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INTRODUCTION 

The problems discussed in this paper are in a close relation to one of the main questions of 
nonlinear dynamics about the structure of boundaries of stability regions of periodic orbits, as 
well as to the question of finding simple global bifurcations leading to appearance of hyperbolic 
attractors. 

The notion of a stability region is introduced in the following way. Consider a /r-parameter 
family of n-dimensional dynamical systems given by the system of ODE 

where 2 = (XI,..., 2,) is the vector of phase variables and p = (~1,. . . ,pk) is the vector of 
parameters. Suppose that, at p = p*, the system possesses a periodic orbit z = cp(t, CL*), all 
multipliers of which lie strictly inside the unit circle; i.e., the periodic orbit is stable (attractive). 
As it is well known, for all p sufficiently close to p*, the periodic orbit will exist and the multipliers 
will remain inside the unit circle. Thus, one can consider the maximal region D in the parameter 
space where the periodic orbit exists and where all the multipliers are less than unity in absolute 
value (this is analogous, in a sense, to analytical continuation). The region V is called the stability 
region of the periodic orbit (note that the stability region can be many-sheeted in some cases). 

There exist two types of the boundaries 62) of stability regions: 

(1) such that the periodic orbit exists for p E XV, 
(2) such that the periodic orbit disappears at /J E dD. 

For the first case, the principal1 boundaries of stability of periodic orbits can be easily enumerated. 
Let x(X, p) = 0 be the characteristic equation of the linearized Poincare map (the roots X of this 
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Figure 1. The phase portrait near a saddle-node periodic orbit L. The strong-stable 
manifold Wds of L separates a small neighborhood of it onto two regions: the node 
regions all orbits of which tend to L as t -t +oo, and the saddle region where the 
two-dimensional unstable manifold WU lies. 

Figure 2. The phase portrait for the Poincar6 map of some cross-section to a saddle- 
node periodic orbit. 

equation are the multipliers of the periodic orbit). The loss of stability of the periodic orbit 
happens when some of the multipliers are lying on the unit circle. Therefore, the boundaries of 
stability are given by the following equations: 

X(&P) = 0 

xc-LP) = 0 
x (efiw,p) = 0, O<W<?T. 

Each equation defines, in general, a codimension one surface in the parameter space. The first 
equation corresponds to the presence of a multiplier equal to unity. For a general one-parameter 
family that intersects the surface transversely, the rest of the multipliers lie strictly inside the 
unit circle and the first Lyapunov value does not equal to zero at the moment of bifurcation. 
Such periodic orbit is called a simple saddle-node. For this case, the phase portrait is shown in 
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Figure 3. A homoclinic loop r to a saddle-node equilibrium state 0 on a plane. 

Figure 4. A homoclinic loop r to a saddle equilibrium state 0 on a plane. 

Figures 1 and 2. Note that the saddle-node periodic orbit disappears when the parameter value 
crosses the stability boundary. 

The second equation corresponds to the presence of one multiplier equal to -1. In general, the 
rest of the multipliers remain inside the unit circle and the first Lyapunov value L does not equal 
to zero. The periodic orbit does not disappear when crossing this stability boundary. If L < 0, 
then the period-doubling bifurcation takes place. If L > 0, then the periodic orbit loses stability 
at the moment of bifurcation when an unstable periodic orbit of doubled period merges into it. 

The third equation corresponds to the presence of a pair of complex-conjugate multipliers efiw. 
One may assume that the rest of the multipliers lie strictly inside the unit circle, that w # 9 and 
w # 5 and that the first Lyapunov value L does not equal to zero. The periodic orbit does not 

disappear when crossing such boundary, and either the birth of a stable two-dimensional torus 
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accompanies the loss of stability of the periodic orbit (L < 0) or an unstable two-dimensional 
torus merges into the periodic orbit at the moment of losing stability (L > 0). 

These are the three principal bifurcations of the loss of stability of the periodic orbit for the 
case where the periodic orbit does exist on the stability boundary. As we mentioned, there are 
stability boundaries of another type on which the periodic orbit does not exist. The existence of 
such boundaries wss discovered by Andronov and Leontovich. They found for two-dimensional 
systems of ODE that there are exactly two principal stability boundaries of the given kind: on 
the first boundary the stable periodic orbit disappears merging into a homoclinic loop of a simple 
saddle-node equilibrium state (Figure 3), and on the second boundary the stable periodic orbit 
merges into a homoclinic loop of a saddle equilibrium state (Figure 4) with negative saddle value.2 

Analogous stability boundaries were found in [l] for the multidimensional case: 

(1) on the first boundary, the system has a simple saddle-node equilibrium state3 and the 
only orbit that leaves the saddle-node at t = --oo returns to the saddle-node as t + +oo, 
forming a homoclinic loop; it is assumed also that the homoclinic orbit does not lie in the 
strong-stable manifold (Figure 5); 

(2) on the second boundary, the system has a saddle equilibrium state of the type (n - 1,l) 
(i.e., the characteristic exponents X1,. . . , X,-l have negative real parts and X, > 0) and 
one of the two orbits leaving the saddle at t = -oo returns to the saddle as t + +oo, 
forming a homoclinic loop (Figure 6); the saddle value 

n=X,+ max 
i=l,...,n-1 

%Xi 

is negative. 

In [l], there was shown that a stable periodic orbit merges into the homoclinic loop in both cases. 
When approaching the bifurcational moment, the length of the periodic orbit remains bounded 
whereas the period tends to infinity. 

In this connection the following question arises: can there be some other types of stability 
boundaries of codimension one? In the present paper we show that the answer is positive. We 
find a new stability boundary which is an open subset of a codimension one bifurcational surface 
corresponding to the presence of a saddle-node periodic orbit. This open set is distinguished 
by some qualitative conditions determining the geometry of unstable set of the saddle-node (see 
Figure 7) and also by some quantitative restrictions (some value should be less than unity, see 
below). We will show under these conditions that when the saddle-node disappears a new stable 
periodic orbit arises, and both the period and the length of this periodic orbit tend to infinity 
when approaching the bifurcation moment (Theorem 1). 

Actually, this is one of the possible variants of the global bifurcation of disappearance of a 
saddle-node periodic orbit such that all the orbits of its unstable set return to the saddle-node 
as t -+ +CXJ.~ Without loss of generality, we may assume that all these orbits do not. lie in the 
strong-stable manifold of the saddle-node. 

The study of this global bifurcation has a long history. Originally, this problem appeared in 
the 20’s in connection with the study of the phenomenon of the transition from the synchroniza- 
tion to the amplitude modulation regime in the van der Pol equation 

With the assumption that p is a small parameter and that the resonance 1 : 1 takes place (i.e., 
w-WQ N Jo), Andronov and Vitt showed that the transition from the synchronization to the 

2the sum of characteristic exponents 
3i.e., an equilibrium state whose characteristic exponents lie strictly to the left of the imaginary axis except for 
one simple zero characteristic exponent, and the first Lyapunov value does not equal to zero 
4Since these orbits belong to the unstable set, they tend, by definition, to the saddle-node as t + --cm as well. 
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Figure 5. A homoclinic loop r to a saddle-node equilibrium state 0 for the dimension 

Figure 6. A homoclinic loop r to a saddle equilibrium state 0 in the multidimensional 
CaSe. 

amplitude modulation regime is connected with the bifurcation of the birth of a stable limit 
cycle from a homoclinic loop of a saddle-node equilibrium state (see Figure 3) in a time-averaged 
system. Returning to the initial equation, one can see that the analogous picture holds for the 
two-dimensional Poincare map where the saddle-node is now the fixed point of the map and the 
homoclinic loop is not a single orbit, but is a continuum of orbits which compose the unstable 
set of the saddle-node. In that time such kind of analysis was not carried out. 
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Figure 7. The configuration of the unstable manifold of asaddle-node periodic orbit L 
which may lead to the blue sky catastrophe: the closure w is not a manifold. 

The systematical study of this bifurcation was begun with the paper [2] by Afraimovich and 
Shil’nikov under the assumption that the dynamical system that undertakes the bifurcation is 
either nonautonomous and periodically depending on time, or autonomous but. possessing a global 
cross-section (at least, at that part of the phase space which is studied). Essentially, the problem 
was reduced to the study of a one-parameter family of C’-diffeomorphisms (T- I 2) which has, 
at p = 0, a fixed point of saddle-node type such that all orbits of the unstable set of the saddle- 
node return to its small neighborhood and tend to it, as the number of iterations of the map tends 
to +oo. 

Recall that the saddle-node point has one multiplier equal to unity and all the other multipliers 
are less than unity in absolute value. Near the saddle-node, the diffeomorphism has the form 

5 = AY + WY, 4 
f=z+G(y,a), 

(1) 

where z E R’, y E Rn, A is a matrix whose eigenvalues lie strictly inside the unit circle, LI(0, 0) = 0, 
H&, (O,O) = 0, WA 0) = 0, G&J 0,O) = 0. Here, the fixed point is in the origin. As it is well 
known, there exists a CT-smooth invariant center manifold of the form y = Q(E), where ~(0) = 0, 
q’(O) = 0. Restricted onto the center manifold, the map takes the form 

E = 2 + g(z), (2) 

where g(z) 3 G(v(.z),z) E C’, g(0) = 0, g’(0) = 0. 
The saddle-node is called simple if g”(0) # 0. In this case equation (2) takes the form 

E = z + 1222 + * * * , (3) 

where 12 = g”(O)/2 # 0. Without loss of generality, one can assume 12 > 0. 
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Figure 8. When the saddle-node disappears (fi > 0), all orbits leave its small neigh- 
borhood 
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Figure 9. When ~1 < 0, the saddlenode disintegrates onto two fixed points: saddle 01 
and stable 02. 

One can see (Figure 2) that a small neighborhood of the origin is split by the strong-stable 
invariant manifold {z = t(y)} (c(O) = 0, t’(O) = 0) into two regions: the node region {z < t(y)} 
and the saddle region {.z > c(y)}. All orbits from the node region tend to the origin along the 
z-axis. In the saddle region, the one-dimensional unstable manifold {y = n(z), z > 0) lies, all 
orbits of which tend to the origin with the iterations of the inverse map. All the other orbits, 
from the saddle region leave the neighborhood of the origin with the iterations of both map (1) 
itself and its inverse. 

