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Nonlinear multi-dimensional Hamiltonian systems that are not near integrable typically have
mixed phase space and a plethora of instabilities. Hence, it is difÞcult to analyze them, to visualize
them, or even to interpret their numerical simulations. We survey an emerging methodology for
analyzing a class of such systems: Hamiltonians with steep potentials that limit to billiards.VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4722010]

Very little is known regarding the dynamics in high-
dimensional, far-from-integrable systems. Until recently,
in such systems, local analysis near Þxed points and peri-
odic orbits or geometrical analysis near speciÞc homo-
clinic or heteroclinic structures have been the only
available analytical tools. Numerical studies of such sys-
tems are possible, yet, due to the mixed phase space prop-
erty, these are difÞcult to interpret. Here, we survey a
methodology which we (the authors and, in part, in col-
laboration with Anna Rapoport) developed in the last
decadeÐthe near-billiard paradigm. In this paradigm, we
can study the local and global properties of classes of
multi-dimensional smooth systems by analyzing the sin-
gular billiard limit for various types of multi-dimensional
systems. Notably, billiards provide a rich playground for
dynamicists. Billiards can be integrable, near-integrable,
of mixed phase space or uniformly hyperbolic (yet singu-
lar), and in many cases, their complex and rich dynamics
have been understood in great detail. Billiards and simple
impact systems are commonly used to model the classical
and semi-classical motion in systems with steep potentials
(e.g., in kinetic theory, chemical reactions, cold atomÕs
motion, microwave dynamics). However, the correspon-
dence between the smooth motion and the singular bil-
liard model occurs to be not immediate. This
correspondence is the main topic of the present article
which summarizes the works of Refs.1Ð8. On one hand,
we show that a proper limit may be formulated, so that
some basic dynamical properties of the billiard are inher-
ited by the smooth ßow (Sec.II and parts of Sec.V). On
the other hand, more surprisingly, we show that some of
the crucial features of the billiard ßow are not shared by
the smooth systems (Secs.III ÐV). Nonetheless, even in
this latter case, we are able to learn about the properties
of the smooth ßow by devising singular analysis tools.

I. INTRODUCTION

The original motivation of our work is related to the
Boltzmann-Sinai ergodic hypothesis. From the mathematical

point of view, this hypothesis states that the gas of elastically
colliding hard spheres is an ergodic system. While this prom-
inent problem is still unresolved, the work on it led to funda-
mental developments in the theory of dynamical systems.9Ð14

The starting point of this analysis is the observation that the
dynamics of a gas ofn hard spheres in ad-dimensional spa-
tial domain is governed by a semi-dispersive billiard in an
Nd-dimensional space.9,10,14

The Òsmooth Boltzmann gasÓ corresponds to the next
order approximation where the motion is modeled by a
(Hamiltonian) system of classical particles which pair-wisely
interact with each other via a smooth steep repelling poten-
tial. At large kinetic energies, the interaction between two
particles becomes essential only when they come very close
to each other, i.e., at very short intervals of time that corre-
spond to a near collision. As Einstein wrote: ÒBoltzmann
very correctly emphasizes that the hypothetical forces
between the molecules are not an essential component of the
theory as the whole energy is of kinetic kind.Ó15 In other
words, the hard-spheres system appears as a universal model
for the interaction of classical particles at high kinetic ener-
gies. The huge number of degrees of freedom in a typical
molecular system implies that statistical means should be
employed for the analysis. This is the main motivation
behind the quest to prove the Boltzmann-Sinai ergodic
hypothesis.

We propose that one has to actually address the question
of how the statistical properties of the hard-sphere model are
translated back to the case of a smooth steep potential. Fol-
lowing the Fermi-Pasta-Ulam numerical experiments and the
subsequent discovery of high-dimensional integrable sys-
tems, it was realized that the large number of degrees of free-
dom is insufÞcient for justifying the statistical approach.16

One needsinstability to allow the system to ÒforgetÓ its ini-
tial state, so a universal probability distribution could estab-
lish itself in the space of system states.

We notice that instability in a dynamical system is a dif-
ferential property (having to do with the rate at which close-
by initial conditions diverge in time). Hence, to transfer the
statistical description of the hard-sphere system to the
smooth Boltzmann gas, one needs to control thederivatives
of the approximation error. Since the hard-sphere system has
singularities, this becomes a delicate issue. In the series of
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works that are reviewed here, we develop methodologies
which could be used to address this problem.

In particular, we show that the speciÞc instability of
dispersive billiards (i.e., a uniformly hyperbolic structure),
cannot universally survive a smooth regularization of the bil-
liard. Since the uniform hyperbolicity of the dispersive
billiards appears to be the underlying mechanism of the ergo-
dicity of hard-sphere systems, it follows that the hypothesis
that the statistical properties of the smooth Boltzmann gas
are potential-independent and similar to those of the hard-
sphere gas could be correct on a Þnite time scale, yet it can-
not be true in the inÞnite time limit.

This time scale must, for all practical purposes, be large
enough in systems with huge numbers of particles. However,
for small number of degrees of freedom, the changes in sta-
tistics can become observable (see, e.g., Ref.33). Thus, our
results stress the importance of analyzing the Þnite-time
behavior of the system and of analyzing how this behavior
scales with the number of degrees of freedom. These issues
become increasingly more relevant as experimental and nu-
merical capabilities develop.

More generally, billiards and impact systems arise in a
wide variety of science and engineering applications.17Ð19

The singularities in models with impacts often lead to ambig-
uous results: it is not always clear how to continue solutions
through singularities, especially in systems with friction.
A natural method of resolving such difÞculties is to recall
that the impact system is, in many cases, a simpliÞed model
for forces that grow very fast across certain boundaries, the
surfaces of impact. So, regularizing impact systems by
smooth models with sharp growing forces near the boundary
is a natural approach. One can then study the smooth model
and see what conclusions survive in the limit.17,20,21 How-
ever, one must also be sure that the result is independent of
the particular choice of the smooth approximation.

This last question might seem to be easy for the friction-
less case where the energy is preserved and the forces are nor-
mal to the impact boundary. Under these conditions, for any
smooth regularization, one recovers the universal elastic colli-
sion law: the angle of reßection is approximately equal to the
angle of incidence. This observation can indeed be enough
when we are interested in some topological properties of the
system. However, if we seriously want to study the dynamics,
we must analyze differential properties. Such an analysis leads
to the non-trivial question: ÒUnder which conditions on the
smooth regularization of the billiard, the derivative of the dif-
ference between the reßection angle and the incidence angle
with respect to initial conditions is close to zero?Ó

We formulate the above ideas by the following singular
perturbation problem. Consider Hamiltonian ßows induced
by a one-parameter family of steep potentials depending on a
steepness parameter� ,

H ¼
Xn

i¼1

p2
i

2
þ Vðq; � Þ; Vðq; � Þ !

� ! 0

0; q 2 Dn@D;
E; q 2 @D:

�
(1)

Here ðq; pÞ 2Rn � Rn; D � Rn, and @D is a piecewise
smooth. The potentialVðq; � Þ is non-negativeCrþ 1-smooth

function. The derivatives ofVðq; � Þnear@D grow without no
bound as� ! 0. The vectore¼ ðE1; E2; É Þ provides the
limit values of the steep potential on each of the smooth con-
nected components of the boundary. On each such compo-
nent, the constantEi may be Þnite or inÞnite. Our goal is to
compare the behavior of the orbits of system (1) at sufÞ-
ciently smallewith the billiard ßow inD.

The persistence results of Refs.1, 2, and5 are concerned
with comparing the behavior near regular billiard orbitsÑ
orbits that hit the boundary ofD at non-zero angles (see
Sec.II ). In Ref. 5, we show that for regular reßections the
time-shift map by the billiard isCr-close to the smooth ßow
for arbitrary dimension and geometry. Moreover, we prove
that a certain billiard limit may be used for developing an as-
ymptotic expansion for approximating regular reßections of
the smooth ßow. We Þnd bounds on the error terms of the
approximation (and its derivatives, up to orderr) and next
order corrections for a large class of potentials. In this way, a
perturbational tool for analyzing far-from-integrable Hamil-
tonian systems is developed. This may be used to establish
quantitative persistence results, for example, periodic orbits
and separatrix splitting (see Refs.5 and 8 and TableII ).
These persistence results were utilized to prove the existence
of a large collection of chaotic hyperbolic orbits in any inÞ-
nite set of sufÞciently small scatterers and in convex
domains with small scatterers.22,23 We think that these tools,
which may be thought of as the analog of the near-integrable
Melnikov technique in the near-billiard limit, will be further
used to examine Þnite� effects in speciÞc applications.

Singular orbits are those billiard orbits which are
tangentto the boundary or those which hit thecorners(i.e.,
the points where the billiard boundary is not smooth). Sec-
tion III summarizes the two-dimensional behavior near sin-
gular orbits, and Sec.IV summarizes the higher-dimensional
results.

In Refs.1 and3, we studied the behavior of smooth orbits
that are close to the billiard orbits ofnon-degenerate(i.e.,
quadratic) tangency in two-dimensional dispersing billiards.
While the orbit of the smooth system is still close to the bil-
liard orbit in this case, there can be no closeness with deriv-
atives (since the billiard map is not smooth at tangent
orbits). We derive the normal form for the return map gen-
erated by the smooth ßow near a periodic tangent billiard
orbit (where all reßections but the tangent one are regular
and occur at dispersing components). Notably, this formula
describes the smooth system behavior in a region where
there is no correspondence with the billiard motion. Analy-
sis of this return map leads to a proof thatstability islands
emerge from such tangent periodic orbits of two-
dimensional dispersive billiards. This is the main result of
Refs.1 and3. It shows that even though dispersive billiards
are ergodic,10,24 the ergodicity is not typically inherited
by the smooth-potential approximations (yet in special
cases the Òsoft billiardÓ potentials can produce ergodic
behavior9,25Ð32). Experiments with an atom-optic system33

conÞrm the drastic change of statistical properties at the
transition from a dispersive billiard to its smooth-potential
approximation due to the emergence of stability islands out
of singular orbits.
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In Ref.4, we addressed the behavior of two-dimensional
smooth systems near billiard orbits that hit a corner. The bil-
liard map is typically discontinuous at the corner orbit. We
show that in the Poincare« map generated by the smooth sys-
tem the discontinuities are ÒsewnÓ by means of acorner
scattering functionwhich can be determined via the analysis
of the scaled limit of the potential at the corner. This limit is
not integrable, so no explicit formulas for the scattering
function exist; however, one can study its properties using
qualitative methods. A surprising Þnding is that the scatter-
ing function is oftennon-monotone, i.e., the billiard disconti-
nuities are not smoothed in the Òmost economicÓ way. In
particular, the range of the reßection angles generated by the
smooth system near the billiard corner may be larger than
that achieved by smoothing the discontinuous billiard limit,
namely, it is not determined by the billiard geometry alone.
In the two-dimensional case, the non-monotone scattering
function appears near corners of anglesp

n, wheren � 2 is an
integer. We show that billiard corner orbits with outgoing
angles corresponding to the extremal values of the scattering
function produce elliptic islands in the smooth system. Thus,
one should expect the emergence of stable periodic orbits in
the smooth system when the corner angle varies acrossp

n,
e.g., when the corner angle tends to zero.

Notably, the underlying mechanism of ergodicity loss is
purely geometrical; it is based on the fact that orientation in
the momenta space is ßipped at every collision.1Ð3

In Ref. 6, we employ these observations (for a corner
with an additional symmetry) to show that elliptic orbits
appear in systems with steep smooth potentials that limit to
Sinai billiards for arbitrarily large dimension. While the
examples considered in Ref.6 cannot be directly linked to the
smooth many particles case, this construction of a stability
island (hereÑa positive measure set Þlled by quasiperiodic
orbits) in multi-dimensional highly unstable systems supports
our conjecture that the systems of many particles interacting
via a steep repelling potential are, typically, not ergodic.

Finally, we summarize the implications of the above
results on chaotic scattering.8,34Ð37 There, billiard rays come
from inÞnity, hit some scatterers that lie in a bounded do-
main, and then escape again. With the steep potential meth-
odology, we are able to analyze the correspondence between
scattering by hard core obstacles (billiards) and scattering by
steep smooth hills. In particular, with this correspondence,
we are able to establish the existence of a hyperbolic repeller
with fractal structure in a smooth Hamiltonian ßow.

