loss of generality we 
assume that the involution R is linear near O [51]. Denote the characteristic exponents at O as 
λ λ…, , n1  and γ, such that

⩾
γ λ λ> > >0 max Re

i
i1

2

(in particular, γ and λ1 are real). The eigenvectors e0 and e1 corresponding to γ and, resp., λ1 
must be R-invariant. We assume that = −Re e0 0 and =Re e1 1; in particular, the two unstable 
separatrices are symmetric to each other, Γ = Γ+ −R .

Homoclinic Butterfly. Assume that both unstable separatrices Γ+ and Γ− return to O as →+∞t  
and are tangent to the leading stable direction e1 (it follows from the symmetry that they are 
tangent to each other as they enter O).

Saddle value. Assume that the saddle value σ γ λ= + 1 is zero (hence, the saddle index 
/ν λ γ=| |1  equals to 1).

As the homoclinic orbits Γ± are tangent to each other, we can take a common cross-section 
Π to them near O; we can make Π symmetric, i.e. Π = ΠR . As we mentioned at the beginning 
of the section, the cross-section is divided by Ws(O) into two parts, Π+ and Π− (see figure 1). 
The Poincare map |Π+T  must be symmetric to |Π−T , so we have =±u 0, =+ −v Rv , =+ −B RB  
and = − =+ −A A A in equation (5) (the expanding direction u is aligned with the vector e1).

Separatrix value. Assume that the separatrix value A satisfies the condition7 < | | <A0 2.
The first two conditions correspond to a codimension-2 bifurcation in the class of 

R-symmetric systems. A generic unfolding of this bifurcation is given by a two-parameter 
family µ εX ,  of R-symmetric systems which depends on small parameters ( )µ ε,  where μ splits 
the homoclinic loops, and ε is responsible for the change in the saddle value. We, thus, can 
assume µ = +u  and ν ε= −1  in (5), and the rest of the coefficients will be continuous func-
tions of ( )µ ε, . Thus, the Poincare map T will have the form

6 In [6] this was proved for C1-small perturbations, however the argument works for ∞C -small perturbations 
without a significant modification. A similar result is also in [47, 48].

7 One can check that no absorbing domain can be created at ⩽ν 1 if ⩾| |A 2; see the corresponding comment in the 
proof of theorem 2.

I I Ovsyannikov and D V Turaev﻿Nonlinearity 30 (2017) 115



121

¯ ( ) ( ( )) ( )
¯ ( ) ( ) ( )

( )

( ) ( )

µ µ ε

µ ε

= = + | | + | |

= = + | | + | |

ε

ε

−

+
−

u f u v A u p u Q v s u

v g u v Q v B u q u Q v

, , , , ,

, , , , ,

s u

s u s u

1

1�
(7)

where s(u) is the sign of u, and Qs denotes identity if s  =  1 and the involution R (restricted to 
the v-space) if s  =  −1. The functions p, q satisfy

∂
∂

= | |
∂
∂

= | |ε ε− −p q
p q

v
o u

p q

u
o u, ,

,
,

,
;1( ) ( ) ( ) ( )� (8)

see [36], section 13.8.
The following theorem is a particular case of the criteria for the birth of the Lorenz attractor 

which were proposed in [7, 8].

Theorem 2.  In the plane of parameters ( )µ ε,  there is a region VLA such that ( ) ¯∈ V0, 0 LA 
and the system possesses a Lorenz attractor for all ( )µ ε ∈ V, LA.

Proof. It is known [52] that if ν> 1, then stable periodic orbits are born from homoclinic 
loops. All orbits in the Lorenz attractor are unstable, so we will focus on the region ν< 1, i.e. 
ε> 0. In order to prove the theorem, we show that for all small ε there exists an interval of val-
ues of μ for which the Poincare map (7) satisfies conditions (6) on some absorbing domain D.

First of all, we check the conditions under which the invariant domain D exists. According 
to [6], the domain D lies within the region bounded by the stable manifolds of saddle periodic 
orbits that are born from the homoclinic loops at µ<A 0. Therefore, we will consider the case 
µ< 0 if A  >  0 and µ> 0 if A  <  0. We define

{ ⩽ ( )}µ δ µ= | | | | +D u� (9)

where δ is some function of μ of order ( )µo . Then, the forward invariance condition 
( )⊂TD Dint  reads, according to (7) and (8), as

µ µ µ µ µ| |⋅| | + | | − | | < | | +ε ε− −A o o ,1 1( ) ( )

or

( )
⎛
⎝
⎜

⎞
⎠
⎟µ| | >

| |
+…

εA

2
1

1

� (10)

where the dots stand for the terms tending to zero as →µ ε, 0. Note that if ⩾| |A 2, the value at 
the right hand side of (10) is bounded away from zero at small ε> 0, i.e. there are no small μ 
satisfying (10). Thus, we consider the case | | <A 2, so for all small ε this inequality has solu-
tions in any neighbourhood of the origin in the ( )µ ε,  plane.

Now, let us check conditions (6) in D. By (7) and (8), we have

ε= − | | + | | = | | = | |′ ′ ′ε ε ε ε− − − −f A u s u o u f g o u g O u1 , , , .u v u
1( ) ( ) ( ) ( ) ( ) ( )

Thus,

∥( ) ∥ ( ) ∥ ∥ ( )

∥ ( ) ∥ ( ) ∥ ∥ ( )

µ µ

µ

=
| |
| | +… = | |

= = | |

′ ′

′ ′ ′

ε ε

ε

− −

− −

� �

� �

f
A

g o

g f O f O

1
1 , ,

1 , .

u v

u u v

1 1

1 1

It is immediately seen from these formulas that conditions (6) are fulfilled everywhere in D if

( ( ))µ| | < | | +… εA 1
1

� (11)
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and μ and ε> 0 are small enough.
Conditions (10) and (11) define a non-empty open region in the parameter plane near 

( )µ ε =, 0. By construction, the intersection of this region with { }µ ε< >A 0, 0  corresponds 
to the existence of the Lorenz attractior.� �

Different versions of this theorem were proved by Robinson in [10, 43] under an addi-
tional assumption (an open condition on the eigenvalues of linearisation matrix at O). This 
assumption made the results of [10, 43] inapplicable to the extended Lorenz model in the 
domain where we consider it (the case of small β in (4)). We therefore gave here a proof of the 
Shilnikov criterion without the extra assumptions.

