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Abstract—Bifurcations of both two-dimensional diffeomorphisms with a homoclinic tangency
and three-dimensional flows with a homoclinic loop of an equilibrium state of saddle-focus type are
studied in one- and two-parameter families. Due to the well-known impossibility of a complete study
of such bifurcations, the problem is restricted to the study of the bifurcations of the so-called low-
round periodic orbits. In this connection, the idea of taking Q-moduli (continuous invariants of the
topological conjugacy on the nonwandering set) as the main control parameters (together with the
standard splitting parameter) is proposed. On this way, new bifurcational effects are found which do
not occur at a one-parameter analysis. In particular, the density of cusp-bifurcations is revealed.
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1. INTRODUCTION

As it is well known, the development of the theory of global bifurcations of multidimensional
systems was started in 1960’s. In particular, there was discovered a remarkable phenomenon [1,2]
that a multidimensional system with a homoclinic loop of a saddle equilibrium state can possess
an infinite number of periodic orbits, in distinction with the two-dimensional case. The first
example of such complicated behavior is given by a homoclinic loop of an equilibrium state
of saddle-focus type (Figure 1) in a three-dimensional space. Such equilibrium state has the
characteristic roots —A * 4w and <, where 7, A, and w are positive; besides, the so-called saddle
index p = A/~ is less than unity.

It was found in [1,2] that the structure of the set N composed by the orbits lying entirely in a
small neighborhood of the homoclinic loop is not just nontrivial but it also depends essentially
on the value of p. This dependence is such that, when p varies continuously, the structure of
the set N permanently varies in any one-parameter family X, of systems holding a saddle-focus
homoclinic loop.!

In modern terms, the results of [1,2] imply that the value p is a modulus of the Q-equivalence
of systems with a homoclinic loop of a saddle-focus. Recall the following definition.

DEFINITION. We say that a system X has a modulus if, in the space of dynamical systems, a
Banach subspace M passes through X, and on M a locally nonconstant continuous functional h
is defined such that, in order for two systems X; and X, from M to be equivalent, it is necessary
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n particular, it was established in [3,4] that the values of p for which X, has a structurally unstable periodic
orbit compose a dense set.
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p=MA/Y is a saddle index.

Figure 1. A three-dimensional flow X with the homoclinic loop T of the equilibrium
state O of saddle-focus type (i.e., the equilibrium state O possesses characteristic
roots —A % iw and v, where A, 7, and w are positive}. Shil’'nikov has shown that if
the value p = A/v is less than 1, then the set N of orbits lying entirely in a small
neighborhood of " has a nontrivial structure which depends essentially on the value
of p.

that h(X1) = h(Xq). We shall say that X has at least m moduli if a Banach subspace passes
through X on which m independent moduli are defined, and that X has a countable number of
moduli if X has an arbitrary finite number of moduli.

Among different types of equivalences in the space of dynamical systems, the most known
are the topological and the Q-equivalence (the topological equivalence on nonwandering sets).
The topological moduli in systems with simple dynamics were discovered by Palis [5] for diffeo-
morphisms of a plane which have an orbit of heteroclinic tangency. Figure 2a represents such
a diffeomorphism. It has two saddle fixed points O; and Oy with multipliers A; and 4;, where
[Ai] <1, |vi| > 1 (i =1,2). It also has a heteroclinic orbit 'g at the points of which the manifolds
WH(02) and W*(O1) have a tangency. Palis established that two such diffeomorphisms f and f’
can be topologically conjugated in some neighborhoods U(I'y) and U’(T'}) only in the case where
the values of the invariant @ = —In|A2|/In|y,| are the same for f and f’.

This means that o is a modulus of the topological equivalence for diffeomorphisms with a
heteroclinic tangency. At the same time, any two diffeomorphisms of the Palis example are
Q-conjugate; i.e., the value o is not a modulus with respect to the 2-equivalence.

If we identify the saddles O; u Oa, we get a diffeomorphism with a homoclinic tangency (Fig-
ure 2b). The invariant « is equal in this case to the value which is traditionally denoted as 8:

_ _Infy
In|y}’

where X and v are the multipliers of O.

Note that in distinction with the heteroclinic situation, the invariant # may be a modulus
not only for the topological but also for the Q-equivalence. It should be mentioned here, that
topological moduli appear, mainly, as obstacles to the existence of a conjugating homeomor-
phism, whereas -moduli have an essentially different sense. To our opinion, Q2-moduli should
be considered as parameters determining the structure of the nonwandering set. Historically, it
is exactly the context in which Q-moduli were found (the mentioned value p for a saddle-focus
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(a) A two-dimensional diffeomorphism with a heteroclinic tangency is represented.
It possesses two saddle fixed points Oy and O, with multipliers A\; and +;, where
|Ail < 1, %l > 1, i = 1,2. There exists also a structurally unstable heteroclinic
orbit I'g at the points of which the manifolds W*(0O3) and W*(O,) are tangent. Palis
established that two such diffeomorphisms f and f’ may be topologically conjugate
only in the case if the value @ = —1In|Az|/ In |y} is the same for f and f’.
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(b) A two-dimensional diffeomorphism with a homoclinic tangency is represented.
1t has a saddle fixed point O with multipliers A and «, where |\ < 1, || > 1,
i = 1,2. It possesses also a structurally unstable periodic orbit I' at the points of
which the manifolds W*(O) and W#(0O) are tangent. The value § = —In|A|/In|y|
introduced by Gavrilov and Shil'nikov is an analogue of the invariant o. Note that
here, in distinction with a heteroclinic situation, the value # may be a modulus of
the Q-equivalence.

Figure 2.

homoclinic loop and the value 8 for homoclinic tangencies [6] essentially earlier than the notion
of a topological modulus were introduced in the theory of dynamical systems.

For the bifurcation theory, importance of the study of specifically Q-moduli is obvious. Indeed,
it is clear that if a system is perturbed so that the value of an Q-modulus is changed, then bifur-
cations of nonwandering orbits (periodic, homoclinic, etc.) must occur. First, this phenomenon
was revealed in [6] at the study of bifurcations of periodic orbits on the bifurcational surface H
composed by systems with a quadratic homoclinic tangency. Namely, there was shown that for
any one-parameter family Xy of systems on H the values of 6 are dense for which Xy has a
structurally unstable periodic orbit.

Note also, that & is not a unique Q-modulus for the systems with a homoclinic tangency.
It was established in [7] that systems may be dense in H which have a countable number of
independent 2-moduli. Since an independent variation of the values of each of the -moduli leads
to bifurcations in the nonwandering set, a joint variation of the infinite series of the {2-moduli
may lead to infinitely degenerate bifurcations. Specifically, it was shown in [7] that systems with
arbitrarily degenerate periodic orbits and with homoclinic orbits of any order of tangency may
be dense in H.
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Immediately, there arise a number of problems. On one hand, systems with homoclinic tan-
gencies compose bifurcational surfaces of codimension one in the space of dynamical systems.
Therefore, such systems occur in general one-parameter families. On the other hand, the proven
presence of systems with arbitrarily degenerate periodic and homoclinic orbits in an arbitrarily
small neighborhood of any system with a simple homoclinic tangency shows that no finite num-
ber of control parameters is sufficient for a complete study of bifurcations of such systems. The
analogous result can be also shown to hold for systems with a homoclinic loop of a saddle-focus.

In principle, we have to give up the ideology of “complete description” and to restrict ourself to
the study of some most typical features and properties of such systems. Particularly, the problem
of the study of main bifurcations in low-parameter families takes a sense.

In the latter sentence, we must, of course, clarify the term “main bifurcations.” We must also
solve the question on the choice of the control parameters.

We will study the structure of the set N of the orbits lying entirely in a small neighborhood U of
a homoclinic orbit. In the case of a two-dimensional diffeomorphism with a homoclinic tangency,
this neighborhood is the union of a small disc Up, containing the fixed point O, and a finite
number of small neighborhoods of the homoclinic points which lie outside Uy (Figure 3). In the
case of a three-dimensional system with a homoclinic loop of a saddle-focus, the neighborhood U
is a solid torus composed by a ball U with the point O in the center and by a handle U; which
contains the piece of the homoclinic orbit that lies outside Uy (Figure 4). As we mentioned, the
complete study of all bifurcations in U is impossible and we restrict ourself to the study of low-
round periodic and homoclinic orbits (single-, double-, triple-, ...). A periodic orbit lying in U
will be called k-round if it leaves Up (and re-enters it) k times for the period. Analogously, the
roundness of a homoclinic orbit is defined. The low-round orbits are, naturally, most interesting
from the applied point of view. Moreover, the high-order degenerations occur only for quite high
roundnesses.