The paper is ordered as follows. In Sec.II , we analyze
the case of regular reßections. In Sec.III , we study the
behavior of smooth systems near singular billiard orbits for
the two-dimensional case. A multidimensional example is
considered in Sec.IV. In Sec.V, we apply the results to the
scattering problem, and in Sec.VI , we list some open prob-
lems and perspective directions.

II. PERSISTENCE RESULTS FOR BILLIARD-LIKE
POTENTIALS

We begin the review by formulating precisely what we
mean by Òapproximating the smooth motion by billiardsÓ.

To this aim, we Þrst deÞne the billiard ßow, what are regular
billiard reßections, and non-degenerate tangential billiard
reßections. We then introduce the notion ofbilliard-like
potentialson a domainD. Brießy, these are one-parameter
families of Crþ 1-smooth potentials,V� , that are essentially
constant insideD and grow fast at the boundary ofD. The
growth rate approaches inÞnity as the steepness parameter�
approaches zero. All the works that are reviewed here are
concerned with studying the ßows induced by families of
mechanical Hamiltonian systems with billiard-like potentials
at sufÞciently small� values.

We establish Þrst that for such potentials the behavior
near the boundary usually limits (in theCr topology) to the
billiard reßections.1,2,5 Then, we show that next order correc-
tions to the billiard approximation may be found, with pre-
scribed error estimates.5 We end this section by recalling that
these results imply that non-singular non-parabolic periodic
orbits and hyperbolic sets of the limit billiard ßow persist for
sufÞciently small� values.1,2,5 Utilizing the perturbation anal-
ysis, these persistence results become quantitative.5

A. Smooth reflections limit to billiard reflections

The Þrst main step in the theory appears technical: it
consists of proving that under speciÞc natural conditions on
Vðq; � Þ, theregular billiard reßections are indeed close (and
so are their derivatives) to the smooth ßow reßections (see
below for precise deÞnitions of these concepts). Smooth
trajectories that limit to non-degenerate tangent reßections
are only C0-close to the limiting map. Thus, this initial
step formulates under what conditions the limiting process
makes sense. Moreover, this step enables to subsequently
use standard dynamical systems tools that relate two nearby
maps. Here, the closeness of derivatives is essential as it
allows to use persistence and structural stability arguments
(see Sec.II B).

More precisely, consider a domainD insideR d or inside
a ßat torusT d. Assume that the boundary@D consists of a Þ-
nite number ofCrþ 1 (r � 1) smooth (dÐ1)-dimensional sub-
manifoldsCi,

@D ¼ C1 [ C2 [ ::: [ Cn:

The boundaries of these submanifolds, when exist, formthe
corner setof @D:

C� ¼ @C1 [ @C2 [ ::: [ @Cn:

The billiard ßow is deÞned to be the inertial motion of a
point mass insideD accompanied by elastic reßections at the
boundary@D. Let q 2 D and p 2 R d denote the particles
coordinates and momenta. Denote the billiard ßow by
qt ¼ btq0, whereqt ¼ ðqt; ptÞandq0 ¼ ðq0; p0Þare two inner
phase points (i.e.,q0;t are both in the interior ofD). If the pi-
ece of trajectory which connectsq0 with qt does not have
tangencies with the boundary, thenqt dependsCr-smoothly
on q0. On the other hand,qt loses smoothness at any point
q0 whose trajectory is tangent to the boundary at least once
on the interval (0,t). Notice thatqt is not deÞned if at some
ts < t the trajectoryqts hits the corner set.
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A tangency may occur only if the boundary is not
strictly convex in the direction of motion at the point of tan-
gency. A tangency is callednon-degenerateif the curvature
in the direction of motion does not vanish. If the billiard
boundary is strictly concave (strictly dispersing), then all the
tangencies are non-degenerate. On the other hand, if the bil-
liardÕs boundary has saddle points (or if the billiard is semi-
dispersing), then there always exist directions for which the
tangency is degenerate.

The billiard ßow may be expressed as a formal Hamilto-
nian system,

Hb ¼
p2

2
þ VbðqÞ; VbðqÞ ¼

0; q 2 intðDÞ;
þ1 ; q 62 D:

�

Theorem 1 states that the smooth Hamiltonian ßow deÞned
by H ¼ p2

2 þ Vðq; � Þlimits in a natural sense to this billiard
ßow when the family of smooth potentialsVðq; � ÞsatisÞes
the four conditions below. ConditionI guarantees that inside
D the motion is close to inertial motion. ConditionIII
insures that the particle cannot penetrate the boundary. Con-
dition II implies that the boundary is repelling and that the
reaction force is normal to the boundary, so the reßection
law limits to standard billiard reßection law (angle of reßec-
tion equals to the angle of incidence). ConditionIV is less
intuitiveÑit is needed for the smooth closeness results and
for preventing the particle from sliding along the boundary.

Condition I. For any Þxed (independent of� ) compact
region K � intðDÞ, the potential Vðq; � Þ diminishes along
with all its derivatives as� ! 0,

lim
� ! 0

jjVðq; � Þjq2KkCrþ 1 ¼ 0: (2)

Let NðC� Þdenote a Þxed (independent of� ) neighborhood of
the corner set andNðCiÞdenote a Þxed neighborhood of the
boundary componentCi. DeÞne ~Ni ¼ NðCiÞnNðC� Þ (we
assume that~Ni \ ~Nj ¼ ; when i 6¼ j). Assume that for all
small � � 0, there existsa pattern function

Qðq; � Þ:
[

i

~Ni ! R 1

which isCrþ 1 with respect toq in each of the neighborhoods
~Ni and it depends continuously on� (in the Crþ 1-topology,
so it has, along with all derivatives, a proper limit as� ! 0).
Further assume that in each of the neighborhoods~Ni the fol-
lowing is fulÞlled.

Condition IIa . The billiard boundary is composed of
level surfaces of Q(q;0),

Qðq; � ¼ 0Þjq2Ci \ ~Ni
� Qi ¼ constant: (3)

In the neighborhood~Ni of the boundary componentCi (where
Qðq; � Þ is close toQi), deÞnea barrier function WiðQ; � Þ,
which is Crþ 1 in Q, continuous in� and does not depend
explicitly on q, and assume that there exists� 0 such that

Condition IIb. For all � 2 ð0; � 0�, the potential level sets
in ~Ni are identical to the pattern function level sets, and thus

Vðq; � Þjq2 ~Ni
� WiðQðq; � Þ � Qi; � Þ; (4)

and
Condition IIc. For all � 2 ð0; � 0�; r V does not vanish

in the Þnite neighborhoods of the boundary surfaces, ~Ni,
thus

r Qjq2 ~Ni
6¼ 0; (5)

and for all Qðq; � Þjq2 ~Ni
,

d
dQ

WiðQ � Qi; � Þ6¼ 0: (6)

In this way, the rapid growth of the potential across the
boundary is described in terms of the barrier functions alone.
Note that by Eq.(5), the pattern functionQ is monotone
acrossCi \ ~Ni, so eitherQ > Qi corresponds to the points
nearCi inside D and Q < Qi corresponds to the outside or
vice versa. To Þx the notation, we adopt the Þrst convention.

Condition III. There exists a constant (may be inÞnite)
Ei > 0, such that as� ! þ 0 the barrier function increases
from zero toEi across the boundaryCi:

lim
� !þ 0

WiðQ; � Þ ¼
0; Q > Qi;
Ei; Q < Qi:

�
(7)

By Eq. (6), for small � , Q could be considered as a function
of Wand� near the boundary:Q ¼ Qi þ Q iðW; � Þ. Condition
IV states that for small� a Þnite change inW corresponds to
a small change inQ:

Condition IV. As � ! þ 0, for any Þxed W1 and W2

such that0 < W1 < W2 < Ei, for each boundary component
Ci, the inverse barrier functionQiðW; � Þtends to zero uni-
formly on the interval½W1; W2� along with all its ðr þ 1Þ
derivatives.

The use of the pattern and barrier functions reduces the
d-dimensional Hamiltonian dynamics in arbitrary geometry
to a 1-dimensional dynamics, thus allowing direct asymp-
totic integration of the smooth problem. This is the main
tool, introduced Þrst in Ref.1 for the two-dimensional case
and in Ref.5 for the generald-dimensional case that enables
the analysis of these high-dimensional nonlinear problems.
Barrier functions satisfying the above conditions include
(W ¼ �

Qa ; e� Qa

� ; � logQ).
Notably, the theory applies also to the following common

setting. Consider a potentialV(q) which does not depend on
any small parameter. AssumeV is bounded inside a certain
regionD and grows to inÞnity at the boundary ofD. Then, at
sufÞciently high energy valueh, the kinetic energy prevails
inside D so the motion there is essentially inertial until the
particle arrives at a thin boundary layer near@D. By rescaling
the Hamiltonian and momenta:̂H ¼ H=h; p̂ ¼ p=

���
h

p
, we

obtain the Hamiltonian̂H ¼ p̂2

2 þ � VðqÞwhere� ¼ 1=h. Then,
conditionsIÐIV are satisÞed for reasonable choices ofV(q)
that approach inÞnity at@D (including classical models like
Coulomb and Lennard-Jones potentials).

Given a domainD, the one-parameter family of poten-
tials Vðq; �Þis called a family ofbilliard-like potentials on
D if for any � > 0; Vðq; �Þis a Crþ 1-smooth function which
satisÞes the four conditions I-IV.
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Theorem 1 (Refs. 1, 5, and 38). Given a family of
billiard-like potentials Vðq; � Þon D, let h�t denote the Hamil-
tonian ßow deÞned by

H ¼
p2

2
þ Vðq; � Þ; (8)

on an energy surface H¼ H� < Ê ¼infðVðq; � Þj@DÞ, and let
bt denote the billiard ßow in D. Letq0 andqT ¼ bTq0 be two
inner phase points, so that on the Þnite time interval[0,T]
the billiard trajectory ofq0 has a Þnite number of collisions.
Assume all these collisions are either regular reßections or
non-degenerate tangencies. Then h�

t q !
� ! 0

btq, uniformly for

all q close toq0 and all t close to T. If, additionally, the bil-
liard trajectory of q0 has no tangencies to the boundary on
the time interval[0,T], then h�t !

� ! 0
bt in the Cr-topology in a

small neighborhood ofq0, and for all t close to T.
The proof of the theorem includes integration of the

equations of motion at different components of the boundary
layer, according to the rate at which the steep potential
changes, see Refs.5 and38 for complete details.

We conclude that the map deÞned by the billiard ßow
from a local section atq0 to a local section atqT is Cr-close
(respectively,C0-close) to the corresponding family of maps
that are deÞned by the smooth potentialVðq; �Þ; as long as
this segment contains only regular collisions (respectively,
regular collisions and some non-degenerate tangencies).
Using structural stability arguments, we can immediately
conclude that for sufÞciently small� regular non-parabolic
periodic orbits persist and that hyperbolic sets persist as well.
Such persistence results are in-line with the common intuition
that the motion under steep potential is well approximated by
billiard (in Sec.III , we show that this intuition is incorrect
near non-regular reßections).

Next, we provide error estimates for this approximation.

B. Corrections and error estimates of the billiard
approximation

Theorem 1 implies that return maps of the billiard ßow
and of the smooth ßows are close. We derive error estimates
and next order corrections for such return maps by consider-
ing a family of auxiliary billiard ßows in a modiÞed domain
D� . The analysis also provides a good global section for the
smooth ßow that may be utilized in numerical simulations.
Indeed, it is shown that the boundary of the auxiliary do-
main, @D� , provides a transverse section to regular orbits of
the smooth ßow. More precisely, the smooth ßow deÞnes a
mapU� on the set of regular (non-tangent) phase-points,

S� ¼ f q ¼ ðq; pÞ: q 2 @D� ; hp; nðqÞi > 0g: (9)

We show that to leading orderU� is well approximated by
the corresponding billiard mapB� in D� and provide the
explicit expression for the next order correction and bounds
on the error terms.

To construct the domainD� , we deÞne, for each bound-
ary component Ci, three boundary layer parameters
ð� i ; gið� iÞ; diÞ all tending to zero with� . The parameter� i

equals to the value of the potential on the ith boundary ofD� .

