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An analogue of the center manifold theory is proposed for non-local bifurcations of homo­
and heteroclinic contours. In contrast with the local bifurcation theory it is shown that the 
dimension of non-local bifurcational problems is determined by the three different integers: the 
geometrical dimension dg which is equal to the dimension of a non-local analogue of the center 
manifold, the critical dimension de which is equal to the difference between the dimension 
of phase space and the sum of dimensions of leaves of associated strong-stable and strong­
unstable foliations, and the Lyapunov dimension dL which is equal to the maximal possible 
number of zero Lyapunov exponents for the orbits arising at the bifurcation. For a wide class 
of bifurcational problems (the so-called semi-local bifurcations) these three values are shown to 
be effectively computed. For the orbits arising at the bifurcations, effective restrictions for the 
maximal and minimal numbers of positive and negative Lyapunov exponents (correspondingly, 
for the maximal and minimal possible dimensions of the stable and unstable manifolds) are 
obtained, involving the values de and dL. A connection with the problem of hyperchaos is 
discussed. 

Papers 

1. Introduction 

It is well known that a large number of models 
of chaotic behavior in dynamical systems has been 
provided by the theory of global bifurcations. We 
could mention, for instance, a saddle-focus homo­
clinic loop (Fig. 1) under the Shil'nikov conditions, 
the transition from quasiperiodicity to chaos 
through an invariant torus breakdown, the homo­
clinic butterfly bifurcation (Fig. 2) leading to the 
Lorenz attractor, etc. 

The investigation of global bifurcations of 
multi-dimensional systems was pioneered by 
Shil'nikov in the 1960s. It began with simple 
bifurcations of a homoclinic loop of a saddle 
equilibrium state (Fig. 3) and of a homo clinic loop 
of a saddle-node (Fig. 4); for both cases a single 
stable periodic orbit was proved to be generated 

[Shil'nikov, 1962, 1963]. More complex situations 
where a saddle periodic orbit is born were consid­
ered in Shil'nikov [1966, 1968]. Then, the complex 
structure (hyperbolic sets) in a neighborhood of a 
homoclinic loop of a saddle-focus [Shil'nikov, 1965, 
1967a, 1970] and in a neighborhood of a homo clinic 
bunch of a saddle-saddle equilibrium state (Fig. 5) 
[Shil'nikov, 1969] were discovered and investigated 
[Shil'nikov, 1967b]. The hyperbolic structure in 
a neighborhood of a structurally stable Poincare 
homoclinic orbit! and the hyperbolic subsets and 
bifurcations near a structurally unstable Poincare 
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IThis is an orbit of transverse intersection of the stable 
and unstable invariant manifolds of a saddle periodic or­
bit (Fig. 6); if the manifolds are tangent at the points of 
some orbit, such a homo clinic orbit is structurally unstable 
(Fig. 7). 
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r 

Fig. 1. A homo clinic loop r of a saddle-focus O. 

o 
Fig. 2. A homo clinic butterfly composed of two loops r 1 

and r 2 to a saddle O. 

r 

Fig. 3. A homo clinic loop r of a saddle O. 

r 

Fig. 4. A homoclinic loop r of a saddle-node O. 

Fig. 5. A pair of homo clinic loops rl and r2 of a saddle­
saddle equilibrium state O. 

homoclinic orbit (the latter with GavriIov [GavriIov 
& Shil'nikov, 1972]) had also been studied. 

These studies were continued in the 1970s by 
Shil'nikov and coworkers as well as by other re­
searchers (see, partly, references in Afraimovich 
et al. [1989]) and by now the theory has been in­
tensively developed. 



In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 1
99

6.
06

:9
19

-9
48

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
M

PE
R

IA
L

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
02

/1
2/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Fig. 6. An example of a homoclinic structure: the unstable 
and stable manifolds W" and W' of a saddle fixed point 0 
of a diffeomorphism of a plane have a transverse intersection 
at the points of a structurally stable homo clinic orbit (boldly 
printed points in the figure). 

Fig. 7. A structurally unstable Poincare homo clinic orbit 
at the points of which the unstable and stable manifolds W" 
and W' of a saddle fixed point 0 of a diffeomorphism of a 
plane have a tangency (boldly printed points in the figure). 

The substantial part of the theory of global bi­
furcations relates to the study of homo- and hetero­
clinic contours. Recall that a contour is a union of 
a finite number of periodic orbits and (or) equilib-

On Dimension of Non-Local Bifurcational Problems 921 

rium states and a finite number of orbits asymptotic 
to them. We will denote such a contour as C, the 
periodic orbits and equilibrium states belonging to 
C will be denoted as L1, L2, . .. , and the orbits that 
are asymptotic to the orbits Li will be denoted as 
rl,r2,." : 

Each orbit r s is an intersection of the unstable 
WU(Li) and stable WS(Lj) manifolds of some orbits 
Li and Lj. If i = j, then r S is called homoclinic, 
and it is called heteroclinic if i # j. 

The examples enumerated above and shown on 
Figs. 1-7 are homoclinic contours with one equilib­
rium state or one periodic orbit. Figures 8 and 9 
show heteroclinic contours with two equilibria 
which were studied by Bykov [1978, 1980, 1993J and 
Chow et al. [1990J and Shashkov [1991a, 1992J. 

In the present paper, we intend to consider the 
most general properties of dynamical systems pos­
sessing a contour of one of these or, maybe, other 
types. Specifically, we find effective restrictions for 
possible dimensions of stable and unstable mani­
folds (in other words, for the possible numbers of 
positive and negative Lyapunov exponents) for any 
orbit which may lie in a small neighborhood of the 
contour or which may be born under a small per­
turbation of the system. 

Fig. 8. A three-dimensional example of a heteroclinic con­
tour containing two saddle equilibrium states: the orbit r 2 is 
the orbit of transverse intersection of the two-dimensional un­
stable manifolds W2' of the point 02 and the two-dimensional 
stable manifold Wi of the point 0 1 ; the orbit r 1 is a com­
mon orbit for the one-dimensional unstable manifold of 0 1 

and the one-dimensional stable manifold of 02. 
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w.S 
__ ---......, 2 

~s 

Fig. 9. Another three-dimensional example of a hetero­
clinic -contour with two saddle equilibrium states: the one­
dimensional unstable manifold of 0 1 intersects the two­
dimensional stable manifold of 02 and the one-dimensional 
unstable manifold of O2 intersects the two-dimensional stable 
manifold of 01. 

Such restrictions are well-known in the local bi­
furcation theory studying bifurcations in a neigh­
borhood of a single structurally unstable equilib­
rium state or periodic orbit. If some dynamical 
systems have such an orbit with k characteristic 
exponents on the imaginary axis, n characteristic 
exponents to the right and m characteristic expo­
nents to the left of the imaginary axis, then the fol­
lowing "center manifold theorem" holds, going back 
to Kelley [1967] and Pliss [1964] and then to Hirsch 
et al. [1977] and to Shoshitaishvili [1975]: 

For any nearby system, in a small neigh­
borhood of the equilibrium state (respectively, 
of the periodic orbit) there exists a locally in­
variant k-dimensional smooth center manifold 
such that any orbit, staying in the neighborhood 
for all times, belongs to the center manifold. 

The center manifold is an intersection of 
two smooth invariant manifolds: the center­
stable (m + k)-dimensional manifold that con­
tains all orbits not leaving the neighborhood 
for all positive times and the center-unstable 
(n + k) -dimensional manifold that contains all 
orbits staying in the neighborhood for all nega­
tive times. 

On the center-stable ( center-unstable) 
manifold there exists a strong-stable (respec­
tively, strong-unstable) invariant foliation with 
m-dimensional (respectively, n-dimensional) 
leaves transverse to the center manifold. There 
is a contraction ( exponential) along the strong­
stable leaves and an expansion along the strong-

unstable leaves and the contraction and expan­
sion are stronger than those which may take 
place along the directions tangential to the cen­
ter manifold (Fig. 10). 

Hence, the relevant dynamics is preserved if one 
restricts the system onto the center manifold. Note 
that the dimension of the reduced system equals 
here to the number k of the characteristic exponents 
on the imaginary axis and it does not correlate with 
the dimension of the initial system. The last [equal 
to (m + n + k)] can, in principle, be arbitrarily high 
and even infinite in some cases (see, for instance, 
Marsden & McCracen [1976] where a center man­
ifold theorem is given for some classes of PDEs). 
Thus, the restriction onto the center manifold gives 
one an essential reduction of the dimension of the 
problem: exactly from (m + n + k) to k. 

We point out another consequence of the center 
manifold theorem (particularly, of the presence of 
the strong-stable and strong-unstable foliations): 

For any orbit C lying entirely in a small 
neighborhood of the bifurcating equilibrium 
state (the periodic orbit), the dimensions of its 
stable and unstable manifolds are restricted by 
the following inequalities: 

n ~ dim WU(C) ~ n + k 

m ~ dim WS(C) ~ m+n 
(1) 

In other words, the orbit C cannot have more 
than (n + k) positive or (m + k) negative Lya­
punov exponents and less than n positive and 
m negative Lyapunov exponents. 

Fig. 10. An illustration to the center manifold theorem: 0 
is a structurally unstable equilibrium state, we" and weB are 
the center-unstable and center-stable manifolds, the intersec­
tion we .. n weB is the center manifold we, on we .. and W dB 
there exist, respectively, strong-unstable and strong-stablJe 
foliations transverse to we. 
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The number k is called the dimension of the 
bifurcational problem and its determining is a stan­
dard preliminary step when studying any local 
bifurcation. 

The scope of the present paper is to give a 
sketch of an analogous theory for the bifurcations 
of homo- and heteroclinic contours. Actually, we 
will consider a more general situation, namely, bi­
furcations in a small neighborhood of an arbitrary 
closed connected invariant set composed of a finite 
number of orbits. Such bifurcational problems are 
called semi-local, to emphasize that the set whose 
bifurcations are studied contains a finite number of 
orbits. We will also call any such set a contour. 

Evidently, this setting includes the study of 
homo- and heteroclinic contours as a partial case. 
In fact, there are very few other semi-local bifur­
cations which have been studied to date. As an 
example, we mention the bifurcation considered in 
Homburg [1993J: a saddle equilibrium state with 
one-dimensional unstable manifold one separatrix 
which forms a homo clinic loop and the other has 
the loop as an w-limit set (see Fig. 11). Such a bi­
furcation may take place on a two-dimensional torus 
(Fig. 12), producing a Cherry flow [Cherry, 1937J, 
and it may also accompany the homoclinic butter­
fly (Fig. 2) bifurcation [Turaev & Shil'nikov, 1986; 
Gambaudo et al., 1988J. A more sophisticated ex-

Fig. 11. An example of a second-level contour: one sepa­
ratrix r 1 of a saddle equilibrium state 0 1 forms a homo­
clinic loop and the other separatrix r2 tends to the loop as 
t -+ +00. 

On Dimension of Non-Local Bifurcational Problems 923 

Fig. 12. The second-level contour on a two-dimensional 
torus. 

ample (an orbit homo clinic to a bunch consisting 
of four homo clinic loops) can be found in Eleonsky 
et al. [1989J. 

It can be easily shown that the structure of an 
arbitrary closed invariant set C composed of a finite 
number of orbits is as follows. First, the set C can­
not contain non-trivial recurrent orbits (otherwise, 
it would be infinite: the closure of a non-trivial re­
current orbit is well known to contain an infinite 
number of other recurrent orbits). Therefore, the 
only recurrent orbits in C are periodic orbits and 
equilibrium states in a finite number. We will call 
them orbits of the zero level. Next, there may be a 
finite number of orbits asymptotic to the orbits of 
the zero level as t --+ ±oo. They will be called orbits 
of the first level. The orbits whose Q:- and w-limit 
sets belong to the union of the orbits of zero and 
first levels are called orbits of the second level, and 
so on. 
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Each set C contains a finite number of levels. 
In these terms, homo- and heteroclinic contours, ex­
amples of which are shown in Figs. 1-9, are first­
level contours; the contours in Figs. 11 and 12 are 
second-level contours. Single periodic orbits and 
equilibrium states (bifurcations of which are stud­
ied by the local theory) could be considered as zero­
level contours. 

In contrast with the case of local bifurcations, 
we will show that the dimension of semi-local bifur­
cational problems is determined by three different 
integers. One of them which we call the geomet­
rical dimension dg , is equal to the dimension of a 
non-local analogue of the center manifold. The sec­
ond, the critical dimension dc, is connected with 
the strong-stable and strong-unstable foliations: it 
is equal to the difference between the dimension 
of the phase space and the sum of dimensions of 
strong-stable and strong-unstable leaves. The third 
integer, the Lyapunov dimension dL, relates to the 
estimates [similar to estimates (I)J on possible di­
mensions of stable and unstable manifolds of the 
orbits that may be born at the bifurcation and it 
is equal to the maximal number of zero Lyapunov 
exponents possible for these orbits. 

