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Abt\tract. Sufficient conditions are found so that a. family of smooth Ha.miltonia.n 
fimvs limits to a. billia.rd tim\' as a. pa.rameter ( ---+ O. This limit is proved to be 
C 1 near nOll-:singular orbit:;;, and CD near orbits tangent to the billiard boundary. 
These result:;;, are used to prove that :scattering (thus ergodic) billiards ,vith tangent 
periodic orbits or tarlgcllt lrorrroclirric orbit;,; producc rrcarby Hiuniltolliiul nO\vs wiLlr 

elliptic islands. This implies that ergodicity may be lost for smooth potentials 'i",hich 
are arbitrarily close to ergodic billiards. Thus, in some cases. anomoulous transport 
a:s:sociated ,,,,ith stickine:s:s to stability islands i:s expected 

1 Introduction 

The billiard ulOdel if:) coucerued willI the ulOLioll of a POillt parLicle traveling 
"\yith a constant. speed in a region and undergoing elastic collisions at. the 
region's boundary. 'This motion is very mllch like in that of a real billiard 
Lable - the lllaiu difference if:) that Lliere if:) 110 [ricLioll ill the ulOJel (f:)0 Llie 
ball neyer stops nor rolls). In t.he tvyo-dimensional setting of our modeL the 
ball is act.ually a f:)mall Jiok (a Lwo-Jillleusioual ball). Differeut f:)hapef:) o[ Llie 
billiard t.able: and t.he number of balls t.hat. one con:siders influence the t.ype 
of mot.ion a ball may execllte. b:rgodir billiards are billiard tables in whirh 
Llie balb execute a uuifol'luly dif:)ordered motiou: all posoible pooitiom; aud 
velocities arc realized by the traveling billiard balls (for almost. all initial 
pooitionf:)). 

The billiard problem haf:) beell exteusively otudied both ill ito dasf:)ical aud 
quantized formulation. K umerous applicat.ions lead to study such a ITlOdel 
problem: Firf:)t, Lliere exiot direct. lllechanicalreali;..;ationf:) o[ thif:) ulOJel (e.g. 
the mot.ion of N rigid d-dimensional :sphere:s in a d-dimensional box may 
be redllced to a billiard problem: possibly in higher dimensions [21, 22, 7]. 
See abo [G] [or the inelaf:)tic case.). SeconJ, it servef:) as an idealiz.ed ulOdel 
for t.he motion of charged particles in a potential, a model 'ivhich enables 
Llie exalllillaLioll of Llie relation bei.\veeu dasf:)ical alld quanLi;..;ed oysLelllo: 
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see [14] and references therein. Finally, and most important, this model has 
been suggested [21] as a first step for substantiating the basic assumption of 
statistical mechanics - the ergodic hypothesis of Boltzmann (see especially 
the discussion and references in [22, 24]). 

In all the applications of this model, of special interest are so-called scat­
tering billiards, i.e., billiards in a complement to the union of a finite number 
of closed convex regions. For example - the two-dimensional idealization of a 
gas in the form of a lattice of rigid disks produces a scattering billiard (" the 
Sinai billiard"). The motion in a scattering billiard is highly unstable thus 
produces strong mixing in the phase space. More precisely, it has been shown 
[21, 11, 1] that the corresponding dynamical system is (non-uniformly) hy­
perbolic, it is ergodic with respect to the natural invariant measure and it 
possesses K -property. Based on this theory, statistical properties of various 
scattering systems have been analyzed (see [5, 4]). 

Fig. 1.1. Tangent trajectories 

a) Singular (tangent) periodic trajectory 
b) - - - - -non-singular periodic trajectory, 

----'Tangent homo clinic trajectory to the periodic orbit. 

Do small perturbations ruin the ergodicity property of a scattering bil­
liard'? In this paper we consider the perturbation caused by the" natural" 
smoothening of a billiard fiow, by which the step-function potential at the 
billiard boundary is replaced by a family of smooth potentials approaching 
the step function, preserving the correct refiection law near the boundary. 
We stress that the billiard reflection rule (" angle of reflection equals angle 
of incidence") appears as a limit only, and the billiard itself is, of course, 
an idealized model to the real motion. Therefore, the problem of relating 
the statistics manifested by the billiard dynamical systems to actual physi-
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cal applicatiolls lllUf:)t illeviLably illclude Lile sLudy of Lile sllwothellillg of Lile 
billiard potential. 

The inflllen<::e of sllch smoothening is a non-trivial qllestion, since the 
dynamical sy:stem associated l,vith the billiard l,ve consider (in the :simplest 
setting, this is a tvm-dimensional area-preserving mapping ['21]) is singlllar. 
III parLicular, as explailled lllore precisely ill f:)edioll 2.1, f:)ingularities appear 
ncar trajectorie:s l,vhich arc tangent to the billiard's boundary - like the ones 
shmvn in figure 1.1. Thus, even thOllgh the s<::attering hilliard is hyperholi<:: 
almo:st every\vhere, theoretically, there exists a possibility that the singular 
set (e.g. singular periodi<:: orhits) "\-yill produ<::e stahilit~y islands llnder small 
perturbation. 'Vhile such a pllellomenoll f:)eems to be quite COllllllOll, gelleral 
theory docs not exi:st. Indeed, it is dear that the re:sults are not straightfor­
"\-Yard - namel~y it is not trlle that all smooth s~ystems approa<::hing a singlllar 
hyperbolic and mixing sy:stem have stable periodic orbits nor is the converse 
- that they have the same ergodic properties as the singular s~ystem. (As an 
exalllple, conf:)ider all allalogous problelll for Olle dilllellsiollal lllapS; For a 
family of tent map:s of an interval which arc knmvn to be ergodic and mix­
ing, the ergodi<::ity property may he easily destroyed in an arhitrarily <::lose 
sllwoth family: if the maxilllUlll of the inLerval illlage produces a periodic or­
hit, it is <::learly stahle. However, the smooth one-dimensional map does not 
always pOSf:)eSS sLable periodic orbits: there may be a positive llleasure f:)eL of 
parameter values for l,vhich the smooth maps arc ergodic and mixing [16]). 

In this paper l,ve prove that, indeed, (1 pf'rillrhation of a scattering hilliard 
lo u.. snlOvlh II(t.,nilfun-t(w JlOlL' nwy crutle slu..bddy -tslands lH'u..'J' s-tng-ulit'J' pt­
riodic and homoclinic orbits of the billiard. An important ingredient of the 
proof if:) the esLablislled cOllnedion beL"veell the lillliting f:)mooLil IIalllilLolliall 
Hmvs and the singular billiard How. Thi:s connection, which seems to be fun­
damental for llnderstanding the appli<::ahility and limitations of the hilliards 
Lo more realif:)tic models of particle llwtion lias not beell previously fOl'lllaliljed 
(to the best of our knowledge), and has received :surprisingly little attention. 

In the physi<::s <::ommllllity it has heen assumed to exist; For example, in 
[IG] the qualitaLive behavior of orbits of the dialllaglleLic Kepler problem has 
heen analyr,ed h~y studying the four-disk hilliard system l,vhi<::h has similar 
spaLial sLrudure. Furthermore, in that paper, the cOl'l'ef:)pondellce beL\Veell 
elliptic periodic orbit:s of the :smooth Hamiltonian system and singular peri­
odi<:: orhits of the modeling hilliard was noticed. Nevertheless, 0111' analysis 
reveab nOll-trivialrequiremenLf:) Oll f:)mooLil potelltials approadlillg the bil­
liard potential, "\-yhi<::h are essential for the dynami<::s of the <::orresponding 
IIallliHoniall f:)ystem to follow Lile dYllamics of Lile billiard How. Therefore, a 
rigorous proof of a correspondence bctl,veen billiard and "smooth" orbits can 
not he immediate. 

J\,Iathelllatically, l\'1arf:)dell [19] haf:) studied a lllore gelleral quesLioll of Llle 
behavior of the symplectic :structure l,vhen a family of :smooth Hamiltonians 
approadles a f:)ingular limit, alld related thef:)e problelllf:) Lo the gelleral sLudy 
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of disLribuLiolls 011 lllauifoids. Iu this settiug. he bhowed that SOllle proper Lies 
of t.he smooth Hamilt.onian:s arc preserved by the singular one. For example. 
he proved that if Lile families of IIallliHonialls are ulliformly mixing Lilell Lile 
mixing propert.y carries t.o t.he :singular sy:st.em a:s \vciL Here .ye investigate 
tht: other dirt:rtion oft.lw ahovt: rt:slllt - nanwl~y givt:n a singular s~ystt:m whirh 
is mixing - \VllaL can be said ou Lile nai.ural falllily of sUlOoi.h IIalllilLouiall 
which approaches t.his limit.ing :system. 

Rt:rt:nt.ly, an example of anot.lwr kind of smooth analogue of a scattt:ring 
billiard wit.h elliptic islands l,va:s constructed [9J; namciy, for the mot.ion of a 
point.-l,vise partirlt: in a finitt:-range smooth pot.ential, l,vht:rt: tht: pot.ential's 
supporL cOllsibts of a IilliLe llulllber of uon-ovel'lappillg disks 011 a plalle torus. 
It was shmvn that in thi:s geomet.ry t.he smooth pot.ential eH·ect i:s t.o C'l'eatc 
a finitt:-lengt.h-travt:l along the srattNing disks, and t.his produres forllsing 
:shifts ncar t.angent trajectories even in the limit of high energies. Thus, it 
.yaS provt:d t.hat. for any given enNgy It:vt:l, t.lwre exist.s an arrangt:mt:nt. of 
Lile disks for \\'hich elliptic iblands exisi.. IIere, a completely diIl'ereui. approadl 
i:s taken, which in part.icular, docs not assume any :specific geomet.ry of the 
scattt:rNS nort: that tht: pott:ntial is of a finitt:-rangt:. 

Auother Lype of nai.ural perLurbatiou of a billiard is adlieved by a de­
format.ion of the billiard's boundary (in a non-:smoot.h fashion for :scatter­
iug billianh with a piece-\vibe bmooLll boundary). \Vhile buch deformai.ionb 
have been extensively :studied numerically, l,ve arc not aware of t.heoretical 
approarht:s for studying t.lw lwar-Ngodir rt:gimt:. On t.lw other t:nd, pertur­
batious of uear-inLegrable billiards lllay be si.udies usiug l\'1eluikov techuique 
[8]. 

