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Billiards: A singular perturbation limit of smooth Hamiltonian flows
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Nonlinear multi-dimensional Hamiltonian systems that are not near integrable typically have
mixed phase space and a plethora of instabilities. Hence, it is difpcult to analyze them, to visualize
them, or even to interpret their numerical simulations. We survey an emerging methodology for
analyzing a class of such systems: Hamiltonians with steep potentials that limit to bil\afdx.2
American Institute of Physicghttp://dx.doi.org/10.1063/1.472201L0

Very little is known regarding the dynamics in high-
dimensional, far-from-integrable systems. Until recently,
in such systems, local analysis near bxed points and peri-
odic orbits or geometrical analysis near specibPc homo-
clinic or heteroclinic structures have been the only
available analytical tools. Numerical studies of such sys-

tems are possible, yet, due to the mixed phase space prop-

erty, these are difbcult to interpret. Here, we survey a
methodology which we (the authors and, in part, in col-
laboration with Anna Rapoport) developed in the last
decadebthe near-billiard paradigm. In this paradigm, we
can study the local and global properties of classes of
multi-dimensional smooth systems by analyzing the sin-
gular billiard limit for various types of multi-dimensional
systems. Notably, billiards provide a rich playground for
dynamicists. Billiards can be integrable, near-integrable,
of mixed phase space or uniformly hyperbolic (yet singu-
lar), and in many cases, their complex and rich dynamics
have been understood in great detail. Billiards and simple
impact systems are commonly used to model the classical
and semi-classical motion in systems with steep potentials
(e.g., in kinetic theory, chemical reactions, cold atomOs
motion, microwave dynamics). However, the correspon-
dence between the smooth motion and the singular bil-
liard model occurs to be not immediate. This
correspondence is the main topic of the present article
which summarizes the works of Refs1E8. On one hand,
we show that a proper limit may be formulated, so that
some basic dynamical properties of the billiard are inher-
ited by the smooth Bow (Secll and parts of Sec.V). On
the other hand, more surprisingly, we show that some of
the crucial features of the billiard Row are not shared by
the smooth systems (Secdll BV). Nonetheless, even in
this latter case, we are able to learn about the properties
of the smooth Bow by devising singular analysis tools.

I. INTRODUCTION

point of view, this hypothesis states that the gas of elastically
colliding hard spheres is an ergodic system. While this prom-
inent problem is still unresolved, the work on it led to funda-
mental developments in the theory of dynamical syst&rs.
The starting point of this analysis is the observation that the
dynamics of a gas afi hard spheres in d-dimensional spa-
tial domain is governed by a semi-dispersive billiard in an
Nd-dimensional space!®*

The Osmooth Boltzmann gasO corresponds to the next
order approximation where the motion is modeled by a
(Hamiltonian) system of classical particles which pair-wisely
interact with each other via a smooth steep repelling poten-
tial. At large kinetic energies, the interaction between two
particles becomes essential only when they come very close
to each other, i.e., at very short intervals of time that corre-
spond to a near collision. As Einstein wrote: OBoltzmann
very correctly emphasizes that the hypothetical forces
between the molecules are not an essential component of the
theory as the whole energy is of kinetic kintPdn other
words, the hard-spheres system appears as a universal model
for the interaction of classical particles at high kinetic ener-
gies. The huge number of degrees of freedom in a typical
molecular system implies that statistical means should be
employed for the analysis. This is the main motivation
behind the quest to prove the Boltzmann-Sinai ergodic
hypothesis.

We propose that one has to actually address the question
of how the statistical properties of the hard-sphere model are
translated back to the case of a smooth steep potential. Fol-
lowing the Fermi-Pasta-Ulam numerical experiments and the
subsequent discovery of high-dimensional integrable sys-
tems, it was realized that the large number of degrees of free-
dom is insufbcient for justifying the statistical approd€h.
One needsnstability to allow the system to OforgetO its ini-
tial state, so a universal probability distribution could estab-
lish itself in the space of system states.

We notice that instability in a dynamical system is a dif-
ferential property (having to do with the rate at which close-

The original motivation of our work is related to the |y initial conditions diverge in time). Hence, to transfer the
Boltzmann-Sinai ergodic hypothesis. From the mathematica;aistical description of the hard-sphere system to the
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smooth Boltzmann gas, one needs to controldbavatives
of the approximation error. Since the hard-sphere system has
singularities, this becomes a delicate issue. In the series of
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works that are reviewed here, we develop methodologiefunction. The derivatives ofdg; bnear@ grow without no
which could be used to address this problem. bound as ! 0. The vectore¥: 8g; E;; E b provides the
In particular, we show that the specibc instability of limit values of the steep potential on each of the smooth con-
dispersive billiards (i.e., a uniformly hyperbolic structure), nected components of the boundary. On each such compo-
cannot universally survive a smooth regularization of the bil-nent, the constarf; may be bnite or inPnite. Our goal is to
liard. Since the uniform hyperbolicity of the dispersive compare the behavior of the orbits of system (1) at sufp-
billiards appears to be the underlying mechanism of the ergoeiently smallewith the billiard Bow inD.
dicity of hard-sphere systems, it follows that the hypothesis  The persistence results of Refs2, and5 are concerned
that the statistical properties of the smooth Boltzmann gasvith comparing the behavior near regular billiard orbitsN
are potential-independent and similar to those of the harderbits that hit the boundary ob at non-zero angles (see
sphere gas could be correct on a bnite time scale, yet it cargec.Il). In Ref. 5, we show that for regular ref3ections the
not be true in the inPnite time limit. time-shift map by the billiard i<"-close to the smooth RBow
This time scale must, for all practical purposes, be largeor arbitrary dimension and geometrivoreover, we prove
enough in systems with huge numbers of particles. Howevetthat a certain billiard limit may be used for developing an as-
for small number of degrees of freedom, the changes in staymptotic expansion for approximating regular ref3ections of
tistics can become observable (see, e.g., B&f. Thus, our the smooth Bow. We bPnd bounds on the error terms of the
results stress the importance of analyzing the Pnite-timapproximation (and its derivatives, up to ordgrand next
behavior of the system and of analyzing how this behaviomrder corrections for a large class of potentials. In this way, a
scales with the number of degrees of freedom. These issugerturbational tool for analyzing far-from-integrable Hamil-
become increasingly more relevant as experimental and nuenian systems is developed. This may be used to establish
merical capabilities develop. quantitative persistence results, for example, periodic orbits
More generally, billiards and impact systems arise in aand separatrix splitting (see RefS.and 8 and Tablell).
wide variety of science and engineering applicatibf&®  These persistence results were utilized to prove the existence
The singularities in models with impacts often lead to ambig-of a large collection of chaotic hyperbolic orbits in any inp-
uous results: it is not always clear how to continue solutionsnite set of sufpciently small scatterers and in convex
through singularities, especially in systems with friction. domains with small scatteref$>® We think that these tools,
A natural method of resolving such difbculties is to recall which may be thought of as the analog of the near-integrable
that the impact system is, in many cases, a simpliped modéllelnikov technique in the near-billiard limit, will be further
for forces that grow very fast across certain boundaries, thesed to examine Pniteeffects in specibc applications.
surfaces of impact. So, regularizing impact systems by  Singular orbits are those billiard orbits which are
smooth models with sharp growing forces near the boundartangentto the boundary or those which hit tlerners(i.e.,
is a natural approach. One can then study the smooth mod#ie points where the billiard boundary is not smooth). Sec-
and see what conclusions survive in the liffit®?* How-  tion Il summarizes the two-dimensional behavior near sin-
ever, one must also be sure that the result is independent gllar orbits, and SedV summarizes the higher-dimensional
the particular choice of the smooth approximation. results.
This last question might seem to be easy for the friction-  In Refs.1 and3, we studied the behavior of smooth orbits
less case where the energy is preserved and the forces are ntirat are close to the billiard orbits afon-degeneratdi.e.,
mal to the impact boundary. Under these conditions, for anyguadratic) tangency in two-dimensional dispersing billiards.
smooth regularization, one recovers the universal elastic collivhile the orbit of the smooth system is still close to the bil-
sion law: the angle of rel3ection is approximately equal to thdiard orbit in this case, there can be no closeness with deriv-
angle of incidence. This observation can indeed be enoughtives (since the billiard map is not smooth at tangent
when we are interested in some topological properties of therbits). We derive the normal form for the return map gen-
system. However, if we seriously want to study the dynamicserated by the smooth Bow near a periodic tangent billiard
we must analyze differential properties. Such an analysis leadsrbit (where all re3ections but the tangent one are regular
to the non-trivial question: OUnder which conditions on theand occur at dispersing components). Notably, this formula
smooth regularization of the billiard, the derivative of the dif- describes the smooth system behavior in a region where
ference between the ref3ection angle and the incidence anglkere is no correspondence with the billiard motion. Analy-
with respect to initial conditions is close to zero?0 sis of this return map leads to a proof ttsability islands
We formulate the above ideas by the following singularemerge from such tangent periodic orbits of two-
perturbation problem. Consider Hamiltonian Bows induceddimensional dispersive billiards. This is the main result of
by a one-parameter family of steep potentials depending on Refs.1 and3. It shows that even though dispersive billiards
steepness parameter are ergodic®?* the ergodicity is not typically inherited
by the smooth-potential approximations (yet in special
cases the Osoft billiardO potentials can produce ergodic
(1)  behavioP?*®?). Experiments with an atom-optic systén
conbrm the drastic change of statistical properties at the
transition from a dispersive biard to its smooth-potential
Here &q;pp 2R R D R", and @ is a piecewise approximation due to the emergence of stability islands out
smooth. The potentiaV/dy; bis non-negativeC’?1-smooth  of singular orbits.