For the local bifurcational problems, these three 
definitions give the same number k. In the non-local 
case, the three dimensions may be different and the 
following relation holds: 

(2) 

The main results of the paper are given by the 
three theorems in Sec. 3. Theorem 1 establishes 
that for any finite contour C, there are defined the 
numbers m, nand k (m + n + k = the dimension 
of the phase space) such that: 

For any orbit £, of any nearby system, if 
the orbit lies entirely in a small neighborhood 
U of C, then the flow linearized along £, ad­
mits an exponential trichotomy; i.e., there ex­
ists an m-dimensional strong-stable subspace 
for which the linearized flow is exponentially 
contracting, an n-dimensional strong-unstable 
subspace for which the linearized flow is ex­
panding, and a k-dimensional center subspace 
for which contraction or expansion are weaker 
than those on the strong-stable and strong­
unstable subspaces. 

We emphasize that this result is fulfilled for any 
orbit which lies near C or which is born at the bi-

1m 

Fig. 13. The trichotomy property: there exists non-negative 
integers k ;::: 1, m and n such that for each periodic orbit or 
equilibrium state Li in the contour the spectrum of character­
istic exponents of Li is divided into the three parts; exactly 
k characteristic exponents belong to the center part A C that 
lies in the strip -(3: < ~eA < (3': on the complex plane, m 
characteristic exponents belong to the strong-stable part ASS 
that lies to the left of the line ~eA = -(3;' and n character­
istic exponents belong to the strong-unstable part A"" that 
lies to the right of the line ~eA = (3't", where (3't", (3':, (3;' 
and (3: are some positive values «(3't" > (3':, (3:' > (3t) which 
may be different for different orbits Li. 

furcation. If P is a point on the orbit £', then Nj,s, 
Npu and Np denote, respectively, the strong-stable, 
strong-unstable and center subspaces at the point 
P. By Theorem 1, the system of these subs paces 
is invariant with respect to the linearized flow, and 
they depend continuously on the point P. Note 
also that Np contains the vector of phase velocity 
at P. 

If we take P on a recurrent orbit Li C C (a pe­
riodic orbit or an equilibrium state), then by The­
orem 1 the spectrum of characteristic exponents2 

of Li is decomposed into three parts: center, or 
critical, part A c corresponding to the eigenspace 
Np, right (or strong-unstable) part A 1£1£ correspond­
ing to the eigenspace Npu, and left (or strong-stable) 
part ASS corresponding to the eigenspace Nps. 
Schematically, the trichotomy property is reflected 
by the following relation (see Fig. 13) 

for some positive /3f and /3i. The separating values 
/3i can be different for different orbits Li. It is im­
portant, nevertheless, that the numbers k, m, n of 

2R.oots of characteristic equation if Li is an equilibrium state, 
logarithms of the Floquet multipliers (the eigenvalues of the 
linearized period map) if Li is a periodic orbit. 
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characteristic exponents belonging to each part of 
the spectrum do not depend on Li. Evidently, the 
presence of such a decomposition for each recurrent 
orbit Li in C is a necessary condition for Theo­
rem 1 (but it is not sufficient, see details in Secs. 3 
and 4). 

Evidently, Theorem 1 shows that, for any orbit 
staying in the neighborhood U for all times, the 
number of negative Lyapunov exponents cannot be 
greater than (m+k) and less than m and the number 
of positive Lyapunov exponents cannot be greater 
than (n + k) and less than n. 

In particular, we have that for any periodic or­
bit £. lying in U entirely 

m + 1 ::; dim WS(£.) ::; m + k 

n + 1 ::; dim W U (£.) ::; n + k 
(3) 

(by the theorem, the orbit £. has at least m multi­
pliers inside the unit circle and at least n multipliers 
outside the unit circle). 

Inequality (3) is analogous to inequality (1) fol­
lowing from the "center manifold theorem" in the 
case of local bifurcations. Note that the numbers k, 
m and n are not defined uniquely. We call the low­
est possible value of k for which Theorem 1 remains 
valid the critical dimension of the problem and de­
note it as de (an algorithm of finding de is given in 
Sec. 4). 

In contrast with what we have for local bifurca­
tions, estimates (3) based on considerations involv­
ing the exponential trichotomy of the linearized flow 
are not final. Indeed, suppose the so-called sequen­
tial divergences are less than zero for all recurrent 
orbits Li in the contour Cj i.e., suppose that for 
each orbit Li, the sum of its critical characteristic 
exponents is negative. This means that the flow 
linearized along Li is volume contracting in restric­
tion onto the spaces Ne. Since any orbit of C (and, 
therefore, any orbit lying in a small neighborhood of 
C) spends most of the time in a small neighborhood 
of the union of the orbits Li, the linearized flow ap­
plied to the space Ne is volume contracting along 
any orbit £. lying near C. This implies that, in addi­
tion to m negative Lyapunov exponents correspond­
ing to the invariant subspace NBS, the orbit £. has 
at least one more negative Lyapunov exponent cor­
responding to the restriction of the linearized flow 
onto the space Ne. In particular, if £. is a peri­
odic orbit, it has at least one additional Floquet 
multiplier less than unity in absolute value which 
corresponds to an eigen-direction belonging to Ne. 

On Dimension of Non-Local Bifureational Problems 925 

Thus, in this case (we call it volume contracting) 

n + 1 ::; dim WU(£.) ::; n + de - 1 

m + 2 ::; dim WS(£.) ::; m + de 
(4) 

and these estimates are stronger than inequal­
ities (3). 

Analogously, if the sequential divergence is 
greater than zero for each recurrent orbit in C (the 
volume expanding case), then an additional restric­
tion arises for the maximal possible dimension of 
the stable manifolds. 

In Sec. 4 we define the Lyapunov dimension of 
the problem, dL, such that, in the volume contract­
ing case, the linearized flow applied to the space Ne 
contracts exponentially (d L + 1 )-dimensional vol­
umes along each recurrent orbit Li C C, and in 
the volume expanding case the (h+1)-dimensional 
volumes are expanded. Using simple arguments, 
one can prove the following result (Theorem 2 of 
Sec. 4): 

In the volume contracting case, any orbit 
£. that stays in the neighborhood U for all times 
cannot have more than (n + dL) non-negative 
Lyapunov exponents; in the volume expanding 
case, it cannot have more than (m + dL) non­
positive Lyapunov exponents. 

By this theorem, for any periodic orbit £. in a 
small neighborhood of C, the following estimates 
hold in the volume contracting case: 

n + 1 ::; dim WU(£.) ::; n + dL 

m + 1 + (de - dL) ::; dim W S (£.) ::; m + de 

Analogously, in the volume expanding case, 

n + 1 + (de - dL) ::; dim WU(£.) ::; n + de 

m + 1 ::; dim WSC£.) ::; m + dL 

(5) 

(6) 

In the other cases (we call them the case of diver­
gence of indefinite sign) we get no additional infor­
mation in comparison with inequalities (3) which 
we have rewritten as 

m + 1 ::; dim WS(£.) ::; m + de 

n+l ~ dim WU(£.) ~ n+de 

(7) 

In this case one can assign dL == de and inequali­
ties (7) would formally coincide with (5) and (6). 
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Inequalities (5)-(7) constitute the main result 
of the paper. They seem to be final; namely, we 
propose the following "realization conjecture":3 

Conjecture 1. Let all recurrent orbits Li in the 
contour C be structurally stable. Then, by a small 
perturbation of the system, a periodic orbit can be 
born in a small neighborhood of C, having dL zero 
characteristic exponents. 

The "perturbation" means variation of the vec­
tor field that defines the system; "structurally sta­
ble" means not having zero characteristic exponents 
for an equilibrium state and not having multipliers 
on the unit circle for a periodic orbit (except one 
trivial Floquet multiplier which is always equal to 
unity). 

In all cases known to the author, this conjec­
ture is valid. If not considered a trivial Floquet 
multiplier, the periodic orbit with dL zero charac­
teristic exponents has (dL - 1) multipliers on the 
unit circle. By a small perturbation, one can move 
all these multipliers inside or outside the unit cir­
cle and thereby, obtain a periodic orbit for which 
the dimension of the unstable manifold achieve the 
left or, respectively, right bound given by (5)-(7). 
This means that if the conjecture is valid, then es­
timates (5)-(7) cannot be improved. 

For most of the bifurcational problems solved to 
date, the Lyapunov dimension is small (maximum 
4 as, for instance, in Gonchenko et ai. [1993b, 1995J 
where the multi-dimensional case of bifurcations of 
a structurally unstable Poincare homo clinic orbit 
is studied). Nevertheless, examples of codimension 
one4 contours for which the Lyapunov dimension is 
arbitrarily high can be easily constructed. In con­
clusion, we consider such an example (see Fig. 14) in 
detail because it exhibits rather non-trivial dynam­
ical phenomena which could, presumably, model 
the general situation in high-dimensional dynami­
cal systems. 

3Here, for more definiteness, we assume that the contour is 
indecomposable; Le., for any two recurrent orbits Li C C 
and Lj C C there exists a sequence of non-recurrent orbits 
r'I' r 82' ... C C such that the a-limit set of the first orbit in 
this sequence contains Li, the w-limit set of the last orbit in 
this sequence contains Lj and, for each orbit in this sequence, 
its w-limit set has a non-empty intersection with the a-limit 
set of the next orbit. 
4That is, those which may occur in general one-parameter 
families of dynamical systems. 

• 

J' ... '\ • • /' 0, \~ 
I \ 

I \ 

~ 
• 

~ . : 0; 0 

oil • 00 

Fig. 14. An example of a contour which produces hyper­
chaos: 0 1 and 02 are the points of intersection of saddle 
periodic orbits Ll and L2 with some cross sections (01 and 
O2 are the saddle fixed points of the Poincare map); the 
point 01 has only one multiplier (real) greater than unity 
and all other multipliers lie inside the unit circle and, among 
them, the multiplier nearest to the unit circle is real and the 
others have non-zero imaginary parts; the point 02 has also 
only one real multiplier greater than unity and all other mul­
tipliers lie inside the unit circle, all of them have non-zero 
imaginary parts except the least multiplier which is real; the 
one-dimensional unstable manifold of 0 1 have a tangency 
with the stable manifold of 02 and the one-dimensional un­
stable manifold of O2 intersects the stable manifold of 01 
transversely; the product of the multipliers of 0 1 is less than 
unity and the product of the multipliers of 02 is greater than 
unity. At the bifurcation of such a contour, infinitely many 
coexisting sinks, sources and saddles of all possible types can 
simultaneously be born. 

For the contour of this example, the validity 
of the realization conjecture can be proved. This 
implies, in particular, that the study of the bifur­
cations of this contour requires at least (dL - 1) 
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independent control parameters: it is the number 
of parameters required for the study of the bifurca­
tions of the periodic orbits with (dL -1) non-trivial 
multipliers on the unit circle, which may appear in 
a neighborhood of the contour according to the re­
alization theorem. As mentioned, the examples can 
be constructed with arbitrarily high values of the 
Lyapunov dimension dL. Therefore, the study of 
the bifurcations in a neighborhood of such a contour 
is a multi-parameter problem, the detailed analy­
sis of which is, evidently, impossible, though the 
contours under consideration occur in general one­
parameter families of dynamical systems. Note that 
this phenomenon does not take place in the theory 
of local bifurcations: the local bifurcational prob­
lems of high dimensions correspond to high degen­
erations of the linearized system at an equilibrium 
state or a periodic orbit and they cannot occur in 
general low-parameter families. For instance, an 
equilibrium state with 8 pairs of complex conju­
gate pure imaginary characteristic exponents (the 
dimension of the problem is 28) may occur in at 
least 8-parameter families of dynamical systems. 

As we have seen, the restrictions for the dimen­
sions of the stable and unstable manifolds of orbits 
involved in semi-local bifurcations do not relate to 
the presence of non-local analogues of the center 
manifold. Nevertheless, the question on the exis­
tence of such global invariant manifolds is interest­
ing itself. In a small neighborhood of a homo clinic 
loop of a saddle equilibrium state, the existence of a 
non-local center manifold was earlier established in 
Turaev [1984,1991]; Homburg [1993] and Sandstede 
[1994] (the last reference gives a most general result 
for this case), for a kind of heteroclinic contours a 
similar result was proved in Shashkov [1991b], for 
systems with a homo clinic tangency the center man­
ifold theorem was given in Gonchenko et al. [1993b, 
1995]. The present paper solves this question for all 
finite contours. Namely, Theorem 3 in Sec. 4 gives 
necessary and sufficient conditions under which in a 
small neighborhood of the contour, there exists an 
invariant manifold which contains all orbits staying 
in the neighborhood for all times and which is tan­
gent to the center subspace NC at the points of the 
contour. 