It is chosen so that the inverse barrier function,QiðW; � Þ;
tends to zero along with all its derivatives uniformly for
H� � W � � i (see Fig.1). The small parametergi equals to
the corresponding level of the inverse barrier function on
@D� : gið� Þ ¼ Qið� i ; � Þ. The parameterdi controls the close-
ness to inertial motion in the regionD�

int. More precisely,
D�

int is the region bounded by the surfacesQðq; � Þjq2 ~Ni
¼

Qi þ dið� Þtogether with@NðC� Þ(i.e., excluding the corner
neighborhoods). The values ofdið� Þare chosen so that the
potentialV tends to zero uniformly along with all its deriva-
tives inD�

int. By conditionsI andIV , we may choose the pa-
rameters� i ; gi ; di such thatgi 	 di , namely,D�

int � D� (see
below).

To each set of the boundary layer parameters� i ; gi ; di ,
we associateCrþ 1 bounds onQi in D=D� (denoted byMðrÞ

i )
and onV in D�

int (denoted bymðrÞ),

MðrÞ
i ð� i ; � Þ ¼ sup

� i 
 W 
 H�

0 
 l 
 r þ 1

jQðlÞ
i ðW; � Þj; (10)

mðrÞðd; � Þ ¼ sup
q 2 D�

int
1 
 l 
 r þ 1

jj@lVðq; � Þjj: (11)

ConditionIV implies that theMðrÞ
i Õs approach zero as� ! 0

for any Þxed� > 0; hence, the same holds true for any sufÞ-
ciently slowly tending to zero� ð� Þ, i.e., the required� ið� Þ
exist. Similarly, conditionI implies that mðrÞ approaches
zero as� ! 0 for any Þxedd; therefore, the same holds true
for any choice of sufÞciently slowly tending to zerodið� Þ. As
mðrÞ ! 0, it follows that withinD�

int the ßow of the smooth
Hamiltonian trajectories isCr-close to the free ßight, i.e., to
the billiard ßow. It is established in Ref.5 that by using an
appropriate change of coordinates in each of the three
regions (insideD�

int, in D� nD�
int, and outside ofD� ), the equa-

tions of motion may be written as differential equations inte-
grated over a Þnite interval with a right hand side which
tends to zero in theCr-topology as� ! 0. Thus, Picard itera-
tions supply, in addition to the error estimates for the zeroth

FIG. 1. The partition of the domainD into regions.D�
int is an interior region

in which Vðq; �Þis smaller thanmðrÞðd; � Þin theCr topology.D� is the auxil-
iary billiard, so on its ith boundary componentsVðq; �Þ ¼� i . Clearly,
D�

int � D� . The boundary ofD� provides a global sectionS� for regular
reßections of the smooth ßow (see Ref.5).

026102-5 V. Rom-Kedar and D. Turaev Chaos 22, 026102 (2012)

Downloaded 19 Oct 2012 to 82.13.78.192. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



order approximation, higher order corrections to the return
map. We summarize below the explicit formulae for the Þrst
order corrections. These formulas may be useful in future
applicationsÑthey may play in the near-billiard context the
same role as the Melnikov analysis does for near-integrable
systems.

The mapU� on S� (see Eq.(9)) is composed of an inte-
rior ßight part and a reßection part: (U� ¼ R� � F� ).

The interior map F� (see Fig.2): Let q 2 C�
j for somej,

and assume that the segmentq þ ps with s 2 ½0; s�
� ðp; qÞ�that

connectsC�
j with C�

i lies insideD� so thatq þ ps�
� ðq; pÞ 2C�

i .
Further assume that the reßections atC�

j;i are non-tangent, so
there is somec > 0 such thathp; nðqÞi > c andhp; nðq þ ps�

�

ðq; pÞÞi< � c. Then, the free ßight mapF� : ðq; pÞ7!ð qs� ; ps� Þ
for the smooth Hamiltonian ßow isOCr ðmðrÞþ � i þ � jÞ-close
to the free ßight mapF�

� of the billiard inD� and is given by

qs� ¼ q þ ps� þ
ðs�

0
r Vðq þ ps; � Þðs� s� Þds

þ OCr� 1ððmðrÞþ � i þ � jÞ
2Þ;

ps� ¼ p �
ðs�

0
r Vðq þ ps; � Þdsþ OCr� 1ððmðrÞþ � i þ � jÞ

2Þ:

(12)

The ßight time s� ðq; pÞ is OCr ðmðrÞþ � i þ � jÞ-close to
s�

� ðp; qÞ and is uniquely deÞned by the condition
Qðqs� ; � Þ ¼Qi þ gið� Þ,

s� ðq; pÞ ¼s�
� ðq; pÞ þ

r Q;
ðs�

�

0
r Vðq þ ps; � Þðs�

� � sÞds
� �

hr Q; pi
þ OCr� 1ððmðrÞþ � i þ � jÞ

2Þ;

(13)

where r Q is taken at the billiard collision pointq þ
ps�

� ðp; qÞwhereQiðq þ ps�
� ðp; qÞ; � Þ ¼Qi þ gið� Þ.

The reßection map R� (see Fig.3): To formulate the
reßection lawR� for the smooth orbit, we need to deÞne sev-
eral geometrical entities. Consider a pointq 2 C�

i and let the
momentump be directed outsideD� (i.e., towards the bound-
ary) at a bounded from zero angle withC�

i . The smooth trajec-
tory of (q,p) spends a small times�

cðq; pÞoutsideD� and then
returns toC�

i with the momentum directed strictly insideD� .
Let py andpx denote the components of momentum, respec-
tively, normal and tangential to the boundaryC�

i at the pointq,

py ¼ hnðqÞ; pi ; px ¼ p � pynðqÞ: (14)

We assume that the unit normal toC�
i at the pointq, n(q), is

oriented insideD� , so py < 0 at the initial point. Denote by
Qyðq; � Þthe derivative ofQ in the direction ofn(q),

Qyðq; � Þ:¼ hr Qðq; � Þ; nðqÞi:

Recall that the surfaceC�
i is a level set of the pattern function

Qðq; � Þ, and thus, we may study how the normaln(q)
changes as one moves along the level setC�

i (in the tangen-
tial plane) and as one moves to nearby level sets (in the nor-
mal direction). LetKðq; � Þdenote the derivative ofn(q) in
the directions tangent toC�

i , and letlðq; � Þdenote the deriva-
tive of n(q) in the direction ofn(q). Obviously,Qy is a scalar,
K is a matrix, andl is a vector tangent toC�

i at the pointq.
Note that Qy 6¼ 0 by virtue of condition IIc. DeÞne the
integrals

I1 ¼ I1ðq; pÞ ¼2
ð� py

0
Q

0

i

�
1 � p2

x � s2

2
; �

�
ds

I2 ¼ I2ðq; pÞ ¼2
ð� py

0
Q

0

i

�
1 � p2

x � s2

2
; �

�
s2ds;

(15)

and the vectorJ,

Jðq; pÞ ¼ �
I2ðq; pÞ

py
lðq; � Þ þ I1ðq; pÞKðq; � Þpx

� 	
=Qyðq; � Þ:

(16)

Notice thatJ is a vector tangent toC�
i at the pointq and that

by Eq.(10),

FIG. 2. Free ßight between boundariesC�
i and C�

j . A smooth trajectory is
marked by a bold line, and an auxiliary billiard trajectory is marked by a
solid line (see Ref.5).

FIG. 3. Reßection from the boundaryCi . A smooth trajectory is marked by a
bold line. The auxiliary billiard trajectory changes its direction according to
the usual reßection law from the boundary of (D� ), namely,C�

i (see Ref.5).
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I1;2 ¼ OCr ðMðrÞ
i Þ; J ¼ OCr� 1ðMðrÞ

i Þ: (17)

Lemma 3 of Ref.5 asserts that for sufÞciently small� 
 � 0

the reßection mapR� : ðq; pÞ7!ð �q; �pÞis given by

�q ¼qþ OCr ðMðrÞ
i Þ ¼qþ pxs�

cðq;pÞþOCr� 1ððMðrÞ
i Þ2Þ;

�p ¼p� 2nðqÞpy þ OCr ðMðrÞ
i Þ

¼p� 2nðqÞpy � pyJðq;pÞ � nðqÞhpx;Jðq;pÞi

þ OCr� 1ððMðrÞ
i Þ2Þ;

(18)

where the collision time of the smooth Hamiltonian ßow is
estimated by

s�
cðq; pÞ ¼OCr ðMðrÞ

i Þ ¼ �
1

Qyðq; � Þ
I1ðq; pÞ þ OCr� 1ððMðrÞ

i Þ2Þ:

(19)

Combining the two maps, we established in Ref.5:
Theorem 2.Assume Vðq; � Þis a billiard potential family

on D and choosediÕs and� iÕs such thatdið� Þ; � ið� Þ;
mðrÞð� Þ; MðrÞ

i ð� Þ ! 0 as � ! 0. Then, on the cross-section S�

(see Eq.(9)) near orbits of regular reßections (that is, given
any constant C> 0, near the pointsðq; pÞ 2S� such that
hnðqÞ; pi � C and jhnð�qÞ; �pij � C whereð�q; �pÞ ¼B� ðq; pÞ),
for all sufÞciently small� 
 � 0, the Poincare« mapU� of
the smooth Hamiltonian ßow is deÞned, and it is
OðmðrÞþ � þ MðrÞÞ-close in the Cr-topology to the billiard
map B� ¼ R�

� � F�
� in the auxiliary billiard table D� .

Furthermore,

U� ¼ R� � F� ¼ B� þ OCr ðmðrÞþ � þ MðrÞÞ

¼ ðR�
� þ R�

1Þ � ðF�
� þ F�

1Þ þ OCr� 1ððmðrÞþ � þ MðrÞÞ2Þ

¼: B� þ U�
1 þ OCr� 1ððmðrÞþ � þ MðrÞÞ2Þ;

where � ¼ maxi � i ; MðrÞ ¼ maxiM
ðrÞ
i ; U�

1 ¼ OCr� 1ðmðrÞþ �
þ MðrÞÞ, and the leading and Þrst order corrections F�

o;1 and
R�

o;1 are explicitly given by Eqs.(12)Ð(19) and U�
1 ¼ R�

� � F�
1

þ R�
1 � F�

� .
Furthermore, we notice that this methodology also tells

us how close the smooth and the billiard trajectories are
along their entire path:

Theorem 3.Under the same conditions as in Theorem 2,
given a Þnite T and a regular billiard trajectory in[0,T], the
time t map of the smooth Hamiltonian ßow and of the corre-
sponding auxiliary billiard are Oð� þ mðrÞþ MðrÞÞ-close in
the Cr-topology for all t2 TnTR, where TR is the Þnite collec-
tion of impact intervals each of them of length Oðjdj þ MðrÞÞ.

C. Persistence of periodic orbits and hyperbolic sets

The (C1)-closeness of the billiard and smooth ßows after
one regular reßection leads, using structural stability argu-
ments, to persistence of regular periodic and homoclinic
orbits. The above error estimates allow us to establish quan-
titative version of these persistence results:

Theorem 4 (Ref.5). Consider a family of Hamiltonian
systems with billiard-like potential Vðq; �Þon D. Let PbðtÞ

denote a T-periodic, non-parabolic, non-singular orbit of the
billiard ßow. Then, for any choice of� ð� Þ; dð� Þ such that
� ð� Þ; dð� Þ; mð1Þð� Þ; Mð1Þð� Þ ! 0 as � ! 0, for sufÞciently
small � , the smooth Hamiltonian ßow has a uniquely deÞned
periodic orbit P� ðtÞof period T� ¼ T þ Oð� þ mð1Þþ Mð1ÞÞ,
which stays Oð� þ mð1Þþ Mð1ÞÞ-close to Pb for all t outside
of collision intervals (Þnitely many of them in a period) of
length Oðjdj þ Mð1ÞÞ. Away from the collision intervals, the
local Poincare« map near P� is OCr ð� þ mðrÞþ MðrÞÞ-close to
the local Poincare« map near Pb. In particular, if Pb is hyper-
bolic, then P� is also hyperbolic and, inside D� , the stable and
unstable manifolds of P� approximate OCr ð� þ mðrÞþ MðrÞÞ-
closely the stable and unstable manifolds of Pb on any
compact, forward-invariant or, respectively, backward-
invariant piece bounded away from the singularity set in the
billiardÕs phase space; furthermore, any transverse regular
homoclinic orbit to Pb is, for sufÞciently small� , inherited by
P� as well.

