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not occur at a one-parameter analysis. In particular, the density of cusp-bifurcations is revealed. 
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1. INTRODUCTION 

As it is well known, the development of the theory of global bifurcations of multidimensional 
systems was started in 1960’s. In particular, there was discovered a remarkable phenomenon [1,2] 
that a multidimensional system with a homoclinic loop of a saddle equilibrium state can possess 
an infinite number of periodic orbits, in distinction with the two-dimensional case. The first 
example of such complicated behavior is given by a homoclinic loop of an equilibrium state 
of saddle-focus type (Figure 1) in a three-dimensional space. Such equilibrium state has the 
characteristic roots -X f iw and y, where y, X, and w are positive; besides, the so-called saddle 
index p = X/y is less than unity. 

It was found in [1,2] that the structure of the set N composed by the orbits lying entirely in a 
small neighborhood of the homoclinic loop is not just nontrivial but it also depends essentially 
on the value of p. This dependence is such that, when p varies continuously, the structure of 
the set N permanently varies in any one-parameter family X, of systems holding a saddle-focus 
homoclinic loop.’ 

In modern terms, the results of [1,2] imply that the value p is a modulus of the !&equivalence 
of systems with a homoclinic loop of a saddle-focus. Recall the following definition. 

DEFINITION. We say that a system X has a modulus if, in the space of dynamical systems, a 
Banach subspace M passes through X, and on M a locally nonconstant continuous functional h 
is defined such that, in order for two systems X1 and X2 from M to be equivalent, it is necessary 
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‘In particular, it wss established in [3,4] that the values of p for which X, has a structurally unstable periodic 
orbit compose a dense set. 
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p=hly is a saddle index. 

Figure 1. A three-dimensional flow X with the homoclinic loop r of the equilibrium 
state 0 of saddle-focus type (i.e., the equilibrium state 0 possesses characteristic 
roots -X f iw and y, where X, 7, and w are positive). Shil’nikov has shown that if 
the value p = X/y is less than 1, then the set N of orbits lying entirely in a small 
neighborhood of r has a nontrivial structure which depends essentially on the value 
of p. 

that h(X1) = h(X2). We shall say that X has at least m moduli if a Banach subspace passes 
through X on which m independent moduli are defined, and that X has a countable number of 
moduli if X has an arbitrary finite number of moduli. 

Among different types of equivalences in the space of dynamical systems, the most known 
are the topological and the R-equivalence (the topological equivalence on nonwandering sets). 
The topological moduli in systems with simple dynamics were discovered by Palis [5] for diffeo- 
morphisms of a plane which have an orbit of heteroclinic tangency. Figure 2a represents such 
a diffeomorphism. It has two saddle fixed points 01 and 02 with multipliers Xi and pi, where 
l&l < 1, Iyiyil > 1 (i = 1,2). It also has a heteroclinic orbit I?0 at the points of which the manifolds 
W‘(O2) and W(Ol) h ave a tangency. Palis established that two such diffeomorphisms f and f’ 
can be topologically conjugated in some neighborhoods U(l?o) and U’(l?h) only in the case where 
the values of the invariant (Y = - In \XZ// In lyll are the same for f and f’. 

This means that Q is a modulus of the topological equivalence for diffeomorphisms with a 
heteroclinic tangency. At the same time, any two diffeomorphisms of the Palis ex.ample are 
n-conjugate; i.e., the value cy is not a modulus with respect to the R-equivalence. 

If we identify the saddles 01 M 02, we get a diffeomorphism with a homoclinic tang,ency (Fig- 
ure 2b). The invariant Q is equal in this case to the value which is traditionally denot)ed as 8: 

where X and y are the multipliers of 0. 
Note that in distinction with the heteroclinic situation, the invariant 8 may be ,a modulus 

not only for the topological but also for the Cl-equivalence. It should be mentioned here, that 
topological moduli appear, mainly, as obstacles to the existence of a conjugating homeomor- 
phism, whereas Smoduli have an essentially different sense. To our opinion, R-moduli should 
be considered as parameters determining the structure of the nonwandering set. Historically, it 
is exactly the context in which 0-moduli were found (the mentioned value p for a saddle-focus 

112 S. V. GONCHENKO et al. 

r 

p=Aiy is a saddle index. 

Figure 1. A three-dimensional flow X with the homoc1inic loop r of the equilibrium 
state 0 of saddle-focus type (Le., the equilibrium state 0 possesses characteristic 
roots ->. ± iw and "(, where >., ,,(, and ware positive). Shil'nikov has shown that if 
the value p = >./-y is less than 1, then the set N of orbits lying entirely in a small 
neighborhood of r has a nontrivial structure which depends essentially on the value 
of p. 

that h(Xd = h(Xz). We shall say that X has at least m moduli if a Banach subspace passes 
through X on which m independent moduli are defined, and that X has a countable number of 
moduli if X has an arbitrary finite number of moduli. 

Among different types of equivalences in the space of dynamical systems, the most known 
are the topological and the n-equivalence (the topological equivalence on nonwande:ring sets). 
The topological moduli in systems with simple dynamics were discovered by Palis [5) for diffeo­
morphisms of a plane which have an orbit of heteroclinic tangency. Figure 2a represents such 
a diffeomorphism. It has two saddle fixed points 0 1 and Oz with multipliers Ai and "Ii, where 
IAil < 1, hil > 1 (i = 1,2). It also has a heteroclinic orbit ro at the points of which the manifolds 
WU(Oz) and W8(01) have a tangency. Palis established that two such diffeomorphisms f and f' 
can be topologically conjugated in some neighborhoods U(I'o) and U'(I'&) only in the case where 
the values of the invariant a = -In IAzi/in I'YlI are the same for f and f'. 

This means that a is a modulus of the topological equivalence for diffeomorphisms with a 
heteroclinic tangency. At the same time, any two diffeomorphisms of the Palis example are 
n-conjugatej Le., the value a is not a modulus with respect to the n-equivalence. 

If we identify the saddles 0 1 H Oz, we get a diffeomorphism with a homoclinic tangency (Fig­
ure 2b). The invariant a is equal in this case to the value which is traditionally denoted as (): 

where A and "I are the multipliers of O. 

() = _In IAI 
In 1"11 ' 

Note that in distinction with the heteroclinic situation, the invariant () may be a. modulus 
not only for the topological but also for the n-equivalence. It should be mentioned here, that 
topological moduli appear, mainly, as obstacles to the existence of a conjugating homeomor­
phism, whereas n-moduli have an essentially different sense. To our opinion, n-moduli should 
be considered as parameters determining the structure of the nonwandering set. Historically, it 
is exactly the context in which n-moduli were found (the mentioned value p for a saddle-focus 



Bifurcations of Systems 113 

(a) A two-dimensional diifeomorphism with a heteroclinic tangency is represented. 
It possesses two saddle fixed points 01 and 02 with multipliers X; and ‘yi, where 
lXil < 1, jyil > 1, i = 1,2. There exists also a structurally unstable heteroclinic 
orbit Po at the points of which the manifolds W”(02) and W*(Ol) are tangent. Palis 
established that two such diffeomorphisms f and f’ may be topologically conjugate 
only in the csse if the value cy = -In 1X21/ In 171 I is the same for f and f’. 

(b) A two-dimensional diffeomorphism with a homoclinic tangency is represented. 
It has a saddle fixed point 0 with multipliers X and y, where l&l < 1, I-ydl > 1, 
i = 1,2. It possesses also a structurally unstable periodic orbit P at the points of 
which the manifolds W“(O) and Wa(0) are tangent. The value 0 = - In IXl/ln 171 
introduced by Gavrilov and Shil’nikov is an analogue of the invariant a. Note that 
here, in distinction with a heteroclinic situation, the value 0 may be a modulus of 
the CLequivalence. 

Figure 2. 

homoclinic loop and the value 0 for homoclinic tangencies [S] essentially earlier than the notion 
of a topological modulus were introduced in the theory of dynamical systems. 

For the bifurcation theory, importance of the study of specifically a-moduli is obvious. Indeed, 
it is clear that if a system is perturbed so that the value of an O-modulus is changed, then bifur- 
cations of nonwandering orbits (periodic, homoclinic, etc.) must occur. First, this phenomenon 
was revealed in [6] at the study of bifurcations of periodic orbits on the bifurcational surface ‘H 
composed by systems with a quadratic homoclinic tangency. Namely, there was shown that for 
any one-parameter family Xe of systems on 7-L the values of 6’ are dense for which Xe has a 
structurally unstable periodic orbit. 

Note also, that 8 is not a unique CLmodulus for the systems with a homoclinic tangency. 
It was established in [7] that systems may be dense in ‘H which have a countable number 01 
independent !Yl-moduli. Since an independent variation of the values of each of the Gmoduli leads, 
to bifurcations in the nonwandering set, a joint variation of the infinite series of the Q-moduli 
may lead to infinitely degenerate bifurcations. Specifically, it was shown in [7] that systems with, 
arbitrarily degenerate periodic orbits and with homoclinic orbits of any order of tangency may 
be dense in 7-1. 
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Immediately, there arise a number of problems. On one hand, systems with homoclinic tan- 
gencies compose bifurcational surfaces of codimension one in the space of dynamical systems. 
Therefore, such systems occur in general one-parameter families. On the other hand, the proven 
presence of systems with arbitrarily degenerate periodic and homoclinic orbits in an arbitrarily 
small neighborhood of any system with a simple homoclinic tangency shows that no finite num- 
ber of control parameters is sufficient for a complete study of bifurcations of such systems. The 
analogous result can be also shown to hold for systems with a homoclinic loop of a saddle-focus. 

In principle, we have to give up the ideology of “complete description” and to restrict ourself to 
the study of some most typical features and properties of such systems. Particularly, the problem 
of the study of main bifurcations in low-parameter families takes a sense. 

In the latter sentence, we must, of course, clarify the term “main bifurcations.” We must also 
solve the question on the choice of the control parameters. 

We will study the structure of the set N of the orbits lying entirely in a small neighborhood U of 
a homoclinic orbit. In the case of a two-dimensional diffeomorphism with a homoclinic tangency, 
this neighborhood is the union of a small disc Us, containing the fixed point 0, and a finite 
number of small neighborhoods of the homoclinic points which lie outside Uc (Figure 3). In the 
case of a three-dimensional system with a homoclinic loop of a saddle-focus, the neigh.borhood U 
is a solid torus composed by a ball Ue with the point 0 in the center and by a handle Vi which 
contains the piece of the homoclinic orbit that lies outside UO (Figure 4). As we mentioned, the 
complete study of all bifurcations in U is impossible and we restrict ourself to the study of low- 
round periodic and homoclinic orbits (single-, double-, triple-, . . .). A periodic orbit lying in U 
will be called &round if it leaves UO (and re-enters it) k times for the period. Analogously, the 
roundness of a homoclinic orbit is defined. The low-round orbits are, naturally, most interesting 
from the applied point of view. Moreover, the high-order degenerations occur only for quite high 
roundnesses. 

Figure 3. The neighborhood of a structurally unstable homoclinic orbit. The neigh- 
borhood U is a union of a small neighborhood Uo of the saddle fixed point 0 and of 
a finite number of small neighborhoods of homoclinic points lying outside Uo. 

What concerns the right choice of the control parameters, this question has a principal meaning 
for the systems with complex dynamics. There is no problem with finding appropriate control 
parameters in the classical bifurcation theory going back to the studying of flows on a plane: here, 
each parameter is responsible for unfolding some definite degeneration of the system (for instance, 
the control parameters govern independently the splitting of separatrices, variation of values of 
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Figure 4. The neighborhood of a homoclinic loop of saddle-focus. The neighbor- 
hood U is a solid torus composed by a small neighbourhood CJo of the point 0 and 
by a handle Ul glued to CJo. 

critical characteristic exponents of equilibrium states and multipliers of periodic orbits, variation 
of Lyapunov values, etc.). For the multidimensional systems with homoclinic tangencies, the 
socalled splitting purmneters must clearly be taken as one of the main control parameters for the 
study of bifurcations. 

However, according to what was said above about R-moduli, it becomes clear that to obtain a 
more detailed bifurcational picture one must take R-moduli as additional bifurcation parameters 
(or such values whose variation leads to variation of values of the R-moduli). 

In the present paper, we demonstrate the effectiveness of this approach to the study of main 
bifurcations in systems with complex dynamics for two cases: 

(1) two-dimensional diffeomorphisms with a homoclinic tangency (Section 2), and 
(2) three-dimensional systems with a homoclinic loop of a saddle-focus (Section 3). 

2. TWO-DIMENSIONAL DIFFEOMORPHISMS 
WITH A HOMOCLINIC TANGENCY 

2.1. Geometric Constructions 

2.1.1. The neighborhood of a structurally unstable homoclinic orbit 

We consider a Cr+2-smooth (r 2 3) two-dimensional diffeomorphism f which has a saddle 
fixed point 0 with multipliers X and y, where 0 < 1x1 < 1, IyI > 1. We consider the case where 
IkyI < 1. The case lkyl > 1 is reduced to that under consideration by transition to the inverse 
map f-l instead of the initial map f; the special case lkyl = 1 requires a separate investigation 
(see, for instance, [S]). 

Suppose the stable and unstable manifolds of 0 have a quadratic tangency at the points of a 
homoclinic orbit I. 

Let U be a small neighborhood of the set 0 U I’. The neighborhood. U is the union of a small 
disc Ue containing 0 and of a finite number of small discs surrounding the points of I’ which are 
located outside Ue (Figure 3). The subject of our study is the set N of orbits of the map f that 
lie entirely in U. 
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2.1.2. The local and global maps TO and TI 

Let TO be the restriction of f onto Ve (it is called the local map). Note that the map T,-, in 
some C’+‘-coordinates (5, y) can be written in the form [9,10] 

z = xz + f(5, y)x2y, !J = YY + d? YbY2. P-1) 

I 
By (2.1), the equations of the local stable manifold WE, and local unstable manifolh IV& 

are y = 0 and z = 0, respectively. Representation (2.1) for the local map is convenient, because in 
these coordinates the map T,k for any sufficiently large lc is linear in the lowest order. Specifically, 
we have the following representation [9,10] for the map Tt : (20, ye) I+ (zk, yk): 

2k = XkZo + I~l”lrl-“~k1 (x0, Yk) , 

Yo = Y--leYk + W2k&2 (x0, Yk) , 
W-3 

where &r and &2 are functions uniformly bounded at all k along with their derivatives up to 
the order r. 

Let M+(z+,O) and M-(0, y-) b e a pair of points of r which lie in Us and belong to IV& 
ad w,:,, respectively. Without loss of generality, we can assume z+ > 0 and y- > 0. Let 
II0 and IT, be sufficiently small neighborhoods of the homoclinic points M+ and M-’ such that 
To(IIo) n IIs = 0 and Te(IIr) f~ III = 0. Evidently, there exists an integer m such that fm(M-) = 
M+. We denote the map f” : II, -+ II0 as Tr (it is called the global map). The map Tl can 
obviously be written in the form 

i-s+=ax+b(y-y-)+..., 

g = cz + d (y - y-)2 +a.. , 
(2.3) 

where bc # 0 since Tl is a diffeomorphism, and d # 0 since the tangency is quadratic. 