Traditionally, transport propertit:s of t.lw extt:nded Sinai hilliard \VNf 
:studied in terms of the decay of t.he corrciation function [5]. More reccntly 
(see ['27] and rt:fNenct:s t.lwrein), Poinrar~ rt:CllrrenCt:S and st.irkint:ss in phast: 
space of both Siuai billiards alld Cabini billiarcb were uUlllerically sLudied. 
It has been demonst.rated t.hat. t.he appearance of sticky island:s for some pa­
ramt:t.er Va Illt:S raust:s anomoulolls transport - spt:cifi rall"':/ pmvt:r-l a\v dt:cay for 
Lile Poillcare recurrenceb disi.ribui.ion. To produce Lile anoulOulos trallsporL 
a paramt:t.er rontrolling the shapt: of tht: hilliard VimS carefully tlllwd to pro­
duce self-bimilar bticky islaud sLruci.ure. l\,Ioreover. iL hab beeu observed that 
:such a tuning i:s po:ssiblc ncar any paramet.er value for which i:slands exist.. 
HNe, l,Vt: provt: that islands may lw prodllct:d hy smoothening of the hilliard 
boundary. COlllbinillg i.hebe resuHs illlplies that by Luuing i.he sUlOothelliug 
one ran ohtain sticky islands and thllS anomoulous transport for the '-orrnz 
[j([!j '{{wdd tvilh ({J"bilntrdy t,fwJ"P s'frlOolh polcllfwts. 

The general scheme of the paper is as follow:s: In 2.1 we int.roducc the 
hilliard flmy in a gt:neral domain, and dt:srrilw it.s nat.llre nt:ar reglllar and 
Lallgeui. collibion poinLb and its relatiou i.o i.he btaudard billiard Ulap. Thell, 
in 2.2, l,ve introduce a da:ss of one-paramet.er familie:s of Hamiltonians and 
formulaLe suIIiciellt cOllditious ou this dabs so that as the parallleLer t ---+ 0 
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Llley approach Llle billiard Ilmvi:L III oed ion 2.:1 oOllle exalllpies of falllilies of 
:smooth Hamiltonians :satisfying our assumptions are presented. In section 2.4 
we fOl'lllUlate the lllaill LlleOrelllf:) whidl eotablif:)h in \vllich sellse the IIalllilLo­
nian HD'\vS approach the billiard HD'\v. In section 3 "\ve utilize the:se theorems 
to proye the existence of elliptic islands in Hamiltonian -Amys vyhich approx­
illlaLe ocatterillg (Sillai) billiarJo; Firf:)t, we otuJy the phaf:)e f:)pace sLrucLure 
of the billiard map ncar singular periodic orbits and ncar singular homo­
dillic orbito. \Ve prove that eXif:)tellce of SUdl orbito illlplieo Llle appearallce 
of a non-smooth analogue of the Smale horseshoe, similar to the horseshoe 
in the H~non map. Then, llsing the closeness reslllts of section 2.4 \ve estah­
lioll Llw.L if a oillgular periodic orbit/holllOclinic orbit exiots for the billiard 
map, then nece:ssarily there exist nearby Hamiltonians with elliptic periodic 
orbiLf:). The appearance of persiotenL f:)ingular llOIIlOclillics alld oillgular (tan­
gent) periodic orbits for scattering billiards is conjectured and the fonner i:s 
llllllwrically demonstrated. Section 4 is devoted to a discussion on the im­
plicatioll of these ref:)uHs. III appelldix A exalllpies ollmv ing the llecesoiLy of 
:some of the conditions imposed on the family of Hamiltonian:s are presented. 

2 Closeness of plane billiards and 
smooth Hamiltonian flows 

2.1 Billiard How. 

COllsider all opell boullded regioll D 011 a plalle willI a piecewioe f:)IIlooth 
(Cr+l

, r 2: 2) boundary /3. On S' there is a finite :set C of :so-called corner 
points ~1 . r:!, ... sllch that the arc of the hOllndar~y that connects nvo neigh­
borillg corller POillto if:) C r+1-f:)IIlOoLIL LeL uo call thef:)e arCf:) lilt. oo·u;nd().'/'ll ().,/,cs 
and denote them by 8 1 , S'2, . The set C includes all the points where the 
houndary loses smoothness and all the points "\vhere the curvature of the 
boundary vanishes. Thu:s, the curvature has a constant sign on each of the 
arcs Si. Heing eqllipped with the field of imvard normals, the arc is called 
con'vcr if iLf:) curvaLure if:) negative (\-vith respecL to the dlOoell equipIIlenL) alld 
it is called concave if its curvature is positive (see figure 2.1). 

Consider thf; hilliard fiO'lD on n "\vhich desnihes the motion of a point 
ma:ss moving "\vith a constant velocity between consecutive clastic collisions 
\vith S. The phase space of the -Amv is co-ordinatir,ed h~y (,J;, y,P:r;,py) \vlwre 
(;[', y) is the pOf:)itioll of the particle in D alld (V,,, Py) if:) Llle velocity vecLor: 

:t=px Y=Vy· (2.1 ) 

IIellceforth, to disLillguish beL ween Llle plwse opace alld the cOllIiguration 
:space D we re:serye the term "orbit" for the orbit:s in the phase space and the 
term "traje<::tory'; for the projection of an orhit to the (x, y)-plane. 

The ilmv io deIilled by the conJiLioll that the velocity vedor (V",}Jy) io 
constant in the interior, and at the boundary it change:s by the elastic reHec­
Lioll rule f:)0 p; + P~ = cun lit alld the allgle of reilecLioll eq uab Llle allgle of 
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iucideuce \v ith Lile op pOf:)ite sigu. Takiug the poiut of reIlecLiou as the origiu of 
the coordinate frame and the boundary':s normal at that point as the y-axi:s. 
Lile reIlediou rule if:) f:)imply 

Px ---+ Px,'jJy ---+ -Py: (2.2) 

namely, the angle of incidence (,6 is arcianpy I Px. This Imv i:s ,yell defined only 
l,.vhen the normal can be ,vell defined: it. is invalid at t.he corners vylwre the 
boundary loof:)es iLf:) f:)mOOLillleso. 

C enerally, Llle iucideuce augle rj; belougs to [- %, %], but if Llle boundary io 
convex, 1(,61 < %. If the boundary arc is concave, it i:s possible to have dJ = ±% 
(figure 2.1) ,vhich corresponds to a t.rajectory tangent. t.o S. 

A special case is a tangent. trajectory (6 = ±~) l,.vhich reaches the hOlllld­
ary at an inflection point. One can ea:sily :see that any do:se trajectory un­
dergoes an llnhollndedly large number of collisions before leaving a small 
ueighborllOod of the iuIlediou poiut, aud for the trajecLory Laugeut to Lile 
boundary at the inflection point itself there i:s no reflection at all (figure 2.1). 
'l"he trajedory is t.erminated at t.he moment. of SllCh tangency and t.he corre­
:sponding orbit of the flow is not defined for greater time:s. That i:s the rea:son 
for excluding t.he infledion points from consideration by pllt.ting them into 
Lile coruer oel.. 

DeuoLe poiuto iu Llle phaf:)e opace of the billiard now as q == (x, y,P:t,,'jJy) 
and the time t map of the flow as 6t : Clo (;ro , Yo, 1\('0, pya) f- qt(Xt, Yt, Pxt, pyd· 
H.,ecall that the refledion lal,.v is not defined at the corner points: t.hus, h~y 

writing qt = Vtqo, \ve mean, iu particular, Liw.L the piece of trajedory that 
conneds (XD' Yo) and (.TI, vd is on a finite distance of the corner set C. At 
Lile oallle tillle \ve allow Lile Lrajedory to have oue or more poinLf:) of tangeucy 
with concave cOlnponents of S. 

A point q(.r, .1/, Px, Py) in the phase space is called an inner point if (.r, Y) 9!:-

8, and a rolliFiion point if (,r, y) E (8\C). Obviollsly, if q(J and ql = h,q(J are 
iuner poinLf:), theu qt dependo conLiuuouoly ou qo aud L Otherwioe, if qt io a 
(non-t.angent) collision point, the velocity vector llndergoes ajllmp: denot.ing 
by qt-O = Vt-oqo and qt+O = uHOqO the poinLf:) jusL before and juot after Lile 
colli:sion, it follmvs that (l\rt+O, Pyt+o) and (Pxt-O, Pyt-o) arc related by the 
elast.ic reflection lmv. '1"0 avoid ambigllit.y l,.ve aSSllme that at. a collision point 
Lile velociLy vedor if:) orienLed inf:)ide D: thus, we put Vt == uHO. 

f'urthel', if qt if:) au inuer poiut aud if the piece of trajecLory that couuecLs 
(xo, Yo) and (Xt, yd doe:s not have tangencie:s with the boundary, then CIt de­
pewh C'1'-sulOothly ou qo and l. Ou the other hand, it is well knowu [21J that 
the map 6t loses smoothne% at any point qo ,vho:se trajectory i:s tangent to 
the boundary at least. once on the int.erval [0, tJ. Indeed, choosing coordinat.es 
00 Liw.L the origin is a poinL ou a coucave bouudary arc /.,';, Lile y-axio is Lile 
normal to Si and the ;r-axi:s i:s tangent to Si, the arc is locally given by the 
equaLiou 

y = -:t'.! + . 
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Fig. 2.1. Billiard flow 

a) • - standard corner points, D - inflection corner points 
- concave boundary arcs, S2,4,6,7 - convex arcs 

-- Regular reflection, - - - Tangent trajectory 
b) - , -, Tangent trajectory terminated at an inflection point 

It follows that for small 0 > 0 the time t = 0 map of the slanted line (xo = 
-0/2 + ayo,pxo = l,pyo = 0) has a square root singularity in the limit 
Yo --+ -0 which corresponds to the tangent trajectory (see figure 2,2; a # 0 
for graphical purposes): 

(xo, yo,Pxo,Pyo) = 
1 

("20 + ayo + O(oyo), 2V-yoo + O(oyo), 1 + O(yo) 

,2V-yo + O(yo)) at Yo:::; 0 

If qo and qt = btqo are inner points, then for arbitrary two small cross­
sections in the phase space, one through qo and the other through qt, the local 
Poincare map is defined by the orbits of the billiard fiow, If no tangency to 
the boundary arcs is encountered between qo and qt, then the Poincare map 
is locally a C r -difleomorphism, 

One can easily prove that the same remains valid if qo, or qt, or both 
of them are collision points, provided the corresponding cross-sections are 
composed of the nearby collision points, In fact, the collision set (the surface 
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...•. /:: ........................... . 