Note that the presence of the "center manifold" 
requires some additional conditions in comparison 
with Theorem 1; i.e., in contrast with the local bi­
furcation theory, the trichotomy of the linearized 
flow does not directly imply the existence of the 
center manifold: in different cases it may exist or 
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it may not. As we have mentioned, the decompo­
sition onto three subspaces is not defined uniquely. 
We call the lowest possible dimension k of the center 
subspace for which both Theorem 1 is valid and con­
ditions of Theorem 3 are fulfilled (Le., not only the 
tangent space is decomposed into the direct sum of 
NSs, NV'u and ,Nc, but also the invariant manifold 
tangent to Nc exists) the geometrical dimension of 
the problem and denote it as dg• 

By definition dg ~ dc, and these quantities do 
not coincide in general. Notice another distinction 
with the case of local bifurcations: in the non-local 
case, the smoothness of the center manifold is not 
high. In fact, its smoothness does not correlate with 
the smoothness of the system and, in general, the 
center manifold is only C 1• 

Therefore, when studying concrete non-local bi­
furcational problems, one cannot use the reduction 
on the center manifold directly: usually, subtle 
questions require calculations involving the deriva­
tives of the orders higher than the first. If the ge­
ometrical dimension is rather high, especially, with 
respect to the critical and Lyapunov dimensions, 
the presence of the high-dimensional center mani­
fold gives practically no additional information in 
comparison with the presence of the strong-stable 
and strong-unstable invariant foliations and with 
the estimates of the contraction or expansion of vol­
umes. At the same time, if dg is low (dg = 2, 3, 4), 
the established presence of the dg-dimensional in­
variant manifold, that captures all the orbits not 
leaving the neighborhood, can essentially simplify 
the understanding of the dynamics of the system, 
though the center manifold is only C 1-smooth. In 
this case, one can, at least, consider a model dg -

dimensional situation assuming the smoothness 
which is necessary, in order to work out conjectures 
that are, then, to be verified for the initial non­
red uced system. 

2. Local Structures and 
Transversality Conditions 

Consider a Cr -smooth (r ~ 1) dynamical system 
X possessing a closed connected invariant set C 
composed of a finite number of orbits. There is 
a finite number of recurrent orbits (periodic orbits 
and equilibrium states) in C which we denote as 
Ll, L 2 , .••• The non-recurrent orbits of C are de­
noted as rl, r2, .... The orbits Li are also called 
zero-level orbits. Those orbits r S whose (l(- and 
w-limit sets belong to the union of the zero-level 
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orbits are the first-level orbits; those for which the 
Q- and w-limit sets belong to the union of the zero­
level and first-level orbits are the second-level orbits 
and so on. 

A common assumption for the three theorems 
giving the main results of the present paper is that 
for each recurrent orbit Li, its characteristic expo­
nents are grouped into three parts: center (or criti­
cal) part A c, right (or strong-unstable) part A uu and 
left (or strong-stable) part A S8. Namely, we suppose 
that the following "trichotomy property" holds: 

There exist non-negative integers k 2: 1, 
m, n (k + m + n = the dimension of the phase 
space) such that for each orbit Li, for some 
positive (3f and (3[, exactly k characteristic ex­
ponents A lie in the strip 

- (3: < ReA < (3f 

(this is the center part of the spectrum); n char­
acteristic exponents lie to the right of this strip: 

ReA> (3'/ 

and m characteristic exponents lie to the left 
of this strip: 

ReA < -(3: 

Schematically, we can write (see Fig. 13) 

To be more accurate, we take into account the gap 
between the center part and the strong-stable and 
strong-unstable parts and write 

ReA 88 < - (3;S < - (3[ < ReA C < (3'/ < (3ru < ReA uu 

(8) 

where (3'!'u > (3'!' > 0 (3~s > (3~ > 0 t t , t t • 

The separating values (3i can be different for 
different orbits Li. The important requirement is 
that the numbers k, m, n of characteristic expo­
nents belonging to each part of the spectrum do 
not depend on Li. Note that the numbers k, m, 
n are not uniquely determined by the system. For 
instance, if the contour contains only one recurrent 
orbit, namely, a saddle periodic orbit L, one may, 
in principle, consider all characteristic exponents of 
L as critical and in this case m = n = 0 and k 
equals the dimension of the phase space, or one may 
consider all characteristic exponents with negative 

real parts as strong-stable, the characteristic expo­
nents with positive real parts as strong-unstable and 
only a trivial characteristic exponent equal to zero 
is critical in this case (Le., k = 1); other variants 
corresponding to intermediate values of k are also 
allowed. 

Implicitly, when studying concrete multidimen­
sional bifurcational problems, such a kind of separa­
tion of the spectrum of characteristic exponents was 
always done. Usually (see Gonchenko & Shil'nikov 
[1986, 1992]; Gonchenko et al. [1993a, 1993b, 1995]; 
Ovsyannikov & Shil'nikov [1986, 1991] for exam­
ple), the so-called leading characteristic exponents 
are taken as critical and non-leading as strong-stable 
and (or) strong-unstable. Recall that the character­
istic exponents nearest to the imaginary axis from 
the left-hand side are called leading stable and those 
nearest to the imaginary axis from the right-hand 
side are called leading unstable; the rest of the char­
acteristic exponents are non-leading, respectively, 
stable and unstable exponents. 

We restrict the freedom in the choice of the 
trichotomy decomposition by an additional re­
quirement. Namely, we suppose that for each 
non-recurrent orbit r S in the contour C a pair of 
the so-called transversality conditions is fulfilled. 
Below we will give a rule by which an (m + k)­
dimensional plane N C8 can be constructed at each 
point of r 8 such that the family of planes NCB is in­
variant with respect to the system linearized along 
rs (if a vector field is given by the system x = f(x) 
and {x = cp( t)} is a solution, then the linearized sys­
tem, or the variational equation, along {x = cp(t)} 
is iJ = Ulx=<p(t) . y). 

Analogously, there is constructed a family of 
m-dimensional planes N B8 , a family of (n + k)­
dimensional planes NCU and a family of 71,­

dimensional planes NUu. Each family is invariant 
with respect to the variational equation along rs. 
These planes (better say subspaces of the tangent 
space) are uniquely defined, and NBS C NCB, 

N UU c N cu . The transversality conditions are: 

At each point of each orbit r B the space 
N C8 is transverse to N UU and the space N cu is 
transverse to N B8 . 

Due to the invariance of the subspaces with re­
spect to the variational equation, the transversal­
ity is to be verified in one point on each orbit r B' 

Since N CS and N UU (NCU and N8S) have complemen­
tary dimensions [( m + k) and nand (n + k) and m, 
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respectively], the transversality conditions are well 
posed. 

These conditions are effectively verified for the 
first-level orbits r s. A preliminary step is to con­
sider the local structure near recurrent orbits Li. 
Take, first, a periodic orbit (we omit the index i 
and denote the orbit as L). Let the multipliers of 
L be divided into three groups: ASs, A 11.11., A c, such 
that 

for some a UU > aU > 1 > as > aSs > O. Let 
the numbers of strong-stable, strong-unstable and 
critical multipliers be, respectively, m, nand k as 
before. We also make a more subtle separation: 
those critical multipliers which lie strictly inside the 
unit circle will be called critical-stable, those out­
side the unit circle will be called critical-unstable 
and the multipliers lying on the unit circle will be 
called center-critical. We denote the numbers of 
these multipliers as ks, ku and kc, respectively, 
ks + ku + kc = k. We take into account a trivial 
Floquet multiplier which is always equal to unity, 
so kc ~ 1. 

Let us construct a small cross section S to L 
and consider the Poincare map To : S ~ S. The 
point 0 = L n S is a fixed point for the map To. 
The eigenvalues of the linearization of To at the 
point 0 are the non-trivial multipliers of L. Let 
(x, y, z, u, v) be the coordinates on S: here x cor­
responds to the ks-dimensional critical-stable eigen­
space, y corresponds to the ku-dimensional critical­
unstable eigenspace, z to the (kc - I)-dimensional 
center-critical eigenspace, u to the m-dimensional 
strong-stable eigenspace and v corresponds to the n­
dimensional strong-unstable eigenspace. The map 
To is written in the following form near the point 0 

x = BC-x + 9u(X, y, z, v)x + 912(X, y, z, u, v)u, 

il = BSsu + 921(X, y, z, v)x + 922(X, y, z, u, v)u, 

fi = BC+y + h1l(x, y, z, u)y + h12 (X, y, z, u, v)v, 

V = BUuv + h21(X, y, z, u)y + h22(X, y, z, u, v)v 

Z = BCoz + JI(z)z + hex, y, z)x + hex, y, z)y 

+ f4(X, y, z, u, v)u + f5(X, y, z, u, v)v 
(9) 

where Spectr B C- = A c- , Spectr BSS = ASs, 
SpectrBc+ = AC+, SpectrBUu = AUu, SpectrBCo = 
ACO c {IAI = l}j the functions 9ij, hij and fj are 
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cr - 1 functions vanishing at the origin. For con­
venience, we have locally straightened the center­
stable and center-unstable invariant manifolds wSo 

and wUo of the point OJ i.e., we assume w So = {y = 
0, v = O} and wUo = {x = 0, u = O} near O. 

Note that the stable and unstable sets of the 
point 0 lie, respectively, in the manifolds wSo and 
wUo . If the periodic orbit L is structurally stable 
(Le., if there are no multipliers on the unit circle 
and the coordinate z should be eliminated in this 
case), then w So and wUo are the usual stable and 
unstable invariant manifolds. 

It follows from Gonchenko & Shil'nikov [1992] 
that the coordinates can be chosen near 0 such that 

912Iy=0,v=0 == 0, !4Iy=0,v=0 == 0, 9211x=0 == 0 

hI2 Ix=0,u=0 == 0, hlx=o,u=o == 0, h211y=0 == 0 
(10) 

Here, x and z in Eqs. (9) do not depend on u 
for {y = 0, v = O}j i.e., the system of the leaves 
{x = const., z = const., y = 0, v = O} composes an 
invariant foliation ¢Jss on the manifold w So . Anal­
ogously, the leaves {y = const., v = const., x = 0, 
u = O} compose an invariant foliation ¢J1LU on the 
manifold wUo . The presence of these foliations can 
also be extracted from Hirsch et al. [1977]. The 
leaf of the foliation ¢J5S which contains the point 0 
is the invariant m-dimensional strong-stable mani­
fold wSs

, and that the leaf of ¢Juu which contains 0 
is the invariant n-dimensional strong-unstable man­
ifold wUu (Figs. 15 and 16). 

These invariant manifolds are defined uniquely. 
It can be shown that if there are no non-trivial mul­
tipliers on the unit circle, then the smooth invari­
ant foliations ¢Jss and ¢Juu containing, respectively, 
wSs and wUu are also defined uniquely on the stable 
and unstable manifolds. Even in the case where the 
number of non-trivial center-critical multipliers is 
greater than zero, for each point of wSo whose orbit 
tends to 0 with the iterations of the Poincare map 
To, the leaf of the foliation ¢Jss that passes through 
this point is uniquely defined by the condition that 
the limit (in smooth topology) of the iterations of 
this leaf is the manifold w SS (see Fig. 17 for an illus­
tration). Analogously, for each point of wUo whose 
orbit tends to 0 with the iterations of the inverse 
Poincare map TO-I, the leaf of the foliation ¢Juu that 
passes through this point is uniquely defined (see 
Sec. 5). 

It follows easily from identities (10), that the 
field of (n + k - 1 )-dimensional planes {u = O} 



In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 1
99

6.
06

:9
19

-9
48

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
M

PE
R

IA
L

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
02

/1
2/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

930 D. Turaev 

y 
u 

/ 

X 

Fig. 15. If, for instance, a saddle fixed point 0 of a three­
dimensional map has the multipliers h, AI, A2} where 1 > 
1 > Al > A2, then there exist: the stable manifold w' which 
is tangent at 0 to the eigenspace corresponding to the multi­
pliers (AI, A2), the strong-stable manifold w·· which is tan­
gent at 0 to the eigenspace corresponding to the multiplier 
A2, the strong-stable foliation </> •• on w· which is transverse 
to the leading eigen-direction corresponding to the multiplier 
AI, the unstable manifold w" which is tangent at 0 to the 
eigenspace corresponding to the multiplier 1, the extended 
unstable manifold w"e (non-unique) which contains w" and 
which is tangent at 0 to the eigenspace corresponding to the 
multipliers (1, Ad· 

constructed at the points of the manifold wUo is 
invariant with respect to the derivative of the map 
To: when {x = 0, U = O} we have by virtue of (10) 

dft = (B SS + 922(0, y, z, 0, v))du 

We see that if du = 0, then dft = 0 which means 
the invariance of the field {u = O}. 

It can be shown that this field of planes is 
uniquely defined at the points of the unstable set of 
0; i.e., if the backward semi-orbit of a point on w Uo 

tends to 0, then the plane {u = O} constructed at 
this point is the unique m-dimensional plane whose 
iterations by the derivative of the inverse Poincare 
map TO-

1 have, as a limit, an (n+k-l)-dimensional 
plane transverse to w8S at o. 

