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A few mathematical problems arising in the classical synchronization theory are discussed; es-
pecially those relating to complex dynamics. The roots of the theory originate in the pioneering
experiments by van der Pol and van der Mark, followed by the theoretical studies by Cartwright
and Littlewood. Today, we focus specifically on the problem on a periodically forced stable limit
cycle emerging from a homoclinic loop to a saddle point. Its analysis allows us to single out the
regions of simple and complex dynamics, as well as to yield a comprehensive description of bi-
furcational phenomena in the two-parameter case. Of a particular value is the global bifurcation
of a saddle-node periodic orbit. For this bifurcation, we prove a number of theorems on birth
and breakdown of nonsmooth invariant tori.
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1. Introduction. Homoclinic Loop

Under Periodic Forcing

The following two problems are the enduring ones
in the classic theory of synchronization: the first is
on the behavior of an oscillatory system forced by a
periodic external force and the second is on the in-
teraction between two coupled oscillatory systems.
Both cases give a plethora of dynamical regimes
that occur at different parameter regions. Here, a
control parameter can be the amplitude and fre-
quency of the external force, or the strength of the
coupling in the second problem.

In terms of the theory of dynamical systems
the goal is to find a synchronization region in the

parameter space that corresponds to the existence
of a stable periodic orbit, and next describe the
ways synchronization is lost on the boundaries of
such a region.

Since a system under consideration will be high
dimensional (the phase space is of dimension three
in the simplest case and up), one needs the whole
arsenal of tools of the contemporary dynamical
systems theory.

However, our drill can be simplified substan-
tially if the amplitude of the external force (or
the coupling strength) µ is sufficiently small. So
when |µ| � 1, a two-dimensional invariant torus
replaces the original limit cycle. The behavior of the
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Fig. 1. Arnold’s tongues in the (ω, µ)-parameter plane.

trajectories on this torus is given by the following
diffeomorphism of the circle:

θn+1 = θn + ω + µf(θn) mod 2π , (1)

where f is 2π-periodic in θ, and ω measures the dif-
ference in frequencies. The typical (ω, µ)-parameter
plane of (1) looks like one shown in Fig. 1.

In theory, each rational value ω on the axis
µ = 0 is an apex for a synchronization zone known
as Arnold’s tongue. Within each Arnold’s tongue
the Poincaré rotation number:

r =
1

2π
lim

N→+∞

1

N

N
∑

n=0

(θn+1 − θn)

stays rational but becomes irrational outside of
it. The synchronous regime or phase-locking is
observed at rational values of the rotation num-
ber corresponding to the existence of the sta-
ble periodic orbits on the torus, followed by the
beatings — quasi-periodic trajectories existing at
irrational ω.

Note that in applications long periodic orbits
existing in narrow Arnold’s tongues corresponding
to high order resonances are hardly distinguishable
from quasi-periodic ones densely covering the torus.

The above is also true for the van der Pol
equation:

ẍ + µ(x2 − 1)ẋ + ω2
0x = µA sin ωt (2)

in the “quasi-linear” case, i.e. when |µ| � 1 and
A2 < 4

27
, as shown by van der Pol [1927], Andronov

and Vitt [1930], Krylov and Bogolubov [1947], as
well as by Afraimovich and Shilnikov [1974a, 1974b]
who proved the persistence of the torus after the
saddle-node periodic orbit vanishes on the bound-
ary of a principal resonance zone.

The case of a non-small µ, which is a way more
complicated than the quasi-linear one, has a long
history. In 1927 van der Pol and van der Mark [1927]
published their new results on experimental studies
of the sinusoidally driven neon bulb oscillator. Al-
though they put the primary emphasis upon the
effect of division of the frequency of oscillations in
the system, they also noticed that: “often an irreg-
ular noise is heard in the telephone receiver before
the frequency jumps to the next lower value.” This
might mean that they run across the coexistence of
stable periodic regimes with different periods (often
rather long: in the experiments, these periods were
100–200 times larger than that of the driving force)
as well as, in modern terminology, a complex dy-
namics (though considered as a side-product then).
The latter may indicate, if not the existence of a
strange attractor in the phase space of the system,
then, at least, the abundance of saddle orbits com-
prising a nontrivial set in charge for the complex
transient process.

These experiments drew Cartwright and Little-
wood’ attention. In 1945 they published some as-
tonishing results of their analysis carried out for
van der Pol equation (2) with µ � 1 [Cartwright
& Littlewood, 1945]. Namely, they pointed out the
presence of two kinds of intervals for amplitude val-
ues A in the segment (0; 1/3): the intervals of the
first kind corresponded to a trivial (periodic) dy-
namics in the equation; whereas in the intervals of
the second kind, besides both coexisting stable pe-
riodic orbits, there was a nontrivial non-wandering
set consisting of unstable orbits and admitting a
description in terms of symbolic dynamics with two
symbols. Thus, they were the first who found that
a three-dimensional dissipative model might have
countably many periodic orbits and a continuum
of aperiodic ones. The elaborative presentation of
these results was done by Littlewood sometime later
[Littlewood, 1957a, 1957b].

Levinson [1949] presented an explanation of
these results for the following equation:

εẍ + ẋ sign(x2 − 1) + εx = A sin t , (3)

with ε � 1. Since this equation is piecewise lin-
ear, the study of the behavior of its trajectories can
be essentially simplified, making the analysis quite
transparent.

The idea of “typicity” of the complex behavior
of trajectories for a broad class of nonlinear equa-
tions was voiced by Littlewood [1957a, 1957b] in the
explicit form. Today, it is interesting to note that
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the very first paper [Cartwright & Littlewood, 1945]
contained a prophetic statement about the topolog-
ical equivalence of the dynamics of the van der Pol
equations with different values of A corresponding
to complex nontrivial behavior. In other words, the
dynamical chaos was viewed by Cartwright and Lit-
tlewood as a robust (generic) phenomenon. When
Levinson pointed out these results to Smale, the lat-
ter found that they might admit a simple geometric
interpretation, at least at the qualitative level. This
led Smale to his famous example (dated by 1961) of
a diffeomorphism of the horseshoe with a nontriv-
ial hyperbolic set conjugated topologically with the
Bernoulli subshift on two symbols. The commence-
ment of the modern theory of dynamical chaos, as
we all know it, was thus proclaimed.