Xn 2 . .
R .o, 0 q2Dn@;
H/4imzpvaq,nvaq, PLUE g2 @:
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In Ref. 4, we addressed the behavior of two-dimensionalTo this aim, we Prst debne the billiard Bow, what are regular
smooth systems near billiard orbits that hit a corner. The bil-billiard reRections, and non-degenerate tangential billiard
liard map is typically discontinuous at the corner orbit. WereRections. We then introduce the notion lofliard-like
show that in the Poincarenap generated by the smooth sys-potentialson a domainD. Briel3y, these are one-parameter
tem the discontinuities are OsewnO by means afraer  families of C'P1-smooth potentialsy , that are essentially
scattering functiorwhich can be determined via the analysis constant insideD and grow fast at the boundary &f. The
of the scaled limit of the potential at the corner. This limit is growth rate approaches inbnity as the steepness parameter
not integrable, so no explicit formulas for the scatteringapproaches zero. All the works that are reviewed here are
function exist; however, one can study its properties usingoncerned with studying the Rows induced by families of
qualitative methods. A surprising bnding is that the scattermechanical Hamiltonian systems with billiard-like potentials
ing function is oftemon-monotong.e., the billiard disconti-  at sufbciently small values.
nuities are not smoothed in the Omost economicO way. In  We establish Prst that for such potentials the behavior
particular, the range of the ref3ection angles generated by theear the boundary usually limits (in tH& topology) to the
smooth system near the billiard corner may be larger tharbilliard reBections:>® Then, we show that next order correc-
that achieved by smoothing the discontinuous billiard limit, tions to the billiard approximation may be found, with pre-
namely, it is not determined by the billiard geometry alone.scribed error estimatésWe end this section by recalling that
In the two-dimensional case, the non-monotone scatteringhese results imply that non-singular non-parabolic periodic
function appears near corners of anglessheren 2 is an  orbits and hyperbolic sets of the limit billiard Row persist for
integer. We show that billiard corner orbits with outgoing sufpciently small values-*® Utilizing the perturbation anal-
angles corresponding to the extremal values of the scatteringsis, these persistence results become quantitative.
function produce elliptic islands in the smooth system. Thus,
one should expect the emergence of stable periodic orbits iA. Smooth reflections limit to billiard reflections

the smooth system when the corner angle varies adjoss _ _ o
e.g., when the corner angle tends to zero. The Prst main step in the theory appears technical: it

Notably, the underlying mechanism of ergodicity 10ss is consists of proving Fh_at under specibc ngtural conditions on
purely geometrical: it is based on the fact that orientation inY&% P theregular billiard reections are indeed close (and
the momenta space is Ripped at every collisigh. so are their der_lvat|ves) _t(_) the smooth Bow rel3ections (see

In Ref. 6, we employ these observations (for a cornerbel_ow fc_)r precise (_jebmtlons of these concepts). Sm(_)oth
with an additional symmetry) to show that elliptic orbits trajectories that limit to non-degenerate tangent ref3ections

appear in systems with steep smooth potentials that limit t&€ Only C*-close to the limiting map. Thus, this initial
Sinai billiards for arbitrarily large dimension While the step formulates under what conditions the limiting process

examples considered in R& cannot be directly linked to the Makes sense. Moreover, this step enables to subsequently
smooth many particles case, this construction of a stabilig/'S€ Standard dynamical systems tools that relate two nearby
island (hereNa positive measure set blled by quasiperiodid"aPs- Here, the closeness of derivatives is essential as it
orbits) in multi-dimensional highly unstable systems Supportsallows to use persistence and structural stability arguments

our conjecture that the systems of many particles interactingSe€ Secll B).

. . . . d . .
via a steep repelling potential are, typically, not ergodic. More precisely, consider a domainsideR * or inside
Finally, we summarize the implications of the above & ffat torusT °. Assume that the bounda@ consists of a b-

. . o i rp1 -di i -
results on chaotic scatteriiG*” There, billiard rays come Nt number ofC™= (r 1) smooth ¢B1)-dimensional sub

from inPnity, hit some scatterers that lie in a bounded domanifoldsCi,
main, and then escape again. With the steep potential meth- @ Y% Ci[ Co[ [ Co:
odology, we are able to analyze the correspondence between
scattering by hard core obstacles (billiards) and scattering b¥ne poundaries of these submanifolds, when exist, fthen
steep smooth hills. In particular, with this correspondencecqner sebf @:
we are able to establish the existence of a hyperbolic repeller
with fractal structure in a smooth Hamiltonian Row. C YL@ [ @y [ @n:

The paper is ordered as follows. In Séic.we analyze
the case of regular reBections. In Sekt., we study the The billiard Row is dePned to be the inertial motion of a
behavior of smooth systems near singular billiard orbits forpoint mass insid® accompanied by elastic re3ections at the
the two-dimensional case. A multidimensional example isboundary@. Let q2 D and p 2 RY denote the particles
considered in SedV. In Sec.V, we apply the results to the coordinates and momenta. Denote the billiard Row by
scattering problem, and in Se¥l, we list some open prob- ¢, % biqg, whereq, ¥ &; piPandqg Y2 djo; poPare two inner
lems and perspective directions. phase points (i.eqo: are both in the interior ob). If the pi-
ece of trajectory which connecty with g does not have
tangencies with the boundary, thgpdependsC'-smoothly
on gyp. On the other handy; loses smoothness at any point
0o Whose trajectory is tangent to the boundary at least once

We begin the review by formulating precisely what we on the interval (@). Notice thatq, is not debned if at some
mean by Oapproximating the smooth motion by billiardsCts < t the trajectoryq,_ hits the corner set.

Il. PERSISTENCE RESULTS FOR BILLIARD-LIKE
POTENTIALS
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A tangency may occur only if the boundary is not and
strictly convex in the direction of motion at the point of tan- Condition llc. For all 2 d0; o; r V does not vanish
gency. A tangency is calledon-degeneraté the curvature in the Pnite neighborhoods of the boundary surfadgés
in the direction of motion does not vanish. If the billiard thus
boundary is strictly concave (strictly dispersing), then all the )
tangencies are non-degenerate. On the other hand, if the bil- r Qg 840; ®)
liardOs boundary has saddle points (or if the billiard is semi-
dispersing), then there always exist directions for which theand for all Q&q; Pj, .

tangency is degenerate. d
The billiard Bow may be expressed as a formal Hamilto- d—QVViQ Qi; P8.0: (6)
nian system,
p? o: q2 inth In this way, the rapid growth of the potential across the
Ho 725 b VbR Vo3 ¥a bl ;: qB8D: boundary is described in terms of the barrier functions alone.

Note that by Eq.(5), the pattern functiorQ is monotone

Theorem 1 states that the smooth Hamiltonian Row depne@crossCi\ Nj, so eitherQ > Q; corresponds to the points
by H %%p Vdg; blimits in a natural sense to this billiard nearC; insideD andQ < Q corresponds to the outside or
Row when the family of smooth potential&y); bsatisbes Vice versa. To Px the notation, we adopt the Prst convention.
the four conditions below. Conditiohguarantees that inside Condition 1ll. There exists a constant (may be inPnite)
D the motion is close to inertial motion. Conditiohl E > 0, such that as !'p 0 the barrier function increases
insures that the particle cannot penetrate the boundary. Coiftom zero toE; across the boundar;:
dition Il implies that the boundary is repelling and that the
reaction force is normal to the boundary, so the ref8ection lim WaQ; b Ya 0?_ Q> Qif @)
law limits to standard billiard reRection law (angle of reRec- b O B, Q<Q:
tion equals to the angle of incidence). Conditibh is less
intuitiveNit is needed for the smooth closeness results andBy EQ. (6), for small , Q could be considered as a function
for preventing the particle from sliding along the boundary. of Wand near the boundan®Q %2 Q; b Q {aV; b Condition

Condition 1. For any bxed (independent of compact IV states that for small a Pnite change iV corresponds to
region K intdDR the potential \&y; b diminishes along asmall change iQ:

with all its derivativesas ! 0, Condition IV. As !p 0O, for any bxed Wand W
o _ such that0 < W; < W, < E, for each boundary component
imjjVag; Pipikes: ¥40: (2) ¢, the inverse barrier functiol;W; btends to zero uni-

formly on the interval®/;; W, along with all its& p 1p

Let N&C bdenote a bxed (independent dfeighborhood of ~ derivatives. _ _

the corner set andlaC;bdenote a bxed neighborhood of the The use of the pattern and barrier functions reduces the
boundary componenC;. Debne N; ¥4 N&C,PiN&C b (we d-dimensional Hamiltonian dynamics in arbitrary geometry

assume that¥;\ N; % ; wheni 8]). Assume that for all t0 a l-dimensional dynamics, thus allowing direct asymp-

small 0, there exists pattern function totic integration of the smooth problem. This is the main
[ tool, introduced Prst in Refl for the two-dimensional case
Qx; b: N! R?! and in Ref.5 for the generati-dimensional case that enables

i the analysis of these high-dimensional nonlinear problems.

Barrier functions satisfying the above conditions include
which is C'P 1 with respect tay in each of the neighborhoods (W 1/4§;e @; log Q).

N; and it depends continuously on(in the C™?-topology, Notably, the theory applies also to the following common
so it has, along with all derivatives, a proper limitas 0).  setting. Consider a potentid{(q) which does not depend on
Further assume that in each of the neighborhd®dthe fol-  any small parameter. Assumgis bounded inside a certain
lowing is fulPlled. regionD and grows to inbnity at the boundary Bf Then, at
Condition lla. The billiard boundary is composed of sufpciently high energy valuk, the kinetic energy prevails
level surfaces of (@,0), inside D so the motion there is essentially inertial until the
Q3 ¥4OPjpc,y Qi ¥ constant ©) particle arrives at a thin boundary layer né@. By r&scaling

the Hamiltonian and momentad Y H=h;p % p= h, we

In the neighborhoodit; of the boundary componef (where  obtain the Hamiltoniarf} 1/49—22 b Vagpwhere % 1=h. Then,
Qdg; Pis close t0Q;), debnea barrier function W3Q; B conditionsIBIV are satisbed for reasonable choicesv(d)
which is C"P1 in Q, continuous in and does not depend that approach inbnity a@ (including classical models like
explicitly on g, and assume that there exisgsuch that Coulomb and Lennard-Jones potentials).

Condition Ilb. Forall 2 &0; ¢, the potential level sets Given a domairD, the one-parameter family of poten-
in N; are identical to the pattern function level sets, and thus tials Vé&y; Pbis called a family ofbilliard-like potentials on

o _ _ D if forany > 0; V&g Pis aC'Pl-smooth function which
vag; Plen, W&Qd; P Qs R (4)  satispes the four conditions I-IV.
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Theorem 1 (Refs.1, 5, and 38). Given a family of It is chosen so that the inverse barrier functighdw,; b
billiard-like potentials \&q; Pon D, let h denote the Hamil- tends to zero along with all its derivatives uniformly for

tonian Bow debned by H W (see Fig.l). The small parameteg; equals to
5 the corresponding level of the inverse barrier function on
H 1/4% b V&, b (8 @ :gobk¥%Qd; Rk The parameted; controls the close-

ness to inertial motion in the regiob,,. More precisely,
D is the region bounded by the surfac@éd; Pj,y, ¥4
Qi b did btogether with@dC b (i.e., excluding the corner
neighborhoods). The values dfo Pare chosen so that the
potentialV tends to zero uniformly along with all its deriva-
fives inD;,.. By conditionsl andIV, we may choose the pa-
rameters j; g;;d; such thatg, d;, namely,D,, D (see
below).

all g close toq, and all t close to T. If, additionally, the bil- To each set of the boundary layer parameters); di,
liard trajectory of g, has no tangencies to the boundary on e associat€™! bounds orQ; in D=D (denoted byMiat)
the time interval0,T], then h ! ob‘ in the C-topology ina  and onVin D,,, (denoted bymP),

small neighborhood af,, and for all t close to T.

on an energy surface M:H < £ vainfavey; PipP and let

b denote the billiard Bow in D. Ledy and gy ¥4 brq, be two
inner phase points, so that on the Pnite time intef@al]
the billiard trajectory ofqy has a Pnite number of collisions.
Assume all these collisions are either regular rel3ections o
non-degenerate tangencies. Them !'1 Ob[q, uniformly for

abx | e~ APy

The proof of the theorem includes integration of the Midi; P¥a  sup QAW Bj (10)
equations of motion at different components of the boundary i W H
layer, according to the rate at which the steep potential 0 I rpl

changes, see Refsand38for complete details.

