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Reversible flows can possess a robust homoclinic orbit to a saddle equilibrium: the orbit is 
preserved under small perturbations that do not destroy the reversibility of the system. Such a 
homoclinic orbit is a limit of a unique one-parameter family of periodic orbits. All these orbits 
are saddles if the equilibrium state is a saddle. There are both saddle and elliptic periodic 
orbits in this family if the equilibrium state is a saddle-focus. In the present paper, we study 
the coalescence of two such homoclinic orbits in a one-parameter family of reversible flows. We 
show that, even in the case where all eigenvalues of the corresponding equilibrium are real, a 
family of elliptic periodic orbits arises at this bifurcation. 

1. Introduction and Main Results 

Time reversible flows CPt(z) are characterized by a 
time reversal operator R. Here, z E IRn and R is an 
involution, R2 = R 0 R = id, such that the diffeo­
morphisms CPtO of IRn again provide an involution 
when composed with R: 

IPt(ZO)' Moreover, we can linearize the action of R, 
locally near any point Zo E Fix(R), by the explicit 
transformation 

(1.1 ) 

or, in other words, 

(1.2) 

This identity means that the involution R maps or­
bits of the flow CPt into orbits of the same flow, re­
versing the direction of time. 

Let Fix( R) : = {Rz = z} be the fix space of 
R. We assume Fix(R) # 0, or else (1.2) does not 
impose significant restrictions on the orbits z(t) = 

h(z) := ~(ZO + R'(zo)(z - zo) + R(z)). (1.3) 

Since this will not restrict generality below, we will 
henceforth assume R to be linear, globally. 

For general reference on time reversible sys­
tems see Devaney [1976j, Vanderbauwhede [1982j, 
Arnol'd & Sevryuk [1986], Sevryuk [1986j, Fiedler & 
Heinze [1996a, 1996bj, and references therein. For 
the convenience of our readers we now summarize 
some relevant aspects before stating our main re­
sults in Theorems 1 and 2 below. 

In terms of the generating vector field fez) := 
Itlt=o CPt(z) of the flow CPt, the ordinary differential 
equation 

z = fez) (1.4) 
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is also reversible under the matrix R, that is, 

Rf(z) = - f(Rz) (1.5) 

for all z E ]Rn. 

Because the structure of time reversibility does 
not impose significant restrictions on orbits z(t) 
which stay away from Fix(R), uniformly, we focus 
on the following objects: 

• reversible equilibria Zo E Fix(R), with f(zo) = 0; 
• reversible periodic orbits z (t + T) = z (t) with pe­

riod T > 0 and Zo = z(O) E Fix(R); 
• reversible homoclinic loops r = {z(tn with Zo = 

z(O) E Fix(R) such that the (¥- and w-limit sets 
are the same single equilibrium state 0: 

0= lim z(t). 
t-+±oo 

(1.6) 

In fact, 0 is a reversible equilibrium, because 

o = lim 'P-t(zo) 
t-+±oo 

= R lim 'Pt(zo) 
t-+±oo 

=RO. 

At first glance, the condition 

f(zo) = 0 E ]Rn (1.7) 

seems like a few conditions too many to be solved for 
a reversible equilibrium Zo in the subspace Fix(R) of 
]Rn. Note, however, that reversibility (1.5) implies 

f : Fix(R) ~ Fix( -R) , (1.8) 

where Fix( - R) denotes the (representation) sub­
space where R acts as -id. In particular, reversible 
equilibria will generically be isolated if f in (1.8) 
is a mapping between spaces of equal dimension. 
Therefore, we assume n to be even and 

dim Fix(R) = dim Fix( -R) = n/2, (1.9) 

from now on. 
An example for reversibility is given by systems 

of second order differential equations 

it + g(u, it) = 0 E ]Rn/2 (1.10) 

withg = g(u, p), eveninp. Indeed, rewriting (1.10) 
as a system of first order for z = (u, v) E ]Rn with 

feu, v) := (v, -g(u, v)), the system becomes re­
versible under R(u, v) := (u, -v). In particular, 
the u-"axis" is Fix(R) and the v-"axis", alias the 
"it-axis", is Fix( - R). 

A reversible periodic orbit intersects Fix(R) in 
precisely two points, in general, half a period apart. 
Indeed, for Zo E Fix(R) on a reversible periodic 
orbit, we have 

(1.11) 

Picking t = T /2 with T the minimal period of Zo, 
this implies Zl := 'PT/2(ZO) E Fix(R) is another in­
tersection of the periodic orbit with Fix(R). Con­
versely, for any such intersection 'Pt(zo), by (1.11), 
the time t must be a multiple of T /2. This proves 
the claim. 

Specifically, for Eq. (1.10), the half-period arcs 
between Zo E Fix(R) and 'PT/2(ZO) E Fix(R) of re­
versible periodic orbits are solutions of the associ­
ated Neumann boundary value problem on the in­
terval 0 ~ t ~ T/2. 

In general, reversible periodic orbits correspond 
to intersection points 

Zo E Fix(R) n 'PT/2(Fix(R)) , (1.12) 

by (1.11), for some T > O. Generically, again, the 
intersection of the two surfaces of dimension n/2 in 
(1.12) will be transverse for fixed T. In particular, 
intersection points will persist under small pertur­
bations of T. Therefore, reversible periodic orbits 
typically appear in one-parameter families. 

Reversible homo clinics r are a limiting case of 
reversible periodics, if we let the "other" intersec­
tion point Zl := 'PT/2(ZO) E Fix(R) tend to a re­
versible equilibrium 0 E Fix(R), along the one­
parameter reversible periodic family. Of course, 
T ~ +00 in this limit. Suppose now that 0 is hy­
perbolic, with associated stable manifold W S and 
unstable manifold W U

• The time reversibility im­
plies [see (1.2)J that the involution R maps orbits 
which are asymptotic to 0 as t ~ +00 into orbits 
asymptotic to 0 as t ~ -00, that is, 

(1.13) 

In particular, the manifolds W U and WS have equal 
dimension: half the dimension of the phase space. 

Homoclinic orbits r = {z(tn to 0 are produced 
by intersections of W U with W S

, other than the 
equilibrium 0 itself. By (1.13), such homo clinic 
loops either occur in pairs, related by R, or inter­
sect Fix(R) in, say, Zo = z(O). In this latter case, 
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r = {z(t)} is a reversible homoclinic. It arises by 
intersections 

Zo E Fix(R) n W U 
, (1.14) 

other than the trivial intersection O. Indeed, (1.14) 
implies 

zo=Rzo E Fix(R) n RWu=Fix(R) n W S
, (1.15) 

so that Zo E W U n W S is reversibly homo clinic to 
O. Generically, again, we can assume the intersec­
tion in (1.14) to be transverse: generic reversible 
homoclinic loops are robust under perturbations. 

Moreover, as was observed by Devaney [1976], 
any such transverse reversible homoclinic is indeed 
accompanied by a one-parameter family of revers­
ible periodic orbits, as indicated above; see also 
Vanderbauwhede & Fiedler [1992]. This is a con­
sequence of the A-Lemma: CPT/2(Fix(R)) spreads 
out along WU, as T increases, and (1.14) induces 
reversible periodic orbits by (1.12). 

In contrast, our main goal in the present paper 
is to investigate a simple nontransverse intersection 
in (1.14), that is: a quadratic tangency between W U 

and Fix(R). Varying a real parameter 1-£, this will 
correspond to a "saddle-node" bifurcation of the as­
sociated reversible homoclinic orbits: they coalesce 
and disappear. 

The dynamical effects associated to this simple 
geometric bifurcation crucially depend on the de­
tailed dynamics near the reversible equilibrium O. 
Specifically, reversibility restricts the possible spec­
tra at reversible equilibria like 0, and of reversible 
periodics. Moreover, these spectra are related near 
homo clinics through 0, by passage near O. Differ­
entiating (1.5) at z = 0 E Fix(R), we obtain 

RJ'(0)R-1 = - J'(O). (1.16) 

Therefore, the spectrum spec ~ C of J'(O) is sym­
metric to the origin: 

spec = -spec. (1.17) 

Assuming spec to consist of simple eigenvalues, four 
cases arise in two degrees-of-freedom, that is, for 

z E 1R4. 

Firstly, if all eigenvalues are real, then 

spec = {±1, ±,}, (1.18) 

Coalescence of Reversible Homoclinc Orbits 1009 

for some, > 1. Here, we have rescaled time so that 
the leading smaller positive eigenvalue is normal­
ized to 1. Note that zero cannot be an eigenvalue, 
because it necessarily possesses even algebraic 
multiplicity in our even-dimensional phase space 
IRn = 1R4. 