Fig. 2.2. Singularity near a tangent trajectory 

(x, y) E S in the phase space) provides a global cross-section for the billiard 
fiow. The corresponding Poincare map relating consecutive collision points is 
called the billiard map. A point on the surface is determined by the position s 
on the boundary S and by the refiection angle 1; which yields the direction of 
the outgoing velocity vector (the absolute value of the velocity does not mat­
ter because p; + p~ is a conserved quantity - the energy - and it may be taken 
arbitrary by rescaling the time). The initial conditions, corresponding to a 
trajectory directed to a corner or tangent to a boundary arc at the moment 
of the next collision, form the singular set on the (s, 1; )-surface. Generically, 
the singularity set is a collection of lines which may be glued at some points. 
The billiard map is a C r -diffeomorphism outside the singular set; it may be 
discontinuous at the singular points. Near a singular point corresponding to 
the tangent trajectory the continuity of the map can be restored locally by 
taking two iterations of the map on a half of the neighborhood of the singular 
point (see figure 2.2). The obtained map will, nevertheless, be non-smooth at 
the singular point, having the square root singularity described above. 

2.2 Class of smooth Hamiltonians. 

Formally, the billiard fiow may be considered as a Hamiltonian system of the 
form 

(2.3) 

where the potential vanishes inside the billiard region D and equals to infinity 
outside:: 

{ o (x,y)ED 
Vb(X, y) = +00 (x, y) ~ D (2.4) 

Clearly, this is an approximate model of the motion of a pointwise particle 
in a smooth potential which stays nearly constant in the interior region and 
grows very fast near the boundary. However, it is not obvious immediately 
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when (and in which sense) this motion is indeed close to the billiard motion. 
We examine this question in this section and describe a class of potentials for 
which the billiard approximation (2.4) is correct in some reasonable sense. 

Consider a Hamiltonian system associated with 

2 2 

H = P; + P; + V(x, Y; f) (2.5) 

where the potential V(x, Y; f) tends to zero inside the region D as f --+ 0 and 
it tends to infinity outside. Specifically, we require that 
I. For any compact region KeD the potential V(x, Y; f) diminishes along 
with all its derivatives as f --+ 0: 

lim IIV(x, Y; f)l{(x,Y)EK}llcr+1 = O. 
f--++O 

(2.6) 

The growth of the potential to infinity across the boundary is a more 
delicate issue. The crucial construction here is that V is evaluated along the 
level sets of some finite function near the boundary. Namely, putting the set 
C of corner points Ci out of consideration, we suppose that in a neighborhood 
of the set (D\ C) there exists a function Q( x, Y; f) which is cr+l with respect 
to (x, y) and it depends continuously on f (in cr+l-topology) at f 2: O. 
Specifically, Q(x, Y; f) along with its derivatives have a proper limit as f --+ O. 
Assume that 
IIa On the boundary, the function Q(x, Y; 0) is constant between any two 
neighboring corner points: 

Q(x, Y; f = O)I(x,Y)ESi == Qi (2.7) 

We call Q a pattern function. For each boundary component Si, for Q 
close to Qi, let us define a barrier function Wi(Q; f) which does not depend 
explicitly on (x, y) and assume that: 
lIb There exists a small neighborhood Ni of the arc Si on which the potential 
V is given by Wi evaluated along the level sets of the pattern function Q: 

V(x, y; f)l(x,Y)ENi == Wi(Q(X, y; f); f) (2.8) 

lIe The gradient of V does not vanish in a finite neighborhood of the boundary 
arc:-;: 

\7VI(x,Y)E N i # 0 (2.9) 

which is equivalent to the following conditions 

\7QI(x,Y)E N i # 0 (2.10) 

and 
d 

dQ Wi(Q; f) # o. (2.11) 
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Conditions IIa,b,c formalize the requirement that the direction of the 
gradient of the potential must be normal to the boundary as f --+ +0. Ob­
viously, this is necessary for having a proper refiection law in the limit: if 
the refiecting force has a component tangent to the wall, then the tangent 
component Px of the momentum will not be preserved during the collision 
(see (2.2)). 

Now we may describe the rapid growth of the potential across the bound­
ary in terms of the barrier functions Wi only. Choose any of the arcs Si and 
henceforth suppress the index i. Without loss of generality assume Q = 0 
on S. By (2.10), the pattern function Q is monotonically increasing across S 
and we assume Q is positive inside D near S and negative outside (otherwise, 
change inequalities in (2.12) to the opposite ones). Assume 
III As f --+ +0 the barrier function increases from zero to infinity across the 
boundary Si: 

. {+oo Q < 0 
hm W (Q; f) = 0 Q 0 

f--++O > (2.12) 

Note that according to I. and lIb., for any Qo > 0 

lim IIW(Q, f)IQ>Qollcr+1 = O. 
f--++O -

(2.13) 

Clearly, it will cause no troubles if one allows W to take infinite values: 
by (2.11), the function W is monotonic and if it is infinite at some Q, it is 
infinite for all smaller Q; on the other hand, trajectories always stay in the 
region where W is bounded: since the energy given by (2.5) is conserved, the 
value of the potential is bounded by the initial value of H. We will study 
limiting behavior (as f --+ +0) of the smooth Hamiltonian system (2.5) in a 
given, fixed energy level, H = H*. This implies that all trajectories stay in 
the region W ::; H* for any f. It follows that the symbol +00 in (2.12) may 
be replaced by any value greater than H*. 

It is immediately evident that the particle in the potential V satisfying 
condition I moves in the interior of D with essentially constant velocity along 
a straight line until it reaches a thin layer near the boundary S where the 
potential runs from small to very large values (the smaller the value of f, 

the thinner the boundary layer). By virtue of condition III, if the particle 
enters the layer near an interior point of some boundary arc (corner points are 
not considered in this paper), it can not penetrate the layer and go outside -
because fixing the value of the energy bounds the potential from above. Thus, 
the particle is either refiected, exiting the boundary layer near the point where 
it entered, or it might, in principle, stick into the layer, traveling along the 
boundary far away from the entrance point. As simple arguments show (see 
the proof of theorem 1 below), condition II guarantees that when a reflection 
does occur it will be of the right character, approximately preserving the 
tangential component (Px) of the momentum and changing sign of the normal 
component (Py). However, as argued below, and shown by an example in 
Appendix A, conditions I-III are insufficient for preventing the existence of 
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non-reflecting trajectories. Since such finite length travels along the boundary 
layer must be forbidden in the limit f --+ 0, we impose an additional restriction 
on the shape of the potential near the boundary. Denote the normal force 

function by F(Q; f) = d~ W(Q, f) and require the following: 

IV The normal force is a monotonic function of Q: 

WI/(Q) == F'(Q) ~ 0. (2.14) 

(According to condition III, since W decays rapidly across Q = 0, it follows 
that its derivative F( Q) is close to -00 at small Q. Then, as Q grows, F( Q) --+ ° by (2.13). Thus, F(Q) can not be strictly decreasing function and the 
monotonicity of F(Q) is indeed equivalent to the positiveness of F'(Q).) 

To see how a violation of the monotonicity condition can lead to the ap­
pearance of non-reflecting trajectories suppose that for arbitrarily small f 

there is an interval of values of Q, arbitrarily close to the boundary, on which 
the graph of absolute value of F(Q) is as shown in figure 2.3: it grows from 
zero to very large values, then decays back to nearly zero at a value Qfwhich 
approaches zero as f --+ 0, and only after that it grows to infinity. Since the 
force is the gradient of the potential and, according to condition II, it is 
proportional to F( Q) whereas the distance to the wall is proportional to Q, 
it follows that the graph of the normal component of the reflecting force vs 
the distance to the wall has the same shape as in figure 2.3. Thus, the initial 
velocity of the particle can be taken such that the normal component of the 
velocity is completely damped when moving through the region of the first 
peak of F(Q), leading to the trapping of the particle in the zone where the 
reflecting force is nearly zero with the normal component of velocity close to 
zero too. In this case the distance to the wall will change very slowly and 
the particle may stay at a small distance to the wall for a long time, travel­
ing along the boundary instead of making reflection. An explicit example of 
such trapping in a circular billiard is presented in Appendix A. In fact, the 
geometry of the boundary plays a crucial role here: one can show that the 
finite length travels along a concave boundary arc are forbidden even for the 
non-monotonic F (Q) (though the reflection time may still be unboundedly 
large in this case). 