We conclude that the map debned by the billiard Bow
from a local section af}, to a local section af}; is C'-close
(respectively C°-close) to the corresponding family of maps

that are debned by the smooth potentdt); b as long as " . &b
this segment contains only regular collisions (respectivelyCondltlon IV implies that theM; "Os approach zero ab 0

regular collisions and some non-degenerate tangenciesé‘?r any bxed > 0; hence, the same holds true for any sufp-

Using structural stability arguments, we can immediately |e_n;cIyS§on;/Iyl tendlng_go zle_ro 6|.D "3‘" ;hnc:mrjeqwred iéhb
conclude that for sufbciently smallregular non-parabolic exist. simifarly, condition! implies tha approaches

periodic orbits persist and that hyperbolic sets persist as welgeroas ! 0 for any bxedl, therefore, the same holds true

Such persistence results are in-line with the common intuitiorror,?lnygh_ct)'ﬁlc’f su{lr::c;en_ttlz.slgwlyﬂzenglng tc; i:]d@ R Asth
that the motion under steep potential is well approximated b - U, ftiollows that within L, € bow ot the Smoo

int
billiard (in Sec.lll, we show that this intuition is incorrect Hamiltonian trajectories i€'-close to the free Right, i.e., to
near non-regular rel3ections).

the billiard Bow. It is established in Reb. that by using an
Next, we provide error estimates for this approximation.

nmffad; bYa  sup  jj@vey; bjj (11)
q 2 I:)int
1 1 rpl

appropriate change of coordinates in each of the three
regions (insideD,;, in D nD;,;, and outside oD ), the equa-
B. Corrections and error estimates of the billiard tions of motion may be written as differential equations inte-
approximation grated over a Pnite interval with a right hand side which
tends to zero in th€'-topology as ! 0. Thus, Picard itera-

Theorem 1 implies that return maps of the billiard Bow tjons supply, in addition to the error estimates for the zeroth
and of the smooth Rows are close. We derive error estimates

and next order corrections for such return maps by consider-
ing a family of auxiliary billiard Bows in a modibPed domain

D . The analysis also provides a good global section for the
smooth Bow that may be utilized in numerical simulations.
Indeed, it is shown that the boundary of the auxiliary do-
main, @ , provides a transverse section to regular orbits of
the smooth Bow. More precisely, the smooth Bow debnes a
mapU on the set of regular (non-tangent) phase-points,

S Yafq¥a dy; pb: g2 @ ; hp; négbi> Og: 9)

We show that to leading orda&y is well approximated by
the corresponding billiard maB in D and provide the
explicit expression for the next order correction and bounds
on the error terms.
To construct the domaib , we debne, for each bound- FIG. 1. The partition of the domaiD into regions D, is an interior region

' in which V&, bis smaller thanmm®"ad; bin the C' topology.D is the auxil-
ary component G;, three boundary Iayer parameters iary billiard, so on itsith boundary component¥dy; b ¥ ;. Clearly,

d ;g0 iRdPall tending to zero with . The parameter D, D . The boundary oD provides a global sectios for regular
equals to the value of the potential on the ith boundarpof  reRections of the smooth Bow (see RB}.
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order approximation, higher order corrections to the return
map. We summarize below the explicit formulae for the brst
order corrections. These formulas may be useful in future

applicationsNthey may play in the near-billiard context the

same role as the Melnikov analysis does for near-integrable

systems.

The mapU onS (see Eq(9)) is composed of an inte-
rior Bight part and a re3ection partJ(“4aR F).

The interior map F (see Fig2): Letq 2 C; for somej,
and assume that the segmet ps with s 2 28; s &p; gb that
connectC; with C; lies insideD so thatqp ps &j; pp 2C;.
Further assume that the reBectiongCat are non-tangent, so
there is some > 0 such thatp; né&gbi> ¢ andhp; ndqp ps
ay; ppPik  c. Then, the free Bight map : &q; pE® gs;ps P
for the smooth Hamiltonian Row ©cdmPp ;i p jpclose
to the free Bight majp of the billiard inD and is given by

65

s Yaqp ps p r Vap ps P8 shls
0

po% B8aPp i p PR

Ps Yap r vagp ps Risp Og :8&Pp ip Bk
0

(12)

The Right time s &j;pb is OcdPp | p jbclose to
s®;gp and is uniquely debPned by the condition

Qis; P¥Q b goR
0

rQ;, rVvVapps P8 shis
. 1 . 0
sy, pb Vs &q; pP b hr O
b Og :88n""p b ;PR

S

13)
where r Q is taken at the bhilliard collision pointgp
ps &; gpwhereQdyp ps &;qR P VQi b go R

FIG. 2. Free Right between boundarigs and G.A smooth trajectory is

marked by a bold line, and an auxiliary billiard trajectory is marked by a

solid line (see Ref5).

FIG. 3. Ref3ection from the boundaBy. A smooth trajectory is marked by a
bold line. The auxiliary billiard trajectory changes its direction according to
the usual reRection law from the boundary Bf), namely,C; (see Ref5).

The ref3ection map R (see Fig.3): To formulate the
ref3ection lawR for the smooth orbit, we need to dePne sev-
eral geometrical entities. Consider a poipn2 C, and let the
momentump be directed outsid® (i.e., towards the bound-
ary) at a bounded from zero angle with. The smooth trajec-
tory of (g,p) spends a small tims,dg; ppoutsideD and then
returns toC, with the momentum directed strictly inside .

Let py andpy denote the components of momentum, respec-
tively, normal and tangential to the boundaByat the pointg,

py YamdgRpi; px¥%p  pyndgk (14)
We assume that the unit normal @ at the pointq, n(q), is
oriented insideD , sopy < O at the initial point. Denote by

Qyau; Pthe derivative ofQ in the direction ofn(q),

Qydy, P:¥hrQdy; R ndyPi

Recall that the surfacg, is a level set of the pattern function
Q& B and thus, we may study how the norma(q)
changes as one moves along the levelGetin the tangen-

tial plane) and as one moves to nearby level sets (in the nor-
mal direction). LetKdy; b denote the derivative of(qg) in

the directions tangent tG;, and letldg; Pdenote the deriva-
tive of n(q) in the direction ofn(g). Obviously,Qy is a scalar,

K is a matrix, and is a vector tangent t€; at the pointg.
Note thatQ, 820 by virtue of condition lic. Debne the
integrals

3
By 2
L& ppv2  Q° #; ds
& (15)
Py 2
I, Yalgpp v2 Q) #; Sds
0

and the vectod,
J&g; pb Ya 'Zasy;ppmq; Pplidy pKa; Fx =Qydd; P
(16)

Notice thatJ is a vector tangent t€; at the pointg and that
by Eq.(10),
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l12 4O M™B %0y .av™'h (17)

Lemma 3 of Ref5 asserts that for sufbciently small ¢
the reRection maR : &; pB® q; pbis given by

q¥qb Oc b Ygb pes,&;pP pOg 81 Bk
pYsp 2nd&gMpy b Ocrc’fo’DD

Yap 2ndglpy  pyJA;pP  ndgblpy; JAY; pPi
b Oc 0% Bh

(18)

Chaos 22, 026102 (2012)

denote a T-periodic, non-parabolic, non-singular orbit of the
billiard Bow. Then, for any choice ofd Bdd b such that
dhddpm™spMIB P! 0 as ! 0, for sufbciently
small , the smooth Hamiltonian Row has a uniquely debPned
periodic orbit P&pof period T % Tp 08 p miPp MI™H
which stays @ p m™Pp M®™close to P for all t outside
of collision intervals (Pnitely many of them in a period) of
length GBjdj p M3 Away from the collision intervals, the
local Poincare map near Pis Ocd p m*Pp M¥Peclose to
the local Poincaremap near P In particular, if P° is hyper-
bolic, then P is also hyperbolic and, inside Dthe stable and
unstable manifolds of Papproximate @3 p m™”p M¥>

where the collision time of the smooth Hamiltonian 3ow is closely the stable and unstable manifolds df & any

estimated by

#llaq; pb b Oy 187 b

5.8 pp YOc Vb 4 o b
y

19)

Combining the two maps, we established in Ref.
Theorem 2.Assume ; Pis a billiard potential family
on D and choosedi®s and {Os such thaddbk 0k

P B M?"a P! Oas ! 0. Then, on the cross-section S
(see EQq(9)) near orbits of regular rel3ections (that is, given

any constant G 0, near the pointsdy; pb 2S such that
magkpi  C andjmmdgbpij C wheredy; pb Y4B ag; pb,
for all sufbciently small o0, the Poincare mapU of

compact, forward-invariant or, respectively, backward-
invariant piece bounded away from the singularity set in the
billiardOs phase space; furthermore, any transverse regular
homoclinic orbit to P is, for sufbciently small, inherited by
P as well

Such results may be utilized to establish the existence of
specibc orbits when two small parameters are involved. Con-
sider a family of billiard tabled,, wherec corresponds to
some geometrical parameter. For example, in B6f.Dy is
an ellipsoid and. is a family of perturbed shapes, where
measures their closeness to the ellipsoid. &8t 0, the bil-
liard map inD. has transverse homoclinic orbits with split-
ting angle of orderc (see Ref.39). Then, provided
d p m™Pp M@ ¢, the smooth Row associated with the

the smooth Hamiltonian Row is dePned, and it istwo-parameter billiard potential familie¥ay;c; b on D,

oa™”p  p M¥bclose in the Gtopology to the billiard
map B¥R F in the auxiliary billiard table D.
Furthermore,
U %R F %B p Ocam®™™p p M3
Ya®R p RP &F p F,ppOc :88n°"p
YiB p U, p Og :88°Pp p M¥Bh

b M¥Ep

where Yimax i; M¥Py, maxMiap; U, % Oq :8mPp

b M and the leading and brst order correctiong,Fand
R, are explicitly given by Eqg12)19) andU, 2R F;
bR, F.

also has transverse homoclinic orbits. This inequality pro-
vides a bound ond&ck More generally, when, for sufpciently
smallc, a certainc robust property in th&€?® topology may
be proved, the smooth Rows attain the same property pro-
videdd p m®*p M ¢