A second possibility in 1R4 are all complex eigen­
values, spec = {±a ± i,8} with a, ,8 nonzero. It 
was noticed by Harterich [1993] that reversible 
k-homoclinic orbits then arise near a primary re­
versible transverse homoclinic r, for any k ~ 2. See 
also Champneys [1994]. Here, k-homoclinic means 
that these secondary homoclinic loops complete k 
revolutions, in a small tubular neighborhood of r, 
before closing up homo clinically at O. This effect is 
produced by the ,8 i= 0 spinning of the vector field 
near O. 

As Devaney [1977J has observed, the spinning 
at 0 also produces elliptic reversible periodics in 
the periodic family generated by r, with accompa­
nying subharmonic bifurcations [Vanderbauwhede, 
1990]. Elliptic reversible periodics are character­
ized by nonreal Floquet multipliers on the unit cir­
cle. Note that the Floquet spectrum floq of the 
linearized flow cP!r(zo) along a reversible periodic 
through Zo E Fix(R) of minimal period T satisfies 

floq-1 = floq. (1.19) 

Indeed, linearization of (1.2) at Zo E Fix(R) implies 

R-1cp!r(zo)R = (cp!r(zo) )-1. (1.20) 

Along the one-parameter reversible family of 
periodics, we note that floq always contains a trivial 
Floquet multiplier +1 of algebraic multiplicity two. 
Therefore, the only possible combinations in 1R4 of 
Floquet multipliers sEC are 

floq = {s, s-l, 1, I}. (1.21) 

The elliptic case corresponds to nonreal s-l = 5, 
that is, lsi = 1. In particular, ellipticity arises in 
open intervals along our one-parameter families of 
reversible periodics, inducing subharmonics accord­
ingly when floq is crossing roots of unity along the 
way. 

If s i= ±1 is real, in contrast, we call such re­
versible periodics hyperbolic or saddle. There are 
two subcases: Mobius orbits have s < 0, whereas 
non-Mobius orbits have s > O. Note that the two­
dimensional local strong stable manifold of a Mobius 
orbit is indeed a Mobius band, and hence is nonori­
entable. By symmetry R, the same holds true for 
the local strong unstable manifold. 
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As a third case of generic eigenvalue configu­
rations at the reversible equilibrium 0 E JR4, we 
mention spec = {±a, ±i}, a -::j:. 0. As was shown 
in Holmes et al. [1992] specifically for the Hamil­
tonian case (see also Lerman [1991]), the spinning 
at 0 due to the pure imaginary pair ±i may in­
d uce shift dynamics near the reversible homo clinic 
loop r. 

The final fourth generic case of spec = {±i, 
±iw} with nonresonant w > 1 does not produce 
reversible homo clinic orbits easily - at least not 
when the flow near 0 is in normal form. 

The two former cases correspond to hyperbolic 
equilibria: the equilibrium state is called a saddle in 
the first case (all eigenvalues are real) and a saddle­
focus in the second case (all complex eigenvalues). 

Out of the two cases, only the saddle hyper­
bolic equilibrium 0 with spec = {±1, ±'Y} does not 
generate elliptic periodic orbits out of a transverse 
reversible homo clinic to O. Surprisingly, however, 
even a real saddle 0 with reversible homo clinic r is 
able to generate elliptic reversible periodics as soon 
as the homo clinic orbit r loses its transversality. 

More precisely, consider reversible vector fields 

i = f(z, f.L) (1.22) 

such that f(Rz, f.L) = -Rf(z, f.L) for real parame­
ters f.L E JR, and z E JR4. Then, at f.L = 0, the re­
versible homo clinic r may arise by a quadratic tan­
gency of WU with Fix(R), rather than a transverse 
intersection. Under suitable nondegeneracy condi­
tions, which are generic in one-parameter families, 
this corresponds to a coalescence and subsequent 
annihilation in r of two transverse reversible homo­
clinics, as f.L increases through zero. It turns out 
that, again generically, a wedge of elliptic reversible 
periodics is then generated from r, for f.L on one 
side of zero; see Theorem 2 below. This is surpris­
ing because the necessary spinning effects are pro­
duced by the tangency of W U with Fix(R) alone, 
rather than by any local spinning near the reversible 
equilibrium O. 

We now fix all technical assumptions for our 
main results, Theorems 1 and 2, below. These will 
be valid throughout the remainder of this paper. 

We assume that the equilibrium a E ]R4 is hy­
perbolic with (nonzero) real and simple eigenval­
ues spec = {±1, ±'Y}' 'Y > 1, as in (1.18). As we 
mentioned above, 

(1.23) 

where W U and W B are, respectively, the unstable 
and stable manifolds of O. By (1.23), we have 
dim W U = dim W S = 2. 

We introduce coordinates z = (x, y, u, v) in a 
neighborhood of 0 such that the vector field of the 
system in that neighborhood takes the form 

x = -x + .. " it = -'YU + ... , 
y = y + ... , v = 'Yv + ... , 

(1.24) 

where the dots indicate nonlinear terms of higher 
order. Here, the equilibrium state a is in the origin; 
the coordinate axes are the eigendirections of the 
linearization matrix of the system at O. The unsta­
ble manifold is tangent to the plane {x = 0, u = O} 
and the stable manifold is tangent to the plane 
{y = 0, v = O}. Since R maps coordinate axes onto 
the coordinate axes corresponding to the eigenval­
ues of the opposite sign [see (1.16)], it follows that 
R is given by 

R(x, y, u, v) = (y, x, v, u) (1.25) 

in these coordinates. Obviously, the plane Fix(R) 
is given by 

Fix(R) = {x = y, u = v}. (1.26) 

It is also obvious that the affine planes {X!y = 
xo, utv = uo} are invariant with respect to R, and 
R acts as a center symmetry on each such plane. We 
use the notation R'M for these planes where M = 
(xo, Yo, uo, vo) is the point of intersection of the 
plane with Fix(R). Clearly, R'M = M + Fix( -R). 

We suppose that the unstable manifold W U of 
o intersects Fix(R) at some point M. Due to re­
versibility, the stable manifold W S of 0 intersects 
Fix(R) at the same point. Therefore, the orbit r 
passing through M is a reversible homo clinic to O. 
We investigate a tangency of W U with Fix(R) at 
the point M (Fig. 1), in this paper. 

Specifically, we assume that 

(A) W U possesses a tangency with Fix(R) at the 
point M. 

The tangency is assumed to be as simple as 
possible in the sense that: 
(B) the intersection of Fix(R) with the tangent 
plane of W U at M is one-dimensional (a straight 
line), and 
(C) the tangency is quadratic. 

We include our system in a one-parameter fam­
ily, f = f(z, f.L), depending smoothly on a param­
eter f.L ["smoothly" means that the vector field is 
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Fix R 

Fig. 1. The unstable manifold W U of a reversible equilib­
rium 0 has a tangency with Fix(R) at some point M. Due 
to reversibility, the stable manifold W' has a tangency with 
Fix(R) at the same point. Therefore, the orbit r passing 
through M is a reversible homoclinic to O. 

Cr-smooth with respect to (x, y, u, v, JL)]. We also 
assume that: 

(0) W U penetrates Fix(R) with a nonzero velocity 
as JL varies. 

Since the tangency is quadratic, the point of 
tangency disappears, say, for JL > O. In effect, both 
W U and its R-image W S lift off from the Fix(R) 
plane simultaneously. For JL < 0, on the other hand, 
two points MI and M2 appear, at which WU inter­
sects Fix(R) transversely. The points MI and M2 
correspond to a pair of transverse reversible homo­
clinics r l and r 2 (Fig. 2). 

We need some additional nondegeneracy as­
sumptions. First, we suppose that: 

(E) r does not belong to the strong unstable mani­
fold WUU of O. 

Recall that W UU is the uniquely defined one­
dimensional manifold which is tangent to {x = 0, 
y = 0, u = O} at O. Condition (E) means that r 
leaves the origin 0 in a leading direction, that is, 
tangent to the y-axis. Without loss of generality we 
may assume that r leaves the origin in the direction 
y > O. Due to the reversibility of the system, r 

Coalescence of Reversible Homoclinc Orbits 1011 

Fix R 

Fig. 2. The point of quadratic tangency disappears for p. > 
0: both W" and its R-image W' lift off from the Fix(R) 
plane simultaneously. For p. < 0, on the other hand, two 
points Ml and M2 appear, at which W" intersects Fix(R) 
transversely. The points Ml and M2 correspond to a pair of 
transverse reversible homoclinics rl and r2. 

also returns to 0 in a leading direction: along the 
positive x-axis (Fig. 3). 

For our remaining nondegeneracy assumptions, 
we consider a cross-section sout := {y = c} to r, 
where c > 0 is fixed small enough. Also, fix another 
cross-section sfar which contains the point M along 
with the local piece of Fix(R) near M (Fig. 4). 