Conditions I-IV guarantee, as is precisely formulated in section 2.4, a 
correct reflection law only in the CO-topology and not in the C1-topology. 
As this issue is very important for the sequel, we explain its intuitive impli­
cation now. Let us take a point (xo, Yo) and momentum (PxO,Pyo) as initial 
conditions for an orbit of the Hamiltonian system (2.5) and let us take the 
same initial conditions for the billiard orbit. Consider a time interval t for 
which the billiard orbit collides with the boundary S only once, at some point 
(xc, Yc) (see figure 2.4). Here, the incidence angle <pm is the angle between the 
vector (xo - xc, Yo - Yc) and the inward normal to S at the point (xc, Yc); the 
reflection angle <pout is the angle between the vector (Xt - xc, Yt - Yc) and the 
normal, where (Xt, Yt) is the point reached by the billiard trajectory at the 
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IF (Q) I = I w' (Q) I 

Q 

Fig. 2.3. Non-monotonic normal force 

time t. In the same way one may define the incidence and refiection angles 
for the trajectory of the Hamiltonian system where (xo, Yo) and (xc, Yc) are 
taken the same as for the billiard trajectory and (Xt(f), Yt(f)) is now defined 
by the Hamiltonian flow (see figure 2.4). We expect the trajectory of the 
Hamiltonian system to be close to the billiard trajectory; in particular, it 
should demonstrate a correct refiection law 

for sufficiently small f. Note, however, that (<pin + <pout) is a function of the 
initial conditions. Conditions I-IV give only CO-closeness of these functions to 
zero and to ensure a C1-correct reflection law we need the following additional 
condition on W(Q): 
V There exists an Ct E (0,1) such that the following holds for any interval 
[Ql(f), Q2(f)] on which W(Q) is bounded away from zero and infinity for all 
t: 

. WI/(Q) 
hm = 0, 
f--+O IW'(Q)I3+a 

(2.15) 

uniformly on the interval [Ql, Q2]' 
This condition is used directly in the proof of theorem 1 (see [25]). To 

give the reader a feeling of how the smoothness may be lost, consider a one­

dimensional reflection described by the equation Q + W'(Q; f) = ° where 
Q 2': 0, W(O; f) = +00, limf--+O W(Q; f) = ° at Q > 0. Here, Q is the position 
of a particle moving inertially until a collision with the wall at Q = 0, after 
which the particle refiects elastically and moves back. The time of collision 

is given by T = t V2dQ where H is the value of energy and Q*(f) 
JQ * JH - W(Q) 

is such that W(Q*; f) = H. Differentiation with respect to H gives 



dr 
dH 
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Fig. 2.4. Reflection by Hamiltonian flow 

V2 (H _ W(1))-1/2 
W'(Q*) 

_ 1 r1 W'(Q*) - W'(Q) (H _ W(Q))-1/2dQ. (2.16) 
V2W'(Q*) JQ * W(Q*) - W(Q) 

Note that (W'(Q*) - W'(Q))/(W(Q*) - W(Q)) ~ WI! /W', therefore re­
strictions should be imposed on WI!, like in condition V, to have dr / dH 
bounded. 

2.3 Examples for smooth Hamiltonians limiting to billiards. 

Conditions 1-V are in fact quite general, and they are fulfilled by many rea­
sonable choices of the pattern and barrier functions. For the pattern function, 
consider any smooth function Q depending on two variables (x, y). Corners 
are created at the singularities of the level sets and at the points of infiection. 

For the barrier function conditions I-V need to be fulfilled. For example, 
the following barrier functions W (Q, f) satisfy them (for f3 > 0): 

f 
dn ... llnQI. Q(3 , 

One may easily produce more examples because there is no restriction on 
the growth rate: given any potential V satisfying conditions I-V the poten­
tial 1/'(V) also satisfies these conditions provided 1/' is a smooth monotonic 
function of V such that 1/'(0) = 0, 1/'(00) = 00. 

In section 3 we consider the billiard corresponding to the following family 
of pattern functions: 

1 1 
Q( x, y; ,) = ,( x 2 + (y _ 1)2 - R2 + x 2 + (y + 1)2 - R2 

I I 

+ 1 + 1 )-1 (2.17) 
(x - ~)2 + y2 - R2 (x + ~)2 + y2 - R2 
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where R2 = 1 + (1 - ~)2 and, is a parameter (not necessary small). The 

billiard domain is bounded by the level set Q(x, y) = O. For, --+ 0 this defines 
a square whereas for , > 0 it defines a concave shape bounded by the four 
circles ofradius R which intersect at the four corner points (x, y) = (±1, ±1). 

Taking the barrier function in the simplest form W(Q, f) = fJ produces 
the following Hamiltonian system: 

1 2 1 2 
H"f(X, y,Px,Py) = "2 Px + "2Py + 

f( 1 + ~~ __ ~~1~~~ __ ~ 
,(x2 + y2 - 2) + 2(1 - y) ,(x2 + y2 - 2) + 2(1 + y) 

+ 1 + 1 ) 
,(x2+y2-2)+2(1-x) ,(x2+y2-2)+2(1+x) 

Notice that for , --+ 0, the square geometry produces separable - hence inte­
grable - Hamiltonian flow. This is, of course, a very interesting limit, which is 
not studied in this paper. Notice also that here the limit f --+ 0 is equivalent 
to the limit H --+ 00 with f held fixed. 

2.4 Closeness theorems. 

Denote the Hamiltonian flow of (2.5) by ht(f). Given t and f, the flow maps 
a phase point qo == (xo, YO,PxO,Pyo) to qt(f) == (Xt(f), Yt(f),Pxt(f),Pyt(f)). We 
will call qt( f) the smooth orbit of qo and will examine how close is it to the 
billiard orbit btqo == qt(O). The corresponding trajectories (Xt(f), Yt(f)) and 
(Xt(O), Yt(O)) on the (x, y)-plane will be called the smooth and, respectively, 
the billiard trajectories. 

Let (xc, Yc) be the first point of collision of the billiard trajectory with 
the boundary 5; by definition, (xc, Yc) = (xo, Yo) + (PxO,Pyo)t c, where t = tc 
is the moment of collision. Since the potential V is nearly zero in the inte­
rior of the billiard domain D, the smooth orbit of qo is arbitrarily close (as 
f --+ 0) to the billiard orbit before the collision: namely, the point (Xt (f), Yt( f)) 
moves with essentially constant velocity until reaching a small neighbor­
hood of (xc, Yc). Take a small 0 > 0 and consider the boundary layer So == 
{IQ(x, Y; f)-Q(X c, Yc; f)1 :::; o}, where Q is the pattern function. For any small 
b, if f is sufficiently small, the smooth trajectory enters the boundary layer at 
some time tin(f). Denote qin(f) = qtiJf); by definition, IQ(Xin(f), Yin(f); f)­
Q(xc, Yc; f)1 = O. The closeness of the billiard and the smooth orbits (before 
the collision) implies the existence of the limits (see figure 2.4) 

Illoreover, 
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Analogously, denote the moment when the smooth trajectory exits the 
boundary layer as tout(f) (we will prove that such a moment exists) and 
denote the corresponding value of qt(f) as qout(f). The time interval (tout(f)­

tin (f)) will be called the collision time. For fixed D, the limiting values of the 
introduced quantities as f --+ ° will be denoted as tout, qout (the existence of 
the limits is given by Theorem 1 below). 

It is natural to call the relation between the limits qout and qin the reflec­
tion law. By definition, qout( f) and tout (f) are functions of qin. If the conver­
gence of limf--+o( qout, t out )( f) is uniform in some neighborhood of a given qin, 
then the reflection law is Co. If, moreover, there is a uniform convergence for 

h d ·· . h h h 1" 8(qout, tout) th t e envatlves WIt respect to qin, t en t ese Imlt to 8 ,so e 
qin 

reflection law is C 1. 
Note that the relation between the reflection laws corresponding to dif­

ferent values of b is found trivially for the billiard flow, and it is absolutely 
the same for the Hamiltonian flow because it limits to the billiard flow out of 
any fixed boundary layer. Therefore, no information is lost if one considers 
the limit of the reflection law as b --+ 0, as it is done in the following theorem. 

Theorem 1. For the Hamiltonian system (2.5) where the potential V(x, Y; f) 
satisfies conditions I-IV, if initial conditions qo are such that for the billiard 
orbit btqo the point of reflection is not a corner: (xc, Yc) E 5\C, then for any 

sufficiently small D the limits (as f --+ 0) qout and tout are well defined. As 

b --+ 0, the collision time tends to zero: 

(2.18) 

and the limiting CO reflection law is: 

(2.19) 
(Px,out,Py,out) + (Px,in,Py,in) = 2(Px,in ex + Py,iney)(ex, ey ) 

where e = (ex, ey ) is the unit vector tangent to the boundary at the point 

(xc, Yc). 
If; additionally, condition V is fulfilled and the ingoing velocity vector 

(Px,in,Py,in) is not tangent to the boundary at the point (xc, Yc), then the re­
flection law is C 1 . 

One may check that the above reflection law is exactly the reflection law 
associated with the billiard flow. In other words, theorem 1 says that 

(2.20) 

where the norm is Co- or C1-norm in a small neighborhood of qin. Since 
out of the boundary layer the Hamiltonian flow limits to the billiard flow as 
f --+ 0, this local result implies immediately the following global version. 
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Theorerll 2: II qo and qt = Utqo are m,ner plwse poinls, !hfn, a6 t ---+ 0, lht 
time t map hAc) of the flow defz'ned by Hamiltonian (2.5) where 1/(;1.:,.11; c) 
6a!'1sIies (ts6u'mplion6 I-IV [unil6 10 lht rnap ht 'Ill, lht CO_!opo[og:1J 'Ill, a s'ffwll 
neighborhood ofqo. If additionally,. condition V is fu.Uilled and if the billiard 
traju·tory of qu has no tangf'nrie8 to the boundary for thf; tinu intcrud [0, tJ. 
lhclI ht(t) ---+ ht in lht (,'1 6CIISf. 

Theorem 2 follo\vs from theorem 1, and vice ver:sa. The proof of the theo­
relllf:) (in fad, a (,''' -collvergence proof) is given ill [2.JJ. ~ alllely, the follmv iug 
i:s proved there 

(2.21) 

whid1 io fOflllally \veaker thau (2.20), bUL it io, obviously, also f:)ufficiellL for 
the validity of theorem 2. 

The general idea of the proof is as follmvs (see details in [25]). Hy <:":ondi­
tion II, the gradient of the potential i:s dose to normal to the boundary ncar 
the point of refle<:":tion. This implies, almost immediatel Jr , that the tangential 
cOlllpollenL Px of the lllOlllelltulll io approxilllaLely preserved duriug the col­
li:sion. E:ssentially, thi:s means that the motion described by the Hamiltonian 
system (2.5) can be thought as a sum ofnvo almost independent motions: in­
ertial motion parallel to the boundary and reHection in the normal direction. 
In the limit f ---+ 0, the parallel motion prevails in some sense for the nearly 
Laugellt trajedorieo, whereas for the nou-tallgenL trajecLories ito coutribu­
tion can be neglected. Thus, in both case:s the consideration is e%entially 
one-dimensional and this makes the proof of the C U part of theorem 1 pretty 
:simple. The proof of the C 1 ver:sion is more involved and it requires estinlate:s 
of some integrals along the orbit of the Hamiltonian system, necessary for the 
evaluation of Li1e ooluLiou of Li1e lilleariljed eq uationf:). 