To provide concrete bounds opassume hereafter that the
behavior of the potential near the boundary dominates the esti-
mate; we say thatdy; Pis boundary dominatedf V&g, Pand
its derivatives are smaller in the interior &, (i.e., in the
region bounded by the surfac€q; b ¥%Q; p did B than on
the boundary of this domain. This means that for boundary

dominated  potentials m®"ad; P ¥ssuppp,, i@vay; bjj v

us how close the smooth and the billiard trajectories aremay chmctJose ( d) so as to minimize the error bounds. Table

along their entire path:

Theorem 3.Under the same conditions as in Theorem 2

given a bnite T and a regular billiard trajectory ii®,T], the

time t map of the smooth Hamiltonian 3ow and of the corre

sponding auxiliary billiard are @ p m*p M¥Ppclose in
the C-topology for all t2 TnTg, where T is the Pnite collec-
tion of impact intervals each of them of lengtBjdp M3%R

C. Persistence of periodic orbits and hyperbolic sets

The (C')-closeness of the billiard and smooth Rows after
one regular reRRection leads, using structural stability argu-
ments, to persistence of regular periodic and homoclinic
orbits. The above error estimates allow us to establish quan-

titative version of these persistence results:

Theorem 4 (Ref.5). Consider a family of Hamiltonian

systems with billiard-like potential &; Pon D. Let Pap

summarizes the resulting errors of the billiard approximation

'for several commonly used potentials. The last column in the

table is achieved by insisting that the error (the third column) is
smaller tharc for r¥21. Namely, ifc represents a measure of
the C! robustness of some dynaral property (e.g., of the
transversality of homoclinic points), the last column shows how
small should be to ensure that this property persists for the
smooth Hamiltonian Row.

lll. EFFECTS OF SINGULARITIES: THE EMERGENCE
OF ISLANDS OF STABILITY IN TWO-DIMENSIONAL
FLOWS

Sectionll shows that regular hyperbolic billiard orbits

persist in the smooth and sufbciently steep Bows, namely,
that the common intuition that smooth Bows may be replaced
by billiards is justibed in such cases. Here, we show that this
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TABLE |. Error estimates for several potentials, assuming tg;b boundaryit are non-ergodic for arbitrar”y small. The size of these
inati 1 2p . . .

d?m'”alt'(on Pg’pfef;})/- We denotg Yeroprata 1andb Yagpoaas  islands decreases with, typically as a power law (see

ata see Ref. 5).

Tablell).
Potential Boundary width Error Impact intervalS* robustness In Sec.lll B, we consider the unfo!d_mg near cornérs.

To this aim, we assume that @t 0 the billiard tableDg has
wa; P g3 P m*p p M*® jdip MPP olcP a sequence of regular reRBections which begins and ends at a
e? jin j & & o&x3p corner (termed aorner polygoi. We prove that under some
e & P inj s @ &SP additional prescribed conditions, such a polygon may pro-

ey i, ! L . duce stable periodic orbits in@ wedge which emanates

&P T o ' oac*3p from the origin. The normal form for the return map near the

stable orbit turns out to be the area preserving Henon map.
Here, in contrast to the tangent case, the existence and the

approximationfails near singularities of the billiard Bow in stability of a periodic orbit which limits to the corner poly-
the two-dimensional case. Indeed, we prove that tangergjon depend on both the form of the smooth potential and the
homoclinic orbits, tangent periodic orbits, and some of thebilliard geometry. Namely, taking two different regulariza-
orbits that have end points in corners give rise to stable peritions of a given billiard family with a corner polygon, one
odic and quasiperiodic motion (hereafterNstability islands) regularization may produce a stable periodic orbit, whereas
in the smooth case. These results may be applied to familieshe other may have no periodic orbits limiting to this corner
of Sinai billiards that admit such singular trajectories. Theypolygon.
imply that even though the smooth ref3ections are as close as Now, consider an arbitrary one-parameter family of dis-
possible to those of the billiard (as shown in SBg. global  persing billiardsD.. One would like to characterize the
properties such as ergodicity are destroyed by the islandgappearance of islands for sufpciently snesdls a function of
Thus, even when the decay of correlations for the billiardc. Since dispersive billiards are hyperbolic, it is clear that for
map is exponential, the correlations for the smooth [Row, forsufbciently smalke the only mechanism for creating islands
any bnite , have recurrences and do not decay at all in thes the behavior of the smooth system near singular orbits of
islands. The prevailing conjecture, supported by simulationsthe billiard, namely, near tangent orbits and near orbits
is that the mere existence of such islands leads to a powewhich enter a corner. Generically, if no special symmetries
law decay of the correlations in the chaotic component dueare imposedDy has many near-tangent periodic orbits, but
to OstickinessO to the islands boundaries. We thus propase tangent ones. We conjecture that for generic families, a
that even though the singularity-induced islands are small fosmall deformation oDq to D, can transform a near-tangent
small , their inBuence on the decay of correlations in theperiodic orbit of perioch to a tangent one for sonweof order
chaotic component may be important. k ", wheren 1. This implies that for sufpciently smadj

To establish these results, we consider two-parameterery small (sizedy,3ek ") islands will appear in the smooth
families of billiard-like potentialsVdg; c; P of the billiard ~ Hamiltonian approximation to the billiard Bow iD.. On the
family D.. The geometrical parametar is introduced to other hand, we expe&g to have many corner polygons and,
unfold the billiard trajectory singularity. in particular, corner polygons with only one edgeNa mini-

In Sec.lll A, we consider the unfolding of tangent peri- mizing cord (a segment emanating from one of the corners
odic and homoclinic orbits, see Fig.>® We assume that at which has a straight angle ref3ection from the boundary).
¢ ¥4 0 the billiard tableDg has a tangent periodic/homoclinic Typically, these corner polygons will have the angles
orbit and prove that the smooth Row has a stable periodic
orbit near this singular orbit. For the tangent periodic orbit
case, we bnd the normal form of the local return map. We
then prove that this map has stable (elliptic) periodic orbits
for certain parameter values. In ti@e; b parameter plane,
these values form a stability wedge which emanates from the
origin. The dependence of the island phase-space area and of
the width of the stability wedge onand on the energy level
is found (see Theorem 5 below). Notably, we see that inde-
pendent of the regularization of the billiard (the particular
choice of the billiard-like potential), the existence of a tan-
gent periodic orbit always implies the existence of a stability
region in thedc; Pplane. On the other hand, the normal form
of the return map depends on the potential in a non-trivial
fashion (see Tabl#). Selecting a path inside, this wedge of
stability down to the -axis debPnes a one-parameter family

of Hamiltonian Bowsh;d; cd bhhat converge to the billiard FIG. 4. Tangent periodic orbits. The solid thick boundary corresponds to

Row and for which eIIiptic islands exist for all < the billiard tableDy, and the dotted dashed boundary corresponds to its
. . h 'h deformation for somec > 0. L is a simple tangent periodic orbit ddo,
namely, for arb|tra”|y small . Hence, even thouQ the whereas foc > 0, it is the regular hyperbolic orblit, . The return map t&

dispersive billiard is mixing, such smooth regularizations ofis provided by Eq(22) and Tabld! (see Ref3).
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and / 4, in general position, i.e./ ,,; will not be an orbit. Determining under which conditions such a bifurcation

extremum of the scattering function for the givér,. So,  occurs in non-dispersive billiards is an interesting problem.

according to our results, only a saddle periodic orbit can be  To establish the existence of elliptic islands and to bnd

born from any such polygon at sufbciently smalHowever, their size, we explicitly construct the return map near the lin-

due to the transitivity, we can expect sufbciently long cornerearly stable periodic orbit. To this aim, we further assume

orbits for which/ ., will be close to the extremum of the that near the tangent collision point, for any given energy

scattering function. Hence, some small islands can bdevelH, we can debPne a boundary layer region so that near it

obtained from these orbits afteiis tuned appropriately. the energyH may be scaled out. More precisely, we assume
Note that in applications where one needs to tailor a bil-that the billiard-like potential family{&g; ¢; B satisbes the

liard table with some given properties the idea of small per-following scaling assumption:

turbation of the billiard boundary is, in fact, irrelevant, so [S] There exist somd ¥4dd; Hb> 0, b ¥4bd; HR and

one can consider large changesias well. Then, producing  d; Hbsuch thatd;b; =H! 0,as ! 0, and the function

low period tangent orbits or minimizing cords with any given

values ofd ;,;/ ,,PisS very easy. In this way, one can pro- wa&Qp b; b

duce elliptic islands of a visible size in families of billiard- W aQPb Vs =

: ) X T - Hd

like potentials with mixing limiting billiard. For example,

.the experimental works of Kaplaet al>* shows that elliptic converges as ! 0to a CP! function WodQk either for

islands that arise due to corners signibcantly inBuence they > 0 or for all real Q. The convergence is'&-uniform on

statistics of escape from cold atom optical traps. any closed bnite interval of values @f from the domain of

dePnition. Furthermore, the integral

(20)

A. Islands produced by tangencies

Consider the family of dispersing billiard®. and
assume that at ¥4 0, the billiard tableDy has a simple tan- 1
gent periodic orbil (i.e., L has a single tangent collision at
a point where the boundary has non-vanishing curvature)converges uniformly for all sufbciently small
We assume that the dependenc®gbncis in general posi- This scaling assumption is satisped by all the potentials
tion, so that the tangent periodic orbit disappears, say, ahat we examined so far and serves to determine the de-
c< 0, whereas at the opposite sign@ftwo periodic orbits pendence of the scaling parameters @and the energy (see
are born, see Figl. One of these periodic orbits (Ppasses Table IlI). The following theorem is the main result of
near the former point of tangency without hitting the bound-Ref. 3:
ary, and the otherLf bhas a regular reRection close to that Theorem 5.Consider a family of dispersing billiards D
point. Away from the bifurcation point the persistence resultshaving a simple non-degenerate tangent periodic orbit at
imply that the smooth system has similar structure at sufbe % 0. Consider a two-parameter family of Cr 5, smooth
ciently small ; hence, one concludes that the smooth systentamiltonian Rows {&; cbwith billiard-like potentials approx-
must also have a bifurcation valwe at which the two peri- imating the billiard Bows a$; cP ! 0. Assume that the bar-
odic orbits LE; collide and disappear. Namely, the tangentrier function near the point of tangency satisbes the scaling
periodic orbit of the singular system becomes a paraboli@ssumption [S] for soméd; Hpand that the associated func-
periodic orbit of the smooth system. Moreover, just beforetion F is such that the range of values of¥ includes R
the coalescence of the orbits, one of them must becom@ll negative values)
linearly stable due to index arguments. In R&fwe prove Then, for small, in thed; cbplane, there exists a wedge
that the above scenario actually occurs (see also Réfand  C dd; Hp< c< CPdd; Hp (with some constant Q such
41). More precisely, we prove that for each bxed sufbcientlythat for all parameter values in this wedge, on the energy
small , there is an interval of values for which the smooth level H, there exist elliptic islands of width proportional to
Bow has a linearly stable periodic orbit. The underlying geo-dd; HR
metrical mechanism for the creation of this non-hyperbolic ~ The proof of this theorem is constructive. The asymp-
behavior is a horseshoe bifurcation near the tangent periodimtic normal form, as ! 0, of the return map of the

vv°aqt=€% (21)

TABLE Il. Islands scalings near tangent periodic orbits.