Note that in a small neighborhood of 0 there 
exists a (nonunique) three-dimensional invariant 
manifold Wl~~ (so-called extended unstable mani­
fold) which is aI-smooth, tangent to the hyperplane 
{u = O} at 0, and which contains Wl~c; the general 
reference is Hirsch et al. [1977]; see Turaev [1996] 
for more detail. Let wue denote the forward con­
tinuation of Wl~~ within a neighborhood of rand 
outside a small neighborhood of O. 

We assume that: 

(F) wue is transverse to Fix(R) at the point M = 
r n Fix(R), and 
(G) wue is also transverse to the plane R"M (Fig. 5) . 

Note that wue is not defined uniquely, but the 
tangent spaces of any two such manifolds coincide 
at all points of W U

• Thus, our transversality con­
ditions (F) and (G) are well posed. 

We have to distinguish two different geomet­
ric possibilities of how Fix(R) can adjoin to W U

• 
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Fig. 3. By condition (E): r 't. WUU
, the homo clinic orbit r 

leaves the origin 0 in a leading direction, that is, tangent to 
the y-axis. Without loss of generality y>'e assume that r leaves 
the origin in the direction y > O. Due to the reversibility of 
the system, r also returns to 0 in leading direction: along 
the positive x-axis. 

Il out • M 

Fig. 4. Three cross-sections to r. The cross-sections sout 

and sin = Rsout lie in a small neighborhood of 0: sout 

intersects Wl~c and sin intersects Wl~c' Another cross-section 
sfar contains the point M = r n Fix(R) along with the local 
piece of Fix(R) near M. The flow near r defines the map 
IIout : sout -+ sfar. 

In a small neighborhood of the point M* := r n 
sout we have a flow defined Poincare map IIout : 
sout -t sfar. Due to our assumptions, the preimage 
rr;;-;t(Fix(R)) possesses a quadratic tangency with 
the line w,u n Bout = {x = ° u = ° y = c} 1oc ". 
Since Wl~c C Wl~~' this line belongs to the sur-
face Wl~~ n sout which is close to the plane {u = 
0, y = c}. Below, we will show that this surface 

Fig. 5. The manifold wue is assumed to be transverse to 
Fix(R) at the point M = r n Fix(R) and to the plane RM :::I:: 

M + Fix(-R). 

is tangent to the plane {u = 0, y = c} for a suit­
able choice of coordinates. By transversality of wue 

and Fix(R), the surface Wl~~ n sout is transverse 
to rr;;-;t (Fix( R)). Thus the intersection is a line I 
which possesses a quadratic tangency with the line 
{x = 0, u = 0, y = c}. Moreover, the value x does 
not vanish everywhere on I (see Fig. 6). We will say 
that Fix(R) adjoins to W U from the positive side if 
the line I belongs to the part of Wl~~ n Bout that 
corresponds to positive values of x, and from the 
negative side if x < ° on I. Recall here that x > 0, 
within Wl~c' is the direction of return of our original 
homo clinic orbit r towards O. 

Let U be a small neighborhood of r u O. We 
will study one-periodic orbits: orbits which are ho~ 
motopic to r U 0 in U. Specifically, we will study 
reversible one-periodic orbits, calling them princi­
pal. Similarly, r itself can be called one-homoclinic. 
Homoclinic orbits which complete k cycles in U and 
then close up at ° are called k-homoclinic. 

Theorem 1. Let 0 be a reversible hyperbolic equi­
librium, with real simple eigenvalues, of a four~ 
dimensional reversible vector field of smoothness C r , 

r ~ 3. Assume that 0 possesses a reversible ho~ 
moclinic orbit along which the tangency and non­
degeneracy conditions (B)-(G) specified above hold. 
Then, in a sufficiently small neighborhood U of the 
reversible l-homoclinic r, and for small JL, there do 
not exist any k-homoclinic orbits, for any k ~ 2. 

For principal periodic orbits in U, and for small 
JL, the following holds. 

If Fix( R) adjoins to W U from the negative side, 
then there are no principal periodic orbits for JL ~ 0. 
For fixed JL < 0, there exists a one-parameter family 
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(a) 

v 

Fig. 6. Two different cases for quadratic tangency of WU 
and Fix(R) : (a) Fix(R) adjoins to W U from the positive side 
and (b) Fix(R) adjoins to W U from the negative side. 

of principal periodic orbits joining the homoclinic 
orbits rl and f2 (Fig. 1) . 

If Fix(R) adjoins to WU from the positive side, 
then there exists a one-parameter family of principal 
periodic orbits for J.L > O. This family is split into 
two continuous paths by the homoclinic orbit r at 
J.L = O. The two paths persist, separately, for J.L < 0, 
one bounded by rl and the other by r 2 (Fig. 8). 

Coalescence of Reversible Homoclinc Orbits 1013 

Fig. 7. The one-pa.rameter fa.mily of principal periodic or­
bits joining the homoclinic orbits r l and r2 for fixed J1, < 0 
in the case where Fix(R) adjoins to W U from the negative 
side. 

Fig. 8. The surface of principal periodic orbits in the case 
where Fix(R) adjoins to W U from the positive side, for J1, < O. 
It consists of two parts, one bounded by rl and the other 
by r2. 

The families of principal periodic orbits form 
two-dimensional surfaces in ]R4 . We will show that 
the set where these surfaces intersect the cross­
section sout lies on a smooth curve close to Wl~c n 
sout . Since the points on Wl~c n sout are para­
metrized by the coordinate v, we can parametrize 
the principal periodic orbits by the v-coordinate 
of the point of intersection of the orbit with sout. 

Since we study a small neighborhood of r u 0 , the 
value of v is close to v* where v* is the v-coordinate 
of the point M* = r n sout. 
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(a) 

(b) 

Fig. 9. An illustration to Theorems 1 and 2: (a) the negative 
case, (b) the positive case. The dashed regions correspond to 
the principal periodic orbits: the intersection of the dashed 
region with a line {JL = const} is the set of the v-values (the 
values of the v-coordinate of the point of intersection of the 
orbit with sout) corresponding to the principal periodic orbits 
that exist for the given JL. The dashed regions are bounded 
by two curves v = Vl (JL) and v = V2 (JL) where Vl and V2 

are the v-coordinates of the points Mi and M;, respectively, 
where the transverse homo clinic orbits r1 and r2 emanating 
from r at JL < 0 intersect sout; the functions Vl,2 behave like 
v· ± M, locally, for JL :::; o. In the wedge bounded by the 
curves v = v+(JL) and v = v-(JL) the principal periodic orbits 
are elliptic; they are non-Mobius saddles for v > v+(JL) and 
Mobius saddles for v < v-(JL). Along the curves v = v+(JL) 
and v = v-(JL), respectively, algebraically double nontrivial 
Floquet multipliers s = +1 and s = -1 occur. 

Theorem 1 can be illustrated by the two di­
agrams shown in Fig. 9: the dashed regions cor­
respond to the principal periodic orbits; namely, 
the intersection of the dashed region with the line 
{JL = const} is the set of the v-values corresponding 
to the principal periodic orbits that exist for the 
given JL. The dashed regions are bounded by two 

curves v = V1(JL) and v = V2(JL). Here, VI and V2 

are the v-coordinates of the pOInts M; and Mt, re· 
spectively, where the transverse homocli-n:ic orbits 
r l and r2 emanating from r at JL < 0 intersect 
sout. Recall that rl and r2 pass through points MI 
and M2, the intersection points of WU with Fix(R). 
Therefore, the points Mi and M2 are the points of 
intersection of Wl~c n sout with rr~Jt (Fix( R) ). Since 
the tangency of Wl~c n sout with rr~Jt(Fix(R)) at 
JL = 0 is quadratic and the parameter JL is chosen 
generically, the functions VI,2 behave like v* ± JfJLT, 
locally, for JL ~ o. 

Our main result on reversible periodics near the 
tangent reversible homoclinic r is the appearance 
of a wedge of elliptic reversible orbits, separating 
Mobius from non-Mobius types. 

Theorem 2. Let the assumptions of Theorem 1 
hold. Then there exist two smooth functions v+ (JL) 
and v- (JL), defined for JL > 0 in the positive case, 
and for JL < 0 in the negative case, v± (JL) -+ v* and 
d~(V+(JL) - v-(JL)) -+ 0 for JL -+ 0 (Fig. 9), such 
that the following holds. 

The principal periodic orbits are elliptic for 
v-(JL) < v < v+(JL), non-Mobius saddles for v > 
v+(JL), and Mobius saddles for v < v-(JL). Along 
the curves v = v+(JL) and v = v-(JL), respectively, 
algebraically double nontrivial Floquet multipliers, 
s = +1 and s = -1, occur. 