Such results may be utilized to establish the existence of
speciÞc orbits when two small parameters are involved. Con-
sider a family of billiard tablesDc, wherec corresponds to
some geometrical parameter. For example, in Ref.39, D0 is
an ellipsoid andDc is a family of perturbed shapes, wherec
measures their closeness to the ellipsoid. Forc 6¼ 0, the bil-
liard map inDc has transverse homoclinic orbits with split-
ting angle of order c (see Ref. 39). Then, provided
ð� þ mð1Þþ Mð1ÞÞ 	 c, the smooth ßow associated with the
two-parameter billiard potential familiesVðq; c; �Þ on Dc

also has transverse homoclinic orbits. This inequality pro-
vides a bound on� ðcÞ. More generally, when, for sufÞciently
small c, a certainc� robust property in theC1 topology may
be proved, the smooth ßows attain the same property pro-
videdð� þ mð1Þþ Mð1ÞÞ 	 c.

To provide concrete bounds on� , assume hereafter that the
behavior of the potential near the boundary dominates the esti-
mate; we say thatVðq; � Þis boundary dominated, if Vðq; � Þand
its derivatives are smaller in the interior ofD�

int (i.e., in the
region bounded by the surfacesQðq; � Þ ¼Qi þ dið� Þ) than on
the boundary of this domain. This means that for boundary
dominated potentials mðrÞðd; � Þ ¼supq2D�

int
jj@lVðq; � Þjj ¼

supq2@D�
int

jj@lVðq; � Þjj (here,l ¼ 1; É ; r þ 1). In this case, one
may choose (�; d) so as to minimize the error bounds. TableI
summarizes the resulting errors of the billiard approximation
for several commonly used potentials. The last column in the
table is achieved by insisting that the error (the third column) is
smaller thanc for r ¼1. Namely, ifc represents a measure of
the C1 robustness of some dynamical property (e.g., of the
transversality of homoclinic points), the last column shows how
small should� be to ensure that this property persists for the
smooth Hamiltonian ßow.

III. EFFECTS OF SINGULARITIES: THE EMERGENCE
OF ISLANDS OF STABILITY IN TWO-DIMENSIONAL
FLOWS

SectionII shows that regular hyperbolic billiard orbits
persist in the smooth and sufÞciently steep ßows, namely,
that the common intuition that smooth ßows may be replaced
by billiards is justiÞed in such cases. Here, we show that this
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approximationfails near singularities of the billiard ßow in
the two-dimensional case. Indeed, we prove that tangent
homoclinic orbits, tangent periodic orbits, and some of the
orbits that have end points in corners give rise to stable peri-
odic and quasiperiodic motion (hereafterÑstability islands)
in the smooth case. These results may be applied to families
of Sinai billiards that admit such singular trajectories. They
imply that even though the smooth reßections are as close as
possible to those of the billiard (as shown in Sec.II ), global
properties such as ergodicity are destroyed by the islands.
Thus, even when the decay of correlations for the billiard
map is exponential, the correlations for the smooth ßow, for
any Þnite� , have recurrences and do not decay at all in the
islands. The prevailing conjecture, supported by simulations,
is that the mere existence of such islands leads to a power-
law decay of the correlations in the chaotic component due
to ÒstickinessÓ to the islands boundaries. We thus propose
that even though the singularity-induced islands are small for
small � , their inßuence on the decay of correlations in the
chaotic component may be important.

To establish these results, we consider two-parameter
families of billiard-like potentialsVðq; c; �Þ of the billiard
family Dc. The geometrical parameterc is introduced to
unfold the billiard trajectory singularity.

In Sec.III A , we consider the unfolding of tangent peri-
odic and homoclinic orbits, see Fig.4.1,3 We assume that at
c ¼ 0 the billiard tableD0 has a tangent periodic/homoclinic
orbit and prove that the smooth ßow has a stable periodic
orbit near this singular orbit. For the tangent periodic orbit
case, we Þnd the normal form of the local return map. We
then prove that this map has stable (elliptic) periodic orbits
for certain parameter values. In theðc; �Þparameter plane,
these values form a stability wedge which emanates from the
origin. The dependence of the island phase-space area and of
the width of the stability wedge on� and on the energy level
is found (see Theorem 5 below). Notably, we see that inde-
pendent of the regularization of the billiard (the particular
choice of the billiard-like potential), the existence of a tan-
gent periodic orbit always implies the existence of a stability
region in theðc; �Þplane. On the other hand, the normal form
of the return map depends on the potential in a non-trivial
fashion (see TableII ). Selecting a path inside, this wedge of
stability down to the� -axis deÞnes a one-parameter family
of Hamiltonian ßowshtð�; cð� ÞÞthat converge to the billiard
ßow and for which elliptic islands exist for all� < � 0,
namely, for arbitrarily small� . Hence, even though the
dispersive billiard is mixing, such smooth regularizations of

it are non-ergodic for arbitrarily small� . The size of these
islands decreases with� , typically as a power law (see
TableII ).

In Sec.III B , we consider the unfolding near corners.4

To this aim, we assume that atc ¼ 0 the billiard tableD0 has
a sequence of regular reßections which begins and ends at a
corner (termed acorner polygon). We prove that under some
additional prescribed conditions, such a polygon may pro-
duce stable periodic orbits in ac; � wedge which emanates
from the origin. The normal form for the return map near the
stable orbit turns out to be the area preserving Henon map.
Here, in contrast to the tangent case, the existence and the
stability of a periodic orbit which limits to the corner poly-
gon depend on both the form of the smooth potential and the
billiard geometry. Namely, taking two different regulariza-
tions of a given billiard family with a corner polygon, one
regularization may produce a stable periodic orbit, whereas
the other may have no periodic orbits limiting to this corner
polygon.

Now, consider an arbitrary one-parameter family of dis-
persing billiardsDc. One would like to characterize the
appearance of islands for sufÞciently smalleas a function of
c. Since dispersive billiards are hyperbolic, it is clear that for
sufÞciently smalle the only mechanism for creating islands
is the behavior of the smooth system near singular orbits of
the billiard, namely, near tangent orbits and near orbits
which enter a corner. Generically, if no special symmetries
are imposed,D0 has many near-tangent periodic orbits, but
no tangent ones. We conjecture that for generic families, a
small deformation ofD0 to Dc can transform a near-tangent
periodic orbit of periodn to a tangent one for somec of order
k� n, wheren � 1. This implies that for sufÞciently smalle;
very small (sizedtanðeÞk

� n) islands will appear in the smooth
Hamiltonian approximation to the billiard ßow inDc. On the
other hand, we expectD0 to have many corner polygons and,
in particular, corner polygons with only one edgeÑa mini-
mizing cord (a segment emanating from one of the corners
which has a straight angle reßection from the boundary).
Typically, these corner polygons will have the angles/ in

TABLE I. Error estimates for several potentials, assuming the boundary-
domination property. We denotebr ¼ 1

rþ 2þ 1
a

at a � 1 andbr ¼ aðrþ 2Þ
ðrþ 1þ aÞðrþ 2þ 1

aÞ
ata 
 1 (see Ref. 5).

Potential Boundary width Error Impact intervalsC1 robustness

WðQ; � Þ gð� Þ mðrÞþ � þ MðrÞ jdj þ MðrÞ � gðcÞ

e� Q
� � jln� j

��
�rþ 2

p ��
�rþ 2

p
oðc3Þ

e� Q2

�

�����������
� jln� j

p 

�

jln� jÞ
1

2ðrþ 2Þ



�
jln� j

� 1
2ðrþ 2Þ oðc6Þ

ð�
QÞa �

rþ 2
rþ 2þ 1=a �

1
rþ 2þ 1

a � br oðc3þ 1
aÞ

FIG. 4. Tangent periodic orbits. The solid thick boundary corresponds to
the billiard tableD0, and the dotted dashed boundary corresponds to its
deformation for somec > 0. L is a simple tangent periodic orbit ofD0,
whereas forc > 0, it is the regular hyperbolic orbitL�

c . The return map toR
is provided by Eq.(22)and TableII (see Ref.3).
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and / out in general position, i.e.,/ out will not be an
extremum of the scattering function for the given/ in. So,
according to our results, only a saddle periodic orbit can be
born from any such polygon at sufÞciently smalle. However,
due to the transitivity, we can expect sufÞciently long corner
orbits for which / out will be close to the extremum of the
scattering function. Hence, some small islands can be
obtained from these orbits afterc is tuned appropriately.

Note that in applications where one needs to tailor a bil-
liard table with some given properties the idea of small per-
turbation of the billiard boundary is, in fact, irrelevant, so
one can consider large changes inc as well. Then, producing
low period tangent orbits or minimizing cords with any given
values ofð/ in; / outÞis very easy. In this way, one can pro-
duce elliptic islands of a visible size in families of billiard-
like potentials with mixing limiting billiard. For example,
the experimental works of Kaplanet al.33 shows that elliptic
islands that arise due to corners signiÞcantly inßuence the
statistics of escape from cold atom optical traps.

A. Islands produced by tangencies

Consider the family of dispersing billiardsDc and
assume that atc ¼ 0, the billiard tableD0 has a simple tan-
gent periodic orbitL (i.e., L has a single tangent collision at
a point where the boundary has non-vanishing curvature).
We assume that the dependence ofDc on c is in general posi-
tion, so that the tangent periodic orbit disappears, say, at
c < 0, whereas at the opposite sign ofc, two periodic orbits
are born, see Fig.4. One of these periodic orbits (L�

c Þpasses
near the former point of tangency without hitting the bound-
ary, and the other (Lþ

c Þhas a regular reßection close to that
point. Away from the bifurcation point the persistence results
imply that the smooth system has similar structure at sufÞ-
ciently small� ; hence, one concludes that the smooth system
must also have a bifurcation valuec� at which the two peri-
odic orbitsL6

c� ;�
collide and disappear. Namely, the tangent

periodic orbit of the singular system becomes a parabolic
periodic orbit of the smooth system. Moreover, just before
the coalescence of the orbits, one of them must become
linearly stable due to index arguments. In Ref.1, we prove
that the above scenario actually occurs (see also Refs.40 and
41). More precisely, we prove that for each Þxed sufÞciently
small � , there is an interval ofc values for which the smooth
ßow has a linearly stable periodic orbit. The underlying geo-
metrical mechanism for the creation of this non-hyperbolic
behavior is a horseshoe bifurcation near the tangent periodic

orbit. Determining under which conditions such a bifurcation
occurs in non-dispersive billiards is an interesting problem.

To establish the existence of elliptic islands and to Þnd
their size, we explicitly construct the return map near the lin-
early stable periodic orbit. To this aim, we further assume
that near the tangent collision point, for any given energy
level H, we can deÞne a boundary layer region so that near it
the energyH may be scaled out. More precisely, we assume
that the billiard-like potential family (Vðq; c; �Þ) satisÞes the
following scaling assumption:

[S] There exist somed ¼ dð�; HÞ> 0, b ¼ bð�; HÞ, and
� ð�; HÞsuch thatd; b; �= H ! 0, as� ! 0, and the function

~W� ð~QÞ ¼
Wðd ~Q þ b; �Þ � �

Hd3=2
(20)

converges as� ! 0 to a Crþ 1 function ~W0ð~QÞ, either for
~Q > 0 or for all real ~Q. The convergence is Crþ 1-uniform on
any closed Þnite interval of values of~Q from the domain of
deÞnition. Furthermore, the integral

ðþ1

1

~W0
� ðqÞ

dq
���
q

p (21)

converges uniformly for all sufÞciently small� .
This scaling assumption is satisÞed by all the potentials

that we examined so far and serves to determine the de-
pendence of the scaling parameters on� and the energy (see
Table II ). The following theorem is the main result of
Ref.3:

Theorem 5.Consider a family of dispersing billiards Dc
having a simple non-degenerate tangent periodic orbit at
c ¼ 0. Consider a two-parameter family of Cr ; r � 5, smooth
Hamiltonian ßows htð�; cÞwith billiard-like potentials approx-
imating the billiard ßows asð�; cÞ ! 0. Assume that the bar-
rier function near the point of tangency satisÞes the scaling
assumption [S] for somedð�; HÞand that the associated func-
tion F is such that the range of values of F0(v) includes R�

(all negative values).
Then, for small� , in theð�; cÞplane, there exists a wedge

C� dð�; HÞ< c < Cþ dð�; HÞ (with some constant C6 ) such
that for all parameter values in this wedge, on the energy
level H, there exist elliptic islands of width proportional to
dð�; HÞ.