A more :specified \vay to formulate dosene% of the Hamiltonian system 
under <:":onsideration to the billiard approximation is to use the Poincare se<:":­
Liouo. Let qo auel qt = ht (t )qO (t ~ 0) be inuer phase poiuto auel 1.;..'0 auel 1.;...'1 be 
small surfa<:":es transverse to the tlmv near (jl) and '11. Then the flmv defines the 
local Poiucare map htf(t) : ~'o ---+ 1.;..'1 where (dt) if:) lht flighl !une fr0111:..c.io Lo 
~'l. The Poincaf(~ map pre:serves the foliation of the cro%-:sections by the lev­
els of equal energy. 'I'lwrefore, redll<:":ed Poincare maps are defined taking fixed 
ellergy levels ou 1.;..'0 outo the levels of the f:)ame energy on SI. For t > 0 (ref:)pec­
tively f = 0) the redll<:":ed Poincare map is a tvm-dimensional area-preserving 
(,'1' -eliffeolllorp11iolll (respecLi vely - ahllof:)t every where (,'1' -eliffeolllprphif:)m). 
Obviou:sly, the flo.v is recovered by the :set of reduced Poincare map:s along 
.vith the corresponding flight times, and vi<:":e versa. 'Thus. theorem '2 admits 
Li1e follow ing refol'lllulation. 

Thcorclll 3.lf qu and '11 = Ol(jl) are inner pha8f' points and Wu and Wl 
arf snw{f crOSS-6tc!wns lhrough qo (tnd qt rfspu-!'U,e!:IJ. lhclI (tl (tit snwll t 

the Hamiltonian fim(: (2.5) satisfying conditions I-IV defz'nes the reduced 
Pom,care nwp oIlht lht Clltrgy le'vt/ oI go m,I.;..'o inlo WI. A6 t ---+ 0 lhis rnap 
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lirn'lis (in Co) to lilt. 'l'ednced Poi.,u;ar{ 'ffWP of lhe billi([rd .flot!) ([S does lilt. 
flight time. In addition, if condition V is satisfied and the segment of billiard 
lrajeclo'l':1f btilveclI qo and qt does nol hare la'llgencu::, 10 the bo-und([ry of lht 
billiard domain. then the convC1~qenC( is C 1

. 

The last theorem allmvs one to utilir,e persistence theorems regarding nvo­
dimenf:)ional area preserv ing diIfeolllOrphisllu; iu order Lo eotablif:)h relaLiouo 
bet"\veen periodic orbit:s of the billiard flow and of the Hamiltonian flO"\vs under 
consideration. 

H.ecall Llw.L au orbit (e .g., a periodic orbit) of the billiard Ilmv is called non­
singular if its trajectory in the (,J;, y)-plane does not have tangencies \vith the 
boundary of the billiard doulCl.iu (aud by deIiuiLiou the Lrajedory call1lOt 11iL 
a corner either). For a non-singular periodic orbit, for a cro%-:section through 
an inner point on it, the redllced Poincare map of the hilliard -Amy is locally 
a diIfeolllOrphislll and the iuterf:)ediou of the periodic orbit willI the crOf:)S­
:section in the pha:se space is a fixed point of the diH·eomorphism. Generally. 
Llle fixed poinL if:) eiLller hyperbolic or elliptic. Fixed poiuto of both types are 
pre:served under small smooth perturbations in the da:ss of area preserving 
diffeomorphisms. Thus, theorem :) implies the follmying statement. 

Corollary 1 - p0rsist0n~0 of p0riodi~ orhits: If a non-sing1llar periodic 
orbit Lo of the billiard flow is hyperbolic or elliptic! then at c sufjiciently small 
thf; H am.iltonian floll! hI, (f) has a unique continU01l8 fam.ily of hyperbolic or, 
'l'esptcf'lrel:lf, elliplic perwdic orbil::, L t in the ./i·,Ded enfTgy lo;fl of Lo 'U)hich 
limit to La as c ----)- 0, 

If "" is hyperbolic, the local stohle (W';w("c)) and lI11stable (W,:'".(L)) 
lllauifokb of Le depend coutiuuously ou t (as f:)mooLll manifokb) aud limit Lo 
l'V1';)('(Lo) and Hil:')('(Lo) respectivciy. The global stable and unstable manifolds 
- HlU(L t ) aud l'T/'S(L e) - are obLaiued as the coutinuatiou of rFl~c(Lt) aud 
l'Vl~c(Lc) by the orbits of the flow. Kotc that for the billiard flcl\·y, by applying 
the (:ontinllation pro(:ess tangencies to the boundary and corner points are 
bound Lo be encouutered by oOllle poiuto belougiug to Llle lllauifolds. Uf:)ing 
local cro%-:sections a:s above, it is easy to see that the follmving re:sult hold:s. 

Corollary 2 - 0xt0nsions of stahl0 and llnstahl0 l11anifolds: Any pieCf; 
Ka of HlU(Lol or l'T/'S(L o) oblai'llul ([S ([ lhue l. > 0 shif! oj sonH region in 
l'Vl~c(Lo) (respecth;el.lf .. a time t < ° shift of some region in l'l!l~c(Lo)) is a 
CD _ or, if no tangenriu; to the h01lndary au encountered in the continuation 

PlOtt''', C'-lwlll of a falTlclq of "ll/ace, K, C WHIL,) (re,p. H, C W'IL,)). 
The above per:sistcnce result:s apply only to non-singular periodic orbit:s: 

uear Llle oiugular periodic orbiLf:) the billiard How is uon-oulOoth aud Llle 
:standard theory i:s not valid. However, it is of intere:st to study the behavior 
near a singlllar periodi(: orhit for f > O. \Ve consider this problem ill the 
uexL f:)ediou for Llle caf:)e of so-called sca!lermg billiardo. Here, the billiard 
timv i:s hyperbolic \vhence all non-singular periodic orbit:s arc hyperbolic. ""Ve. 
ueverLlleleof:), f:)how that the f:)ingular periodic orbito give rioe to f:)table (elliptic) 
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periodic orbits in the Hamiltouian oysLeUlf:) (2.G) IillliLiug Lo LIle ocatteriug 
billiards. 

3 Appearance of elliptic islands in the smooth 
Hamiltonian approximation of scattering billiards 

Consider scattering billiards - namely billiard:s l,vhich are composed of concave 
arrs l,.vith tht: rllrvatllrt: boundt:d a"va~y from zero, and non-zero anglt:s hetl,vt:t:n 
Llle arCf:) at the corller poinLf:). The correopollding billiard IlO\Vf:) are llyperbolic 
and exhibit strong ergodic properties (they arc J{-:systems) [21, 1, 11]. In 
parLicular, alUlOf:)t every orbit covero Llle \vllOle phase f:)pace denf:)ely. III this 
:section l,ve examine hmv the:se properties may be lost by the approximating 
smooth Hamiltonian flmvs for arbitrarily small positivt: f vahlt:s. \Ve propost: 
L wo luechanif:)ms for the appearallce of elliptic islaucb \v hich def:)troy thef:)e 
properties: one mechanism i:s controlled by the exi:stence, in the billiard Hmv. 
of a singlllar periodic orhit. and anot.lwr nwchanism is controlled h~y the exis­
tence of a :singular homodinic orbit.. To be specific: from here on: l,ve consider 
only 8implr 8ingulaT orbits: i.t:., thost: for l,.vhich tht: rorrt:sponding trajt:cto­
rief:) ill the billiard domainlla,ve exactly oue tangellcy to the billiard boundary 
and do not approach corner points. 

First.: l,.ve study t.lw phast: space strlldllre of the local Poincar~ map near 
:such orbits, shmving that locally the:se create a "sharp" horseshoe l,vhich, em­
lwddt:d in a ont: paranwtN family of hilliard maps, llllravt:ls as the paramett:r 
~l varief:) (see figure ;1.;1). Then, usiug theorem :1, we eotabIif:)h LIla.L LIle two 
parameter family of Hamiltonian Hmvs ht(c; "'y) which approach the family of 
billiards as f -----1- 0 llndergot:s, for suffirit:ntl~y small f, a serit:s of bifllrrations 
aof:)ociaLed wiLll the dioappearallce of a Smale's horoef:)hoe. lL io well eotab­
lisht:d that in this proct:ss ellipt.ic islands are rreatt:d. 'Thlls. it follmvs that 
for each ouIIicienLly oUlall t Lllere exisL iutervals of ~i values for \vllich ellipLic 
i:slan ds exist. 

\Vt: t:nd t.lw st:dion l,.vith some conjedurt:s on the gt:nt:ririt.y of the plw­
uomena llleutioned above: we expect Llla.L siugular homodiuic alld periodic 
orbits are, in fad, llllavoidable in scatt.ering hilliards. Appart:nt.ly, s~yst.ems 
pOof:)eSoillg oilllple oillgular houlOdinic aud periodic orbits are delloe aUlOug 
all scattering billiards. ",'e provide a numerical example which support:s such 
a ronjt:dllre rt:garding tht: dt:nsit.y of billiards l,.vith singlllar homoclinir orbits. 
A proof of this conjecture cOlllbined \vith the reoulLf:) preseuted here \vould 
imply that fOT any giu;n 8udtfring hilliard on a plant, thfrr U:i8t8 a nWThy 

IJ(['fnilfuui(w JlmL' pUS6t6!::Hng elhpf'lc i6liwd6. 

3.1 Singular p<:riodic orhits. 

The hyperbolic :structure of the scattering billiards plays a crucial role in the 
underf:)taudillg of the bella,vior llear a f:)ingular periodic orbil. For Llle billiard 
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map B (the map relating two consecutive collision points; see section 2.1), the 
presence of hyperbolic structure implies that for almost every point P( s, </;) 
in the phase space there exist stable and unstable directions Ep and Ep, 
depending continuously on P. The system of stable and unstable directions 

is invariant with respect to the linearized map: dpBEs(u) = E~c;), which is 
uniformly expanding along the unstable direction and uniformly contracting 
along the stable direction: if v E E U (v E E S ), then IldpBvl1 2': eAT Ilvll (resp., 
IldpBvl1 :::; e-ATllvll) in a suitable norm; here, T is the flight time from P 
to P B, the uniformity means that the value ..\ > 0 is independent of P (see 
details in [3]). 