As of this writing we would like to mention the 
forthcoming work by Knobloch & Sandstede [1995], 
which also addresses the issue of higher singular­
ities of the homo clinic set, in the multiparameter 
situation. In the present context, it appears pos­
sible to find a Smale horseshoe in an appropriate 
return map. 

2. Proof of Theorem 1 

We first prove the claims concerning reversible peri­
odics near the primary reversible homo clinic r. The 
absence of k-homoclinics will be proved at the end 
of this section. 

We recall from (1.12), that a reversible peri­
odic orbit intersects the Fix(R) plane in exactly 
two points. Conversely, any orbit that intersects 
Fix(R) twice is a reversible periodic orbit. For a 
principal periodic orbit, in a small neighborhood U 
of r u 0, one intersection point with Fix(R) lies 
in a small neighborhood of o. The other intersec­
tion occurs in a small neighborhood of the point 
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Fix R 

Fig. 10. A principal periodic orbit in a small neighborhood 
of r u O. It intersects the Fix( R) plane in exactly two points: 
one intersection point with Fix( R) lies in a small neighbor­
hood of 0 and the other intersection occurs in a small neigh~ 
borhood of the point M = r n Fix(R). The point P, close to 
M* = r n sout, is the intersection point with sout. 

M = r n Fix(R). Indeed, one-periodic orbits in U 
intersect cross-sections to U precisely once. 

Let P, close to M* = r n sout, denote the 
intersection point with sout (Fig. 10). The point 
P belongs to the line £ which is the intersection 
of two surfaces in sout. The first surface is the 
exit set on which the forward flow applied to 
the small piece of Fix(R) near 0 intersects sout. 
The second surface is the set II~Jt (Fix( R)): the in­
tersection with sout of the backward flow applied 
to the piece of Fix(R) near M. We will use the no­
tation (Fix(R))+ and (Fix(R))- for these two sur­
faces: £ = (Fix(R))+ n (Fix(R))-. By definition, 
the orbit passing through any point of £ intersects 
Fix(R) twice: near 0 and near M. Therefore, any 
such orbit is indeed a principal periodic orbit. Our 
proof of Theorem 1 consists of an approximate al­
gebraic description of the surfaces (Fix( R))±, near 
0, and hence of their intersection £. 

The surface (Fix(R))- = II~Jt(Fix(R)) is easily 
described, algebraically. In fact, for J.L = 0 the sur­
face (Fix(R))- possesses a quadratic tangency with 
the line {x = 0, u = O} = Wl~c n sout at the point 
M*(x = 0, U = 0, v = v*) = r n sout (see Fig. 6). 
This allows us to express (Fix(R))- in the form 

(2.1) 

for J.L = OJ here, the values c' and lall + la21 are 
nonzero and the dots indicate higher order terms. 
Moreover, (Fix(R))- is transverse to the surface 
Wl~~ n sout which is in turn tangent to {u = O} 
at all points of Wl~c n sout for a suitable choice 
of coordinates in the neighborhood of 0, as de­
tailed below [Ovsyannikov-Shil'nikov coordinates, 
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see (2.14)-(2.16)]. Therefore, (Fix(R))- is trans­
verse to the plane {u = O}. Hence, al in (2.1) is 
nonzero and we can rewrite (2.1) as 

x = c( v - v*)2 + au + ... , (2.2) 

Evidently, the sign of the coefficient c indicates how 
the set Fix(R) adjoins to W U (positive or negative). 

For nonzero J.L, Eq. (2.2) perturbs to 

x = c(J.L + (v - v*)2) + au + . . . (2.3) 

where the dots indicate higher order terms of the 
Taylor expansion in (J.L, v - v*, u). In a small neigh­
borhood of the tangency J.L, (v - v*), and u are small. 
Rescaling J.L in (2.3), if necessary, we can assume the 
coefficients in front of J.L and (v - v*)2 to be equal. 
By (2.3), the surface (Fix(R))- does not intersect 
Wl~c n sout = {x = 0, u = O} for J.L > O. For J.L < 0, 
on the other hand, there are two intersection points, 
Mi and M2 with v-coordinates 

VI,2 = v* ± ~ + o(~) (2.4) 

through which the transverse homo clinic orbits rl 
and r 2 pass. 

We describe (Fix(R))+, next. We will prove be­
low that this set is a Cl-surface bounded by Wl~c n 
sout (Fig. 11). Moreover, for a suitable choice of co­
ordinates (x, y, u, v), this set is given by an equa­
tion of the form 

u = 1jJ(x, v, J.L), x > 0 (2.5) 

(we recall that sout is the hyperplane {y = c}, so 
the coordinates in sout are (x, u, v)). The function 
1jJ is CI-smooth and 

81jJ = 0 
8x - (2.6) 

at x = O. In particular, 1jJ = o(x). We will also 
prove below that 

81jJ 
8(v, J.L) = o(x). (2.7) 

Comparing formulas (2.5) and (2.3) for 
(Fix(R))+ and (Fix(R))-, respectively, one can eas­
ily see that the line £ = (Fix(R))+ n (Fix(R))- is 
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u 
(Fix Rf 

v=v 

Fig. 11. The surface (Fix(R»+ is the exit set on which the 
forward flow applied to the small piece of Fix(R) near 0 
intersects sout. It is a CI-surface bounded by Wl~c n sout 

and tangent to Wl~~ n sout at the points of Wl~c n sout. 

given by the system 

where 

{

X = c(tL + (v - v*)2) + r.p(tL, v) 

u = 'Ij;(x, v, tL) 

x>o 

(2.8) 

r.p = o(ltLl + (v - v*)2), 

or.p 
OtL = 0(1), (2.9) 

or.p 
OV = O(ltLl) + o(lv - v*1) , 

for tL ---+ 0, v - v* ---+ 0. 
System (2.8) is easily analyzed. First, we see 

that the points on C are parametrized over (v-v*). 
The dependence of x on (v - v*) is given by the first 
equation of (2.8). The graph of this dependence is a 
parabola-like curve. Throughout, we have to select 
the values of (v - v*) for which x is positive, in or­
der to obtain principal periodic orbits. The results 
are summarized in Fig. 12. For example, principal 
periodic orbits do not exist for tL > 0, in the nega­
tive case. The v-values of principal periodic orbits 
form an interval VI (tL) < v - v* < V2 (tL), for tL < 0. 
The bounds of this interval correspond to the ho­
moclinic value x = 0. Indeed, the second equation 
of (2.8) and (2.6) imply u = 0. Therefore, these 
are the v-coordinates of the points of intersection 
of (Fix(R))- with W=Uloc n sout = {x = 0, U = O}, 
given by the homo clinic points (2.4). We also see 
that the set C which traces the principal periodic 

x x x 

v-v* v-v* v-v* 

c<O,Il>O c<O,Il=O c<O,Il<O 

x x 

v-v* v-v* 

c>O,Il>O c>O, 11=0 c>O,Il<O 
Fig. 12. The dependence of the x-coordinate on (v - v*) for 
the points of intersection of the principal periodic orbits with 
sout. Throughout, only positive x correspond to principal 
periodic orbits [see (2.8»). In the negative case (c < 0), the 
principal periodic orbits do not exist for 1-£ ~ O. For 1-£ < 0, the 
v-values of principal periodic orbits form an interval VI (1-£) < 
v - v* < V2(1-£). The bounds of this interval correspond to 
the homoclinic value x = O. In the positive case (c > 0), any 
small value of (v - v*) is admissible for 1-£ > 0 and, for 1-£ ~ 0, 
the admissible (v - v*) are v - v* < VI (1-£) and v - v* > V2(1-£). 

sheet, is empty for C < 0, tL ~ 0, it consists of 
one connected component for C < 0, tL < 0, or 
C > 0, tL > ° and of two connected components 
for c > 0, tL ~ ° (Fig. 13). All this is in complete 
agreement with Theorem 1. To finish the proof it 
remains to prove expansions (2.5)-(2.7) for the exit 
set (Fix(R))+. 

The structure of the set (Fix(R))+ is deter­
mined by the orbits of the system in a neighbor­
hood of the equilibrium state O. We study this set, 
via the by now classical Shil'nikov method which is 
the powerful tool for studying local behavior. For 
simplicity of notation we suppress the parameter tL 
here. 