Besides, it can also be shown that wUo is em­
bedded into the so-called extended unstable invari­
ant (n + k - 1 )-dimensional manifold wue (Fig. 15) 
which is tangent to {u = O} everywhere on wUo . 

y 
W U 

/v 
w$~ 

X 
w· 

Fig. 16. Another example: if a saddle fixed point 0 of a 
three-dimensional map has the multipliers hI, 12, A} where 
12 > 11 > 1 > A, then there exist the unstable manifold 
w" which is tangent at 0 to the eigenspace corresponding 
to the multipliers (,,(1, 12), the strong-unstable manifold w"" 
which is tangent at 0 to the eigenspace corresponding to the 
multiplier 12, the strong-unstable foliation </>"" on w" which 
is transverse to the leading eigen-direction corresponding to 
the multiplier 11, the stable manifold w· which is tangent 
at 0 to the eigenspace corresponding to the multiplier A, the 
extended stable manifold w·e (non-unique) which contains w· 
and which is tangent at 0 to the eigenspace corresponding 
to the multipliers (')'1, A). 

This is a C1-manifold5; it is not unique but any two 
of such manifolds have a common tangent at each 
point of the unstable set of o. 

Analogously, the manifold w So is embedded into 
the extended unstable (m + k - 1 )-dimensional man­
ifold wse of the smoothness equal to the greatest in­
teger less than (In a uu / In au) and not greater than 
r. This manifold is transverse to wUu at 0; it is 
not unique but any of such manifolds is tangent 
to the invariant field of (m + k - 1 )-dimensional 
planes {v = O} everywhere on the stable set of 0 
(Fig. 16). 

Denote wue(L) and wse(L) as the sets com­
posed of the orbits of the system X which pass, 

SIn general, the smoothness of w ue is equal to the greatest 
integer which is less that (In OI •• fln 01.) > 1 (of course, if this 
quantity does not exceed the smoothness r of the system). 
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Fig. 17. An illustration to the uniqueness of the strong­
stable foliation: a small bubble on the strong-stable leaf 
would not disappear at the iterations of the map because 
the contraction along the strong-stable direction is stronger 
than the contraction in the transverse (leading) direction. 

respectively, through wU
€ and W S

€. These sets are 
invariant manifolds of co dimensions m and n. Any 
orbit which tends to L as t -+ +00 or t -+ -00 
belongs, respectively, to WS€(L) or WU€(L). 

Without loss of generality, we can rescale time 
near L so that all orbits starting on the cross section 
S return to S at the same time. This allows one to 
extend the foliation </>ss along the orbits of X onto 
the whole stable set of L so that through each point 
whose orbit tends to L as t -+ +00, there would 
pass a unique m-dimensionalleaf. Analogously, the 
foliation </>uu can be extended onto the unstable set 
of L so that a unique n-dimensional leaf would pass 
through each point whose orbit tends to L as t -+ 

-00. We denote the obtained invariant foliations as 
FSS(L) and FUU(L). 

The analogous structure exists in a neighbor­
hood of an equilibrium state. Thus, if an equilib­
rium· state L has m strong-stable characteristic ex­
ponents lying to the left of the line ~e(·) = - f3ss on 
the complex plane, n strong-unstable characteristic 
exponents lying to the right of the line ~e(·) = f3uu 
and k critical characteristic exponents lying in the 
strip -f3s < ~eU < f3u where f3ss > f3s > 0 
and f3uu > f3u > 0, then the equilibrium state has 
extended stable and unstable invariant manifolds 
WS€(L) and WU€(L) of dimensions (m + k) and 
(n + k) respectively. The smoothness of WS€(L) 
is equal to the maximal integer less than (~ef3uu/ 
)Ref3u) and not greater than T, and the smoothness 
of WU€(L) is equal to the maximal integer less than 
(~ef3ss/~ef3s) and not greater than T. The mani­
fold WS€(L) is tangent at I",to the eigenspace cor­
responding to the strong-stable and critical charac-
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teristic exponents. It contains the stable set of L 
and, though the manifold WS€(L) is not uniquely 
defined, any two of such manifolds have a common 
tangent at each point whose orbit tends to L as 
t -+ +00. The manifold WU€(L) is tangent at L to 
the eigenspace corresponding to the strong-unstable 
and critical characteristic exponents. It contains 
the unstable set of L and any two of such manifolds 
have a common tangent at each point whose orbit 
tends to L as t -+ -00. 

Besides, there exist m-dimensional strong­
stable and n-dimensional strong-unstable invariant 
manifolds WSS(L) and WUU(L) which are tangent 
at L to the eigenspaces corresponding to the strong­
stable and strong-unstable characteristic exponents, 
respectively. These manifolds are embedded into 
invariant Cr-I-foliations FSS(L) and FUU(L). The 
foliation FSS(L) is defined on the center-stable man­
ifold wso which is tangent at L to the eigenspace 
corresponding to the characteristic exponents whose 
real parts are not greater than zero (these are 
strong-stable, critical-stable and center-critical 
characteristic exponents). The foliation FUU (L) is 
defined on the center-unstable manifold wuo which 
is tangent at L to the eigenspace corresponding to 
the characteristic exponents whose real parts are 
not less than zero (strong-unstable, critical-unstable 
and center-critical characteristic exponents). For 
each point belonging to the stable set of L, the leaf 
of F SS that contains this point is uniquely defined 
by the condition that the limit (in smooth topology) 
of the shift of this leaf by the forward flow is the 
strong-stable manifold WSS(L). Analogously, the 
leaves of the strong-unstable foliation are uniquely 
defined at the points of the unstable set of L. 

Like near periodic orbits, in a neighborhood of 
the equilibrium state L, there exists a coordinate 
transformation which straightens the manifolds and 
foliations. In fact, the coordinates can be chosen 
such that the vector field near L is written in the 
form (see Ovsyannikov & Shil'nikov [1991]) 

x = BC-x + 9n(X, y, z, v)x + 9I2(X, y, z, u, v)u, 

U = BSsu + 921(X, y, z, v)x + 922(X, y, z, u, v)u, 

iJ = BC+y + hl1 (x, y, z, u)y + hI2(X, y, z, u, v)v, 

V = BUuv + h21 (X, y, z, u)y + h22 (X, y, z, u, v)v, 

i = BCoz + JI(z)z + hex, y, z)x + hex, y, z)y 

+ !4(X, y, z, u, v)u + !s(x, y, z, u, v)v 

(11) 
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932 D. Turaev 

where the eigenvalues of BC- are the critical-stable 
characteristic exponents, the eigenvalues of B SS are 
the strong-stable characteristic exponents, the 
eigenvalues of BC+ are the critical-unstable char­
acteristic exponents, the eigenvalues of B UU are the 
strong-unstable characteristic exponents and the 
eigenvalues of B CO are the center-critical character­
istic exponents; the functions gij, hij and Ii are 
C r

- 1 functions vanishing at the origin and satisfy­
ing identities (10). In these coordinates, the invari­
ant manifolds W sO and wuo are locally straight­
ened: wso = {y = 0, v = O} and wuo = {x = 0, 
u = O} near L. As it was shown for the case where L 
is a periodic orbit, identities (10) imply that the fo­
liation FSS(L) has the form {x = const., Z = const., 
y = 0, v = O}, and the foliation FUU(L) has the 
form {y = const., z = const., x = 0, u = O}; the 
manifold wue (L) is tangent to the invariant field of 
(k + m)-dimensional planes {u = O} everywhere on 
wuo (L) and the manifold W se (L) is tangent to the 
invariant field of (k + n )-dimensional planes {v = O} 
everywhere on WSO(L). 

Let r be a first-level orbit of the contour C. As 
t -t +00, the orbit r tends to some recurrent orbit 
Lj and it also tends to some recurrent orbit, Li, as 
t -t -00. This means that r belongs to the stable 
set of Lj and to the unstable set of Li.6 Accord­
ing to the above considerations, the orbit r lies in 
the manifolds wue(Li) and wse(Lj) of dimensions 
(n + k) and (m + k), respectively, and through each 
point of r, an n-dimensional leaf of the foliation 
FUU(Li) and an m-dimensionalleaf of the foliation 
FSS(Lj) pass (recall that the quantities n, m and k 
must not vary for the recurrent orbits in C). We de­
note the tangent to w ue as N Cs , the tangent to w se 

as NCu, the tangent to the leaf of the strong-stable 
foliation as N SS and the tangent to the leaf of the 
strong-unstable foliation as N Uu . By construction, 
these subspaces of the tangent space are uniquely 
defined at each point of r and they are invariant 
with respect to the linearized flow. Note also that 
N SS c N CS and NUU c N CU and that the spaces NCS 
and NCU contain the phase velocity vector. 

The subspaces N Ss , N Uu , NCS and N CU are ex­
actly those participating in the transversality con-

6lf Li and Lj were structurally stable we would say "the 
stable and unstable manifolds", but we consider a more gen­
eral situation and, in principle, the stable and unstable sets 
of structurally unstable periodic orbits or equilibrium states 
may be quite complicated objects. 

ditions for the first-level orbits. We have seen that 
the subspaces N SS and N CS are effectively computed 
at the points of r lying near the orbit L j to which 
r tends as t -t +00. In suitable coordinates, they 
are parallel to the spaces {x = 0, y = 0, Z = 0, 
v = O} and {v = O}, respectively (note that the 
presence of such coordinates is not a pure fact of 
existence: the proof in Ovsyannikov & Shil'nikov 
[1991]; Gonchenko & Shil'nikov [1992] reduces the 
problem of finding the corresponding coordinate 
transformation to the solution of some functional 
equations which can be done by expansion in a con­
verging power series). Also, the subspaces N UU and 
N CU are effectively computed at the points of r ly­
ing near the orbit Li to which r tends as t -t -00 
(these subspaces are parallel to {x = 0, y = 0, 
Z = 0, u = O} and {u = O}, respectively). 

For the first-level contours (Le., for usual homo­
and heteroclinic contours) each orbit r S is asymp­
totic to the recurrent orbit as t -t ±oo. Thus, in 
this case, the transversality conditions can be ver­
ified in the following way: for each orbit r s, take 
a point P+ E r S near the orbit L j to which r S 

tends as t -t +00, and a point P- E r S near the 
orbit Li to which r S tends as t -t -00. Then, con­
struct subspaces N SS and N CS at the point p+ and 
subspaces N UU and NCU at the point P-. The sub­
spaces N UU and NCU at the point P+ are obtained 
as a shift of the subspaces N UU and N CU from the 
point P- by the linearized flow defined by the varia­
tional equation along r s. Therefore, the verification 
of the transversality conditions at the point p+ is 
reduced to some calculations with the fundamental 
matrix of the solutions of the variational equation 
integrated along the piece of r S that connects P­
and p+ (Fig. 18). 

As an example, consider a homo clinic loop of a 
saddle equilibrium state. Let an equilibrium state 
L have one unstable (positive) characteristic expo­
nent 'Y and (m + 1) stable characteristic exponents 

Li 

Fig. 18. 
ditions: 
to N C8

• 

A schematic illustration to the transversality con­
N"' is transverse to NCtJ. and NtJ.u is transverse 
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AI, ... , Am+! with negative real parts; moreover, 
the leading (i.e., nearest to the imaginary axis) sta­
ble exponent Al is also real: 

The unstable manifold of L is one-dimensional and 
it is divided by the point L into two separatrices. 
Suppose that one of the separatrices, r returns to L 
as t -+ +00, forming a homo clinic loop (see 
Fig. 3). 

Let us separate the spectrum of the character­
istic exponents of L in the following way: the expo­
nents 'Y and Al will be considered as critical and all 
the other exponents as strong-stable. The strong­
unstable part of the spectrum is empty in this case. 
According to Eq. (11), the vector field near L can 
be written in the form 

x = AIX + 911(X, y)x + 912(X, y, u)u 

iJ = 'YY + h(x, y, u)y (12) 

it = BSsu + 921(X, y)x + 922(X, y, u)u 

where the spectrum of the matrix B SS is {A2,"" 
Am+!}' Identities (10) take the form 

gdy=o = 0 
(13) 

Locally, in these coordinates, the stable mani­
fold W S is {y = O}, the unstable manifold is {x = 0, 
u = O}, the strong-stable manifold WSS is {x = 0, 
y = O}, the strong-stable foliation F SS on WS is 
{x = const., y = O}, the extended unstable man­
ifold wue is tangent to the two-dimensional plane 
{u = O} at the points of Wl~c' The extended stable 
manifold coincide in our case with the whole phase 
space. At the same time, the leaves of the strong­
unstable foliation are just points on W U

• Thus, the 
space N CS coincides with the tangent space and NUU 

is zero; these spaces are transverse automatically. 
Therefore, in the case under consideration, the 

transversality condition to be verified is that at each 
point of r, the space NCU is transverse to the space 
N SS

• The necessary condition for this is that the 
separatrix r returns to L not lying in the strong­
stable manifold (otherwise, everywhere on r, the 
phase velocity vector would belong to the tangent 
space to the strong-stable manifold which is, by 
definition, the space NSs; at the same time, the 
phase velocity vector always lies in NCu, so we would 
have a contradiction with the transversality of N SS 

On Dimension of Non-Local Bifurcational Problems 933 

and N CU ). Thus, we should require that r tends 
to L tangent to the leading direction (i.e., to the 
x-axis). 