To take into account the dependence on the parameter CL, one must consider the functions H 
and G from (1) to be functions on p also. Moreover, the parameter ,u is supposed to be chosen 
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One can see (Figure 2) that a small neighborhood of the origin is split by the strong-stable 
invariant manifold {z = e(y)} (€(O) 0, e'(0) = 0) into two regions: the node region {x < e(y)} 
and the saddle region {z > €(y)}. All orbits from the node region tend to the origin along the 
z-axis. In the saddle region, the one-dimensional unstable manifold {y = 1J(z), z > O} lies, all 
orbits of which tend to the origin with the iterations of the inverse map. All the other orbits 
from the saddle region leave the neighborhood of the origin with the iterations of both map (1) 
itself and its inverse. 

To take into account the dependence on the parameter p., one must consider the functions H' 
and G from (1) to be functions on p. also. Moreover, the parameter p. is supposed to be chosen 
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Figure 10. The case where the set w is smooth. 

Figure 11. The case where the set w is a nonsmooth circle (the tangent vector does 
not have a limit when the point on w approaches 0 from the left). 

such that the saddle-node disappears when 1-1 > 0 (Figure 8), and when 1-1 < 0, it disintegrates 
onto two fixed points: saddle and stable (Figure 9). The restriction of the map onto the center 
manifold is rewritten as 

E = 2 + p + 1$2 + * f. . (4 

As we mentioned, the orbits of all points of the local unstable manifold are supposed to return 
into the node region and tend to the origin at p= 0. The union of these orbits is denoted as w” 
and this set is here homeomorphic to a circle. It occurred that the set w” may be a smooth 
circle (Figure 10) or it may be nonsmooth (Figure 11). 

For the smooth case there was found in [2] that when the saddle-node disappears, an attractive 
smooth invariant curve inherits to w. If the map under consideration is the Poincare map of a 
global cross-section for some system of ODE, then the invariant curve is the line of intersection 
of an invariant two-dimensional torus with the cross-section. The Poincare rotation number on 
the torus tends to zero as p + +O. 
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.Ai?, we mentioned, the orbits of all points of the local unstable manifold are supposed to return 
into the node region and tend to the origin at J.t = O. The union of these orbits is denoted as WU 
and this set is here homeomorphic to a circle. It occurred that the set WU may be a smooth 
circle (Figure 10) or it may be nonsmooth (Figure 11). 

For the smooth case there was found in [2] that when the saddle-node disappears, an attractive 
smooth invariant curve inherits to WU. If the map under consideration is the Poincare map of a 
global cross-section for some system of ODE, then the invariant curve is the line of intersection 
of an invariant two-dimensional torus with the cross-section. The Poincare rotation number on 
the torus tends to zero as J.t ~ +0. 
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This result gave a rigorous explanation of the transition from the synchronization to the an+ 
plitude modulation in periodically forced nonlinear systems: when p < 0, the only stable regime 
is the stable periodic orbit which corresponds to synchronization, and the invariant torus that 
exists when p > 0 corresponds to modulation regime. 

The case where r is a nonsmooth manifold was considered in a series of papers. In the 
aforementioned paper [2], there was established (under the so-called “big lobe” condition) the 
presence of the sequence of intervals (pi,&) accumulating at p = +0 such that the system has 
nontrivial hyperbolic sets at /J E (pi, pi). Without the big lobe condition (but for one-parameter 
families of a special kind), this result was proved in [3] by Newhouse, Palis and Takens. They 
used essentially a theorem by Block on existence of periodic orbits for endomorphisms of a 
circle. In (41, the results of [2,3] were extended onto the general case; there was also shown 
that for a “sufficiently small lobe” the intervals of parameter values corresponding to complex 
dynamics (hyperbolic sets) and simple dynamics (a continuous invariant curve with rational 
Poincare rotation number) alternate accumulating at ~1 = +O. 

The important feature of the nonsmooth case is the existence [3,4] of parameter values in an 
arbitrary closeness to p = +0 which correspond to the presence of saddle periodic orbits with 
s&ucturally Imsta6le homoclinic orbits. According to the modern knowledge (see [5]), this leads 
to extremely complicated dynamics: to the Newhouse phenomenon (persistence of homoclinic 
tangencies, coexistence of infinitely many sinks) [6-111, to HBnon-like attractors [12,13], and 
to infinite degenerations [14] which make it impossible to give a complete description of all 
bifurcations that may occur in this case. 
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Figure 12. The local saddle-node bifurcation. For /L < 0, there exist two periodic 
orbits: stable and saddle; the unstable manifold of the latter is homeomorphic to a 
two-dimensional cylinder. When p > 0, the saddle-node disappears and all orbits 
leave its small neighborhood. 

In the present paper we point out that if an autonomous system with a saddle-node does not 
have a global cross-section there may be essentially more different possible cases. Let 

i = X(x, p) 

be a one-parameter family of n-dimensional CT-smooth (T 2 2) dynamical systems which has, at 
p = 0, a periodic orbit of saddle-node type (i.e., such that the local Poincare map has form (1)). 
When p varies, the local bifurcations go as follows (Figure 12). For p < 0, there exist two 
periodic orbits: stable and saddle; the unstable manifold of the latter is homeomorphic to a 
two-dimensional cylinder. At /J = 0, these periodic orbits unite in one structurally unstable 
periodic orbit L of the simple saddle-node type. The local unstable set IV, is homeomorphic to 
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This result gave a rigorous explanation of the transition from the synchronization to the am­
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The important feature of the nonsmooth case is the existence [3,4] of parameter values in an 
arbitrary closeness to J.L = +0 which correspond to the presence of saddle periodic orbits with 
structurally unstable homoclinic orbits. According to the modern knowledge (see [5]), this leads 
to extremely complicated dynamics: to the Newhouse phenomenon (persistence of homoclinic 
tangencies, coexistence of infinitely many sinks) [6-11], to Henon-like attractors [12,13), and 
to infinite degenerations [14] which make it impossible to give a complete description of all 
bifurcations that may occur in this case. 
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Figure 12. The loca.l saddle-node bifurca.tion. For p, < 0, there exist two periodic 
orbits: stable and saddle; the unstable manifold of the latter is homeomorphic to a 
two-dimensional cylinder. When p, > 0, the saddle-node disappears and all orbits 
leave its small neighborhood. 

In the present paper we point out that if an autonomous system with a saddle-node does not 
have a global cross-section there may be essentially more different possible cases. Let 

x = X(X,J.L) 

be a one-parameter family of n-dimensional or -smooth (r ~ 2) dynamical systems which has, at 
J.L = 0, a periodic orbit of saddle-node type (Le., such that the local Poincare map has form (I)). 
When J.L varies, the local bifurcations go as follows (Figure 12). For J.L < 0, there exist two 
periodic orbits: stable and saddle; the unstable manifold of the latter is homeomorphic to a 
two-dimensional cylinder. At J.L :::: 0, these periodic orbits unite in one structurally unstable 
periodic orbit L of the simple saddle-node type. The local unstable set Wl is homeomorphic to 
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a half-cylinder R+ x 5”. The orbit L has also the strong-stable manifold Wr which divide a 
neighborhood of L into two regions: saddle and node. When p > 0, the saddlenode &appears 
and all orbits leave its small neighborhood. Note that if the starting point of some orbit lies 
in the node region, then the time which the orbit spends in a small fixed neighborh.ood of the 
saddle-node tends to infinity ss p + +O, as well as the length of the corresponding piece of the 
orbit. 

Suppose that, at /.J = 0, all the orbits of Wi return to the node region and tend to L es t -+ +oo, 
not lying in WY. The union w’ of these orbits may, for instance, be a smooth two-dimensional 
surface: a torus, or a Klein bottle (the latter may be if the phase space is nonorientable or if the 
dimension n of the phase space is not less than four). Analogously to [2], the smooth invariant 
two-dimensional surface is preserved for /.L > 0. As above, if the set r is a nonsmooth torus, 
then saddle periodic orbits with homoclinic curves may appear at /.L > 0; the same may be in the 
case where w” is a nonsmooth Klein bottle under some additional conditions [4]. 

Essentially different situation was earlier unknown where the set w” is not a manifold. First, 
consider the following example. Let a two-parameter family of three-dimensional vector fields 
have, at some parameter values, a saddle-node periodic orbit L and a saddle-node equilibrium 
state 0 (Figure 13). Suppose that all orbits of Wz tend to 0 as t + +oo and that the one- 
dimensional separatrix of 0 tends to L. If one of parameters is varied so that 0 disappears and 
L does not, then the set w” will have the form shown in Figure 7. The intersection of w” with 
a local cross-section S to L will be a union of a countable set of circles accumulating at the point 
Sn L (Figure 14). Evidently, any neighborhood of this point in the set w is not homeomorphic 
to a ball. Therefore, in this situation the set 3 is not a manifold. 

Systems having a saddle-node periodic orbit with the set w” being as shown in Figure 7 
compose codimension one surfaces in the space of smooth flows in Rn (n 2 3). Below, we will 
show (see Theorem 1) how open subsets are distinguished on these surfaces such that for any 
one-parameter family X, that intersects such subset transversely at p = 0, the system X, has an 
attractive periodic orbit for all small ~1 > 0,5 whose period and length tend to infinity as p + +O. 

Note the connection of this result to the problem on “the blue sky catastrophe” [15]. The 
original formulation was as follows. Does there exist a continuous one-parameter family of smooth 
vector fields A, on a compact manifold such that A, has a closed orbit L, for all ,u :a 0, and as 
p + +O, the period of L, tends to infinity, and at p = +O, the orbit L, disappears on a finite 
distance of equilibrium states?6 

Virtual bifurcations of such kind were called blue sky catastrophes by Abraham. The first 
example of such catastrophe was constructed by Medvedev [16] for a one-parameter family of 
vector fields on a Klein bottle which has a saddlenode periodic orbit at ~1 = 0. The Medvedev’s 
family was of a rather special kind: the system that corresponds to p = 0 is also embedded in a 
one-parameter family of conservative vector fields, all orbits of which are closed. The Poincare 
map for this conservative family has the form 

CF = -‘p + w(p) mod 1, 

where w + 00 as p + +O. This map has two fixed points, all other points are of period two. 
Actually, Medvedev used the fact that this family can be perturbed so as to have only two periodic 
points: one stable and one unstable fixed point; the stable fixed point corresponds to a stable 
periodic orbit whose period and length tend to infinity as p + +O. 