The study of equations of Levinson’s type was
proceeded by works of Osipov [1975] and Levi [1981]
in 70–80s. They produced a complete description
for nonwandering sets as well as proved their hy-
perbolicity in the indicated intervals of parameter
A values.

The analysis in the works mentioned above was
done only for a finite number of intervals of values of
A (the intervals of hyperbolicity). The total length
of the remaining part tends to zero as µ → ∞ (or
ε → 0). Thus, it turns out that dynamical features
occurring within the intervals of non-hyperbolicity
could be indeed neglected in the first approxima-
tion. Note however that it is those intervals which
correspond to the transition from simple to com-
plex dynamics along with appearances and disap-
pearances of stable periodic orbits as well as onset
of homoclinic tangencies leading to the existence
of the Newhouse intervals of structural instability,
and so forth . . . In systems which are not singularly-
perturbed all these effects have to be subjected to
a scrupulous analysis.

A suitable example in this sense can be an au-
tonomous system

ẋ = X(x, µ) ,

which is supposed to have a stable periodic orbit Lµ

that becomes a homoclinic loop to a saddle equi-
librium state as µ → 0+. One may wonder what
happens as the system is driven periodically by a
small force of amplitude of order µ? This problem
was studied in a series of papers by Afraimovich
and Shilnikov [1974a, 1974b, 1977, 1991]. Below, we
overview a number of obtained results that are of
momentous value for the synchronization theory.

(a)

(b)

Fig. 2. Homoclinic bifurcation leading to the birth of the
stable limit cycle, plane.

For the sake of simplicity we confine the con-
sideration to two equations. Suppose that the au-
tonomous system

ẋ = λx + f(x, y, µ) ,

ẏ = γy + g(x, y, µ)

has an equilibrium state of the saddle type at the
origin with a negative saddle value

σ = λ + γ < 0 . (4)

Let this saddle have a separatrix loop at µ = 0, see
Fig. 2(a).

As well known [Andronov & Leontovich, 1963;
Andronov et al., 1971] that the system shall have
a single periodic orbit bifurcating off the loop for
small µ. Let that be so when µ > 0, see Fig. 2(b).
In general, the period of the new born cycle is of or-
der | ln µ|. The last observation makes this problem
and that on van der Pol equation having, at A = 0, a
relaxation limit cycle of period ∼ 1/µ resembling: in
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Fig. 3. Poincaré map taking a cross-section S1 in the plane
x = δ transverse to the unstable manifold W u of the saddle-
periodic orbit Γ onto a cross-section S0 (transverse) to the
stable manifold W S .

both cases the period of the bifurcating limit cycle
grows with no bound as the small parameter tends
to zero.

As far as the perturbed system

x = λx + f(x, y, µ) + µp(x, y, t, µ) ,

y = γy + g(x, y, µ) + µq(x, y, t, µ)
(5)

is concerned, where p and q are 2π-periodic func-
tions in t, we shall also suppose that the Melnikov
function is positive, which means that the stable
W s and unstable W u manifolds of the saddle peri-
odic orbit (passing near the origin (x = y = 0)) do
not cross, see Fig. 3.

Now, one can easily see that the plane x = δ in
the space {x, y, t} is a cross-section for system (5)
at small δ. The corresponding Poincaré map Tµ is
in the form close to the following modeling map:

y = [y + µ(1 + f(θ))]ν

θ = θ + ω − 1

γ
ln[y + µ(1 + f(θ))] ,

(6)

where ν = −(λ/γ) > 1, ω is a constant, and
µ(1+f(θ)) is the Melnikov function with 〈f(θ)〉 = 0.
The right-hand side of the second equation is to be
evaluated in modulo 2π since θ is an angular vari-
able. The last can be interpreted as the phase differ-
ence between the external force and the response of
the system. Thus, attracting fixed points (for which

θ = θ mod2π) of the above map correspond to the
regime of synchronization.

The limit set of the map Tµ at sufficiently small
µ lies within an annulus Kµ = {0 < x < Cµν, 0 ≤
θ < 2π} with some C > 0. After rescaling y → µνy
the map assumes the form

y = [1 + f(θ)]ν + · · · ,

θ = θ + ω̃ − 1

γ
ln[1 + f(θ)] + · · · ,

(7)

where the ellipsis stand for the terms converging
to zero along with their derivatives, while ω̃ =
(ω − (1/γ) ln µ) tends to infinity as µ → +0,
i.e. ω̃ mod2π assumes arbitrary values in the inter-
val [0, 2π) countably many times. Hence, the dy-
namics of the Poincaré map is dominated largely
by the properties of the family of circle maps:

θ = θ + ω̃ + F(θ)mod2π , (8)

where F(θ) = −(1/γ) ln[1 + f(θ)].

Assertion 1. [Afraimovich & Shilnikov, 1991] 1. In
the case where

1

γ

f ′(θ)

1 + f(θ)
< 1 , (9)

the map Tµ has an attracting smooth invariant
closed curve of the form y = h(θ, µ) that contains
ω-limit set of any trajectory in Kµ.

Assertion 2. Let an interval I = [θ1, θ2] exist such
that either

f ′(θ) < 0 everywhere on I (10)

and

1

γ
ln

1 + f(θ1)

1 + f(θ2)
> 2π(m + 1) , m ≥ 2 , (11)

or

1

γ

f ′(θ)

1 + f(θ)
> 2 everywhere on I (12)

and

1

γ
ln

1 + f(θ2)

1 + f(θ1)
>2(θ2 − θ1) + 2π(m + 1) , m ≥ 2 .

(13)

Then, for all sufficiently small µ > 0 the map Tµ

will have a hyperbolic set Σµ conjugated with the
Bernoulli subshift on m symbols.
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π

(a) m = 2 (b)

Fig. 4. (a) The image of the region Π under Tµ overlaps with Π at least m times. (b) The image of the annulus Kµ under
Tµ has no folds.

For example, in case f(θ) = A sin θ we have

that if A < (γ/
√

1 + γ2), then the invariant closed
curve is an attractor of the system for all small µ,
while we have complex dynamics for A > tanh 3πγ.