Take a pair of points p+ and P- on r such that 
p+ E Wl~c and P- E Wl~c: P- = (x = 0, y = y-, 
u = 0) and p+ = (x = x+, Y = 0, u = u+) for 
some non-zero x+ and y- (see Fig. 19). Construct 
cross sections n+ : {x = x+} and n- : {y = y-} to 
r. Let TI : n- -+ n+ be the map defined by the 
orbits of the system which lie near r (the so-called 
9lobal map). At the point P-, the two-dimensional 
space NCU is {u = O} and it is spanned on the phase 
velocity vector ey parallel to the y-axis and on the 
vector ex parallel to the x-axis which lies in the in­
tersection with n-. At the point P+, the space NCU 

is obtained as the shift of the space N CU from point 
P- by the flow linearized along r. Evidently, this 
space is spanned on the phase velocity vector trans­
verse to n+ and on the image T{ ex of the vector ex 
by the map TI linearized at the point P-. Since 
the leaf {x = x+, Y = O} of the foliation F SS that 
passes through the point p+ lies in n+ as a whole 
and it coincides with the intersection of n+ with 
the stable manifold Wl~c' the transversality of NCU 

and N SS at the point P+ is, therefore, equivalent to 
the transversality of the vector T{ ex to the stable 
manifold in intersection with n+. 

y 

ws 

Fig. 19. A homodinic loop r. The points p+ and P- on r 
are taken, respectively, on Wl~c and Wl~c' The planes n+ and 
n- are cross sections at the points p+ and P-. The space 
N C

" at the point P- is spanned on the vector e y parallel to 
the phase velocity vector and on the vector e", E n-. The 
space N 88 at the point p+ coincides with the intersection of 
rr+ with W'. 
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934 D. Turaev 

The global map T1 is written in the form 

y = au x + a12U + .. . 
u - u+ = a21x + a22U + .. . 

(14) 

where (x, u) are the coordinates on rr- and (y, u) 
are the coordinates on rr+; the dots stand for non­
linear terms. The vector ex = (1, 0) is mapped 
by the linearization of T1 into the vector T{ ex = 
(au, a21). The transversality of this vector to the 
intersection {y = O} of Wl~c with rr- is given by 
the condition 

au =1= 0 

Actually, this condition is standard when study­
ing bifurcations of homo clinic loops. Usually, this 
condition is introduced in other connections: it can 
be shown [Ovsyannikov & Shil'nikov, 1986, 1991] 
that if identities (13) hold, then the Poincare map 
from rr+ to rr+ is written in the form 

fj = Ayll + ... 
u - u+ = a21x+(y/y-t + ... 

(15) 

where A = aux+ /(y-)II, v = IAd,1 and the dots 
stand for terms of order O(yll). Thus, the non­
vanishing of the value au is equivalent to the non­
vanishing of the first term in the asymptotic of the 
Poincare map. 

The value A is called the separatrix value. As 
we have shown, for the bifurcations of a homo clinic 
loop of a saddle with one-dimensional unstable man­
ifold, our transversality conditions are equivalent to 
the well-known condition of the non-vanishing of 
the separatrix value A together with the require­
ment (which is also standard) that the separatrix 
does not lie in the strong-stable manifold. 

Of course, this is true for our particular choice 
of the separation of the spectrum: only leading 
characteristic exponents were considered as criti­
cal. Other kinds of separation of the spectrum of 
characteristic exponents into the three parts lead 
to other transversality conditions. For instance, in 
Shil'nikov [1968] where the bifurcations of a homo­
clinic loop of a saddle with the multi-dimensional 
unstable manifold were studied, the spectrum of 
characteristic exponents was divided into two parts: 
'/'1, AI, ... , Ak-1 and 12,···, In+! (notations are 
slightly changed) where ReAi < 0 and ~e,j > 
11 > O. In our terms, all stable characteristic ex­
ponents Ai and the leading unstable characteristic 
exponent 11 are grouped as the critical part of the 
spectrum and the non-leading unstable exponents 

are considered as strong-unstable; the strong-stable 
part is empty here. The transversality conditions 
appeared as the requirement that the separatrix 
would not lie in the strong-unstable manifold W Uu 

and the determinant of some matrix composed by 
a part of the coefficients of the linearization matrix 
of the corresponding global map would not be equal 
to zero. Apparently, it was in that paper where 
the transversality conditions were (implicitly) in­
troduced for the first time. 

For the bifurcations of a homo clinic loop of a 
saddle-focus, different analogues of our transversal­
ity conditions can be found in Shil'nikov [19701; 
Ovsyannikov & Shil'nikov [1986, 1991]. Note that 
if the equilibrium state has no characteristic expo­
nents on the imaginary axis, then at least one char­
acteristic exponent with negative real part and one 
with positive real part must be contained in the 
critical strip. Indeed, otherwise, either the strong­
stable foliation would consist of the only leaf coin­
ciding with the whole stable manifold or the strong­
unstable foliation would consist of the only leaf coin­
ciding with the unstable manifold. If, for instance, 
the strong-unstable leaf coincides with the unstable 
manifold, this implies that the space NUU at each 
point of the unstable manifold contains the phase 
velocity vector. If the contour is indecomposable 
(see the previous section), then there is at least 
one non-recurrent orbit in the contour that belongs 
to the unstable manifold of the equilibrium state 
under consideration. At the points of this orbit, 
the transversality of N UU with the associated sub­
space NCS cannot hold because N CS also contains 
the phase velocity vector. 

Consider now an example of a contour con­
taining a periodic orbit. This is a contour with a 
Poincare homo clinic orbit (i.e., an orbit homoclinic 
to a saddle periodic orbit). Here, different kinds 
of the trichotomy decomposition also lead to differ­
ent variants of the transversality conditions. Thus, 
let L be a saddle periodic orbit with the multipli­
ers AI, ... , Am and 11, . .. , ,n where Ai lies inside 
the unit circle and I] lies outside the unit circle 
(there is also one trivial Floquet multiplier equal to 
unity). Suppose the system has an orbit r homo­
clinic to L [Le., an orbit of intersection of WS(L) 
and WU(L)]. If we consider the logarithms of sta­
ble multipliers Ai as the strong-stable characteristilc 
exponents, the logarithms of unstable multipliers 
as the strong-unstable characteristic exponents and 
zero as the unique critical characteristic exponent, 
then the extended stable and unstable manifolds 
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N
cs 

p+ 

Fig. 20. A saddle fixed point 0 with a homo clinic tan­
gency. Though the point of tangency p+ belongs to the 
strong-stable manifold W88 , the transversality conditions are 
fulfilled: the space N'j,8+ is transverse to the strong-stable 
manifold. At the same time, the non-coincidence conditions 
of Theorem 3 are not fulfilled: all points of the orbit of the 
point p+ belong to the same leaf, namely, to the manifold 
W 88

, 

wse and wue will coincide with W S and WU, re­
spectively. At the same time, the strong-stable leaf 
of any point on W S will coincide with the stable set 
of this point 7 and the strong-unstable leaf of any 
point of W U will coincide with the unstable set of 
the point. For an appropriately chosen cross sec­
tion, the strong-stable leaf will coincide with the 
intersection of WS with the cross section. There­
fore, the transversality of wue and F SS (and, analo­
gously, the transversality of WBe and FUU) is equiv­
alent to the transversality of WB and W U in this 
case. 

We see that for the given choice of the separa­
tion of the spectrum, the transversality conditions 
are equivalent to the requirement that the Poincare 
homo clinic orbit is transverse (or structurally sta­
ble) as in Fig. 6. If this requirement is not sat­
isfied (Le., in the case of homo clinic tangency, as 

7Due to the presence of the trivial Floquet multiplier, the 
phase shift between points on W' is not changed with time. 
Accordingly, the stable manifold is foliated by the surfaces 
of equal phase so that the distance between any two points 
starting with the same surface tends to zero as t ....... +00 
whereas the distance between points starting with different 
phases will never approach zero. In other words, such a sur­
face is the stable set for any point belonging to it. On the 
other hand, these surfaces compose the strong-stable foliation 
in our sense. 

On Dimension of Non-Local Bifurcational Problems 935 

in Fig. 7), one must consider separation of another 
kind. For instance, the critical strip can be en­
larged to include the leading characteristic expo­
nents. For this case, the transversality conditions 
are explicitly written in Gonchenko et al. [1993bJ 
as the condition for the determinant of some ma­
trix to be not equal to zero. Note that, in contrast 
with the case of a homo clinic loop of an equilibrium 
state, the transversality of wue and F SS does not 
mean here that the homo clinic orbit is prohibited to 
lie in the strong-stable manifold (see Fig. 20 for an 
explanation) . 

In a general case, for the orbits of the second 
and higher levels, construction of the subspaces N Ss

, 

NUu, NCB and N CU is more abstract. It follows from 
Sec. 5 that if for all first-level orbits in the contour 
C the transversality conditions hold, then for each 
orbit r whose w-limit set belongs to the union of 
the first- and zero-level orbits the invariant spaces 
NSS and NCB are uniquely defined by the following 
"continuity condition": 

For any point P* belonging to the union 
of the orbits of the first and zero levels, if a 
sequence Pi of points of r tends to P*, then the 
sequence N p: tends to NpS. and the sequence 
Np: tends to NpS.. 

The analogous continuity condition defines in 
a unique way the invariant spaces N UU and N CU 

for each orbit r whose a-limit set belongs to the 
union of the first- and zero-level orbits. Thus, for all 
second-level orbits, the four invaria.nt subspaces are 
uniquely defined and the transversality conditions 
have a sense. If they hold for all second-level orbits 
in the contour, the invariant subspaces NSs, NUu, 
NCB and N CU are defined in the same way for the 
third-level orbits and so on. 

3. Main Results 

Hereafter, we suppose that for each recurrent or­
bit in the contour C, the trichotomy property holds 
with some integers m, nand k, and for each non­
recurrent orbit, the corresponding transversality 
conditions are fulfilled. Let U be a small neigh­
borhood of the contour. 

Theorem 1. If the neighborhood U of C is suffi­
ciently small, then for any system close to X, the 
set n of the orbits lying in U entirely is pseudohy­
perbolic in the sense that at each point P, whose 
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orbit stays in U for all times, the tangent space 
is uniquely decomposed into the direct sum of the 
three subspaces NSS EB NC EB NUu, dim NSS = m, 
dim NC = k, dim Nuu = n. This decomposition 
is invariant with respect to the variational equa­
tion and the linearized flow is exponentially con­
tracting along the directions belonging to Nss and it 
is expanding along the directions belonging to NUu; 
moreover, the contraction or expansion is stronger 
than that which may take place along the directions 
belonging to Nc. The subspaces NSs, Nuu and NC 
depend continuously on the point P and on the sys­
tem. At the points of the recurrent orbits Li C C, 
the subspaces NSs, NUU and NC coincide, respec­
tively, with the eigenspaces corresponding to the left, 
right and center part of the spectrum of character­
istic exponents. At the points of the non-recurrent 
orbits r see, the subspaces NSs, NUU and NC co­
incide with NSs, N UU and N CS n N Cu , respectively. 

This theorem gives a rough description of the 
behavior of the linearized flow: it shows that for any 
orbit staying in U, for all times the number of neg­
ative Lyapunov exponents cannot be greater than 
(m + k) and less than m and the number of positive 
Lyapunov exponents cannot be greater than (n + k) 
and less than n. 

The notion of a pseudohyperbolic set was intro­
duced by Hirsch et al. [1977] as a generalization of a 
hyperbolic set: a non-trivial pseudohyperbolic set is 
hyperbolic if it does not contain equilibrium states 
and the space N C is one-dimensional and coincid­
ing with the direction of the phase velocity vector. 
Whereas the hyperbolicity is known to be a strong 
restriction for the structure of invariant sets, the 
pseudohyperbolicity is, in general, not a restriction 
at all: any closed invariant set can be considered as 
pseudohyperbolic with m = n = 0 (NUU and NSS 
are empty). The basic result concerning the pseudo­
hyperbolic sets can be extracted from Hirsch et al. 
[1977]. It establishes the existence of strong-stable 
and strong-unstable manifolds for the orbits of the 
pseudohyperbolic set. In our situation we can for­
mulate this result in the following way: 

Corollary 1. For any point PEn, there exist 
uniquely defined smooth strong-stable and strong­
unstable manifolds Wps and Wpu which are tangent, 
respectively, to N SS and NUU at P and which are 
such that the collections of manifolds {WpIP E n} 
and {WpulP E n} are invariant with respect to the 
flow. The manifolds W ps and W pu depend con-

tinuously on P and on the dynamical system; they 
are homeomorphic, respectively, to Rm and R n and 
their size is separated from zero (in the sense that 
there exists some cO > 0 independent of P and 
such that each manifold Wps and Wpu contains tke 
ball with the center P and radius cO in the inner 
metrics induced by the metrics of the phase space). 
The manifolds Wps and Wpu belong, respectively, 
to the stable and unstable sets of P : Wps ~ Wp, 
Wpu ~ wp. 