The difference with the Robinson’s proof is that we do a direct verfication of Afraimovich–
Bykov–Shilnikov conditions for the Poincare map T, while Robinson performs a factorisation 
of the flow by the strong-stable invariant foliation. As we mentioned, the Poincare map T has a 
C1-smooth invariant foliation Fss. The smoothness of Fss is not important for the analysis of the 
dynamics in the Lorenz attractor from the point of view of the topological equivalence. On the 
other hand, it can be useful in the study of some statistical properties, like correlationd decay in the 
flow, etc [38, 39]. The smoothness is, essentially, a consequence of two properties, that the map 
T is hyperbolic and the expanding direction is one-dimensional, see [53]. Despite the hyperbolic-
ity of the Poincare map T in D, the suspension flow in D is not hyperbolic, as the set D contains 
the equilibrium state O. The flow is only pseudo-hyperbolic [13, 14], i.e. it has a codimension-2 
strong-stable invariant foliation F ss such that the flow is contracting along the leaves of the folia-
tion and area-expanding transversely to it. The foliation Fss is generated by F ss in the sense that the 
intersection of the orbit of any leaf of F ss with the cross-section Π consists of the leaves of Fss. One 
infers from this that the foliation F ss is C1-smooth in \D O. However, in order the foliation F ss to 
be smooth at O too, an additional open condition on the eigenvalues of the linearisation matrix at 
O must be fulfilled. This was the condition imposed in [10, 43] and the smoothness of the foliation 
F ss was used in the Robinson proof of the birth of the Lorenz attractor in an essential way.

In what follows we apply theorem 2, in order to prove the presence of the Lorenz attractor in 
system (4). It suffices to find parameters ( )α λ β, , , corresponding to the existence of a homoclinic 
butterfly with γ = 1, compute the separatrix value A on the homoclinig orbit, and check that 
0  <  A  <  2. In fact, we show that A is positive and close to zero at the chosen parameter values.

Note that the domain VLA of the existence of the Lorenz attractor which we detect using the 
Shilnikov criterion is exponentially small—its size in μ is of order /| | εA 1  as given by (10) and 
(11). The value of A we compute in the following sections is of order ε, so that the attractor 
exists for a very narrow interval of μ values—of order /ε ε1 . The exponential smallness of VLA 
given by Shilnikov criterion with | | <A 1 was discussed in detail in [4]. It was also demon-
strated numerically in [4] that the size of the domain VLA rapidly grows when one goes far 
from the codimension-2 bifurcation point; the bifurcations upon crossing the boundaries of 
VLA were also described in [4, 6, 29–33].

3.  Lorenz attractor in system (4) at small β

3.1.  Homoclinic butterfly

At β = 0 system (4) has an invariant plane Z  =  0. If, in addition, λ = 0, then the restriction 
of (4) to this plane is a Hamiltonian system of the form = −X X X¨ 3. At zero energy level it 
posesses a pair of homoclinic solutions ( ) ( )=±x t x t0 , ( ) ( )=±y t x t˙0 0 , where

( ) =x t
t

2

cosh
.0� (12)
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Note that by setting α = 1 we make the saddle value σ at the origin vanish.
Next, near the point ( ) ( )α λ β =, , 1, 0, 0  in the space of parameters we will find the bifurca-

tion surface which corresponds to the existence of a homoclinic butterfly in system (4). We do 
it by introducing a small parameter8 ( )µ α λ β= − 1, ,  and expanding formally the homoclinic 
solution in powers of μ:

( ) ( ) ( ) (∥ ∥ ) ( ) ( ) (∥ ∥ )µ µ= + + = +X t x t x t O Z t z t O,0 1
2

1
2� (13)

where (∥ ∥)µ=x z O,1 1 . One obtains a linear system (with time-dependent coefficients) for the 
order-∥ ∥µ  corrections x z,1 1; this system has a solution which tends to zero as →±∞t  when a 
certain linear functional of μ vanishes. We check that this functional is not identically zero, so 
it vanishes on a certain plane in the μ-space. It is well known (see [54] for a proof) that this 
implies the existence of a surface Mhom (tangent to this plane at µ = 0) such that system (4) 
has a homoclinic solution of form (13) when the parameters belong to Mhom.

We consider a more general system:

( ) ( ) ( ) ( )
( ( ) ( )) ( ) ( )

µ φ µ

α µ µ φ µ

+ = + +

= − + + +

′x V x f x x z g x x z x x z

z p x x z q x x z x x z

¨ , ˙ , ˙ , ˙, , ,

˙ , ˙ , ˙ , ˙, , ,

2
1
2

2
�

(14)

where μ is an n-dimensional vector of small parameters, and scalar functions V, f, p, φ1,2 
as well as n-dimensional vector-functions g and q are sufficiently smooth9. We assume that 

( ) ( )= =′V V0 0 0, ( )″ <V 0 0, g(0, 0)  =  q(0, 0)  =  0, p(0, 0)  =  0, and ( )α α= >0 00 . By con-
struction, the origin O is an equilibrium of (14) for all μ. System (4) is a particular case of 
(14), where one takes

( ) ( ) ( )= = − + = − = = − =n V x
x x

f x p g x q x3,
2 4

, , 0, 0, ˙, 0 , 0, 0, .
2 4

2

�

(15)

When µ = 0, system (14) has an invariant plane z  =  0, and the restriction onto this plane is 
Hamiltonian:

( )+ =′x V x¨ 0,� (16)

with the first integral

( )+ =x V x˙ 2 const.2� (17)