Figure 3. The neighborhood of a structurally unstable homoclinic orbit. The neigh-
borhood U is a union of a small neighborhood Up of the saddle fixed point O and of
a finite number of small neighborhoods of homoclinic points lying outside Up.

What concerns the right choice of the control parameters, this question has a principal meaning
for the systems with complex dynamics. There is no problem with finding appropriate control
parameters in the classical bifurcation theory going back to the studying of flows on a plane: here,
each parameter is responsible for unfolding some definite degeneration of the system (for instance,
the control parameters govern independently the splitting of separatrices, variation of values of
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Figure 4. The neighborhood of a homoclinic loop of saddle-focus. The neighbor-
hood U is a solid torus composed by a small neighbourhood Up of the point O and
by a handle U; glued to Up.

critical characteristic exponents of equilibrium states and multipliers of periodic orbits, variation
of Lyapunov values, etc.). For the multidimensional systems with homoclinic tangencies, the
so-called splitting parameters must clearly be taken as one of the main control parameters for the
study of bifurcations.

However, according to what was said above about Q2-moduli, it becomes clear that to obtain a
more detailed bifurcational picture one must take 2-moduli as additional bifurcation parameters
(or such values whose variation leads to variation of values of the Q-moduli).

In the present paper, we demonstrate the effectiveness of this approach to the study of main
bifurcations in systems with complex dynamics for two cases:

(1) two-dimensional diffeomorphisms with a homoclinic tangency (Section 2), and
(2) three-dimensional systems with a homoclinic loop of a saddle-focus (Section 3).

2. TWO-DIMENSIONAL DIFFEOMORPHISMS
WITH A HOMOCLINIC TANGENCY

2.1. Geometric Constructions

2.1.1. The neighborhood of a structurally unstable homoclinic orbit

We consider a C™t2-smooth (r > 3) two-dimensional diffeomorphism f which has a saddle
fixed point O with multipliers A and <, where 0 < |A| < 1, |y| > 1. We consider the case where
|Ay|] < 1. The case |Ay| > 1 is reduced to that under consideration by transition to the inverse
map f~! instead of the initial map f; the special case |\y| = 1 requires a separate investigation
(see, for instance, (8]).

Suppose the stable and unstable manifolds of O have a quadratic tangency at the points of a
homoclinic orbit T

Let U be a small neighborhood of the set O UT. The neighborhood U is the union of a small
disc Uy containing O and of a finite number of small discs surrounding the points of [' which are
located outside Uy (Figure 3). The subject of our study is the set N of orbits of the map f that
lie entirely in U.
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2.1.2. The local and global maps Ty and T}

Let Tp be the restriction of f onto Uy (it is called the local map). Note that the map Tp in
some C"*1-coordinates (z,y) can be written in the form [9,10]

I=M\t+ f(a:,y)x2y, g=vy+ g(a:,y)xyz. (2.1)

By (2.1), the equations of the local stable manifold W _ and local unstable manifold W
are y = 0 and z = 0, respectively. Representation (2.1) for the local map is convenient, because in
these coordinates the map T¥ for any sufficiently large k is linear in the lowest order. Specifically,
we have the following representation [9,10] for the map Ty : (zo,%0) — (Tk, Ux):

z = A*zg + |M*|Y| F k1 (2o, 3i)

3 ~ (2.2)
Yo =7 *yk + 7" drz2 (zo, vk) ,

where ¢ and ¢ro are functions uniformly bounded at all k along with their derivatives up to
the order 7.

Let M*(z%,0) and M~(0,y~) be a pair of points of I' which lie in Uy and belong to W3
and W _, respectively. Without loss of generality, we can assume z¥ > 0 and y~ > 0. Let
IIy and II; be sufficiently small neighborhoods of the homoclinic points M+ and M~ such that
To(Ilp) NI = @ and Tp(I1;) NII; = @. Evidently, there exists an integer m such that f™(M~) =
M*. We denote the map f™ : II; — Iy as T} (it is called the global map). The map T} can
obviously be written in the form

-zt =az+b(y-y )+,

_ 2 (2.3)
g=cz+d{y-y7) +---,
where be # 0 since T is a diffeomorphism, and d # 0 since the tangency is quadratic.
M I
-1
To (I1)
k d
T, (I1,)
.
: =
[ G
O ! o + X \
0
0.k+1
Figure 5. This figure illustrates the method of a construction of strips ag, k=%, k+1,..., which lie in ITp

and which are the domains of the maps Té‘ : IIgp — I1;. The points of 1y targeting to I after k iterations
of the map Tp belong to the set T ¥\ Ilo. The neighborhood I1; is contracted in 4~ times along the
vertical direction and it is expanded in A~! times along the horizontal direction under the action of the
map Ty 1 Moreover, Ty () NI = 0. Respectively, the set Ty k(l’Il) is a narrow rectangle which is
stretched along the z-axis and lies at a distance of order v~ from it. Besides, the rectangles Ty k(114) and
Ty (k+1)(H1) are not intersected. For sufficiently large k, the intersection Ty~ k(11,) N1I; is the strip o
as is shown. The strips o) accumulate on the segment W* N1Ilg as k — oo.
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U Ty,

Figure 6. This figure illustrates a method of construction of the strips o}, k =
k,k+1,..., which lie in IT; and which are the ranges of the maps 7§ : Ilg — II;.

2.1.3. Strips and horseshoes

Note that orbits of N must intersect the neighborhoods Il and II; (otherwise, these orbits
would be far from I'). However, not all orbits that start in Iy arrive in IT;. The set of the points
whose orbits get into II; fills a countable number of strips 02 =1l NTy kl'Il which accumulate
on W?. The way of constructing these strips is obvious from Figure 5. In turn, the images of
the strips ag under the maps T give on II; a sequence of vertical strips o4 which accumulate on
Wi, (Figure 6).

Neighborhoods Iy and II; may be taken so that to contain all the strips 02 and o}, with numbers
k > k and not to intersect with 02 and o} for k < k. Obviously, if diamlIlg - diamIl; — 0, then
k — oo.

The images Ty0} of the strips of have a shape of horseshoes accumulated on TYWE_ as k — oo
(Figure 7). It is clear that orbits of N must intersect Ilp in points lying in intersections of
horseshoes Tjo} and strips ag-’ for i, > k. Hence, the structure of N depends essentially on
geometrical properties of such intersections.

2.1.4. The types of intersections of the strips and horseshoes

Different types of intersections of a horseshoe Tjo} with the strips are shown in Figure 8. The
horseshoe has a regular intersection with the strip cr?, an irregular intersection with the strip o2
and empty intersection with the strip o}.

The intersection is called regular if the set Tyo} N a? is nonempty and consists of two connected

components o9} and ¢92 (Figure 9), and the maps Tiq = T1T§ : 0* — 0f

j» @ =1,2, are saddle
(i-e., they are contracting along the coordinate z and expanding along the coordinate y). Here
o and 0?2 are upper and lower parts of the strip 0. They are separated by the central part

of 09 (denoted as 09¢ in Figure 9 ) which is mapped by T1T¢ onto the top of the horseshoe Ty0}.

2.1.5. The conditions of regular and irregular intersections of the strips and horse-
shoes
It is established in [8] that if the inequality
d [y Iy~ — eXizt] > Seli, ) (24)

CAMWA 34-2/4-H
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Figure 7. The images Tla}c of the strips a}c have a shape of horseshoes which are
accumulated on Tl(Wl'; c) as k — o0. Orbits of the set N must intersect IIp in the
points of intersections of the “horseshoes” Tio} and the strips a? for i,7 > k.

\ T,c ,;' /;
-

Figure 8. Various types of intersections of the “horseshoe” Tio} with the strips. The
horseshoe has a regular intersection with the strip ¢?; it has an irregular intersection
with the strip 0 and an empty intersection with the strip o).

is satisfied where Sz(i,5) = S1(|Al*+|7|=9)-}7|7*/2, and S, is some positive constant independent
from 4, j, and k, then the intersection of Tyo} with o9 is regular.
The inequality
d[yIy” —eXat] < =S¢(i, 5) (2.5)
is a sufficient condition for an intersection of Tyo} and a;’ to be empty.
It is clear from (2.4) and (2.5) that the inequality

ld [y~ - eNat]| < Sg(i, ) (2.6)

is necessary in order for the horseshoe T10} to have an irregular intersection with the strip og.
Inequalities (2.4)-(2.6) have a quite simple geometrical sense (Figure 10). The strip a? is a
thin rectangle with the central line y = y~7y~. The strip o} is a thin rectangle with the central
line x = Alz*. The strip o} is mapped by the map T onto a horseshoe with the parabola
y = chizt + d((z — z+)/b)? as a central line. The condition d[y 7y~ — cAfz*] > 0 means
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Figure 9. The case of regular intersection of the horseshoe Ty} with the strip aJO-.