Recall, that the stable set Wp is the set of such 
points pI that 

as t -- +00, where Pt and Pi are the points of the 
orbits of P and pI which correspond to the time t. 
Analogously, the unstable set Wp is the union of 
the points pI such that 

dist(pf, Pt ) -- 0 

as t -- -00. By the corollary, for any point PEn 
we have 

dim W p ~ dim W ps = m 

dim W p ~ dim W pu = n 
(16) 

Actually, Theorem 1 implies even more; namely, it 
can be shown that for any point PEn 

m :s; dim Wp :s; m + k 
(17) 

n :s; dim W p :s; n + k 

Without any additional considerations, it follows 
from Theorem 1 that for any periodic orbit £ ly­
ing in U entirely 

m + 1 :s; dim W S (£) :s; m + k 

n + 1 :s; dim W U (£) :s; n + k 
(18) 

(by the theorem, the orbit £ has at least m multi­
pliers inside the unit circle and at least n multipliers 
outside the unit circle). 

Inequalities (17) and (18) are analogous to those 
which follow from the "center manifold theorem" in 
the case of local bifurcations. Note that the num­
bers k, m and n are not defined uniquely, because 
there are different possibilities to divide the spectra 
of characteristic exponents of the recurrent orbits 
in the contour into three parts. Unless something 
different is said, we will assume that the number 
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k of characteristic exponents lying in the critical 
strip is taken as low as possible. The important re­
quirement is that the transversality conditions must 
hold: the spaces NCU must be transverse to N

Ss
, and 

N CS must be transverse to N Uu
• Due to the unique­

ness of these subspaces, we have that N
CU and NSS 

do not depend on where we choose the right bound­
ary of the critical strip to be, and NCS and N

UU do 
not depend on the position of the left boundary; i.e., 
the spaces NCU and N

SS stay the same for different 
choices of the numbers f3i and f3r, and the spaces 
N

CS and NUU stay the same for different choices of 

f3i and f3r· 
Therefore, the algorithm of finding the lowest 

possible k may be as follows: take f3i and f3r such 
that, for some m, exactly m characteristic expo­
nents of each recurrent orbit Li in the contour C lie 
to the left of the line Re(·) = -f3r on the complex 
plane and the rest of characteristic exponents lie to 
the right of the line Re(·) = -f3i ((3r > (3i > 0). 
Then, check the transversality of NCU and N SS at 
each non-recurrent orbit r seC. If the transversal­
ity condition holds, the values f3i and f3r are appro­
priate and one can choose among the appropriate 
f3i and f3r which give the maximal possible value 
of m (i.e., the maximal possible value of strong­
stable characteristic exponents). Analogously, one 
can move the right boundary of the critical strip 
to the left (decreasing the values f3i and f3iU

), pro­
vided the transversality of NCS and N

UU holds for 
each orbit r seC; this procedure gives the max­
imal possible value n of strong-unstable character­
istic exponents. The rest of the characteristic ex­
ponents forms, by definition, the center part of the 
spectrum and the number k of the center character­
istic exponents is now taken as low as possible. 

We will call this number the critical dimension 
of the problem and denote it as dc . According to 
Corollary 1 it is equal to the difference between the 
dimension of the phase space and the sum of the di­
mensions of strong-stable and strong-unstable man­
ifolds of the points of the set n. 

As we mentioned in Sec. 1, estimates (17) and 
(18) of dimensions of the stable and unstable man­
ifolds of orbits staying in U for all times are not 
final. To improve the estimates, we introduce the 
notion of the Lyapunov dimension of the problem. 

Let Ai, ... , A1 be the critical exponents of a 
recurrent orbit Li C C (a periodic orbit or an equi­
librium state). Suppose the critical exponents are 
ordered so that 

Re,Xi ~ Re'x~ ~ ... ~ Re'x1 

On Dimension 0/ Non-Local Bi/urcational Problems 937 

Let the sequential divergence Si be less than zero: 

Let ki be such that 

ReAl + ... + ~eAt, ~ 0 
• 

and 

Re,Xi + ... + ~e'x1~+1 < 0 . 
[ki < k by virtue. of (19)]. If condition (19) holds .for 
all recurrent orbIts Li C C (the volume contractmg 
case), then the number 

dL = max k~ 
LiCC 

will be called the Lyapunov dimension. 
According to the definition, the linearized flow 

applied to the space NC contracts exponentially 
(dL + I)-dimensional volumes along each recurrent 
orbit Li C C. Since any orbit of C (and, there­
fore, any orbit lying in a small neighborhood U of 
C) spends most of the time in a small neighbor­
hood of the union of the orbits Li, the linearized 
flow applied to the space NC contracts exponen­
tially (dL + I)-dimensional volumes along any orbit 
C lying in U entirely. 

If the sequential divergences are positive for 
each orbit Li: 

Si = Re'xl + ... + Re'x1 > 0, (20) 

then there are defined integers ki < k such that 

and 

The value 

Re,Xt~ + ... + Re'x1 ~ 0 . 

Re,Xt, + ... + Re'x1 > O. 
i-I 

dL = max(k + 1 - kD 
LiCC 

is called Lyapunov dimension in this case (the 
volume expanding case). By definition, the lin­
earized flow applied to the space N C expands 
(dL + I)-dimensional volumes. 

Evidently, the property of expansion or 
contraction of volumes imposes a restriction for 
the maximal possible number of negative or, 
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respectively, positive Lyapunov exponents. Namely, 
we arrive at the following result. 

Theorem 2. If for each recurrent orbit Li C C 
the sequential divergence Si is negative, then any 
orbit C ~ n cannot have more than (n + dd non­
negative Lyapunov exponents. If all the sequential 
divergences Si are positive, then any orbit C ~ n 
cannot have more than (m + dL) non-positive Lya­
punov exponents. 

By this theorem, for any periodic orbit C ~ n 

n + 1 ~ dim W U (C) ~ n + dL 

m + de - dL + 1 ~ dim WS(C) ~ m + de 
(21) 

in the volume-contracting case (all Si < 0), and 

n + 1 + (de - dd ~ dim WU(£) ~ n + de 

m+l ~ dim WS(C) ~ m+dL 
(22) 

in the volume-expanding case (all Si > 0). In the 
other cases, we get no additional information in 
comparison with inequalities (18) and we do not in­
troduce the notion of Lyapunov dimension in 
this case (or, one can assign d L == de and inequali­
ties (21), (22) and (18) would formally coincide with 
one another). 

Note a connection between the Lyapunov di­
mension and the well-known Shil'nikov conditions 
for the chaotic dynamics near a homoclinic loop 
of a saddle-focus. According to Shil'nikov [1965], 
if a three-dimensional system has a saddle-focus 
equilibrium state with the characteristic exponents 
'Y > 0 and ->. ± iw (>. > 0, w > 0) and if it has a 
homo clinic loop to the saddle-focus (Fig. 1), then 
under the condition 

the system has hyperbolic sets in any neighborhood 
of the loop. One can easily calculate that, for this 
problem, dL 2: 2 if 'Y > >., and dL = 1 if 'Y < >.. 
So, the transition from simple dynamics (that takes 
place for 'Y < >.; see Shil'nikov [1963]) to chaotic 
dynamics happens when the Lyapunov dimension 
jumps from 1 to 2. 

The next theorem solves the question on the ex­
istence of the non-local analogue of the center mani­
fold near the contour C. In contrast with the case of 
local bifurcations, the existence of a dc-dimensional 

x 

~--~--+---------~y 

Fig.21. The homo clinic butterfly composed of two loops r i 

and r2 which does not satisfy the non-coincidence conditions: 
the strong-stable leaf of an arbitrary point Pi E r i lying near 
the equilibrium state coincides with the strong-stable leaf of 
some point P2 where P2 E r2. 

smooth invariant manifold containing C and tan­
gent to the space Ne at each point of C does not 
always take place here. 

An example is given in Fig. 21: the homo clinic 
butterfly of a saddle equilibrium state with the char­
acteristic exponents ('Y, ->'1, ->'2): 'Y > 0 > ->'1 > 
->'2. Both separatrices form homoclinic loops re­
turning to the equilibrium state and being tangent 
to each other and tangent to the leading direction 
which corresponds to the characteristic exponent 
->'1. If both separatrix values do not equal zero 
(see previous section), then the critical dimension 
is 2: the critical exponents are 'Y and ->'1. Never­
theless, there is no two-dimensional smooth mani­
fold containing both loops and tangent to the crit­
ical subspace at the equilibrium state. Indeed, the 
critical subspace is spanned onto the unstable eigen­
direction and leading stable eigen-direction, whence 
the manifold is transverse to the strong-stable direc­
tion and it could intersect the strong-stable leaves 
at one point each. At the same time, the pair of 
homo clinic loops intersect the leaves at two points. 
Thus, the manifold cannot contain both loops. 

Analogous considerations can be carried out for 
the general case. Suppose that the trichotomy prop­
erty holds and the transversality conditions are ful-
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filled for some values k, m and n. Note that we do 
not assume here that k is taken as low as possible. 
Theorem 1 holds and, according to Corollary 1, for 
each point P of the contour C, there exist strong­
stable and strong-unstable manifolds Wp and Wpu . 

We will say that the non-coincidence conditions are 
fulfilled: 

If for any P E C, the only point of inter­
section of the manifolds W p8 and W pu with C 
is the point P itself. 

Let p ~ rand q ~ r8 be such integers that for 
each recurrent orbit Li C C the inequalities 

(23) 

and 
f3fq < f3fu (24) 

hold where the f3's are the values separating the 
spectrum of the characteristic exponents of Li onto 
the three parts [see (8)]. 

Theorem 3. The non-coincidence conditions are 
necessary and sufficient for the presence of a smooth 
k-dimensional invariant manifold we containing 
the contour C and tangent at each point of C to 
the critical subspace Ne. The manifold we is the 
intersection of two invariant manifolds: CP-smooth 
manifold W CU and cq -smooth manifold we8 . of di­
mensions (n + k) and (m + k), respectively. The in­
variant manifolds W CU and weB exist for all nearby 
systems and depend on the system continuously. For 
any system close to X, the manifold W eu contains 
all orbits staying in the neighborhood U for all neg­
ative times and the manifold weB contains all or­
bits staying in U for all positive times; the manifold 
we = W CU n W es contains the set 0 of the orbits ly­
ing in U entirely. At each point of 0, the manifold 
we is tangent to Ne, the manifold W CU to Ne(f)Nuu 

and the manifold w e8 to Ne (f) N8S . 

The non-coincidence conditions are easily ver­
ified for the first level contours. In this case, the 
manifolds Wps and Wpu are the strong-stable and 
strong-unstable manifolds for the points on the re­
current orbits Li C C and they are the leaves of the 
strong-stable and strong-unstable foliations for the 
points on non-recurrent orbits r8 C C (see Sec. 3). 
Thus, the non-coincidence conditions require, first, 

8Recall that r is the smoothness of the system. 
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r, 

Fig. 22. The homo clinic figure-eight for which the non­
coincidence conditions are fulfilled: the separatrix r 1 inter­
sects only those strong-stable leaves which are not intersected 
by the separatrix r 2. 

that none of the orbits r 8 tends to its a- or w-limit 
orbit Li lying in the strong-unstable or, respectively, 
strong-stable manifold of L i . Besides, if there is 
more than one non-recurrent orbit tending to a re­
current orbit Li as t -+ +00 or as t -+ -00, they 
must intersect different leaves of the strong-stable 
or, respectively, the strong-unstable foliations. For 
example, the contours shown in Figs. 20 and 21 do 
not satisfy the non-coincidence conditions, and the 
contour in Fig. 22 (the homo clinic figure-eight) do 
satisfy. 

In the coordinates which we have introduced 
in the previous section, the last condition can be 
reformulated as follows: 

If Li is a periodic orbit in the contour and 
the orbits r Sl' r S2 , • •• tend to Li as t -+ +00 
(as t -+ -00), then the different points of in­
tersection of the orbits r 81' r 82' • •• with some 
small cross section to Li must have different 
coordinates (x, z) [respectively, coordinates 
(y, z)]; if Li is an equilibrium state, the coor­
dinates (x, z) [respectively, (y, z)] must be dif­
ferent for the intersections of the orbits r 81' 

r 82' ••• with the cross section II (x, z) II = const. 
(lI(y, z)1I = const.). 