Let there exist at least one value of ≠x 0 where V(x)  =  0, and let x  =  x* be the closest such 
point to O (without loss of generality we assume x*  >  0). Thus, at the zero level of integral 
(17) there exists a separatrix loop Γ0 to O lying at z  =  0. We take a parameterisation x0(t) of Γ0 
such that ( ) = ∗x x00  and, therefore, ( ) =ẋ 0 00 . It is clear that x0(t) tends to zero exponentially 

(with the rate ( )″ω = −V 0 ) as ±∞t → .
For µ≠ 0, the plane z  =  0 is no longer invariant but the homoclinic loop Γµ may still exist 

if a certain codimension-1 condition is fulfilled. Note that if an additional ( → )−x x  symmetry 
condition is imposed on (14), then there will be two homoclinic loops to O. We will seek for 
a homoclinic solution in form (13). where ( ( ) ( )) (∥ ∥)µ=x t z t O,1 1 . One obtains from (14) the 
following system

( ( )) ˜ ( ) ˜( )
( ( ) ˜ ( )) ˜( )
″ µ
α µ µ

+ = +
= − + +

x V x t x f t z g t
z p t z q t

¨ ,
˙ ,

1 0 1 1

1 1
� (18)

8 Note that this is a change of notation in comparison with the previous section.
9 Note also that notations µ⋅g , µ⋅q  and similar ones here and below mean the standard n-dimensional scalar 
product.
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where ( ˜ ˜ ˜ ˜)( ) ( )( ( ) ( ))=f g p q t f g p q x t x t, , , , , , , ˙0 0 , i.e. they are explicit functions of time.
System (18) is an inhomogeneous linear system; its homogeneous part is given by:

( ( )) ˜ ( )
( ( ) ˜ ( ))
″
α µ

+ =
= − +

x V x t x f t z
z p t z

¨ ,
˙ .

1 0 1 1

1 1
� (19)

System (19) has the following three linearly independent solutions:

( ( ) ) ( ( ) ) ( ( ) ( ))X t X t X t Z t, 0 , , 0 , ,1 2 3 3

where

( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ˜ ( ) ( ) ( ) ( )

∫

∫ ∫

= =

=− =α α
+∞

− −

X t x t X t x t
s

x s

X t x t
w

x w
x s f s h s s Z t h t

˙ , ˙
d

˙
,

˙
d

˙
˙ e d , e ,

t

t

w

s t

1 0 2 0
0 0

2

3 0
0 0

2 0 3

and

( ) ˜( )∫= −h t e .p s sd
t

0� (20)

Note that ( ) =ẋ 0 00  so that, generally speaking, the integrals of the form ( )
( )∫ wd

t F w

x w0 ˙0
2  in these 

formulas do not converge at w  =  0. We, nevertheless, keep this notation in the following exact 
sense:

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

→

⎧

⎨
⎪⎪

⎩
⎪
⎪

∫
∫

∫
ε

ε

=

− >

+ <ε

ε

ε

+

−

F w

x w
w

F w

x w
w

F

x
t

F w

x w
w

F

x
t˙

d lim
˙

d
0

¨ 0
, 0,

˙
d

0

¨ 0
, 0.

t

t

t0 0
2 0

0
2

0
2

0
2

0
2

� (21)

While a function of the form (21) grows to infinity as →t 0, its product with ( )x t˙0  has a finite 
limit.

It is easy to see that the asymptotic behaviour of these solutions is represented by the fol-
lowing table:

→ →
( )
( )

( ) ( )

−∞ +∞
ω ω

ω ω

α α

−

−

− −

t t
X t
X t

X t Z t

e e
e e

, e e

t t

t t

t t

1

2

3 3

where ( )″ω = −V 0 .
Once we know the solution of the homogeneous system, we find the solution of the inho-

mogeneous system (18):

( ) ( ) ( )
( )

( ) ( )
( )

˜( )

∫

∫

µ

µ

= ⋅

= ⋅α
α

−

−∞

x t x t
F w

x w
w

z t h t
h s

q s s

˙
˙

d ,

e
e

d ,

t

t
t s

1 0
0 0

2

1

�
(22)
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where

( ) ( ) ˜ ( ) ( )
( )

˜( ) ˜( )
⎡
⎣⎢

⎤
⎦⎥∫ ∫= +α

α

−∞

−

−∞
F w x s f s h s

h v
q v v g s s˙ e

e
d d

w
s

s v

0� (23)

and h is given by (20).
For solution (22) to correspond to a homoclinic orbit, it must tend to the origin in both 

directions of time. It is easy to see that ( )→ =±∞ z tlim 0t 1  and ( )→ =−∞ x tlim 0t 1 . However, as 
→+∞t , the function x1(t) will converge to zero only if

( ) µ+∞ ⋅ =F 0.

As we mentioned, when this condition defines a codimension-1 subspace in the μ space, there 
exists a codimension-1 manifold Mhom tangent to this subspace at µ = 0 such that system (14) 
has a homoclinic loop at µ∈Mhom. Thus, the surface Mhom exists when

( )+∞ ≠F 0.� (24)

Now, let us apply the obtained result to system (4). By plugging (12) and (15) into (23) we 
find that

( ) ( ) ( ) ( ) ( )

( )

( )

⎜

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠
⎟

∫ ∫µ µ µ

λ

β

⋅ = +

= − + + − +

+
−

+ + +

−∞

−

−∞
F w x s x s x v v x s s

w
w

w

w
w

w w

˙ e e d ˙ d

2

3
1 tanh

55

12
4 arctan e

15

4 cosh

4 tanh 2 arctan e

cosh
4 tanh

3 tanh

4

4 tanh

3
.

w
s

s
v

w

w

0 3 0 0
2

2 0

3 2
2

2 3

�

(25)

This gives us

( ) ⎜ ⎟
⎛
⎝

⎞
⎠µ π β λ+∞ = − −F

32

3

4

3
.2

Condition (24) is, obviously fulfilled, so we obtain the existence of the sought homoclinic 
butetrfly for parameter values belonging to a smooth Mhom of the form

( ( ) )β
π
λ λ α=

−
+ + −O

4

32 3
1 .