In the general one-parameter family, both the fixed points will bifurcate infmitely rnany times 
as /.J + +O, changing their stability (this was noticed in [17] and studied in more detail in [18]). 
Formally, the blue sky catastrophe also takes place here because the structural stability of the 
periodic orbit under consideration was not required in the original formulation. 

5We assume that the region ~1 > 0 corresponds to the disappearance of the saddlenode L. 
6The latter implies that the length of L, also tends to infinity. 
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surface: a torus, or a Klein bottle (the latter may be if the phase space is nonorientable or if the 
dimension n of the phase space is not less than four). Analogously to [2], the smooth invariant 
two-dimensional surface is preserved for p. > O. As above, if the set WU is a nonsmooth torus, 
then saddle periodic orbits with homoclinic curves may appear at p. > 0; the same may be in the 
case where W is a nonsmooth Klein bottle under some additional conditions [4]. 

Essentially different situation was earlier unknown where the set WU is not a manifold. First, 
consider the following example. Let a two-parameter family of three-dimensional vector fields 
have, at some parameter values, a saddle-node periodic orbit L and a saddle-node equilibrium 
state 0 (Figure 13). Suppose that all orbits of Wl tend to 0 as t - +00 and that the one­
dimensional separatrix of 0 tends to L. If one of parameters is varied so that 0 disappears and 
L does not, then the set WU will have the form shown in Figure 7. The intersection of W with 
a local cross-section S to L will be a union of a countable set of circles accumulating at the point 
S n L (Figure 14). Evidently, any neighborhood of this point in the set WU is not homeomorphic 
to a ball. Therefore, in this situation the set WU is not a manifold. 

Systems having a saddle-node periodic orbit with the set WU being as shown in Figure 7 
compose codimension one surfaces in the space of smooth flows in Rn (n ;::: 3). Below, we will 
show (see Theorem 1) how open subsets are distinguished on these surfaces such that for any 
one-parameter family XIJ. that intersects such subset transversely at J.L = 0, the system XIJ. has an 
attractive periodic orbit for all smallp. > 0,5 whose period and length tend to infinity as p.- +0. 

Note the connection of this result to the problem on "the blue sky catastrophe" [15]. The 
original formulation was as follows. Does there exist a continuous one-parameter family of smooth 
vector fields AIJ. on a compact manifold such that AIJ. has a closed orbit LIJ. for all J.L > 0, and as 
J.L - +0, the period of LIJ. tends to infinity, and at p. +0, the orbit LIJ. disappears on a finite 
distance of equilibrium states?6 

Virtual bifurcations of such kind were called blue sky catastrophes by Abraham. The first 
example of such catastrophe was constructed by Medvedev [16] for a one-parameter family of 
vector fields on a Klein bottle which has a saddle-node periodic orbit at p. = O. The Medvedev's 
family was of a rather special kind: the system that corresponds to J.L = 0 is also embedded in a 
one-parameter family of conservative vector fields, all orbits of which are closed. The Poincare 
map for this conservative family has the form 

<p = -<p + w(p.) mod 1, 

where w - 00 as J.L - +0. This map has two fixed points, all other points are of period two. 
Actually, Medvedev used the fact that this family can be perturbed so as to have only two periodic 
points: one stable and one unstable fixed point; the stable fixed point corresponds to a stable 
periodic orbit whose period and length tend to infinity as p. - +0. 

In the general one-parameter family, both the fixed points will bifurcate infinitely many times 
as J.L - +0, changing their stability (this was noticed in [17] and studied in more detail in [18]). 
Formally, the blue sky catastrophe also takes place here because the structural stability of the 
periodic orbit under consideration was not required in the original formulation. 

5We assume that the region J.t > 0 corresponds to the disappearance of the saddle-node L. 
6The latter implies that the length of L,.. also tends to infinity. 
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W” 

Figure 13. An example of bifurcation creating the configuration shown in Figure 7. 
Here, all orbits of the unstable manifold WU of a saddle-node periodic orbit L tend 
to a saddle-node equilibrium state 0 ss t -+ fm, and the one-dimensional separatrix 
of 0 tends to L. If one of parameters is varied so that 0 disappears and L does not, 
then the set v will have the form shown in Figure 7. 

Figure 14. For the configuration shown in Figure 7, the intersection of v with a 
local cross-section S to L is a union of a countable set of circles accumulating at the 
point S rl L. 
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WU 

Figure 13. An example of bifurcation creating the configuration shown in Figure 7. 
Here, a.\l orbits of the unstable manifold W" of a saddle-node periodic orbit L tend 
to a saddle-node equilibrium state 0 as t -> +00, and the one-dimensional separatrix 
of 0 tends to L. If one of parameters is varied so that 0 disappears and L does not, 
then the set W" will have the form shown in Figure 7. 

0):1 

\ //~~~<:>~.. SnL 
.......... 1 ___ ... ___ _ 

Figure 14. For the configuration shown in Figure 7, the intersection of W" with a 
local cross-section S to L is a union of a countable set of circles accumulating at the 
point sn L. 
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Evidently, the construction proposed in the present paper gives also a solution to the blue 
sky problem. At the same time, it seems to be more adequate because the periodic orbit in 
Theorem 1 is attractive and structurally stable for all p > 0, and this property holds for an open 
set of one-parameter families. 

The second main result of the paper is given by Theorem 2 which establishes that in the space 
of smooth flows in Rn (n 2 4), there exist codimension one bifurcation surfaces sepamking Morse- 
Smale systems and systems with hyperbolic attractors of the Smale- Williams solenoid type [19,20]. 

We will show that the solenoid does not undergo bifurcations when approaching the boundary 
and period and length of any periodic orbit of the solenoid tend to infinity; i.e., we also deal with 
a variant of the blue sky catastrophe here. 

Another attainable boundary is known [21,22] which separates Morse-Smale systems and sys- 
tems with nontrivial hyperbolic sets. This boundary corresponds to the existence of a structurally 
unstable equilibrium state of the saddle-saddle type which has two or more homoclinic orbits. 
When approaching the boundary, the hyperbolic set also does not undergo bifurcations; the main 
difference with the cases considered in the present paper is that the hyperbolic set (the solenoid) 
is now attractive. 

It is well known that the hyperbolic attractors have not ever been found in dynamical models 
arising in natural applications and that the chaotic dynamics demonstrating by the large variety 
of systems has a nonhyperbolic character; i.e., it is connected, for instance, with the Lorenz-like 
attractor [23-261, the H&on-like attractor [12], or with quasiattractors [5,26-281. The fact we 
establish here that a hyperbolic attractor can appear in a relatively simple bifurcation allows us 
to suppose the hyperbolic attractors can be found in dynamical systems of natural origination if 
the dimension of phase space is four or more. In this connection, we propose (in the Concluding 
Remarks) more examples of bifurcations leading to hyperbolic attractors. In the next section, we 
give the precise formulation of Theorems 1 and 2 and the proof for the case where the smoothness 
of the system with respect to the phase variables and the parameter is sufficiently high (the case 
of low smoothness requires more delicate calculations [29]). 

MAIN RESULTS 
We consider a F-smooth (r > 2) family of dynamical systems X, in Rn (n 2 3) which has 

a periodic orbit Lo of the simple saddle-node type at ,a = 0. All the orbits of the unstable 
manifold W” are supposed to return to Lo and to come into the node region as t + +oo. 
Herewith, any orbit of W” is bi-asymptotic to LO and w’ is compact. 

Let U be a small neighborhood of w’ and UC, be a small neighborhood of Lo, U,J E U. Let 
us introduce coordinates in a neighborhood Us of LO. We cut Uo along some cross-section S 
and consider the coordinates (y, z, cp) where cp E [0, l] is the angular variable and (y:, .z) are the 
normal coordinates; z E R1 is a coordinate on the center manifold, y E Rnm2 is a vector of 
coordinates corresponding to the multipliers less than unity in absolute value; values cp = 0 and 
cp = 1 correspond to the points lying on S. 

We chose the coordinates such that LO is the curve (y = 0, z = 0); we also locally straighten 
the center manifold (so that it takes the form {y = 0)) and the strong-stable manifold (so that 
it takes the form {z = 0)). 

Consider two cross-sections SO and Si to the flow X, which are close enough to LO and which 
have the form z = --E < 0 and z = E > 0, respectively. 

At p = 0 (and hence, at all small CL) all orbits of W” return to the node region U+ = {z < 0) in 
a finite time. Therefore, the flow X, defines a diffeomorphism 2’1 by which a small neighborhood 
of the intersection line I- : {y = 0) = W” I-I S1 is mapped into SO. This map has the form 

Yo = P(cpl,Yl;d 9 CPO = q(vl,yl;p) modl, (5) 

where the coordinates on S’s and Si are denoted as (cps, ys) and (cpi,yi), respectively; smooth 
functions p and q mod 1 are l-periodical in ‘p. 
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Evidently, the construction proposed in the present paper gives also a solution to the blue 
sky problem. At the same time, it seems to be more adequate because the periodic orbit in 
Theorem 1 is attractive and structurally stable for all /.L > 0, and this property holds for an open 
set of one-parameter families. 

The second main result of the paper is given by Theorem 2 which establishes that in the space 
of smooth flows in Rn (n ;::: 4), there exist codimension one bifurcation surfaces separat:.~ng Morse­
Smale systems and systems with hyperbolic attractors of the Smale- Williams solenoid t~,pe [19,201. 

We will show that the solenoid does not undergo bifurcations when approaching the boundary 
and period and length of any periodic orbit of the solenoid tend to infinity; i.e., we also deal with 
a variant of the blue sky catastrophe here. 

Another attainable boundary is known [21,22] which separates Morse-Smale systems and sys­
tems with nontrivial hyperbolic sets. This boundary corresponds to the existence of a structurally 
unstable equilibrium state of the saddle-saddle type which has two or more homoclinic orbits. 
When approaching the boundary, the hyperbolic set also does not undergo bifurcations; the main 
difference with the cases considered in the present paper is that the hyperbolic set (the solenoid) 
is now attractive. 