Figure 5. This figure illustrates the method of a construction of strips a:, k = h,z+ 1,. . . , which lie in IIo 
and which are the domains of the maps T,k : II0 + JIl. The points of IIo targeting to lTr after k iterations 

of the map TO belong to the set Tt” n IIo. The neighborhood II1 is contracted in 7-l times along the 
vertical direction and it is expanded in A-’ times along the horizontal direction under the action of the 
map To -‘. Moreover, T;‘(IIl) n II1 = 0. Respectively, the set T ,“(fIl) is a narrow rectangle which is 

stretched along the x-axis and lies at a distance of order y -JC from it. Besides, the rectangles Tck(IIl) and 

Tick+‘)(nl) are not intersected. For sufficiently large k, the intersection TGk(IIl) n II1 is the strip ug 
as is shown. The strips ug accumulate on the segment W’ n IIo as k -P co. 
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Let To be the restriction of I onto Uo (it is called the local map). Note that the map To in 
some Cr+l-coordinates (x, y) can be written in the form [9,10] 

(2.1) 

I 

By (2.1), the equations of the local stable manifold Wl~c and local unstable maJlifold Wl~c 
are y = 0 and x = 0, respectively. Representation (2.1) for the local map is convenient, because in 
these coordinates the map Tt for any sufficiently large k is linear in the lowest order. Specifically, 
we have the following representation [9,10] for the map Tt : (xo, Yo) ~ (Xk, Yk): 

Xk = AkxO + IAlkl'Yl-k<pkl (xo, Yk), 

Yo 'Y-kYk + l'YI-2k<pk2 (xo, Yk) , 
(2.2) 

where <Pki and <Pk2 are functions uniformly bounded at all k along with their derivatives up to 
the order r. 

Let M+(x+,O) and M-(O,y-) be a pair of points of r which lie in Uo and belong to Wl~c 
and Wl~c' respectively. Without loss of generality, we can assume x+ > 0 and y- > O. Let 
IIo and III be sufficiently small neighborhoods of the homo clinic points M+ and M-' such that 
To(IIo) n IIo 0 and To(III) n III = 0. Evidently, there exists an integer m such that fm(M-) 
M+. We denote the map 1m : III ~ IIo as Tl (it is called the global map). The map TI can 
obviously be written in the form 

X x+ = ax + b (y - y-) + ... , 
y = ex + d (y _ y_)2 + ... , 

(2.3) 

where be f 0 since TI is a diffeomorphism, and d f 0 since the tangency is quadratic. 

11\1", ITI] 

To-Jelll) I I 
• · • · llo 

To-\lll) · · 
,', ' 

I ,~<~«': ./' I 
"~«" ". ... 

0 ~r\. 
Figure 5. This figure illustrates the method of a construction ofstrips 0'2, k = k. k + 1 •... , which lie in no 
and which are the domains of the maps T~ ; no -+ n1. The points of no targeting to n1 after k iterations 
of the map To belong to the set To" n no. The neighborhood n1 is contracted in ,"(-1 times along the 
vertical direction and it is expanded in >.-1 times along the horizontal direction under the action of the 
map TO-

l . Moreover, Tol(nl) n III = 0. Respectively, the set Tok(nt} is a narrow rectangle which is 
stretched along the x-axis and lies at a distance of order -y-" from it. Besides, the rectangles To-k(nl) and 

To(k+l)(nl) are not intersected. For sufficiently large k, the intersection To-k(nl) nnl is the: strip 0'2 
as is shown. The strips O'~ accumulate on the segment W· n no as k -+ 00. 
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Figure 6. This figure illustrates a method of construction of the strips (T:, k = -- 
k,k+l,..., which lie in II1 and which are the ranges of the maps Tt : llo -+ III. 

2.1.3. Strips and horseshoes 

Note that orbits of N must intersect the neighborhoods IIs and ITi (otherwise, these orbits 

would be far from r). However, not all orbits that start in IIc arrive in III. The set of the points 
whose orbits get into Iii fills a countable number of strips ak - ’ - II0 II TtkIIi which accumulate 
on IV. The way of constructing these strips is obvious from Figure 5. In turn, the images of 
the strips u: under the maps T,k give on Iii a sequence of vertical strips CL which accumulate on 
IV,& (Figure 6). 

Neighborhoods II0 and Iii may be taken so that to contain all the strips C$ and 0: with numbers 
k 2 z and not to intersect with gi and cr; for k < x. Obviously, if diamIIc . diamIIi 4 0, then 
~-+ca. 

The images Teak of the strips 0: have a shape of horseshoes accumulated on TlW,U,, as k + co 
(Figure 7). It is clear that orbits of N must intersect II0 in points lying in intersections of 
horseshoes Tlaf and strips c$ for i,j 2 5. Hence, the structure of N depends essentially on 
geometrical properties of such intersections. 

2.1.4. The types of intersections of the strips and horseshoes 

Different types of intersections of a horseshoe TIC: with the strips are shown in Figure 8. The 
horseshoe has a regular intersection with the strip UT, an irregular intersection with the strip CT: 
and empty intersection with the strip CF. 

The intersection is called regular if the set Tlui n C: is nonempty and consists of two connected 
components ajo,’ and a$ (Figure 9), and the maps pi, E TIT: : U:~ -+ a;, a! = 1,2, are saddle 
(i.e., they are contracting along the coordinate x and expanding along the coordinate y). Here 
aF1 and rry” are upper and lower parts of the strip gi. o They are separated by the central part 
of CT: (denoted as up in Figure 9 ) which is mapped by TIT: onto the top of the horseshoe Tlut. 

2.1.5. The conditions of regular and irregular intersections of the strips and horse- 
shoes 

It is established in [S] that if the inequality 

d [yjy- - cxix+] > S&j) 

WbM 34-1,4-H 
(2.4) 
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Figure 6. This figure illustrates a method of construction of the strips O'~, k = 
-;;;, -;;; + 1, ... , which lie in 111 and which are the ranges of the maps T/; : 110 .- 111. 

2.1.3. Strips and horseshoes 
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Note that orbits of N must intersect the neighborhoods ITo and ITl (otherwise, these orbits 
would be far from f). However, not all orbits that start in ITo arrive in ITl' The set of the points 
whose orbits get into ITl fills a countable number of strips 0'2 = ITo n To-kITl which accumulate 
on WS. The way of constructing these strips is obvious from Figure 5. In turn, the images of 
the strips 0'2 under the maps T~ give on ITl a sequence of vertical strips O'k which accumulate on 
Wl~c (Figure 6). 

Neighborhoods ITo and ITl may be taken so that to contain all the strips 0'2 and O'k with numbers 
k ~ k and not to intersect with 0'2 and O'k for k < k. Obviously, if diamITo . diamITl --7 0, then 
k --700. 

The images TlO'k of the strips O'k have a shape of horseshoes accumulated on Tl Wl~c as k --7 00 

(Figure 7). It is clear that orbits of N must intersect ITo in points lying in intersections of 
horseshoes TlO'r and strips O'J for i,j ~ k. Hence, the structure of N depends essentially on 
geometrical properties of such intersections. 

2.1.4. The types of intersections of the strips and horseshoes 

Different types of intersections of a horseshoe TlO'I with the strips are shown in Figure 8. The 
horseshoe has a regular intersection with the strip O'J, an irregular intersection with the strip 0'2 
and empty intersection with the strip O'? 

The intersection is called regular if the set T10'; n O'J is nonempty and consists of two connected 
components O'JI and O'Jl (Figure 9), and the maps ria TlTJ: O'?a --7 O'J, 0: 1,2, are saddle 
(Le., they are contracting along the coordinate x and expanding along the coordinate y). Here 
O'?l and 0'?2 are upper and lower parts of the strip O'? They are separated by the central part 
of O'? (denoted as O'?c in Figure 9) which is mapped by T1Tj onto the top of the horseshoe TIO'I. 

2.1.5. The conditions of regular and irregular intersections of the strips and horse­
shoes 

It is established in [8] that if the inequality 

d b·-jy- - C>.iX+] > S-;;;(i,j) (2.4) 
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Figure 7. The images T~cT~ of the strips ok ’ have a shape of horseshoes which are 
accumulated on Tl(W&) ss k + 00. Orbits of the set N must intersect IIo in the 
points of intersections of the “horseshoes” TIU~ and the strips uy for i, j > K. 

Figure 8. Various types of intersections of the “horseshoe” T~uj with the strips. The 
horseshoe has a regular intersection with the strip uy; it has an irregular intersection 
with the strip CT: and an empty intersection with the strip up. 

is satisfied where Sx(i,j) = &(IXli+lyl-j).lyl-h/2, and 5’1 is some positive constant independent 
from i, j, and K, then the intersection of Tloi with uy is regu!ar. 

The inequality 
d [yjy- - CA%+] < -S#,j) (2.5) 

is a sufficient condition for an intersection of TICS: and c$ to be empty. 
It is clear from (2.4) and (2.5) that the inequality 

Id [yjy- - cxiz+] 1 I S&j) (2.6) 

is necessary in order for the horseshoe Tlai to have an irregular intersection with the strip c$. 
Inequalities (2.4)-(2.6) h ave a quite simple geometrical sense (Figure 10). The strip a: is a 

thin rectangle with the central line y = y -j y -. The strip CJ~ is a thin rectangle with the central 
line z = Xix+. The strip P: is mapped by the map Tl onto a horseshoe with the parabola 
y = cx%+ + d((z - x+)/6)2 as a central line. The condition d[y-jy- - cXiz+] :> 0 means 
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Figure 7. The images TIO"k of the strips O"k have a shape of horseshoes which are 
accumulated on Tl (Wl~c) as k --+ 00. Orbits of the set N must intersect no in the 
points of intersections of the "horseshoes" TIO"} and the strips O"J for i, j 2: k. 

Figure 8. Various types of intersections of the "horseshoe" TIO"I with the strips. The 
horseshoe has a regular intersection with the strip O"J; it has an irregular intersection 
with the strip 0"£ and an empty intersection with the strip up. 

is satisfied where S"k(i,j) = S1 (1)'l i + I"II-J)· hl-k/2 , and S1 is some positive constant independent 
from i, j, and k, then the intersection of TIo} with aJ is regular. 

The inequality 
d b-jy- C>.i X+] < -S"k(i,j) (2.5) 

is a suffiCient condition for an intersection of TIa[ and aJ to be empty. 
It is clear from (2.4) and (2.5) that the inequality 

(2.6) 

is necessary in order for the horseshoe TIa[ to have an irregular intersection with the strip aJ. 
Inequalities (2.4)-(2.6) have a quite simple geometrical sense (Figure 10). The strip (jJ is a 

thin rectangle with the central line y = "I-jy-. The strip at is a thin rectangle with the central 
line x = ,\iX+. The strip at is mapped by the map Tl onto a horseshoe with the parabola 
y = C,\iX+ + d((x - X+)jb)2 as a central line. The condition db-jy- c),ix+j:> 0 means 
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of 

CJ;‘-. 

q%-- 
- Oi& 

Figure 9. The case of regular intersection of the horseshoe Trui with the strip u:. 
The intersection is called regular if (a) the set Tro: flay is nonempty and consists of 
two connected components o$‘j and uyf, and (b) the maps Tim 3 TIT: : $2 -) u$‘, 
a = 1,2, are of saddletype (i.e., they are contrscting along the r-coordinate and 
expanding along the y-coordinate). Here, up’ and 0:” are upper and lower parts of 
the strip uf. They are separated by the central part up” of up which is mapped by 
TlG onto the top of the horseshoe Tluf. 

M- 

w: 

++d[(x-x+)/&J’ 

Figure 10. The strip u! is a thin rectangle with the central line 0 = y-jy-. The 
strip ui is a thin rectangle with the central line z = X”z+. The strip ui is mapped 
by the map Tl onto a horseshoe with the parabola y = CA%+ + d((z -2+)/b)’ as a 
central line. 

that the straight line y = y-jy- and the parabola intersect in two points, and the condition 
d[r-jy- - cX”z+] < 0 means that they have no intersection. The coefficient Z$(i, j) in (2.4)-(2.6) 
is due to the nonzero thicknesses of the strip and horseshoe. 

I 

~ i' ~ , 
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Figure 9. The case of regular intersection of the horseshoe TIO'; with the strip O'J. 
The intersection is called regular if (a) the set TIO'I nO'J is nonempty and consists of 

two connected components O'JI and O'Jl, and (b) the maps TiOl == Tl TJ : O'Jf - O'J, 
Q = 1,2, are of saddle-type (Le., they are contracting along the x-coordinate and 
expanding along the y-coordinate). Here, 0'?1 and 0'?2 are upper and lower parts of 
the strip O'? They are separated by the central part O'?c of O'? which is mapped by 
Tl ro onto the top of the horseshoe TIO';' 

o 
-j -

'YY 

Figure 10. The strip O'J is a thin rectangle with the central line y = -y-i y-. The 
strip 0'; is a thin rectangle with the central line x = ),ix+. The strip 0'; is mapped 
by the map Tl onto a horseshoe with the parabola y = c),ix+ + d«x - x+)/b)2 as a 
central line. 
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that the straight line y = ,",(-iy- and the parabola intersect in two points, and the condition 
d[,",(-i y- -c>h+] < 0 means that they have no intersection. The coefficient S;e{i,j) in (2.4)-(2.6) 
is due to the nonzero thicknesses of the strip and horseshoe. 
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2.1.6. Codes 

Let Q be an orbit lying in U entirely and nonasymptotic to 0. This orbit intersects no in 
an infinite sequence of points MS. Each point M, belongs to some strip ok,; hereat, succe&ve 
points MS and MS+1 are connected by the relation 

M s+l = W,k” (Ms). 

The infinite sequence of integers {k,} is called a natural code of the orbit Q. 

DEFINITION. A pair of integers (i,j) is called inadmissible if i < E, or j < i, or inequality (2.5) 
is fulfilled. Otherwise, the pair (i, j) is called admissible. An admissible ptir is called mgular if it 
satisfies inequality (2.4). A sequence of integers {k,} is called inadmissible if at least one of the 
pairs (k,, k,+l) is inadmissible, and it is called admissible otherwise. An admissible sequence {k,} 
is called regular if each pair (k,, k,+l) is regular. 

PROPOSITION 2.1. 

(1) For each orbit Q lying in U entirely, the code is an admissible sequence. 
(2) If a sequence {k,} is regular, then there exists a continuum of saddle orbits in N which 

have the given sequence as the code. 

The first part of this assertion is evident because MS+1 E TlaL# n u:~+~. The second part of 
the assertion wss proved in [6,11]. 

The last is connected with the fact that inequalities (2.4) guarantee that the intersection 

MS r-l 4.+1 is regular. It consists of two connected components ‘T::+,~. and ffif+,k, (Figure 9), 
and points belonging to different components may be distinguished. Therefore, for the orbits 
in U with the regular natural codes, a more precise code can be constructed. Namely, it is a 
sequence {(&,a,)) (as E {1,2)) such that the point M, belongs to a$,k8 c a:, (we will also 
use an equivalent notation for the code {(k,, a,)} as a sequence of the symbols “O”, “1,” and “2”: 

k.+l 
A- 

. . . , cr,-1,o ,...) o,as,o ,‘..) o,cQ+1,... ). 

By the definition, 
MS+1 = %c,a,Msr (2.7) 

where the map pkjCsaa = TIT$ 1 ,p,, is saddle. By the “lemma on a saddle fixed point in a. countable 

product of spaces” from [12], there exists a unique sequence of points satisfying equation (2.7). 
Thus, to each code {(k,, a,)} where {k,} is regular and {cx~} is an arbitrary fixed sequence of 
the symbols “1” and “2,” there corresponds a unique orbit Q E N (the set of the orbits which 
correspond to different sequences {as} has the cardinality of continuum). 

Note also that if a nonsaddle orbit exists in N, then its code {k,) must be such that inequal- 
ity (2.6) is satisfied for at least one of the pairs (i = k,, j = k,+l). 