Equivalently, there is an invariant family of stable and unstable cones: 
the unstable cone at a point P is taken by the linearized map dpB into 
the unstable cone at the point BP; the image is stretched in the unstable 
direction and shrinks in the stable direction. Similar behavior appears for 
the stable cone under backward iterations. There is an explicit geometrical 
description of these cones for scattering billiards [26]. Consider a point (s, </;) 
in the phase space and a small curve passing through this point. Taking two 
points on this curve defines two inward directed rays emanating from the 
billiard boundary near s (see figure 3.1). If these rays intersect, then the 
tangent direction to this curve belongs to the stable cone of (s, </;); otherwise, 
it belongs to the unstable cone (in other words, the unstable cones are given 
by ds . d</; > 0 and the stable cones by ds . d</; < 0). Moreover, it can also 
be shown that if the intersection of the rays with each other occurs before 
the first intersection of the rays with the billiard boundary, then the tangent 
direction to the forward image of the small curve under consideration belongs 
to the unstable cone of the image of (s, </;). 

It follows from the simple geometry above that the tangents to a line 
of singularity at any point lies in the stable cone, and the tangent to any 
iteration of the singularity line by the billiard map lies in the corresponding 
unstable cone. In particular, this implies that intersections of the singularity 
lines with their images are always transverse. 

Next, we find the normal form of the first return map of the billiard 
map near a simple singular periodic orbit (a periodic orbit with only one 
tangency). More precisely, consider a periodic orbit L with the corresponding 
sequence of collision points Pi (Si ,</;;) (i = 0, ... n - 1): Pi+1 = BPi where 
Pn = Po. Since L is a simple singular periodic orbit, assume that P == Po 
belongs to the singular set (so 1</;11 = ~). Take a small neighborhood U of P 
and denote as E the line of singular points in U (it is the line composed of 
the points whose trajectories are tangent to the billiard boundary near sd. 
Then, we prove the following proposition: 

Proposition 3.1 Given a simple sinqular periodic orbit L as above, the local 
return map near Po may be reduced to the form: 

{ 
U = v 

V = e(v - Jmax(v, 0)) - u + ... (3.1 ) 
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Fig. 3.1. Hyperbolic structure - the stable and unstable cones 

a) Geometrical interpretation of stable/unstable directions 
b) Phase space structure 

where v = ° gives the singularity line, U = ° is its image, and lei> 2. 
As will be apparent by the proof, it is useful to define an auxiliary billiard 

B(r), for which the boundary arc by which the tangency of the periodic orbit 
occurs (i.e. near so) is pushed slightly backwards so that the singular periodic 
orbit becomes a regular orbit for the auxiliary system. The quantity e in 
(3.1) is simply the trace of the linearization matrix of the first return map of 
the auxiliary billiard about the periodic orbit. Since the auxiliary billiard is 
scattering, its regular periodic orbits are hyperbolic, hence lei> 2. 

Proof of Proposition 3.1 Consider the local structure in U, near the sin­
gularity line E. The line E divides U into two parts, Ur and Us; the orbits 
starting on Ur (e.g. P~' in figure 3.2) do not hit the boundary near Sl and 
approach it near the point S2, the orbits starting on Us (e.g. P~ in figure 
3.2) have a nearly tangent collision with the boundary in a neighborhood 
of Sl. Without loss of generality we assume that E is locally a straight line 
(s - so) + k(<p - <Po) = 0, where k> ° because E must lie in the stable cone 
(s - so)(<p - <Po) < 0, and that Ur is given by (s - so) + k(<p - <Po) < ° and Us 
by (s - so) + k(<p - <Po) 2:: 0. 

Consider the first return map B defined on U. The map B equals 
Bn - 1 ... B2B1BO on Us and B n - 1 ... B2BO on Ur where Bi is a restriction of 
the billiard map on a small neighborhood of Pi. According to section 2.1.1, 
B is a continuous map but it loses smoothness on E. Namely, the restriction 
Bos of Bo on Us exhibits the square root singularity described in section 2.1.1 
whereas the map Blur is regular and it can be continued onto the whole U 
as a smooth map B or : erasing a small piece of the boundary containing the 
tangency point Sl, Bor will simply be the billiard map from U to a small 
neighborhood of P2 (see the action of Bor on P~ In figure 3.2). Obviously, 
BorE = B1BosE, therefore the first return map B is continuous. One may 
represent the map B as a superposition of regular and singular maps: 
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3' 

Fig. 3.2. Structure near singular periodic orbit 

a) Action of billiard map near a singular segment of trajectory 
b) Phase space structure near singular periodic orbit: 1234 is mapped onto 1'2'3'4' 

where 

and 
B(S)_{id onUr 

- Br;/ B1Bos on Us 

The singular part B(s) : U --+ U may be obtained by inverted reflection near 
the tangency point 51 (see the action of B(s) on p~ in figure 3.2). It is not 
hard to calculate that B(s) is given by 

{ S; : S + kJmax(S + k<I>, 0) + .. . 
<I> - <I> - Jmax(S + k<I>, 0) + .. . 

where S = 5 - 50, <I> = ¢ - ¢o are coordinates in U, and the dots stand for 
the quantities infinitely small in comparison with S, <I> or Jmax(S + k<I>, 0) 
as S,<I> --+ O. 

The regular part B(r) is, by definition, the first return map for the aux­
iliary billiard obtained by pushing the boundary near the tangency point 51 
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slightly aside the trajectory of L. The point P is a fixed point for B(r) (as 
well as for the map B). Since the auxiliary billiard is still scattering, the 
point P is a hyperbolic fixed point for B(r). Moreover, the unstable cone 
5 . <P 2: 0 must be mapped inside itself by the linearization of B(r) at P. 

If ( bll b12 ). h d' l' .. . h 1 d'" b21 b22 1S t e correspon mg meanzatlOn matnx, t east con 1tlOn 1S 

equivalent to the requirement that all bij are of same sign. Recall that B(r) 

is an area-preserving diffeomorphism, so 

Superposition of B(r) and B(s) gives, to leading order in 5, <P and 
Jmax(S + k<p, 0), the following formula for the map 13: 

{ ~ = bllS + b12<P - (b 12 - bllk) Jmax(S + k<p, 0) + ... (3.2) 
<P = b21 S + b22 <P - (b 22 - b21 k)Jmax(S + k<p, 0) + .. . 

Provided inequalities 3.5 are satisfied, as proved in the lemma below, the 
normal form 3.1 is obtained from the above expression by changing to the 
new coordinates ti, v where ti is aligned with the singularity line (v ex: S+k<p) 
and v is aligned with its image. From the calculation, it follows that the 
quantitye is (bll + b22 ), namely the sum of eigenvalues of the linearization of 
the regular part B(r) of 13 at P. Since the product of the eigenvalues equals 
to 1 and since they do not lie on the unit circle, it follows that 

lei> 2, (3.3) 

as indicated in the Proposition. D. 

Lemma 3.1: The coefficients bij in (3.2) obey the inequalities: 

(b 12 - bll k)(b 22 - b21 k) > 0 (3.4) 

Ib121 < Ibllik (3.5) 

Ib22 1 < Ib21 1k. 
(3.6) 

Proof: Since the image BE of the singularity line S + k<p = 0 must lie 
in the unstable cone S . <P > 0, it follows from 3.2 that the first inequality 
(b 12 - bll k)(b 22 - b21 k) > 0 holds. Moreover, it is geometrically evident that 
for a small piece l of a straight line through P which lies in the unstable cone, 
i.e., for which the increase of s is followed with the increase of <P (see figure 
3.2 - imagine a line going through P~', Po, P~) the image of I n Ur by Bo and 
the image of I n Us by B1 Bo lie both to one side of the point P2 (or S2 when 
projected to the configuration plane). In other words, these images belong 
both to the same half of the unstable cone of P2 corresponding to a definite 
sign of (s - S2). Since the linearization of each of the maps Bi preserves the 
decomposition into the stable and unstable cones, it follows that the image 
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of l by B is a folded line with the vertex at P which divides Bl in two parts 
belonging both to the same half of the unstable cone of P; i.e., Sand <P have 
the same sign on B(l n Ur ) and B(l n Us). By (3.2), it is equivalent to the 
condition that the sign of (b 12 - bllk) is opposite to the sign of b12 and bll 
and the sign of (b 22 - b21 k) is opposite to the sign of b22 and b21 (recall that 
all bij are of same sign). Thus, the second and third inequalities Ibd < Ibllik 
and Ib22 1 < Ib21 1k hold. D. 

Now, embed the billiard under consideration in a one parameter family of 
scattering billiards bt (-; ,) for which all arcs depend smoothly on the param­
eter " while the corner points are held fixed; we suppose that the billiard 
with the simple singular periodic orbit L is realized at , = O. The regular 
part B(r) of the first return map of U depends smoothly on " hence its hy­
perbolic fixed point p~r) is also a smooth function of f. The same is valid 
for the position of the singularity line E,. For a general family of billiards, 

the parameterization by , may be chosen so that the distance between p~r) 
and E, is proportional to , (it is true if, for instance, one changes the bil­
liard boundary locally, near the tangency point Sl only: such a perturbation 
moves the singularity line but the map B(r) and the position of its fixed point 

remain unchanged). Assume, with no loss of generality, that p~r) E Ur for 

, > 0 and that p~r) E Us for, < O. Therefore, by the definition of B(r), its 
fixed point is a fixed point of B for , > 0, and its fixed point is imaginary 
when, < O. 