We briefly review Shil'nikov's method, perti­
nent to our reversible problem. By Shil'nikov [1967], 
for small € > 0, for any xo, UO, Yn Vr such that 
IIxoll ~ €, lIuoll ~ €, IIYrll ~ €, IIvrll ~ €, and for 
any T ~ 0, there exists a unique solution of the 
so-called Shil'nikov problem: to find an orbit x(t), 
y(t), u(t), v(t) of system (1.24) that lies entirely in 
the €-neighborhood of 0 and satisfies the boundary 



In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 1
99

6.
06

:1
00

7-
10

27
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

M
PE

R
IA

L
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 o
n 

02
/1

2/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Coalescence of Reversible Homoclinc Orbits 1017 

(Fix R)" (Fix R)" 

c>O,Jl<O c>O,Jl>O 

,..-__ (Fix R)" 

c<O,Jl<O c<O, Jl>O 
Fig. 13. The set £. = (Fix(R))+ n (Fix(R))- which traces the principal periodic sheet in sout, is empty for c < 0, J.L ~ 0, it 
consists of one connected component for c < 0, II- < 0, or c > 0, II- > 0 and of two connected components for c > 0, J.L :::; o. 

conditions: 

X(O) = Xo , u(O) = Uo , 

Y(T)=Yr, V(T)=Vr , 
(2.10) 

(see Fig. 14). Note that these boundary condi­
tions mix (incoming) stable directions with (out­
going) unstable directions. The Shil'nikov variables 
(xo, Uo, Yr, Vn T) effectively parametrize orbits, 
rather than points, near O. In fact, the solution 
depends smoothly on the initial data (xo, Uo, Yn 
Vn T). In other words, there exist Cr-functions 
(X, Y, U, V) such that an orbit of system (1.24) 
that starts with a point (xo, Yo, uo, va) in a small 
neighborhood of 0 reaches a point (xr, Yn Un vr ) 
at time t = T if, and only if, 

Xr = X(xo, UO, Yr, Vr , T), 

Ur = U(xo, Uo, Yr, Vn T) , 

Yo = Y(xo, Uo, Yn Vn T) , 

Vo = V(xo, UO, Yn Vn T) . 

(2.11) 

Due to the reversibility of our system, rela­
tions (2.11) must be symmetric (equivariant) with 
respect to the transformation 

This yields the following identities: 

Y(Xo, Uo, Yn Vn T) == X(Yn Vn Xo, UO, T), 

V(xo, Uo, Yr, Vr , T) == U(Yn Vr , Xo, Uo, T) . 
(2.12) 

Suppressing the parameter j1" we claim that the 
set (Fix(R))+ C Bout = {y = c-} is given, locally, by 
the points P = (xr, Yr = C-, Un vr ) for which 

{ 
Xr = X(c-, Vr , C-, Vn T) , 

Ur = U(c-, Vr , C-, Vr , T) 
(2.13) 

where Vr can take arbitrary values close to v*, and 
T must be taken large enough. In other words, the 
point P belongs to the surface (Fix(R))+ if and only 
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x=x o 
U=U o 

Fig. 14. For small 10 > 0, for any xo, 'Uo, Yr, Vr such that 
IIxoll ~ 10, lIuoll ~ 10, IIYrll ~ 10, IIvrll ~ 10, and for any 
T :2: 0 there exists a unique solution of the Shil'nikov prob­
lem: an orbit x(t), y(t), u(t), v(t) that lies entirely in the 
c-neighborhood of 0 and satisfies the boundary conditions 

x(O) = Xo , u(O) = Uo , 

Y(T)=Yr, V(T)=Vr . 

if the orbit starting with the point RP( Xo = c, Yo = 
Xr, Uo = V'T, Vo = U'T) in sin := {x = c} = Rsout 
reaches P E sout after some time t = T. Indeed, 
consider the forward orbit starting at some point of 
Fix(R) near 0 and intersecting sout at P. Then, 
by reversibility, the backward orbit intersects the 
cross-section sin = Rsout at the point RP, af­
ter the same time (Fig. 15). Conversely, any orbit 
passing through points P and RP intersects Fix(R) 
"halfway" between P and RP. Now insert 

(xo, Yo, un, va) = RP = R(XT' yr, UT, vT) 

into (2.11) to obtain (2.13). 
To utilize (2.13) we need some estimates on the 

functions X and U. We obtain these estimates using 
results by Ovsyannikov & Shil'nikov [1992]. They 
show that, by a local CT-I-smooth transformation 
of coordinates, near identity, the system takes the 

Fix R 

Fig. 15. A point P E sout belongs to the surface (Fix(R»+ 
if and only if the orbit starting with the point RP E sin 

reaches P after some time t = T: the orbit intersects Fix(R) 
near 0 "halfway" between P and RP. 

following Ovsyannikov-Shil'nikov form near 0: 

x= -x+gn(x, y, V)X+g12(X, y, u, v)u, 

u= -,),U+g21 (x, y, V)X+g22(X, y, u, v)u, 

y=y+ In(x, y, u)y+ 112 (x, y, u, v)v, 

v=')'v+ hl(X, y, u)y+ h2(X, y, u, v)v, 

(2.14) 

where gij and lij are Cr-1-functions satisfying the 
identities: 

gn(x = 0, y, v) == 0, 

g21 (x = 0, y, v) == 0 , 

gll (x, y = 0, v = 0) == 0 , 

gI2(X, y = 0, U, v = 0) == 0, 

in(x, y = 0, u) == 0, 

i21(X, y = 0, u) == 0, 

lu(x = 0, y, U = 0) == 0, 

h2(X = 0, y, U = 0, v) == O. 

(2.15) 

(2.16) 

In these coordinates the local stable and un­
stable manifolds are straightened. Identities (2.15), 
(2.16) imply that the equations for x and yare lin­
ear on Wl~c and Wl~c' respectively. Moreover, terms 
of the form xg(y, v), linear in x, are eliminated in 
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the equations for x and it. Likewise, terms of the 
form yj(x, u) are eliminated in the equations for if 
and v. 

Another feature of Ovsyannikov-Shil'nikov 
form is that the manifold Wl~~ is tangent to the 
hyperplane {u = o} everywhere on Wl~c' in the co­
ordinates (2.14)-(2.16). This fact was used for ex­
pansions (2.2), (2.3) above. To prove the claimed 
tangency, consider an arbitrary orbit {x(t) = 0, 
y(t), u(t) = 0, v(t)} on Wl~c together with the 
linearization of system (2.14) along that orbit. In 
other words, we consider the coordinate transforma­
tion (x ~ x(t) +x, y ~ y(t) +y, u ~ u(t) +u, v ~ 
v( t) + v) and omit second (and higher) order terms 
in the Taylor expansion of the right-hand sides in 
powers of the "deviations" (x, y, u, v). Using that 
9211x=o == 0, by (2.15), the equation for it in the 
linearization takes the form 

it=(-,+922(X=0, y(t), u=O, v(t)))u. (2.17) 

We see that u = ° is a solution of this equation; 
i.e., the hyperplane {u = O} along Wl~c is invariant 
with respect to the linearized flow. One can extract 
from Hirsch et al. [1977] that the family of tangent 
hyperplanes to the invariant manifold Wl~~ at all 
points of Wl~c is a unique family, which is transverse 
to the manifold Wl~~{x = 0, Y = 0, v = O} at 0, 
and which is invariant with respect to the linearized 
flow. Therefore, it is the hyperplane {u = O} which 
is tangent to Wl~~ at all points of Wl~c' indeed. Note 
that this observation completes the proof of (2.2), 
(2.3) concerning the expansion for (Fix(R))-. 

The advantage of the reduction of the system 
near the saddle to Ovsyannikov-Shil'nikov form is 
that (2.15), (2.16) imply the following estimates for 
the solutions of the Shil'nikov problem (2.11) to 
hold (see Ovsyannikov & Shil'nikov [1992]): 

x = e-Txo + o(e-T) , 

Y = e-TYT + o(e-T) , 

U = o(e-T
) , 

V = o(e-T
). 

(2.18) 

Note that the Shilnikov variables (X, Y, U, V) 
in (2.18) are only Cr- I in (xo, uo, y.,., v.,., r), the 
same smoothness as the transformed vector field 
near O. To determine the degree of smoothness 
with respect to the parameter /1 we recall the proof 
in Ovsyannikov & Shil'nikov [1992]. The coordinate 
transformation bringing the vector field to form 
(2.14)-(2.16) appears in Ovsyannikov & Shil'nikov 
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[1992] as a solution of some functional equation 
which, simultaneously, determines a strong stable 
manifold of an equilibrium state of some Cr- I vec­
tor field. In general, a strong stable manifold is 
known to be of the same smoothness with respect to 
phase variables as the associated vector field (Cr- I 

in our case) but the smoothness with respect to 
parameters decreases by 1 (from Cr- I to Cr - 2 ). 