The proof of this theorem is constructive. The asymp-
totic normal form, as� ! 0, of the return map of the

TABLE II. Islands scalings near tangent periodic orbits.

Potential IslandsÕ scaling E-shift Q-shift Return map
WðQ; � Þ dð�; HÞ � ð�; HÞ bð�; HÞ ~W0ð~QÞ FðvÞ

e� Q
� � 0 � � lnðd

3
2HÞ e� ~Q

��
p

p

2 e� v

ð1 � QaÞ
1
� �

1
a

a ð� lnð�
3
2aHÞÞ

1
a� 1 0 � � lnðd

3
2HÞ

�  1
a

e� ~Q
��
p

p

2 e� v

ð�
QÞa � a

H


 � 1
aþ 3=2 0 0 1
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Hamiltonian ßow in anOðdÞ-neighborhood of the tangent
periodic trajectory is the two-dimensional map,

�u ¼ v; �v ¼ n v þ
a
���
j

p FðvÞ
� �

� ð n � 2ÞC � u; (22)

where

FðvÞ ¼ �
ðþ1

0

~W0
0ðv þ x2Þdx

¼ �
1
2

ðþ1

v

~W0
0ðQÞ

dQ
������������
Q � v

p : (23)

F(v) is well deÞned, by Eq.(21), either onRþ or on R (i.e.,
on the domain of deÞnition of~W0) and it is Cr-smooth.
Table II provides its form for various potentials. The pa-
rameterj is the billiardÕs curvature at the tangency.n is
the sum of the singular multipliers ofL, which are the mul-
tipliers of L�

c for c ! 0þ (i.e., the multipliers ofL if one
disregards the inßuence of the tangent point). Since we
consider here dispersive geometry, it follows thatjnj > 2
and the sign ofn equals toð� 1Þn, wheren is the number
of reßections ofL�

c at sufÞciently smallc. The parameter
C ¼ c=d is the rescaled unfolding parameter, anda is a ge-
ometrical parameter deÞned by the billiard return ßow near
L0 at � ¼ c ¼ 0 (a > 0 for dispersive billiards). To com-
plete the proof, the return map(22) is analyzed. One shows
that it has a Þxed point, that its eigenvalues have to sweep
the unit circle asC sweeps a Þnite interval and that the
Birkhoff coefÞcient cannot be identically zero along this
interval. Hence, one concludes that the return map(22) has
an elliptic island of Þnite size (in the rescaled variablesu
andv).

In the original, non-scaled variables and parameters, the
island exists in ad-size wedge ofc values and its area is of
order

����
H

p
d2=na in the ðy; pyÞcross-section. TableII presents

the calculation of the scaling andshifting factors and the return
map function F(v) for several typical potentials. Notably,
islands appear at any ÞxedH value and scale as a power law in
(� ). Their scaling for large energiesH ¼ Hð� Þmay be calcu-
lated as long asdð�; HÞ ! 0 as� ! 0, see TableII. Finally,
we notice thatn, the sum of the singular multipliers ofL is
expected to increase exponentially with the number of reßec-
tions of L. Hence, the tangent orbits with the smallest period
are expected to have the largest islands.

The above results are derived for two-dimensional dis-
persing billiards, or, more generally, for tangent periodic
orbits with exactly one tangent collision and with all
the regular collisions occurring with dispersing parts of
the boundary components. It may be interesting to study the
behavior near tangencies when some of the components are
focusing and the behavior when more than one tangency
occurs (with or without symmetry). A generalization of this
construction to higher-dimensional settings is possible and
should lead to a proof of the existence of center-saddle peri-
odic orbits, namely, to proving non-hyperbolic behavior
for arbitrary small � even when the limiting billiard is
hyperbolic.

B. Islands produced by corners

The other mechanism for creating elliptic motion in
smooth Hamiltonian families that limit to dispersing billiards
is corners. Here, we consider a sequence of regular billiard
reßections that begins and ends at the same corner point of
the billiard. Such a sequence is denoted byP0 and is called a
corner polygon (see Fig.5). Notice that such a sequence is
not an orbit of the billiard. Denote byh the angle created by
the billiard boundary arcs joining at this corner, and deÞne
/ in; / out to be the angles created by the corner polygon with
the corner bisector (notice the different directions of/ in and
/ out). As opposed to the tangent singularity, such a corner
polygon may produce a number (possibly zero) of periodic
orbits of the smooth ßow. The number and the stability of
the emerging orbits depend onboth the billiard geometry (in
particular, on/ in; / out; h) and on the form of the potential.
Here, we assume that the potentials are billiard-like (satisfy-
ing conditions IÐIV of Sec.II ) and that there is sufÞcient
repulsion from the corner regions so that trajectories cannot
remain in the corner for unbounded times (the scattering
assumption). We show that usually the produced periodic
orbits are hyperbolic. Yet, by introducing an additional geo-
metrical parameter,c, it is often possible to create wedges in
the plane of parametersðc; �Þwhich corresponds to the exis-
tence of stable periodic orbits.

To provide precise statements, we recall Þrst the behav-
ior of the billiard near corners and then the behavior of
smooth ßows near corners.

Billiard reßections near a corner may be characterized by
the outgoing anglesU6 ðu; hÞ. Providedh > 0, an incoming
parallel ray enters the corner with an angleu and exits a
neighborhood of the corner after a Þnite number of reßections
(Nh :¼ bp

hc or Nh þ 1). The angles that the outgoing trajecto-
ries of the parallel ray make with the corner bisector are close
(up to corrections associated with the curvature of the billiard
boundary near the corner) to one of two possible angles
U6 ðu; hÞ. The angleUþ ðu; hÞis realized if the upper bound-
ary is hit Þrst, andU� ðu; hÞis realized otherwise. The billiard
scattering anglesU6 ðu; hÞand the number of reßections at

FIG. 5. Corner polygon geometry. The return map to the cross sectionx¼R
is constructed by following the regular billiard reßections atx > R and the
properties of the scattering function near the corner (see Ref.4).
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the corner may be explicitly computed by geometrical means,
see, e.g., Ref.4. When h ¼ p

N the two scattering angles are

equal:Uþ ðu; hÞ ¼U� ðu; hÞ ¼ ð�1ÞNþ 1u.
To describe the behavior of smooth billiard-like systems

near the corners, we introduce an additional ingredient, the
scattering function.This function captures the main features
of the scattering by the potential at the corner point. To
deÞne the scattering function, we make some natural scaling
assumptions on the potentialV near the corner. Let (x,y)
denote Cartesian coordinates with thex-axis being the bisec-
tor of the billiard corner, and the origin at the corner point
(see Fig.5). We assume there exists a scaling

ð�x; �yÞ ¼
1

dðeÞ
ðx � xe; y � yeÞ

such that in the scaled coordinates the potential has a Þnite
limit as e! 0,

Vðxe þ d�x; ye þ d�y; eÞ ! V0ð�x; �yÞ:

Let the level setV0ð�x; �yÞ ¼h be a hyperbola-like curve,
which asymptotes the lines�y ¼ 6 �x tanh

2 þ c6 as �x ! 1 .
This level curve bounds an open wedgeV0 
 h which
extends towards�x ¼ þ1 . For the scaled system given by
the Hamiltonian

H ¼
1
2

ðp2
x þ p2

yÞ þ V0ð�x; �yÞ; (24)

every trajectory with energyH ¼h lies in this wedge.
Under some natural assumptions onV, we show that the

solutions to the scaled equations go towards�x ¼ þ1 ast !
þ1 and ast ! �1 , and that they always have asymptotic

incoming (/ in ¼ � limt!�1 arctanpyðtÞ
pxðtÞ

, j/ inj 
 h
2) and out-

going angles (/ out ¼ limt!þ1 arctanpyðtÞ
pxðtÞ

; j/ outj 
 h
2). More-

over, there is a well deÞned limiting scattering function
/ out ¼ U0ð/ in; gÞ, whereg is a scattering parameter of a paral-
lel beam entering the wedge atx ¼ þ1 with incoming angle
/ in. This scattering functionU0 carries the needed information
on the dynamics near the corner. In particular, the range of
U0ð/ in; Þprovides the intervalI of allowed outgoing angles.
While Ibill ð/ inÞ ¼ ½U�ð� 1ÞNh ð/ inÞ; Uþð� 1ÞNh ð/ inÞ� � Ið/ inÞ,
there are natural examples in which the intervalIð/ inÞ is
strictly larger than the billiard scattering rangeIbill ð/ inÞ. For
example, whenh ¼ p

N the interval Ibill ð/ inÞ degenerates to a
point, so generically, we expectIð/ inÞto be strictly larger than
Ibill ð/ inÞwhenh is close top

N. Moreover, for suchh values, the
scattering function must be non-monotone (see Ref.4 for an
explicit example).

A corner polygon of the billiard is said to be non-
degenerate if/ out 2 Ið/ inÞ, and inÞnitesimally small changes
in / out change the return position of the trajectory so that the
corner is missed. A billiard corner polygon with incoming
angle / in and outgoing angle/ out may produce a periodic
orbit of the smooth Hamiltonian ßow (8) at small nonzeroe
if and only if / out ¼ U0ð/ in; gÞfor someg. Given a/ out 2 I,
there exists a set (discrete, in general) ofgÕs such that

/ out ¼ U0ð/ in; gÞ. To produce a periodic orbit, the scattering
function needs to be monotone and the global behavior near
the corner polygon needs to be non-degenerate:

Theorem 6 (Ref. 4). Consider a family Vðx; y; eÞ of
billiard-like potentials limiting to a billiard in D and satisfy-
ing the scattering assumption and the corner scaling
assumption. Assume D has a non-degenerate corner polygon
with incoming and outgoing anglesð/ in; / outÞ. Then, for suf-
Þciently smalle, for everyg such that/ out ¼ U0ð/ in; gÞand
@
@g U0ð/ in; gÞ6¼ 0, the Hamiltonian family has a hyperbolic
periodic orbit which, ase! 0; limits to the billiard corner
polygon.

To prove this theorem, a return map of the smooth ßow
to an interior cross section of the corner polygon is con-
structed. The outer part of the map is well approximated by
the regular billiard reßections, whereas the behavior near the
corner is controlled by the scattering function. The monoto-
nicity of the scattering function together with the hyperbolic-
ity of the outer map allows to prove that saddle periodic
orbits are created. If, on the contrary,/ out corresponds to a
maximum or minimum ofU0ð/ in; gÞas a function ofg then
elliptic motion may emerge. As the appearance of such an
extremum is a codimension-1 phenomenon, to obtain a ro-
bust picture, it is necessary to consider here an additional pa-
rameter and to ensure that the appropriate non-degeneracy
conditions are set. We thus introduce, as in the tangent case,
a geometrical parameterc which is responsible for regular
changes in the geometry of the billiard. The corresponding
two-parameter family of billiard-like potentialsVðx; y; e; cÞ
is called a tame perturbation of the billiard-like potential
Vðx; y; e; 0Þif the barrier functionsW do not depend onc, the
pattern functionsQ, deÞned in some neighborhood of the
open boundary arcs without the corners, areCr -smooth with
respect toc and the scaled potentialsVe dependCr-smoothly
on c as well. Finally, this tame family is called non-
degenerate if some explicit expression does not vanish (the
return map to the corner along the regular reßections must
change withc in a generic fashion).

Theorem 7 (Ref.4). Consider a family of billiard-like
potentials Vðx; y; eÞlimiting to a billiard in a domain D and
satisfying the scattering assumption and the corner scaling
assumption with a scaling parameterdðeÞ. Assume D attains
a non-degenerate corner polygon with incoming and out-
going anglesð/ in; / outÞ. Let Vðx; y; e; cÞbe a one-parameter
tame perturbation of Vðx; y; eÞ, satisfying the non-
degeneracy assumption. Then, for everyg� such that/ out ¼
U0ð/ in; g� Þis a strict extremum (i.e.,@@g U0ð/ in; g� Þ ¼0 and
@2

@g2 U0ð/ in; g� Þ6¼ 0), there exists a wedge of widthd2ðeÞ in
the ðe; cÞ parameter plane in which the Hamiltonian ßow
deÞned by the potential Vðx; y; e; cÞ has elliptic islands of
size Oðd2Þ, where the islands limit to the billiard corner
polygon ase! 0.