2.2. The Types of Two-Dimensional Diffeomorphisms with a Homoclinic Tangency 

Thus, an analysis of the structure of integer solutions of inequalities (2.4)-(2.6) is an essential 
part of the study of orbits of the set N. The sets of such solutions obviously depend on the signs 
of parameters X, 7, c, and d. Geometrically, it is connected with the fact that the signs of these 
values determine the character of the reciprocal position of the manifolds IV&, and rlW,& in a 
neighborhood of the homoclinic point M +. We restrict ourself to the case of positive X and 7 
(see footnote2. Different cases possible here, in dependence on signs of c and d are shown in 
Figure 11. 

According to [6], the diffeomorphisms under consideration are divided into the three classes for 
which the structure of the set N is essentially different. 

2The cases of different signs of X and -y are considered, for instance, in [Q,lO]. 
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2.1.6. Codes 

Let Q be an orbit lying in U entirely and nonasymptotic to O. This orbit interSElcts ITo in 
an infinite sequence of points Ms. Each point Ms belongs to some strip O'k.; hereat, successive 
points Ms and Ms+1 are connected by the relation 

Ms+1 = TIT~' (Ms). 

The infinite sequence of integers {ks } is called a natural code of the orbit Q. 

DEFINITION. A pair ofintegers (i,j) is called inadmissible Hi < k, or j < k, or inequality (2.5) 
is fulfilled. Otherwise, the pair (i, j) is called admissible. An admissible pair is called regular if it 
satisfies inequality (2.4). A sequence of integers {ks} is called inadmissible if at least one of the 
pairs (ks, ks+d is inadmissible, and it is called admissible otherwise. An admissible sequence {ks} 
is called regular if each pair (ks , ks+d is regular. 

PROPOSITION 2.1. 

(1) For each orbit Q lying in U entirely, the code is an admissible sequence. 
(2) If a sequence {ks } is regular, then there exists a continuum of saddle orbits in N which 

have the given sequence as the code. 

The first part of this assertion is evident because Ms+1 E T1O'k1 n O'Ok . The second part of 
" .1+1 

the assertion was proved in [6,11]. 
The last is connected with the fact that inequalities (2.4) guarantee that the intersection 

T1O'k. n 0'2.+1 is regular. It consists of two connected components O'~!+tk. and O'~~+tk. (Figure 9), 
and points belonging to different components may be distinguished. Therefore, for the orbits 
in U with the regular natural codes, a more precise code can be constructed. Namely, it is a 
sequence {(ks,O's)} (O's E {I, 2}) such that the point Ms belongs to O'2~~lk. C O'~. (we will also 
use an equivalent notation for the code {(ks, O's)} as a sequence of the symbols "0", "1," and "2": 

k. k.+1 ,.............. ,.............. 
... ,00s-1,0, ... ,0,O's,0, ... ,0,O's+1.···)· 

By the definition, 
Ms+1 = Tk.o:. Ms , (2.7) 

where the map Tk.o:. Tl T~·IO"~;. is saddle. By the "lemma on a saddle fixed point in a. countable 

product of spaces" from [12], there exists a unique sequence of points satisfying equation (2.7). 
Thus, to each code {( ks, 0'8)} where {ks } is regular and {O's} is an arbitrary fixed sequence of 
the symbols "1" and "2," there corresponds a unique orbit Q E N (the set of the orbits which 
correspond to different sequences {O's} has the cardinality of continuum). 

Note also that if a nonsaddle orbit exists in N, then its code {ks } must be such that inequal­
ity (2.6) is satisfied for at least one of the pairs (i ks, j = ks+1)' 

2.2. The Types of Two-Dimensional Diffeomorphisms with a Homoclinic Tangency 

Thus, an analysis of the structure of integer solutions of inequalities (2.4)-(2.6) is an essential 
part of the study of orbits of the set N. The sets of such solutions obviously depend on the signs 
of parameters A, 'Y, c, and d. Geometrically, it is connected with the fact that the signs of these 
values determine the character of the reciprocal position of the manifolds WI~c and Tl WI~c in a 
neighborhood of the homoclinic point M+. We restrict ourself to the case of positive A and 'Y 
(see footnote2 • Different cases possible here, in dependence on signs of c and d arl3 shown in 
Figure 11. 

According to [6]' the diffeomorphisms under consideration are divided into the three! classes for 
which the structure of the set N is essentially different. 

2The cases of different signs of >. and "Y are considered, for instance, in [9,10]. 
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(a) c < d, d < 0. (b) c > 0, d < 0. (c) c < 0, d > 0. (d) c > 0, d > 0. 

Figure 11. Various types of diffeomorphisms with a homoclinic tangency in the case 
where both X and 7 are positive. These types correspond to different cases of a 
reciprocal position of the stable and unstable manifolds which depends on the signs 
of the values c and d. When d is negative, W” is tangent to WP,, from below (a) 
and (b); when d is positive, W” is tangent to W& from above (c) and (d). The 
sign of the value c determines how the shaded semineighborhood of the homoclinic 
point M- is mapped onto the neighborhood of the point M+. 

2.2.1. Systems of the first class 

The systems of the first class are those for which X > 0, y > 0, d < 0. The following theorem 
takes place. 

THEOREM 1. [s] Let f be a difleomorphism of the first class. Then the set N is trivial: N = 
(0, I-1. 

This result can be obtained from the analysis of the set of integer solutions of inequalities 
(2.4)-(2.6): one can prove that if X > 0, y > 0, d < 0, any sequence {k,} is inadmissible. 
Geometrically, this can be verified in the following way. If c < 0, d < 0, then the horseshoes TIP: 
and the strips o$’ do not intersect since they lie at the opposite sides from WC, (Figure 12a). 
Thus, in this case, the set N has a trivial structure indeed: N = (0, I’}. 

In the case c > 0, d < 0 (i.e., when “parabola” TIW& is tangent to IV& from below; see 
Figure 12b), the set N has a trivial structure also. It is connected with the fact that here the 
intersection Tlaf n a: may be nonempty only for j > i. Indeed, the strip a: lies at a distance 
of an order y-3 from IV;, and the top of the horseshoe Tlaf lies at a distance of an order Xi 
from W{, (Figure 12b). Since Xy < 1, it follows that Xi < ymi, so any horseshoe TIC: lies below 
the corresponding strip as, and hence, below any strip 0; with j < i. As a consequence, we have 
that the negative semiorbit of any initial point on II, (except M+) leaves the neighbourhood U. 

2.2.2. Systems of the second class 

The systems of the second class are those for which X > 0, y > 0, c < 0, d > 0. In this case, 
evidently, inequality (2.4) is fulfilled for any sufficiently large i and j; i.e., the intersection of Tlgi 
with ai is regular for any i,j 2 x (Figure 12~). Correspondingly, any sequence of integers k, > z 
is regular in this case. Therefore, the following statement [6] takes place. 

THEOREM 2. In the case c < 0, d > 0, all orbits from N\l? have a saddle-type and N is in 
one-to-one correspondence with the a quotient-system QO which is obtained from the Bernoulli 
scheme on three symbols (0, 1,2} by identification of two homoclinic orbits: (. . . , 0, . . . , 0, l,O. . . ) 
and (..., 0 ,..., 0,2,0 ,... ).3 

3Both these two codes correspond to the orbit r. 
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(a) c < d, d < 0. (b) c > 0, d < 0. (c)c<O,d>O. (d) c> 0, d > 0. 

Figure 11. Various types of diffeomorphisms with a homo clinic tangency in the case 
where both ), and '"Y are positive. These types correspond to different cases of a 
reciprocal position of the stable and unstable manifolds which depends on the signs 
of the values c and d. When d is negative, W'" is tangent to Wl~c from below (a) 
and (b)j when d is positive, WU is tangent to Wl~c from above (c) and (d). The 
sign of the value c determines how the shaded semineighborhood of the homoclinic 
point M- is mapped onto the neighborhood of the point M+. 

2.2.1. Systems of the first class 
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The systems of the first class are those for which A > 0, "I > 0, d < 0. The following theorem 
takes place. 

THEOREM 1. [6) Let f be a diffeomorphism of the first class. Then the aet N is trivial: N 

{O,n· 
This result can be obtained from the analysis of the set of integer solutions of inequalities 

(2.4)-(2.6): one can prove that if A > 0, "I > 0, d < 0, any sequence {ks } is inadmissible. 
Geometrically, this can be verified in the following way. If c < 0, d < 0, then the horseshoes T1o} 
and the strips aJ do not intersect since they lie at the opposite sides from Wl~c (Figure 12a). 
Thus, in this case, the set N has a trivial structure indeed: N { 0, r}. 

In the case c > 0, d < ° (Le., when "parabola" Tl Wl~c is tangent to WI~c from below; see 
Figure 12b), the set N has a trivial structure also. It is connected with the fact that here the 
intersection T1a} n aJ may be nonempty only for j > i. Indeed, the strip aJ lies at a distance 
of an order "1- j from WI~c and the top of the horseshoe Tl a} lies at a distance of an order ,V 
from Wl~c (Figure 12b). Since A"I < 1, it follows that Ai« "I- i

, so any horseshoe T1a} lies below 
the corresponding strip a?, and hence, below any strip aJ with j < i. As a consequence, we have 
that the negative semiorbit of any initial point on TIo (except M+) leaves the neighbourhood U. 

2.2.2. Systems of the second class 

The systems of the second class are those for which A > 0, "I > 0, c < 0, d > 0. In this case, 
evidently, inequality (2.4) is fulfilled for any sufficiently large i and j; Le., the intersection of Tlal 
with aJ is regular for any i,j 2: k (Figure 12c). Correspondingly, any sequence of integers ks 2: k 
is regular in this case. Therefore, the following statement [6] takes place. 

THEOREM 2. In the case c < 0, d > 0, all orbits from N\r have a saddle-type and N is in 
one-to-one correspondence with the a quotient-system no which is obtained from the Bernoulli 
scheme on three symbols {O, 1, 2} by identification of two homoclinic orbits: ( ... ,0, ... ,0,1, 0 ... ) 
and ( ... ,0, ... ,0,2,0, ... ).3 

3Both these two codes correspond to the orbit r. 

~ l4·2/4·[ 
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(a) c < d, d < 0. (b) c > 0, d < 0. 

0 

j 

(c) c < 0, d > 0. (d) c > 0, d > 0. 

Figure 12. The reciprocal position of the strips and the horseshoes. In the case c < 0, d < 0 (a), the 
horseshoes Tru,! and the strips uy lie from the opposite sides from WC,. In the case c > 0, d < 0 (b), 
any horseshoe r’cr,! lies below its “own” strip UP, and hence, below any strip og with k 5 i. Really, the 
strip uy lies here at a distance of order y-j from W;O,; the top of the horseshoe 2’1~: lies at a distance 

of order A” from WI&. Since 1x1 171 is less than unity, then Xi < 7-“. In the csses of (a),(b), the set N 
has the trivial structure: N = (0, I’}. If c < 0, d > 0 (c), then the intersection of Trot with a? is regular 
for any i, j 2 x. In this case, the set N has a nontrivial structure which may be described completely. 
In the case c > 0, d > 0 (d), any horseshoe Trot is intersected regularly with its “own” strip trp, with 
all strips lying above it and with some number (depending on i) of strips lying below. The set N has 
a nontrivial structure for this case. But, the description of N depends essentially on parameters of a 
homoclinic structure (such as the 0-moduli 0 and 70). 

2.2.3. Systems of the third class 

The systems of the third class are those for which X > 0, y > 0, c > 0, d > 0. In this case, 
Ti IV& is tangent to IV,& from above (c > 0, d > 0) (Figure 12d). The study of systems of the 
third class (and nearby systems) is the main scope of the present paper. 

2.3. Nontrivial Hyperbolic Subsets of Systems of the Third Class 

Taking logarithm of both parts of (2.4), we rewrite the condition of regular intersection as 

j < i9 - r - SyvTc12, 

and the condition of empty intersection as 

j > it? - r + Symxi2, (2.9) 
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(J= lnl4 -- 
ln IYI 1 
1 

T=iqqj 
In c 

I I y- ’ 
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The systems of the third class are those for which>' > 0, "y > 0, c > 0, d > O. In this case, 
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and S is some positive constant. It is convenient to rewrite inequalities (2.8) and (2.9) in an 
“invariant” form 

and 

(j + m) < (i + m>e - To - 3y(z+mv2 (2.10) 

(j + m) > (i + m>e - To + 3,-(z+m)/2, (2.11) 

respectively, where m is the constant defined by the condition M+ = fm(M-) and TO is defined 
as 

TO = 7 - m(f3 - 1). 

Note that the value 0 is independent of smooth transformations of the coordinates. The 
value ~0 can also be proved [9] to be independent of smooth coordinate transformations preserving 
form (2.1) for the map TO as well as of the choice of homoclinic points in Vs. The number (x+m) 
is invariant also in that sense that it equals to the minimal period of periodical orbits of N. 

Let us consider the subsystem Ri (see [6,11]) belonging to Rc (see Theorem 2) and composed 
by the orbits of the form 

where 

(2) the length of any complete string of zeros is not less than (x + m); 
(3) the lengths (ks + m) and (k s+i + m) of successive complete strings of zeros separated by a 

nonzero symbol satisfy inequality (2.10) with i = k, and j = Ic,+i (i.e., the sequence {k,) 
is regular). 

THEOREM 3. If % is large enough, then in the case c > 0, d > 0 there exists a subsystem fi in N 
which is conjugate to the symbolic system Ri and such that all orbits of fi have a saddle-type. 

Note that the set fi may not coincide with N but it anyway forms a substantial part of N. 
Indeed, for a nonsaddle orbit, at least two subsequent points M, and MS+1 of intersection with IIe 
must lie in the strips c$. and u&.+~ whose numbers satisfy the inequality 

I(k,+l +m> - (k, +m)~+T0lIh 
- (jE+m)/2 9 (2.12) 

which is equivalent to (2.6). 
The set of integer solutions (i, j) of the last inequality will lie in the narrow strip on the plane 

(the greater %, the more narrow is the strip). This set depends essentially on the values 0 and TO. 

For instance, if 8 is rational: 0 = p/q and Toq $8 2, then this set is empty for x large enough. 
This implies the following statement. 

THEOREM 4. If 8 = p/q and Toq $2 2, then there exists such f = x(0, TO) that all orbits from N\I’ 
are saddle and N\{l?, 0) is conjugate with RI. 

Geometrically, the fact that the set of integer solutions of inequality (2.12) is empty for r& 
tional 0 and suitable TO means that for such B and TO, tops of all horseshoes get to the “holes” 
between the strips. 

2.4. Moduli of the n-Equivalence for Systems of the Third Class 

As we mentioned, the structure of the set N of all orbits lying in the neighborhood U entirely 
is in a close connection with the structure of the sets of integer solutions of inequalities (2.10) 
and (2.12). These sets are different for different values of the invariants 8 and TO. Therefore., 
the structure of the set N depends essentially on the values of 8 and TO. Moreover, the following 
result shows that the invariants 0 and TO are moduli of the a-equivalence. 

Bifurcations of Systems 123 

and S is some positive constant. It is convenient to rewrite inequalities (2.8) and (2.9) in an 
"invariant" form 

(j + m) < (i + m)B - TO - s,,},-(k'+m)/2 (2.10) 

and 

(2.11) 

respectively, where m is the constant defined by the condition M+ = fm(M-) and TO is defined 
as 

TO = T - m(B - 1). 

Note that the value B is independent of smooth transformations of the coordinates. The 
value TO can also be proved [9] to be independent of smooth coordinate transformations preserving 
form (2.1) for the map To as well as of the choice of homoclinic points in Uo. The number (k+m) 
is invariant also in that sense that it equals to the minimal period of periodical orbits of N. 