Potential Islands® scaling E-shift Q-shift Return map
WQ; b do; Hp o; HP bd; HP WodQb Fovb

e? 0 IndPHP e@ p—zpe v

a Qb 15 IngAHpb ! 0 InécBHp * e @ p—;’e v

¥ ;o 0 0 4 e,
InQi* & 3jlogj * ' jing® 0 jInQj #
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Hamiltonian RBow in anO&Pneighborhood of the tangent B. Islands produced by corners

periodic trajectory is the two-dimensional map, The other mechanism for creating elliptic motion in

a smooth Hamiltonian families that limit to dispersing billiards
uvav, v¥%n vpp—-FdbP On 2iIC u; (22) s corners. Here, we consider a sequence of regular billiard
J relRections that begins and ends at the same corner point of
the billiard. Such a sequence is denotedHgyand is called a

where corner polygon (see Fig5). Notice that such a sequence is
Oy not an orbit of the billiard. Denote bly the angle created by
F&vb Vs Wiavp x2hix the billiard boundary arcs joining at this corner, and debne
0 I ini! o tO be the angles created by the corner polygon with
) 16b1 0 dQ the corner bisector (notice the different directiond gf and
/a 2 WOEQDpﬁ. (23) out)- As opposed to the tangent singularity, such a corner
\

polygon may produce a number (possibly zero) of periodic
orbits of the smooth Row. The number and the stability of
the emerging orbits depend @oththe billiard geometry (in
particular, on/ j,;/ o, h) and on the form of the potential
Here, we assume that the potentials are billiard-like (satisfy-
the sum of the singular multipliers @f, which are the mul- ing co_nditions DIV of Secll)_ and that there_ Is SL."(pCient
repulsion from the corner regions so that trajectories cannot

tipliers of L, for c! 0P (i.e., the multipliers ofL if one o . .
! . . . remain in the corner for unbounded times (the scattering
disregards the infBuence of the tangent point). Since we

) . ) ; - assumption). We show that usually the produced periodic
consider here dispersive geometry, it follows thajt> 2 . . . . o
. . orbits are hyperbolic. Yet, by introducing an additional geo-
and the sign oh equals tod 1%, wheren is the number metrical parameter, it is often possible to create wedges in
of reRections ofL, at sufpciently smalc. The parameter b K, P 9

C¥c=d is the rescaled unfolding parameter, amis a ge- the plane of parameteis; Pwhich corresponds to the exis-

ometrical parameter debned by the billiard return Row neaFence of staple perlqd|c orbits.
To provide precise statements, we recall brst the behav-

U - . . L o de .
Lfetaet the/4 Crg‘;? t(r?e rgtufronr rgzgg)rsiévgngllnféis)br-::s(;]%r\?vs ior of the billiard near corners and then the behavior of
P P ’ yzed. smooth [Rows near corners.

hat it h Px int, that i igenval hav Wi - . .
that it has a Pxed point, that its eigenvalues have to sweep Billiard reRections near a corner may be characterized by

the unit circle asC sweeps a Pnite interval and that the ) i . . ;

. : . . .~ the outgoing anglet)s &u; hk Providedh > 0, an incoming
Birkhoff coefbcient cannot be identically zero along this . .
interval. Hence, one concludes that the return r(2®) has paraliel ray enters the comer with an angleand exits a
an eli .tic islan;j of bnite size (in the rescaled variables neighborhood of the corner after a Pnite number of rel3ections
andv) P (Np :¥a kBc or Ny p 1). The angles that the outgoing trajecto-

In. the original, non-scaled variables and parameters, th ies of the parallel ray make with the corner bisector are close
island.exists in ad—,size wedge of values and its area is c’)f %up to corrections associated with the curvature of the billiard
dp boundary near the corner) to one of two possible angles

order Hd?=na in the d; p,Pcross-section. Tablé presents : . o
the calculation of the scaling arsgtifting factors and the return Us Eiu ' hp, The angleuy, &u; hb|s r(_aallzed i thg upper bqgnd-
ary is hit brst, and) dau; hbis realized otherwise. The billiard

map function F(v) for several typical potentials. Notably, . ;
islands appear at any bxefvalue and scale as a power law in scattering angletJs du; hpand the number of reections at

(). Their scaling for large energids ¥ Hd bmay be calcu-
lated as long asld; HP! 0 as ! 0, see Tabldl. Finally,

we notice thatn, the sum of the singular multipliers af is
expected to increase exponentially with the number of re3ec-
tions of L. Hence, the tangent orbits with the smallest period
are expected to have the largest islands.

The above results are derived for two-dimensional dis-
persing billiards, or, more generally, for tangent periodic
orbits with exactly one tangent collision and with all
the regular collisions occurring with dispersing parts of
the boundary components. It may be interesting to study the
behavior near tangencies when some of the components are
focusing and the behavior when more than one tangency
occurs (with or without symmetry). A generalization of this
construction to higher-dimensional settings is possible and
should lead to a proof of the existence of center-saddle peri-

odic orbits, namEIy’ to proving non_hyperbo"C behavior FIG. 5. Corner polygon geometry. The return map to the cross secidr

for arbltr.ary small even when the Ilm't'ng billiard is is constructed by following the regular billiard rel3ectionsxat R and the
hyperbolic. properties of the scattering function near the corner (see4Ref.

F(v) is well dePned, by Eq21), either onRP or onR (i.e.,
on the domain of dePnition ofVy) and it is C'-smooth.
Table Il provides its form for various potentials. The pa-
rameterj is the billiardOs curvature at the tangencyis
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the corner may be explicitly computed by geometrical means ,, ¥4 U°d ,,; gk To produce a periodic orbit, the scattering
see, e.g., Ref4d. Whenh ¥, § the two scattering angles are function needs to be monotone and the global behavior near
equal:U, &i;hb YU &u;hb v 8 18P u. the corner polygon needs to be non-degenerate:

To describe the behavior of smooth billiard-like systems  Theorem 6 (Ref. 4). Consider a family &y; eb of
near the corners, we introduce an additional ingredient, th&illiard-like potentials limiting to a billiard in D and satisfy-
scattering functionThis function captures the main features iNg the scattering assumption and the corner scaling
of the scattering by the potential at the corner point. To@Ssumption. Assume D has a non-degenerate corner polygon
debne the scattering function, we make some natural scalinth incoming and outgoing angld¥ iy; / o, Then, for suf-
assumptions on the potential near the corner. Letx(y) ~ Pciently smalk, for everyg such that/ o, ¥aU"d j,; gPand
denote Cartesian coordinates with thaxis being the bisec- U’ inigP840, the Hamiltonian family has a hyperbolic
tor of the billiard corner, and the origin at the corner point Periodic orbit which, ase! 0; limits to the billiard corner

(see Fig5). We assume there exists a scaling polygon .
To prove this theorem, a return map of the smooth Row
1 to an interior cross section of the corner polygon is con-

aayP /daeba( Xy yeb structed. The outer part of the map is well approximated by
the regular billiard re3ections, whereas the behavior near the

such that in the scaled coordinates the potential has a Pnitrner is controlled by the scattering function. The monoto-

limtase! O, nicity of the scattering function together with the hyperbolic-
_ e _ ity of the outer map allows to prove that saddle periodic
Vb dx;yep dy;ep ! Vodx;yk orbits are created. If, on the contraty,,, corresponds to a

maximum or minimum ofU°d ,,; gPas a function ofj then
elliptic motion may emerge. As the appearance of such an
extremum is a codimension-1 phenomenon, to obtain a ro-
bust picture, it is necessary to consider here an additional pa-
rameter and to ensure that the appropriate non-degeneracy
conditions are set. We thus introduce, as in the tangent case,
1 a geometrical parametar which is responsible for regular
H 1/4§Epfp pf,b b Vodx; yk (24)  changes in the geometry of the billiard. The corresponding
two-parameter family of billiard-like potentialydx;y; e cb
is called a tame perturbation of the billiard-like potential
V&; y; e Obif the barrier functiondV do not depend on, the
pattern functionsQ, debned in some neighborhood of the
open boundary arcs without the corners, @emooth with
respect tac and the scaled potentialg dependC’-smoothly
on ¢ as well. Finally, this tame family is called non-
going angles /(,; ¥a limyp; arctar%g';; il o D). More-  degenerate if some explicit expression does not vanish (the
over, there is a well debned limiting scattering function ™8turn map to the corner along the regular reBections must

) : . hange withc in a generic fashion).
I ou YU ; gb whereg is a scattering parameter of a paral- ¢ ) , . )
lel beam entering the wedge st/ p1 with incoming angle Theorem 7 (Ref.4). Consider a family of billiard-like

/ . This scattering functiok)® carries the needed information potg nt[als \B Y, ebllm_ltlng toa b|II!ard in a domain D and .
on the dynamics near the corner. In particular, the range 0§at|sfy|ng the scattering assumption and the comer scaling

% - b ides the interval of allowed outdoi | assumption with a scaling parametddeR Assume D attains
Whil in» Frog,' esl/ f&'n erval opauowe %,u gslnglgngss. a non-degenerate corner polygon with incoming and out-
e bil & in" 74 ¥ 180T i Pps 18 S in ™ going anglesy ;,;/ o Let V& y; & chbe a one-parameter
there are natural examples in which the interVél j,\Pis  tgme perturbation of Wk y;ed satisfying the non-

example, wherh % the intervallpi & i,P degenerates to a % , . g bis a strict extremum (.e@U% i,;9 P %0 and
point, so generlgally, we expeld ;,pto be strictly larger than g_zuoa ;g P84 0), there exists a wedge of widtfdebin
loind j,PwWhenh is close ta§. Moreover, for sucth values, the  the & cb parameter plane in which the Hamiltonian Row
scattering function must be non-monotone (see Rdbr an  debned by the potentiald¢ y; e cb has elliptic islands of

Let the level setVydx;yb ¥h be a hyperbola-like curve,
which asymptotes the lineg % 6 xtangp Ce asx!1l

This level curve bounds an open wedds h which
extends towardx ¥4 pl . For the scaled system given by
the Hamiltonian

every trajectory with energld ¥“h lies in this wedge.