It is well known that the hyperbolic attractors have not ever been found in dynamkal models 
arising in natural applications and that the chaotic dynamics demonstrating by the large variety 
of systems has a nonhyperbolic character; i.e., it is connected, for instance, with the Lorenz-like 
attractor [23-26], the Henon-like attractor [12], or with quasiattractors [5,26-28]. The fact we 
establish here that a hyperbolic attractor can appear in a relatively simple bifurcation allows us 
to suppose the hyperbolic attractors can be found in dynamical systems of natural origination if 
the dimension of phase space is four or more. In this connection, we propose (in the Concluding 
Remarks) more examples of bifurcations leading to hyperbolic attractors. In the next section, we 
give the precise formulation of Theorems 1 and 2 and the proof for the case where the smoothness 
of the system with respect to the phase variables and the parameter is sufficiently high (the case 
of low smoothness requires more delicate calculations [29]). 

MAIN RESULTS 
We consider a Cr-smooth (r ;::: 2) family of dynamical systems XI-' in ~ (n ;::: 3) which has 

a periodic orbit Lo of the simple saddle-node type at /.L = O. All the orbits of the unstable 
manifold W" are supposed to return to Lo and to come into the node region as t - +00. 
Herewith, any orbit of W" is bi-asymptotic to Lo and W'" is compact. 

Let U be a small neighborhood of W'" and Uo be a small neighborhood of Lo, Uo E U. Let 
us introduce coordinates in a neighborhood Uo of Lo. We cut Uo along some cross-section S 
and consider the coordinates (y, z, cp) where cP E [0,1] is the angular variable and (y" z) are the 
normal coordinates; z E R1 is a coordinate on the center manifold, y E Rn-2 is a vector of 
coordinates corresponding to the multipliers less than unity in absolute value; values cP = 0 and 
cP = 1 correspond to the points lying on S. 

We chose the coordinates such that Lo is the curve (y = 0, z = 0); we also locally straighten 
the center manifold (so that it takes the form {y = O}) and the strong-stable manifold (so that 
it takes the form {z = O}). 

Consider two cross-sections So and S1 to the flow XI-' which are close enough to Lo and which 
have the form z = -e; < 0 and z e; > 0, respectively. 

At f.L = 0 (and hence, at all small f.L) all orbits of W" return to the node region U+ = {z < O} in 
a finite time. Therefore, the flow XI'- defines a diffeomorphism T1 by which a small neighborhood 
of the intersection line l- : {y = O} = W" n S1 is mapped into So. This map has the form 

Yo =p(CP1,Y1;/.L) , CPo =q(CP1,Y1;/.L) modI, (5) 

where the coordinates on So and S1 are denoted as (CPo,Yo) and (CP1,yt), respectively; smooth 
functions p and q mod I are I-periodical in cpo 
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The curve Z+ = TlZ- : { YO = p(cpi, 0; 0), cpo = q(cpi,O;O) mod 1) is the intersection of WU 
and SO. Note that the function q can be written in the form: 

q(cp, Y; P) = mcp + qo(cp, Y; ~1, (6) 

where qo is periodic in cp. The integer m defines the homotopy class of Z+ in Se (the sign of m 
defines orientation of I+ with respect to l-). 

If the dimension n of the phase space is greater than three, then the solid torus SO is at least 
three-dimensional and the integer m may be of arbitrary value (see Figure 15 for the csse m = 2). 
At n = 3, the cross-section SO is a two-dimensional annulus. Therefore, in this case, there may 
be only m = 0 (Figures 7 and 14) and m = 1. 

Figure 15. If the dimension of the phase space is more than 3, then the cross- 
sections So and 5’1 are, at least, three-dimensional, and the situation is possible 
when the curve l- = IV” n Sl is mapped onto the double-round curve. 

Note that the structure of the set W” is completely determined by the way W” adjoins to LO 
from the side of the node region U +. It is not hard to see that the intersection of W” n U+ with 
any cross-section of the kind {‘p = const} consists, at m # 0, of Irnl pieces glued at the point 
{y=O, z=O}=Lr-l{ cp - const}. It is clear that samples of W” corresponding to different - 
values of m are mutually nonhomeomorphic. It is also clear that W” is a topological manifold if 
and only if m = fl (a torus or a Klein bottle, respectively). 

Consider the function 
f(v) = w + q0(cp, 0; 0). (7) 

Note that f is not defined uniquely because it can be changed by a transformation of coordinate cp 
on the cross-sections So and Si. Below we will give an algorithm how to choose the coordinates 
on Se and Si so that the through map TO : Se -+ Si defined by the flow X, for p > 0, acts as a 
pure rotation in q-coordinate 

91 = 90 + GL), (8) 

where t(p) is the flight time from Sc to S1 for the orbits of X,, t(p) + fco as ~1 + +O. It can 
be shown [29] that the function f defined modulo an arbitrary additive constant and a shift of 
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Note that f is not defined uniquely because it can be changed by a transformation of coordinate <P 
on the cross-sections So and SI' Below we will give an algorithm how to choose the coordinates 
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the origin 

is independent of the choice of E and of smooth coordinate transformations preserving form (8) 
of the through map. 

Now we can formulate the main results of the paper.7 

THEOREM 1. Let m = 0 and If’(v)1 < 1 for all ‘p. Then, for a11 smitll ~1 > 0, the system X, has 
&11 attractive periodic orbit L, (nonhomotopic to Lo in U) to which all orbits of U tend. 

THEOREM 2. Let Irnl 2 2 and If/((~)1 > 1 for all cp. Then, for all small ~1 > 0, all orbits ‘of U tend 
to a hyperbolic attractor R, topologically equivaJent to the suspension over the inverse spectrum 
limit of the expanded map of a circle 

@=mmcpmodl. (9) 

As we mentioned above, systems close to X0 and having a saddle-node periodic orbit close to Lo 
form a codimension one bifurcational surface in the space of dynamical systems. It can also be 
shown that the function f depends continuously on the system on the bifurcational surface. Thus, 
if the conditions of either Theorem 1 or 2 are fulfilled for some system X0, they are also fulfilled 
for all close systems on the bifurcational surface. This implies that Theorem 1 or 2 (d.epending 
on the value of m) is valid for any one-parameter family which intersects the surface transversely 
near X0. In other words, our blue sky catastrophes may occur in general one-parameter families. 

The proof of Theorems 1 and 2 is baaed on the calculation of the through map TO : (~0, cpo) H 
(~1, cpl) from SO into S1 which is defined by the orbits of X, for all small p > 0. 

In suitable coordinates, the through map can be written in the form (see Lemma 1). Since the 
last two equations in (5) are independent of y, the map TO is written in the form 

Yl = Y(cpo,Yo,P) 

cpl =CPO+T((PO,P) modl, 
(10) 

where Y is a smooth function l-periodic in cpo. The function T is the flight time from So to S1. 
Note that the flight time does not depend here on yo. This is connected with the existence 

of the strong-stable invariant foliation in UO. This foliation can be locally straightened; i.e., 
the coordinates in UO can be chosen such that the leaves of the foliations would have the form 
{z = const, cp = const}. The invariance of the foliation means that for any two points on a leaf 
the orbits of these points will intersect the same leaves simultaneously; i.e., at each moment of 
time the coordinates (z, ‘p) of one point coincide with the coordinates (z, ‘p) of the other points, 
independently of the value of the starting y-coordinates. Thus, in such coordinates, the flight 
time from the cross-section {z = -E} to the cross-section {z = E} is independent of y,-,, 

The flight time is smooth function periodic in cpo. Clearly, ~(90,~) + 00 as ~1 -+ SO. 

THEOREM 3. The coordinates can be chosen such that the flight time ~(90, CL) is independent 
of cpo; i.e., 

cp Out = cp’” + T(P) mod 1 (11) 

in formula (10). Besides, the following estimate 

IIY IIcv-~ 5 Ke-a7(p) 

holds, where K and cy are same positive constants. 

02) 

‘We need the invariance of function f with respect to coordinate transformations to be sure that the values 
max 1 f ‘I and min (f ‘I are well-defined objects. 
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the origin 

is independent of the choice of e and of smooth coordinate transformations preserving form (8) 
of the through map. 

Now we can formulate the main results of the paper.7 

THEOREM 1. Let m = ° and 1/'(<p)1 < 1 for all <po Then, for all small f..l > 0, the system XIJ. has 
an attractive periodic orbit LIJ. (nonhomotopic to Lo in U) to which all orbits ofU tend. 

THEOREM 2. Let Iml ;::- 2 and 11'(<p)1 > 1 for all <po Then, for all small f..l > 0, all orbits ofU tend 
to a hyperbolic attractor n/.L topologically equivalent to the suspension over the inverse spectrum 
limit of the expanded map of a circle 

r:p = m<p mod 1. (9) 

As we mentioned above, systems close to Xo and having a saddle-node periodic orbit close to Lo 
form a codimension one bifurcational surface in the space of dynamical systems. It can also be 
shown that the function 1 depends continuously on the system on the bifurcational surface. Thus, 
if the conditions of either Theorem 1 or 2 are fulfilled for some system X o, they are also fulfilled 
for all close systems on the bifurcational surface. This implies that Theorem 1 or 2 (depending 
on the value of m) is valid for anyone-parameter family which intersects the surface transversely 
near Xo. In other words, our blue sky catastrophes may occur in general one-parameter families. 

The proof of Theorems 1 and 2 is based on the calculation of the through map To : (Vo, <Po) 1-+ 

(Yb <pt) from 80 into 81 which is defined by the orbits of X/.L for all small f..l > 0. 
In suitable coordinates, the through map can be written in the form (see Lemma 1). Since the 

last two equations in (5) are independent of Y, the map To is written in the form 

Yl Y(<Po,Yo,f..l) 

<P1 = <Po + T (<Po,f..l) mod 1, 
(10) 

where Y is a smooth function I-periodic in <Po. The function T is the flight time from 80 to 8 1, 

Note that the flight time does not depend here on Yo. This is connected with the existence 
of the strong-stable invariant foliation in Uo. This foliation can be locally straightened; i.e., 
the coordinates in Uo can be chosen such that the leaves of the foliations would have the form 
{z const, <p const}. The invariance of the foliation means that for any two points on a leaf 
the orbits of these points will intersect the same leaves simultaneously; i.e., at each moment of 
time the coordinates (z, <p) of one point coincide with the coordinates (z, <p) of the other points, 
independently of the value of the starting y-coordinates. Thus, in such coordinates, the flight 
time from the cross-section {z = -e} to the cross-section {z = e} is independent of Yo 

The flight time is smooth function periodic in <Po. Clearly, T(<PO,f..l) ---> 00 as f..l---> +0. 