2
2 2� (26)

The corresponding homoclinic solution is given by (13) where, according to (22) and (25), 
we have

∫

∫

λ

β

µ β

=− − + + − +

+
−

+ + +

= = −−

−∞

−

⎜

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠
⎟

⎤

⎦
⎥

⎛
⎝

⎞
⎠

x t x t
x w

w
w

w

w
w

w w
w

z x s s
t

˙
1

˙

2

3
1 tanh

55

12
4 arctan e

15

4 cosh

4 tanh 2 arctan e

cosh
4 tanh

3 tanh

4

4 tanh

3
d

e e d 2e 2 arctan e
1

cosh
.

t
w

w

t
t

s t t

1 0
0 0

2
3 2

2

2 3

1 3 0
2

( ) ( )
( )

( )

( )

( )

�

(27)

Since the condition σ = 0 can be written as ( ) (( ) )λ α α= − + −O2 1 1 2 , we obtain from 
(26) the following parameterisation for the bifurcation curve corresponding to the existence 

I I Ovsyannikov and D V Turaev﻿Nonlinearity 30 (2017) 115



126

of a pair of homoclinic loops to a saddle with zero saddle value in a small neighbourhood of 
µ = 0:

α ε ε λ ε ε β
π
ε ε ε= − + = + =

−
+ >O O O1 , 2 ,

8

32 3
, 0.2 2

2
2( ) ( ) ( )

�

(28)

We need to check that all conditions of the Shilnikov criterion are satisfied by the homo-
clinic loops that exist when the parameters belong to this curve. First, let us check that the 
homoclinic loops at ε> 0 tend to the equilibrium along the leading direction.

Make the following change of variables in system (4) in order to align the coordinate axes 
with the eigendirections of the linear part of the system at O:

α α= − + = +X u v Y u v, .

The system takes the form

α
α
α α α

α

α
α
α

α
α

α
α

α

α β α

=− +
+

−
+

−
+

−

= +
+

−
+

−
+

−

=− + −

u u uZ vZ v u

v v uZ vZ v u

Z Z v u

˙
1

1

1

1

1

1

˙
1 1 1

˙ .

2 2 2
3

2

2 2 2
3

2

( )

( )

( )

Here the coordinates u and Z correspond to the stable directions, and v corresponds to the 
unstable direction. Note that u corresponds to the strong-stable direction (i.e. the corre
sponding eigenvalue is farther from the imaginary axis than the eigenvalue that corresponds to 
the Z direction; recall that α< 1). Thus, the equations of the local strong stable and unstable 
manifolds near the saddle are

( ) ( )
( ) ( )

γ

γ

= + | | =

= + | | =

W Z u O u v O u

W Z v O v u O v

: , ,

: , ,

ss

u
loc 1

2 3 2

loc 2
2 3 2

where the coefficients γ1 and γ2 are found by equating the coefficients of the power series 
expansion of the conditions of invariance of W ss

loc and, respectively, Wu
loc. One obtains

γ
βα
α

γ
β
α

=
−
< = >

2
0,

3
0.1 2 2

This implies that the manifold \W Oss
loc  lies in the region Z  <  0, while Wu

loc lies in the region 
Z  >  0. Finally, since >Ż 0 everywhere at Z  =  0 except for the equilibrium point, the global 
unstable manifold Wu never crosses Z  =  0, i.e. the unstable separatrices of the saddle can 
never enter the region Z  <  0, hence they cannot enter W ss

loc. This proves that both homoclinic 
loops enter the saddle along the leading direction—the Z-axis; as they come from the same 
side Z  >  0, they are tangent to each other at = +∞t  and form a homoclinic butterfly, as 
required by the Shilnikov criterion.

3.2. The separatrix value

To verify the last condition of theorem 2 we will compute the separatrix value A for small 
values of β and check that it lies in the range < <A0 2 which will finalize the proof of theo-
rem 1. The fact that the separatrix value A is positive and small for our system can be inferred 
from [10]. We however make here a different computation which also provides an asymptotic 
formula for A. In order to determine the separatrix value we will use the definition from [34]10. 

10 Note that different but equivalent definitions can be found, for example, in [6, 9, 36].
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Let the equation of the homoclinic loop be ( ) ( ( ) ( ) ( )) ( )= ∈ −∞ +∞u t x t y t z t t, , , , . We con-
sider the linearisation of (4) near this solution:

( )ξ ξ= C t�̇ (29)

where

( ) ( ) ( ) / ( )
( )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟α α

β α
= − − − −

−
C t x t z t x t

x t

0 1 0
1 3 1

2 0
.2

For any two vectors ( )ξ t1  and ( )ξ t2  satisfying (29) their vector product η ξ ξ= ×1 2 evolves 
by the rule

( )η η= D t�̇ (30)

with

( ) ( ) ( )
/ ( ) ( ) ( )

( ) /

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

α β
α

α α
= ⋅ − =

− + − −
− −

−

�D t C t C t
x t z t x t

x t
tr Id

1 3 1 2
1 0

0 1
.

2

As x(t) and z(t) tend to zero when ±∞t → , the asymptotic behaviour of solutions of (30) is 
determined by the limit matrix

/

/

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

α
α
α α

=
− −
− −

−
∞D

1 1 0
1 0

0 0 1

The eigenvalues of ∞D  are 0, ( / )α α− + <1 0 and /α α− <1 0. Thus for →+∞t  each solu-
tion of (30) tends to a constant times the eigenvector ( )η α= −∗ �, 1, 0  corresponding to the 
zero eigenvalue. At the backward time →−∞t  all solutions grow to infinity except for a one-
parameter family of solutions which tend to η∗ multiplied to some constant. Thus, there is only 
one solution ( )η t  such that ( )→ η η=−∞

∗tlimt . For this solution, we have

( )
→

η η=
+∞

∗t Alim .
t

The constant A here is indeed the separatrix value; its absolute value is the coefficient of con-
traction/expansion of infinitesimal areas near the homoclinic loop, and its sign indicates the 
orientation of the loop. It is clear that

∥ ( )∥
∥ ( )∥→

η
η

| | =
−+∞

A
t

t
sup lim ,

t
� (31)

where the supremum is taken over all the solutions of (30).
To compute the separatrix value, perform a coordinates rotation such that the eigendirec-

tions of the matrix ∞D  become the coordinate axes. The system (30) takes the form:

α
α

αβ
α

α
α

α
α

αβ
α

α
α

= −
+

+ + +
+

= − + +
+

+ + −
+

= − + +

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

v x t z t v v
x t

v

v v x t z t v v
x t

v

v v x t v x t v

˙
1

3
2

1

˙
1

1
3

2

1

˙
1

.