Under some natural assumptions \6nwe show that the
solutions to the scaled equations go towaxdé p1l ast!
pl andast! 1 , and that they always have asymptotic

incoming (i, ¥« limyq arctar%f, il ind g) and out-

explicit example). size @4’k where the islands limit to the billiard corner
A corner polygon of the billiard is said to be non- polygon ase! O.
degenerate if o, 2 1d ;,R and inPnitesimally small changes To prove this theorem, the return map is again con-

in/ 4 change the return position of the trajectory so that thestructed. Here, using the extremal behavior of the scattering
corner is missed. A billiard corner polygon with incoming function, it is shown that in some rescaled coordinates the
angle/ ;, and outgoing anglé ,,, may produce a periodic return map becomes, to leading order, the area-preserving
orbit of the smooth Hamiltonian Row (8) at small nonzero Henon map. Moreover, it is established that if the corner
if and only if / o, ¥4 U ,,; gPfor someg. Given a/ ;2 1,  polygon hasip 1 edges, then the bifurcation coefpcierin
there exists a set (discrete, in general) gfs such that the Henon map is proportional t?"=d?> and the rescaling
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of the phase space area includes factors proportional to Note that the nature of the billiard Bow at the corner is
k®'=d*. Hence, the size of the islands, in both parametetighly sensitive to the numerical propertiestpfwith bifurca-
space and phase space, decreases exponentially with thien points athy %2 § and hy 1/4Nh. The inBuence of these
number of reRections and as a power law wéthrhe non- !

- ) ) ) bifurcations on the limiting Hamiltonian Bow has yet to be
monotonicity of the scattering function naturally arises whengydiedriit may produce nontrivial dynamics (e.g., the analysis
its range is larger than the billiard scattering rangged ;,P

X of Sec.lV). The effect is especially relevant for small angles.
as occurs whehis close ta.

The stability of the corner-passing periodic orbits is V. FULLY ELLIPTIC ORBITS IN MULTI-DIMENSIONAL
solved here in terms of the scattering functionwhich is BILLIARD-LIKE POTENTIALS

debned only by the potential at the corner, and is almost in-
dependent of the geometrical properties of the underlying  The possibility of extending the two-dimensional results
billiard (the genericity condition is the only place where the regarding the destruction of ergodicity by the smooth poten-
geometry enters: this condition is always fulblled if the bil- tials to higher dimensions is not obvious. Intuitively, one
liard is dispersive and the corner polygon is never tangent t@ould argue that in the higher-dimensional setting there will
the boundary, while in the non-dispersive billiard where thebe always enough unstable directions to destroy any stability
boundary contains convex components, this condition mayegion and might conclude that the above results are inher-
be violated, but it may always be achieved by a small smoottently two-dimensional. From a mathematical point of view,
perturbation of the boundary). This fact is somewhat surpristhe appearance of islands of stability is natural in Hamilto-
ing in view of the behavior near tangencies. In particular, itnian systems which are not hyperbolic or partially hyper-
shows that contrary to the previously studied cases (of nonbolic, see Ref45 and references therein for th€!)-version
singular periodic orbits and of tangent periodic orbits), theof this conjecture. However, a specibc family of systems like
existence of the periodic orbit which limits to a corner poly- (1), limiting to the hyperbolic Sinai billiards, may turn out to
gon is not determined by the billiard geometry alone. be non-generic (see the introduction in Réj, and it is

In Theorem 7, which is concerned with the general caseunknown if generic C)-perturbations are relevant in the
we cannot know if a stable periodic orbit is produced by aframework of mechanical systems. Crucially, it is not imme-
corner polygon without computing the potential-dependentiately obvious whether the Hamiltonian systems under con-
scattering function. Unfortunately, there seems to be naideration are partially hyperbolic or not.
explicit formulas which would relate the scattering function In fact, the analysis we did for the two-dimensional case
to the potentiaV. We prove thatU%d ; gbis a smooth func-  (Sec.lll) can be carried out onto higher dimensions in order
tionand thatag! 6 1 itapproaches the billiard scattering to show that the smooth approximation of any dispersive bil-
anglesUg d ; hk Finding an analytical form fot) and for its  liard cannot be uniformly hyperbolic. The arguments are
critical values is probably an unsolvable question in the genbased on the same geometrical structure which ensures the
eral case. Indeed, it is knoWhthat in the casa/yd;yb ¥  uniform hyperbolicity of the dispersive billiards themselves. It
e p eV K (here, k¥ tang, so k2 80; 1D, the system was noted by Krylof?* that the key to the Boltzmann con-
given by Eq.(24) has no other analytic inthraIs which are jecture is a characteristic instability of the hard-sphere gas in
polynomial in momenta fok 8 1 andk 8 1= 3 (i.e., when the space of dimension two and higher. It is related to the con-
the corner anglen differs from p=2 and 2=3). The non- vex shape of the colliding bodies (so it does not take place in
existence of meromorphic integrals for this system is proverone-dimensional systems). Sinai showed that this instability is
in Ref. 43 (based on the method of Refd4) for an inherent property of dispersive billiards and built with co-
k 8 4=3mdm 1PP,m2 Z. While we conclude thatl can-  workers a deep mathematical theory which indeed relates this
not be expected to be explicitly written, it is straightforward instability to the statistical properties of the hard-spheres
to recover it numerically. gas™?* For a general dispersive billiard (a domain with a

Nonetheless, there is one case in which we can proveiece-wise concave boundary), the Krylov-Sinai instability is
the creation of elliptic islands by using only asymptotic in- expressed as follows: a parallel beam diverges after re3ecting
formation about the scattering function. This occurs when d&rom the boundary. In the phase space, this translates to a
billiard corner polygon bifurcates into a regular periodic cone-preservation property: the positive catee dp 0 is
orbit of the billiard: a billiard periodic orbit may detach from mapped inside itself by the derivative of the billiard Row
the corner point under a small perturbation of the boundanfhere, q is the vector of coordinates analis the vector of
if and only if / 4, ¥aUg & ;,; hR In terms of the scattering momenta). This is equivalent to the hyperbolicity of the bil-
function U, this case corresponds tp¥46 1 and it is not liard Bow: at each point of every regular orbit, there are stable
covered by the above mentioned Theorems 6 and 7. Thand unstable subspaces invariant with respect to the derivative
behavior of the corner-passing periodic orbits of the Hamil-of the billiard map, the unstable directions belong to the posi-
tonian Bow at non-zere has in this case a more profound tive cone and the stable directions belong to its comple-
relation with the billiard geometry: ment>'%%® This cone structure is independent of the

Theorem 8 (Ref.4). Consider a dispersing billiard-like particular shape of the dispersive billiard, so it creates a uni-
family, with a non degenerate corner polygon satisfyingversal reason for the ergodicity of any such billiard.
ot ¥aUpd 1R If U%y ,,;gbis monotone, then, for sufp- However, the dispersing property has other universal
ciently smalle an elliptic periodic orbit is produced by the consequences. As the unstable subspace belongs to the posi-
billiard corner polygonif %I:h< lin<?§. tive cone, it is uniquely parameterized by momenta, and
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since every collision changes the orientation in the momenta In our constructions, the stability zones in the
space, it follows that the orientation in the unstable subspace-dimensional settings are created by trajectories that enter a
Rips at every collisiort:® We can, therefore, always have a corner point. At the cornem codimension-1 surfaces meet
continuous family of initial conditions such that the RBow in a symmetric fashion, so that the corresponding solid angle
map (for some bxed time) will keep the orientation of theis controlled by a single geometrical parametefsee Fig.6
unstable subspace for some initial conditions (those havingnd Eg.(25)). We bnd, brst numerically for the 3-dimen-
an even number of regular collisions at the given time inter-sional cas€,and then analytically for the general cdsthat
val) and will change the orientation for the other initial con- a corresponding smooth steep potential family has a stable
ditions (those having an odd number of regular collisions);orbit in wedges of parameteds ; ebthat extend towards the
the transition happens at initial conditions that have singulat axis. Thus, our main result is:
orbits. There can be no uniformly hyperboltnoothRow Theorem 9 (Ref.6). There exist families of analytic bil-
with the same behavior (as there will be no singular orbits atiard potentials that limit (in the sense of SdtA, see Egs.
which such transition can happen). Therefore, the uniformly(2)E8)) to Sinai billiards in n-dimensional compact domains
hyperbolic structure of dispersive billiards cannot survive(in particular, for any Pnite n such billiards are hyperbolic,
any smooth approximation of the billiard potential. ergodic, and mixing), yet, for arbitrarily smaé, the corre-
These arguments do not preclude the existence of som&ponding smooth Hamiltonian Bows have fully elliptic peri-
hypothetical partially hyperbolic structure in a dispersive bil- odic orbits
liard of dimension higher than 2. However, in R6f.we (to- To establish this result, we generalize the geometrical
gether with Rapoport) showed that no such universaktonstruction depicted in Figs to n-dimensional billiards
structure could exist which cannot be destroyed by thedepending on a geometrical parametefsee more details
smooth approximation. Indeed, we showed that in anybelow). These billiards are Sinai billiards for ahy2 80; 1p
dimension fully elliptic orbits appear in a predictable way in and depend smoothly oh. We then consider families of
smooth systems that are arbitrarily close to Sinai billidtds, symmetric potentialaVég; | ; ebthat limit ase! 0, for any
thus providing the prst explicit mechanism for the creationbxed |, to these billiards. These potentials preserve the
of stable periodic orbits in high-dimensional smooth nearsymmetry ¢ $ ¢;); hence, the motion along the diagonal
dispersing-billiard systems. is invariant for all e values. We thus establish that for

FIG. 6. The billiard geometry and the stability islands in the three-dimensional case (the geometrical parameter in the bifurcation diagreaintdd relat
is debned a bit differently, see Ré&ffor details).
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sufbciently smalle these Hamiltonian Rows have a periodic with
orbit c&;| ; epalong this diagonal and prove that the Blo-

Xn
quet multipliers of this orbit may be found by solvingsmgle W eb 1/4} vV % b V % ; (27)
second order linear equation with a time-periodic coefbcient. M wa e

This coefbcient depends dne, andn as parameters, and it ] ) )
approaches a sum of delta-like functionseds 0. For certain ~ WhereQkaib(the pattern function of Sedl) is the distance
classes ofN&x: | ; eb(e.g., wherWax: | ; ebdecays as a power- romxto Gy,

law in the distance to the scatterers), we are able to analyze S X0

the as_ymptouc behavior of the emergmg.llnear second order Qb Vs qiz 2gp 12 1&%LE:nB  (28)
equation: we prove that for these potentials there are count- i

able inbnity values ofl , one of them given by;’Ln (i.e., v

bounded away fronh ¥4 0; 1), from which a wedge of stabil- ﬁ X L 2

ity region in thed ; ebplane emerges. Namely, we prove that Qnp 100P ¥4 a p— R

for any n, for arbitrarily smalle there exists an interval df vl n

values at whicled; | ; ebis linearly stable.