4. Pseudohyperbolic Sets 

The proof of Theorems 1 and 3 of the previous sec­
tion is based on the notion of a pseudohyperbolic 
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940 D. Turaev 

set. We use the following definition: 
An invariant closed set n of a smooth flow on 

a smooth manifold is called pseudohyperbolic if 

(1) at each point PEn the tangent space is de­
composed into the direct sum of three subspaces 
Nj,s EB Np EB Npu depending continuously on P 
(the dimensions of the subspaces are assumed 
to be independent of P); 

(2) the system of these subspaces is invariant with 
respect to the linearized flow: if Pt is the orbit 
of the point P, then 

D(P}tNj/ = NR, D(P)tNp = N pt ' 
D(P}tNpu = N p: 

where D(P)t is the shift operator of the flow 
linearized along the orbit of the point P for the 
time t; 

(3) there exists T > 0, independent of P, such that 

By (26) and (27) 

Ilutli ~ (sup IID¥II)Sllull -+ 0, 

~ < (sup IIDSSIIII(DC )-lllyM -+ 0 
Ilwtll - T T Ilwll 

IIVtll ~ (sup IID~TII)-slIvlI -+ 00, 

~ > (sup IIDuU II II (DC )-IIl)-sM -+ 00 
IIwtll - -T -T Ilwll 

(28) 

as s = + -+ 00. We see that inequalities (25) imply 
that the norm of any vector u E NSS tends exponen­
tially to zero under the action of the linearized flow; 
moreover, it tends to zero faster than the norm of 
any vector w E NC. Analogously, the norm of any 
vector v E NUU grows, as t -+ -00, exponentially 
and faster than the norm of any vector w E NC. 
(Emphasize that the vectors u, v, ware erected at 
the same point and we do not compare the expo­
nents characterizing the growth or decay of norms 
of vectors related to different points.) 

Note that ifto redefine the norm of vectors u E 
sup IID~TII < 1, sup IID~TIIII(D=-T)-lll < 1 NSS in the following way 
PEf! PEn 

(25) lIull new = 1000 

eA8SrllurllolddT (29) 

where Dr, Di and Dfu denote the restrictions 
of the shift operator of the linearized flow onto 
the spaces Nss, Nc and NUu, respectively. 

Item (3) of this definition gives a formal expres­
sion for the fact that the linearized flow is exponen­
tially contracting on NSs, expanding on NUU and 
expansion or contraction that may take place on NC 
are weaker than those along directions belonging to 
NSS and NUu. 

Indeed, take an arbitrary point P and vectors 
u E Nj,s, v E Npu, w E N p. For the time t = 
sT where s is a natural number, the point P and 
vectors u, v and ware moved by the linearized flow 
into the vectors Ut, Vt, Wt: 

Ut = D;S(P)u, Vt = (D~~(Pd)-lv, 

Wt = Df{P)w = (D=-t(pt})-lw 
(26) 

Note that 

Dt(P) =DT(P(s-I)T )ODT(P(s-2)T )0' . 'oDT(P) 

D_t(Pt ) = D-T(PT) oD_T(P2T)0' .. oD-T(Pt=sT) 

(27) 

where 0 < ),SS < -~ In sup IID¥II, then in the new 
norm 

(30) 

for all t ~ 0 [the integral on the right-hand side 
of (30) converges since lIurll ~ Ke-(~ In supllDT'll)t 
for some K > 0 according to the first inequality of 
(28)]. Analogously, in the new norm 

IIvllnew = 10
00 

eAuurllv_rllolddT (31) 

for vectors v E NUU we have 

(32) 

(here 0 < ),UU < -~ In sup IID~TII). 
For the vectors in NC, there can be shown to 

exist a pair of equivalent norms IIwlh and IIwll2 such 
that 

lIutli < -ot . f Ilwtlll sup -- e Ill--
uEN;; lIull - WEN,? IIwlll 

(33) 

and 

l
'nf II Vt II > Of II wtll2 -- e sup--

vENj,'" IlvlI - WEN,? IIwll2 
(34) 
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where 6 is some positive constant. The presence of 
such a system of norms for which inequalities (30), 
(32), (33), (34) hold at each point PEn can be 
considered as an alternative for item 3 of our defi­
nition of a pseudohyperbolic set. Note that inequal­
ities (33) and (34) can be refined: 

II Ut II < -M . f (lIwtIl1 )P sup -- e III --
uENp lIuli - uENp IIwlll 

(35) 

inf Jhl > eM sup (lIwtIl2 ) q 
uENj," IIvll - uENp IIwlb 

(36) 

where p ~ 1 and q ~ 1 are integers such that 

(37) 

[compare with inequalities (25)]. 
In the present paper we do not develop the the­

ory of pseudohyperbolic sets with formal proofs but 
we restrict ourselves to the presentation of a logical 
scheme. The central result is given by the following 
theorem. 

Theorem 4. Let a system X have a pseudohyper­
bolic invariant set C. Then there exists a neighbor­
hood U of C such that, for the system X itself and 
for any system close to X, the set n of all orbits 
lying in U entirely is also pseudohyperbolic (with 
the same dimensions of the subspaces NSs, NC and 
Nuu as for the set C). 

According to this theorem, in order to establish 
when the set of orbits lying in a small neighborhood 
of some contour is pseudohyperbolic (Theorem 1), 
it is sufficient to find out when such a contour is 
pseudohyperbolic itself. Since the contour consists 
of a finite number of orbits, checking its pseudohy­
perbolicity is fairly easy. We use the two following 
lemmas. 

Lemma 1. If C is a pseudohyperbolic invariant set 
and if r is an orbit whose w-limit set is contained 
in C, then at each point PEr, in the tangent 
space, there exists a pair of subspaces Nps and N'if 
(Nj} C Nps, dim Nps = m, dim N'if = m + k) 
invariant with respect to the linearized flow. The 

On Dimension of Non-Local Bifurcational Problems 941 

subspaces NSS and NCS are uniquely defined by the 
"continuity condition" : 

If P* E C is a limit of a sequence of points 
{Pd of the orbit r, then the spaces N p: and 
N'P; accumulate, respectively, on the space Np! 
and on the space Np! EB Np •. 

We will say that the spaces NM and NJf; are 
taken out of C. The subspaces Nps and Nps are 
composed exactly of those vectors which, shifted 
by the linearized forward flow, do not approach the 
spaces Np• EBNp!' I P* EC and Np!' I P* EC, respectively. 
The existence and uniqueness of these subspaces is 
a standard result for the theory of normal hyper­
bolicity and we do not discuss the proof here. 

The analogous statement also takes place for 
the orbits which tend to C as t -+ -00: if r is an or­
bit whose a-limit set is contained in C, then at each 
point PEr, in the tangent space there exists an n­
dimensional subspace Nl>u and (n + k )-dimensional 
subspace Npu (Nl>u c NpU) such that the system 
of these subspaces is invariant with respect to the 
linearized backward flow. The corresponding conti­
nuity condition defines Nl>u and Npu uniquely. 

These results can be improved in the sense that 
the existence of uniquely defined subspaces N SS and 
NCS (or N UU and NCU) can be established not only 
for the orbits which tend to C as t -+ +00 or 
t -+ -00, but also for the orbits which stay in some 
sufficiently small neighborhood U of C for all posi­
tive (or, respectively, negative) times. In this case, 
the invariant subspaces NSS and NCS consist of the 
vectors which, shifted by the linearized forward flow 
do not come too close (in some definite sense) to the 
subspaces, respectively, NUU EB NC and NUU on C. 
The invariant subs paces NUU and NCU consist of the 
vectors which remain, as t -+ -00, not very close 
to the subspaces, respectively, NSS EB NC and NBS 
on C. 

This construction is a main element of the proof 
of Theorem 4: at each point P of any orbit r ly­
ing in a sufficiently small neighborhood U of C for 
all (positive and negative) times, there exist four 
subspaces NpS, NpS, Nl>u and Npu and one can 
check that the system of subspaces {NPS = NpB, 
N p = Np n Npu, Npu = Nl>U} gives a decom­
position of the tangent space for which pseudohy­
perbolicity condition (25) holds (maybe for some 
longer T). 

Let Cl and C2 now be a pair of pseudohyper­
bolic sets with the same values of k, m and nand 
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r be an orbit a-limit to C1 and w-limit to C2. At 
any point P of r, there exists a pair of subspaces 
Nps and Np taken out of C2 and a pair of subspaces 
N'P'U and Np'U taken out of C1. 

Lemma 2. If at any point P of r the space N'Pu 

is transverse to Np and the space Nps is transverse 
to Np'U, then the set C1 U C2 Uris pseudohyperbolic 
with the same m, nand k as the sets C1 and C2. 

This lemma is proved by the direct construc­
tion of the corresponding decomposition of the tan­
gent space: for the points of the sets C1 and C2 , 

the subspaces NSs, NC and N'UU are taken without 
change, and for the points on r the decomposition is 
{NSS = NSS, NC = N CS n N Cu , NUU = NUU}. This 
is a decomposition into the direct sum indeed, be­
cause by the transversality of NCS with N UU c N CU 

and NCU with NSS c N Cs , any vector of the tangent 
space is uniquely represented as a sum of three vec­
tors belonging, respectively, to N Ss , NCS n N CU and 
NUU. 

To prove Lemma 2, one should verify the con­
tinuity of the decomposition constructed, but this 
is rather easy. For instance, if we take the subspace 
N Ss , it tends, by definition, to the spaces Nss on C2 

as t -+ +00. As t -+ -00, it tends to the spaces NSS 
on C1 , because all the vectors which do not tend, 
as t -+ -00, to vectors of the spaces NSS on C1, 
belong to the subspace N CU which is transverse to 
NSS and it has not, therefore, non-zero intersections 
with N SS . 

The pseudohyperbolicity conditions are fulfilled 
(by definition) for the points of C1 and C2 . By the 
continuity of decomposition, this implies that pseu­
dohyperbolicity conditions (25) are also fulfilled for 
the points on r close to C1 or C2. Since r spend 
only a finite time outside small neighborhoods of 
C1 and C2, one can now achieve the fulfillment of 
conditions (25) for each point on r, taking T large 
enough. 

This lemma gives us a tool for establishing the 
pseudohyperbolicity of contours composed of a fi­
nite number of orbits. If for some contour, the 
trichotomy property holds (see Sec. 3), then each 
recurrent orbit Li in the contour is easily seen to 
be a pseudohyperbolic set. For the first-level orbits 
r S which are asymptotic to the recurrent orbits as 
t -+ ±oo, the subspaces N Ss , N Cs , NCU and NUU 
are uniquely defined by continuity conditions (we 
discussed this in Sec. 3 in greater detail). Apply­
ing Lemma 2 to each first-level orbit r S one can 

see that if the transversality conditions hold for all 
these orbits, then the union of the recurrent and the 
first-level orbits is a pseudohyperbolic set. 

Now, we can derive from Lemma 1 (and from 
its analogue for the case t -+ -00) the existence and 
uniqueness of the spaces N Ss , N Cs , NCU and N UU for 
each second-level orbit in the contour. Again, ap­
plying Lemma 2, one can see that if the transversal­
ity conditions hold for all second-level orbits, then 
the union of zero-, first- and second-level orbits is 
pseudohyperbolic. This procedure can be continued 
from level to level and it stops after a finite number 
of steps because the number of orbits in the contour 
is finite. We see that: 

If the trichotomy property holds for each 
recurrent orbit in the contour C and if the 
transversality conditions are satisfied for each 
non-recurrent orbit in C, then the contour C 
is a pseudohyperbolic set. 

According to Theorem 4, this statement gives 
Theorem 1. 

Theorem 3 of the previous section is based on 
the notion of a properly situated pseudohyperbolic 
set. We saw in Sec. 4 for example of the homo­
clinic butterfly that an arbitrary pseudo hyperbolic 
set may not be embedded into a k-dimensional 
smooth manifold tangent to the spaces NC. In this 
connection we introduce the following definition. 

Definition. A pseudohyperbolic set C is called 
properly situated if it lies in a smooth k-dimensional 
manifold M C which is tangent to the space Np at 
each point P E C. 

The manifold M C is not assumed to be invari­
ant, but the presence of at least one such manifold is 
a trivial necessary condition for the presence of the 
invariant "center" manifold. The following theorem 
shows that this condition is sufficient also. 

Theorem 5. Let a c r -smooth (r 2: 1) dynamical 
system X have a properly situated pseudohyperbolic 
set C. Let p ::; rand q ::; r be integers for which 
inequalities (37) and (38) are fulfilled. Then, for 
the system X itself and for any nearby system, there 
exists a pair of invariant cq -manifold WCS and CP­
manifold W CU of dimensions (m + k) and (n + k), 
respectively. The manifold WCS contains all orbits 
staying in a small neighborhood U of C for all posi­
tive times and the manifold W CU contains all orbits 
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staying in U for all negative times. The intersec­
tion W c = W CS n W CU is a k-dimensional cmin(p,q)_ 

manifold containing the set n of all orbits lying in 
U entirely. At each point of n, the manifold W CS is 
tangent to Nc EEl NSs, the manifold W CU is tangent 
to NC EEl NUU and W C is tangent to Nc. 

This theorem is a generalization of the main 
theorem of Hirsch et al. [1977], where the analogous 
result was proved for the case where the set C is a 
smooth manifold. Nevertheless, the machinery of 
Hirsch et al. [1977J still works in our case where 
C is a compact subset of an appropriate smooth 
manifold. 