The meaning of conditions (10) and (12) is that
they provide expansion in the θ-variable within the
region Π : θ ∈ I and, therefore, hyperbolicity of
the map (6) in the same region (contraction in
y is always achieved at y sufficiently small since
ν > 1). Furthermore, if the conditions (11) and
(13) are fulfilled, then the image of the region Π
overlaps with Π at least m times [see Fig. 4(a)].
Hence, we obtain a construction analogous to the
Smale horseshoe; then the second assertion above
becomes evident by say, referring to the lemma
on a saddle fixed point in a countable product of
Banach spaces [Shilnikov, 1967].

In the first assertion, the condition (9) leads
to the image of the annulus Kµ under Tµ hav-
ing no folds for small µ [see Fig. 4(b)], in other
words it is also an annulus bounded by two curves
of the form y = h±(θ). The subsequent image of
this annulus is self-alike too, and so on. As a result,
we obtain a sequence of embedded annuli; more-
over, the contraction in the y-variable guarantees
that they intersect in a single and smooth closed
curve. This curve is invariant and attracting as fol-
lows, say, from the annulus principle introduced in

[Afraimovich & Shilnikov, 1974a, 1974b, 1977], (see
also [Shilnikov et al., 1998]).

In an attempt for a comprehensive investiga-
tion of the synchronization zones we restrict our-
self to the case f(θ) = A sin θ (or f(θ) = Ag(θ),
where g(θ) is a function with preset properties).
This choice lets us build a quite reasonable bifur-
cation diagram (Figs. 5 and 6) in the plane of the
parameters (A, − ln µ) in the domain {0 ≤ A < 1,
0 < µ < µ0}, where µ0 is sufficiently small.

Each such region can be shown to adjoin to
the axis − ln µ0 at a point with the coordinates
(2πk; 0), where k is a large enough integer. Inside,
there coexists a pair of fixed points of the Poincaré
map such that θ = θ+2πk. Their images in the sys-
tem (5) are the periodic orbits of period 2πk. The
borders of a resonant zone Dk are the bifurcation
curves B1

k and B2
k on which the fixed points merge

into a single saddle-node. The curves B1
k continue

up to the line A = 1, while the curves B2
k bend

to the left (as µ increases) staying below A = 1.
Therefore, eventually these curves B2

k will cross the
curves B1

m and B2
m with m < k.

Inside the region Dk one of the fixed points of
the map, namely Qk is always of saddle type. The
other point Pk is stable in the region Sk right be-
tween the curves B1

k, B2
k and B−

k . Above B−
k the

point Pk loses stability that goes to a cycle of period
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Fig. 5. Overlapping resonant zones.

Fig. 6. Inner constitution of a resonant zone.

2 bifurcating from it. The region Sk is the synchro-
nization zone as it corresponds to the existence of
a stable periodic orbit of period 2πk. Note that for
any large enough integers k and m the intersection
of the regions Sk and Sm is non-empty — in it, the
periodic points of periods 2πk and 2πm coexist.

Within the region Dk the closed invariant
curve, existing at small A (at least for A <

γ/
√

1 + γ2, see Assertion 1) is the unstable mani-
fold W u of the saddle fixed point Qk which closes
on the stable point Pk, as sketched in Fig. 7.

After crossing B−
k the invariant curve no longer

exists, see Fig. 8.
Another mechanism of breakdown of the in-

variant circle is due to the onset of homoclinic
tangencies produced by the stable and unstable
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Fig. 7. The closure of the unstable manifold of the saddle
fixed point Qk is a closed invariant curve.

Fig. 8. After a period-doubling bifurcation on B−

k
, the clo-

sure of the unstable manifold of the saddle-fixed point is no
longer homeomorphic to circle.

manifolds of the saddle point Qk. The tangencies
occur on the bifurcation curves B1

tk and B2
tk where

each corresponds to a homoclinic contact of one of
the components of the set W u\Q with W S(Qk), (see
Fig. 9).

The curves B1
tk and B2

tk are noteworthy because
they break each sector Sk into regions with simple
and complex dynamics. Below the curves B1

tk and
B2

tk in the zone Sk the stable point Pk is a single

(a)

(b)

Fig. 9. End of the closed invariant curve: the very first ho-
moclinic touches of the stable manifold of saddle fixed point
with the unstable one that occur on the curves B1

tk and B2
tk,

respectively.

attractor grabbing all the trajectories other than
the saddle fixed point Qk. In the region above the
curves B1

tk and B2
tk, the point Qk has a transverse

homoclinic trajectory, and, consequently, the map
must possess a nontrivial hyperbolic set [Shilnikov,
1967]. Note that the zone Sm (m < k) should over-
lap with the zone Sk always above the curve B2

tk.
Hence, in the region Sk ∩Sm where a pair of stable
periodic orbits of periods 2πk and 2πm coexists, the
dynamics is always complex like the corresponding
case of the van der Pol equation.

In fact, other stable points of other periods may
also exist in the region above the curves B1

tk and
B2

tk: since the homoclinic tangencies arising on the
curves B1

tk and B2
tk are not degenerate (quadratic),

it follows from [Newhouse, 1979] that above these
curves in the parameter space there exist the
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P
k

k

Fig. 10. Homoclinic contacts between the invariant manifolds of the saddle point Pk, see the left inset.

so-called Newhouse regions where the system has
simultaneously an infinite set of stable periodic or-
bits for dense set of parameter values. On the other
hand, it follows from [Newhouse & Palis, 1976] (see
[Sten’kin & Shilnikov, 1998] for a higher dimen-
sional case) that in addition there will be regions
of hyperbolicity as well; moreover, the stable point
Pk may be shown to be the only attractor for pa-
rameter values from these regions.

It should be remarked that the synchronization
is always incomplete in the synchronization zone Sk

above the curves B1
tk and B2

tk. This is due to the
likelihood of the presence of other stable periodic
orbits of different periods that coexist along with
the orbit Lk corresponding to the stable fixed point
Pk of the Poincaré map. However, even if this is not
the case and Lk is still the only attractor, the phase
difference between Lk and the trajectories from the
hyperbolic set nearby the transverse homoclinics to
the saddle point Qk will grow at the asymptotically
linear rate, i.e. phase locking may be broken at least
within the transient process.