To prove this theorem, the return map is again con-
structed. Here, using the extremal behavior of the scattering
function, it is shown that in some rescaled coordinates the
return map becomes, to leading order, the area-preserving
He«non map. Moreover, it is established that if the corner
polygon hasn þ 1 edges, then the bifurcation coefÞcienta in
the He«non map is proportional tok2n=d2 and the rescaling
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of the phase space area includes factors proportional to
k3n=d4. Hence, the size of the islands, in both parameter
space and phase space, decreases exponentially with the
number of reßections and as a power law withe. The non-
monotonicity of the scattering function naturally arises when
its range is larger than the billiard scattering rangeIbill ð/ inÞ
as occurs whenh is close top

N.
The stability of the corner-passing periodic orbits is

solved here in terms of the scattering functionU which is
deÞned only by the potential at the corner, and is almost in-
dependent of the geometrical properties of the underlying
billiard (the genericity condition is the only place where the
geometry enters: this condition is always fulÞlled if the bil-
liard is dispersive and the corner polygon is never tangent to
the boundary, while in the non-dispersive billiard where the
boundary contains convex components, this condition may
be violated, but it may always be achieved by a small smooth
perturbation of the boundary). This fact is somewhat surpris-
ing in view of the behavior near tangencies. In particular, it
shows that contrary to the previously studied cases (of non-
singular periodic orbits and of tangent periodic orbits), the
existence of the periodic orbit which limits to a corner poly-
gon is not determined by the billiard geometry alone.

In Theorem 7, which is concerned with the general case,
we cannot know if a stable periodic orbit is produced by a
corner polygon without computing the potential-dependent
scattering function. Unfortunately, there seems to be no
explicit formulas which would relate the scattering function
to the potentialV. We prove thatU0ð/ ; gÞis a smooth func-
tion and that asg ! 6 1 it approaches the billiard scattering
anglesU6 ð/ ; hÞ. Finding an analytical form forU and for its
critical values is probably an unsolvable question in the gen-
eral case. Indeed, it is known42 that in the caseV0ð�x; �yÞ ¼
e�y� k�x þ e� �y� k�x (here, k ¼ tanh

2, so k 2 ð0; 1Þ), the system
given by Eq.(24) has no other analytic integrals which are
polynomial in momenta fork 6¼ 1 andk 6¼ 1=

���
3

p
(i.e., when

the corner angleh differs from p=2 and 2p=3). The non-
existence of meromorphic integrals for this system is proven
in Ref. 43 (based on the method of Ref.44) for
k 6¼ 4=ðmðm� 1ÞÞ2; m 2 Z. While we conclude thatU can-
not be expected to be explicitly written, it is straightforward
to recover it numerically.

Nonetheless, there is one case in which we can prove
the creation of elliptic islands by using only asymptotic in-
formation about the scattering function. This occurs when a
billiard corner polygon bifurcates into a regular periodic
orbit of the billiard: a billiard periodic orbit may detach from
the corner point under a small perturbation of the boundary
if and only if / out ¼ U6 ð/ in; hÞ. In terms of the scattering
function U, this case corresponds tog ¼ 6 1 and it is not
covered by the above mentioned Theorems 6 and 7. The
behavior of the corner-passing periodic orbits of the Hamil-
tonian ßow at non-zeroe has in this case a more profound
relation with the billiard geometry:

Theorem 8 (Ref.4). Consider a dispersing billiard-like
family, with a non degenerate corner polygon satisfying
/ out ¼ Uþ ð/ inÞ. If U0ð/ in; gÞ is monotone, then, for sufÞ-
ciently smalle, an elliptic periodic orbit is produced by the
billiard corner polygon ifðp

h � p
h

� �
� 1

2Þh < / in < p
2 .

Note that the nature of the billiard ßow at the corner is
highly sensitive to the numerical properties ofh, with bifurca-
tion points athN ¼ p

N and h�
N ¼ p

Nþ 1
2
. The inßuence of these

bifurcations on the limiting Hamiltonian ßow has yet to be
studiedÑit may produce nontrivial dynamics (e.g., the analysis
of Sec.IV). The effect is especially relevant for small angles.

IV. FULLY ELLIPTIC ORBITS IN MULTI-DIMENSIONAL
BILLIARD-LIKE POTENTIALS

The possibility of extending the two-dimensional results
regarding the destruction of ergodicity by the smooth poten-
tials to higher dimensions is not obvious. Intuitively, one
could argue that in the higher-dimensional setting there will
be always enough unstable directions to destroy any stability
region and might conclude that the above results are inher-
ently two-dimensional. From a mathematical point of view,
the appearance of islands of stability is natural in Hamilto-
nian systems which are not hyperbolic or partially hyper-
bolic, see Ref.45 and references therein for the (C1)-version
of this conjecture. However, a speciÞc family of systems like
(1), limiting to the hyperbolic Sinai billiards, may turn out to
be non-generic (see the introduction in Ref.6), and it is
unknown if generic (C1)-perturbations are relevant in the
framework of mechanical systems. Crucially, it is not imme-
diately obvious whether the Hamiltonian systems under con-
sideration are partially hyperbolic or not.

In fact, the analysis we did for the two-dimensional case
(Sec.III ) can be carried out onto higher dimensions in order
to show that the smooth approximation of any dispersive bil-
liard cannot be uniformly hyperbolic. The arguments are
based on the same geometrical structure which ensures the
uniform hyperbolicity of the dispersive billiards themselves. It
was noted by Krylov46,47 that the key to the Boltzmann con-
jecture is a characteristic instability of the hard-sphere gas in
the space of dimension two and higher. It is related to the con-
vex shape of the colliding bodies (so it does not take place in
one-dimensional systems). Sinai showed that this instability is
an inherent property of dispersive billiards and built with co-
workers a deep mathematical theory which indeed relates this
instability to the statistical properties of the hard-spheres
gas.9Ð11,24 For a general dispersive billiard (a domain with a
piece-wise concave boundary), the Krylov-Sinai instability is
expressed as follows: a parallel beam diverges after reßecting
from the boundary. In the phase space, this translates to a
cone-preservation property: the positive conedq dp � 0 is
mapped inside itself by the derivative of the billiard ßow
(here,q is the vector of coordinates andp is the vector of
momenta). This is equivalent to the hyperbolicity of the bil-
liard ßow: at each point of every regular orbit, there are stable
and unstable subspaces invariant with respect to the derivative
of the billiard map, the unstable directions belong to the posi-
tive cone and the stable directions belong to its comple-
ment.9,10,48 This cone structure is independent of the
particular shape of the dispersive billiard, so it creates a uni-
versal reason for the ergodicity of any such billiard.

However, the dispersing property has other universal
consequences. As the unstable subspace belongs to the posi-
tive cone, it is uniquely parameterized by momenta, and
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since every collision changes the orientation in the momenta
space, it follows that the orientation in the unstable subspace
ßips at every collision.1,6 We can, therefore, always have a
continuous family of initial conditions such that the ßow
map (for some Þxed time) will keep the orientation of the
unstable subspace for some initial conditions (those having
an even number of regular collisions at the given time inter-
val) and will change the orientation for the other initial con-
ditions (those having an odd number of regular collisions);
the transition happens at initial conditions that have singular
orbits. There can be no uniformly hyperbolicsmoothßow
with the same behavior (as there will be no singular orbits at
which such transition can happen). Therefore, the uniformly
hyperbolic structure of dispersive billiards cannot survive
any smooth approximation of the billiard potential.

These arguments do not preclude the existence of some
hypothetical partially hyperbolic structure in a dispersive bil-
liard of dimension higher than 2. However, in Ref.6, we (to-
gether with Rapoport) showed that no such universal
structure could exist which cannot be destroyed by the
smooth approximation. Indeed, we showed that in any
dimension fully elliptic orbits appear in a predictable way in
smooth systems that are arbitrarily close to Sinai billiards,6

thus providing the Þrst explicit mechanism for the creation
of stable periodic orbits in high-dimensional smooth near
dispersing-billiard systems.

In our constructions, the stability zones in the
n-dimensional settings are created by trajectories that enter a
corner point. At the corner,n codimension-1 surfaces meet
in a symmetric fashion, so that the corresponding solid angle
is controlled by a single geometrical parameterl (see Fig.6
and Eq.(25)). We Þnd, Þrst numerically for the 3-dimen-
sional case,7 and then analytically for the general case,6 that
a corresponding smooth steep potential family has a stable
orbit in wedges of parametersðl ; eÞthat extend towards the
l axis. Thus, our main result is:

Theorem 9 (Ref.6). There exist families of analytic bil-
liard potentials that limit (in the sense of Sec.II A , see Eqs.
(2)Ð(8)) to Sinai billiards in n-dimensional compact domains
(in particular, for any Þnite n such billiards are hyperbolic,
ergodic, and mixing), yet, for arbitrarily smalle, the corre-
sponding smooth Hamiltonian ßows have fully elliptic peri-
odic orbits.

To establish this result, we generalize the geometrical
construction depicted in Fig.6 to n-dimensional billiards
depending on a geometrical parameterl (see more details
below). These billiards are Sinai billiards for anyl 2 ð0; 1Þ
and depend smoothly onl . We then consider families of
symmetric potentialsWðq; l ; eÞthat limit ase! 0, for any
Þxed l , to these billiards. These potentials preserve the
symmetry (qi $ qj); hence, the motion along the diagonal
is invariant for all e values. We thus establish that for

FIG. 6. The billiard geometry and the stability islands in the three-dimensional case (the geometrical parameter in the bifurcation diagram is related tol , yet
is deÞned a bit differently, see Ref.7 for details).
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sufÞciently smalle, these Hamiltonian ßows have a periodic
orbit cðt; l ; eÞalong this diagonal and prove that the 2n Flo-
quet multipliers of this orbit may be found by solving asingle
second order linear equation with a time-periodic coefÞcient.
This coefÞcient depends onl ; e, andn as parameters, and it
approaches a sum of delta-like functions ase! 0. For certain
classes ofWðx; l ; eÞ(e.g., whenWðx; l ; eÞdecays as a power-
law in the distance to the scatterers), we are able to analyze
the asymptotic behavior of the emerging linear second order
equation: we prove that for these potentials there are count-
able inÞnity values ofl , one of them given by 1��

n
p (i.e.,

bounded away froml ¼ 0; 1), from which a wedge of stabil-
ity region in theðl ; eÞplane emerges. Namely, we prove that
for any n, for arbitrarily smalle, there exists an interval ofl
values at whichcðt; l ; eÞis linearly stable.

Next, we provide a few more details regarding the construc-
tion and the deÞnition ofl andWðq; l ; eÞ. These are then uti-
lized to state precisely the stability results regarding the smooth
systems, including some estimates on thee-dependence of the
parameter range ofl at which elliptic behavior appears.

DeÞne then-dimensional billiardÕs domainD as the
region exterior toðn þ 1ÞspheresSn� 1: one sphereCnþ 1 of
radiusR which is centered on the diagonal at a distanceL
from the origin, i.e., at the point1��np ðL; :::; LÞ, andn spheres

C1; É ; Cn of radiusr, each centered along a different princi-
ple axis at a distance 0
 l 
 r

������n
n� 1

p
from the origin, i.e., the

sphereCk is centered atð0; É ; l k; É ; 0Þ(Fig. 6). To obtain a
bounded domain, we enclose this construction by a large
n-dimensional hyper-cube centered at the origin (we will
look only at the local behavior near the diagonal connecting
the radius-r spheresC1; É ; Cn to the radius-R sphereCnþ 1

and thus we will not be concerned with the form of the outer
boundary). The diagonal lineðn; :::; nÞintersects the radius-R
sphere in the normal direction and the spheresC1; É ; Cn at
their common intersection pointPc ¼ ðnc; :::; ncÞ, where

nc ¼ l
n þ 1��

n
p

���������������������������
r2 � l2ð1 � 1

nÞ
q

. Thus, for L > Rþ
���
n

p
nc, the

diagonal line deÞnes acorner ray

c ¼ ðn; :::; nÞjn 2 nc;
L � R

���
n

p
� �� ��

that starts at the cornerPc, gets reßected from the radius-R
sphere, and returns toPc (and then gets stuck as there is no
reßection rule at the corner).