Next, we provide a few more details regarding the construc{recall that we scale %21). The potentials associated with
tion and the dePnition df andWax;| ; e These are then uti- ther-spheres (i.ey < ) are multiplied by the i factor so
lized to state precisely the stability results regarding the smootkhat for alln values the potential height near the corner is of
systems, including some estimates on ¢hdependence of the the same magnitude as the potential neaRfsphere.
parameter range of at which elliptic behavior appears. TheC¥! (k 1) smooth functionV satisbes at> 0,

Debne then-dimensional billiardOs domaid as the 0
region exterior top 1Pspheress' ! one sphereCyy 1 of vap> 0, Vab< 0 (29)
radius R which is centered on the diagonal at a distahce so the potentia|s are repe”ing_ We further assume‘ﬁ%(ap
from the origin, i.e., at the poird-da_;:::;LR andn spheres  decays sufbciently rapidly for large(similar to the assump-
C,; E ; C, of radiusr, each ce[;ltered along a different princi- tions in Seclll B), so there exists sone&> 0 such that
ple axis at a distance 0 | r~ -3 from the origin, i.e., the . 1
sphereCy is centered af0; E ;1 ; E ; Op(Fig. 6). To obtain a V&b .0 Ha asz!pl (30)
bounded domain, we enclose this construction by a large
n-dimensional hyper-cube pentered at the origin (we V‘,’"'One can take, for example, power-law, Gaussian, or expo-
look only at the local behavior near the diagonal connecting, . ntial potentials:Vezb Vs % 2 (a> 0), Vb Yexpd 2b

the radiusr spheresﬁl; E Cn t0 the radiusR sphereCrpy Vab Yaexpd zk These potentials naturally appear in appli-
and thus we wil not be Co'nce.r.rle.:d W'th the form of thg OUtT cations (e.g., the Gaussian form arises in the problem of cold
boundary). The diagonal lind; :::; nPintersects the radiuR- atomic motion in optical trap&® whereas the power-law and

sphere in the nqrmal dlrgct|0n gnd the sphefgsk ; Cn at exponential potentials are abundant in various classical mod-
their comraon intersection poinP; ¥4 d; ::;;n:R where els of atomic interactions)

neYarb e r2 128 i Thus, forL> Rp P nn., the The potentialWdg; eb given by Egs.(27) and (28) is
diagonal line dePnesermer ray symme}ric with respect to any permutation of tlgOs
d ¥ 1, E ;nk This strong symmetry enables us to derive a
cY% & :inbjn 2 nC;Ep_R one-degree of freedom equation for the motion along the di-
n agonal. To study the stability of the periodic orbit, one needs

to linearize the Hamiltonian equations of motion, solve

that starts at the cornd?;, gets rel3ected from the radibs- . . . i ;
the corresponding r2dimensional linear system with the

sphere, and returns & (and then gets stuck as there is no . odi el ; i Brih L initial
reRection rule at the corner). time-periodic coefbcients for a set of drthonormal initia

Notice that the dynamics in the billiard is unchanged cpnd|t|qns, and bnd the Stab'“f[y of the assomaﬁ@ 2nk
when all the geometrical parameters are proportionalI)p'mens'Onal monodromy matrix. SUCh a computation F”?a”y
increased; hence, with no loss of generality, we may se ads fo a set ofr2FquL_1et multipliers (2 of Wh'Ch are trivi-
r41 and regard all the other parameters as scaled Hyis ally one). The symmetrlc form of the potential, to'gether'wnh
convenient for us to express the scaledL through some change of _coordlnateg, allows_ to red_uce this formidable

s task to a much simpler oneNto solving a single second order
1 12 L R P nn homogeneous equation with a time periodic coefpbcigit:
l % 1 1 Pt d¥a < (25)  adhy ¥ 0: Indeed, we establish that then Floquet multi-
pliers are simplydl; 1, k;%; ki B wherek is the eigen-
value of the monodromy matrix of this second order linear
equation. The periodic coefbcieaft) is explicitly found in
terms of the diagonal periodic orbit (which also depends on

Consider the smooth motion in the scaled billiard
region, governed by the Hamiltonian equatid), i.e.,

X 2 the energy leveh) and the geometric parameters of the prob-
H Y EI b W&, E ;0 R (26)  lem. In particular, the dependenceatf) on n turns out to be
iVl particularly simple, allowing to study in a transparent
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manner the role of the dimensiam A careful (non-trivial)  where GD;aP> 0 is (non-trivially) computable function

analysis of the scattering properties of the second order equarhich depends only oa

tion leads to the following general result: Rewriting the above formulas (withc{,) as shorthand
Theorem 10.Suppose the potential function V satisbesnotation), we obtain

Eqgs.(29) and(30). Then, given any B 80; 2VdPbbany natu- ~

raln 2 and any positive d and R, there exists a tending to & ht= ork: ab Dy |1 oXab

zero countable inbnite sequende |,>1|,%1= n> n 17777 g “n 1dalp ap

E > 1,> E > 0such that arbitrarily close to every point

d Yl ,;e¥0R there are wedges @ ; ebat which the orbit  In particular, to leading order, the wedges relative _heights

cis linearly stable are independent of the energy level and decay a—g ]
More detailed information regarding the wedges characwith the dimension.

ter may be obtained in two speciPc cases as explained next. The analysis is performed only for the symmetric case.

First, we may estimate thga wedges heightiprovided the It is quite possible that one may extend it to the nearly sym-

scaling parameteb 1/4ml 1|n2 is sufbciently small and the metric case. Indeed, it is easy to break the symmetry, by, for

following integral (which is well debPned for potentials satis- example, multiplying the term¥&Qy&b=ebin Eq. (27) by

fying Egs.(29) and(30)) is positive, slightly different coefbcients,
o)
b1l pertx_.. .
| 1/4{92_ V% dz : Vo, eb Ya @ p dacbvidn; ek (31)
h v te=2p h 2vab

whereay are uniformly distributed on the unit interval (i.e.,
Theorem 11.Provided Bhb> 0, the diagonal periodic orbit we consider the case in which each sphere has a slightly dif-
cis stable ford ; eébvalues in the wedge enclosed by the twoferent potential). The phase portraits of the perturbed motion

curves, with d % 0:001 are shown in the right column of Fig.(we
) L , do verify that the projection plots oK ¥ jjx  cdObjjP Y4
11 1 11 jix_ cjj remain bounded, namely, that there is no instability
1 . - AN ’ ’
SR TE Papr Po&m mz
and
1 |aqp1—|2 1p } ' p 0 17|2 :
MW e Py SRR

In particular, notice that the wedge height is polynomial
in n-namely, the region of stability does not shrink exponen-
tially with the dimension as one may have expected.

Second, the wedges structure for the power-law poten-
tial case may be described in detail (see Rdbr numerical
veribcations of these formulas),

Theorem 12 Consider the power-law potential

a
VQ; eb ¥ g . Then, for sufpciently sma#l and | , there

exists an inbPnite number of disjoint stability tongues in the
d ; ebplane at whiched; | ; € nbis linearly stable. For sufp-
ciently large k, the kth stability zone emanates from tthe
axis near the bifurcation value,
S
| 1 2&p 1P
kK k an 1P

and extends up to theeaxis, intersecting it near

&ap 1p 4 Op=2

2
3 h=2p7 — &inhPdh
& an 12 o O
at a stability interval of length
e, datap 1b@pe s PP
a:)d:% kG0; adlal p dp n 1 h , FIG. 7. Islands in a 20-dimensional symmetric (left) and asymmetric (right)
P ’ R systems. Return map projection to thxg; ;) plane is shown (see Re§).
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in any direction of the 20-dimensional phase space). We see We call d,;u;,P regular, if the corresponding orbit
that such a modibcation appears to preserve the elliptic chammakes a Pnite number of ref3ections from the obstacles
acter of the periodic orbit (this is not an obvious statement adefore leaving the scattering region, and all these reRections
the Flouget multipliers ofcdb are in the strong 1:1:....1 are regular (i.e., the orbit does not visit the corner points and
resonance). all the reRections are non-tangent). Then all close-by initial
The considered example is clearly highly symmetric andconditions are also regular and the scattering magt'is
is not directly linked to the smooth many particle case (thesmooth.
Osmooth Boltzmann gasO). Nonetheless, the possibility of ex- The complement to the set of regular initial conditions
plicitly constructing stable motion in smoothdegree of free- is a compact set of measure zero. There are exactly two sour-
dom systems that limit to strictly dispersing billiards is now ces for non-smooth behavior &: interior singularities that
established. Thus, the grand program of proving that arbitraare associated with singular reRections from the scatterers,
rily large systems of particles interacting via a steep repellingand trapping singularities which correspond to the number of
potential may, at arbitrarily high energies, have fully elliptic reRections tending to inPnity.

orbits appears to be reachable in a few years work. The interior singularities have a simple signature in
terms of the scattering map. Namely, if the trajectory is tan-
V. SCATTERING PROBLEMS gent to the scatterer boundary at one of the reBections, then

Scattering problems with smooth steep potentials appear iH®P has a square root singularity fold. Notice that both
diverse beld of physics (notably chemical reactions) and ar/@PandTdbare continuous across the tangent singularity
thus of practical signiPcance. In these problems, one considel&€ (€€ Fig.8). If the trajectory ends up in a corner, then
a potential which rapidly decays to zero outside a compact dothe scattering map is not debned at that point, having a dis-
main (called the scattering region) and examines the evolutiofontinuous behavior of botidbPandT(b) along this corner
of a ray of initial conditions that hit the scattering region. Math- Singularity line. . _
ematically, the key ingredient for analyzing such problems is ~ The trapping singularities have a more complex signa-
the detection and characterizat of the compact invariant set ture. Denote byRy the measure zero set of @lin; u;,Pfor
associated with the potentialh& methods described in Secs. Which the orbit is trapped in the scattering region (i.e., it
IBIV may be applied to study such questions when the potentidh@kes an inbnite number of re3ections and does not go to in-
is steep, or at high energy levels (if the potential is unbounded)PNity). Note that the scatter@ may have a nontrivial com-
We describe here some of the results achieved, together with@ct invariant setk, i.e., the set of all orbits that stay
Rapoport, in the two-dimensional settifig. bounded for all time (from; . to pl ) The above debned

We start with the formal debnition of the scattering mapS€tRk consists of all the initial condition&bin; u;,Pbelong-
for the limit billiard case. Namely, consider a scattering bil- ing t0 thestable manifolddf K. o
liard in R that is, a collectionD of disjoint hard-wall Re_calllthat we consider here Sinai scatterers, so a[l regu-
obstacles ;) which reside strictly inside the centered at lar orbits in K are hyperbolic. If the hyperbolic sef is
zero disc of a sufbciently large radi®& We callD a Sinai ~ Pounded away from the singulariy set (corners and tangent
scattererif eachD; is bounded by a bnite number 6P 1- coII|S|ons)_|n the phase space, we call t.he Sinai scatregr
smoothstrictly convex(when looked from inside ob;) arcs ~ Ular- In this case, the scattering function near the trapping
that meet each other at non-zero angles. singularities has a characteristic self-similar structure, e.g.,