1 2
2

1 2 2 3

2 2 2
2

1 2 2 3

3 3 1 2

( ( ) ( ))( ) ( )

( ( ) ( ))( ) ( )

( ) ( )

�

(32)
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Here v1 is the coordinate in the direction of the eigenvector η∗, corresponding to the zero 
eigenvalue of the limit matrix. Thus we are interested in the solution of (32) satisfying the 
conditions ( )−∞ =v 11 , ( ) ( )−∞ = −∞ =v v 02 3 , and the separatrix value is ( )= +∞A v1 .

Introduce a new variable = +v v v4 1 2 to simplify the system:

( ( ) ( )) ( )

( )

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

α
α

α
α

α
α

αβ
α

α
α

= − +

= − + +
+

+ −
+

= − +

v v

v v x t z t v
x t

v

v v x t v

˙
1

˙
1

1
3

2

1

˙
1

;

4 2

2 2 2
2

4 2 3

3 3 4

�

(33)

the solution we are looking for satisfies ( )−∞ =v 14 , ( ) ( )−∞ = −∞ =v v 02 3 . As ( )+∞ =v 03  
automatically, we have that ( )= +∞A v4 .

It is not hard to show that system (33) has a unique solution satisfying these conditions for 
all β and ( ]α∈ 0, 1 . Just note that the problem is equivalent to the following system of integral 
equations:

( )

( )

( ) ( )

( ) ( ( ) ( )) ( ) ( ) ( )

( ) ( ) ( )

( )

( )

⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

∫

∫

∫

α
α

α
α

αβ
α

= − +

=
+

+ −
+

=

α α

α α

−∞

−∞

+ −

−∞

− −

v t v s s

v t x s z s v s
x s

v s s

v t x s v s s

1
1

d ,

e
1

3
2

1
d ,

e d ,

t

t
s t

t
s t

4 2

2
1

2
2

4 2 3

3
1

4

�

(34)

and, since x(s) and z(s) tend exponentially to zero as →−∞s , it immediately follows that 
the integral operator on the right-hand side of this system for t close to −∞ is uniformly 
contracting in the space of bounded continuous functions on ( ]−∞ t,  with appropriately 
chosen exponential weights for v2 and v3. Once the solution is shown to exist up to a certain 
value of t, it is continued to all larger values of t as a solution of the Cauchy problem for 
system (33). Since the solution is obtained as a fixed point of a contracting linear operator, 
which depends smoothly on parameters, the solution also depends smoothly on the param
eters. Because of the uniform convergence of the integrals in (34) as →+∞t , the separatrix 
value ( )= +∞A v4  is also a smooth function of the parameters, i.e. it can be found by an 
asymptotic expansion.

Thus, we will seek for the solution as a power series in ε using formulas (28). The unknown 
functions are represented as

( )ε ε= + + =v v v O i, 2, 3, 4.i i i
0 1 2

The equation of the homoclinic loop has the form

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ε ε ε= + + = + + = +x t x t x t O y t x t x t O z t z t O, ˙ ˙ , .0 1
2

0 1
2

1
2

For ε = 0, system (33) is rewritten as:

( ) ( )= − = − + =v v v v x t v v x t v˙ 2 , ˙ 2
3

2
, ˙ .4

0
2
0

2
0

2
0

0
2

4
0

3
0

0 4
0� (35)
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The first two equations here do not depend on v3
0 and are reduced to the equation

( )+ + =v v x t v¨ 2 ˙
3

2
0.4

0
4
0

0
2

4
0

Its solution satisfying ( )−∞ =v 14  is

( ) = − −v t
t

t

sinh

2 cosh
e ,t4

0
2� (36)

from which we obtain

( ) ( )

( ) ( ( ))π

= −

= + + −

v t
t

t

v t
t

t
t

1

4 cosh
1 2 tanh ,

1

4 2
4 arctan tanh

2

2

cosh
2 tanh .

2
0

2

3
0

Note that ( )v t4
0  vanishes as →+∞t . Therefore, the asymptotic expansion for the separatrix 

value has the form ( )ε ε= +A A O1
2 . To complete the theorem, we need to compute A1 and 

show that A1  >  0.
The first order in ε terms satisfy the following system:

( ) ( ) ( ) ( )

( ) ( ( ) ( ) ( )) ( ) ( ) ( )

( ) ( ) ( )
π

= − = − + + = +

= + −
−

= +

v v v v x t v f t v x t v f t

f t x t x t z t v t x t v t

f t v t x t v

˙ 2 , ˙ 2
3

2
, ˙ ,

1

2
6

8

32 3
,

2 .