THEOREM 3. The coordinates can be chosen such that the flight time T(<PO, f..l) is independent 

of <Poi i.e., 
<pout <pin + T(f..l) mod 1 (11) 

in formula (10). Besides, the following estimate 

(12) 

holds, where K and a are same positive constants. 

7We need the invariance of function I with respect to coordinate transforma.tions to be sure that the values 
max 1/'1 and min 1f'1 are well-defined objects. 
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Inequality (12) is an obvious consequence of the fact that the flow near the saddle-node is 
exponentially contracting in y-variables which correspond to the multipliers lying strictly inside 
the unit circle. The constant cy must be chosen such that the spectrum of these multipliers lies 
inside the circle {](.)I = eVQ} in the complex plane. 

On the other hand, the first statement of the theorem is, technically, the most complicated 
part of the work. As we mentioned, the evolution of the coordinates (z, ‘p) is independent of 
y-coordinates. The corresponding differential equation is 

(13) 

where ?j(O, cp, 0) E 0, g(O, cp, cl) > 0 for p > 0. Note that equality (11) would be evidently fulfilled 
if the second equation in (13) were autonomous; i.e., if fi were independent of cp. 

We prove here Theorem 3 for the case where j is smooth enough with respect to x, v, and p. 
Actually, in this case, the nonautonomous vector field can be made “almost” autonomous in a 
small neighborhood of Lc by a smooth transformation of coordinates, namely, by reduction to a 
normal form. 

First, note that if j is sufficiently smooth, then one can make it independent of ‘p at ~1 = 0 
(see (31) by a smooth transformation of variables. Besides, using the standard normalizing pro- 
cedure, any finite segment of the Taylor expansion of 3 in powers of z and p can also be made 
independent of cp. This implies that, for an arbitrarily large k, we can write 

&T 
& = 0 (8) (14 

as p + +0 (this estimate holds in a small neighborhood of Lo and the larger k we choose, the 
smaller the size of the neighborhood may be). We can also write 

a3j 
$ = 0 (J”) , g-$ = 0 (6:“) , . . , (15) 

for an arbitrary fixed number of derivatives. 
We consider the case where Lo is a simple saddle-node. Then 

3 = z2z2 + o(z)2, 12 # 0 

at p = 0. Without loss of generality, we assume 12 = 1. Suppose the family X, is transverse to 
the bifurcational surface of systems with a simple saddle-node. This allows us to assume 

Resealing, if necessary, the parameter p we get 

Thus, we can write 
3 = p f z2 + 0 (JpJJz] + lz13 + p2) . 

Consider an orbit {z(t;cpe,p),cp(t; cpo,~)} of system (13) starting at t = 0 with the point 
(cp = cpo, z = 4). Since g (Z j(z,cp,p)) does not vanish at p > 0, we can express t as a 
function of z, ~0, and CL. By (13), we get 
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Inequality (12) is an obvious consequence of the fact that the flow near the saddle-node is 
exponentially contracting in y.variables which correspond to the multipliers lying strictly inside 
the unit circle. The constant a must be chosen such that the spectrum of these multipliers lies 
inside the circle {lOI =: e-(X} in the complex plane. 

On the other hand, the first statement of the theorem is, technically, the most complicated 
part of the work. As we mentioned, the evolution of the coordinates (z, V') is independent of 
y-coordinates. The corresponding differential equation is 

z == g(z, V', jJ) 

rp == 1, 
(13) 

where g(O, V', 0) == 0, g(O, V', jJ) > 0 for jJ > O. Note that equality (11) would be evidently fulfilled 
if the second equation in (13) were autonomous; Le., if g were independent of V'. 

We prove here Theorem 3 for the case where 9 is smooth enough with respect to x, cp, and p. 
Actually, in this case, the nonautonomous vector field can be made "almost" autonomous in a 
small neighborhood of Lo by a smooth transformation of coordinates, namely, by reduction to a 
normal form. 

First, note that if 9 is sufficiently smooth, then one can make it independent of V' at jJ 0 
(see [3]) by a smooth transformation of variables. Besides, using the standard normalizing pro­
cedure, any finite segment of the Taylor expansion of 9 in powers of z and jJ can also be made 
independent of cp. This implies that, for an arbitrarily large k, we can write 

og (-k) -=0 g 
8V' 

(14) 

as jJ -+ +0 (this estimate holds in a smalilleighborhood of Lo and the larger k we choose, the 
smaller the size of the neighborhood may be). We can also write 

(15) 

for an arbitrary fixed number of derivatives. 
We consider the case where Lo is a simple saddle-node. Then 

at jJ = O. Without loss of generality, we assume l2 = 1. Suppose the family XI-' is transverse to 
the bifurcational surface of systems with a simple saddle-node. This allows us to assume 

~! =P o. 

Rescaling, if necessary, the parameter jJ we get 

Thus, we can write 
9 = p + Z2 + 0 (ljJllzl + Izl 3 + Ii) . 

Consider an orbit {Z(tiV'o,jJ),cp(t;cpo,jJ)} of system (13) starting at t == 0 with the point 
(cp = V'o, z == -e:). Since ~ (== g(z,cp,jJ» does not vanish at jJ > 0, we can express t as a 
function of z, V'o, and /J. By (13), we get 

V' = V'o + t (z, V'o, /J) 
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and 

Denote u = e. By differentiating (16) with respect to cpc, we find 

(17) 

By (14), we have l$$/g2/ + 0 as p + +0, so the function u can be found by the successive 
approximation method as the unique continuous solution of integral equation (17). 

Note that we defined the function u at /.J > 0. Nevertheless, the right-hand side of th’e integral 
equation has a limit as 1-14 +0 (it vanishes). Therefore, the solution u has also a limit, namely, 
u -+ 0 as p -+ +O. Using estimates (14),(15), we can repeat these arguments for a number of 
derivatives of ‘II with respect to cpc and p (this number is the larger, the larger the value of k). 
Thus, the value of ‘11 tends to zero along with the arbitrary given number of derivatives as p + +O. 

By definition, the flight time r((pe,p) equals to 

J 90 t(z=E,'Po,II)-t(&,O,II)+ 4~ 4, cl) db 
0 

We see that the coordinate transformation 

cpo = cpo + J 90 4~ 4, CL) d4 
0 

brings the second equation of (10) to required form (11). The theorem is proved. 
As it follows from Theorem 3 and from formulas (5)-(7), if p is sufficiently small and positive, 

then on a small neighborhood of l- = W” n Si in 5’1, there is defined the map T s TOTI : 
(cpr, yr) H (ai, ~1) by the orbits of the flow X, which can be represented in the following form 
(we omit the indices “1”): 

where jj and < @ are smooth functions periodic in (p; moreover, there exist C’-l-limits l:im,,+ep 
and lim,,+e g 

ixP,Y;P=o)-o (1% 
fj(‘P,y=O;p=O)rO. (20) 

These formulas mean that, as p -+ +O, the map T becomes arbitrarily close (in CT-‘-topology) 
to the one-dimensional map 

p = T(P) + mcp + m(cp, O,O) = t(p) + f(v) mod 1. (21) 

If m = 0 and If’(v)1 < 1, then for any r‘, map (21) has an attractive fixed point to which 
all orbits tend. The same is clearly valid for all close maps, in particular, for the map T at 
small p > 0. Since the map T is defined by the orbits of the flow X,, the fixed point corresponds 
to the attractive periodic orbit L, of XP; this gives us Theorem 1. It should be noted that the 
period of L, is about T(P) and tends to infinity as /L -t +cxx Since the vector field of X, does 
not vanish in U, it follows that the length of L, tends to infinity also. 
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and 

j z ds 
t (Z, CPo, p,) = _ ( ( ). 

-e g S,CPO + t S,CPO,J.L ,J.L) 
(16) 

Denote u = ~. By differentiating (16) with respect to CPo, we find 

u (z, CPo, p,) [1 + u (s, CPo, p,)) ds. (17) 

By (14), we have 1~/iPI -+ 0 as J.L -+ +0, so the function u can be found by the successive 
approximation method as the unique continuous solution of integral equation (17). 

Note that we defined the function u at p, > O. Nevertheless, the right-hand side of the integral 
equation has a limit as J.L -+ +0 (it vanishes). Therefore, the solution u has also a limit, namely, 
u -+ 0 as J.L -+ +0. Using estimates (14),{15), we can repeat these arguments for a number of 
derivatives of u with respect to CPo and p, (this number is the larger, the larger the value of k). 
Thus, the value of u tends to zero along with the arbitrary given number of derivatives as p, -+ +0. 

By definition, the flight time r{cpo,p,) equals to 

{'PO 
t (z = c, CPo, J.L) == t (c, 0, J.L) + J

o 
u(c, ¢, J.L) d¢. 

We see that the coordinate transformation 

r O 

CPo = CPo + Jo u{c, ¢, J.L) d¢ 

brings the second equation of (10) to required form (11). The theorem is proved. 
As it follows from Theorem 3 and from formulas (5)-(7), if J.L is sufficiently small and positive, 

then on a small neighborhood of l- = W U n 81 in 8 1, there is defined the map T == ToTl : 
(CP1, Yl) 1-+ (<P1I til) by the orbits of the flow X,." which can be represented in the following form 
(we omit the indices "I"): 

fi = p«({J, Y; p,) 

<p :;; r(J.L) + f{({J) + ij{cp, Y; p,) mod 1, 
(18) 

where P and < ij are smooth functions periodic in ({J; moreover, there exist Cr-l-limits lim,.,,->+op 
and lim,.". ... +o ij 

p«({J,y;p, = 0) == 0 

ij(cp,y = OiP, == 0) == O. 