Let us consider the subsystem fh (see [6,11]) belonging to no (see Theorem 2) and composed 
by the orbits of the form 

( ... ,as-l>O, ... ,O,as, 0, ... ,0, a s+1,"')' 

where 

(1) as E {1, 2}; 
(2) the length of any complete string of zeros is not less than (k + m); 
(3) the lengths (ks + m) and (ks+1 + m) of successive complete strings of zeros separated by a 

nonzero symbol satisfy inequality (2.10) with i = ks and j = ks+1 (Le., the sequence {ks} 
is regular). 

THEOREM 3. Ilk is large enough, then in the case c > 0, d > 0 there exists a subsystem N in N 
which is conjugate to the symbolic system n1 and such that all orbits oE N have a saddle-type. 

Note that the set N may not coincide with N but it anyway forms a substantial part of N. 
Indeed, for a nonsaddle orbit, at least two subsequent points Ms and Ms+1 of intersection with ITo 
must lie in the strips ako and aOk whose numbers satisfy the inequality 

.!I 8+1 

(2.12) 

which is equivalent to (2.6). 
The set of integer solutions (i, j) of the last inequality will lie in the narrow strip on the plane 

(the greater k, the more narrow is the strip). This set depends essentially on the values 0 and TO. 

For instance, if B is rational: 0 = p/q and Toq ¢ Z, then this set is empty for k large enough. 
This implies the following statement. 

THEOREM 4. lEO p/q and Toq ¢ Z, then there exists such k k(B, TO) that all orbits from N\r 
are saddle and N\ {r, O} is conjugate with n1. 

Geometrically, the fact that the set of integer solutions of inequality (2.12) is empty for ra­
tional (J and suitable TO means that for such 0 and TO, tops of all horseshoes get to the "holes" 
between the strips. 

2.4. Moduli of the n-Equivalence for Systems of the Third Class 

As we mentioned, the structure of the set N of all orbits lying in the neighborhood U entirely 
is in a close connection with the structure of the sets of integer solutions of inequalities (2.10) 
and (2.12). These sets are different for different values of the invariants 0 and TO' Therefore" 
the structure of the set N depends essentially on the values of () and TO. Moreover, the following; 
result shows that the invariants () and TO are moduli of the n-equivalence. 



124 S. V. GONCHENKO et al. 

THEOREM 5. [9,10] Let f and f’ be diffeomorphisms of the third class and let f and f’ be locally 
R-conjugate.4 Then, 8 = 8’. If, moreover, the value 8 is irrational, then TO = ~6. If 0 is rational 
(0 = p/q), then there exists such integer s that TO and r; satisfy simultaneously the inequalities 
s<TOq<s+landsI~,$qIs+l. 

We give a sketch of the proof of the theorem. Let f and f’ be locally R-conjugate and let 
M+, M- and M’+, M’- be conjugate pairs of homoclinic points. Evidently, f “(M’-) = M+ 
and f’“(M’-) = M’+ for some natural m. Suppose that 0 > 8’. Consider the set of pairs of 
integers (i, j) satisfying the inequality 

(i + m)e - To - &++mV2 > j + m > (i + m)e’ _ T; + &~-(x+m)~2s (2.13) 

According to conditions (2.10) and (2.11), this inequality means that the pair (i,j) is regular for 
the diffeomorphism f, but it is inadmissible for the diffeomorphism f’. Since 0 > 8’, the set of 
pairs (i, j) satisfying condition (2.13) is infinite. 

Note that if a pair (i,j) satisfies condition (2.13), then the pair (j,i) is also regular for the 
diffeomorphism f because here j > i and the inequality 

(i + m) < (j + m)e - 7. - &-(Ic+m)/2, 

obtained from inequality (2.10) by substitution j instead of i, and i instead of j is automatically 
fulfilled (we take into account that 0 > 1 and 8’ > 1, since we consider the case Xy < 1). 

For such i and j, the intersection of the horseshoe Tl(aj) with the strip 0: and the intersection 
of the horseshoe Tl(at) with the strip ai are regular (Figure 13a), and the code {. . . ijijij . . . } is 
regular. By Theorem 3, the Am#+eoMop@3M f has a double-round saddle periodic orbit which 
intersects successively the strips $ and u!. 

(4 (b) 
Figure 13. Since 0 > f3’, it follows that there exists a countable set of pairs (i,j) 
which are regular for the diffeomorphism f, but they are inadmissible for the diffeo- 
morphism f’. If (i, j) is such a pair, then the corresponding strips and horseshoes are 
positioned ss follows. For the diffeomorphism f: the intersection of the horseshoe 
Tl(a;) with the strip up is regular as well as the intersection of the horseshoe Tl (c:) 
with the strip a: (a). For the diffeomorphism f’: the intersection of the horseshoe 
T;(ui) with the strip up is regular, but the horseshoe T;(o:) does not iniersect the 
strip UT (b). 

4For example, there exist such neighborhoods U and U’ for which the sets N and N’ have the same structure. 
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Figure 13. Since () > (}I, it follows that there exists a countable set of pairs (i,j) 
which are regular for the diffeomorphism j, but they are inadmissible for the diffeo­
morphism /'. If (i, j) is such a pair, then the corresponding strips and horseshoes are 
positioned as follows. For the diffeomorphism j: the intersection of the horseshoe 
Tl (ui) with the strip u? is regular as well as the intersection of the horseshoe Tl (un 
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strip uJ (b). 

cr? 
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(J? 
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4For example, there exist such neighborhoods U and U' for which the sets Nand N' have the same structure. 
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On the other hand, for the diffeomorphism f’, the horseshoe T;(at) does not, intersect t,he 
strip a: (Figure 13b), though i and j are the same as above. This follows from the fact, that the 
pair (i, j) is inadmissible by virtue of the right of inequalities (2.13). Therefore, f’ does not have 
periodic orbits intersecting successively the strips 0: and a$‘. It is clear that the diffeomorphisms f 
and f’ are not a-conjugate in this case. Thus, for the 0-conjugacy it is necessary that 0 = 0’. 

Now let 8 = 0’. Suppose ~6 > 70. If 8 = 8’ is irrational, then inequality (2.13) again possesses 
infinitely many natural solutions for sufficiently large E and the diffeomorphisms f and f’ are 
not, R-conjugate. Hence, for the R-conjugacy of the diffeomorphisms, the equality r; = 70 must 
hold in this case. 

Let 8 be rational, 0 = p/q. If, for some integer SO, inequality 704 > SO > 764 holds, then the 
integer points on the straight line 

j=iP-So 
4 Q 

satisfy inequality (2.13) and the diffeomorphisms f and f’ are not St-conjugate again. Hence, 
for the Gconjugacy of f and f’ in this case, it is necessary that 704, T,$q E [s, s + l] for some 
integer s, what completes the proof of the theorem. 

2.5. Infinite Degenerations in Systems of the Third Class 

We see that the cases of rational and irrational 0 are principally different. In the rational case, 
almost all systems admit a complete description (Theorem 4) and all orbits of N\I’ are saddle. 
In the irrational case, condition (necessary) (2.12) of an irregular intersection has a countable set 
of integer solutions for any x. Correspondingly, here a countable number of strips and horseshoes 
may have irregular intersections which leads to a very nontrivial dynamics. Namely, the following 
result [7] takes place. 

THEOREM 6. If Ha is a bifurcation& surface composed by diffeomorphisms of the third class, 
then systems with a countable number of saddle periodic orbits each of which has a homociinic 
tangency are dense on H3. 

The values 0 calculated for these periodic orbits are a-moduli, according to Theorem 6. These 
values are independent of each other. Therefore, we arrive at the following theorem [7]. 

THEOREM 7. Systems with a countable number of R-moduli are dense on H3. 

As we mentioned in the Introduction, when the value of an !-l-modulus is changed, bifurcations 
of periodic, homoclinic, etc., orbits occur inevitably. The presence of an infinite number of inde- 
pendent R-moduli may lead to infinitely degenerate bifurcations. Indeed, the following result, [7] 
takes place. 

THEOREM 8. Systems with homoclinic tangencies of any order and with structurally unstable 
periodic orbits of any degree of degeneracy are dense in H3. 

It, should be noted that the degenerations indicated in this theorem may exist only for periodic 
and homoclinic orbits of extremely high roundnesses. In the present paper, we will not consider 
the questions connected with the infinite degeneracies. Further, we will study bifurcations of 
low-round periodic orbits in the framework of low-parameter families. The control parameters, 
be the splitting parameter as well as the R-moduli. 

First,, let, us consider the bifurcations of single-round periodic orbits. 

2.6. Bifurcations of Single-Round Periodic Orbits 

Note that for any system belonging to the bifurcational surface H3, single-round periodic orbits 
are structurally stable. Here, for any i sufficiently large, the horseshoe Tl (at) intersects its “own” 
strip uf regularly (inequality (2.8) is evidently fulfilled for j = i due to the condition 8 > 1). 
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Hereat, the structure of the nonwandering set for the map TIT; : a: + uf is the same as for the 
famous Smale’s horseshoe example. 

However, when the system is perturbed such that the homoclinic tangency is destroyed, the 
single-round periodic orbits may undergo bifurcations. To study the bifurcations, we imbed the 
diffeomorphism f into a one-parameter family fp, where ,U is the splitting parameter for the 
tangency. We assume that when ,u < 0, the parabola TlW;“,, intersects W,f,, at two points; 
when ,u = 0, the parabola TI W& is tangent to WC, at one point, and when ,u > 0, there is no 
intersection (Figure 14). The family f, is supposed to depend smoothly on p. The requirement 
of general position is that the family f,, is transverse to the bifurcational surface H3 in the space 
of dynamical systems. 

W” 

(4 P < 0. (b) p = 0. (4 P > 0. 

Figure 14. The behavior of W”(0) for one-parametric family fM, where p is the 
splitting parameter. When p < 0, the parabola Tl W,U,, intersects WC, at two points; 
when p = 0, the parabola Tl WC, is tangent to WP,, at one point, and when /I > 0, 
there is no intersection. 

Clearly, the local and global maps To and TI depend now on ~1. The map To(p) can be 
represented in the form 

2 = kc + f (z, Y, PL)~2Y, G = YY + d? Y7 PbY2, (2.14) 

and the global map Tl(p) is represented in the form 

hrz+=az+b(y-y-)+.-, 

g=C2+d(y-y-)2+p+... . 
(2.15) 

Below, we will denote the coordinates on II0 as (20, yo) and the coordinates on II1 as (~1, yl). 
If (ZO,YO) E 0: and (ZI,YI) = T’(zo,Yo) E a:, the following formula takes place (we change 
slightly notations in comparison with (2.2)): 

21 = x”sO + IAlkhl-“6kl (20, Yk,p) > 

!/O = -f-k?h + h’l-2kd’k2 (20, Yk, /-‘) * 
(2.16) 

It is clear that if the bottom of the parabola TlW;“,, descends sufficiently low (large and 
negative p), then each horseshoe intersects each strip. In this case, the set Nfi is a hyperbolic 
set similar to the invariant set in the Smale horseshoe. However, if p is sufficiently large and 
positive, then the horseshoes and the strips do not intersect at all, and all of the orbits except 0 
will escape from U. 

The main question is what happens when the parameter ~1 varies from the negat,ive to the 
positive values. First of all, it is necessary to study the structure of the bifurcation set corre- 
sponding to one strip, that is, to study the bifurcations in the family of the first return maps 
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It is clear that if the bottom of the parabola TI Wl~c descends sufficiently low (large and 
negative J1,), then each horseshoe intersects each strip. In this case, the set N", is a hyperbolic 
set similar to the invariant set in the Smale horseshoe. However, if J1, is sufficiently large and 
positive, then the horseshoes and the strips do not intersect at all, and all of the orbits except 0 
will escape from U. 

The main question is what happens when the parameter f-L varies from the negative to the 
positive values. First of all, it is necessary to study the structure of the bifurcation set corre­
sponding to one strip, that is, to study the bifurcations in the family of the first return maps 



Bifurcations of Systems 127 

TI,(p) E TIT: : 0: + c$. The following result (see [13]) makes the analysis of the map Tk very 
simple. 

LEMMA 2.1. By means of a transformation of the coordinates and the parameter, the map Tk (p) 
can be brought to the form 

lf= Y+Elk(?Y,CL), 

g=M-Y2+E2k(x,Y,p), 
(2.17) 

where 
Eik(x, y, CL) = 0 (Ak-/” + r-“) . (2.18) 

Here the rescalea’ splitting parameter M = -dy2”(,u - rmky- + cXkx+ ...) may take arbitrary 
finite values for sufficiently large k. 

PROOF. It is convenient to use the pair (20, yi) as the coordinates for points on ai. We can use 
the coordinate yi instead of yo because the value yo is determined uniquely by formula (2.16) as 
a function of (20, yr) for a fixed k. By virtue of equations (2.16),(2.15), the map Tk(p) is written 
in the form 

50 - x+ = aA”zs(1 + * * *) + b (yl - y-) + . . . , 

Y-kti (1 + y-“qk (fo&)) = /J + c~“zo(l + a..) + d (yl - y-)2 + . . . . 
(2.19) 

With the shift of the origin: yi + y + y-, 20 -+ x + x+, we write the map Tk(/.L) in the form 

3 = by + 0 (xk) + 0 (y2) ) 

Y-~IJ + Y-~~O (g) = Ml + dy2 + X”O(lxl + Iyl) + 0 (y3) , 
(2.20) 

where 
Ml =p+CXkx+ -y-“y- +... . (2.21) 

Now, resealing the variables 

b 
x + --y-kx, 

1 -k 
d Y-)--Y Y d 

brings equations (2.20) to form (2.17), where M = -dy2”Ml. This completes the proof of the 
lemma. 

Map (2.17) is close to the one-dimensional parabola map 

g=M-y2, (2.22) 

whose bifurcations have been well studied, so that it is possible to recover the bifurcation picture 
for the initial map Tk. For the parabola map, the bifurcation set is contained in the interval 

w/4),21 f 1 o va ues of M: at M = -(l/4), there appears a fixed point with the multiplier equal 
to +l, this fixed point is attractive at M E (-(l/4),3/4) an i undergoes a period-doubling d t 
bifurcation at M = 314; the cascade of period-doubling bifurcations lead to chaotic dynamics 
which alternates with stability windows and the bifurcations stop at M = 2, when the restriction 
of the map onto the nonwandering set becomes conjugate to the Bernoulli shift of two symbols 
and the map no longer bifurcates as M increases. 

By Lemma 2.1, similar bifurcations take place for the map Tk. The map has an attractive fixed 
point ok at p E (pi’,p;‘) which arises at the saddle-node bifurcation at /.A = ,ul’ and loses 
stability at /J = pi1 at the period-doubling bifurcation. Here, 

pp = y-“y- - CXkx+ + j-g ’ -2k+.. * , 

pk 
-1 = yky- - cx”x+ _ &-2k + . . . . 
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Tk(J.L) := T1T~ : (72 -+ (72· The following result (see [13]) makes the analysis of the map Tk very 
simple. 

LEMMA 2.1. By means of a transformation of the coordinates and the parameter, the map Tk (J.L) 
can be brought to the form 

it = y + elk (x, y, J.t), 

y = M - y2 + e2k(x,y,J.L), 
(2.17) 

where 
(2.18) 

Here the rescaled splitting parameter M = -&r2k (J.L - ,,(-ky- + dkx+··· ) may take arbitrary 
finite values for sufficiently large k. 