The intersection is called regular if (a) the set Tio} ﬁa? is nonempty and consists of
two connected components a;’} and o_?f, and (b) the maps T = T1T§ : a?;’ — a;?,
a = 1,2, are of saddle-type (i.e., they are contracting along the z-coordinate and
expanding along the y-coordinate). Here, cr?1 and 092 are upper and lower parts of
the strip ¢?. They are separated by the central part ¢ of o9 which is mapped by

T1T§ onto the top of the horseshoe Tia}.

T,0° y=cA'x " +d[(x-x")/b]’

u
Woch 60 B

A
A

Figure 10. The strip o is a thin rectangle with the central line y = ~~Jiy~. The
strip o} is a thin rectangle with the central line z = A*zt. The strip o} is mapped
by the map T} onto a horseshoe with the parabola y = eAizt + d((z ~2+)/b)% as a
central line.

that the straight line y = y~7y~ and the parabola intersect in two points, and the condition
d[y~9y~ —cAiz*] < 0 means that they have no intersection. The coefficient S¢(4, 5) in (2.4)—(2.6)
is due to the nonzero thicknesses of the strip and horseshoe.
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2.1.6. Codes

Let Q be an orbit lying in U entirely and nonasymptotic to O. This orbit intersects IIg in
an infinite sequence of points M,. Each point M, belongs to some strip oy, ; hereat, successive
points M, and M, are connected by the relation

M,y = TiTy (My).
The infinite sequence of integers {k,} is called a natural code of the orbit Q.

DEFINITION. A pair of integers (1, 3) is called inadmissible if i < k, or j < k, or inequality (2.5)
is fulfilled. Otherwise, the pair (i, ) is called admissible. An admissible pair is called regular if it
satisfies inequality (2.4). A sequence of integers {k,} is called inadmissible if at least one of the
pairs (ks, ks41) is inadmissible, and it is called admissible otherwise. An admissible sequence {k,}
is called regular if each pair (ks,ks41) is regular.

PROPOSITION 2.1.

(1) For each orbit Q lying in U entirely, the code is an admissible sequence.
(2) If a sequence {ks} is regular, then there exists a continuum of saddle orbits in N which
have the given sequence as the code.

The first part of this assertion is evident because M,y; € Tyof, N 02_+1. The second part of
the assertion was proved in [6,11}.

The last is connected with the fact that inequalities (2.4) guarantee that the intersection
Tyo}, Nop, ., is regular. It consists of two connected components o 1k, and o’,‘f+ .k, (Figure 9),
and points belonging to different components may be distinguished. Therefore, for the orbits
in U with the regular natural codes, a more precise code can be constructed. Namely, it is a
sequence {(ks,;)} (as € {1,2}) such that the point M, belongs to 02‘:1 k, C 0oR, (we will also
use an equivalent notation for the code {(ks, @)} as a sequence of the symbols “0”, “1,” and “2”:

ks kot1
N
vy 0-1,0,...,0,as,0,...,0,a541,...)-

By the definition,

M,y = Ty o, Ms, (2.7)

where the map Ty, o, = T1T¢" ly 0as is saddle. By the “lemma on a saddle fixed point in a countable

product of spaces” from [12], there exists a unique sequence of points satisfying equation (2.7).
Thus, to each code {(ks,s)} where {ks} is regular and {a,} is an arbitrary fixed sequence of
the symbols “1” and “2,” there corresponds a unique orbit @ € N (the set of the orbits which
correspond to different sequences {a,} has the cardinality of continuum).

Note also that if a nonsaddle orbit exists in N, then its code {ks} must be such that inequal-
ity (2.6) is satisfied for at least one of the pairs (i = kq,J = kst1).

2.2. The Types of Two-Dimensional Diffeomorphisms with a Homoclinic Tangency

Thus, an analysis of the structure of integer solutions of inequalities (2.4)—(2.6) is an essential
part of the study of orbits of the set N. The sets of such solutions obviously depend on the signs
of parameters ), v, ¢, and d. Geometrically, it is connected with the fact that the signs of these
values determine the character of the reciprocal position of the manifolds W _ and TYW}%_ in a
neighborhood of the homoclinic point M*. We restrict ourself to the case of positive A and
(see footnote?. Different cases possible here, in dependence on signs of ¢ and d are shown in
Figure 11.

According to [6], the diffeomorphisms under consideration are divided into the three classes for
which the structure of the set N is essentially different.

2The cases of different signs of A and v are considered, for instance, in [9,10].
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(aye<d d<O. (b)e>0,d<0. () e<0,d>0. (d)e>0,d>0.

Figure 11. Various types of diffeomorphisms with a homoclinic tangency in the case
where both A and « are positive. These types correspond to different cases of a
reciprocal position of the stable and unstable manifolds which depends on the signs
of the values ¢ and d. When d is negative, W* is tangent to W)} from below (a)
and (b); when d is positive, W" is tangent to W from above (c) and (d). The
sign of the value ¢ determines how the shaded semineighborhood of the homoclinic
point M~ is mapped onto the neighborhood of the point M*.

2.2.1. Systems of the first class

The systems of the first class are those for which A > 0, v > 0, d < 0. The following theorem
takes place.

THEOREM 1. [6] Let f be a diffeomorphism of the first class. Then the set N is trivial: N =
{O,T}.

This result can be obtained from the analysis of the set of integer solutions of inequalities
(2.4)—(2.6): one can prove that if A > 0, v > 0, d < 0, any sequence {k,} is inadmissible.
Geometrically, this can be verified in the following way. If ¢ < 0, d < 0, then the horseshoes Tyo}
and the strips 0'? do not intersect since they lie at the opposite sides from W} _ (Figure 12a).
Thus, in this case, the set N has a trivial structure indeed: N = {O,T'}.

In the case ¢ > 0, d < 0 (i.e., when “parabola” T'W_ is tangent to W from below; see
Figure 12b), the set N has a trivial structure also. It is connected with the fact that here the
intersection Tyo} N 09 may be nonempty only for j > i. Indeed, the strip o? lies at a distance
of an order v~/ from W} and the top of the horseshoe Tio} lies at a distance of an order A*
from W3, (Figure 12b). Since Ay < 1, it follows that A* « 4~%, so any horseshoe Tyo} lies below
the corresponding strip af, and hence, below any strip a? with j < . As a consequence, we have
that the negative semiorbit of any initial point on Iy (except M) leaves the neighbourhood U.

2.2.2. Systems of the second class

The systems of the second class are those for which A > 0,y > 0, ¢ <0, d > 0. In this case,
evidently, inequality (2.4) is fulfilled for any sufficiently large ¢ and j; i.e., the intersection of T} o}
with a;-’ is regular for any 4, > k (Figure 12c). Correspondingly, any sequence of integers k, > k
is regular in this case. Therefore, the following statement [6] takes place.

THEOREM 2. In the case ¢ < 0, d > 0, all orbits from N\I' have a saddle-type and N is in
one-to-one correspondence with the a quotient-system Qg which is obtained from the Bernoulli
scheme on three symbols {0, 1,2} by identification of two homoclinic orbits: (...,0,...,0,1,0...)
and(...,0,...,0,2,0,...).3

3Both these two codes correspond to the orbit T

CAMWA 34-2/4-E
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(a)e<d, d<0.

(c)e<0,d>0. (dye>0,d>0.

Figure 12. The reciprocal position of the strips and the horseshoes. In the case ¢ < 0, d < 0 (a), the
horseshoes Tu:r,-1 and the strips 0'? lie from the opposite sides from Wy} . In the case ¢ > 0, d < 0 (b),
any horseshoe 710} lies below its “own” strip o2, and hence, below any strip of with k& < i. Really, the
strip a? lies here at a distance of order v~ from W2 _; the top of the horseshoe T1o} lies at a distance
of order A! from W% _. Since |A||y| is less than unity, then A* « y~%. In the cases of (a),(b), the set N
has the trivial structure: N = {O,T}. If ¢ <0, d > 0 (c), then the intersection of Ti0} with ¢ is regular
for any i,j > k. In this case, the set N has a nontrivial structure which may be described completely.
In the case ¢ > 0, d > 0 (d), any horseshoe Tio} is intersected regularly with its “own” strip ¢, with
all strips lying above it and with some number (depending on i) of strips lying below. The set N has
a nontrivial structure for this case. But, the description of N depends essentially on parameters of a
homoclinic structure (such as the ©-moduli  and 7p).

2.2.3. Systems of the third class

The systems of the third class are those for which A > 0, ¥ > 0, ¢ > 0, d > 0. In this case,
T\Wg, is tangent to W from above (¢ > 0, d > 0) (Figure 12d). The study of systems of the

loc
third class (and nearby systems) is the main scope of the present paper.