(19) 

(20) 

These formulas mean that, as J.L -+ +0, the map T becomes arbitrarily close (in cr-I-topology) 
to the one-dimensional map 

<p r{p,) + m({J + qo( ({J, 0, 0) == t(p,) + f{({J) mod 1. (21) 

If m = 0 and I f'{({J) I < 1, then for any r, map (21) has an attractive fixed point to which 
all orbits tend. The same is clearly valid for all close maps, in particular, for the map T at 
small p, > O. Since the map T is defined by the orbits of the flow X,.", the fixed point corresponds 
to the attractive periodic orbit L,." of X,.,,; this gives us Theorem 1. It should be noted that the 
period of L,." is about r{p,) and tends to infinity as p, -+ +00. Since the vector field of X,." does 
not vanish in U, it follows that the length of L,." tends to infinity also. 
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To prove Theorem 2, we note that if ]f’((~)] > 1 for all cp, then, by virtue of (19),(20), map (18) 
is expanding in cp and strongly contracting in y for all small y and p 2 0. This allows us with 
the standard technique [25,30] to establish the existence of a continuous contracting invariant 
foliation with the leaves of the form 

{cp = Q* (Y; 4, PII, 

where cp’ is the coordinate of the intersection of the leaf with the line {y = 0); the function a* 
is Lipschitz with respect to y and continuous on (cp’, cl) at all small p 2 0. 

Indeed, take any point P on Sc. Let PO = P, PI, Pz . . . be the iterations of P by the map T: 
TPi = Pi+l. Note that for p and y small enough, there exists X > 0 such that for a smooth 
surface .C : {‘p = G(y)} satisfying the Lipschitz condition 

/I II E <A 
dY - 

(23) 

and containing the point Pi, the connected component k of its preimage T-l(L) that contains 
Pi-1 is the surface of the similar form {cp = 6(y)}, w h ere 6 is defined for all small y and it 
satisfies Lipschitz condition (23) with the same X.8 

Furthermore, it is also easily checked that for any two curves Li and Cs satisfying (23) the 
CO-distance between ,?r and 2s is less than the CO-distance between Li and &. 

Thus, if Xi is the space of the smooth surfaces .C containing Pi and having the form cp = a(y), 
where Q satisfies (23), then the map Fi : JZ ++ 2 is contracting in CO-metric and ‘I;i(7&) c F&-i. 
Applying a lemma from [31] ( “on the fixed pont of a contracting operator in an infinite product 
of complete metric spaces”) to the spectrum of the spaces and the maps 

where the bars means Co-closure, we find that there exists a unique sequence of surfaces fZz : 
{up = @f(y)} such that Pi E L;, TLf C Lz+,, and Cf E 7?i (i.e., the value X is the Lipschits; 
constant for !I$). 

In other words, for any point P, there exists a unique Lipschitz surface L*(P) E LY, contain- 
ing P and such that all forward iterations of C*(P) by the map T remain Lipschitz with the 
Lipschitz constant X. By uniqueness, the surface L*(P) depends continuously on the point F’ 
and on the parameter p, and if two such surfaces have an intersection point, they coincide (see 
details in [25] where analogous considerations were carried out for the Lorenz-type maps). 

Thus, the surfaces L* compose a continuous invariant foliation of required form (22). The 
map T factorized with the leaves of the foliation is an exponentially expanding map of the circle 
for all small ,U > O.g Therefore, the factorized map is conjugate [32] to linear expanding map (9) 
for all small p > 0, what gives Theorem 2 (analogously to [20,33]). 

sThis assertion is easily verified and we omit the calculations because this is rather standard and repeats analogous 
considerations in [25]. The value X should be taken greater than min ].f’((p)]/ mm l4L(rp, 0; O)l (= W-(20)). 
QTo prove, consider a lift F of the map T onto the strip -oc < cp < +co. By (18)-(20), one can easily check that 
for any two points P and P' with equal y-coordinates, the difference between y-coordinates of the ith iterations Pi 
and Pi of, respectively, P and P' by the lift F is much less than the difference between their cpcoordinates for 
all positive i. Then, it is not hard to see that the distance between Pl and Pi grows exponentially as i - +oc; 
i.e., faster than K”dist(P,P’) where K > 1 can be chosen arbitrarily close to min If’(v)] if p and a are small 
enough. Since the leaves of the foliation are uniformly Lipschitz, the distance between the iterations of any two 
leaves by the lift T grows asymptotically ss the distance between the iterations of any two points lying one on one 
of the leaves and the other on the other. Thus, the distance between the iterations of any two leaves also grows 
exponentially. 

Simple Bifurcations 189 

To prove Theorem 2, we note that if If'(<p)1 > 1 for all <p, then, by virtue of (19),(20), map (18) 
is expanding in <p and strongly contracting in y for all small y and JL ~ O. This allows us with 
the standard technique [25,30] to establish the existence of a continuous contracting invariant 
foliation with the leaves of the form 

{<p cI>* (Yi <p', JL)} , (22) 

where <p' is the coordinate of the intersection of the leaf with the line {y O}; the function cI>* 
is Lipschitz with respect to y and continuous on (<p', JL) at all small JL ~ O. 

Indeed, take any point P on So. Let Po = P, P1, P2 ••. be the iterations of P by the map T: 
TPi = PH1 . Note that for JL and y small enough, there exists A > 0 such that for a smooth 
surface C : {<p = cI>(y)} satisfying the Lipschitz condition 

II~:II $ A 
(23) 

and containing the point Pi, the connected component £ of its preimage T-1(C) that contains 
Pi - 1 is the surface of the similar form {<p = ~(y)}, where ~ is defined for all small y and it 
satisfies Lipschitz condition (23) with the same A.S 

Furthermore, it is also easily checked that for any two curves C1 and C2 satisfying (23) the 
CO-distance between £1 and £2 is less than the CO-distance between C1 and C2 • 

Thus, if 'J-li is the space of the smooth surfaces C containing Pi and having the form <p cI>(y) , 
where cI> satisfies (23), then the map Ti : C ~ £ is contracting in CO-metric and Ti('J-l i ) ~ 'J-li-l' 
Applying a lemma from [31] ("on the fixed pont of a contracting operator in an infinite product 
of complete metric spaces") to the spectrum of the spaces and the maps 

where the bars means CO-closure, we find that there exists a unique sequence of surfaces Ci 
{<p cI>i(y)} such that Pi E Ct, TCi C C:+1' and Ci E Hi (Le., the value A is the Lipschitz; 
constant for cI>T). 

In other words, for any point P, there exists a unique Lipschitz surface C(P) ;; .co contain·, 
ing P and such that all forward iterations of C*(P) by the map T remain Lipschitz with the 
Lipschitz constant A. By uniqueness, the surface C*(P) depends continuously on the point P 
and on the parameter JL, and if two such surfaces have an intersection pOint, they coincide (see 
details in [25] where analogous considerations were carried out for the Lorenz-type maps). 

Thus, the surfaces C* compose a continuous invariant foliation of required form (22). The 
map T factorized with the leaves of the foliation is an exponentially expanding map of the circiEl 
for all small JL > 0.9 Therefore, the factorized map is conjugate [32] to linear expanding map (9) 
for all small JL > 0, what gives Theorem 2 (analogously to [20,33]). 

SThis assertion is easily verified and we omit the calculations because this is rather standard and repeats analogous 
considerations in [25J. The value.>. should be taken greater than min 11'(11')11 max Iq~('P, 0; 0)1 (see (18)-(20». 
9To prove, consider a lift T of the map T onto the strip -00 < V' < +00. By (18)-(20), one can easily check that 
for any two points P and pi with equal y-coordinates, the difference between y-coordinates of the ith iterations Pi 
and PI of, respectively, P and pi by the lift T is much less than the difference between their <p-Coordinates for 
all positive i. Then, it is not hard to see that the distance between PI and Pi grows exponentially as i - +oc; 
i.e., faster than K'dist(P,P I

) where K > 1 can be chosen arbitrarily close to minlf'(V')1 if iJ. and'll are small 
enough. Since the leaves of the foliation are uniformly Lipschitz, the distance between the iterations of any tw.) 
leaves by the lift T grows asymptotically as the distance between the iterations of any two points lying one on one 
of the leaves and the other on the other. Thus, the distance between the iterations of any two leaves also grows 
exponentially. 
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CONCLUDING REMARKS: 
THE DISAPPEARANCE OF A SADDLE-NODE TORUS 

The idea of the use of the saddle-node bifurcation to produce hyperbolic attractors gives many 
more new examples for the case of bifurcations of invariant tori. We do not develop here the 
theory of the global bifurcations connected with the disappearance of a torus and restrict ourself 
by the study of a model situation. 

Consider a one-parameter family of smooth dynamical systems 

which has, at p = 0, an invariant m-dimensional torus 7”’ filled by quasi-periodic orbits. We 
assume that the vector field takes the form 

L = 414~ 
i=p+z2 

9 = f-G) 

in a neighborhood of rm. Here, .z E R1, y E Rn+“-l, ‘p E Y. The matrix A(p) is stable; i.e., 
its eigenvalues lie strictly to the left of the imaginary axis. 

At ~1 = 0, the torus is given by the equation y = 0. When ~1 > 0, the torus disappears. 
Analogously to the case of disappearance of a saddle-node periodic orbit which we considered in 
the previous section, we construct two cross-sections SO and SI: {y = fs} where E is a small 
quantity. The map TO : SO -+ Sr will be defined for p > 0 by the orbits of the system. For our 
model case, it can be easily calculated: 

where t(p) N l/,,$ + . . . . Suppose that, at h = 0, all orbits of the unstable set W,U,, : {y = 0, 
z > 0) of the torus 9 return in a small neighborhood of ? and tend to it as t + +oo. All 
these orbits will intersect SO, defining thereby the map Tl : Sr 4 Se. We write this map in the 
form 

Yo =P(Yl,cpl,PL) 

PO = q(Y17(PlrP)> 

where p and q are smooth for all small CL. The image of the torus W“ n Se by the map TI is also 
a torus given by the equation 

Yo =P(o,cpl,o) 

cpo = Q (0, cpl, 0) . 

The Poincare map T = TOTI : 5’1 -+ 5’1 is written as 

fj = eAcpJtcp)p(y, cp, p) 

P = fYP)tb> + dG 93 PI* 
(24) 

Since t(p) -+ +oo as p + +0 and since the spectrum of A(p) lies strictly to the left of the 
imaginary axis, the norm of eA(p)t(fi) is extremely small for small 1-1 > 0. This means that 
map (24) is very close to the “shortened” map of a torus 

8 = 4~) + Bv + qo(vL (25) 
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CONCLUDING REMARKS: 
THE DISAPPEARANCE OF A SADDLE-NODE TORUS 

The idea of the use of the saddle-node bifurcation to produce hyperbolic attractors gives many 
more new examples for the case of bifurcations of invariant tori. We do not develop here the 
theory of the global bifurcations connected with the disappearance of a torus and restrict ourself 
by the study of a model situation. 