4
1

2
1

2
1

2
1

0
2

4
1

1 3
1

0 4
1

2

1 0 1 1 4
0

2 0 3
0

2 3
0

1 4
0

�

(37)

The first two equations do not depend on v3
1, so we will solve the following equation to find v4

1:

( ) ( )+ + + =v v x t v f t¨ 2 ˙
3

2
2 04

1
4
1

0
2

4
1

1� (38)

with the boundary conditions ( )−∞ =v 04
1  and ( )+∞ =v A4

1
1. Two independent solutions of 

the homogeneous part of (38) are

( ) ( )= − = −
+ −− −y t

t

t
y t

t t t

t

sinh

cosh
e ,

cosh 3 tanh 3

2 cosh
e ,t t

1 2 2

2

with the Wronskian equal to

= −y t y t

y t y t
e

˙ ˙
,t1 2

1 2

2( ) ( )
( ) ( )

so that the general solution of (38) is written as:

( ) ( ) ( ) ( ) ( )= +v t C t y t C t y t ,4
1

1 1 2 2� (39)

and the coefficients C1(t) and C2(t) are determined by the following formulas:

( ) ( ) ( ) ( ) ( ) ( )∫ ∫= = −
−∞ −∞

C t y s f s e s C t y s f s e s2 d , 2 d .
t

s
t

s
1 2 1

2
2 1 1

2� (40)
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It remains only to calculate the limit ( ( ) ( ) ( ) ( ))→= ++∞A C t y t C t y tlimt1 1 1 2 2 . We have

( ) ( )
( ) ( ) ( ) ( )

→ →
( )

→ ( )
( )

∫
= =

−
=

+∞ +∞

−∞

+∞
C t y t

y s f s e s y t f t e
lim lim

d
lim 0.

t t

t s

y t
t

t

y t

y t

1 1
2 1

2

1
2 1

2

˙

1

1

1
2

As ( ) /→ = −+∞ y tlim 1 4t 2 , this gives us / ( ) ( )∫=
−∞

+∞
A y t f t e t1 2 dt1 1 1

2 . To compute this integral, 

we split it into three parts. Taking into account that ( ) ( ) ( ) ( ( ) ( ))= −y t x t v t e x t x t2t
1 0 4

0 2 1

8 0
3

0
5  we 

obtain

( ) ( ) ( ) ( ) ( ( ) ( )) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

( )
( )

∫ ∫ ∫

∫ ∫ π

= −

= − −
−

=−
−

−∞

+∞

−∞

+∞

=−∞

=+∞

−∞

+∞⎛

⎝
⎜

⎞

⎠
⎟

y t x t x t v t e t x t x t x t
F w

x w
w

x t x t F w

x w
w

x t x t

x t
F t t

3 d
3

8
2 ˙

˙
d

3

8 2 6 ˙
d

3

48

3

˙
d

16

9 32 3
,

t
t

t

t

t

1 0 1 4
0 2

0
3

0
5

0
0 0

2

0
4

0
6

0 0
2

0
4

0
6

0
2 2

and

( ) ( ) ( )
( )

( ) ( ) ( )

∫

∫

π

π
π
π

=
−

−

−
−

= +
−

−∞

+∞

−∞

+∞

y t z t v t e t

y t x t v t e t

1

2
d

16

9 32 3

1

3
,

8

32 3
d

1

3

2

32 3
.

t

t

1 1 4
0 2

2

1 2 0 3
0 2

2

2

This result gives us the following formula for the separatrix value in a small neighborhood 
of the point µ = 0:

( )π
π
ε ε=

−
+A O

32 3
.

2

2
2

Thus, for all small ε> 0 we have 0  <  A  <  2 which means that the orientable Lorenz attrac-
tor is born from the homoclinic butterfly. Theorem 1 is proven.� □

4.  Discrete Lorenz attractors in three-dimensional diffeomorphisms

In this section we will apply theorem 1 to prove the birth of a discrete Lorenz attractors at cer-
tain codimension-4 bifurcations of 3D Henon-like maps. Consider a map ( ) ( ¯ ¯ ¯)�x y z x y z, , , ,  
of the form

¯ ¯ ¯ ( )ε= = = +x y y z z Bx f y z, , , , ,� (41)

where f is a smooth function, ε is a set of parameters, and the Jacobian B is a constant.
Fixed points of the map are given by the equations

( ) ( )ε= = − =x y z x B f x x, 1 , , .

The characteristic equation at the fixed point x  =  y  =  z  =  x0 is

λ λ λ− − − =A C B 0,3 2

where ( )= ′A f x x,z 0 0 , ( )= ′C f x x,y 0 0 . When (A, B, C)  =  (−1, 1, 1) the fixed point has multipli-
ers (+1, −  1, −  1). We will study bifurcations of this point. To do this, we shift the origin to 

I I Ovsyannikov and D V Turaev﻿Nonlinearity 30 (2017) 115



131

the fixed point and introduce small parameters ε = − B11  , ε = − C12 , and ε = − − A13 . The 
map will take the form

¯ ¯ ¯ ( ) ( ) ( )ε ε ε= = = − + − − + + + +
+ + + + +…

x y y z z x y z ay byz cz

d y d y z d yz d z

, , 1 1 1

,
1 2 3

2 2

1
3

2
2

3
2

4
3

�
(42)

where the dots stand for the rest of the Taylor expansion.
In [12] there was shown that if the following inequality is fulfilled

( )( )ψ = − − + >c a a b c 0,� (43)

then map (42) near the fixed point at zero satisfies conditions proposed in [4], which implies 
that the second iteration of the map is close, in appropriately chosen rescaled coordinates, 
to the time-1 shift by the orbits of the Morioka–Shimizu system. In other words, the map 
is a square root of the Poincare map for a certain small, time-periodic perturbation of the 
Morioka–Shimizu system. As the Morioka–Shimizu system has the Lorenz attractor, its small 
time-periodic perturbation has a pseudohyperbolic attractor [14] which corresponds to the dis-
crete Lorenz attractor in the root of the Poincare map. Thus, we obtain that a discrete Lorenz 
attractor containing the fixed point exists in a small neighborhood of zero for a certain region 
of small parameters ε1,2,3 in map (41).

One can easily repeat the calculations from [12] for ψ< 0 and obtain the same normal 
form in this case, but with one difference—the scaling factor for the time will be nega-
tive, which means that the presence of the Lorenz attractor in the Shimizu–Morioka model 
implies the presence of a discrete Lorenz repeller in map (41) in the case ψ< 0. We men-
tioned that the existence of the Lorenz attractor in the Morioka–Shimizu model is definitely 
true but not formally proven, which means that we are confronted with the same problem 
when trying to establish the existence of the discrete Lorenz attractor or repeller in the 3D 
Henon map.