Notice that the dynamics in the billiard is unchanged
when all the geometrical parameters are proportionally
increased; hence, with no loss of generality, we may set
r ¼1 and regard all the other parameters as scaled byr. It is
convenient for us to express the scaledl andL through

l ¼

��������������������������������

1 �
�

1 �
1
n

�
l2

r2

s

; d ¼
L � R�

���
n

p
nc

r
: (25)

Consider the smooth motion in the scaled billiard
region, governed by the Hamiltonian equation(1), i.e.,

H ¼
Xn

i¼1

p2
i

2
þ Wðq1; É ; qn; eÞ; (26)

with

Wðq; eÞ ¼
1
n

Xn

k¼1

V
Qk

e

� �
þ V

Qnþ 1

e

� �
; (27)

whereQkðqÞ(the pattern function of Sec.II ) is the distance
from x to Ck,

QkðqÞ ¼

�����������������������������������
Xn

i¼1

q2
i � 2lqk þ l2

s

� 1ðk ¼ 1; É ; nÞ; (28)

Qnþ 1ðqÞ ¼

������������������������������������Xn

i¼1

�
qi �

L
���
n

p
� 2

vu
u
t � R

(recall that we scaler ¼1). The potentials associated with
the r-spheres (i.e.,V Qk

e


 �
) are multiplied by the 1/n factor so

that for all n values the potential height near the corner is of
the same magnitude as the potential near theR-sphere.

TheCkþ 1 (k � 1) smooth functionV satisÞes atz > 0,

VðzÞ> 0; V
0
ðzÞ< 0; (29)

so the potentials are repelling. We further assume thatV
00
ðzÞ

decays sufÞciently rapidly for largez (similar to the assump-
tions in Sec.III B ), so there exists somea > 0 such that

V
00
ðzÞ ¼O

1
z2þ a

� �
asz ! þ1 : (30)

One can take, for example, power-law, Gaussian, or expo-
nential potentials:VðzÞ ¼ 1

z


 � a, (a > 0), VðzÞ ¼expð� z2Þ;
VðzÞ ¼expð� zÞ. These potentials naturally appear in appli-
cations (e.g., the Gaussian form arises in the problem of cold
atomic motion in optical traps,33 whereas the power-law and
exponential potentials are abundant in various classical mod-
els of atomic interactions).

The potentialWðq; eÞ given by Eqs.(27) and (28) is
symmetric with respect to any permutation of theqiÕs
ði ¼ 1; É ; nÞ. This strong symmetry enables us to derive a
one-degree of freedom equation for the motion along the di-
agonal. To study the stability of the periodic orbit, one needs
to linearize the Hamiltonian equations of motion, solve
the corresponding 2n-dimensional linear system with the
time-periodic coefÞcients for a set of 2n orthonormal initial
conditions, and Þnd the stability of the associatedð2n � 2nÞ-
dimensional monodromy matrix. Such a computation Þnally
leads to a set of 2n Floquet multipliers (2 of which are trivi-
ally one). The symmetric form of the potential, together with
some change of coordinates, allows to reduce this formidable
task to a much simpler oneÑto solving a single second order
homogeneous equation with a time periodic coefÞcient: y þ
aðtÞy ¼ 0: Indeed, we establish that the 2n Floquet multi-
pliers are simplyð1; 1; k; 1

k ; :::; k; 1
kÞ, where k is the eigen-

value of the monodromy matrix of this second order linear
equation. The periodic coefÞcienta(t) is explicitly found in
terms of the diagonal periodic orbit (which also depends on
the energy levelh) and the geometric parameters of the prob-
lem. In particular, the dependence ofa(t) on n turns out to be
particularly simple, allowing to study in a transparent
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manner the role of the dimensionn. A careful (non-trivial)
analysis of the scattering properties of the second order equa-
tion leads to the following general result:

Theorem 10.Suppose the potential function V satisÞes
Eqs.(29)and(30). Then, given any h2 ð0; 2Vð0ÞÞ, any natu-
ral n � 2, and any positive d and R, there exists a tending to
zero countable inÞnite sequence1 � l 0 > l 1 ¼ 1=

���
n

p
>

É > l k > É > 0 such that arbitrarily close to every point
ðl ¼ l k; e¼ 0Þ, there are wedges ofðl ; eÞat which the orbit
c is linearly stable.

More detailed information regarding the wedges charac-
ter may be obtained in two speciÞc cases as explained next.
First, we may estimate the wedges height ine provided the
scaling parameterb ¼ 1� l 2

ðn� 1Þl 2 is sufÞciently small and the
following integral (which is well deÞned for potentials satis-
fying Eqs.(29)and(30)) is positive,

IðhÞ ¼
2
���
h

p
ðþ1

V� 1ðh=2Þ
V

00
ðzÞ

dz
��������������������
h � 2VðzÞ

p :

Theorem 11.Provided IðhÞ> 0, the diagonal periodic orbit
c is stable forðl ; eÞvalues in the wedge enclosed by the two
curves,

eþ
0 ¼ IðhÞ

1 � l 2

ðn � 1Þl 2 1 þ
1

d þ R

� � � 1

þ o
1 � l 2

ðn � 1Þl 2

� �
;

and

e�
0 ¼ IðhÞ

1 � l 2

ðn � 1Þl 2 1 þ
1
d

� � � 1

þ o
1 � l 2

ðn � 1Þl 2

� �
:

In particular, notice that the wedge height is polynomial
in n-namely, the region of stability does not shrink exponen-
tially with the dimension as one may have expected.

Second, the wedges structure for the power-law poten-
tial case may be described in detail (see Ref.6 for numerical
veriÞcations of these formulas),

Theorem 12. Consider the power-law potential

VðQ; eÞ ¼ e
Q

�  a
. Then, for sufÞciently smalle and l , there

exists an inÞnite number of disjoint stability tongues in the
ðl ; eÞplane at whichcðt; l ; e; nÞis linearly stable. For sufÞ-
ciently large k, the kth stability zone emanates from thel
axis near the bifurcation value,

l k �
1
k

�����������������
2ða þ 1Þ
aðn � 1Þ

s

;

and extends up to thee-axis, intersecting it near

ek � ð h=2Þ1=a ða þ 1Þ
aðn � 1Þ

4
p2k2

� ðp=2

0
ðsinhÞ1=adh

 2
;

at a stability interval of length

ðDeÞk �
4ek

pkGð0; aÞdð1 þ d
RÞ

4aða þ 1Þ
n � 1

ð2ekÞ
a

h

� � 1=2ðaþ 1Þ

;

where Gð0; aÞ> 0 is (non-trivially) computable function
which depends only ona.

Rewriting the above formulas (with (c1;2) as shorthand
notation), we obtain

ek �
h1=a

n � 1
c1ðk; aÞ;

ðDeÞk

ek
�

1
�����������
n � 1

p
c2ðk; aÞ
dð1 þ d

RÞ
:

In particular, to leading order, the wedges relative heights
are independent of the energy level and decay as (1=

���
n

p
)

with the dimension.
The analysis is performed only for the symmetric case.

It is quite possible that one may extend it to the nearly sym-
metric case. Indeed, it is easy to break the symmetry, by, for
example, multiplying the termsVðQkðxÞ=eÞ in Eq. (27) by
slightly different coefÞcients,

Vpert
k ðq; eÞ ¼ ð1 þ dakÞVkðq; eÞ; (31)

whereak are uniformly distributed on the unit interval (i.e.,
we consider the case in which each sphere has a slightly dif-
ferent potential). The phase portraits of the perturbed motion
with d ¼ 0:001 are shown in the right column of Fig.7 (we
do verify that the projection plots ofX ¼ jjx � cð0Þjj; P ¼
jj _x � _cjj remain bounded, namely, that there is no instability

FIG. 7. Islands in a 20-dimensional symmetric (left) and asymmetric (right)
systems. Return map projection to the (x1; p1) plane is shown (see Ref.6).
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in any direction of the 20-dimensional phase space). We see
that such a modiÞcation appears to preserve the elliptic char-
acter of the periodic orbit (this is not an obvious statement as
the Flouqet multipliers ofcðtÞ are in the strong 1:1:...:1
resonance).

The considered example is clearly highly symmetric and
is not directly linked to the smooth many particle case (the
Òsmooth Boltzmann gasÓ). Nonetheless, the possibility of ex-
plicitly constructing stable motion in smoothn degree of free-
dom systems that limit to strictly dispersing billiards is now
established. Thus, the grand program of proving that arbitra-
rily large systems of particles interacting via a steep repelling
potential may, at arbitrarily high energies, have fully elliptic
orbits appears to be reachable in a few years work.

V. SCATTERING PROBLEMS

Scattering problems with smooth steep potentials appear in
diverse Þeld of physics (notably chemical reactions) and are
thus of practical signiÞcance. In these problems, one considers
a potential which rapidly decays to zero outside a compact do-
main (called the scattering region) and examines the evolution
of a ray of initial conditions that hit the scattering region. Math-
ematically, the key ingredient for analyzing such problems is
the detection and characterization of the compact invariant set
associated with the potential. The methods described in Secs.
IÐIV may be applied to study such questions when the potential
is steep, or at high energy levels (if the potential is unbounded).
We describe here some of the results achieved, together with
Rapoport, in the two-dimensional setting.8

We start with the formal deÞnition of the scattering map
for the limit billiard case. Namely, consider a scattering bil-
liard in R 2; that is, a collectionD of disjoint hard-wall
obstacles (Di) which reside strictly inside the centered at
zero disc of a sufÞciently large radius�R. We call D a Sinai
scattererif each Di is bounded by a Þnite number ofCrþ 1-
smoothstrictly convex(when looked from inside ofDi) arcs
that meet each other at non-zero angles.

Let a particle come from inÞnity with the momentum
ðpx; pyÞ ¼

�����
2h

p
ðcosu in; sinu inÞ, whereh is the energy (recall

that the energy is conserved). The parallel rays corresponding
to the same value ofu in are distinguished by their impact pa-
rameterbin; the absolute value ofbin equals to the distance
between a particular ray and the origin. Given the energy
value, the incoming orbit is uniquely deÞned by the data
ðu in; binÞ. For typical initial conditions, orbits that come from
inÞnity must go to inÞnity (by Poincare recurrence theorem).
The outgoing angle and impact parameter are determined by
elastic reßections from the obstaclesDi. Thus, the scattering
map S : ðbin; u inÞ ! ð bout; uout; toutÞ is deÞned. The interac-
tion time tout is deÞned astout ¼ lim �R ! þ1 L �R� 2 �R����

2h
p , where

L �R denotes the length of the orbit inside the centered at zero
disc of radius �R. For a Þxedu in, the scattering functionsU
andT are deÞned as

ðUðbÞ; TðbÞÞ ¼ ðuoutðb; u inÞ; toutðb; u inÞÞ:

The scattering functions and their fractal properties had been
extensively studied by numerical simulations, see, e.g., Refs.
34Ð37.

We call ðbin; u inÞ regular, if the corresponding orbit
makes a Þnite number of reßections from the obstacles
before leaving the scattering region, and all these reßections
are regular (i.e., the orbit does not visit the corner points and
all the reßections are non-tangent). Then all close-by initial
conditions are also regular and the scattering map isCr-
smooth.

The complement to the set of regular initial conditions
is a compact set of measure zero. There are exactly two sour-
ces for non-smooth behavior ofS: interior singularities that
are associated with singular reßections from the scatterers,
and trapping singularities which correspond to the number of
reßections tending to inÞnity.

The interior singularities have a simple signature in
terms of the scattering map. Namely, if the trajectory is tan-
gent to the scatterer boundary at one of the reßections, then
UðbÞ has a square root singularity fold. Notice that both
UðbÞandTðbÞare continuous across the tangent singularity
line (see Fig.8). If the trajectory ends up in a corner, then
the scattering mapS is not deÞned at that point, having a dis-
continuous behavior of bothUðbÞandT(b) along this corner
singularity line.

The trapping singularities have a more complex signa-
ture. Denote byRK the measure zero set of allðbin; u inÞfor
which the orbit is trapped in the scattering region (i.e., it
makes an inÞnite number of reßections and does not go to in-
Þnity). Note that the scattererD may have a nontrivial com-
pact invariant setK, i.e., the set of all orbits that stay
bounded for all time (from�1 to þ1 ). The above deÞned
setRK consists of all the initial conditionsðbin; u inÞbelong-
ing to thestable manifoldof K.