Consider a one-parameter family of smooth dynamical systems 

x = X(x, p), 

which has, at p = 0, an invariant m-dimensional torus 'Tm filled by quasi-periodic orbits. We 
assume that the vector field takes the form 

y = A(p)y 

i = p + z2 

<p = rl(p) 

in a neighborhood of'Tm. Here, z E Rl, Y E Rn-m-l, 'P E 'Tm. The matrix A(p) is stable; Le., 
its eigenvalues lie strictly to the left of the imaginary axis. 

At p = 0, the torus is given by the equation y = O. When p > 0, the torus disappears. 
Analogously to the case of disappearance of a saddle-node periodic orbit which we considered in 
the previous section, we construct two cross-sections 80 and 8 1: {y = ±€} where € is a small 
quantity. The map To : 80 ....... 8 1 will be defined for p > 0 by the orbits of the system. For our 
model case, it can be easily calculated: 

Yl = eA(/.L)t(J.L)yO 

'Pl = 'Po + rl(p)t(p), 

where t(p) "'" 1/ Vii + .. '. Suppose that, at p 0, all orbits of the unstable set Wl~c : {y 0, 
z > O} of the torus 'Tm return in a small neighborhood of 'Tm and tend to it as t ....... +00. All 
these orbits will intersect 80 , defining thereby the map Tl : 8 1 ....... 80 , We write this map in the 
form 

Yo P (Yl, 'PI, p) 

'Po = q (Yb 'PI, p) , 

where p and q are smooth for all small p. The image of the torus WU n 80 by the map Tl is also 
a torus given by the equation 

Yo = P (0, 'PI. 0) 

'Po q (0, 'Pl> 0) . 

The Poincare map T = ToTI : 81 ....... 8 1 is written as 

fi = eA(J.L)t(J.L)p(y, 'P, p) 

cp = rl(p)t(p) + q(z, 'P, p). 
(24) 

Since t(p) ....... +00 as p ....... +0 and since the spectrum of A(p) lies strictly to the left of the 
imaginary axis, the norm of eA(J.L)t(J.L) is extremely small for small p > O. This means that 
map (24) is very close to the "shortened" map of a torus 

cp = w(p) + B'P + qo('P), (25) 
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where 

W(P) = a)+) + do7 09 CL) 

Bv + qo(cp) = cd% cp, P) - 4% 0, ~1. 

Here, B is an integer matrix and qo is a periodic function of cp with the mean value equal t,cI 

zero. Denote 
f(v) = BP + qo(cp>. 

If IIf’ < 1 for all cp (for instance, if B = 0 and if qo is small), then the shortened map is 

contracting for all p > 0, and the Poincarb map T is contracting also. Since a contracting map 

has only one fixed point, we arrive at the following statement. 

PROPOSITION 1. If IIf’ < 1 for all cp, then the Aow X, has a unique attractive periodic orbit; 

for aJJ small p > 0. 

This result is analogous to Theorem 1 and it gives us a new example of the blue sky catastrophe,, 
An analogue of the theorems of [2,4,17] on the birth of a smooth invariant manifold at a saddle- 
node bifurcation is given by the following statement. 

PROPOSITION 2. If IdetBl = 1 and dety(cp) # 0 f or all cp (i.e., if the shortened map is a 
diffeomorphism), then the Poincare’ map has an invariant attractive m-dimensional torus for aJJ 
p > 0 (correspondingly, the ffow has an invariant attractive manifold homeomorphic to a skew 
product of the torus on a circle). 

The proof of this statement is based on the fact that if for a sequence p,, -+ +O, the sequence 
w(pn) mod 1 tends to some point w*, then the Poincark map that corresponds to p = p,, has, EC; 
a limit, the map 

g=o 
p = w * +t(cp). 

This map has a stable invariant smooth attractive torus {y = 0). The standard fact of the 
theory of normal hyperbolicity is that the invariant manifold is preserved for all close maps i:f 
the restriction of the map on the invariant manifold is a diffeomorphism and if the contraction 
in normal directions (y-directions in our case) is stronger than that which may take place along 
the directions tangential to the manifold. The latter requirement is trivially fulfilled in our case. 

Note that the restriction of the Poincare map on the invariant torus is close to the shortened 

map 
p = w * +j(cp). 

This implies, in particular, that if the shortened map is Anosov for all w* (for instance, if the 
matrix B does not have eigenvalues on the unit circle and qo is small), then the restriction of the 
Poincarh map is also Anosov for all (p > O).” 

We arrive, hence, at the following result. 

PROPOSITION 3. If the shortened map is Anosov for all w*, then for all ~1 > 0 there exists 
a hyperbolic attractor the flow on which is topoJogicaJJy conjugate to the suspension over the 
Anosov diffeomorphism. 

The birth of hyperbolic attractors can be proved not only in the case where the shortened map 
is a diffeomorphism. Namely, this result holds true if the shortened map is expanding or if it is a 

‘ORecall the definition: a diffeomorphism of a torus is called Anosov if the tangent space is decomposed into a 
direct sum of two subspaces (stable and unstable) such that this decomposition is continuous and invariant with 
respect to the differential of the map, and the differential of the map contracts (exponentially) vectors of stable 
subspaces and expands vectors of unstable subspaces. Among other significant properties, Anosov map are known 
to be structurally stable. 
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the directions tangential to the manifold. The latter requirement is trivially fulfilled in our case. 

Note that the restriction of the Poincare map on the invariant torus is close to the shortened 
map 
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This implies, in particular, that if the shortened map is Anosov for all w* (for instance, if the 
matrix B does not have eigenvalues on the unit circle and qo is small), then the restriction of thl~ 
Poincare map is also Anosov for all (p > 0).10 

We arrive, hence, at the following result. 

PROPOSITION 3. If tbe sbortened map is Anosov for all W*, tben for all p > ° tbere exists 
a byperbolic attractor tbe flow on wbich is topologically conjugate to tbe suspension over tbe 
Anosov diffeomorpbism. 

The birth of hyperbolic attractors can be proved not only in the case where the shortened map 
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direct sum of two subspaces (stable and unstable) such that this decomposition is continuous and invariant with. 
respect to the differential of the map, and the differential of the map contracts (exponentially) vectors of stable 
subspaces and expands vectors of unstable subspaces. Among other significant properties, Anosov map are known 
to be structurally stable. 
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so-called Anosov covering. A map is called expanding if the length of any tangent vector grows 
exponentially under the action of the differential of the map. An example is the algebraic map 

where the spectrum of the integer matrix B lies strictly outside the unit circle, and any map 
close to it is also expanding. If ]](F’((p))-l]] < 1, then the shortened map 

P = W(P) + f(p) = 4~) + Bv + CJO((P) 

is expanding for all p > 0. 
Shub established that expanding maps are structurally stable [32]. The study of expanding 

maps and their connection with smooth diffeomorphisms was continued by Williams [33]. Using 
this work, we obtain the following result which is analogous to our Theorem 2 proved for the case 
of disappearance of a saddle-node periodic orbit. 

PROPOSITION 4. Jf ]](f’(cp))-l]] < 1, then for all ~1 > 0 a hyperbolic attractor exists locally 
homeomorphic to the direct product of R*+’ on a Cantor set. 

An endomorphism of a torus is called un Anosov covering if the continuous invariant decompo- 
sition of the tangent space into the direct sum of stable and unstable subspaces exists, as for an 
Anosov map (the difference is that the Anosov covering is not a on&o-one map, and therefore, 
it is not a diffeomorphism). The map 

(P = w* + Bv + qo(cp) 

will be Anosov covering for all w* if, for instance, ]detB] > 1 and if qo is small enough. The 
following result is analogous to Proposition 4. 

PROPOSITION 5. If the shortened map is an Anosov covering for all w*, then the system has, 
for all ,u > 0, a hyperbolic attractor locally homeomorphic to the direct product of R’“‘+l on a 
Cantor set. 

To complete our list of examples of bifurcations connected with the disappearance of a torus, 
consider the following case. Suppose that the variables cp can be separated into two groups: 
cp = (cpi, cpz), where cpi is k-dimensional and 92 is (m - Ic)-dimensional. Suppose that the 
shortened map takes the form 

R = w1 + Bw + 41 (~1, cp2) 

f472 =w2+42(‘p1,(p2), 

where q1 and qz are l-periodic in cp. Let q1 and q2 be sufficiently small along with their first 
derivatives. Analogously to Proposition 2, we have the following. 

PROPOSITION 6. If ]detB] = 1, then the Poincard map has an invariant attractive Jc-dimensional 
torus. 

This gives us an example of a blue sky catastrophe not for a periodic orbit but for a torus of 
an arbitrary (in principle) dimension. If B is a hyperbolic matrix, then the flow on the newborn 
torus is Anosov, and we have, thus, a hyperbolic attractor for all p > 0. If B is a hyperbolic 
matrix but ]detB] > 1, then analogously to Propositions 4 and 5 there can be establiished that 
a hyperbolic attractor homeomorphic to the direct product of Rk+’ to a Cantor set exists for 
all p > 0. 
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torus is Anosov, and we have, thus, a hyperbolic attractor for all J.L > O. If B is a hyperbolic 
matrix but IdetBI > 1, then analogously to Propositions 4 and 5 there can be established that 
a hyperbolic attractor homeomorphic to the direct product of Rk+1 to a Cantor set exists for 
all J.L > O. 



Simple Bifurcations 193 

REFERENCES 

1. 

2. 

3. 

4. 

5. 
6. 

7. 

8. 

9. 
10. 

11. 

12. 
13. 
14. 

15. 

16. 
17. 

18. 

19. 
20. 
21. 

22. 

23. 

24. 
25. 

26. 

27. 

28. 

29. 
30. 

31. L.P. Shil’nikov, On a Poincar&Birkhoff problem, Math. USSR Sbornik 3, 415-443 (1967). 
32. M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91, 175-199 (1969). 
33. R.F. Williams, Expanding attractors, Publ. Math. IHES 43, 169-204 (1974). 