We should remark too that chaos itself is less
important for desynchronization than the presence
of homoclinics to the saddle point Qk. So, for ex-
ample, in the region Dk\Sk beneath the curves B1

tk

and B2
tk where Qk has no homoclinics, the difference

in the phase stays always bounded, which means a
relative synchronization, so to speak. Meanwhile the
dynamics can be nonetheless chaotic: for instance,
in the region above the curve B0

tk, the fixed point

Pk is no longer stable but a saddle with a trans-
verse homoclinic orbit. On the curve B0

tk, the sta-
ble and unstable manifolds of Pk have a homoclinic
tangency of the third class in terminology intro-
duced in [Gavrilov & Shilnikov, 1972] (illustrated
in Fig. 10) which implies particularly the complex
dynamics persisting below the curve B0

tk as well.
Thus, the region Dk corresponding to the exis-

tence of the 2πk-periodic orbit, may be decomposed
into the zones of complete, incomplete and relative
synchronization. The regime of incomplete synchro-
nization, where there are periodic orbits with dif-
ferent rotation numbers, always yields complex dy-
namics. Further, in the zone of relative synchroniza-
tion there is another “non-rotating” type of chaotic
behavior. It can be shown that such a tableau of
the behavior in the resonance zone Dk is drawn not
only for f(θ) = A sin θ, but in generic case too for
an arbitrary function f .

The following question gets raised: what will
happen upon leaving the synchronization zone Sk

through its boundary B2
k or B1

k, i.e. as the saddle-
node orbit vanishes? The answer to this question
relies essentially on the global behavior of the un-
stable manifold W u of the saddle-node. Above the
points M 1

k and M2
k ending up, respectively, the

curves B1
tk and B2

tk corresponding to the beginning
of the homoclinic trajectories, the unstable mani-
fold W u of the saddle-node has points of transverse
crossings with its strongly stable manifold W ss (see
Fig. 11).
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W
ss

Fig. 11. Homoclinic crossings between the unstable mani-
fold W u with the strongly stable one W ss of a saddle-node.

It is shown in [Lukyanov & Shilnikov, 1978] that
this homoclinic structure generates the nontrivial
hyperbolic set similar to that existing nearby a
transverse homoclinic trajectory to a saddle. Upon
getting into the region Dk the saddle-node disinte-
grates becoming a stable node and a saddle, and
the latter inherits the homoclinic structure, and
hence the hyperbolic set persists. Upon exiting Dk

the saddle-node dissolves, however a great portion
of the hyperbolic set survives, i.e. as soon as the
boundaries B2

k and B1
k are crossed above the points

M1
k and M2

k we enter the land of desynchronization
(“rotational chaos”).

The points M 1
k and M2

k correspond to the ho-
moclinic contacts between the manifolds W u and
W ss (see Fig. 12). The limit set for all trajectories in
W u is the saddle-node itself, and hence W u is home-
omorphic to a circle. Below these points the man-
ifold W u returns always to the saddle-node from
the node region. It is yet homeomorphic to a circle.
Note that for the parameter values near M 1

k and M2
k

the folds on W u persist; this implies that W u can-
not be a smooth manifold (a vector tangent to W u

wiggles as the saddle-node is being approached from
the side of the node region and has no limit). This is
always so until W u touches a leaf of the strongly sta-
ble invariant foliation F ss at some point in the node
region (see [Newhouse et al., 1983] and [Shilnikov et

al., 2001]). On the other hand, if W u crosses the fo-
liation F ss transversely, then the former adjoins to
the saddle-node smoothly. This is the case when A
is small enough: here the smooth invariant closed

(a)

(b)

Fig. 12. (a) Homoclinic tangencies involving the unstable
W u and the strongly stable W ss manifolds of a saddle-node.
(b) Pre-wiggles of the unstable manifold of the saddle-node.

curve services as the only attractor; it coincides with
W u on the curves B1,2

k . We denote by M ∗1
k and

M∗2
k the points on the curves B1

k and B2
k, respec-

tively, such that below them the manifold W u ad-
joins to the saddle-node smoothly, and nonsmoothly
above them.

We will show in the next section that if ei-
ther boundary B1

k or B2
k of the complete synchro-

nization zone is crossed outbound below the points
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M∗1
k or M∗2

k , respectively, the stable smooth in-
variant closed curve persists. It contains either a
dense quasi-periodic trajectory (with an irrational
rotation number) or an even number of periodic or-
bits of rather long periods at rational rotation num-
bers. In application, these double-frequency regimes
are practically indistinguishable. When the syn-
chronization zone is deserted through its bound-
aries B1

k and B2
k above the points M ∗1

k and M∗2
k ,

we flow either into chaos right away, or we enter
the land where the intervals of the parameter val-
ues corresponding to chaotic and simple dynamics
may alter. The former situation always takes place
by the points M 1,2

k (as above as below), while the
alternation occurs near and above the points M ∗1

k

and M∗2
k .

2. Disappearance of the Saddle-Node

In this section we will analyze a few versions of
global saddle-node bifurcations. The analysis will be
carried out with concentration on continuous time
systems because they provide a variety unseen in
maps.

Let us consider a one-parameter family of C2-
smooth (n + 2)-dimensional dynamical systems de-
pending smoothly on µ ∈ µ(−µ0; µ0). Suppose the
following conditions hold:

(1) At µ = 0 the system has a periodic orbit L0 of
the simple saddle-node type. This means that
all multipliers besides a single one equal to +1,
lie in the unit circle, and the first Lyapunov co-
efficient is not zero.

(2) All the trajectories in the unstable manifold W u

of L0 tend to L0 as t → ∞ and W u ∩W ss = ∅,
i.e. the returning manifold W u approaches L0

from the node region.
(3) The family under consideration is transverse to

the bifurcational set of systems with a periodic
orbit of the saddle-node type. This implies that
as µ changes the saddle-node bifurcates: it de-
couples into a saddle and a node when, say,
µ < 0, and does not exist when µ > 0.