Thus, we may expect that the coordinate transfor­
mation is Cr-I-smooth with respect to (x, y, u, v) 
and Cr- 2-smooth with respect to /1. The same 
smoothness is inherited by the functions lij and 9ij 
in (2.14): after one differentiation with respect to 
(x, y, u, v) they admit (r - 2) continuous deriva­
tives with respect to (x, y, u, v, /1). The analo­
gous smoothness result holds true for the functions 
(X, Y, U, V) in (2.18). Note that differentiation 
preserves estimates (2.18) (see Ovsyannikov & 
Shil'nikov [1992]). 

We will see that estimates (2.18) are suffi­
cient in order to prove expansions (2.5)-(2.7) for 
(Fix(R))+ (and to finish the proof of the theorem 
in the part concerning principal periodic orbits). 
Note, however, that the estimates are proved for the 
general non-reversible situation. Specifically, the 
coordinate transformation need not preserve the lin­
ear involution R. Since the transformation is close 
to identity, the involution (He, RY, R"\ RV) = R, 
given by (1.25) can be written in the transformed 
coordinates as 

R(x, y, u, v) = (y, x, v, u) + ... ; (2.19) 

dots indicate terms of higher order. Note that 
RWj~c = Wl~c; that is, the plane {y = 0, v = O} 
is mapped locally onto the plane {RX = 0, RU = O} 
by R. This means that (RX, RU) vanishes simulta­
neously with (y, v). Using (x, u, RX, RU) as new 
coordinates (x, u, y, v), R retains its linear form. 
Moreover, the equations for x and it preserve their 
form. Since the new coordinates (y, v) = (RX, RU) 
vanish simultaneously with the old (y, v), identities 
(2.15) persist in these new coordinates. 

Since the vector field, accordingly transformed, 
is again reversible with respect to the again linear 
involution (1.25), it follows that the equations for 
if and v in (2.14) also preserve their form, and the 
functions iij satisfy the identities: 

lij(x, y, u, v) = -9ij(y, x, v, u). (2.20) 

Clearly (2.20) and (2.15) imply (2.16). To conclude, 
bringing the system to Ovsyannikov-Shil'nikov form 
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1020 B. Fiedler & D. Turaev 

(2.14)-(2.16) can be achieved without destroying 
linearity of the involution R. 

We are now ready to prove formulas (2.5)-(2.7) 
for the exit set (Fix(R))+. Estimates (2.18) allow 
us to rewrite Eqs. (2.13) for (Fix(R))+ in the form 

X-r = e--rc: + o(e--r) , 

U-r = o(e--r) . 

From the first equation we have 

and 

X>o 

X 
T = -In - + 0(1). 

c: 

(2.21 ) 

(2.22) 

(2.23) 

Here, 0(1) is a function of (XT) VT) J.t) that tends to 
zero along with its first derivatives for X-r ~ +0. 
Substituting (2.23) in the second equation of (2.21) 
we obtain the desired formulas (2.5)-(2.7). This 
completes the proof of our claims on reversible pe­
riodics in Theorem 1. 

It remains to prove the absence of k-homoclinic 
orbits, for k ~ 2. Consider the pass wedge W ~ 
sout of those points z( T) in Sout which lie on or­
bits through points z(O) in sin = Rsout in a neigh­
borhood U of the primary reversible homoclinic r, 
and which hence pass by O. By the Ovsyannikov­
Shilnikov expansions (2.18) for the Shilnikov coor­
dinatization (2.11), (2.12), the pass wedge W is in­
deed a wedge-shaped region, tangent to WI~~ along 
WI~c in sout; it is given by free small coordinates 
uo, V-r, e--r and satisfies 

X-r = e--r E + o(e--r) , 

U-r = o(e--r). 
(2.24) 

This proves tangency of W to WI~~ n sout = {Y-r = 
E, U-r = O}. 

Propagating W to sfar by the Poincare map 
IIout , we claim 

Zl - Zo E Fix( - R) ~ Zl = Zo , (2.25) 

for any two points zo, Zl in the closure ofIlout(W) ~ 
sfar. Indeed, this holds for points Zl - Zo in the 
tangent space TM wue by transversality of wue to 
R'M, that is, to Fix( -R) at the intersection M of 
the primary reversible homo clinic r with sfar. Con­
sequently, (2.25) holds, locally, in wue n Sfar. By 
tangency to wue, in turn, (2.25) extends to zo, Zl 

in the closure of I1out(W) ~ sfar. This proves our 
claim. 

Now suppose Zo E Sfarnws lies on any, not nec­
essarily reversible, k-homoclinic orbit, k ~ 2. Recall 
that Zo E W S indicates that the forward orbit of Zo 
immediately limits onto 0, rather than passing by. 
Since Zo lies on a k-homoclinic, its backward orbit 
must pass by 0, hence Zo also lies in the propagated 
pass wedge IIout(W). Let Zl := Rzo E sfar n WU. 
Note that Zl lies in the closure of the propagated 
pass wedge W. Applying (2.25), we obtain Zo = 
Zl = Rzo E Fix(R). In particular, 

Zo E W S n Fix(R) 

is on a reversible 1-homoclinic, rather than a k­
homo clinic with k ~ 2. This completes the proof 
of Theorem 1. 

3. Proof of Theorem 2 

Before proving Theorem 2 on the presence of el­
liptic orbits in the family of principal periodics, 
we briefly review the underlying geometry. Con­
sider the Poincare map 111oc defined by the orbits 
which start on the cross-section sin near the point 
RM* = rnSin and reach the cross-section sout near 
the point M* = r n sout. The domain of definition 
of the map I1loc is a wedge RW tangent to the plane 
{v = O} along the line {y = 0, v = O} = WI~c n sin. 
The wedge RW is the R-image of the pass wedge W 
which we introduced in the previous section when 
proving the absence of k-homoclinic orbits (k ~ 2). 
The pass wedge W is, in turn, the range of the map 
IIloc' 

Using the Ovsyannikov-Shil'nikov expansion 
(2.18), one can see that the map 111oc acts as a 
strong contraction along the u-axis, and as a strong 
expansion along the v-axis. There are also neutral 
directions: the y-axis in Sin and, correspondingly, 
the x-axis in sout. The flow along r defines the so­
called global map IIglo : W ~ sin. If the homo clinic 
orbit r was transverse, then the flow along r would 
map the pass wedge W into sin as shown in Fig. 16, 
so that the image of WI~c n sout = {x = 0, U = O} 
would have a nonzero projection onto the v-axis 
in sin. In this case, the combined Poincare map 
II := IIglo 0 IIloc : RW ~ sin would be contracting 
along the u-axis and expanding along the v-axis, as 
is the local map. The neutral direction would be 
tangent to the curve of intersection of sin with the 
surface of the principal periodic orbits adjoining to 
the homoclinic loop. All points of this curve are 
fixed points of II; they are saddles and their strong 
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Fig. 16. For a transverse homoclinic loop r, the flow along 
r maps the pass wedge W into sin in such a way that the 
image of WI~c n sout = {x = 0, u = O} projects nontrivially 
onto the v-axis in sin. 

stable and unstable invariant manifolds limit onto 
Wl~c n sin and IIglo(Wl~c n sout), respectively. 

Two possibilities can be distinguished in this 
case: the principal periodics can be Mobius or non­
Mobius. In the non-Mobius case the Poincare map 
II preserves orientation of the strong unstable man­
ifolds (strong stable as well), and in the Mobius case 
orientation is changed. The strong unstable mani­
folds possess a nonzero projection onto the v-axis, 
since they limit onto IIglo(Wl~c n sout). Note that 
the local map IIloc preserves the orientation of pro­
jections onto the v-axis. Therefore, the global map 
IIglo rotates It}~c n sout so that the image of a pos­
itively directed vector along Wl~c n sout possesses 
a negative projection onto the v-axis in sin, in the 
Mobius case. In contrast, if the projection of the 
image is positive, then we are in the non-Mobius 
situation. 

Now, return to our nontransverse homo clinic 
r. For definiteness, let Fix(R) adjoin to WU from 
the negative side. In this case, the image IIglo W 
of the pass wedge W looks like a horseshoe. For 
J-t = 0, the line IIglo(Wl~c n sout) is tangent to 

Coalescence of Reversible Homoclinc Orbits 1021 

Wl~c n sin and the domain RW of the Poincare 
map II does not intersect IIgioW [Fig. 17(a)]. For 
J-t < 0 [Fig. 17(b)], the lines IIglo(Wl~c n sout) and 
Wl~c n sin intersect at two points which correspond 
to transverse reversible homo clinic loops. Accord­
ing to Theorem 1, these points are connected by the 
line of fixed points of the Poincare map II which cor­
respond to the principal periodic orbits. Since the 
line IIglo(Wl~c n sout) is folded, orientation with re­
spect to the v-axis changes when moving from one 
of the intersection points to the other. Thus, the 
fixed points of II are Mobius near one of the points 
of intersection of IIglo (Wl~c n sout) and Wl~c n sin 

and they are non-Mobius near the other point. 
We see that the nontrivial Floquet multiplier s 

must be negative near one end of the curve of fixed 
points of II, and positive near the other end. So, 
s 1= 0 must leave the real axis somewhere in be­
tween to become complex: the corresponding prin­
cipal periodic orbits are elliptic. 