PROO F. It is convenient to use the pair (xo, yt) as the coordinates for points on (72. We can use 
the coordinate Yl instead of Yo because the value Yo is determined uniquely by formula (2.16) as 
a function of (xo, yt) for a fixed k. By virtue of equations (2.16),(2.15), the map Tk(J.L) is written 
in the form 

Xo x+ a,Xkxo(l + ... ) + b (Yl y-) + ... , 
,,(-k1Ji (1 + ,,(-k1Jk (xodh)) = J.L + CAkxo(1 + ... ) + d (Yl y_)2 + .... 

(2.19) 

With the shift of the origin: Yl -+ Y + Y- , Xo -+ x + x+, we write the map Tk(J.L) in the form 

it = by + 0 (Ak) + 0 (y2) , 

"(-ky + ,,(-2kO (y) Ml + dy2 + AkO(lxl + Iyl) + 0 (y3) , 
(2.20) 

where 
(2.21) 

Now, rescaling the variables 

x-+ y-+ 

brings equations (2.20) to form (2.17), where M _d"(2k Ml . This completes the proof of the 
lemma. 

Map (2.17) is close to the one-dimensional parabola map 

(2.22) 

whose bifurcations have been well studied, so that it is possible to recover the bifurcation picture 
for the initial map Tk. For the parabola map, the bifurcation set is contained in the interval 
[-(1/4),2] of values of M: at M = -(1/4), there appears a fixed point with the multiplier equal 
to +1, this fixed point is attractive at M E (-(1/4),3/4) and it undergoes a period-doubling 
bifurcation at M = 3/4; the cascade of period-doubling bifurcations lead to chaotic dynamics 
which alternates with stability windows and the bifurcations stop at M = 2, when the restriction 
of the map onto the nonwandering set becomes conjugate to the Bernoulli shift of two symbols 
and the map no longer bifurcates as M increases. 

By Lemma 2.1, similar bifurcations take place for the map Tk. The map has an attractive fixed 
point Ok at J.L E (J.Ltl, J.L"kl) which arises at the saddle-node bifurcation at J.L = J.Lt l and loses 
stability at J.L = J.L"k 1 at the period-doubling bifurcation. Here, 

1 -k - k + 1 -2k J.Lt="( y-c,xx+
4d

"( + ... , 

1 k k 3 -2k J.Lk- = "(- y- CA x+ -"( + ... 4d . 
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Figure 15. The last homoclinic tangency of the manifolds of the fixed point of Tk at 

p = jlk hs. An invariant set similar to those of the Smale’s horseshoe example arises 
after this bifurcation. 

The bifurcation set of the map Tk is contained in the interval [pl’, &“], where 

2 & = yky- _ ,-&+ - $” + . . . . 

At ~1 = @, the fixed point of Tk has the last homoclinic tangency (Figure 15) and an invariant 
set similar to those of the Smale’s horseshoe example arises after this bifurcation. Note .that these 
bifurcational intervals do not intersect each other for different k. 

2.7. Bifurcations of Double-Round Periodic Orbits 

The study of double-round periodic orbits is reduced to the study of the fixed poi:nts of the 
second return maps Tij = TlT,iTlTi: I& - IIc, which by virtue of equations (2.16),(2.15), are 
represented in the form 

y-$ (1-k . . ’ ) = cX&ro + d (ye - y-)’ + /I + . . . , 

50 - xc+ = dfo + b (91 - y-) +. . * , 

y-~&(l+~~~)=~A~~~+d(g~--y-)~+,u+~~~, 

(2.23) 

where (20, yr) and (&,5r) are the coordinates on the strip a: for an initial point and its image by 
the map Tij, respectively, and (3.0, jjr) are the coordinates for the intermediate point TIT,, (20, ~1) 
on the strip up. 

The map Tij is a composition of the successively acting maps Tj 2 TIT{ and Ti z TIT:, which 
are defined, respectively, on the strips $’ and c:. The map Ti transforms the strip (~13 into the 
horseshoe TIC:, and the map Tj transforms the strip c$’ into the horseshoe Tlc$. 

2.7.1. Bifurcations on H3 

Let us consider here the case p = 0. Different cases of the reciprocal position of the strips 
and horseshoes a:, .$‘, Tlai, Tlc$ are shown in Figures 16a-16c. We assume here j > i (we do 
not consider the case i = j). The horseshoe Tlai intersects both strips u,” and C; regularly, and 

o the horseshoe That intersects regularly the strip oi . For the intersection of TIC: f~ $, different 
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Figure 15. The last homocJinic tangency of the manifolds of the fixed point of Tk at 
I" ;;: I"~.. An invariant set similar to those of the Smale's horseshoe example arises 
after this bifurcation. 

The bifurcation set of the map Tk is contained in the interval [p,tl, p,~8J, where 

At 11- = I1-Zs, the fixed point of Tk has the last homo clinic tangency (Figure 15) and an invariant 
set similar to those of the Smale's horseshoe example arises after this bifurcation. Note that these 
bifurcational intervals do not intersect each other for different k. 

2.7. Bifurcations of Double-Round Periodic Orbits 

The study of double-round periodic orbits is reduced to the study of the fixed points of the 
second return maps Tij = TITjTIT6: TIo ----+ TIo, which by virtue of equations (2.16),(2.15), are 
represented in the form 

£0 x+ aAjxo+b(Yl-Y-)+"" 

1'- i ih(1 + ... ) = cAixo + d (Yl _ y_)2 + p, + ... , 
Xo - x+ = aAixo + b eiit - Y-) + ... , 

1'-j lh (1 +. " ) = CAixo + d (:iil _ y_)2 + p, + ... , 

(2.23) 

where (xo, Yl) and (xo, fit) are the coordinates on the strip aJ for an initial point and its image by 

the map Tij , respectively, and (xo,1h) are the coordinates for the intermediate point TIT6 (xo, Yl) 
on the strip a? 

The map Tij is a composition of the successively acting maps Tj == Tl T6 and Ti == Tl TJ, which 
are defined, respectively, on the strips aJ and a? The map Ti transforms the strip a:? into the 
horseshoe Tl at, and the map Tj transforms the strip aJ into the horseshoe Tl aJ . 

2.7.1. Bifurcations on H3 

Let us consider here the case p, = O. Different cases of the reciprocal position of the strips 
and horseshoes a?, "aJ, TI al, T1aJ are shown in Figures 16a-16c. We assume here j :> i (we do 
not consider the case i = j). The horseshoe TwJ intersects both strips a? and aJ regularly, and 
the horseshoe Tial intersects regularly the strip a? For the intersection of Tial n aJ, different 
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(4 
‘d 

(b) 

Figure 16. The various cases of the reciprocal position of the strips and horseshoes 
I$‘, uj”, Tlaj, Tlui are shown for the csse p = 0. 

possibilities may take place: Olaf ~7 a: = 8 in the case of Figure 16a; the intersection of TIat 

with ai is regular in the case of Figure 16b, and irregular in the case of Figure 16~. 
The conditions of the regular, irregular, and empty intersection of the corresponding strips and 

horseshoes are written by the use of inequalities (2.8),(2.9). Note that, since.we are interested 
now by the bifurcations of the double-round periodic orbits which do not intersect II” above the 
strip ut, we may assume i = ]c in these inequalities. 

If T’Ic~~ I%: = 0, then the map Tij has no fixed points. In this case, i and j satisfy the inequality 

j - ii3 + r > Symii2. 

On the other hand, if i and j satisfy the inequality 

(2.24)1 

j - it9 + 7 < -Symi12, (2.25) 

the intersection of 7’1~: with UT is regular, and the map Tij has saddle fixed points: there are 
exactly four such points, two of them have positive multipliers, and two have negative multipliers.” 

It, is clear that if one changes the system on Hs so that to come from the situation of Figure 16a 
to the situation of Figure 16b, then bifurcations connected with the appearance of fixed points 
of Tij (double-round periodic orbits f) will occur on the way. 

To follow these bifurcations, it, is convenient to consider one-parameter families of systemis 
on Hs, where the invariant ~9 is the control parameter (note that when proving Theorem 5, which 
establishes that 0 is an R-modulus for the systems on H3, we just used the fact that the variation 
of 8 is connected with the changes in the structure of intersections of the strip and horseshoes). 

Let fe be such a family. Let i and j be sufficiently large fixed integers. By virtue of (2.24), if 

e c e1 E t + f~ - +yi12, (2.26’) 

then Tloi n a; = 0 and the map Tij does not have fixed points. When 0 increases, the bottom 
of the horseshoe Tlaj moves down, and for the values of 0 such that 

e > e2 s f + +T + fsyi/2, (2.27) 

sMoreover, Theorem 3 implies that the nonwandering set of the map Tij is nontrivial in this case and has a 
hyperbolic structure. 
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(j~ 
I 

(j~ 
J 

(a) (b) (c) 

Figure 16. The various cases of the reciprocal position of the strips and horseshoes 
O'?, uJ, TlO't, TIU} are shown for the case J1. = O. 
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possibilities may take place: TIa; n aJ = 0 in the case of Figure I6a; the intersection of TilT; 
with aJ is regular in the case of Figure I6b, and irregular in the case of Figure I6c. 

The conditions of the regular, irregular, and empty intersection of the corresponding strips and 
horseshoes are written by the use of inequalities (2.8),(2.9). Note that since we are interested 
now by the bifurcations of the double-round periodic orbits which do not intersect no above the, 
strip a?, we may assume i = k in these inequalities. 

If TI d nlJ'J = 0, then the map Tij has no fixed points. In this case, i and j satisfy the inequality 

(2.24) 

On the other hand, if i and j satisfy the inequality 

j - ie + 7' < _S"'(-i/2, (2.25) 

the intersection of TI IJ'; with IJ'J is regular, and the map Tij has saddle fixed points: there are 
exactly four such points, two of them have positive multipliers, and two have negative multipliers.s 

It is clear that if one changes the system on H3 so that to come from the situation of Figure I6a 
to the situation of Figure 16b, then bifurcations connected with the appearance of fixed points 
of Tij (double-round periodic orbits f) will occur on the way. 

To follow these bifurcations, it is convenient to consider one-parameter families of systems 
on H 3 , where the invariant () is the control parameter (note that when proving Theorem 5, which 
establishes that () is an O-modulus for the systems on H3 , we just used the fact that the variation 
of () is connected with the changes in the structure of intersections of the strip and horseshoes). 

Let Ie be such a family. Let i and j be sufficiently large fixed integers. By virtue of (2.24), if 

fJ j lIS -i/2 () < 1 == -; + -;7' - -; "'( , 
Z t 2 

(2.26) 

then Tl IJ'; n IJ'J = 0 and the map Tij does not have fixed points. When () increases, the bottom 
of the horseshoe Tl IJ'; moves down, and for the values of () such that 

j 1 1 -i/2 
-;+--;7'+-;S",( , 
t t t 

(2.2/') 

5 Moreover , Theorem 3 implies that the nonwandering set of the map Tij is nontrivial in this case and has a 
hyperbolic structure. 



130 S. V. GONCHENKO et al. 

the intersection of Tiff: with ai will be regular, and the map Tij will have four saddle fixed 
points. 

We, therefore, get that all bifurcations of the double-round periodic orbits which intersect the 
strips up and c$ occur for the values of 8 belonging to the interval 

To clarify how the bifurcations go, we give a more detailed geometric construction (see Fig- 
ure 17). The horseshoe Traj intersects the strip CY~ in two connected components which are 
denoted as dtj and dzj. The preimages of these components with respect to the map Tj are 
the two “substrips” A,r, and Afj lying on 0: (SO, Tj(A$) = A$, CY = 1,2). The imabge of the 
strip A; with respect to the map Tij is a thin horseshoe Tij(AG) lying in Tlat. 

w: M’ 
Figure 17. Details of the geometric structure for the bihorseshoe composed by the 
strips and horseshoes up, uy, TIU~, TI$. The horseshoe 7’10; intersects the strip u: 
on two connected components njj and “b. Two “substrips” Ag and Ae in 0,” axe 

the preimages of these components; i.e., Tj(Az) = A$. , (I: = 1,2. The image of the 
strip A8 under the map Tij is the narrow horseshoe Tij(A$) belonging to Tlul. 

The dynamics of the map Tij : UT --+ C; is determined by that how it acts in restriction onto 
the substrips Atj and Ae. Particularly, the fixed points of Tij are divided into two groups: the 

first are the fixed points of the map Ti(31) = Tijlal., and the second are the fixed points of the 

map Tij (2) = Tijla?, . Since the regions A~j and A$ do not intersect for all 8, the fixed points of 
each of the maps bifurcate independently. 

It can be shown (see [8]) that exactly two bifurcations take place in each group when 8 varies; 
namely, a pair of saddle and stable fixed points of T$’ appears at eg+ through the saddle-node 
bifurcation corresponding to the presence of a multiplier equal to “+l,” and the stable fixed point 
loses its stability at Bg- through the period-doubling bifurcation corresponding to the presence 
of a multiplier equal to “- 1.” The following asymptotic takes place: 

(2.29) 
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the intersection of Tlal with aJ will be regular, and the map Tij will have four saddle fixed 
points. 

We, therefore, get that all bifurcations of the double-round periodic orbits which intersect the 
strips a? and aJ occur for the values of 8 belonging to the interval 

j 1 1 -i!2 _ j 1 1 -i!2 -; + -;7 - -;8"( = 81 :5 8 :5 82 == . + -;7 + -;8"(. (2.28) 
t t t t t 2 

To clarify how the bifurcations go, we give a more detailed geometric construction (see Fig­
ure 17). The horseshoe Tla] intersects the strip a? in two connected components which are 
denoted as .iitj and .ii~j' The preimages of these components with respect to the map Tj are 

the two "substrips" i.l.;j and i.l.~j lying on aJ (so, Tj(.iiij) = i.l.ij, a 1,2). The image of the 
strip i.l.ij with respect to the map Tij is a thin horseshoe Tij (i.l.ij) lying in Tl at. 

,\i + 
C!l.X 

T~lll. 
lJ 'J 

j 
-1 ~ 
h+---~ 

Figure 17. Details of the geometric structure for the bihorseshoe composed by the 
strips and horseshoes a?, uJ, TlO'l, TIUJ. The horseshoe TIO'J intersects the strip u? 
on two connected components Alj and A'fj. Two "substrips" Alj and A'fj in uJ are 
the preimages of these components; i.e., Tj(At) = At ' ex = 1,2. The image of the 
strip At under the map Tij is the narrow horseshoe T;j(At) belonging to TIU[. 

The dynamics of the map Tij : aJ .....) aJ is determined by that how it acts in restriction onto 
the substrips i.l.D and i.l.D. Particularly, the fixed points of Tij are divided into two groups: the 

first are the fixed points of the map Ti(J
l
) = Tij IA1, and the second are the fixed points of the 

'3 

map Ti j2) = Tij IA;j' Since the regions i.l.}j and i.l.~j do not intersect for all 8, the fixed points of 
each of the maps bifurcate independently. 

It can be shown (see [8]) that exactly two bifurcations take place in each group when 8 varies; 
namely, a pair of saddle and stable fixed points of Tg") appears at 8ij+ through the saddle-node 
bifurcation corresponding to the presence of a multiplier equal to "+1," and the stable fixed point 
loses its stability at 80- through the period-doubling bifurcation corresponding to the presence 
of a multiplier equal to "-I." The following asymptotic takes place: 

8~.±=~+~+(_I)Q;I-by-/x+ f'ir',,(-i/2+ ... , (2.29) 
~J t t t y- In''( V d 
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where cr = 1 is assumed to correspond to the upper of the substrips Aij and Q = 2 to the lower 
one (Figure 17). Note that the asymptotics for the moments corresponding to the “+l” and “-1” 
bifurcations coincide in the main order. Nevertheless, the intervals 

are, evidently, nonempty and they correspond to the presence of a stable double-round periodic 
orbit. 