According to [Shilnikov et al., 2000], one may
introduce coordinates in a small neighborhood of
the orbit L0 so that the system will assume the fol-
lowing form

ẋ = µ + x2[1 + p(x, θ, µ)] ,

ẏ = [A(µ) + q(x, θ, y, µ)]y ,

θ̇ = 1 ,

(14)

where the eigenvalues of the matrix A lie in the left
open half-plane. Here, θ is an angular variable de-
fined modulo of 1, i.e. the points (x, y, θ = 0) and
(x, σy, θ = 1) are identified, where σ is some invo-
lution in R

n (see [Shilnikov et al., 1998]). Thus p is
a 1-periodic function in θ, whereas q is of period 2.
Moreover, we have p(0, θ, 0) = 0 and q(0, θ, 0) = 0.
In addition, the mentioned coordinates are intro-
duced so that p becomes independent of θ at µ = 0
(the Poincaré map on the center manifold is imbed-
ded into an autonomous flow; see [Takens, 1974]).

The saddle-node periodic orbit L0 is given by
equation (x = 0, y = 0) at µ = 0. Its strongly
stable manifold W ss is locally given by equation
x = 0. The manifold W ss separates the saddle re-
gion (where x > 0) of L0 from the node one where
x < 0. The manifold y = 0 is invariant, this is a cen-
ter manifold. When µ < 0, it contains two periodic
orbits: stable L1 and saddle L2, both coalesce in
one L0 at µ = 0. When µ > 0 there are no periodic
orbits and a trajectory leaves a small neighborhood
of the phantom of the saddle-node.

At µ = 0 the x-coordinate increases mono-
tonically. In the region x < 0 it tends slowly to
zero, at the rate ∼ 1/t. Since the y-component de-
creases exponentially, it follows that all trajecto-
ries in the node region tend to L0 as t → +∞
tangentially to the cylinder given by y = 0. In
the saddle region x(t) → 0 now as t → −∞, and
since y increases exponentially as t decreases, the
set of trajectories converging to the saddle-node L0

as t → −∞, i.e. its unstable manifold W u, is the
cylinder {y = 0, x ≥ 0}.

As time t increases, a trajectory starting in
W u\L0 leaves a small neighborhood of the saddle-
node. However, in virtue of Assumption 2, it is to
return to the node region as t → +∞, i.e. it con-
verges to L0 tangentially to the cylinder y = 0.
Hence, a small d > 0 can be chosen so that W u

will cross the section S0 : {x = −d}. Obviously,
l = W u∩S0 will be a closed curve. It can be imbed-
ded in S0 variously. We will assume that the median
line l0 : {y = 0} in the cross-section S0 is oriented in
the direction of increase of θ, so is the median line
l1 : {y = 0} of the section S1 : {x = +d}. Because
l1 = W u∩S1, it follows that the curve l is an image
of the curve l1 under the map defined by the trajec-
tories of the system, and therefore the orientation
on l1 determines the orientation on l too. Thus, tak-
ing the orientation into account the curve l becomes
homotopic to ml0, where m ∈ Z. In the case n = 1,
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(a) m = 0 (b) m = 1

(c) m = −1 (d) m = 2

Fig. 13. Case m = 0 — the blue sky catastrophe. Cases m = 1 and −1: closure of the unstable manifold of the saddle-node
periodic orbit is a smooth 2D torus and a Klein bottle, respectively. Case m = 2 — the solid-torus is squeezed, doubly stretched
and twisted, and inserted back into the original and so on, producing the Wietorius–van Danzig solenoid in the limit.

i.e. when the system defined in R3 and S0 is a 2D
ring, the only possible cases are where m = 0, or
m = +1. However, if n ≥ 2 all integers m become
admissible. The behavior of W u in case m = 0 is

depicted in Fig. 13(a). When m = 1 the mani-
fold W u is homeomorphic to a 2D torus, and to
a Klein bottle in case m = −1, see Figs. 13(b) and
13(c). When |m| ≥ 2 the set W u is a |m|-branched
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manifold (exactly |m| pieces of the set W u adhere
to any point of the orbit L0 from the node region).
Note also that in the above discussed problem on a
periodically forced oscillatory system, as for exam-
ple (5), the first case m = 1 can only occur regard-
less of the dimension of the phase space.

The analysis of the trajectories near W u

presents interest only when µ > 0 (it is trivial when
µ ≤ 0). When µ > 0 the Poincaré map T : S1 → S1

is defined as the superposition of two maps by the
orbits of the system: T1 : S1 → S0 followed by
T0 : S0 → S1.

As shown in [Shilnikov et al., 2000] if the sys-
tem was brought to form (14) and the function p is
independent of θ at µ = 0, the map T0 : (y0, θ0) ∈
S0 7→ (y1, θ1) ∈ S1 can be written as

y1 = α(y0, θ0, ν) ,

θ1 = θ0 + ν + β(θ0, ν) ,
(15)

where ν(µ) is the flight time from S0 to S1. As
µ → +0, this time ν tends monotonically to in-
finity: ν ∼ 1/

√
µ; meanwhile the functions α and

β converge uniformly to zero, along with all deriva-
tives. Thus, the image of the cross-section S0 under
action of the map T0 shrinks to the median line l1
as µ → +0.

It takes a finite time for trajectories of the sys-
tem to travel from the cross-section S1 to S0. Hence,
the map T1 : S1 → S0 is smooth and well-defined
for all small µ. It assumes the form

y0 = G(y1, θ1, µ) ,

θ0 = F (y1, θ1, µ) .
(16)

The image of l1 will, consequently, be given by

y0 = G(0, θ1, 0) , θ0 = F (0, θ1, 0) . (17)

The second equation in (16) is a map taking a cycle
into another one. Hence this map may be written
as

θ0 = mθ1 + f(θ1) , (18)

where f(θ) is a 1-periodic function, and the degree
m of the map is the homotopy integer index dis-
cussed above.