We bypass the problem by considering the case of an additional degeneracy; namely, we 
study bifurcations when ψ vanishes. The list of rescaled normal forms corresponding to a 
hierarchy of a certain class of degeneracies of the (+1, −1, −1)-bifurcation is obtained in [5]. 
It was shown there that the extended Lorenz model does appear as a normal form in some of 
the degenerate cases. Therefore we can apply theorem 1 and, thus, obtain an analytic proof 
of the existence of a discrete Lorenz attractor in map (42) for some open region of parameter 
values; see theorem 3 below.

There are two multipliers in the formula for ψ, so we consider two possible cases11:

( ) ( )
( ) ( )
− + = − ≠
− + ≠ − =

a b c a c
a b c a c

Case I : 0, 0
Case II : 0, 0.
� (44)

We introduce the fourth independent small parameter ε4 as follows:

( )

( )

ε

ε

= − +

= −

a b c

a c

Case I :
1

4

Case II :
1

2
.

4

4

� (45)

11 Note that the situation when both (a  −  b  +  c)  =  0 and (a  −  c)  =  0 has a higher degeneracy, i.e. we would have to 
deal with codimension at least five here. We do not consider this case in this paper.
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Consider a four-parameter family of maps of type (42) which depends smoothly on ε1,2,3,4. 
In particular, the coefficients a, b, c, and di depend on ε1,2,3,4 smoothly. The following lemma 
provides the normal form for this codimension-four bifurcation in both cases:

Lemma 1.  For any sufficiently small ε1,2,3,4, the second iteration of map (41) is close, in  
appropriately chosen rescaled coordinates, to the time-1 shift by the orbits of:

λ
α β

=
= − − ± +…
= − + +…

X Y

Y X Y XZ X

Z Z X

˙ ,
˙
˙ ,

3

2

�

(46)

in Case I, and

λ β
α

=
= − + + + + +…
= − + + +…

X Y

Y X Y XZ R X R YZ R XZ

Z Z X Z

˙ ,
˙

˙ .
1

3
2 3

2

2 2

�
(47)

in Case II.
Here the dots stand for vanishing at ε = 0 terms, the parameters α, β, and λ are functions 

of ε which can take arbitrary finite values, and the coefficients ( )εRi  are bounded as small 
parameters ε vary.

As we will show below, the sign of the X3 term in formula (46) coincides with the sign of

( ) ( )= − + − − −G d d d d b c4 2 .1 2 3 4
2� (48)

Therefore, when G  <  0, the normal form (46) for Case I coincides with system (4), which 
possesses a Lorenz attractor near ( ) ( )α β λ =, , 1, 0, 0  according to theorem 1. This fact, by 
lemma 1, implies the existence of a discrete Lorenz attractor in the original map (41). Namely, 
the following theorem is valid:

Theorem 3.  Assume that for some ε ε= 0 map (41) possesses a fixed point ( )M x x x, ,0 0 0  
with multipliers (1, −1, −1), such that

− + = <a b c G0, 0,� (49)

where G is given by formula (48) and a,b,c,di are the coefficients in the Taylor expansion (42). 
Then in some small neighborhood of ε0 in the parameter space there exists a domain VDLA 
such that map (41) has a discrete Lorenz attractor when ε∈ VDLA.

It remains only to prove lemma 1.
Proof. Let ν be the multiplier of the zero fixed point of map (42) which is close to 1:

(∥ ∥ )ν
ε ε ε

ε= −
+ +

+ O1
4

.1 2 3 2

Perform the following linear coordinate transformation:

( )

( ) ( ( ))

ν ν ν

ν ε ε ν ε ν

= − + = + − −

= − + − + − +

u x y u x y z

u x y z

, 1 ,

1 1 1 .

1 2

3 1 1 2
2

Map (42) takes the following form
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¯

¯ ( ) ( ( ) ( )

( ) ( ) ) ( ( ) )

( )( ) ( ) ( )
( ) (∥ ∥ ∥ ∥ ∥ ∥ )

¯ ( ) ( ( ) ( )( )

( ) ) ( ( ) ) ( )

( ) ( ) ( )
( ) (∥ ∥ ∥ ∥ ∥ ∥ )

δ δ

ε

δ

ε

=− −

=− + − + − + + − + +

× + − + + − + − + +

+ + − + + − + − + +
+ + − + +

= − + + + − + + + −

+ + − − − + + + + −

× + + − + − + +
+ + − + +

u u u

u u u a u u u b u u u

u u u c u u u d u u u

d u u u u u u d u u u u u u

d u u u O u u

u u a u u u b u u u u u u

c u u u d u u u d u u u

u u u d u u u u u u

d u u u O u u

,

1
1

16
2 2

2 3 2 3
1

64
2

2 3 2 2 3 2

2 3 ,

1
1

16
2 2 2 3

2 3
1

64
2 2 3

2 2 3 2

2 3 ,

1 1 2

2 1 1 2 2 1 2 3
2

1 2 3

1 2 3 1 2 3
2

1 1 2 3
3

2 1 2 3 1 2 3
2

3 1 2 3
2

1 2 3

4 1 2 3
3 2 4

3 3 3 1 2 3
2

1 2 3 1 2 3

1 2 3
2

1 1 2 3
3

2 1 2 3

1 2 3
2

3 1 2 3
2

1 2 3

4 1 2 3
3 2 4

�
(50)

where

(∥ ∥ )

(∥ ∥ )

(∥ ∥ )

δ ν ε
ε
ν

ε ε ε
ε

δ ν ε
ε ε ε

ε

δ ν
ε ε ε

ε

= + −
−

=
− +

+

= − − =
+ −

+

= − =
+ +

+

O

O

O

1

2
,

1
3

4
,

1
4

.