Rather than corroborating this underlying ge­
ometrical picture directly, we prove the claims of 
Theorem 2 concerning the elliptic periodic orbits 
algebraically. Our computations will prove, in 
particular, that the curves v±(J-t) which bound the 
cuspidal ellipticity region bifurcate along the same 
tangent. 

We recall from (1.21) that the spectrum of Flo­
quet multipliers of a principal periodic orbit has the 
form {s, s-l, 1, I}. Therefore, the nontrivial mul­
tiplier s of a principal periodic orbit is determined 
by the trace equation 

1 
tr C:= s + - + 2 

s 
(3.1) 

where C is the Floquet linearization matrix of the 
period map along the orbit. For fixed J-t, the princi­
pal periodic orbits are parametrized by the coordi­
nate v of their intersection point with sout. There­
fore, the matrix C in (3.1) depends on v and J-t, 
only. 

By (3.1), the equations 

tr C(v, J-t) = 4 (3.2) 

and 
tr C(v, J-t) = 0 (3.3) 

correspond to Floquet multipliers s = +1 and s = 
-1, respectively. To prove Theorem 2 we must 
therefore solve (3.2), (3.3) by functions v = v+(J-t), 
v = v-(J-t), respectively, for J-t near zero and v near 
v*. 
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RW 
RW 

(a) (b) 

Fig. 17. For the nontransverse homo clinic r the image I1g1oW of the pass wedge W has a horseshoe-like form. If Fix(R) 
adjoins to W U from the negative side, then the domain RW of the Poincare map 11 does not intersect I1g1o W for I-' = 0 
[Fig. 17(a»). For I-' < 0 [Fig. 17(b»), the lines I1g1o(Wl~c n sout) and Wl~c n sin intersect at two points, RMi and RM;, which 
correspond to transverse reversible homoclinic loops. The intersection of RW and I1g1o W is a "banana-like" region, shown 
black in the figure, with the ends at these two points. According to Theorem 1, the end points are connected by a line within 
this region which consists of fixed points of the Poincare map 11, alias principal periodic orbits. 

Let P(x, y = c, u, v) be the point of intersec­
tion of a principal periodic orbit with sout. The 
reflected point RP = (c, x, v, u) is the point of in­
tersection of this orbit with the incoming section 
sin = Rsout near the equilibrium O. The coordi­
nates x and u are expressed in terms of v and IL by 
the following system 

{
X = C(IL + (v - v*)2) + o(IILI + (v - v*)2) 
U = o(x) (3.4) 

for x -+ 0, v - v* -+ 0, IL -+ 0 [see (2.5)-(2.9)]. We 
will also use the expressions [see (2.21), (2.23)] 

x = e-Tc + o(e-T) , 

u = o(e-T) , 

x 
T = -In - + 0(1), 

c 

(3.5) 

(3.6) 

where T is the flight time from RP to the exit point 
P in sout. By (3.5), (3.6), we have T -+ 00 for 
v -+ v*, IL -+ O. 

The time T orbit from RP to P remains inside 
the c-neighborhood of 0, whereas the orbit from P 
to RP lies outside. The flight time T from P to RP 
is bounded, uniformly for all small (IL, v - v*), and 
it is close to the flight time of the homoclinic orbit 
r from M* to RM* at IL = O. 

The Floquet matrix C in (3.1)-(3.3) correspond­
ingly decomposes into the product of two matrices 

(all a12 a13 

a" ) C = AB = a21 a22 a23 a24 

a31 a32 a33 a34 

a41 a42 a43 a44 

C 
b12 b13 

b" ) b21 b22 b23 b24 
(3.7) X 

b34 b31 b32 b33 

b41 b42 b43 b44 

Here, A is the linearization at RP of the time T flow 
map, and B is the linearization at P of the time T 
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flow map along f. The matrices A and B in (3.7) 
depend on v, J.L. Below, we compute and estimate 
elements of these matrices. 

We now give an outline of our algebraic ap­
proach to the ellipticity region. Below, we estimate 
elements of A using relations between the time r 
flow map and solutions of the Shil'nikov problem 
[see (3.21), (3.22)]. The estimates obtained will al­
low us to rewrite the trace Eq. (3.1) in the form 

for any given finite 8 [see (3.25), (3.18)]. Here, 8 is 
absorbed into the o( e-T

) term which is, in fact, a 
function of (8, v, J.L). The functions XI, X2, and X3 
of (v, J.L) tend to zero, along with their derivatives, 
for r(v, J.L) -+ 00. 

Next, using reversibility arguments and as­
sumption (G) of the theorem, we obtain expansions 
(3.32)-(3.35) for bjk which allow us to rewrite the 
trace equation in the form 

a(x, u, v, J.L) = o(e-T). 

Here, (x, u, v) are the coordinates of the point P 
where the principal periodic orbit intersects Bout 

[see (3.4), (3.5)], and r is the flight time from RP to 
P [see (3.6)]. In (3.42), the function a is expanded 
as 

a(x, u, v, J.L) = K 1(v - v*) + K2J.L + K3X + K4U 
+ o(lv - v*1 + IJ.LI + Ixl + luI), 

where Kl # 0. This will follow because the tan­
gency is quadratic. 

For J.L -+ 0, estimates (3.4), (3.5), (3.6) finally 
reduce the trace equations to 

[see (3.46)] for any given finite 8. As before, 8 en­
ters only into the term o(J.L). Inserting the values 
8 = ±1 yields the curves v = v±(J.L) which sepa­
rate elliptic and saddle regions in the bifurcation 
diagram of Fig. 9. Note that the tangents of these 
curves at J.L = 0, v = v* coincide, in agreement with 
Theorem 2. This completes our outline of the proof. 

Now we give the details. We begin with evalua­
tion of the matrix A, the linearization at RP of the 
time r flow map (xo, Yo,Uo, vo) ~ (xn Yn Un vT). 
Recall that this map is determined by the solution 
(2.11) of the Shil'nikov problem. To linearize the 

Coalescence of Reversible Homoclinc Orbits 1023 

map we differentiate (2.11) at fixed r: 

(3.8) 

( d
Yo ) = (Yx Yu) (dXo) 

dvo Vx Vu duo 

+ (Yy Yv) (dYT
) 

Vy Vv dVT 

with lower subscripts x, y, u, v indicating partial 
derivatives. Since we are interested in the lineariza­
tion at RP, the derivatives should be evaluated at 
Xo = C:, YT = C:, Uo = VT = v-coordinate of P, and 
at r given by (3.6) where x = X T in (3.6) is given 
by (3.4). 

By definition of A, on the other hand, 

+ (a13 a14) (dYo ) , 
a23 a24 dvo 

( ~~:) = (::~ ::~) (~::) 
(3.9) 

Comparing (3.8) and (3.9) we have 

( ~ ~) (::: :::) = (~ ~), (3.10) 

(3.13) 

By (3.10), the matrix (~ ~) is invertible, that is, 

(
Yy Yv) 

det Vy Vv # 0. (3.14) 
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From (3.10)-(3.13) we easily obtain A: 

(
an a12 ) = (Xx Xu) _ (Xy Xv) 
a2l a22 Ux Uu Uy Uv 

x (Yy Yv )-1 (Yx Yu ), 
Vy Vv Vx Vu 

( 
a13 a14) = (Xy Xv) (Yy Yv) -1, (3.15) 
a23 a24 Uy Uv Vy Vv 

( 
a31 a32) = _ (Yy Yv ) -1 (Yx 1':v,uu) , 
a41 a42 Vy Vv Vx 

( 
a33 a34 ) = (Yy Yv ) -1 

a43 a44 Vy Vv 

In this formula 

Xx = e-r +o(e-r ) > 0, 
(3.16) 

Yy = e-r + o(e-r ) > 0, 

and all the other derivatives are of order o(e-r ), by 
estimates (2.18) for the solution of the Shil'nikov 
problem. Recall that r is the function of v and JL 
given by (3.6), (3.4) with x = Xro 

Since Yy =1= 0, we can write 

(3.17) 

where 

~ = Vv - VyYy-
1yv = o(e-r ). (3.18) 

By (3.14), (3.17) 
(3.19) 

One can easily verify that 

-Yv ) 
1': . 

y 
(3.20) 

Since YvYy- l = 0(1), VyYy- l = 0(1), VvYy- l = 0(1), 
for r ~ 00, we have 

Reinserting (3.21) into (3.15), all other elements of 
A = (ajk) are of order 

e-r o(~ -1), (3.22) 

for r ~ 00. 