Thus, for such a family of billiards, the normal form (3.1) of the first 
return map B is now rewritten as 

{
u=v 

V = e(, + v - Jmax(v, 0)) - u + ... (3.7) 

In this form, the map B, looks similar to the well-known Henon map but it 
has another type of nonlinearity. In fact we show below: Proposition 3.2 

Consider the map (3.7). For a small fixed neighborhood U of the origin, let 
D, be the set of all orbits of B, which never leave U. Then there exist ,± 
values such that D, = 0 for, < ,- < 0, and if, > ,+ > 0 and small, then 

[2, is in one-to-one correspondence with the set of all sequences composed 

of two symbols (r, s): "r" corresponds to entering Ur and" s" corresponds to 
entering Us. 

Proof: Indeed, take a small b > 0 and let the neighborhood U be a 
1 1 

rectangle {-b < U < Kb, -15 < v < Kb} where K = "2-(-2"lel- 1) > 0 (recall 

1 1 2 
that lei> 2). Let ,+ = (2" - e-)b > 0 and ,- = -lZt Then, for sufficiently 

small 15, one may check that for the given choice of U the map (3.7) takes 
the horizontal boundaries of U (marked 1 and 3 in figure 3.3) on a finite 
distance of U for all , E [,-, ,+]. The images of the vertical boundaries 2 
and 4 which intersect the singularity line, fold as indicated in figure 3.3: the 
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oegllle11Lo 2a,'ia are ulctpped Lo 2a','1a' a11d Lhe oegllle11Lo 2b,,1b are lllapped Lo 
2b'.4b·. The folded lines 2',4' may intersect U but they lie on a finite di:stance 
of their preiulctgef:) (Llle bou11darieo 2 a11d ,1) for all ~i E b'-, ~i+J. Thuf:), Llle 
image of U by B~r has a specific shape of a :sharp horse:shoe. Changing~; :shifts 
tht: horst:shoe along tht: t:-axis, so at "l = ,'+ tlw intt:rse<::tion oftht: horseshoe 
wiLlI U c011oif:)Lo of L"v~ dif:)Liud c011ueded compone11Lo (figure :L1b). On eadl 
component the map B~r is smooth and hyperbolic. The :statement regarding 
Llle one-Lo-oue correspoude11ce Lo I3er11oulli ollin ou L wo oy mbob follmvf:) as 
in the standard construction of the horseshoe map [23, 18]. In particular. it 
impli(s that (arh of thf' hfjO components has a hyperbolic /i,red point. On tht: 
oLller llct11d, aL ~i = "l- Llle i11Lerf:)ediou of DiU wiLlI U is empty (figure :Lk) 
and no fixed point:s may exist in U. D, 

Notice the follcl\,ving three important condu:sion:s from the proof of the 
above proposition: first that tht:rt: exist "l± values Sll<::h that for ~/+ tvvo hy­
perbolic fixed points exist and for ,,- no fixed points exist in the square region 
U near tht: intt:rsedion oftlw singularity lint: \vith its imagt:. St:<::ond that "l± 
lllay be choseu arbiLrarily oulctll (by takiug f:)maller U). Third, uo fixed poiuts 
can pa:ss through the boundary of U as ~; varies from ~; - to "l+ because the 
imagt: of tht: horizontal bOlllldaries of [/ never intt:rseds the boundary of [/ 
and the image of the vertical boundarie:s U may intersect only the horizontal 
parts of tht: boundary. 

Novv, take a tll!o-paTamder famil~y of Hamiltonians H(·; f, I') \vhi<::h ap­
proach the family of billiard flows bd·; 7) af:) t ---;. 0, in the f:)enf:)e that c011di­
tion:s 1-V arc satisfied uniformly \vith re:spect to I'. Kote that for the billiard 
flmv, the structure of the Poincare map of an arbitrary small rross-st:dion 
~' Lllrough an inncr poiut on the f:)imple oi11gular periodic orbiL L is abf:)o­
lutt:l~y tht: same as dt:snilwd abovt: (bt:callst: the map H is a particular case 
of the Poiucare map, correopo11ding Lo Lhe croso-oedion made of collisiou 
points, and diH·erent Poincar<5 maps are smoothly conjugate ncar L; see sec­
tion L.1.1). Dllt: to the C(J-closent:ss result of theort:m ::L it follmvs that for f 

ouIIicienLly oulctll Llle corref:)pondiug Poi11care map IIt7 for Llle IIalllilLouia11 
systt:m transforms a redangle [/' C ~' (analogolls to the rt:ctanglt: U) to a 
llOroef:)hoe olw,pe (\vllich if:) 110W sUlOoth becauf:)e Llle IIamilLouia11 oysLelll io 
:smooth at all c > 0). At "l = ~;- the intersection IInU' n U' is empty for 
small f \-vhenct: IIt~.,- has no fixed points in U/. l\'lort:ovt:r, no fixed points 
cau paso througll Lhe bouudary of U/ as ~i varieo from ~i- Lo 7+ because Llle 
fixed points of the fir:st return billiard map stay on a finite di:stance from the 
boundary o[ U' [or all '( E b-, '(+1, 

The L wo Iixed POi11Lo of Lhe Poi11care Ulctp of Lhe billiard 11mv which exif:)l 
at ~; = "l+ are hyperbolic and do not belong to the :singularity line. Thu:s, by 
tht: <::Ofollary 1 to tht:ort:m :), ea<::h of thest: hypt:rbolic fixt:d points exists for 
Llle Ulctp IIC),+ at all ouIIicienLly oulctll t. Now, Iixing any t f:)mall e11ougll, a 
fixed point of IIq+ change:s continuously a:s " decrease:s, until it merge:s \vith 
oOllle oLher fixed POi11L (as we argued, Lhe fixed poiut ulusL dif:)appear before 
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Fig. 3.3. Sharp horseshoe bifurcation near singular periodic orbit 

One iterate of the indicated box by the truncation 
(u = v, V = e(,+ v - Jmax(v,O)) - u) of the normal form (3.7) 

in all figures e = 3, b = 0.05. 
a) ,= 0 b) ,= 0.015> ,+ = 1/160 c) ,= ,- = -1/30 . 

• - period n point. 

0.2 

, = ,- and it can not leave U' via crossing the boundary). In a general 
family of sufficiently smooth Hamiltonian systems, one of the merging fixed 
points is necessary saddle and another is elliptic. Thus, we have established 
that 
generically, for each f small enough, there exists an interval of values of, 
for which the smooth Hamiltonian system possesses an elliptic periodic orbit. 

Without genericity assumptions, we may conclude the following. Theorem 
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4: II a ,mllo"'g b,l/wrd /"" a ,ir"pie 'mgu/ar powdic orbtl L, then lht're 
exists a onc-parameter family of smooth Hamiltonian .fIOlL'S ht(c) limiting to 
lht billi([rd jlO'IJ.; at. t --+ 0 (i. f. salit.jlfiug condiliont. 1-V) aud Jor tvhich fhfre 
exists a sequence of intervals of C 1;alues conHrging to 0 on 'tL'hich clliptic 
pf'Tiodic orbit8 /'f cri8t in thf; energy If/!f;l of r. FhUjf; f;lliptir pf'Tiodic orbit8 
lirn'll fo lhe singuli[r pt riodic orb'll at. t ---+ O. 

3.2 Singular honlodinic orhits. 

Cousider a nou-sUl,gular hyperbolic periodic orbit Lo of the billiard Hm,\,. 
Suppo:se, its stable and unstable manifolds inter:sed along :some orbit 1. 
This io a IWlrlOclinic orbit; i.e., it aSYlllpLotes Lo expouenLially as I ---+ ±:x:. 
Assume that r is simple singular ,vhich means that it:s trajectory has one 
point of tangency vyith the billiard's boundary (see figure 1.1 b). 

Let P(s, 1)) and r(,5, 3) be colli:sion point:s on r: P i:s the la:st before the 
Lallgeucy aud P is the firsL afLer the taugency. I3y definition, P = n 2 P vI/here 
B is the billiard map. Consider, in the (8, d)) plane, the local segment Hl'U 
of the llllstable manifold of r(J to l,.vhirh P belongs. Sinre the tangellt to 
ll'"u aL P belongf:) to the ullotable coue, it mUot illterf:)ed the f:)ingularity line 
transver:sdy at P. Thus, a:s explained in the proof of lemma 3.1, the ilnage 
of [il/u in a neighborhood of P under the billiard map folds l,.vith a sharp 
:square root :singularity at r, see figure 3.4. Kmv, the point r belongs to the 
stable manifold as ,vell. Sinre the tangent to ~/l/s belongs to the stable cone, 
iL followo Llw.L the folded illlage o~ ll'"u lief:) to oue side of ll'"s, 00 a r:;lw,rp 
homodinic tangency is created at P, as shmvn in figure 3.4. 

In a general family of scattering billiard:s (as in section 3.1), two tran:s­
verse homoclinic intersections appear at '"y > 0 and none at ~/ < O. For the 
correspoudillg t\'vo-parallleLer IIallliHoniau family, argullleuts allalogouf:) Lo 
tho:se in the proof of theorem 4 show that 
guuTically" for any f 8ujJiciudly 8m all thf'Te f;xi8t8,'* (f) faT whirh a quadratic 
homoclinic tangcncy occurs. 

H.ecall that the occurrence of houlOdinic tangellcieo if:) a well-knowu Illech­
anism for the creation of elliptic i:slands [20J. Thus we have e:stablished: 

Theorenl 5: If a scattering billiard has a simple singular homoclinic orbit r. 
lhell lherf e:rit.fs ([ Out-p([rarneler Jarn'lly oj t.JIwolh IIarnillonwn /l0lL't. ht(t) 
satisfying conditions 1-V, which limits to the billiard flow as c - 0 and for 
'IDhich thf;T(; f;xi.-if a 8f;quena of intf'T1'rJ.!8 of f 1'rJ.!ue8 cOJJ,1!crging to .:'C("o for 
'1J.;/l.'Ich dliplic periodic m'b'lls e:rit.f in lht energ:1f {fI'e! oIl. 