2.7.2. Systems on II3 with infinitely many stable periodic orbits 

Since c = lXy[ < 1, it follows that the Jacobianofthe mapTij equal to (k)2(A$i+j(i+. . .) is 
less than unity if i and j are sufficiently large. Thus, the saddle-node bifurcations of double-round 
periodic orbits lead to the appearance of the stable periodic orbits indeed. 

The following assertion was established in [8,14]. 

PROPOSITION 2.2. Let fe be a one-parameter family of systems on H3. Then, in the interval 
0 > 1, the values f3* are dense such that the diffeomorphism fp possesses infinitely many stable 
double-round periodic orbits. 

This result follows from the fact that the stability regions 6,, may intersect for different (i,j). 
Indeed, as it follows from (2.29), the map Tg has a stable fixed point if 

utj <j-8i+T-u0y-i/2 < ufj, (2.30) 

where vij < u&, v:;’ = o(ymii2) and ZJO does not depend on i and j. 
In order for an infinite number of stable double-round periodic orbits to exist for the difkomor- 

phism fe, it is necessary and sufficient that inequality (2.30) would have infinitely many integer 
solutions (i, j). The standard fact from the number theory is that for any functions z&’ tending 
to zero as i, j -+ +oo such inequality do have infinitely many integer solutions for a dense set of 
values of e. 

Note that inequality (2.30) is satisfied only if the invariants 8 and 7 admit “exponentially well” 
nonhomogeneous approximations by rational fractions. 

2.7.3. Bifurcations in the case p # 0 

Let us now consider bifurcations of double-round periodic orbits for the diffeomorphisms which 
are close to f and which may now not lie on H3. 

First, consider a one-parameter family fp. Recall that the absolute value of the splitting param- 
eter p is exactly the distance between the bottom of the parabola Tl (W;“,,) and the manifold PVC,. 
The sign of p corresponds to where the bottom of the parabola lies: above or below IV,&. If p > 0, 
the diffeomorphism fp does not have single-round homoclinic orbits close to I’, and when p < 0, 
the diffeomorphism has two such orbits. 

When ~1 increases, the bottom of the parabola Tl(W;“,,) will move up and when 1-1 decreases, it 
will move down. Accordingly, the bottoms of all horseshoes will move up and down. It follows 
from equations (2.14),(2.15) that the bottom of the horseshoe T~cri lies on a distance of the order 

p + cxiz+ (2.31) 

from the manifold IV;,. Recall also that the strip C$ lies on a distance of the order 

r-jy- (2.32)1 

from the manifold Wi,. 
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where a = 1 is assumed to correspond to the upper of the substrips !:l.ij and a 2 to the lower 
one (Figure 17). Note that the asymptotics for the moments corresponding to the "+1" and "-I" 
bifurcations coincide in the main order. Nevertheless, the intervals 

are, evidently, nonempty and they correspond to the presence of a stable double-round periodic 
orbit. 

2.7.2. Systems on Ha with infinitely many stable periodic orbits 

Since 0' = 1>''')'1 < 1, it follows that the Jacobian of the map Tii equal to (bc)2(>.")')i+i (1 + ... ) is 
less than unity if i and j are sufficiently large. Thus, the saddle-node bifurcations of double-round 
periodic orbits lead to the appearance of the stable periodic orbits indeed. 

The following assertion was established in [8,14]. 

PROPOSITION 2.2. Let fe be a one-parameter family of systems on Ha. Then, in the interval 
() > 1, the values ()* are dense such that the diffeomorphism I(J' possesses infinitely many stable 
double-round periodic orbits. 

This result follows from the fact that the stability regions 8iia may intersect for different (i,j). 
Indeed, as it follows from (2.29), the map T[j has a stable fixed point if 

1 . (). -i/2 2 
lIii < J - Z + T - 110")' < lIii , (2.30) 

where IIli < IIti' lIi]2 = o(-y-i/2) and 110 does not depend on i and j. 
In order for an infinite number of stable double-round periodic orbits to exist for the diffeomor­

phism fe, it is necessary and sufficient that inequality (2.30) would have infinitely IJlany integer 
solutions (i,j). The standard fact from the number theory is that for any functions IIt2 tending 
to zero as i, j -+ +00 such inequality do have infinitely many integer solutions for a dense set of 
values of (). 

Note that inequality (2.30) is satisfied only if the invariants () and T admit "exponentially well" 
nonhomogeneous approximations by rational fractions. 

2.7.3. Bifurcations in the case /-L =I 0 

Let us now consider bifurcations of double-round periodic orbits for the diffeomorphisms which 
are close to I and which may now not lie on Ha. 

First, consider a one-parameter family Iw Recall that the absolute value of the splitting param­
eter /-L is exactly the distance between the bottom of the parabola Tl (Wl~c) and the manifold Wl~c' 
The sign of J1. corresponds to where the bottom of the parabola lies: above or below Wl~c' If J1. > 0, 
the diffeomorphism Ip. does not have single-round homoclinic orbits close to r, and when J1. < 0, 
the diffeomorphism has two such orbits. 

When J1. increases, the bottom of the parabola Tl (Wl~c) will move up and when J1. decreases, it 
will move down. Accordingly, the bottoms of all horseshoes will move up and down. It follows 
from equations (2.14),{2.15) that the bottom of the horseshoe TIO'llies on a distance of the order 

(2.31) 

from the manifold Wl~c' Recall also that the strip O'J lies on a distance of the order 

(2.32) 

from the manifold WI~c' 
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Take some i and j such that, for ~1 = 0, the horseshoe Trui does not intersect the strip 0: 
(Figure 16a). Evidently, there is infinitely many such pairs (i, j). Since, for p = 0, the horse 
shoe Tlai lies above the strip c$ (i.e., cxiz+ > y-jy-), we have by virtue of (2.31),(2.32), that 
it lies above this strip for all positive /.L. Therefore, for the given i and j, the map Tij does not 
undergo bifurcations for positive p. However, when p is negative, the horseshoe Tlgj may have 
a nonempty intersection with the strip $’ (this intersection will be nonempty and regular for 
sufficiently large negative cl). Thus, it is clear that there exists /J = ,utj < 0 for which the map Tij 
has a structurally unstable fixed point. Evidently, pzj + 0 as i, j + 00. 

Take another pair of i and j such that, for p = 0, the horseshoe TAO: has a regular intersection 
with the strip 0: (Figure 16b); the set of such pairs is also infinite. Note that, for the given i 
and j, the horseshoe Tla: has regular intersection with the strip oj for all negative p. Therefore, 
in this case, the map Tij does not undergo bifurcations for negative ~1. On the other hand, if ~1 is 
positive, the horseshoe T~of may have empty intersection with the strip CY~ (if p+cXix+ > r-jy-; 
see (2.31),(2.32)). It is clear, therefore, that there exists p = jit > 0 for which the malp Tij has 
a structurally unstable fixed point. Note also that fit 4 0 as i, j --+ 00. 

We arrive at the following statement [6]. 

PROPOSITION 2.3. There exists an infinite number of values of p accumulating at ,u = 0 fkom 
both sides which correspond to the presence of the structurally unstable double-round periodic 
orbits. 

If, similar to the case p = 0, consider the substrips A,r,(~), A~j(~) and the corresponding 
horseshoes Tij(,)Az and Tij(p)Afj, then repeating the arguments of [8], one can show that the 
following asymptotics take place for the bifurcational values of p: 

+&(l_$)(l+-), a=l,2. (2.33) 

Here CY = 1 corresponds to the bifurcations of the fixed points of the map Tij(/L)laij, and Q = 2 
corresponds to the bifurcations of the fixed points of the map Tij(p)jat. The signs f in the 
left-hand side of formula (2.33) denote the bifurcation moments corresponding to the Imultiplier 
equal to “+l” or to “-l”, respectively. 

Note that these bifurcation moments differ on a small value of order o(ywij2). In spite of the 
intervals 6ij = (@-, &‘) of existence of a stable double-round periodic orbit are extremely small, 
they, nevertheless, may intersect each other (which is not the case for the analogous intervals 
corresponding to single-round orbits; see above), and even an infinite number of these intervals 
may intersect. We have already seen this in the previous section, when proved that the value ~1 = 0 
belongs to the intersection of infinitely many regions of existence and stability of double-round 
periodic orbits if 13 and 7 admits exponentially well nonhomogeneous approximations by rational 
fractions. 

The structure of these intersections cannot be studied in a one-parameter family fil because 
it depends essentially on, for instance, the values of 0 and r. Indeed, as we have shown, the 
structure of the set of the values of p corresponding to the bifurcations of double-round periodic 
orbits of fP depends essentially on the reciprocal position of the strips and horseshoes for the 
diffeomorphism fo. The latter is mainly determined by the values of 8 and T. If, for instance, 
8 > B’, then there would exist infinitely many pairs (i, j) such that, for the diffeomorphism fc, 
the horseshoe T~IY~ have regular intersection with the strip c$, and the horseshoe Tini has no 
intersection with the strip uj for the diffeomorphism f; (see Theorem 5). Therefore, for the 
family f,, bifurcations of the double-round periodic orbits corresponding to the given values of i 
and j would happen at positive CL, and for the family .fh, they would happen at negative p. In 
other words, an arbitrary variation of 8 changes the order of ‘Ldouble-round” bifurcations in the 
family f,. 
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Take some i and j such that, for J.L == 0, the horseshoe TIO'f does not intersect the strip O'J 
(Figure 16a). Evidently, there is infinitely many such pairs (i,j). Since, for J.L = 0, the horse­
shoe TIO'f lies above the strip aJ (Le., dix+ > -y-i y-), we have by virtue of (2.31},(2.32), that 
it lies above this strip for all positive J.L. Therefore, for the given i and j, the map Tii does not 
undergo bifurcations for positive J.L. However, when J.L is negative, the horseshoe T10'} may have 
a nonempty intersection with the strip O'J (this intersection will be nonempty and rl~gular for 
sufficiently large negative J.L). Thus, it is clear that there exists J.L J.Lij < 0 for which the map Tij 
has a structurally unstable fixed point. Evidently, J.Lij -+ 0 as i, j -+ 00. 

Take another pair of i and j such that, for J.L = 0, the horseshoe TIO'f has a regular intersection 
with the strip aJ (Figure 16b); the set of such pairs is also infinite. Note that, for the given i 
and j, the horseshoe Tlaf has regular intersection with the strip aJ for all negative J.L. Therefore, 
in this case, the map Iii does not undergo bifurcations for negative J.L. On the other hand, if J.L is 
positive, the horseshoe Tlat may have empty intersection with the strip aJ (if J.L+C,xiX + > -y-jY-j 
see (2.31),{2.32)). It is clear, therefore, that there exists J.L = Pii > 0 for which the ma.p Tij has 
a structurally unstable fixed point. Note also that Pij --4 0 as i, j --4 00. 

We arrive at the following statement [6]. 

PROPOSITION 2.3. There exists an infinite number of values of J.L accumulating at J.L == 0 from 
both sides which correspond to the presence of the structurally unstable double-round periodic 
orbits. 

If, similar to the case J.L "'" 0, consider the substrips 6.}j{J.L), 6.~j(J-L) and the corresponding 
horseshoes Tij (J.L)6.}j and Tij {J-L)6.;j' then repeating the arguments of [8], one can show that the 
following asymptotics take place for the bifurcational values of J-L: 

O! = 1,2. (2.33) 

Here O! = 1 corresponds to the bifurcations of the fixed points of the map Tij (J.L) I A 1" and O! = 2 ., 
correspO'nds to' the bifurcatiO'ns of the fixed points of the map Tij (J-L)IA1. The signs ± in the 

.J 

left-hand side of formula (2.33) denote the bifurcation moments corresponding to the multiplier 
equal to "+1" or to "-1", respectively. 

Note that these bifurcation moments differ on a small value of order O(-y-i/2). In spite O'f the 
intervals c5:j = (J.L'0- , J.L'0+) of existence of a stable double-round periodic O'rbit are extremely small, 
they, nevertheless, may intersect each other (which is not the case for the analogous intervals 
correspO'nding to' single-round orbits; see above), and even an infinite number of these intervals 
may intersect. We have already seen this in the previous section, when proved that the value J.L 0 
belongs to' the intersection of infinitely many regions of existence and stability of double-round 
periodic orbits if () and T admits exponentially well nonhomogeneous approximations by rational 
fractions. 

The structure of these intersections cannot be studied in a one-parameter family 1,,,- because 
it depends essentially on, for instance, the values of () and T. Indeed, as we have shown, the 
structure of the set of the values of J-L corresponding to the bifurcations of double-round periodic 
orbits of IJl. depends essentially on the reciprocal position of the strips and horseshoes for the 
diffeomorphism 10. The latter is mainly determined by the values of () and T. If, for instance, 
() > (}I, then there would exist infinitely many pairs (i,j) such that, for the diffeomorphism 10, 
the horseshoe T1a} have regular intersection with the strip aJ, and the horseshoe T{I1·f has no 
intersection with the strip aJ for the diffeomorphism 16 (see Theorem 5). Therefore, for the 
family IJl.' bifurcations of the double-round periodic orbits corresponding to the given values of i 
and j would happen at positive J.L, and for the family I~, they would happen at negative J-L. In 
other words, an arbitrary variation of e changes the order of "double-round" bifurcations in the 
family Iw 
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In fact, using the machinery of “infinite degenerations” from [7], one can show that, by an 
arbitrary small perturbation of the family f, in the space of one-parameter families of dynamical 
systems, a family can be obtained for which values of p accumulates at ,U = 0 corresponding to 
infinitely many coexisting structurally unstable double-round periodic orbits. 

This implies that no finite number of control parameters is sufficient to obtain a stable picture 
of the bifurcation set corresponding to all double-round periodic orbits. At the same time, we 
have seen that if we restrict ourself to the study of the bifurcations of one double-round periodic 
orbit corresponding to an arbitrary code {i,j}, the one-parameter bifurcation analysis is quite 
satisfactory: there is a value of /J corresponding to the saddle-node bifurcation and a value of p 
corresponding to the period-doubling bifurcation and no other bifurcation values. 

2.8. Bifurcations of Triple-Round Periodic Orbits. Cusp-Bifurcations 

2.8.1. Bifurcations on H3 

In this section, we consider the bifurcations of triple-round periodic orbits. In particular, we 
show that, in distinction with the single- and double-round periodic orbits, structurally unstable 
triple-round periodic orbits can have additional degenerations; namely, the first Lyapunov value 
may vanish. This means that cusp-b$urcutions take place here. 

This fact was established in [15] at the study of two-parameter families of systems on Hs for 
which the SZ-moduli 19 and T are taken as the control parameters. 

Let f~,~ be a two-parameter family in Ha. Then, the following result holds. 

THEOREM 9. The values of (0, T) for which the system has a structurally unstable triple-round 
periodic orbit with one multiplier equal to unity and with first Lyapunov value equal to zero are 
dense in the region i = ((r3, r) : 0 > 1) on the parameter plane.6 

PROOF. The study of triple-round periodic orbits is reduced to the study of the fixed points 
of the third-return maps Tijk c T~T~T~T~T~T,i: uf - CT:. We will suppose i < j < k (this 
condition can be shown to be necessary for the existence of the cusp-bifurcation). 

The analysis carried out in [l] shows that the additional degeneration may take place only for 
the following structure of the intersections of the corresponding horseshoes and strips (Figure 18): 
the horseshoe Tl~f intersects the strip 09 regularly and intersects the strip cr; irregularly, the 
horseshoe TIC: intersects the strips a!, a: regularly and intersects the strip ~7: irregularly, the 
horseshoe TIO~ intersects all the strips regularly. 