2.3. Nontrivial Hyperbolic Subsets of Systems of the Third Class

Taking logarithm of both parts of (2.4), we rewrite the condition of regular intersection as
j<if—1— Sy (2.8)

and the condition of empty intersection as

§>i0 -7+ Sy (2.9)
where
_ Inf)
In [}’
1 lc:cJr
7=——In|=—]|,
Injy| |y~
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and S is some positive constant. It is convenient to rewrite inequalities (2.8) and (2.9) in an
“invariant” form

G+m)<(i+m)—mo— 37_(E+m)/2 (2.10)

and B
G +m) > (i +m)f — o+ Sy~ (F+m)/2, (2.11)

respectively, where m is the constant defined by the condition M+ = f™(M~) and 7y is defined
as

To=T7—m(6—1).

Note that the value 6 is independent of smooth transformations of the coordinates. The
value 79 can also be proved [9] to be independent of smooth coordinate transformations preserving
form (2.1) for the map Tp as well as of the choice of homoclinic points in Up. The number (k+m)
is invariant also in that sense that it equals to the minimal period of periodical orbits of N.

Let us consider the subsystem §2; (see [6,11]) belonging to € (see Theorem 2) and composed
by the orbits of the form

(...,03_1,0,...,0,03,0,...,0,(184,1,...),

where
(1) ag € {1,2};
(2) the length of any complete string of zeros is not less than (k + m);
(3) the lengths (ks +m) and (ks+1+ m) of successive complete strings of zeros separated by a
nonzero symbol satisfy inequality (2.10) with ¢ = k; and j = k,41 (i.e., the sequence {ks}
is regular).

THEOREM 3. Ifk is large enough, then in the case ¢ > 0,d > 0 there exists a subsystem N in N
which is conjugate to the symbolic system €y and such that all orbits of N have a saddle-type.

Note that the set N may not coincide with N but it anyway forms a substantial part of N.
Indeed, for a nonsaddle orbit, at least two subsequent points M, and M, of intersection with Iy
must lie in the strips 02, and ag‘“ whose numbers satisfy the inequality

(kg1 +m) — (ks +m) 8 + 10| < Gy~ (F+m)/2, (2.12)

which is equivalent to (2.6).

The set of integer solutions (%, j) of the last inequality will lie in the narrow strip on the plane
(the greater k, the more narrow is the strip). This set depends essentially on the values & and 7.
For instance, if 6 is rational: 8 = p/q and 7oq & Z, then this set is empty for k large enough.
This implies the following statement.

THEOREM 4. If8 = p/q and 1oq & Z, then there exists such k = k(8,1o) that all orbits from N\I'
are saddle and N\{T", O} is conjugate with Q.

Geometrically, the fact that the set of integer solutions of inequality (2.12) is empty for ra-
tional 6 and suitable 17, means that for such # and 7, tops of all horseshoes get to the “holes”
between the strips.

2.4. Moduli of the Q-Equivalence for Systems of the Third Class

As we mentioned, the structure of the set N of all orbits lying in the neighborhood U entirely
is in a close connection with the structure of the sets of integer solutions of inequalities (2.10)
and (2.12). These sets are different for different values of the invariants § and 79. Therefore,
the structure of the set N depends essentially on the values of # and 5. Moreover, the following
result shows that the invariants # and 7o are moduli of the Q-equivalence.
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THEOREM 5. [9,10] Let f and f’ be diffeomorphisms of the third class and let f and f' be locally
Q-conjugate.* Then, § = §'. If, moreover, the value @ is irrational, then 1o = 74. If § is rational
(6 = p/q), then there exists such integer s that Ty and 7§ satisfy simultaneously the inequalities
s<Tg<s+lands<7eg<s+1.

We give a sketch of the proof of the theorem. Let f and f’ be locally Q-conjugate and let
M*, M~ and M't, M’'~ be conjugate pairs of homoclinic points. Evidently, f*(M~) = M*
and f™(M'~) = M'* for some natural m. Suppose that 8 > #’. Consider the set of pairs of
integers (i, 7) satisfying the inequality

i+ m)0— 10— Sy (F+m)2 5 5 4m > (i 4+ m)f — 14 + Sy~ (BHm)/2, (2.13)
According to conditions (2.10) and (2.11), this inequality means that the pair (7, ) is regular for
the diffeomorphism f, but it is inadmissible for the diffeomorphism f’. Since 8 > ¢’, the set of
pairs (4, j) satisfying condition (2.13) is infinite.

Note that if a pair (7, 7) satisfies condition (2.13), then the pair (j, %) is also regular for the
diffeomorphism f because here j > i and the inequality

(i+m)<(j+m)8—T1— 37_(E+m)/2,

obtained from inequality (2.10) by substitution j instead of 4, and i instead of j is automatically
fulfilled (we take into account that # > 1 and 6’ > 1, since we consider the case Ay < 1).

For such i and j, the intersection of the horseshoe T1(0}) with the strip 0? and the intersection
of the horseshoe T1(c}) with the strip o} are regular (Figure 13a), and the code {...ijijij...} is
regular. By Theorem 3, the zuddeomopguam f has a double-round saddle periodic orbit which
intersects successively the strips ¢ and a?.

(a) (b)

Figure 13. Since § > @, it follows that there exists a countable set of pairs (3, )
which are regular for the diffeomorphism f, but they are inadmissible for the diffeo-
morphism f/. If (1, §) is such a pair, then the corresponding strips and horseshoes are
positioned as follows. For the diffeomorphism f: the intersection of the horseshoe
Ti(o}) with the strip 9 is regular as well as the intersection of the horseshoe T} (g})
with the strip cr? (a). For the diffeomorphism f’: the intersection of the horseshoe

1(0}) with the strip 0? is regular, but the horseshoe Tj(0}) does not intersect the

strip 2 (b).

4For example, there exist such neighborhoods U and U' for which the sets N and N’ have the same structure.
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On the other hand, for the diffeomorphism f’, the horseshoe Tj(c}) does not intersect the
strip a;? (Figure 13b), though ¢ and j are the same as above. This follows from the fact that the
pair (%, j) is inadmissible by virtue of the right of inequalities (2.13). Therefore, f’ does not have
periodic orbits intersecting successively the strips ¢? and a?. It is clear that the diffeomorphisms f
and f’ are not {2-conjugate in this case. Thus, for the }-conjugacy it is necessary that 6 = &',

Now let & = ¢’. Suppose 7§ > 7p. If 8 = ¢ is irrational, then inequality (2.13) again possesses
infinitely many natural solutions for sufficiently large % and the diffeomorphisms f and f’ are
not Q-conjugate. Hence, for the Q-conjugacy of the diffeomorphisms, the equality 7§ = 75 must
hold in this case.

Let 8 be rational, § = p/q. If, for some integer sp, inequality 70g > so > 7{q holds, then the
integer points on the straight line

j= L2 _30
q q
satisfy inequality (2.13) and the diffeomorphisms f and f’ are not Q-conjugate again. Hence,
for the Q-conjugacy of f and f’ in this case, it is necessary that rog, 75q € [s, s + 1] for some
integer s, what completes the proof of the theorem.

2.5. Infinite Degenerations in Systems of the Third Class

We see that the cases of rational and irrational @ are principally different. In the rational case,
almost all systems admit a complete description (Theorem 4) and all orbits of N\I" are saddle.
In the irrational case, condition (necessary) (2.12) of an irregular intersection has a countable set
of integer solutions for any k. Correspondingly, here a countable number of strips and horseshoes
may have irregular intersections which leads to a very nontrivial dynamics. Namely, the following
result (7] takes place.

THEOREM 6. If H; is a bifurcational surface composed by diffeomorphisms of the third class,
then systems with a countable number of saddle periodic orbits each of which has a homoclinic
tangency are dense on Hs.

The values 8 calculated for these periodic orbits are Q-moduli, according to Theorem 6. These
values are independent of each other. Therefore, we arrive at the following theorem [7].

THEOREM 7. Systems with a countable number of Q-moduli are dense on Hs.

As we mentioned in the Introduction, when the value of an 2-modulus is changed, bifurcations
of periodic, homoclinic, etc., orbits occur inevitably. The presence of an infinite number of inde-
pendent ©-moduli may lead to infinitely degenerate bifurcations. Indeed, the following result [7]
takes place.

THEOREM 8. Systems with homoclinic tangencies of any order and with structurally unstable
periodic orbits of any degree of degeneracy are dense in Hj.

It should be noted that the degenerations indicated in this theorem may exist only for periodic
and homoclinic orbits of extremely high roundnesses. In the present paper, we will not consider
the questions connected with the infinite degeneracies. Further, we will study bifurcations of
low-round periodic orbits in the framework of low-parameter families. The control parameters
be the splitting parameter as well as the Q-moduli.