1 3
1 1 2 3 2

2 3
1 2 3 2

3
1 2 3 2

Note that the linear part of (50) is in the Jordan form at ε = 0.
With a close to identity polynomial change of coordinates we kill all non-resonant quad-

ratic and cubic terms. One can see that the system takes the following form after that:

¯

¯ ( ) ( ) ( )

(∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ )

¯ ( ) ( ) ( ) (∥ ∥ ∥ ∥ ∥ ∥ )

δ δ

ε

δ ε

=− −

=− + − + − − − − − + +

+ + | | +

= − + − + + + + + + | | + +

u u u

u u u a c u u a b c u u B u B u u

O u u u u

u u a b c u a b c u O u u u u u

,

1
1

4

1

8
3

,

1
1

4

1

16
,

1 1 2

2 1 1 2 2 1 3 2 3 300 1
3

102 1 3
2

2 2
2

4

3 3 3 1
2

3
2 2

1 2 2
2 3

� (51)
where

( ) ( )

( ) ( )

= − + + + − + − + − +

= − + + − + − − + +

B a b c ab bc d d d d

B a b ab ac bc d d d d

1

32
5 5

1

8
,

1

128
2 2

1

32
3 3 .

300
2 2 2

1 2 3 4

102
2 2

1 2 3 4

Next, one checks that the second iteration of the map (51) coincides, up to terms of order 
(∥ ∥ ∥ ∥ ∥ ∥ )ε +O u u2 4 , with the time-1 shift by the flow of the form

ˆ ( ˆ ) ( ) ( ) (∥ ∥ )

( ) ( ) ˜ ˜ ( ∥ ∥ )

( ) ( ) ( ∥ ∥ )

ρ ρ

ρ ρ

ρ

= + + − − + + + +

= − + − − + + + + | |

=− + − + + + + + | | + +

u u u a c u u a b c u u O u

u u u a c u u b c u u B u B u u O u u

u u a b c u a b c u O u u u u

˙ 2
1

4

1

24
3 5 ,

˙
1

2

1

4
2 ,

˙
1

4

1

8
,

1 1 1 2 2 1 3 2 3
3

2 1 1 2 2 1 3 2 3 300 1
3

102 1 3
2

2
2

3 3 3 1
2

3
2

1 2 2
2 3

�

(52)
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where ˜ /=B G 128300 ,

( ) (∥ ∥ )ρ δ
ε ε ε

ε= − − =
+ +

+ Oln 1
4

,3 3
1 2 3 2

and

ˆ ˆ
⎜ ⎟

⎛
⎝
⎜

⎞
⎠
⎟ ⎛

⎝
⎞
⎠

ρ ρ
ρ ρ δ δ

+
− = −

1
ln

1 1
1

,1 2

1 2 1 2

so

ˆ (∥ ∥ ) ˆ (∥ ∥ )

(∥ ∥ ) (∥ ∥ )

ρ
ε ε ε

ε ρ
ε ε ε

ε

ρ
ε ε ε

ε ρ
ε ε

ε

= −
− +

+ =
− −

+

=
− +

+ =
−

+

O O

O O

4
,

7 5

24
,

2
,

2
.

1
1 2 3 2

2
1 2 3 2

1
1 2 3 2

2
1 3 2

Introduce new parameters and time via the following formulas:

/ / /τ ρ α ρ λ ρ= = = =t s s s s, 2 , , .1 3 2

Now we consider Cases I and II separately.

In Case I with ( )ε = − +a b c4
1

4
 we perform the following scaling of the coordinates and 

parameter ε4:

( )ν ν ν β
ε

= = = = − −�u X u Y u Z a c
s

, , , 4 ,1 1 2 2 3 3
4

� (53)

where

( ˆ )ν ρ
ν
ν ν> = + = = −

−
� �

s
s

s

a c
0, 2 , , .1 2

2
2

2
3

2

� (54)

Then, equation (52) recasts as

( )

( )

( )

λ

α β

= +

= − − + +

= − + +

�
X Y O s

Y X Y XZ
G

X O s

Z Z X O s

˙ ,

˙
16

˙ .

3

2

�

(55)

According to [5], the equality G  =  0 is the higher order degeneracy condition, which we 
do not consider here, i.e. we assume that ≠G 0 when ε = 0. After setting /=� G16 , system 
(55) takes the form (46) up to O(s)-terms (recall that >� 0, which does not allow us to control 
the sign of the X3–term).

In Case II we have ( )ε = −a c4
1

2
 and the scaling of the coordinates and the fourth param

eter is performed as follows:

( )ν ν ν β
ε

= = = = − +�u X u Y u Z a b c
s

, , , 21 1 2 2 3 3
4

� (56)

where

( ˆ ) ( )ν ρ
ν
ν ν= + = = − +� �

s
s a b c s2 , , .1 2

2
2

2
3� (57)

In this case system (52) takes the form
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( )

( )( )

( ) ˜ ( )

( ) ( )

λ β

ε

α

= +

= − + + − + − +

+ − + + +

= − + + − + +

�
�

�

�

X Y O s

Y X Y XZ
G

X b c a b c YZ

a b c B XZ O s

Z Z X a b c Z O s

˙ ,

˙
16

1

4
2

2

˙ 1

12
.

3

2 2
102

2
4

2 2 2

�

(58)

Finally, taking 
( )

=
− +

�
a b c

12
2 we obtain formula (47). Lemma is proven.� □

Now, according to lemma 1, the flow normal form of map (41) for the codimension-four 
bifurcation under consideration coincides with system (4) up to asymptotically small terms. This 
system has a Lorenz attractor in some domain of the parameter space due to theorem 1, and this 
implies the existence of a discrete Lorenz attractor in map (41). Theorem 3 is proven.� □

We remark that system (47) was not studied before, so the question of the existence of 
Lorenz or other attractors in this system is open. However, a similar system of ODEs was 
obtained in [55] as a finite-dimensional reduction of the Gray–Scott PDE model with a codi-
mension-two singularity. Numerical experiments with the obtained ODE model revealed a 
Lorenz-like chaotic behaviour [56]. Thus, the analytic study of Lorenz attractors in the normal 
form (47) can provide results relative to the spatio-temporal chaos in heterogeneous media.
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