By virtue of (15), (16) and (18) the Poincaré su-
perposition map T = T0T1 : S1 → S1 can be recast
as

y = g1(y, θ, ν) ,

θ = mθ + ν + f(θ) + f1(y, θ, ν) ,
(19)

where the functions f1 and g1 tend to zero as
ν → +∞, so do all their derivatives. Thus, we may

see that if the fractional part of ν is fixed, then as
its integral part ν tends to infinity, the map T de-
generates into the circle map T̃ :

θ = mθ + f(θ) + ν mod 1 . (20)

It becomes evident that the dynamics of the map
(19) is dominated by the properties of the map (20).
The values of ν with equal fractional parts give the
same map T̃ . Hence, the range of the small param-
eter µ > 0 is represented as a union of the count-
able sequence of intervals Jk = [µk+1; µk) (where
ν(µk) = k) such that the behavior of the map T for
each such segment Jk is likewise in main.

Let us next outline the following two remark-
able cases m = 0 and |m| ≥ 2 considered in
[Turaev & Shilnikov, 1995, 1997, 2000; Shilnikov
et al., 2001].

Theorem [Turaev & Shilnikov, 1997, 2000]. At

m = 0 the map T has, for all sufficiently small µ, a

single stable fixed point if |f ′(θ)| < 1 for all θ.

After the map T was reduced to the form (19),
the claim of the theorem follows directly from the
principle of contracting mappings. It follows from
the theorem that as the orbit L0 vanishes, the sta-
bility goes to a new born, single periodic orbit
whose length and period both tend to infinity as
µ → +0. Such bifurcation is called a blue sky catas-
trophe. The question of a possibility of infinite in-
crease of the length of a stable periodic orbit flow-
ing into a bifurcation was set first in [Palis & Pugh,
1975]; the first such example (of infinite codimen-
sion) was built in [Medvedev, 1980]. Our construc-
tion produces the blue sky catastrophe through a
codimension-1 bifurcation. We may refer the reader
to the example of a system with the explicitly
given right-hand side where such catastrophe is con-
structed [Gavrilov & Shilnikov, 1999]. Point out also
[Shilnikov et al., 2001; Shilnikov, 2003] that show
the blue-sky catastrophe in our setting is typical
for singularly perturbed systems with at least two
fast variables.

Theorem [Turaev & Shilnikov, 1995, 1997]. Let

|m| ≥ 2 and |m+f ′(θ)| > 1 for all θ. Then, the map

T will have the hyperbolic Smale–William attractor

for all small µ > 0.

In these conditions, the map T acts similarly to
the construction proposed by Smale and Williams.
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Namely, a solid torus S0 is mapped into itself in such
a way that the limit Σ = ∩k≥0T

kS0 is a Wietorius–
van Danzig solenoid which is locally homeomorphic
to the direct product of a Cantor set by an interval.
Furthermore, the conditions of the theorem guaran-
tee a uniform expansion in θ and a contraction in
y, i.e. the attractor Σ is a uniformly hyperbolic set.
Besides, since the map T |Σ is topologically conju-
gated to the inverse spectrum limit for the expand-
ing circle map (of degree |m|), it follows that all
the points of Σ are nonwandering. In other words,
we do have here a genuine hyperbolic attractor (see
more in [Turaev & Shilnikov, 1995, 1997]).

As mentioned above, in the case m = ±1 the
surface W u at µ = 0 may adjoin to the saddle-
node L0 smoothly as well as nonsmoothly, depend-
ing upon how W u crosses the strongly stable in-
variant foliation F ss in the node region. When the
system is reduced to the form of (14), the leaves of
the foliation are given by {x = const, θ = const},
i.e. on the cross-section S0 the leaves of F ss are the
planes {θ0 = const}. The intersection W u ∩ S0 is
the curve (17). Therefore [see (18)], W u adjoins to
L0 smoothly if and only if

m + f ′(θ) 6= 0 (21)

for all θ. This condition is equivalent to the limit-
ing map T̃ [see(20)] being a diffeomorphism of the
circle for all ν.

Theorem [Afraimovich & Shilnikov, 1974a, 1974b].
If the limit map T̃ is a diffeomorphism, then for all

µ > 0 sufficiently small the map (19) has a closed

stable invariant curve attracting all the trajectories

of the map.

The proof of the theorem follows directly from
the annulus principle [Afraimovich & Shilnikov,
1977; Shilnikov et al., 1998]. Remark that this
smooth stable invariant circle of the Poincaré map
T corresponds to a smooth attractive 2D torus in
the original system in the case m = 1, and to a
smooth invariant Klein bottle in the case m = −1.

The case where the map T̃ is no diffeomorphism
is more complex. We put the case m = −1 aside and
focus on m = 1 because the latter is characteristic
for synchronization problems.

Thus we have m = 1 and the limiting map T̃
has critical points. Introduce a quantity δ defined
as

δ = sup
θ1<θ2

(θ1 + f(θ1) − θ2 − f(θ2)) .

Fig. 14. δ is the absolute value of the difference between
certain minimal value of the right-hand side of the map and
the preceding maximal one.

It becomes evident [see (20)] that δ = 0 if and
only if the map T̃ is a homeomorphism for all
ν, i.e. when its graph is an increasing function.
If δ > 0, this map is to have at least one point
of a maximum as well as one point of a mini-
mum; in essence, δ determines the magnitude be-
tween the given minimal value of the right-hand
side of the map (18) and the preceding maxi-
mal one (see Fig. 14). One can easily evaluate

δ(A) = (1/π)(
√

4π2A2 − 1−arctan
√

4π2A2 − 1) for
the case f = A sin 2πθ, for example.

When δ ≥ 1 each θ has at least three preimages
with respect to map (18). In terms of the original
system the condition δ > 0 holds true if and only
if some leaf of the foliation F ss has more than one
(three indeed) intersection with the unstable mani-
fold W u of the saddle-node orbit at µ = 0, and that
δ ≥ 1 when and only when W u crosses each leaf of
the foliation F ss at least three times.

Borrowing the terminology introduced in
[Afraimovich & Shilnikov, 1974a, 1974b] we will re-
fer to the case of δ > 1 as the case of the big lobe.

Theorem [Turaev & Shilnikov, 1986]. In case of

the big lobe the map T has complex dynamics for

all µ > 0 sufficiently small.