Recall that we consider here Sinai scatterers, so all regu-
lar orbits in K are hyperbolic. If the hyperbolic setK is
bounded away from the singulariy set (corners and tangent
collisions) in the phase space, we call the Sinai scattererreg-
ular. In this case, the scattering function near the trapping
singularities has a characteristic self-similar structure, e.g.,
for everyu in the values ofbin which correspond to the trap-
ping form a Cantor set which is diffeomorphic to a transverse
section of the stable manifold ofK.

The set of regular Sinai scatterers is robust under smooth
perturbations. Indeed, the uniformly hyperbolic invariant set
K is structurally stable, i.e., a sufÞciently small smooth de-
formation of D does not change the symbolic dynamic
description of the dynamics onK. In order to see that the set
of regular Sinai scatterers is non-empty, consider three iden-
tical circular disks of radiusa that are centered at the vertices
of an equilateral triangle with edges of lengthR. When
R > 3a, the invariant setK is bounded away from any tan-
gent trajectory, andK is fully described by symbolic dynam-
ics on 3 symbols with a simple transition matrix.35

We call the Sinai scatterersingular if the set of trapping
singularities is no longer separated from the interior singular-
ities, and the simple Cantor-set structure is lost. This is due
to the fact that the invariant setK now includes tangent
and/or corner orbits. For example, as the three discs of the
above mentioned example get closer, tangent orbits are cre-
ated; At each such bifurcation point the phase space partition
changes and, as the scatterers get closer, the transition matrix
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becomes more complexÑin the limit at which the discs
touch each other, inÞnite Markov partition is needed and the
invariant set has a full measure.35 For a general, say, one-
parameter family of Sinai scatterers, it is plausible that
parameter values that produce singular scatterers Þll non-
empty intervals. More precisely, we suspect that tangent
bifurcations of (K) occur on a dense set of parameter values
belonging to these intervals (similar to the Newhouse phe-
nomenon49,50). It may be quite challenging to study the
structure of the scattering function for these singular Sinai
scatterers.

Now, consider the system (1) with a steep potential that
limits to a regular Sinai scatterer. Namely, we consider smooth
systems that satisfy conditionsI-IV of Sec.II in the domain
D ¼ R2nD, with an additional assumption that the potential
decays sufÞciently fast asjqj ! 1 . For example, we consider

potentials of the formVðq; eÞ ¼
X n

i¼1
EiVi

QiðqÞ
e

� 
, where

Qi jq2@Di
¼ 0; Qi jq2D > 0, Ei � E > 0, and, for somea > 0,

Við0Þ � 1; Vi
0ðzÞ< 0; ViðzÞ ¼O

1
za

� �
for z � 1: (32)

By construction, for all energiesh 2 ð0; EÞ, for sufÞciently
smalle, the HillÕs region of the smooth ßow approachesD.

Since the potential decays fast, every trajectory which
tends to inÞnity is asymptotic to a straight line, so there are
well-deÞned asymptotic directionu and impact parameterb.
Thus, one may deÞne the scattering map of the smooth
ßow, Se : ðbin; u inÞ ! ð be

out; ue
out; teoutÞ. Applying the regular

smooth limit results of Ref.5 (see Sec.II C) to this setup

ensures that near regular initial dataðbin; u inÞ the smooth
scattering map converges to the billiard scattering map as
e! 0, along with all derivatives. Thus, for smooth-potential
approximations of regular Sinai scatterers, one expects the
scattering map to have the same structure as for the billiard
limit. Namely, we have the following result.

Theorem 13.Consider the Hamiltonian system (1) with
a rapidly decaying at inÞnity billiard-like potential Vðq; eÞin
the complementD to a regular Sinai scatterer D. LetKh be
the maximal compact invariant set of the billiard inD. Then,
for all small e, the maximal compact invariant setKe

h in the
energy level h2 ð0; EÞis topologically conjugate toKh.
Moreover, the local stable and unstable manifolds ofKe

h are
Cr close to the local stable and unstable manifolds ofKh.

The theorem implies that the scattering function has the
same qualitative structure for all smalle. In particular, it has
the perfect self-similar behavior associated with regular hyper-
bolic scattering, see Refs.34Ð37. In the case ofsingularSinai
scatterers, the behavior of the scattering function for the
smooth ßow is quite different. In particular, one cannot expect
structural stability asevaries. As our results suggest, the main
effect of the smooth potential is to destroy the hyperbolicity of
the invariant set of the singular Sinai scatterer. Indeed, billiard
singularities give rise to elliptic periodic orbits of the smooth
scatterer.

Numerous numerical studies of scattering by smooth
potentials demonstrate that elliptic islands play a signiÞcant
role in the structures of scattering maps. In particular, it has
been proposed that the existence of such elliptic component
leads to ÒfatÓ fractal behavior of the scattering function.51,52

FIG. 8. The scattering map (see Ref.8).
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However, in general smooth systems, it is difÞcult to describe
invariant sets and to isolate the scattering signature of each in-
gredient. Examining the behavior of smooth systems that limit
to singular scatterers provides a method for studying such
effects. Indeed, by utilizing the singular mechanisms for creat-
ing stability islands (Sec.III ), we can examine the scattering
by small stability islands with control over the size and struc-
ture of the islands and of the rest of the invariant set. In Ref.
8, two symmetric geometrical settings of singular Sinai scat-
ters (with cornersÑFigs.9(a)and9(b) and with tangenciesÑ
Figs.9(c)and9(d)) were thus examined.

From these studies, the following scenario emerges (see
Fig. 10). Let l � denote a bifurcation value for which the bil-
liard invariant set has a singularity (e.g., a tangent periodic
orbit or a corner polygon). Then, as discussed in Sec.III ,
under some conditions on the potential and the geometry,3,4

a stability wedge in theðl ; eÞplane emanates fromðl � ; 0Þ,
i.e., the smooth ßow has stable periodic orbit for all parame-
ters in this wedge (as in Fig.6). For a Þxedl value intersect-
ing this wedge, there exists an interval ofe values,
½e� ðl Þ; eþ ðl Þ�, at which the periodic orbit is stable. Fixing
such a ÒgenericÓl value close tol � , where atl the billiard
invariant set is hyperbolic and non-singular ande6 ðl Þ are
small; the following sequence of bifurcations occurs ase is
increased from zero:

1. For a sufÞciently smalle, the non-hyperbolicity effects
are small so the scattering function looks self-similar, and
its fractal dimension approaches that of the billiard scat-
tering function at the given value ofl . Discontinuities in
the billiard scattering function may lead to additional sin-
gular components in the scattering function of the smooth
ßow (fourth column of Fig.10).

2. Increasinge towards and through the interval½e� ðl Þ; eþ ðl Þ�
leads to a sequence of Hamiltonian bifurcations of the hyper-
bolic periodic orbits that produces elliptic orbits. These bifur-
cations appear in the scattering function as the merge between
several unresolved regions. Fore inside the wedges of stabil-
ity, the signature of non-hyperbolic chaotic scattering shows
upÑthe density of singularities is large and does not appear
to converge to a discrete set as further magniÞcations are
employed. We notice thatthe stability interval½e� ðl Þ; eþ ðl Þ�
indicates the stability propertyof a single periodic orbit. At
least near the period-doubling end of this interval, there exist
a cascade of other periodic orbits that are stable; hence, the
visible non-hyperbolicity interval is certainly larger than
½e� ðl Þ; eþ ðl Þ�(second and third columns of Fig.10).

3. Beyond the stability interval, intervals of seemingly
hyperbolic scattering or other interval of stability (that
stem from other stability wedges) can be encountered
(Þrst column of Fig.10).

FIG. 9. Singular Sinai scatters. (a) and (b) have corner singularities, whereas (c) and (d) provide a simple realization for a tangent bifurcation of the invariant
set (see Ref.8).
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4. A larger increase ineis problem-speciÞc and may involve
topological changes of the corresponding HillÕs region
(i.e., homoclinic bifurcations). In our examples, it Þnally
leads to the reduction of the invariant set to one unstable
periodic orbit and then to the destruction of the invariant
set.

The above description suggests that by choosing a one-
parameter family of steep potentialsðl ; eðl ÞÞ ! ðl � ; 0Þ,
such thateðl Þ 2 ðe� ðl Þ; eþ ðl ÞÞfor all l values the fractal
dimension of the corresponding scattering function is close
to two for arbitrarily smalle. On the other hand, we have
seen that for a Þxedl 6¼ l � , for sufÞciently small e,
hyperbolic-like chaotic scattering is observed. Thus, nearl � ,
the fractal dimension of the scattering function can be con-
trolled by varying the appropriate combination ofe; ðl �
l � Þ=eandh as derived from the form of the return map near
the singular orbit (see Sec.III ).

VI. CONCLUSIONS AND PERSPECTIVES

The near-billiard paradigm allows to analyze a variety
of dynamical properties of multi-dimensional non-integrable
Hamiltonian systems. We conclude by listing some of the
problems that require further research.

One future direction concerns establishing the corre-
spondence between the smooth system and its singular limit
near regular collisions for a wider class of impact systems.

This may include time-dependent billiards, billiards on non-
ßat manifolds, billiard motion with added magnetic Þeld,
impact systems where the potential does not vanish inside
the billiard domain, systems with dissipation, and non-elastic
reßection law. For all these system classes, after the regular
collisions are studied, one should analyze the effect of
smoothing the system on the behaviour near singular orbits.
This includes studying the grazing bifurcation18,54 and its
smooth approximations.

For the billiards themselves, the analysis of singular
orbits and their transformations at a smooth approximation is
far from being complete. For example, we have not studied
the general behavior near corner orbits in dimension higher
than 2 (in Ref.6, we considered only a particular case of a
very symmetric multi-dimensional corner). Nor have we
studied the behavior near corner angles large thanp. We
have proved the birth of elliptic islands out of tangent peri-
odic orbits of dispersive billiardsÑwhat happens in the non-
dispersive case, when the tangent periodic orbit hits both
convex and concave boundary components? What happens
near degenerate tangencies, e.g., when the billiard orbit has a
cubic tangency to the boundary? Such tangencies can appear
near an inßection point of the billiard boundary (in the two-
dimensional case) or near any boundary point where the cur-
vature form is not sign-deÞnite (in the multi-dimensional
case). In the billiard, an orbit with degenerate tangency can-
not, typically, be continued past the tangency point, so the

FIG. 10. Self-similar (outer columns) and singular (middle columns) scattering functions: close-ups of unresolved regions of the scattering function U2ðs; � Þ
for the corner case withn ¼ 2; l ¼ 0:9, and� ¼ 0:1842; 0:1403; 0:1146; 0:06654 are shown. The second and third values correspond to values that produce
elliptic islands (see Ref.8).
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question of how the smooth approximation ßow behaves
near the inßection and saddle boundary points is quite non-
trivial. This problem also includes the analysis of how
smoothing the system affects chattering (this phenomenon
corresponds to a billiard orbit that approaches an inßection/
saddle point by making inÞnitely many collisions in a Þnite
interval of time53). More generally, billiard trajectories can
make a long journey along a convex boundary component,
hitting it at a small angle. What happens with such orbits
when the billiard potential is replaced by its smooth steep
approximation?

Further, one should study periodic orbits that have sev-
eral tangencies to the billiard boundary (as well as corner
orbits that also have tangencies). What is the normal form of
the Poincare« map for the smooth system near such an orbit?
Is it true that given a (semi)dispersivek-dimensional billiard
with a periodic orbit that has (kÐ1) tangencies to the bound-
ary, a fully elliptic periodic orbit can be born for an arbitra-
rily steep smooth approximation? We proved this in the case
k¼2 in Ref.3, the higher-dimensional case is open. A posi-
tive answer will give a working tool for establishing thenon-
ergodicityof the motion in steep repelling potentials in any
dimension of the conÞguration space. A natural conjecture is
that periodic or corner orbits that make any given number of
tangencies to the billiard boundary can be obtained by an
arbitrarily small (inC1 ) deformation of the dispersive bil-
liard domain. Once this conjecture is proven, one should be
able to show that for any ergodic dispersive billiard, in any
dimension, the ergodicity can be ruined by arbitrarily steep
smooth approximation of the potential. Applying the tech-
nique to a system of high energy particles interacting via a
repelling hard-core potential would show that the non-
ergodicity is quite typical for the smooth Boltzmann gas. In
particular, one would be able to create stable conÞgurations
out of many particles interacting by a repelling potential at
arbitrarily large kinetic energies.
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