The period of the elliptic periodic orbito lllelltioued ill Theorelll G goeo Lo 
infinity as c ---+ O. In fact, in the t,vo-parameter family of smooth Hamilto­
nians elliptir periodic orbits of bounded period limit, as f ---+ 0, to singlllar 
periodic orb ito correopollding Lo ,. 1- O. Thuo Theorems 5 alld ,1 are very 
much related. Indeed, like the appearance of :stable periodic orbits ncar a 
homodiuic taugency io proved in oUlOoth f:)ituatiou (see [12, 20, 1;1J). Olle may 
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Fig. 3.4. Bifurcation of singular homo clinic orbit 

c) I> 0 d) 1< 0, near 17's image 
• - homo clinic points. 

in a general family of scattering billiards having a sharp homoclinic tangency 
at I = 0 there is a sequence of values of I accumulating at I = 0 for which 
singular periodic orbits exist. 
Now the reference to theorem 4 gives another proof of theorem 5. 

3.3 On the genericity of the elliptic islands creation. 

It is well known [17, 2, 3] that for scattering billiards the hyperbolic non­
singular periodic orbits are dense in the phase space. The stable/unstable 
manifolds of such orbits cover the phase space densely and the orbits of their 
homo clinic intersections also form a dense set. 

It follows that the periodic orbits and the homo clinic orbits get arbitrar­
ily close to the singularity set. It seems thus intuitively clear that for any 
scattering billiard very small smooth perturbations may be applied to place 
a specific periodic orbit or a specific homo clinic orbit exactly on the singu­
larity line, so that Theorem 4 and 5 may be applied. Proving these intuitive 
statements turns out to be quite a delicate issue, thus we formulate these as 
conjectures: 

Conjecture 1: Any scatterinq billiard may be slightly perturbed to a scatter­

ing billiard for which a singular (tangent) periodic orbit exists. 

Conjecture 2: Any scatterinq billiard may be slightly perturbed to a scat­
terinq billiard for which there exists a non-sinqular hyperbolic periodic orbit 
which has a sinqular homoclinic orbit. 
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3.4 Numerically produced singular homo clinic orbits 

s 

Fig.3.5. Billiard between four disks 

To examine the appearance of singular homo clinic orbits we consider the 
billiard in a domain bounded by four symmetrical circles 

where R2 = 1 + (1 - .1)2. The quantity I (which is, approximately, the 
I 

curvature of the circles) serves as the free parameter for unfolding the singu-
larity. We find explicitly the corresponding billiard map, and using DSTOOL 
package[10], we find numerically hyperbolic periodic orbits of this mapping 
and their stable and unstable manifolds. The billiard map is found on the 
fundamental domain of the billiard - a triangular region cut by an arc as 
shown in the figure 3.5. We find the return map to the slanted side of 
the triangle, which is parameterized by 5, the horizontal coordinate, and 
by q;, the outgoing angle to the normal vector (-1, -1), see figure 3.5. We 
choose an arbitrary value of I and the simplest hyperbolic non-singular pe­
riodic orbit, as shown in the figure (the fixed point of the return map to 
the slanted side of the reduced domain). Then, we construct the stable and 
unstable manifolds for this periodic orbit. We examine how these manifolds 
vary by small variation of I, until we find a value of I for which singu­
lar homo clinic orbit appears. The success (see figure 3.6 and figure 3.7) of 
the very crude search for such a delicate phenomena, near every I value 
we have chosen, supports conjecture 2 regarding the density of systems for 
which such orbits exist. In fact we have found, by such a search near Ii = 
i * 0.05, i = 1, ... ,10, eleven sharp homo clinics to this specific periodic orbit 
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(at I = 0.0837,0.10165,0.1018,0.153,0.2077,0.2552, 0.29245, 0.3329, 0.3832, 
0.4143,0.4692). 

sin(tPl 

s 1 

Fig. 3.6. Numerically produced sharp homo clinics 

4 Conclusions 

There are two main results in this paper; First, we have found sufficient 
conditions for establishing that a family of smooth Hamiltonian flows limits 
to the singular billiard flow (see Theorem 1, 2 and 3). These conditions are 
fulfilled by smooth Hamiltonians with potentials approaching a step function 
in almost arbitrary way (see section 2.3); they fail, nevertheless, when the 
potentials are highly oscillatory (i.e., condition IV or V fails). 

Second, we have established that if a scattering billiard (we use the par­
ticular hyperbolic structure associated with such billiards) has a singular pe­
riodic orbit or a singular homo clinic orbit, then there exist arbitrarily close 
to it smooth Hamiltonian flows which possess elliptic islands, hence these are 
not ergodic (Theorem 4 and 5). Finally, we have conjectured, and have pro­
vided numerical support to these conjectures, that in fact scattering billiards 
with singular periodic orbits and singular homo clinic orbits are dense among 
scattering billiards (conjectures 1 and 2 of section 3.3). If these conjectures 
are correct, then theorems 4 and 5 will imply that arbitrarily close to any 
scattering billiard there exists a family of non-ergodic smooth Hamiltonian 
flows. 

Such statements imply that erqodicity and mixinq results concerninq two­
dimensional non-smooth systems cannot be directly applied to the smooth dy-
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Fig. 3.7. Magnification near numerically produced sharp homo clinics 

a) ,= 0.28 b) ,= 0.29245 c) 1=0.31 

namics they model. Whether the same holds for higher dimensional systems, 
e.g. three-dimensional billiards or multi-particle billiards, is yet to be studied. 

On the other hand, event hough stability islands may appear in smooth 
billiard-like problems, the size of an individual island is expected to be very 
smalL Thus,with no doubt, while the smooth flow may be non-ergodic, it 
will" seem" to be ergodic for a very long time; Statistics (e.g. correlation 
function) which are based upon finite time realizations may appear to behave 
as in the scattering billiards (e.g. fall off quasi-exponentially [5]). Whether 
longer realizations will reveal very different statistical properties, depends on 
the number of elliptic islands, the total area they cover in the phase space 
and on the "typical" period of the islands. Thus, estimates of the islands 
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sizes, their periods, and of the real potential steepness (the" physical e") are 
necessary to supply estimates on the time scale for which the mixing property 
will appear to hold. 

We may try to estimate the periodicity of the elliptic periodic orbits of 
smooth flows approaching generic scattering billiards, by very naive argu­
ments. Indeed, since stable periodic orbits are generated from singular peri­
odic orbits of the billiard, one may expect (if conjecture I is correct) that 
the least period of stable periodic orbits of a smooth Hamiltonian system 
which is e-close to the billiard is of the order of the Poincare return time 
to an e-neighborhood of the singularity surface for the billiard flow. Notice 
that the billiard flow is a hyperbolic system; therefore, the return time in the 
billiard and, correspondingly, the typical period of the stable periodic mo­
tions in its smooth approximation must, essentially, be logarithmic in e and 
not of a power-law type. Namely, very small e values, corresponding to very 
steep potentials, may still produce stability islands which are observable on 
physical time-scales. 
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A An example of smooth Hamiltonian approximation 
of the circular billiard with non-reflecting trajectories 

Consider the Hamiltonian 

(A.I) 

where the potential V is given by 

I ( ]00 sin z ) V(Q) = - exp -AQ + -dz, Q > 0, 
Q l/Q z 

(A.2) 

with some positive constant A. The potential is of the form eV(Q) where the 
pattern function is defined by Q(x, y; e) = I - x 2 - y2 for all f. As e ----7 0, 
the above Hamiltonian satisfies conditions I - III, which garuantee that 
near the boundary, x 2 + y2 = r2 = I, the correct elastic reflection rules are 
approached. Thus one may expect that the motion described by (A.I,A.2) 
limits to the billiard in the unit circle. We show that this is not the case; 
the:re: e:xist initial mnditions inside: the: unit circle: for which the: orhits of the: 

Hamiltonian system (A.I,A.2) stick to the circle boundary for infinitely long 
time at arbitrarily small f. Notice that condition IV is violated. 
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The specific choice of V is not too important. Essentially, we use that 

lim inf I V' I = A < 00 whereas lim sup I V' I = 00. (A.3) 
u~o V u~o V 

Hamiltonian (A. 1) is rotationally invariant, thus the particle's angular 
momentum [2: 

(A.4) 

is preserved. It follows that the system is integrable and may be easily ana­
lyzed. In polar coordinates (x = r cos B, y = r sin B) the equations of motion 
are of the form 

r = r((P.+ 2fV'(1- r2)) = r(~: + 2fV'(1 - r2)) 
.. i-e 
B = -2-. 

(A.5) 
r 

The radial motion decouples, and is governed by the Hamiltonian: 

1 . 2 1 D2 2 1 . 2 
H = ·~t +"2--;=2 + fV(l- r ) ="2r + Vejj(r; D, f) (A.6) 

The maximal polar radius, r*, reached by an initial condition (ro, ro) with 
D i- 0 is found from: 

* * 2 1 D2 1 . 2 1 D2 2 
Vejj(r ; D, f) = fV(l- r ) + --2 = -ro + --2 + fV(l- ro) = h (A.7) 

2 r* 2 2 ro 

As f --+ 0, the value of r* tends to l. The time spent by the orbit near r = r* 
is given by 

j T ds 

2 r* Jh-Vejj(s;D,f)' 
(A.8) 

thus it is infinite if: 

(i.e. if r = 0 at r = r*). It follows, that if there exist (r*(ro, ro, D; f) > ro, f) 
solving (A.7) and (A.9) simultaneously, then, the phase point will move for 
infinitely long time close to the unit circle with non-zero angular velocity 
(limt~oo B = (ro/r*)2Bo). 

Next, we show that such a solution exist for many initial condition and 
for a sequence of f --+ 0 values. First, since V(Q) is a monotonic function, for 
any r* > ro one may find f such that (A.7) is satisfied; moreover, f --+ 0 as 
r* --+ l. Resolving (A.7) with respect to f and plugging the result in (A.9) 
we get 

(A.10) 
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According to (A.3), this equation is solve~ by an infinite number of values of 
r* (with their corresponding f(r*; ro, ro, eo)) limiting to r* = 1, provided 

ro 2 2 1 (-. ) + 1 < ro(1 + -). 
roeo A 

(A.ll) 

Clearly, for any given A > 0, and for any ro < J l:A < 1 such initial 

conditions exist. Summarizing: if the initial conditions satisfy (A.ll), then 
there exist an infinite number of values of f, approaching f = 0, for which the 
orbit sticks to the boundary for infinitly long time. 
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