First, let us consider the bifurcations of single-round periodic orbits.

2.6. Bifurcations of Single-Round Periodic Orbits

Note that for any system belonging to the bifurcational surface Hj, single-round periodic orbits
are structurally stable. Here, for any ¢ sufficiently large, the horseshoe Ty (o}) intersects its “own”
strip 00 regularly (inequality (2.8) is evidently fulfilled for j = i due to the condition § > 1).
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Hereat, the structure of the nonwandering set for the map T4 T¢ : 09 — o? is the same as for the
famous Smale’s horseshoe example.

However, when the system is perturbed such that the homoclinic tangency is destroyed, the
single-round periodic orbits may undergo bifurcations. To study the bifurcations, we imbed the
diffeomorphism f into a one-parameter family f,, where p is the splitting parameter for the
tangency. We assume that when p < 0, the parabola T1W}%  intersects W} at two points;
when p = 0, the parabola T W} is tangent to W} _ at one point, and when p > 0, there is no
intersection (Figure 14). The family f, is supposed to depend smoothly on u. The requirement
of general position is that the family f, is transverse to the bifurcational surface H3 in the space
of dynamical systems.

W W W
. m W N @ W . @ A
o/ of o

M+

(a) n<O. (b} p

0. (c)p>0.

Figure 14. The behavior of W*(O) for one-parametric family f., where p is the
splitting parameter. When p < 0, the parabola T1 W} _ intersects W} . at two points;
when u = 0, the parabola T1 W[ is tangent to W at one point, and when ¢ > 0,
there is no intersection.

Clearly, the local and global maps Ty and T; depend now on g. The map To() can be
represented in the form

Z=Xz+ flz,u, )2y, §=7y+ 9,y pway’, (2.14)
and the global map Tj(u) is represented in the form

IT-zt=az+b(y-y )+,

(2.15)
g=cz+d(y-y) +ut-.
Below, we will denote the coordinates on Ily as (zo, o) and the coordinates on I1; as (z1,11).
If (zo,%) € of and (z1,y1) = T&(zo0,¥0) € o}, the following formula takes place (we change
slightly notations in comparison with (2.2)):

Iy = )\kil,‘g + |A‘k|7|_k¢kl (m01 yk)p') ’

_ _ (2.16)
Yo =7 *y1 + V" k2 (20, ykr 1) -

It is clear that if the bottom of the parabola TiW}%_ descends sufficiently low (large and
negative u), then each horseshoe intersects each strip. In this case, the set N, is a hyperbolic
set similar to the invariant set in the Smale horseshoe. However, if u is sufficiently large and
positive, then the horseshoes and the strips do not intersect at all, and all of the orbits except O
will escape from U.

The main question is what happens when the parameter u varies from the negative to the
positive values. First of all, it is necessary to study the structure of the bifurcation set corre-
sponding to one strip, that is, to study the bifurcations in the family of the first return maps
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Ti(p) = ThT§ : of — op. The following result (see [13]) makes the analysis of the map T} very
simple.

LEMMA 2.1. By means of a transformation of the coordinates and the parameter, the map Tj(u)
can be brought to the form

I = Yy +e k\Z, Y, )
? 12( Y, 1) (2.17)
§=M —y* +ex(z,y, u),
where
eik(z,y, 1) = O (AFyF + 47F). (2.18)

Here the rescaled splitting parameter M = —d'y2k(u — vy ky= ekt .. -) may take arbitrary
finite values for sufficiently large k.

PROOF. It is convenient to use the pair (zo,y1) as the coordinates for points on ¢. We can use
the coordinate y; instead of yo because the value yp is determined uniquely by formula (2.16) as
a function of (zg,y1) for a fixed k. By virtue of equations (2.16),(2.15), the map T (u) is written
in the form

go—at =aXzo(l+--)+b(pr1—y )+,

ke e (2.19)
YR (1 +y knk(mo,yl))=u+c/\k:1:0(1+---)+d(y1—y')2+---.

With the shift of the origin: y; — y+y~, zo — = + z*+, we write the map Ti(u) in the form

T=by+0(X)+0 (%),

L (2.20)
Y75+ 720 () = My + dy® + X*O(|z| + |y]) + O (3%),

where
My =p4eXzt — 4%y 4.0, (2.21)

Now, rescaling the variables

T — —-b- kg — 1 -k
brings equations (2.20) to form (2.17), where M = —dy?*M,. This completes the proof of the
lemma.

Map (2.17) is close to the one-dimensional parabola map
§=M -y (2:22)

whose bifurcations have been well studied, so that it is possible to recover the bifurcation picture
for the initial map Tj. For the parabola map, the bifurcation set is contained in the interval
[—(1/4),2] of values of M: at M = —(1/4), there appears a fixed point with the multiplier equal
to +1, this fixed point is attractive at M € (—(1/4),3/4) and it undergoes a period-doubling
bifurcation at M = 3/4; the cascade of period-doubling bifurcations lead to chaotic dynamics
which alternates with stability windows and the bifurcations stop at M = 2, when the restriction
of the map onto the nonwandering set becomes conjugate to the Bernoulli shift of two symbols
and the map no longer bifurcates as M increases.

By Lemma 2.1, similar bifurcations take place for the map T;. The map has an attractive fixed
point O at i € (uf*,u;") which arises at the saddle-node bifurcation at u = p}' and loses
stability at p = u;l at the period-doubling bifurcation. Here,

1
uEt =yhyT — Xt

- —k - 3 _
urt =4y _c/\kx+_a,y * L
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AN

Wl.l

Figure 15. The last homoclinic tangency of the manifolds of the fixed point of T} at
W= uz’. An invariant set similar to those of the Smale’s horseshoe example arises
after this bifurcation.

The bifurcation set of the map T} is contained in the interval [uf™, uf*], where
k- 2 _
e = 4ky ~C'\k$+~37 % .

At p = pf?, the fixed point of T} has the last homoclinic tangency (Figure 15) and an invariant
set similar to those of the Smale’s horseshoe example arises after this bifurcation. Note that these
bifurcational intervals do not intersect each other for different k.

2.7. Bifurcations of Double-Round Periodic Orbits

The study of double-round periodic orbits is reduced to the study of the fixed points of the
second return maps Tj; = T\TEN TY: Tlp — g, which by virtue of equations (2.16),(2.15), are
represented in the form

Fo— ot = N0+ (3 —y7) +---,
YR +) = Noo+d (i —yT) e (2.23)

Eo—m+=a)\ia':o+b('1~—y‘)+...’ :
7~j?71(1+"‘)=C/\i50+d(_1——y_)2+/1,+...’

where (xo,y1) and (Zo,7,) are the coordinates on the strip 0;-’ for an initial point and its image by
the map T;;, respectively, and (Zo, §1) are the coordinates for the intermediate point Ty Tg (zo,y1)
on the strip o).

The map Tj; is a composition of the successively acting maps T; = Tng and T; = T1T¢, which
are defined, respectively, on the strips o) and ¢f. The map T; transforms the strip o into the
horseshoe T0}, and the map T; transforms the strip a_? into the horseshoe Tla}.

2.7.1. Bifurcations on Hjg

Let us consider here the case u = 0. Different cases of the reciprocal position of the strips
and horseshoes o?, d;?, Tyo}, Tlajl- are shown in Figures 16a-16c. We assume here j > i (we do
not consider the case ¢ = j). The horseshoe Tlajl- intersects both strips o9 and a}’ regularly, and
the horseshoe Tyo} intersects regularly the strip of. For the intersection of Tio} N o, different
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To, _ Tg
—

(c)

Figure 16. The various cases of the reciprocal position of the strips and horseshoes
0?, 0%, Tio}, Ti0} are shown for the case y = 0.

possibilities may take place: Ty} N o = @ in the case of Figure 16a; the intersection of Tyo}
with a;-’ is regular in the case of Figure 16b, and irregular in the case of Figure 16¢c.

The conditions of the regular, irregular, and empty intersection of the corresponding strips and
horseshoes are written by the use of inequalities (2.8),(2.9). Note that since we are interested
now by the bifurcations of the double-round periodic orbits which do not intersect II° above the
strip a?, we may assume i = k in these inequalities.

IfTyo! ﬂa;’ =, then the map T;; has no fixed points. In this case, i and j satisfy the inequality

j—if+T1> 8y Y2 (2.24)
On the other hand, if ¢ and j satisfy the inequality
j—if+T < -8y (2.25)

the intersection of Tyo} with o;-’ is regular, and the map T;; has saddle fixed points: there are
exactly four such points, two of them have positive multipliers, and two have negative multipliers.’