Let a particle come from inPnity with the momentum for everyu;, the values obi, which correspond to the trap-
&y pyb ¥4 2hdcod,; sinu;,R whereh is the energy (recall pmgzlformf?hCart]tcE)rl set wh]icrd|(swdlffeomorph|c to atransverse

: . section of the stable manifold ¢.
that the energy is conserved). The parallel rays correspondm% The set of regular Sinai scatterers is robust under smooth

to the same value af,, are distinguished by their impact pa- . ; . .
rameterby,; the absolute value o, equals to the distance perturbations. Indeed, the uniformly hyperbolic invariant set
m " is structurally stable, i.e., a sufbciently small smooth de-

between a particular ray and the origin. Given the energ . . :
value, the incoming orbit is uniquely debned by the dataformatlon of D does not change the symbolic dynamic

au;,; binb For typical initial conditions, orbits that come from description of the dynamics oK. In order to see that the set

L L . of regular Sinai scatterers is non-empty, consider three iden-
inPnity must go to inPnity (by Poincare recurrence theorem),. . . . ' .
vy 9 ty (by ) ical circular disks of radiua that are centered at the vertices

The outgoing angle and impact parameter are determined b p lateral trianal ith ed f lenaB Wh
elastic ref3ections from the obstacles Thus, the scattering an equiiateral trangle with edges ot 1eng en
R > 3a, the invariant seK is bounded away from any tan-

. . | . . H H _
Map S : Bin; UinP ! 8 bou; Uoui oulb i dePned. The interac gent trajectory, and is fully described by symbolic dynam-

. . . 1/ i | LB 2R h . . P
tion time to is debned ago, s imR ! p1 o Where s on 3 symbols with a simple transition matrix.

LR denotes the length of the orbit inside the centered at zero  \We call the Sinai scatteresingularif the set of trapping
disc of radiusR. For a bxedu,,, the scattering functions)  singularities is no longer separated from the interior singular-
andT are debned as ities, and the simple Cantor-set structure is lost. This is due
3Udb T&PP Yad,,&; U, P teud; u,,bP to the fact that the invariant sé€ now includes t.angent
and/or corner orbits. For example, as the three discs of the
The scattering functions and their fractal properties had beeabove mentioned example get closer, tangent orbits are cre-
extensively studied by numerical simulations, see, e.g., Refsated; At each such bifurcation point the phase space partition
34E87. changes and, as the scatterers get closer, the transition matrix
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FIG. 8. The scattering map (see R&.

becomes more complexNin the limit at which the discs ensures that near regular initial dafl,;u;,P the smooth
touch each other, inPnite Markov partition is needed and thecattering map converges to the billiard scattering map as
invariant set has a full measufgFor a general, say, one- e! 0, along with all derivatives. Thus, for smooth-potential
parameter family of Sinai scatterers, it is plausible thatapproximations of regular Sinai scatterers, one expects the
parameter values that produce singular scatterers PIl norscattering map to have the same structure as for the billiard
empty intervals. More precisely, we suspect that tangentimit. Namely, we have the following result.

bifurcations of K) occur on a dense set of parameter values  Thegrem 13.Consider the Hamiltonian system (1) with
belonging 1o these intervals (similar to the Newhouse phey rapidly decaying at inPnity billiard-like potentialdg; epin
nomenof®*). it may be quite challenging to study the the complemerD to a regular Sinai scatterer D. Le, be
structure of the scattering function for these singular Sinai,e maximal compact invariant set of the billiardbh Then,

scatterers. _ _ for all small ¢ the maximal compact invariant si€ in the
Now, consider the system (1) with a steep potential tha%nergy level 12 30; EPis topologically conjugate toKn.

limits to a regular Sinai scatter. Namely, we consider smooth ;4reqver, the local stable and unstable manifold§fare
systems that satisfy conditionslV of Sec.ll in the domain C' close to the local stable and unstable manifoldigf

D ¥4 R?nD, with an additional assuption that the potential The theorem implies that the scattering function has the
decays sufbciently fast g ! 1 . JFor example, we consider game qualitative structure for all smal In particular, it has

potentials of the formVdg; eb Y4 :1/41 EV QT&‘D , where the perfect self-similar behavior associated with regular hyper-

Qipa %0, Qipo > 0,E E > 0,and, for soma > 0, bolic scattering, see Ref84E87. In the case okingular Sinai
4= 4 scatterers, the behavior of the scattering function for the
1 smooth Bow is quite different. In particular, one cannot expect

Vidob  1; Vi%agb< 0; Vi Y0 2 for z 10 (32)  gpyctural stability a® varies. As our results suggest, the main

effect of the smooth potential is to destroy the hyperbolicity of
By construction, for all energieb 2 80; ER for sufpciently  the invariant set of the singular Sinai scatterer. Indeed, billiard
smalle, the HillOs region of the smooth Row approaddes  singularities give rise to elliptic periodic orbits of the smooth

Since the potential decays fast, every trajectory whichscatterer.

tends to inbPnity is asymptotic to a straight line, so there are Numerous numerical studies of scattering by smooth
well-debPned asymptotic directian and impact parametd. potentials demonstrate that elliptic islands play a signibcant
Thus, one may debne the scattering map of the smoottole in the structures of scattering maps. In particular, it has
Bow, S®: &in; uj,P 8 bE,; us,i s, Applying the regular been proposed that the existence of such elliptic component

out’ = out? N .
smooth limit results of Ref5 (see Secll C) to this setup leads to OfatO fractal behavior of the scattering funttieh.
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However, in general smooth systems, it is difpcult to describel. For a sufbciently smak, the non-hyperbolicity effects
invariant sets and to isolate the scattering signature of each in- are small so the scattering function looks self-similar, and

gredient. Examining the behavior of smooth systems that limit

its fractal dimension approaches that of the billiard scat-

to singular scatterers provides a method for studying such tering function at the given value &f. Discontinuities in
effects. Indeed, by utilizing the singular mechanisms for creat- the billiard scattering function may lead to additional sin-

ing stability islands (Sedll), we can examine the scattering
by small stability islands with control over the size and struc-

gular components in the scattering function of the smooth
Bow (fourth column of Figl10).

ture of the islands and of the rest of the invariant set. In Ref2. Increasinge towards and through the internve d b d b

8, two symmetric ~geometrical settings of singular Sinai scat-
ters (with cornersNFigs9(a) and9(b) and with tangenciesN
Figs.9(c) and9(d)) were thus examined.

leads to a sequence of Hamiltonian bifurcations of the hyper-
bolic periodic orbits that produces elliptic orbits. These bifur-
cations appear in the scattering function as the merge between

From these studies, the following scenario emerges (see several unresolved regions. Feinside the wedges of stabil-

Fig. 10). Let] denote a bifurcation value for which the hil-

ity, the signature of non-hyperbolic chaotic scattering shows

liard invariant set has a singularity (e.g., a tangent periodic upNthe density of singularities is large and does not appear

orbit or a corner polygon). Then, as discussed in Jk¢.
under some conditions on the potential and the geontétry,
a stability wedge in thél ; ebplane emanates frod ;0B

to converge to a discrete set as further magnibcations are
employed. We notice thae stability intervaté¢ d Be’d b
indicates the stability propertgf a single periodic orbit. At

i.e., the smooth Bow has stable periodic orbit for all parame- least near the period-doubling end of this interval, there exist

ters in this wedge (as in Fi@). For a bxed value intersect-
ing this wedge, there exists an interval & values,
% d R d b, at which the periodic orbit is stable. Fixing

a cascade of other periodic orbits that are stable; hence, the
visible non-hyperbolicity interval is certainly larger than
% d b d b (second and third columns of Fity).

such a Ogeneri¢Ovalue close td , where atl the billiard 3. Beyond the stability interval, intervals of seemingly

invariant set is hyperbolic and non-singular agd b are
small; the following sequence of bifurcations occurseds
increased from zero:

hyperbolic scattering or other interval of stability (that
stem from other stability wedges) can be encountered
(Prst column of Fig10).

(W)

FIG. 9. Singular Sinai scatters. (a) and (b) have corner singularities, whereas (c) and (d) provide a simple realization for a tangent bifureativarcdrnt

set (see ReB).
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FIG. 10. Self-similar (outer columns) and singular (middle columns) scattering functions: close-ups of unresolved regions of the scatteEnmg féece
for the corner case with %4 2;1 ¥ 0:9, and ¥4 0:1842 0:1403 0:1146 0:06654 are shown. The second and third values correspond to values that produce
elliptic islands (see ReB).

4. Alarger increase ieis problem-specibc and may involve This may include time-dependent billiards, billiards on non-
topological changes of the corresponding HillOs regiof®at manifolds, billiard motion with added magnetic beld,
(i.e., homoclinic bifurcations). In our examples, it Pnally impact systems where the potential does not vanish inside
leads to the reduction of the invariant set to one unstabl¢he billiard domain, systems with dissipation, and non-elastic
periodic orbit and then to the destruction of the invariantreection law. For all these system classes, after the regular
set. collisions are studied, one should analyze the effect of

smoothing the system on the behaviour near singular orbits.

Shis includes studying the grazing bifurcatiéi and its

smooth approximations.

For the billiards themselves, the analysis of singular
orbits and their transformations at a smooth approximation is
far from being complete. For example, we have not studied
the general behavior near corner orbits in dimension higher
than 2 (in Ref.6, we considered only a particular case of a
very symmetric multi-dimensional corner). Nor have we
studied the behavior near corner angles large thaiwe
have proved the birth of elliptic islands out of tangent peri-
odic orbits of dispersive billiardsNwhat happens in the non-
VI. CONCLUSIONS AND PERSPECTIVES dispersive case, when the tangent periodic orbit hits both

convex and concave boundary components? What happens
The near-billiard paradigm allows to analyze a variety near degenerate tangencies, e.g., when the billiard orbit has a
of dynamical properties of multi-dimensional non-integrable cubic tangency to the boundary? Such tangencies can appear

Hamiltonian systems. We conclude by listing some of thenear an in3ection point of the billiard boundary (in the two-

problems that require further research. dimensional case) or near any boundary point where the cur-

One future direction concerns establishing the correvature form is not sign-debnite (in the multi-dimensional
spondence between the smooth system and its singular limitase). In the billiard, an orbit with degenerate tangency can-
near regular collisions for a wider class of impact systemsnot, typically, be continued past the tangency point, so the

The above description suggests that by choosing a on
parameter family of steep potentia®;ed PP ! ol ;0B
such thated b 2 & d be’d bbfor all | values the fractal
dimension of the corresponding scattering function is close
to two for arbitrarily smalle On the other hand, we have
seen that for a bxed 8l , for sufpciently smalle
hyperbolic-like chaotic scattering is observed. Thus, hear
the fractal dimension of the scattering function can be con-
trolled by varying the appropriate combination gfd
| P=eandh as derived from the form of the return map near
the singular orbit (see Selil).
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