The study of triple-round periodic orbits is obviously reduced to the study of a system of 
equations connected the coordinates (20, yc) and (51, yi) of the points of intersection of the orbit 
with the neighborhoods I& and III, respectively. We do not write down the system here. Note 
that the system is easily resolved with respect to the coordinates 50, yo, and 21. If {ijk} is the 
code of the periodic orbit under consideration, then the system takes the form 161 

y-jq = dc2 + (cz+Xi - +y-) + b&c + . . . , 

r-“C = dv2 + (cz+Aj - ~-~y-) + b&c + . . . , 

y-i9 = dC2 + (cz+Xk - r+y-) + bcXkq + . . . , 

(2.34) 

where we denote the value yi - y- as < for the point of intersection of the orbit with the strip oi, 
as 7 for the point of intersection with the strip gj, and as C for the point of intersection with the 
strip oi. The degenerate periodic orbits (i.e., having one multiplier equal to unity) correspond 
to the degenerate solutions of system (2.34). 

6Note that the second Lyapunov value does not equal to zero here [15], so these points are the cusp-points from 
which a pair of curves corresponding to saddle-node bifurcations go. 
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In fact, using the machinery of "infinite degenerations" from [7), one can show that, by an 
arbitrary small perturbation of the family f JJ. in the space of one-parameter families of dynamical 
systems, a family can be obtained for which values of J.L accumulates at J.L = 0 corresponding to 
infinitely many coexisting structurally unstable double-round periodic orbits. 

This implies that no finite number of control parameters is sufficient to obtain a stable picture 
of the bifurcation set corresponding to all double-round periodic orbits. At the same time, we 
have seen that if we restrict ourself to the study of the bifurcations of one double-round periodic 
orbit corresponding to an arbitrary code {i,j}, the one-parameter bifurcation analysis is quite 
satisfactory: there is a value of J.L corresponding to the saddle-node bifurcation and a value of J.L 

corresponding to the period-doubling bifurcation and no other bifurcation values. 

2.8. Bifurcations of Triple-Round Periodic Orbits. Cusp-Bifurcations 

2.8.1. Bifurcations on Ha 

In this section, we consider the bifurcations of triple-round periodic orbits. In particular, we: 
show that, in distinction with the single- and double-round periodic orbits, structurally unstable: 
triple-round periodic orbits can have additional degenerations; namely, the first Lyapunov value: 
may vanish. This means that cusp-bifurcations take place here. 

This fact was established in [15] at the study of two-parameter families of systems on Ha for 
which the n-moduli e and 7' are taken as the control parameters. 

Let f9,T be a two-parameter family in Ha. Then, the following result holds. 

THEOREM 9. The values of (e, 1') for which the system has a structurally unstable triple-round 
periodic orbit with one multiplier equal to unity and with first Lyapunov value equal to zero aro 
dense in the region L {(e,7'): e > I} on the parameter plane.6 

PROOF. The study of triple-round periodic orbits is reduced to the study of the fixed points 
of the third-return maps Tijk T1T8'TITJT1TJ: a? -- a? We will suppose i < j < k (this 
condition can be shown to be necessary for the existence of the cusp-bifurcation). 

The analysis carried out in [1] shows that the additional degeneration may take place only for 
the following structure of the intersections of the corresponding horseshoes and strips (Figure 18): 
the horseshoe Tlat intersects the strip a? regularly and intersects the strip aJ irregularly, the 
horseshoe Tla} intersects the strips a?, aJ regularly and intersects the strip a2 irregularly, the 
horseshoe TI ak intersects all the strips regularly. 

The study of triple-round periodic orbits is obviously reduced to the study of a system of 
equations connected the coordinates (xo, Yo) and (x 1, Yl) of the points of intersection of the orbit 
with the neighborhoods IIo and III, respectively. We do not write down the system here. Not~~ 

that the system is easily resolved with respect to the coordinates xo, Yo, and Xl' If {ijk} is the 
code of the periodic orbit under consideration, then the system takes the form 16] 

de + (CX+ Ai 

d1J2 + (CX+Ai 

d(2 + (CX+Ak 

,-jy-) + bCAi( + ... , 
,-ky-) + bCAj { + ... , ,-iy-) + bCAk1J + ... , 

(2.34) 

where we denote the value Yl - y- as { for the point of intersection of the orbit with the strip aI, 
as 1J for the point of intersection with the strip a}, and as ( for the point of intersection with the 
strip ak' The degenerate periodic orbits (Le., having one multiplier equal to unity) correspond 
to the degenerate solutions of system (2.34). 

6Note that the second Lyapunov value does not equal to zero here [15J, so these points are the cusp-points from 
which a pair of curves corresponding to saddle-node bifurcations go. 
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Figure 18. The geometric construction leading to the appearance of doubly-degener- 
ate triple-round periodic orbits (the cusp-bifurcation). The horseshoe Trof intersects 
the strip op regularly and it intersects the strip uy irregularly; the horseshoe Tluj 
intersects the strips ui, 0: regularly and it intersects the strip cri irregularly; the 
horseshoe Trui intersects regularly all the strips. 

Since i < k and Xy < 1, the last equation of system (2.34) is resolved with respect to C: 

c = f (2.35) 

The substitution of expression (2.35) in the first and second equations of system (2.34) and a 
shift of coordinates E and n on some small constants bring the system to the form 

yjq = (p + (a+xi - y-jy-) +. . . ( 

-b&E = dq2 + (m+Xj - fkg-) +a.. . 
(2.36) 

Thus, the question about the degenerate triple-round periodic orbits is reduced to the question 
about the degenerate solutions of the system (2.36) corresponding to large i, j, k, and to small 5 
and Q. 

Let us show that the system has a triple solution. Make the following resealing of the variables: 
[ = ~1 . u; q = ~2 . v, where 

(bc)1’3 ( bc)2/3 
El=--. 

d 
xj/3 . y-2j/3, C‘J = - . x2j/3 . y-jl3+ 

d 
Dividing the first and second equations of (2.36) on de ET and d. E%, respectively, we arrive at 

the following system: 
u2 =v+A+&(u,v), 

v2 = u + B + 62(21, v), 
(2.37) 

where Sr,2 + 0 as i, j, k + -too and the quantities A and B are as follows: 

A = (bc;2,3’- 
2jPy4j/3 [y-r-j _ cz+xi + . . .] , 

(2.38) 

Evidently, A and B may take arbitrary finite values if i and j are sufficiently large. 
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Figure 18. The geometric construction leading to the appearance of doubly-degener­
ate triple-round periodic orbits (the cusp-bifurcation). The horseshoe Tla]: intersects 
the strip ap regularly and it intersects the strip O'J irregularly; the horseshoe Tw] 
intersects the strips ap, aJ regularly and it intersects the strip O'g irregularly; the 
horseshoe T10'~ intersects regularly all the strips. 

Since i < k and ).."1 < 1, the last equation of system (2.34) is resolved with respect to (: 

( = ±[i;.'Y-i/2(1 + ... ). (2.35) 

The substitution of expression (2.35) in the first and second equations of system (2.34) and a 
shift of coordinates e and 1J on some small constants bring the system to the form 

'Y- j 1J = df.2 + (cx+)..i - 'Y-Jy-) + ... , 
-be)..j~=d1J2+ (ex+)..j -'Y-ky-) + ... . 

(2.36) 

Thus, the question about the degenerate triple-round periodic orbits is reduced to the question 
about the degenerate solutions of the system (2.36) corresponding to large i, j, k, and to small ~ 
and 1J. 

Let us show that the system has a triple solution. Make the following rescaling of the variables: 
~ = f1 . U; 1J = f2 . v, where 

(be) 1/3 '/3 -2 '/3 (be)2/3 2 '/3 - '/3 
f1 = ---d- .)..J • "I J, f2 = --d- .).. J • "I J • 

Dividing the first and second equations of (2.36) on d· fI and d . f~, respectively, we arrive at 
the following system: 

U
2 = V + A + (h(u,v), 

v2 = U + B + 02 (u, v), 
where 01,2 ~ 0 as i, j, k ~ +00 and the quantities A and B are as follows: 

A = _d_)..-2j /3"(4j /3 [Y-'Y- j - eX+)..i + ... J ' 
(be)2/3 

B = _d_)..-4j /3"(2 j /3 [y-,,(-k - ex+)..j + ... J . 
(bc)4/3 

Evidently, A and B may take arbitrary finite values if i and j are sufficiently large. 

(2.37) 

(2.38) 
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Figure 19. The case of the cubic tangency of two parabolas. 

It is easy to see that the triple solution of system (2.37) exists when A M 3/4, B M 3/4. The 
geometric illustration of this fact is represented in Figure 19. 

We obtained a necessary and sufficient condition for existence of triple solution of system (2.34). 
This condition can be rewritten as 

y-y-j - a+xi + . . . = 0, 

y-p - cx+p + . . . = 0. 
(2.39) 

Taking the logarithm of the both parts of each of the equations of the system obtained we arrive 
at the equivalent system 

j=&-T+... , 

k = ej -T +... . 
(2.40) 

This system can be shown to have arbitrarily large integer solutions for a dense set of values of 
the parameters (0,~). So we can conclude that there exists a dense set L* on the parameter plane 
such that for any pair (f?*, r*) E L*, there exists a triple solution of system (2.34) for some i., 
j, k. This means that the dynamical system has an associated structurally-unstable triple-round 
periodic orbit arising as the result of the coalescence of three periodic orbits. Such orbit has a 
multiplier equal to unity and the first Lyapunov value is equal to zero. The theorem is proved. 

Let us now construct the bifurcational curves, starting at the cusp points, which correspond 
to saddle-node triple-round periodic orbits. Let OL = A - 3/4 and p = B - 3/4. System (2.37) 
takes the form 

&2r+3+(y+... 
4 , 

&u+3+p+... . 
(2.41:) 

4 
On the plane (a,/3), the bifurcational curves corresponding to the degenerate solutions of 

system (2.41) have the following form (see Figure 20): 

3 1 
Q: = -2 + l&2 

--t+... , 

p=-;+p-A-+..., 

where t is some parameter; a triple solution exists when t = -l/2. 
Since 

(2.42) 

(2.43) 
;+a=, (bc;l/ x- 2jPy4j/3 Iy-?-j _ cx+xi + . . .] , 
;+p=- d x-4j/3y2j/3 (bC)4/3 [y-y-” - cc+ Xj + . . *] , 
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Figure 19. The case of the cubic tangency of two parabolas. 

It is easy to see that the triple solution of system (2.37) exists when A ::::J 3/4, B ::::J 3/4. The 
geometric illustration of this fact is represented in Figure 19. 

We obtained a necessary and sufficient condition for existence of triple solution of system (2.34). 
This condition can be rewritten as 

y-,,(-j - CX+,\i + ... = 0, 

y-,,(-k _ cx+,\j + ... = o. (2.39) 

Taking the logarithm of the both parts of each of the equations of the system obtained we arrive 
at the equivalent system 

j Oi-r+· .. , 

k OJ - r + .... 
(2.40) 

This system can be shown to have arbitrarily large integer solutions for a dense set of values of 
the parameters (0, r). So we can conclude that there exists a dense set L* on the parameter plane: 
such that for any pair (0*, r*) E L*, there exists a triple solution of system (2.34) for some i, 
j, k. This means that the dynamical system has an associated structurally-unstable triple-round 
periodic orbit arising as the result of the coalescence of three periodic orbits. Such orbit has a 
multiplier equal to unity and the first Lyapunov value is equal to zero. The theorem is proved. 

Let us now construct the bifurcational curves, starting at the cusp points, which correspond 
to saddle-node triple-round periodic orbits. Let 0: A 3/4 and (3 = B 3/4. System (2.37) 
takes the form 

2 3 u =v+-+o:+· .. 
4 ' 

2 3 v =u+-+(3+'" 4 . 

(2.41) 

On the plane (0:, (3), the bifurcational curves corresponding to the degenerate solutions of 
system (2.41) have the following form (see Figure 20): 

3 1 
0: = -'4 + 16t2 - t + ... , 

3 2 1 
(3 = - '4 + t - 4t + ... , 

(2.42) 

where t is some parameter; a triple solution exists when t = -1/2. 
Since 

(2.43) 
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Figure 20. The cusp-point on the plane (Q, p). 

Figure 21. A fragment of the bifurcation diagram on the plane (0,~). 

(see (2.38)) and since X = yme, yT = cz+/y-, we can write the following formula connecting the 
values of (a,/?) with the values of (8, T): 

W(~+W [y-r-j _ p,~-@i + . . .] , 

W(@+l/% [Y-Y-k - y-r+-ej + . . .] . 
(2.44) 

This formula allows one to map the curves (2.42) onto the (8, T)-plane (see Figure 21). 

2.9. Cusp-Bifurcations in Two-Parameter Families f,,e 

For a two-parameter family fP,e, the condition of existence of a triply-degenerate triple-round 
periodic orbit is written in the form 

j=ei-T-f-***, 
y-y-” - cz+Aj + p -t- . * * = 0 I 

(2.45) 

which is analogous to condition (2.40) obtained for /J = 0. One can see that in an arbitrarily 
small neighborhood of any point (0,~ = 0), there exists a point (0*, /.A*) for which system (2.45) 
has an integer solution. This implies that the following theorem holds. 

THEOREM 10. In an arbitrarily small neighborhood of any point (0, p = 0), there exists a point 
(e*,p*) for which the map fp+- has a doubly-degenerate triple-round periodic orbit. 

Note that p* can be of arbitrary sign: p* < 0 when k > Qj - r, and II* > 0 when k < Oj - r. 
The corresponding bifurcation diagram is represented in Figure 22. 
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Figure 21. A fragment of the bifurcation diagram on the plane (0, r). 

(see (2.38) and since A = ,,(-(J, "(T == cx+ /y- , we can write the following formula connecting the 
values of (a,,B) with the values of (e,T): 

~ + a = __ d_"(2/3(0+2)j [y-,,(-j _ y-,,(T-(Ji + ... ] 
4 (bc)2/3 ' 

~ +,B = _d_"(4/3(0+1/2)j [y-,,(-k - y-,,(T-(Jj + ... J 
4 ~~ . 

(2.44) 

This formula allows one to map the curves (2.42) onto the (e, T)-plane (see Figure 21). 

2.9. Cusp-Bifurcations in Two-Parameter Families ff.J.,(J 

For a two-parameter family ff.J.,(J, the condition of existence of a triply-degenerate triple-round 
periodic orbit is written in the form 

j=Oi-r+ ... , 
y-,,(-k _ cx+ Aj + j.L + .,. = 0, 

(2.45) 

which is analogous to condition (2.40) obtained for J.L = O. One can see that in an a.rbitrarily 
small neighborhood of any point (e, J.L = 0), there exists a point (0*, j.L*) for which system (2.45) 
has an integer solution. This implies that the following theorem holds. 

THEOREM 10. In an arbitrarily small neighborhood of any point (0, j.L = 0), there exists a point 
(e* , j.L*) for which the map f(J. ,f.J.. has a doubly-degenerate triple-round periodic orbit. 

Note that f..L* can be of arbitrary sign: J.L* < 0 when k > OJ - r, and J.L* > 0 when k < OJ - r. 
The corresponding bifurcation diagram is represented in Figure 22. 
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Figure 22. A fragment of the bifurcation diagram on the plane (0, cl). 