It is clear that if one changes the system on Hj so that to come from the situation of Figure 16a
to the situation of Figure 16b, then bifurcations connected with the appearance of fixed points
of Ti; (double-round periodic orbits f) will occur on the way.

To follow these bifurcations, it is convenient to consider one-parameter families of systems
on Hs, where the invariant 8 is the control parameter (note that when proving Theorem 5, which
establishes that 8 is an -modulus for the systems on Hj, we just used the fact that the variation
of @ is connected with the changes in the structure of intersections of the strip and horseshoes).

Let fo be such a family. Let ¢ and j be sufficiently large fixed integers. By virtue of (2.24), if

i1 1 .
9 <6, = % + 3T =Sy (2.26)

then Tyo! N a;-’ = () and the map T;; does not have fixed points. When & increases, the bottom
of the horseshoe Tj0} moves down, and for the values of 8 such that

i1 1 .
0> 8 =7+ 57+ 357 (2.27)

5Moreover, Theorem 3 implies that the nonwandering set of the map T;; is nontrivial in this case and has a
hyperbolic structure.
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the intersection of Tyo} with 0? will be regular, and the map Tj; will have four saddle fixed
points.

We, therefore, get that all bifurcations of the double-round periodic orbits which intersect the
strips o9 and a}’ occur for the values of 4 belonging to the interval

J

i

To clarify how the bifurcations go, we give a more detailed geometric construction (see Fig-

ure 17). The horseshoe Tla} intersects the strip o2 in two connected components which are

denoted as Aj; and A%, The preimages of these components with respect to the map Tj are

the two “substrips” A}j and A?j lying on a? (so, TJ(A?J) = A%, o = 1,2). The image of the
strip AJ; with respect to the map T;; is a thin horseshoe Tij(A%) lying in Tio}.

T(Z 2 -[~(l) 1
,ijAn’ /iinj
[4

e

11,
2oy =Sy, (2.28)

1 1 )
+?T—;S"/—zl2591§9§025—,
1

W M
Figure 17. Details of the geometric structure for the bihorseshoe composed by the
strips and horseshoes 02, 09, T10}, Tyo}. The horseshoe Ty o} intersects the strip o]
on two connected components A}; and A%, Two “substrips” AL; and A% in 9 are
the preimages of these components; i.e., Tj(A%) = A% , a=1,2. The image of the
strip Ag; under the map Tj; is the narrow horseshoe T.-,-(A%.) belonging to T1o}.

The dynamics of the map Tj; : 0? — a? is determined by that how it acts in restriction onto

the substrips Ailj and AZ. Particularly, the fixed points of T;; are divided into two groups: the

first are the fixed points of the map Ti(jl) = T}, INE and the second are the fixed points of the

map Ti(f) = Ty a2, Since the regions A}j and Agj do not intersect for all 8, the fixed points of

each of the maps bifurcate independently.

It can be shown (see [8]) that exactly two bifurcations take place in each group when 8 varies;
namely, a pair of saddle and stable fixed points of Ti(ja) appears at 0;"].* through the saddle-node
bifurcation corresponding to the presence of a multiplier equal to “+1,” and the stable fixed point
loses its stability at 6;’1" through the period-doubling bifurcation corresponding to the presence
of a multiplier equal to “—1.” The following asymptotic takes place:

— bzt - .
% (el /et /?/_d_.,—zﬂ b, (2.20)

iy ln~y



Bifurcations of Systems 131

where a = 1 is assumed to correspond to the upper of the substrips A;; and & = 2 to the lower
one (Figure 17). Note that the asymptotics for the moments corresponding to the “+1” and “~1”
bifurcations coincide in the main order. Nevertheless, the intervals

bija = (657,6557)
are, evidently, nonempty and they correspond to the presence of a stable double-round periodic
orbit.

2.7.2. Systems on Hs with infinitely many stable periodic orbits

Since o = || < 1, it follows that the Jacobian of the map T;; equal to (be)?(Ay)H+Hi(1+...) is
less than unity if ¢ and j are sufficiently large. Thus, the saddle-node bifurcations of double-round
periodic orbits lead to the appearance of the stable periodic orbits indeed.

The following assertion was established in {8,14].

PROPOSITION 2.2. Let fs be a one-parameter family of systems on H3. Then, in the interval
6 > 1, the values 0* are dense such that the diffeomorphism fp- possesses infinitely many stable
double-round periodic orbits.

This result follows from the fact that the stability regions 6;;, may intersect for different (4, 5).
Indeed, as it follows from (2.29), the map T} has a stable fixed point if
i/2

v <j-0i+1—uy M <0}, (2.30)

where v}, < v}, v}/?

G Vi = o(y~#/?) and vy does not depend on i and j.

In order for an infinite number of stable double-round periodic orbits to exist for the diffeomor-
phism fy, it is necessary and sufficient that inequality (2.30) would have infinitely many integer
solutions (i, 7). The standard fact from the number theory is that for any functions V:'j’z tending
to zero as 1,7 — 400 such inequality do have infinitely many integer solutions for a dense set of
values of .

Note that inequality (2.30) is satisfied only if the invariants 8 and 7 admit “exponentially well”

nonhomogeneous approximations by rational fractions.

2.7.3. Bifurcations in the case pu #0

Let us now consider bifurcations of double-round periodic orbits for the diffeomorphisms which
are close to f and which may now not lie on Hj.

First, consider a one-parameter family f,,. Recall that the absolute value of the splitting param-
eter p is exactly the distance between the bottom of the parabola Ty (W} ) and the manifold W} .
The sign of u corresponds to where the bottom of the parabola lies: above or below Wi . If 1 > 0,
the diffeomorphism f,, does not have single-round homoclinic orbits close to I', and when p < 0,
the diffeomorphism has two such orbits.

When p increases, the bottom of the parabola T, (W ) will move up and when  decreases, it
will move down. Accordingly, the bottoms of all horseshoes will move up and down. It follows
from equations (2.14),(2.15) that the bottom of the horseshoe Ty} lies on a distance of the order

p+ ezt (2.31)
from the manifold W;,. Recall also that the strip of lies on a distance of the order
vy (2.32)

from the manifold W ..
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Take some ¢ and j such that, for g = 0, the horseshoe Tla',-1 does not intersect the strip a';’
(Figure 16a). Evidently, there is infinitely many such pairs (i,5). Since, for 4 = 0, the horse-
shoe Tyo} lies above the strip 0 (i.e., cXiz* > y~Jy~), we have by virtue of (2.31),(2.32), that
it lies above this strip for all positive u. Therefore, for the given i and j, the map T;; does not
undergo bifurcations for positive 4. However, when p is negative, the horseshoe T30} may have
a nonempty intersection with the strip a? (this intersection will be nonempty and regular for
sufficiently large negative u). Thus, it is clear that there exists u = #;; < 0 for which the map T;;
has a structurally unstable fixed point. Evidently, pi; — 0 as ¢,j — oo.

Take another pair of i and j such that, for 4 = 0, the horseshoe T30} has a regular intersection
with the strip a? (Figure 16b); the set of such pairs is also infinite. Note that, for the given ¢
and j, the horseshoe T10} has regular intersection with the strip o for all negative u. Therefore,
in this case, the map T;; does not undergo bifurcations for negative . On the other hand, if p is
positive, the horseshoe Ty0; may have empty intersection with the strip o9 (if p+cXiz* > y~iy~;
see (2.31),(2.32)). It is clear, therefore, that there exists 4 = fij; > 0 for which the map T;; has
a structurally unstable fixed point. Note also that ij; — 0 as 1,7 — oo.

We arrive at the following statement [6].

PRrROPOSITION 2.3. There exists an infinite number of values of p accumulating at i1 = 0 from
both sides which correspond to the presence of the structurally unstable double-round periodic
orbits.

If, similar to the case g = 0, consider the substrips A}j (), Afj (1) and the corresponding
horseshoes T;;(11)A}; and T;;(p)AZ;, then repeating the arguments of (8], one can show that the
following asymptotics take place for the bifurcational values of u:

. ) T - b
gt =7y —oiat + () NS (1- B ), as12 29y

Here o = 1 corresponds to the bifurcations of the fixed points of the map T;;(1)|a1 , and a = 2
corresponds to the bifurcations of the fixed points of the map Ti;(u)| INE The SianS + in the
left-hand side of formula (2.33) denote the bifurcation moments corresponding to the multiplier
equal to “+1” or to “—1”, respectively.

Note that these bifurcation moments differ on a small value of order o(y~*2). In spite of the
intervals 6;]- = (455 ,uff’) of existence of a stable double-round periodic orbit are extremely small,
they, nevertheless, may intersect each other (which is not the case for the analogous intervals
corresponding to single-round orbits; see above), and even an infinite number of these intervals
may intersect. We have already seen this in the previous section, when proved that the value p = 0
belongs to the intersection of infinitely many regions of existence and stability of double-round
periodic orbits if @ and T admits exponentially well nonhomogeneous approximations by rational
fractions.