Using these estimates and 

tr AB = tr [ ( an a12 ) (bn 
a21 a22 b2l 

b12 ) ] 
b22 

+ tr [( a13 
a23 

a14) (b31 

a24 b4l 
b

32
) ] 

b42 

+ tr [( a31 
a4l 

a32) (b13 

a42 b23 
b

14 
) ] 

b24 

+ tr [( a33 a34) (b33 b34 ) ] (3.23) 
a43 a44 b43 b44 

we obtain the following estimate for the trace of the 
Floquet matrix: 

trC = tr AB = ~-1(b44 + b43Xl + b34X2 

+ b33X3 + o(e-r
)). (3.24) 

Here, Xl, X2, and X3 are functions of (v, JL) which 
tend to zero along with their derivatives for 
r( v, JL) ~ 00. The values bjk are uniformly bounded 
for v close to v* and JL close to zero, by linearization 
of a time T map with uniformly bounded T. 

Inserting (3.24) into (3.1), the nontrivial 
Floquet multiplier s of a principal periodic orbit 
satisfies 

b44 + (b43Xl + b34 X2 + b33X3) 

=~(S+~+2)+0(e-r), (3.25) 

with Xl, X2, X3 of order 0(1). The coefficients bjk 
can be calculated as 

b44 = (ev, Bev), b43 = (ev, Bey), 

b34 = (ey, Bev), b33 = (ey, Bey), 
(3.26) 

where (ex, ey, eu, ev) are unit vectors along the cor­
responding coordinate axes at the points P and RPj 
(., .) denotes the standard scalar product. We com­
pute asymptotic expansions for these bj,k next. 

Let Bl/2 be the linearization of the time T /2 
flow map at the point P. This flow map moves 
the point P to some point Q on Fix(R) near M = 
r n Fix(R). By reversibility, 

(3.27) 

(see Fiedler & Heinze [1996a, 1996b]). To facilitate 
the calculation of B l / 2 , we introduce suitable coor­
dinates (~b 6, 'TI, () near M such that the vector 
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Fix R 

Fig. 18. The coordinates (6,6, 1], () near M are intro­
duced so that the vector field is parallel to the (-axis near 
M, the cross-section sfar is given by ( = 0, the plane Fix(R) 
near M is {1] = 0, (= O}, and the plane RM = M + Fix( -R) 
is {6 = 0,6 = O}. 

field is parallel to the (-axis near M, the cross­
section sfar is given by ( = 0, the plane Fix(R) 
near M is {1J = 0, ( = O}, the plane R"M is {6 = 
0,6 = O}; see Fig. 18. We recall that R"M = 
M + Fix( - R), by definition, is the two-dimensional 
subspace through M where R acts as -id. In these 
coordinates, the involution R acts as 

(3.28) 

Time can be scaled so that the cross-section 
sout = {y = c} is mapped to sfar = {( = O} 
by a Poincare time identically T /2 and, thus, the 
time T /2 map restricted to sout coincides with the 
Poincare map I1out . Since the vector ev lies in sout, 
the image B1/ 2ev lies in sfar. Therefore, we can 
write 

(3.29) 

where a and {31,2 are functions of J1, and of the 
coordinates (x, u, v) of P. Here, the vectors 
(e6' e6, er" e() are unit vectors along the corre­
sponding coordinate axes attached to Q. Below, we 
estimate a. By (3.28), (3.29) 

(3.30) 

and 

(3.31) 
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Now we get by (3.26), (3.27) 

Analogously, 

b44 = (ev, Bev) 

= (Rev, Bl;~RBl/2eV) 

= (eu, ev - 2aBl;~el1) 

= -2a(eu, Bl;~el1)· (3.32) 

(3.33) 

Note that the factor (eu, Bl/~el1) in the right-hand 
side of (3.32) is nonzero. Indeed, otherwise the vec­
tor Bl;~el1' tangent to the line I1;;-;t(R"M n sfar), 
would belong to the hyperplane {u = O} tangent to 
Wl~~' contradicting the transversality of wue and 
R"M. 

The elements b43 and b33 can be estimated as 
follows: 

b43 = -~b44 + O(e-T
) , 

y 

b33 = -~b34 + O(e-T
). 

y 

(3.34) 

(3.35) 

Indeed, the linearization of the flow map moves the 
time derivative at P onto the time derivative at Q: 

(3.36) 

where (x, iJ, u, v) at the point P are given in 
Ovsyannikov-Shil'nikov form by (2.14) with (x, u) 
as in (3.4), (3.5) and with y = c. Note that x and 
u are of order O( e-T

) and iJ does not vanish. By 
(3.28), (3.36) 

Bl;~RBl/2(xeX + iJey + ueu + vev) 

= Bl/~Re( 

= -Bl;~e( - (xex + iJey + ueu + vev). (3.37) 

Evaluating the component of eu = Rev yields 

iJ(eu, Bl/~RBl/2ey) + v(eu, B1/1 RBl/2 ev) 

+ x(eu, B1/1 RBl/2ex) 

(3.38) 

Since x, u are of order O(e-T
) and iJ =f 0, we obtain 

(eu, Bl;~RBl/2ey) = -~(eu, Bl;~RBl/2ev) 
y 

(3.39) 
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Comparing with (3.26), (3.27) we obtain the claimed 
estimate (3.34). Analogously, estimate (3.35) fol­
lows from (3.37) by evaluation of the component of 
ex = Rey. 

We can now substitute expansions (3.32)-(3.35) 
for bjk into condition (3.25) for the presence of a 
nontrivial multiplier s. Then (3.25) takes the form 

a(x, u, v, p) = o(e-7') (3.40) 

for any given finite s. Here, (x, u, v) are the coor­
dinates of the point P where the principal periodic 
orbit intersects sout [see (3.4), (3.5)J, the value 'T is 
the flight time from RP to P [see (3.6)J, and the 
function a is the 7]-component of the vector B 1/ 2ev 

[see (3.29)J. Note that s is absorbed into the o(e-7') 
term, with s entering only via 

~(s + l/s), 

and ~ = o(e-7') by (3.18). 
We claim that 

a(x = 0, u = 0, v = v*, p = 0) = 0, 

~: (x = 0, u = 0, v = v*, p = 0) # o. 
(3.41 ) 

Indeed, the vector B 1/ 2ev becomes tangent to 
TIout(Wl~c n sout) for P tending to M*, that is, for 
p --+ 0 and v --+ v*. Since W U n sfar is quadratically 
tangent to the {7] = O} plane, for p = 0, this implies 
(3.41). 

By (3.41) we can now expand 

a(x, u, v, p) 

= K1(v - v*) + K2P + K3X + K4U 

+ o(lv - v*1 + Ipl + Ixl + luI) (3.42) 

where Kl # O. Estimates (3.5) for x and u allow us 
to rewrite the expression for a in the form 

a(x, u, v, p) = K1(v - v*) + K21-£ + K3€e-7' 

+ 0(11-£1 + Iv - v*1 + e-7') . (3.43) 

Thus, Eq. (3.40) can be rewritten as 

* K2 K3 -7' (-7' I I) ( 4) v - v = - -p - -e € + 0 e + p 3.4 
Kl Kl 

Substituting (3.44) into expansions (3.4), (3.5) we 
obtain 

-7' 
X '" e € '" cp (3.45) 

for p --+ o. 

Finally, we have from (3.44) and (3.45) that, 
for 1-£ --+ 0, the condition of the presence of the non­
trivial Floquet multiplier s reduces asymptotically 
to 

(3.46) 

for any given finite s. As before, s enters only into 
the term 0(1-£). Inserting the values s = ±1 yields 
the curves v = v±(p) which separate elliptic and 
saddle regions in the bifurcation diagram of Fig. 9. 
By (3.46), these curves are tangent at 1-£ = 0, v = v* 
in agreement with Theorem 2. 

Note that the curves given by (3.46) do not in­
tersect each other for different s, since the unique 
principal periodic orbit has only one pair of non­
trivial Floquet multiplier s. Moreover, for any fi­
nite s and for any small 1-£, there is only one v 
satisfying (3.46). Thus, the real part, Re s, de­
pends monotonically on v for each fixed 1-£. This 
implies that IResl < 1, for v E (v-(p), v+(I-£)), and 
IResl > 1 for v ~ (v-(p), v+(I-£)). Therefore, the 
region v E (v-(p), v+(p)) corresponds to elliptic 
periodic orbits and the region v ~ (v-(p), v+(I-£)) 
corresponds to saddle periodic orbits. This com­
pletes the proof of Theorem 2. 
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