3. BIFURCATIONS OF HOMOCLINIC LOOPS 
TO A SADDLE-FOCUS 

In this section, we will examine the dependence of the structure of the bifurcation set of 
homoclinic loops to an equilibrium point of saddle-focus type on the value of the S1-modulus p 
for the case of three-dimensional flows. The main results of this section were obtained in [16]. 

Consider a smooth three-dimensional dynamical system X satisfying the following conditions: 

A. X possesses an equilibrium state 0 of the saddle-focus type; i.e., the characteristic expo- 
nents vr,vs, 23 of 0 are such that vs = 7 > 0, vi,2 = -X f iw (X > 0,w > 0); and 

B. the saddle index p = X/y is less than 1. 

The unstable manifold IV” of 0 is one-dimensional. The point 0 divides it into two branches 
called sepumtrices. All orbits of the two-dimensional stable manifold W* have a shape of spirals 
tending to 0 as t + +oo. We suppose that the following condition is also satisfied: 

C. one of the separatrices (we denote it as I’) comes back to 0 as t -+ +oo, forming a 
homoclinic Ioop (Figure 1). 

Let us consider a sufficiently small neighbourhood U of the loop. U is a solid torus composed 
by a small neighbourhood Uc of the point 0 and by a handle Vi glued to Ue as in Figure 4. We 
are interested in the bifurcations of orbits lying in U. Since systems with homoclinic loops of a 
saddle-focus form surfaces of codimension one in the space of dynamical systems, the standard 
way to study bifurcations of such a system is to include it into a one-parameter family X,, where 
~1 controls the splitting of the loop. The parameter p can be defined as the distance between the 
point of intersection of l? with some surface of section and the line of intersection of W” with the 
same surface of section. In this respect, the system forms the loop I’ when p= 0. 

When p changes, multiround homoclinic loops can appear; i.e., such loops that come back to 0 
after a number of passages along the handle Vi. In a one-parameter family, bifurcations of such 
loops were studied in [17,18]. In the present section, we describe bifurcations of homoclinic loops 
in two-parameter families, and we choose the saddle index p as a second control parameter. 

This choice is justified by the fact that the structure of the nonwandering set of systems with 
homoclinic loops of a saddle-focus depends essentially upon the saddle index p (see [1,2]). Systems 
with different values of p are not topologically equivalent, so that p is a genuine bifurcational 
parameter. Moreover, we shall show that the bifurcations of multiround loops in a one-parameter 
family X,, depend on the value of the saddle index p. 

We start with the bifurcations of double-round loops. As shown in [17], the region p > O-which 
corresponds to the inward splitting of the loop-possesses a countable set of smooth curves LT 
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Figure 22. A fragment of the bifurcation diagram on the plane (B, J.I.). 

3. BIFURCATIONS OF HOMO CLINIC LOOPS 
TO A SADDLE-FOCUS 
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In this section, we will examine the dependence of the structure of the bifurcation set of 
homoclinic loops to an equilibrium point of saddle-focus type on the value of the S1-modulus p 

for the case of three-dimensional flows. The main results of this section were obtained in [16]. 
Consider a smooth three-dimensional dynamical system X satisfying the following conditions: 

A. X possesses an equilibrium state 0 of the saddle-focus type; i.e., the characteristic expo-
nents VI, V2, V3 of 0 are such that V3 "y > 0, Vl,2 = -). ± iw (). > O,w > 0); and 

B. the saddle index p = ).h is less than 1. 

The unstable manifold WU of 0 is one-dimensional. The point 0 divides it into two branches 
called sepamtrices. All orbits of the two-dimensional stable manifold W8 have a shape of spirals 
tending to 0 as t -+ +00. We suppose that the following condition is also satisfied: 

C. one of the separatrices (we denote it as r) comes back to 0 as t -+ +00, forming a 
homoclinic loop (Figure 1). 

Let us consider a sufficiently small neighbourhood U of the loop. U is a solid torus composed 
by a small neighbourhood Uo of the point 0 and by a handle U1 glued to Uo as in Figure 4. We 
are interested in the bifurcations of orbits lying in U. Since systems with homo clinic loops of a 
saddle-focus form surfaces of codimension one in the space of dynamical systems, the standard 
way to study bifurcations of such a system is to include it into a one-parameter family X"l! where 
J.t controls the splitting of the loop. The parameter J.t can be defined as the distance between the 
point of intersection of r with some surface of section and the line of intersection of W S with the 
same surface of section. In this respect, the system forms the loop r when J.t = o. 

When J.t changes, multi round homoclinic loops can appear; Le., such loops that come back to 0 
after a number of passages along the handle U1• In a one-parameter family, bifurcations of such 
loops were studied in [17,18]. In the present section, we describe bifurcations of homoclinic loops 
in two-parameter families, and we choose the saddle index p as a second control parameter. 

This choice is justified by the fact that the structure of the nonwandering set of systems with 
homoclinic loops of a saddle-focus depends essentially upon the saddle index p (see [1,2]). Systems 
with different values of p are not topologically equivalent, so that p is a genuine bifurcational 
parameter. Moreover, we shall show that the bifurcations of multiround loops in a one-parameter 
family X,.. depend on the value of the saddle index p. 

We start with the bifurcations of double-round loops. As shown in [17], the region J.t > O-which 
corresponds to the inward splitting of the loop-possesses a countable set of smooth curves Lj 
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j rounds 

Figure 23. A moment of existence of a double-round homoclinic loop I’j to the 
saddle-focus 0 (where the index j means that the loop circles j times around 0). 

(a = 0,l) of the form p = f?(p) N exp[-%(j - (1 - a)/2)] w 1c correspond to the existence h’ h 
of double-round loops l?j (where the index j means that the loop circles j times around 0, see 
Figure 23). In the cases where p is close to one and to zero (the last case correspon.ding to a 
pair of pure imaginary characteristic exponents of 0), the behavior of the curves LT wss studied 
in [19,20]. It turns out that Lj and Li merge at some p = p; (the greater j, the closer p; to 1). 
On the other hand, Li and L: have different terminating points at p = 0 (Figure 24). 

We see that if p lies between 0 and 1, the sequence of bifurcations of double-round loops is the 
same for all values of p in (0,l). However, this property does not extend to the triple-round loops. 
Thus, it is established in [16] that for sufficiently large j, in the region bounded by L&, and Lj, 
there exist smooth curves L$, Q = 0, 1, corresponding to the existence of triple-round :loops rjk; 
i.e., loops which start with 0, pass along the handle VI, circle j times around 0, pass along VI 
again, circle Ic times around 0, pass along Ul once more and enters 0 finally (Figure 25). Each 
of these bifurcation curves have a vertical tangent at some p = p&, at the left side of which the 
curve lies entirely (Figure 26). The following asymptotic behaviors hold: 

and, when j < k, 

&a = & + (T (p&J + %) 5 + . . . , for j < k, 

(3.1) 

(3.2) 

where 7(p) is a smooth function (see [16]) determined by the system at /.L = 0. These implicit 
equations admit solutions when j and k are large enough while k/j, or, respectively, j/k, is 
separated from 0 and 1. 

Therefore, the following picture takes place for any small segment 0 < p1 < p < p2 C: 1: in any 
strip between LT+l and Li, there is a finite number of curves L$ consisting of two components 
which are either “parallel” to the paxis or are connected together and have a parabola-like shape. 
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j rounds 

Figure 23. A moment of existence of a double-round homoclinic loop r j to the 
saddle-focus 0 (where the index j means that the loop circles j times around 0). 

(a = 0,1) of the form JL = fj(p) "" exp[-~(j - (1 - a)/2)] which correspond to the existence 
of double-round loops rj (where the index j means that the loop circles j times around 0, see 
Figure 23). In the cases where P is close to one and to zero (the last case corresponding to a 
pair of pure imaginary characteristic exponents of 0), the behavior of the curves L'f wa.s studied 
in [19,20]. It turns out that L} and L~ merge at some P = pj (the greater j, the closer pj to 1). 
On the other hand, L} and LJ have different terminating points at P = 0 (Figure 24). 

We see that if P lies between 0 and 1, the sequence of bifurcations of double-round loops is the 
same for all values of pin (0, 1). However, this property does not extend to the triple-round loops. 
Thus, it is established in [16] that for sufficiently large j, in the region bounded by LJ+l and L}, 
there exist smooth curves L'fk' a = 0,1, corresponding to the existence of triple-round loops rjk; 
i.e., loops which start with 0, pass along the handle Ut. circle j times around 0, pass along U1 

again, circle k times around 0, pass along U1 once more and enters 0 finally (Figure 25). Each 
of these bifurcation curves have a vertical tangent at some p = Pjka' at the left side of which the 
curve lies entirely (Figure 26). The following asymptotic behaviors hold: 

,. k ((,. ) 0:) 1 Pika = j + T Pika - '2 J + ... , for j > k, (3.1) 

and, when j < k, 

,. j ((,.) 0:) 1 
Pjka = k _ 1/2 + T Pika + '2 k + ... , for j < k, (3.2) 

where T(p) is a smooth function (see [16]) determined by the system at JL = O. These implicit 
equations admit solutions when j and k are large enough while klj, or, respectively, jlk, is 
separated from 0 and 1. 

Therefore, the following picture takes place for any small segment 0 < PI < P < P2 <: 1: in any 
strip between LJ+1 and L}, there is a finite number of curves L'fk consisting of two components 
which are either "parallel" to the p-axis or are connected together and have a parabola-llike shape. 
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Figure 24. On the parameter plane (p,~), the bifurcational curves LT (a = 0,l) 
corresponding to existence of double-round loops l?j are represented. The curves Lj 
and Lj merge at some p = p; (the greater j, the closer p; to 1). On the other hand, 
Li and Lp have different terminating points at p = 0. 

k rounds j rounds 

Figure 25. A triple-round loop rjk; i.e., the loop which starts with 0, passes along 
the handle iJ~, circles j times around 0, passes along Ul again, circles k times 
around 0, panses along q once more and finally enters 0. 

The number of curves of both types grows Iinearly with the integer j. The closure of the 
set {pTk,} taken for j, k large enough coincides with the segment (0, 11. Therefore, we have the 
following theorem. 
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Figure 24. On the parameter plane (p,p,), the bifurcational curves Lj (0: :; 0,1) 
corresponding to existence of double-round loops r j are represented. The curves L} 
and LJ merge at some p ::::: pj (the greater j, the closer pj to 1). On the other hand, 
L} and L~ have different terminating points at p = o. 

k rounds j rounds 

Figure 25. A triple-round loop rjk; Le., the loop which starts with 0, passes along 
the handle UI, circles j times around 0, passes a.long UI again, circles k times 
around 0, passes along U1 once more and finally enters 0. 
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The number of curves of both types grows linearly with the integer j. The closure of the 
set {PJka} taken for j, k large enough coincides with the segment [0,1]. Therefore, we have the 
following theorem. 
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Figure 26. Bifurcational curves LTk, (r = 0, 1, corresponding to existence of triple- 
round loops rjk are shown in the region of parameters which is bounded by the 
curves Ly+l and Li. 

THEOREM 11. [16] Let X, be a one-parameter subfamily of X,,, with the curve ((p,p) 1 p = 
p(p)} being transverse to the line p = 0. There exists a small variation p = cp(p) .+ 6 which 
makes X, be tangent to some line of existence of a triple-round homoclinic loop. 

When multiround homoclinic loops are considered, the structure becomes more coSmplicated 
for the corresponding set of bifurcation curves in the plane (p, p). Indeed, folded lines of nine- 
round loops accumulate on the lines of triple-round loops in a way similar to the accumulation 
of the folded (parabola-like) lines of triple-round at the line of single-round loops (II := 0). It is 
geometrically evident (see Figure 27) that any curve transverse to p = 0 can be varied (in a more 
general way that in Theorem 1) such that to achieve a cubic tangency with some of these lines 
of nine-round loops. 

Actually, the following general statement holds. 

THEOREM 12. [16] Consider a one-parameter subfamily of vector fields Xp,p with ,o = p(p), 
which is transverse to the line p = 0 in the plane (p, p). Then, a small smooth pe.rturbation 
of the curve p = cp(p) may have a tangency of arbitrarily high order with some of the lines of 
existence of homoclinic loops. 

This theorem shows the arbitrarily high structural instability of one-parameter families of 
vector fields near homoclinic loops of a saddle-focus. We emphasize consequences of this result for 
nonlinear partial differential equations modelling travelling waves in spatially extended systems, 
what will be discussed below. 

Theorems 11 and 12 can also be applied to the theory of nonlinear partial differential equations 
modelling travelling waves in spatially extended systems. Let us imagine that XP,p is a family of 
ordinary differential equations describing the plane travelling waves of some distributed system; 
p is the wave velocity while p is an internal parameter of the system. Let the saddle-focus 0 
be at the origin. It is known that homoclinic loops correspond to self-localised waves in such 
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Figure 26. Bifurcationa! curves Lj". Q 0,1, corresponding to existence of triple­
round loops fjk are shown in the region of parameters which is bounded by the 
curves L~+l and L}. 

THEOREM 11. [16} Let XJt be a one-parameter subfamily of XjJ.,P with the curve {(tL,p) I p 
~(tL)} being transverse to the line tL O. There exists a small variation p ~(tL) + {j which 
makes XJt be tangent to some line of existence of a triple-round homoc1inic loop. 

When multiround homoclinic loops are considered, the structure becomes more complicated 
for the corresponding set of bifurcation curves in the plane (tL, p). Indeed, folded lines of nine­
round loops accumulate on the lines of triple-round loops in a way similar to the accumulation 
of the folded (parabola-like) lines of triple-round at the line of single-round loops (tL := 0). It is 
geometrically evident (see Figure 27) that any curve transverse to tL 0 can be varied (in a more 
general way that in Theorem 1) such that to achieve a cubic tangency with some of these lines 
of nine-round loops. 

Actually, the following general statement holds. 

THEOREM 12. [16} Consider a one-parameter subfa.mily of vector fields XJt,p with p = ~(tL), 
which is transverse to the line tL 0 in the plane (p, tL). Then, a small smooth pe.rturbation 
of the curve P ~(tL) may have a tangency of arbitrarily high order with some of t.he lines of 
existence of homoc1inic loops. 

This theorem shows the arbitrarily high structural instability of one-parameter families of 
vector fields near homoclinic loops of a saddle-focus. We emphasize consequences of this result for 
nonlinear partial differential equations modelling travelling waves in spatially extended systems, 
what will be discussed below. 

Theorems 11 and 12 can also be applied to the theory of nonlinear partial differential equations 
modelling travelling waves in spatially extended systems. Let us imagine that X/Jo,p is a. family of 
ordinary differential equations describing the plane travelling waves of some distributed system; 
tL is the wave velocity while p is an internal parameter of the system. Let the saddle-focus 0 
be at the origin. It is known that homoclinic loops correspond to self-localised waves in such 
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Figure 27. A curve transverse to p = 0 has a cubic tangency with a bifurcation curve 
of existence of a nine-round loop. 

systems. Suppose that the system has such a wave and that Conditions A-C of this section 
are fulfilled for some parameter value p = ~0. It follows from Theorem 11 that bifurcations 
generating “three-pulsed” self-localized travelling waves occur for arbitrary small variations of p 
in this system. In turn, Theorem 12 implies that the complete description of bifurcations of plane 
self-localised waves is impossible in systems of such kind. 
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systems. Suppose that the system has such a wave and that Conditions A-C of this section 
are fulfilled for some parameter value J-L = J-Lo. It follows from Theorem 11 that bifurcations 
generating ''three-pulsed'' self-localized travelling waves occur for arbitrary small variations of p 

in this system. In turn, Theorem 12 implies that the complete description of bifurcations of plane 
self-localised waves is impossible in systems of such kind. 
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