The structure of these intersections cannot be studied in a one-parameter family f, because
it depends essentially on, for instance, the values of 8 and 7. Indeed, as we have shown, the
structure of the set of the values of u corresponding to the bifurcations of double-round periodic
orbits of f, depends essentially on the reciprocal position of the strips and horseshoes for the
diffeomorphism fp. The latter is mainly determined by the values of § and 7. If, for instance,
# > @', then there would exist infinitely many pairs (i, 7) such that, for the diffeomorphism fj,
the horseshoe Ty0} have regular intersection with the strip 0?, and the horseshoe Ty} has no
intersection with the strip a? for the diffeomorphism f§ (see Theorem 5). Therefore, for the
family f,, bifurcations of the double-round periodic orbits corresponding to the given values of i
and j would happen at positive 4, and for the family f,,, they would happen at negative u. In
other words, an arbitrary variation of # changes the order of “double-round” bifurcations in the
family f,.
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In fact, using the machinery of “infinite degenerations” from (7], one can show that, by an
arbitrary small perturbation of the family £, in the space of one-parameter families of dynamical
systems, a family can be obtained for which values of p accumulates at = 0 corresponding to
infinitely many coexisting structurally unstable double-round periodic orbits.

This implies that no finite number of control parameters is sufficient to obtain a stable picture
of the bifurcation set corresponding to all double-round periodic orbits. At the same time, we
have seen that if we restrict ourself to the study of the bifurcations of one double-round periodic
orbit corresponding to an arbitrary code {i,j}, the one-parameter bifurcation analysis is quite
satisfactory: there is a value of u corresponding to the saddle-node bifurcation and a value of u
corresponding to the period-doubling bifurcation and no other bifurcation values.

2.8. Bifurcations of Triple-Round Periodic Orbits. Cusp-Bifurcations

2.8.1. Bifurcations on Hj

In this section, we consider the bifurcations of triple-round periodic orbits. In particular, we
show that, in distinction with the single- and double-round periodic orbits, structurally unstable
triple-round periodic orbits can have additional degenerations; namely, the first Lyapunov value
may vanish. This means that cusp-bifurcations take place here.

This fact was established in [15] at the study of two-parameter families of systems on Hj for
which the Q-moduli  and 7 are taken as the control parameters.

Let fg,. be a two-parameter family in Hs. Then, the following result holds.

THEOREM 9. The values of (6, 1) for which the system has a structurally unstable triple-round
periodic orbit with one multiplier equal to unity and with first Lyapunov value equal to zero are
dense in the region L = {(6,7) : > 1} on the parameter plane.®

ProoF. The study of triple-round periodic orbits is reduced to the study of the fixed points
of the third-return maps T;jx = TITENTITiT: 0f — 0. We will suppose i < j < k (this
condition can be shown to be necessary for the existence of the cusp-bifurcation).

The analysis carried out in [1] shows that the additional degeneration may take place only for
the following structure of the intersections of the corresponding horseshoes and strips (Figure 18):
the horseshoe Tyo} intersects the strip o) regularly and intersects the strip 0'}) irregularly, the
horseshoe Tla} intersects the strips o?, a? regularly and intersects the strip 02 irregularly, the
horseshoe Ty}, intersects all the strips regularly.

The study of triple-round periodic orbits is obviously reduced to the study of a system of
equations connected the coordinates (zg, yo) and (z1,y1) of the points of intersection of the orbit
with the neighborhoods Iy and II;, respectively. We do not write down the system here. Note
that the system is easily resolved with respect to the coordinates xg, yo, and ;. If {ijk} is the
code of the periodic orbit under consideration, then the system takes the form 16]

Yin=de® + (cxt X —yyT) +beXi( + -,
yk¢ = dn? + (czt M — 7‘ky_) +beME 4+, (2.34)
T =d¢? + (et N~y TiyT) +bedin 4o

where we denote the value y; —y~ as £ for the point of intersection of the orbit with the strip o},
as 71 for the point of intersection with the strip a}, and as ¢ for the point of intersection with the
strip o}. The degenerate periodic orbits (i.e., having one multiplier equal to unity) correspond
to the degenerate solutions of system (2.34).

6Note that the second Lyapunov value does not equal to zero here [15], so these points are the cusp-points from
which a pair of curves corresponding to saddle-node bifurcations go.
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T,c, T.c,

s

Wee M’
Figure 18. The geometric construction leading to the appearance of doubly-degener-
ate trlple-round periodic orbits (the cusp—blfurcatlon) The horseshoe T1o} mtersects
the strip o regularly and it intersects the strip o' irregularly; the horseshoe T UJ
intersects the strlps a , o regularly and it mtersects the strip ¢f irregularly; the
horseshoe T ak intersects regularly all the strips.

Since i < k and Ay < 1, the last equation of system (2.34) is resolved with respect to ¢:

<=i\/—y__d3,y—i/2(1+...)_ (2.35)

The substitution of expression (2.35) in the first and second equations of system (2.34) and a
shift of coordinates ¢ and n on some small constants bring the system to the form

yIn=de + (cat N —yTyT) o,
—beNE =dn? + (cat N —yFy ) + -+
Thus, the question about the degenerate triple-round periodic orbits is reduced to the question
about the degenerate solutions of the system (2.36) corresponding to large i, j, k, and to small £
and 7.
Let us show that the system has a triple solution. Make the following rescaling of the variables:
£=¢€ -u; 7 =¢€-v, where

(2.36)

o = _(_bc_zii/f N g = (b_c()li/i A2/3 il

Dividing the first and second equations of (2.36) on d - €? and d - €2, respectively, we arrive at
the following system:
W =v+ A+ 61(y,v),

2.37
v? = u+ B+ 82(u,v), (2.37)
where 6,2 — 0 as i, j,k — +00 and the quantities A and B are as follows:
d 25/3,,43/3 [, —n~—i +yi
= ¥ y y i —cxTA 4],
(bc)2 /3 [ ] (238)
~45/3,25/3 +3J
B= e )4/3,\ j/3.23/ {y7 —cztN ...

Evidently, A and B may take arbitrary finite values if ¢ and j are sufficiently large.
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Figure 19. The case of the cubic tangency of two parabolas.

It is easy to see that the triple solution of system (2.37) exists when A ~ 3/4, B ~ 3/4. The
geometric illustration of this fact is represented in Figure 19.
We obtained a necessary and sufficient condition for existence of triple solution of system (2.34).
This condition can be rewritten as
y Y —ext A 4. =0,
yyF -zt +...=0.
Taking the logarithm of the both parts of each of the equations of the system obtained we arrive
at the equivalent system

(2.39)

ji= i —T1+-- ,

k=60j—7+---.

This system can be shown to have arbitrarily large integer solutions for a dense set of values of

the parameters (6, 7). So we can conclude that there exists a dense set L* on the parameter plane

such that for any pair (6*,7*) € L*, there exists a triple solution of system (2.34) for some ¢,

4, k. This means that the dynamical system has an associated structurally-unstable triple-round

periodic orbit arising as the result of the coalescence of three periodic orbits. Such orbit has a
multiplier equal to unity and the first Lyapunov value is equal to zero. The theorem is proved.

(2.40)

Let us now construct the bifurcational curves, starting at the cusp points, which correspond
to saddle-node triple-round periodic orbits. Let « = A — 3/4 and 8 = B — 3/4. System (2.37)
takes the form 3

u2=v+z+a+~-- ,
(2.41)

2 3
v =u+z+ﬂ+--~.

On the plane (o, 3), the bifurcational curves corresponding to the degenerate solutions of
system (2.41) have the following form (see Figure 20):

a = —-§ + ! -t+
T4 162 ' (2.42)
p=-34p_L, .
T4 4t ’
where t is some parameter; a triple solution exists when ¢t = —1/2.
Since 3 d
z = ~23/3,4i/3 (=8 ezt N ..
4+a—-(bc)2/3)\ Y43 [y — et A 4],
3 d (2.43)
3.4 ~43/3,23/3 [y=n—k _ opt i 4 ...
4+ﬁ (bc)4/3)\ v [y ezt M+ -],
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o)

Figure 20. The cusp-point on the plane (q, 8).

o]

Figure 21. A fragment of the bifurcation diagram on the plane (4, 7).

(see (2.38)) and since A = v~%, 47 = cz+ /y~, we can write the following formula connecting the
values of (o, 8) with the values of (6, 7):

3 T~ — r—8i

Z+Q=W§12/3(9+2)J [y v~y 91.*_...]‘

3 d  a/30+1/2); k 0j 2.44)
4 ﬁ=W7 Ty v -y r¥+..].