L.P. Shil’nikov, Some cases of generation of periodic motions from singular trajectories, (in Russian), Marem. 
Sbornik 61, 443-466 (1963). 
VS. Afraimovich and L.P. Shil’nikov, On some global bifurcations connected with the &appearance of a 
fixed point of saddle-node type, Soviet Math. Dokl. 15, 1761-1765 (1974). 
S. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomorhisms, PubI. Math. 
IHES 57, 5-71 (1983). 
D.V. Turaev and L.P. Shil’nikov, Bifurcations of torus-chaos quasiattractors, (in Russian), In Mothen&ical 
Mechanisms of Turbulence, Kiev, (1986). 
S.V. Gonchenko, L.P. Shil’nikov and D.V. Turaev, Qussiattractors and homoclinic tangencies, (this issue). 
S.E. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, 
Publ. Math. IHES 50, 101-151 (1979). 
S.V. Gonchenko, D.V. Turaev and L.P. Shil’nikov, On the existence of Newhouse domains in a neighborhood 
of systems with a structurally unstable Poincare homoclinic curve (the higher-dimensional case), Rwsian 
Acad. Sci. Dokl. Math. 47, 268-273 (1993). 
J. Palis and M. Viana, High dimension diffeomorphisms displaying infinitely many sinks, IMP,4 (preprint) 
(1992). 
SE. Newhouse, Diffeomorphisms with infinitely many sinks, Topology 13, 9-18 (1974). 
S.V. Gonchenko and L.P. Shil’nikov, On dynamical systems with structurally unstable homoclinic curves, 
Soviet Math. Dokl. 33 (1) 234-238 (1986). 
S.V. Gonchenko, D.V. Turaev and L.P. Shil’nikov, Dynamical phenomena in multidimensional systems with. 
a structurally unstable homoclinic Poincare curve, Russian Acad. Sci. Dokl. Math. 47, 419-415 (1993). 
M. Benedicks and L. Carleson, The dynamics of the Henon map, Ann. Math. 133, 73-169 (1991). 
L. Mora and M. Viana, Abundance of strange attractors, IMPA (preprint) (1990). 
S.V. Gonchenko, L.P. Shil’nikov and D.V. Turaev, On models with non-rough Poincare homoclinic curves, 
Physica D 62, 1-15 (1993). 
J. Palis and C. Pugh, Fifty problems in dynamical systems, Lecture Notes Math., Vol. 468, pp. 345-353, 
(1975). 

VS. Medvedev, On a new type of bifurcations on manifolds, (in Russian), Mat. Sbornik 113,487-492 (1980). 
VS. Afraimovich and L.P. Shil’nikov, On a bifurcation of codimension 1 leading to the appearance of a 
countable set of tori, Soviet Math. Dokl. 25, 101-105 (1982). 
Li Weigu and Zhang Zhi-Fen, The blue sky catastrohe on closed surfaces, Research Report, Vol. 19, Inst. of 
Math., Peking University, (1990). 
S. Smale, Bull. Am. Math. Sok. 73, 747-817 (1967). 
R.F. Williams, Topology 6, 473-487 (1967). 
L.P. Shil’nikov, On a new type of bifurcations of multidimensional dynamical systems, Soviet Math. Dokl. 
10, 1369-1371 (1969). 

V.S. Afraimovich and L.P. Shil’nikov, On attainable transitions from Morse-Smale systems to systems with 
many periodic motions, Math. USSR Izvestija 8, 1235-1269 (1974). 
V.S. Afraimovich, V.V. Bykov and L.P. Shil’nikov, The origin and structure of the Lorenz attractor, Soviet 
Phys. Dokl. 22, 336-339 (1977). 
R.F. Williams, The structure of Lorenz attractor, Lect. Notes Math., Vol. 615, pp. 94-112, (1977). 
V.S. Afraimovich, V.V. Bykov and L.P. Shil’nikov, On attracting structurally unstable limit sets of L.oren:z 
attractor type, tins. Moscow Math. Sot. 2, 153-216 (1983). 
VS. Afraimovich and L.P. Shil’nikov, Strange attractors and quasiattractors, In Nonlinear Dynamics and 
‘Turbulence, pp. 336-339, Pitman, Boston, (1982). 
V.S. Afraimovich and L.P. Shil’nikov, Invariant two-dimensional tori, their breakdown and stochasticity, 
Amer. Math. Sot. IPransl. 149, 201-211 (1991). 
I.M. Ovsyannikov and L.P. Shil’nikov, Systems with a homoclinic curve of multidimensional saddle-focus, 
and spiral chaos, (in Russian), Matem. Sbornik 182; English translation, Math. USSR Sbornik 73, 415-443 
(1991). 
L.P. Shil’nikov and D.V. Turaev, Blue sky catastrophes and hyperbolic attractors, (to appear). 
M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Lecture Notes Math., Vol. 583, Springer-Verlag, 
(1977). 

Simple Bifurcations 193 

REFERENCES 

1. L.P. Shil'nikov, Some cases of generation of periodic motions from singular trajectories, (in Russian), Matem. 
Sbornik 61, 443-466 (1963). 

2. V.S. Afraimovich and L.P. Shil'nikov, On some global bifurcations connected with the disappearance of a 
fixed point of saddle-node type, Soviet Math. Dok!. 15, 1761-1765 (1974). 

3. S. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomorhisms, Pu.bl. Math. 
IHES 57, 5-71 (1983). 

4. D.V. Turaev and L.P. Shil'nikov, Bifurcations of torus-chaos quasiattractors, (in Russian), In Mathematical 
Mechanisms of Turbu.lence, Kiev, (1986). 

5. S.V. Gonchenko, L.P. Shil'nikov and D.V. Turaev, Quasiattractors and homoclinic tangencies, (this issue). 
6. S.E. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, 

Publ. Math. IHES 50, 101-151 (1979). 
7. S.V. Gonchenko, D.V. Turaev and L.P. Shil'nikov, On the existence of Newhouse domains in a neighborhood 

of systems with a structurally unstable Poincare homoclinic curve (the higher-dimensional case), Russian 
Acad. Sci. Dokl. Math. 47, 268-273 (1993). 

8. J. Palis and M. Viana, High dimension diffeomorphisms displaying infinitely many sinks, IMPA (preprint) 
(1992). 

9. S.E. Newhouse, Diffeomorphisms with infinitely many sinks, Topology 13, 9-18 (1974). 
10. S.V. Gonchenko and L.P. Shil'nikov, On dynamical systems with structurally unstable homoclinic curves, 

Soviet Math. Dokl. 33 (1), 234-238 (1986). 
11. S.V. Gonchenko, D.V. Turaev and L.P. Shil'nikov, Dynamical phenomena in multidimensional systems with 

a structurally unstable homoclinic Poincare curve, Russian Acad. Sci. Dakl. Math. 47, 410-415 (1993). 
12. M. Benedicks and L. Carieson, The dynamics of the Henon map, Ann. Math. 133,73-169 (1991). 
13. L. Mora and M. Viana, Abundance of strange attractors, IMPA (preprint) (1990). 
14. S.V. Gonchenko, L.P. Shil'nikov and D.V. Turaev, On models with non-rough Poincare homoclinic curves, 

Physica D 62, 1-15 (1993). 
15. J. Palis and C. Pugh, Fifty problems in dynamical systems, Lecture Notes Math., Vol. 468, pp. 345-353, 

(1975). 
16. V.S. Medvedev, On a new type of bifurcations on manifolds, (in Russian), Mat. Sbornik 113, 187-492 (1980). 
17. V.S. Afraimovich and L.P. Shil'nikov, On a bifurcation of codimension 1 leading to the appearance of f~ 

countable set of tori, Soviet Math. Dok!. 25, 101-105 (1982). 
18. Li Weigu and Zhang Zhi-Fen, The blue sky catastrohe on closed surfaces, Research Report, Vol. 19, Inst. of 

Math., Peking University, (1990). 
19. S. Smale, Bull. Am. Math. Sok. 73, 747-817 (1967). 
20. R.F. Williams, Topology 6, 473-487 (1967). 
21. L.P. Shil'nikov, On a new type of bifurcations of multidimensional dynamical systems, Soviet Math. Dok/. 

10, 1369-1371 (1969). 
22. V.S. Afraimovich and L.P. Shil'nikov, On attainable transitions from Morse-Smale systems to systems with 

many periodic motions, Math. USSR Izvestija 8, 1235-1269 (1974). 
23. V.S. Afraimovich, V.V. Bykov and L.P. Shil'nikov, The origin and structure of the Lorenz attractor, Soviet 

Phys. Dokl. 22, 336-339 (1977). 
24. R.F. Williams, The structure of Lorenz attractor, Lect. Notes Math., Vol. 615, pp. 94-112, {1977}. 
25. V.S. Afraimovich, V.V. Bykov and L.P. Shil'nikov, On attracting structurally unstable limit sets of Loren:t 

attra.ctor type, Trons. Moscow Math. Soc. 2, 153-216 (1983). 
26. V.S. Afraimovich and L.P. Shil'nikov, Strange attractors and quasiattractors, In Nonlinear Dynamics and 

Turbulence, pp. 336-339, Pitman, Boston, (1982). 
27. V.S. Afraimovich and L.P. Shil'nikov, Invariant two-dimensional tori, their breakdown and stochasticity, 

Amer. Math. Soc. Trona I. 149,201-211 (1991). 
28. I.M. Ovsyannikov and L.P. Shil'nikov, Systems with a homoc1inic curve of multidimensional saddle-focm!, 

and spiral chaos, (in Russian), Matern. Sbornik 182; English translation, Math. USSR Sbornik 73,415-443 
(1991). 

29. L.P. Shil'nikov and D.V. Turaev, Blue sky catastrophes and hyperbolic attractors, (to appear). 
30. M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Lecture Notes Math., Vol. 583, Springer-Verlag, 

(1977). 
31. L.P. Shil'nikov, On a Poincare-Birkhoff problem, Math. USSR Sbornik 3,415-443 (1967). 
32. M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91, 175-199 (1969). 
33. RF. Williams, Expanding attractors, Pub I. Math. lHES 43, 169-204 (1974). 