For its proof we should first show that the
map T̃ for each ν has a homoclinic orbit of some
fixed point of the map. Recall that a homoclinic
orbit in a noninvertible map reaches the fixed
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Fig. 15. Homoclinic orbit to θ = 0 in the case M∗ > 1.

point after a finite number of iterations in for-
ward direction and after infinitely many backward
iterations.

Let θ∗ < θ∗∗ be the maximum and minimum
points of the function in the right-hand side of the
map T̃ in (20), such that

M∗ ≡ ν+θ∗+f(θ∗) = ν+θ∗∗+f(θ∗∗)+δ ≡ M∗∗+δ

It follows from the condition δ > 1 that the differ-
ence between f(θ∗) and f(θ∗∗) exceeds 1. Therefore,
by adding, if needed, a suitable integer to ν, one
can always achieve that ν + f(θ) has some zeros.
They are the fixed points of the map T̃ . Let θ0 be
a fixed point next to θ∗ from the left. By translat-
ing the origin, one can achieve θ0 = 0. Thus, we let
ν + f(0) = ν + f(1) = 0, and hence M ∗ ≥ 0.

For the beginning, let M ∗ > θ∗. Then the fixed
point at the origin is unstable (at least where θ > 0)
and each θ ∈ (0, M ∗] has a preimage with respect
to the map T̃ that is less than θ and positive. Con-
sequently, for each point θ ∈ (0, M ∗] there exists
a negative semi-trajectory converging to the fixed
point at the origin. Thus, in the case M ∗ > 1 (see
Fig. 15) we obtain the sought homoclinic orbit (in
backward time it converges to θ = 0, while in for-
ward time it jumps at the point θ = 1 equivalent to
θ = 0 in modulo 1).

Whenever M ∗ ≤ 1, it follows that M ∗∗ < 0.
Since M ∗ > 0, the segment (θ∗, θ∗∗) contains a
preimage of zero which we denote by θ+. If θ+ <
M∗, then this point has a negative semi-trajectory

Fig. 16. Homoclinic orbit to θ = 0 in the case θ+ < M∗ ≤ 1.

Fig. 17. Homoclinic orbit to θ1.

tending to zero, i.e. there is a desired homoclinics,
see Fig. 16.

In all remaining cases — M ∗ ≤ θ+ or even
M∗ ≤ θ∗ we have that M ∗∗ < θ∗∗ − 1. Let θ1 ≤ 1
be a fixed point closest to θ∗∗. Because M ∗∗ < θ∗∗,
it follows that θ1 is an unstable point and that each
θ ∈ [M∗∗, θ1) has a preimage greater than θ but less
than θ1, i.e. there exists a negative semi-trajectory
tending to θ1. Now, since M ∗∗ < θ∗∗ − 1 < θ1 − 1,
we have that the point θ = θ1 − 1 begins a neg-
ative semi-trajectory tending to θ1, which means
that there is homoclinics in the given case too, see
Fig. 17.

The obtained homoclinic trajectory is struc-
turally stable when it does not pass through a
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Fig. 18. The image of I1 covers both I1 and I2. The image
of I2 covers I1.

critical point of the map and when the absolute
value of derivative of the map at the corresponding
fixed point of the map does not equal 1. Then, the
original high-dimensional map T has, for all µ suffi-
ciently small, a saddle fixed point with a transverse
homoclinic orbit. This implies automatically a com-
plex dynamics. One, nonetheless, cannot guarantee
the structural stability of the obtained homoclinic
orbits in the map (20) for all ν and for all functions
f . Therefore to complete the proof of the theorem
we need additional arguments.

Observe first that the constructed homoclinic
trajectory of the map T̃ has the following feature.
Let θ0 be a fixed point, and let θ1 be some point
on the homoclinic trajectory picked near θ0. As the
map is iterated backward, the preimages θ2, θ3, . . .
of the point θ1 converge to θ0, at least from one side.
By definition, the image T̃ k0θ1 is the point θ0 itself
at some k0. The property we are speaking about is
that the forward images of an open interval I1 con-
taining θ1 covers a half-neighborhood of the point
θ0, which hosts preimages of the point θ1. It fol-
lows that the image of the interval I1 after a large
number of iterations of the map T̃ will contain the
point θ1 and its preimage θ2 along with the interval
I1 itself and some small interval I2 around the point
θ2 such that the image of I2 covers I1, as shown in
Fig. 18.

Thus we have shown that if δ > 1, then for each
ν there is a pair of intervals I1 and I2, and the inte-
ger k so the image T̃ (I2) covers I1, while the image
T̃ k(I1) covers both I1 and I2. In virtue of the close-
ness of the map (19) to (20) we obtain that for all
µ sufficiently small there exists a pair of intervals
I1 and I2 such that the images of the back sides
{θ = const} of the cylinder θ ∈ I2 mapped by T
will be on the opposite side of the cylinder θ ∈ I1,
while the images of the back sides of the cylinder
θ ∈ I1 due to the action of the map T k will be on the
opposite sides of the union of the cylinders θ ∈ I1

Fig. 19. On the set of points whose trajectories never leave
the region θ ∈ I1 ∪ I2 the map T ′ is semi-conjugate to a
subshift with positive entropy.

and θ ∈ I2, see Fig. 18. This picture is quite similar
to the Smale horseshoe with a difference that we
do not require hyperbolicity (uniform expansion in
θ). It is not hard to show that the map T ′ which
is equal to T at θ ∈ I2 and to T k at θ ∈ I1, in re-
striction to the set of trajectories remaining in the
region θ ∈ I1 ∪ I2 is semi-conjugate to the topolog-
ical Markov chain shown in Fig. 19.

It follows that the topological entropy of the
map T is positive for all small µ > 0. Note also
that here there is always a hyperbolic periodic orbit
with a transverse homoclinic trajectory. Indeed, the
positiveness of the topological entropy implies (see
[Katok, 1980]) the existence of an ergodic invariant
measure with a positive Lyapunov exponent. More-
over, since the map (19) contracts two-dimensional
areas for small µ, the remaining Lyapunov expo-
nents are strictly negative so that the existence of
a nontrivial uniformly hyperbolic set follows in the
given case right away from [Katok, 1980]. This com-
pletes the proof of the theorem.