This formula allows one to map the curves (2.42) onto the (8, 7)-plane (see Figure 21).

2.9. Cusp-Bifurcations in Two-Parameter Families f, ¢
For a two-parameter family f, ¢, the condition of existence of a triply-degenerate triple-round
periodic orbit is written in the form
j=6i—-74+---,
y Yk —ecxt N +p+- =0,
which is analogous to condition (2.40) obtained for 4 = 0. One can see that in an arbitrarily

small neighborhood of any point (8, 4 = 0), there exists a point (6*, 4*) for which system (2.45)
has an integer solution. This implies that the following theorem holds.

(2.45)

THEOREM 10. In an arbitrarily small neighborhood of any point (6, u = 0), there exists a point
(6*,u*) for which the map fp- - has a doubly-degenerate triple-round periodic orbit.

Note that u* can be of arbitrary sign: u* <0 when k > 6 — 7, and u* >0 when k < 85 — 7.
The corresponding bifurcation diagram is represented in Figure 22.
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Vo

Figure 22. A fragment of the bifurcation diagram on the plane (8, p).

3. BIFURCATIONS OF HOMOCLINIC LOOPS
TO A SADDLE-FOCUS

In this section, we will examine the dependence of the structure of the bifurcation set of
homoclinic loops to an equilibrium point of saddle-focus type on the value of the 2-modulus p
for the case of three-dimensional flows. The main results of this section were obtained in [16].

Consider a smooth three-dimensional dynamical system X satisfying the following conditions:

A. X possesses an equilibrium state O of the saddle-focus type; i.e., the characteristic expo-
nents vy, v;,v3 of O are such that v3 =7 > 0, 112 = ~A £ iw (A > 0,w > 0); and
B. the saddle index p = A/~ is less than 1.

The unstable manifold W* of O is one-dimensional. The point O divides it into two branches
called separatrices. All orbits of the two-dimensional stable manifold W* have a shape of spirals
tending to O as t — +o0o. We suppose that the following condition is also satisfied:

C. one of the separatrices (we denote it as I') comes back to O as ¢ — +oo, forming a
homoclinic loop (Figure 1).

Let us consider a sufficiently small neighbourhood U of the loop. U is a solid torus composed
by a small neighbourhood Uy of the point O and by a handle U; glued to Up as in Figure 4. We
are interested in the bifurcations of orbits lying in U. Since systems with homoclinic loops of a
saddle-focus form surfaces of codimension one in the space of dynamical systems, the standard
way to study bifurcations of such a system is to include it into a one-parameter family X, where
4 controls the splitting of the loop. The parameter u can be defined as the distance between the
point of intersection of I' with some surface of section and the line of intersection of W# with the
same surface of section. In this respect, the system forms the loop I" when u = 0.

When g changes, multiround homoclinic loops can appear; i.e., such loops that come back to O
after a number of passages along the handle U;. In a one-parameter family, bifurcations of such
loops were studied in [17,18]. In the present section, we describe bifurcations of homoclinic loops
in two-parameter families, and we choose the saddle index p as a second control parameter.

This choice is justified by the fact that the structure of the nonwandering set of systems with
homoclinic loops of a saddle-focus depends essentially upon the saddle index p (see [1,2]). Systems
with different values of p are not topologically equivalent, so that p is a genuine bifurcational
parameter. Moreover, we shall show that the bifurcations of multiround loops in a one-parameter
family X, depend on the value of the saddle index p.

We start with the bifurcations of double-round loops. As shown in {17], the region p > 0—which
corresponds to the inward splitting of the loop—possesses a countable set of smooth curves L7
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j rounds

Figure 23. A moment of existence of a double-round homoclinic loop I'; to the
saddle-focus O (where the index j means that the loop circles j times around O).

(@ =0,1) of the form pu = ff(p) ~ exp[—z—:B(j — (1 — a)/2)] which correspond to the existence
of double-round loops I'; (where the index j means that the loop circles j times around O, see
Figure 23). In the cases where p is close to one and to zero (the last case corresponding to a
pair of pure imaginary characteristic exponents of O), the behavior of the curves L% was studied
in [19,20]. It turns out that L} and LI merge at some p = p} (the greater j, the closer p; to 1).
On the other hand, L} and L? have different terminating points at p = 0 (Figure 24).

We see that if p lies between 0 and 1, the sequence of bifurcations of double-round loops is the
same for all values of p in (0,1). However, this property does not extend to the triple-round loops.
Thus, it is established in [16] that for sufficiently large j, in the region bounded by L, , and L},
there exist smooth curves L;-’k, a = 0,1, corresponding to the existence of triple-round loops I'jx;
i.e., loops which start with O, pass along the handle Uj, circle j times around O, pass along U,
again, circle k times around O, pass along U; once more and enters O finally (Figure 25). Each
of these bifurcation curves have a vertical tangent at some p = pj, ,, at the left side of which the
curve lies entirely (Figure 26). The following asymptotic behaviors hold:

. k . ay 1 .
Pika =75+ (T (Pika) — 5) PR for j > k, (3.1)
and, when j < k,
j . ay 1 )
e =g * (Tha) +3) g4 fori<h (32)

where 7(p) is a smooth function (see [16]) determined by the system at p = 0. These implicit
equations admit solutions when j and k are large enough while k/j, or, respectively, j/k, is
separated from 0 and 1.

Therefore, the following picture takes place for any small segment 0 < p; < p < pz < 1: in any
strip between LY, and L}, there is a finite number of curves L%, consisting of two components
which are either “paralle]” to the p-axis or are connected together and have a parabola-like shape.
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L, >
: e
0 1
p

Figure 24. On the parameter plane (p, u), the bifurcational curves Lg (a = 0,1)
corresponding to existence of double-round loops I'; are represented. The curves L}
and Lg.’ merge at some p = p} (the greater j, the closer pj to 1). On the other hand,
L} and L? have different terminating points at p = 0.

j rounds

k rounds

Figure 25. A triple-round loop I'ji; i.e., the loop which starts with O, passes along
the handle U, circles j times around O, passes along Ui again, circles k times
around O, passes along Uy once more and finally enters O.

The number of curves of bath types grows linearly with the integer j. The closure of the
set {0}y, } taken for j, & large enough coincides with the segment [0,1]. Therefore, we have the

following theorem.
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Figure 26. Bifurcational curves L;‘k, a = 0,1, corresponding to existence of triple-
round loops T'jx are shown in the region of parameters which is bounded by the
curves L9 F+1 and L1

THEOREM 11. [16] Let X,, be a one-parameter subfamily of X,, , with the curve {(u,p) | p =
©(n)} being transverse to the line p = 0. There exists a small variation p = @(p) + 6 which
makes X,, be tangent to some line of existence of a triple-round homoclinic loop.

When multiround homoclinic loops are considered, the structure becomes more complicated
for the corresponding set of bifurcation curves in the plane (u, p). Indeed, folded lines of nine-
round loops accumulate on the lines of triple-round loops in a way similar to the accumulation
of the folded (parabola-like) lines of triple-round at the line of single-round loops (1 = 0). It is
geometrically evident (see Figure 27) that any curve transverse to s = 0 can be varied {in a more
general way that in Theorem 1) such that to achieve a cubic tangency with some of these lines
of nine-round loops.

Actually, the following general statement holds.

THEOREM 12. [16] Consider a one-parameter subfamily of vector fields X,, , with o = p(u),
which is transverse to the line u = 0 in the plane (p,p). Then, a small smooth perturbation
of the curve p = ¢(u) may have a tangency of arbitrarily high order with some of the lines of
existence of homoclinic loops.

This theorem shows the arbitrarily high structural instability of one-parameter families of
vector fields near homoclinic loops of a saddle-focus. We emphasize consequences of this result for
nonlinear partial differential equations modelling travelling waves in spatially extended systems,
what will be discussed below.

Theorems 11 and 12 can also be applied to the theory of nonlinear partial differential equations
modelling travelling waves in spatially extended systems. Let us imagine that X, , is a family of
ordinary differential equations describing the plane travelling waves of some distributed system;
p is the wave velocity while p is an internal parameter of the system. Let the saddle-focus O
be at the origin. It is known that homoclinic loops correspond to self-localised waves in such
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Figure 27. A curve transverse to 1 = 0 has a cubic tangency with a bifurcation curve
of existence of a nine-round loop.

systems. Suppose that the system has such a wave and that Conditions A-C of this section
are fulfilled for some parameter value p = ug. It follows from Theorem 11 that bifurcations
generating “three-pulsed” self-localized travelling waves occur for arbitrary small variations of p
in this system. In turn, Theorem 12 implies that the complete description of bifurcations of plane
self-localised waves is impossible in systems of such kind.
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