We see that if δ is large enough, the complex
dynamics exists always as the saddle-node disap-
pears. Two theorems below show that when δ is
small the intervals of simple dynamics alter with
those of complex dynamics as µ → 0.

Theorem [Turaev & Shilnikov, 1986]. If δ > 0 in

the map (20) and all its critical points are of a finite

order, then the map T has complex dynamics in the

intervals of µ values which are located arbitrarily

close to µ = 0.

After the Poincaré map T is brought to the
form (19), this theorem follows almost immediately
from the Newhouse–Palis–Takens theory of rotation
numbers for noninvertible maps of a circle. Indeed,
according to [Newhouse et al., 1983], when all crit-
ical points of the circle map (20) are of finite order,
a periodic orbit must have a homoclinic at some
ν = ν0, provided δ > 0. Therefore, arguing the
same as above, when δ > 0 there is a value of ν0
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such that a pair of intervals I1 and I2 can be chosen
so that the image T̃ k1(I2) covers I2, and the image
T̃ k2(I1) covers both I1 and I2, for certain k1 and k2.
The rest follows exactly as in the previous theorem:
due to the closeness of the maps T and T̃ we obtain
the existence of an invariant subset of the map T on
which the latter is semi-conjugate with a nontrivial
topological Markov chain for all µ small such that
µmod1 is close to ν0.

Theorem [Turaev & Shilnikov, 1986]. If 2δ maxθ

f ′′(θ) < 1, then arbitrarily close to µ = 0 there are

intervals of values of µ where the map T has triv-

ial dynamics: all trajectories tend to a continuous

invariant curve, homeomorphic to a circle, with a

finite number of fixed points.

Proof. Let θ0 be a minimum of f , i.e. f(θ) ≥ f(θ0)
for all θ. Choose ν = ν∗ so that this point becomes
a fixed one for the map T̃ , i.e. ν∗ = −f(θ0) [see
(20)]. By construction, the graph of the map T̃ is
nowhere below the bisectrix θ = θ and only touches
it at the point θ0. Let θ1 be a critical point of T̃
closest to θ0 on the left. The derivative of the map
vanishes at this point, equals 1 at the point θ0 and
is positive everywhere between θ1 and θ0. One can
then derive that

θ1 + f(θ1) ≤ θ0 + f(θ0) −
1

2 maxθ f ′′(θ)
. (22)

Indeed,

θ0 + f(θ0) − (θ1 + f(θ1)) =

∫ θ0

θ1

(1 + f ′(θ))dθ .

Since 1 + f ′(θ) ≥ 0 in the integration interval, we
have

θ0 + f(θ0) − (θ1 + f(θ1))

≥ 1

maxθ f ′′(θ)

∫ θ0

θ1

(1 + f ′(θ))f ′′(θ)dθ ,

i.e.

θ0 + f(θ0) − (θ1 + f(θ1))

≥ 1

2 maxθ f ′′(θ)
[(1 + f ′(θ0))

2 − (1 + f ′(θ1))
2] .

Now, since f ′(θ0) = 0 and f ′(θ1) = −1, we obtain
the inequality (22).

Now, by the condition of the theorem, it follows
from (22) that the value θ which the map takes on
at the point θ1 is less than the corresponding value
at the fixed point θ0 and the difference does exceed

Fig. 20. The map has only semi-stable fixed points and tra-
jectories tending to them.

δ. It follows then from the definition of δ that when
θ < θ1 the value of θ is strictly less than θ0. By
construction, the same is also true for θ ∈ [θ1, θ0).

Thus, at the given ν, the graph of the map on
(θ0−1, θ0) belongs entirely to the region θ ≤ θ < θ0,
see Fig. 20.

This means that there are only semi-stable fixed
points and trajectories tending to them. Now, we
can pick ν a bit less than ν∗ so that these fixed
points disintegrate in a finite number of stable and
unstable ones; the remaining trajectories will go to
the stable fixed point in forward time and to the
unstable ones in backward time.

This is a structurally stable situation. It per-
sists within a small interval ∆ of values of ν. It
persist too for all closed maps, i.e. for the map T
at sufficiently small µ such that ν(µ) (mod 1) ∈ ∆.
Here, the stable fixed point of the map T̃ corre-
spond to those of map T , while unstable ones to
saddles. The one-dimensional unstable separatrices
of the saddles tend to the stable fixed points; their
closures form an invariant circle. �

3. Conclusion

We can resume now that the common feature of the
problems in classical synchronization theory is that
they are often reducible to the study of an annulus
map, i.e. a map in the characteristic form

x = G(x, θ) ,

θ = θ + ω + F (x, θ) mod 1 ,
(23)
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where the functions F and G are 1-periodic in θ.
We focused on the simplest case where the map
(23) contracts areas. We described the structure of
the bifurcation diagrams typical for this case, possi-
ble synchronization regimes and the connection be-
tween desynchronization and chaos.

We should mention that when the area-
contraction property does not hold and higher di-
mensions become involved, the situation may be
more complicated. So for example, in addition to
saddle-node and period-doubling bifurcations, the
system may possess a periodic orbit with a pair
of complex-conjugate multipliers on the unit cir-
cle. Furthermore, when the corresponding bifurca-
tion curve meets the boundary of the synchroniza-
tion zone we will already have a periodic orbit with
the triplet of multipliers (1, e±iϕ). An appropri-
ate local normal form for this bifurcation will be
close to that of an equilibrium state with charac-
teristic exponents equal to (0, ±iω) (the so-called
Gavrilov–Guckenheimer point), and its local bifur-
cations are quite nontrivial [Gavrilov, 1978; Guck-
enheimer, 1981]. If, additionally, on the boundary
of the synchronization zone this periodic orbit has
a homoclinic trajectory, then one arrives at the ne-
cessity of studying global bifurcations of Gavrilov–
Guckenheimer points with homoclinic orbits. Such
a bifurcation has already been seen in the example
of the blue sky catastrophe [Gavrilov & Shilnikov,
1999]. It has also been noticed recently in a synchro-
nization problem [Krauskopf & Wieczorek, 2002].
It is becoming evident that other codimension-two
cases like (±1, ±1) and (−1, e±iϕ) with homoclinic
orbits are worth a detailed analysis and will be
called for soon too.
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