In very few words, the scheme of the proof is as 
follows. Due to the compactness of C, one can take 
a sufficiently dense finite set 6 of points in C and 
then construct a smooth manifold MCS containing 
the points of the set 6 and tangent to NC EEl NSS at 
these points. 

Using inequalities (30), (32), and (36) one could 
prove with the standard technique that the shift 
M~t of the manifold M CS by the backward flow 
has, as a Cq-limit, an invariant manifold wcs, if 
to prevent the possible "shrinking" of the manifold 
M~t· 

A simple example of such shrinking is given in 
Fig. 23: this is an unstable equilibrium state on the 

y 

x 

Fig. 23. An example of shrinking of the iterations of the 
manifold Me,: as t --+ 00 any finite piece of M~t merges 
into the origin. 
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plane with one positive characteristic exponent and 
one exponent equal to zero. The first Lyapunov 
value is taken equal to zero and the second Lya­
punov exponent is positive. The vector field for 
this example is 

iJ = y, x = x3 

The straight line {y = O} is a center-stable manifold 
WCS. If we take here a piece of a curve tangent 
to {y = O} at the origin, its iterations with the 
backward flow will become smaller and smaller, not 
approaching a finite piece of W CS but merging into 
the origin. 

To avoid such behavior of the iterations M~t, it 
is convenient to redefine the system outside a small 
neighborhood of C. First, by a small variation of 
the vector field one can make the initial manifold 
M CS be invariant with respect to the flow outside 
a small neighborhood of C. Then, multiplying the 
vector field on a scalar function that vanishes on 
M CS outside the small neighborhood of C, points of 
that part of MCS can be made equilibrium states. 
This implies that the iteration M~t will coincide 
with M CS outside the small neighborhood of C and 
this prevents the shrinking. In this way, the exis­
tence of W CS is proved and the existence of W CU 

is proved analogously, due to the symmetry of the 
problem. 

To apply Theorem 5 for the proof of Theo­
rem 3 of Sec. 4, we use the construction analo­
gous to Lemma 2. First, we call a pseudohyper­
bolic set (p, q)-pseudohyperbolic if conditions (37) 
are fulfilled for given integers p and q. Note that if 
in Lemma 2 the sets C1 and C2 are (p, q)­
pseudohyperbolic, then the set Cl UC2 Ur is (p, q)­
pseudohyperbolic too. 

Suppose the sets C1 and C2 and the orbit r 
are as in Lemma 2. If the transversality conditions 
hold for the orbit r, then the set C1 uc2ur is pseu­
dohyperbolic and the orbit r possesses a uniquely 
defined strong-stable and strong-unstable invariant 
manifolds WSS(r) and WUU(r) (see Corollary 1 in 
Sec. 4). 

Lemma 3. Suppose the sets Cl and C2 are prop­
erly situated. In order for the set Cl U C2 u r to be 
properly situated, it is necessary and sufficient that 
WSS(r) would not contain orbits of C2 and WUU(r) 
would not contain orbits of C1 . 
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Fig. 24. An illustration to Lemma 3: if the orbit r+ does not lie in W CU (C1), then the manifold W CU (C1) can be modified 
so as to include the orbit r, and it is impossible for r+ ~ WCU(CI). 

The necessity is almost evident. Indeed, if the set 
Cl U C2 uris properly situated, then there exist 
invariant manifolds WCs and W cu containing this 
set. Suppose, for instance, W SS (r) contains an orbit 
r+ C C2. By definition, the manifold WCU(Cl U 
C2 u r) contains both the orbits rand r+. If P is 
a point on r, then the strong-stable manifold Wp 
intersects r+ at some point P'. Thus, the manifold 
W Cu intersects the manifold Wps at more than one 
point, but this is impossible (like in the example 
with a homoclinic butterfly in Sec. 4): as t grows, 
the points P and pI become arbitrarily close to each 
other, and the manifold Wcu which is transverse9 to 
the manifold Wps cannot intersect Wp in two close 
points. 

The sufficience is a simple geometrical fact. The 
sets Cl and C2 are properly situated and, by Theo­
rem 5, there exist the invariant manifolds WCS(Cl), 
WCU(CI) and W CS (C2), WCU(C2)' The intersection 
of the invariant manifolds WSS (r) and W CU ( C2) is 
an orbit which we denote as r+. The intersection of 
WUU(r) and WCS(Cl ) is an orbit r-. Since WSS(r) 
do not intersect C2, the distance between points on 
rand r+ decays faster than the distance to the set 
C2; i.e., the distance between rand W CU (C2) decays 
faster than the distance between rand C2 . This al­
lows one to modify slightly the manifold W CU (C2) 
in a small neighborhood of r+ so that the new man­
ifold would include the piece of the orbit r which 
lies near C2 (see Fig. 24). The orbit r spends only a 
finite time outside small neighborhoods of the sets 
C l and C2, and the modified manifold WCU(C2) can 
easily be sewed together with the manifold WCU(Cl ) 
which contains, by definition, the piece of r that lies 

9It is tangent to the space NCU which is transverse, by defi­
nition, to the tangent NSB to W". 

in the small neighborhood of C l , so that a manifold 
M CU (non-invariant) is obtained containing the or­
bit r as well as the sets Cl and C2, and tangent to 
N Cs . Analogously, a manifold MCS is constructed, 
and the intersection M CS n M cu gives the required 
manifold MC, containing r U Cl U C2 and tangent 
to N C

• 

Theorem 3 of Sec. 4 can now be proved as 
follows. Note that each recurrent orbit Li in the 
finite contour C is a properly situated (p, q)­
pseudohyperbolic set lO with p and q from inequali­
ties (23) and (24). By Lemma 3, if the non­
coincidence condition (see Sec. 4) is fulfilled for 
all first-level orbits r E C (as well as the transver­
sality conditions), then the union of all first- and 
zero-level orbits is a properly situated (p, q)­
pseudohyperbolic set also. Next, we obtain that 
if the non-coincidence condition is fulfilled for all 
second-level orbits, then the union of all second-, 
first- and zero-level orbits is also a properly situ­
ated (p, q)-pseudohyperbolic set and so on. Since 
the contour contains only a finite number of levels, 
we get that the fulfillment of the non-coincidence 
conditions is sufficient (and necessary as well) for 
the contour to be properly situated. By virtue of 
Theorem 5, this gives Theorem 3. 

5. Concluding Remarks: 
Hyperchaotic Contours 

In this section, we pay special attention to an exam­
ple of a contour for which the Lyapunov dimension 
can be made arbitrarily high. We show that this 
leads to quite non-trivial dynamics which, presum­
ably, may be typical for high-dimensional systems. 

10 Provided that the trichotomy property holds. 
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Let the dimension of the phase space be even 
and equal 2s for some integer s > 0.11 Consider a 
contour C (Fig. 14) containing two periodic orbits 
Ll and L2 and two heteroclinic orbits rl ~ Wfnw1 
and r2 ~ W; n W{ such that Wf has a tangency 
with W1 along the orbit rl and W; intersects W1 
transversely at the points of r2. Suppose that mul­
tipliers of Ll are 

> 1 \ e±iWl \ le±iwa-l "I ,AI , ••• , A8-

where 
1 > >'1 > ... > >'8-1 > 0 

and multipliers of L2 are 

where 

1 > 01 > 02 > ... > 08 -1 > Os > 0 

Since only one of the multipliers lies outside the unit 
circle for each orbit Li, the unstable manifolds of Li 
are one-dimensional. 

Suppose also that the product of multipliers of 
Ll is less than unity and the product of multipliers 
of L2 is greater than unity: 

'Y >.~ ... >'~-1 < 1 

a818~ ... 8;_188 > 1 

Systems with such kinds of contours form codi­
mension one surfaces in the space of dynamical sys­
tems; Le., such contours can occur in general one­
parameter families of dynamical systems. More­
over, the presence of such a contour is, in a sense, a 
persistent phenomenon. The last is connected with 
the well-known persistence of homoclinic tangencies 
(structurally unstable Poincare homoclinic orbits) 
which was discovered by Newhouse. It is proved 
in Newhouse [1979] for two-dimensional diffeomor­
phisms and in Gonchenko et al. [1993a] for a gen­
eral multi-dimensional case (see also Palis & Viana 
[1992]) that in the space of dynamical systems, in 
any neighborhood of any system having a saddle pe­
riodic orbit with a homo clinic orbit along which the 
stable and unstable manifolds are tangent, there ex­
ist open regions (NeWhouse regions) where systems 

11 The odd-dimensional case can be considered in an analo­
gous way. 
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are dense for which the periodic orbit has new orbits 
of a homo clinic tangency. Absolutely analogously, 
the following assertion is established: 

In the space of dynamical systems, in any 
neighborhood of the system with the contour 
under consideration, there exist open sets (the 
Newhouse regions) where systems having a 
contour of such kind (i. e., systems for which 
W U(L2) intersects W8(Ll) and WU(Ll) has a 
tangency with W U (L2)) are dense. 

The critical dimension for such a contour equals 
the dimension of the phase space. Indeed, to satisfy 
the exponential trichotomy property, the spectra of 
characteristic exponents of Ll and L2 must admit a 
decomposition onto three parts. For such decompo­
sition, the center part for the orbit Ll would contain 
the following characteristic exponents (see Sec. 3): 
In'Y > 0, zero (trivial) characteristic exponent and 
a number of pairs of complex conjugate characteris­
tic exponents In aj ± iWj. Therefore, the dimension 
of the center eigenspace of Ll is even. Analogously, 
for the orbit L2, the center part of the spectrum 
might contain In a > 0, zero, In 81 < 0 and a num­
ber of pairs of complex conjugate characteristic ex­
ponents In 8j ±i¢j. In this case the dimension of the 
center eigenspace of L2 would be odd, but this is a 
contradiction to the trichotomy property according 
to which the center eigenspaces must have equal 
dimensions for all orbits Li. The only possibility 
to make the dimension of the center eigenspace of 
L2 even is to include all characteristic exponents in 
the center part of the spectrum (the left and right 
parts of the spectrum are empty). Thus, for the 
contours under consideration, the minimal dimen­
sion of the center subspace NC equals the dimension 
of the phase space; i.e., dc = 2s here. 

Since the product of multipliers of Ll is less 
than unity and the product of multipliers of L2 is 
greater than unity, the divergence in Ll is negative 
and positive in L2. Thus, the Lyapunov dimension 
dL equals the critical dimension and it is equal to 
the dimension of the phase space. The realization 
conjecture can be proved in this case; i.e., the fol­
lowing result takes place (we postpone the proof for 
a forthcoming paper): 

A periodic orbit with (28 - 1) non-trivial 
multipliers equal to unity can be born in an ar­
bitrarily small neighborhood of the contour by 
a small perturbation of the system. 
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This "realization theorem" implies, in particu­
lar, that structurally stable periodic orbits with ar­
bitrary dimensions of the unstable manifold (from 
1 to 2s) can be born at the bifurcations of the con­
tour C under consideration (the case dim WU = 1 
corresponds to an attractive periodic orbit, a sink, 
the case 2 ~ dim W U ~ 2s - 1 to different types of 
saddle periodic orbits and the case dim W U = 2~ 

corresponds to a completely unstable periodic or­
bit, a source). Moreover, the following assertion 
is valid: 

In a small neighborhood of the system with 
the contour C, in the Newhouse regions there 
exists a dense set of systems any of which pos­
sesses, simultaneously for each j = 1, ... , 2s, 
an infinite number of periodic orbits with 
dim WU =j. 

The proof is analogous to the well-known New­
house proof of density of systems with infinitely 
many sinks in open regions [Newhouse, 1974]. By 
definition, in an arbitrarily small neighborhood of 
any system in the Newhouse region there exists a 
system with a contour of the kind under consider­
ation. According to the realization theorem, near 
such a system there exists a system having a peri­
odic orbit with (2s -1) non-trivial multipliers equal 
to unity. By a small perturbation, any given num­
ber of the unit multipliers can be moved outside 
the unit circle and the others can be moved inside. 
Hence, the system can be perturbed so that a struc­
turally stable periodic orbit £1 with dim WU = 
iI arise for an arbitrary prescribed iI. This or­
bit retains for all close systems, and among them 
there exists a system with a new contour of the 
given kind (since we are still in the Newhouse re­
gion). By a small perturbation of the last sys­
tem one can achieve, in addition to the orbit £1, 
a birth of one more structurally stable periodic or­
bit £2 with dim W U = h for an arbitrary h. Re­
peating the procedure, for an arbitrary sequence 
{jd of integers ji E {I, ... , 2s}, a system can be 
found in arbitrary closeness to the initial system 
which has a sequence of periodic orbits £i such that 
dim WU(£i) = ji. 

In this proof, each periodic orbit is born in a 
small neighborhood of some contour containing the 
orbits L1 and L2. The size of these neighborhoods 
can be taken to be smaller and smaller with each 
step of the inductive procedure, so that the closure 
of any subsequence of the constructed sequence of 

the periodic orbits £i contains the orbits L1 and 
L2' In particular, we can take this subsequence such 
that dim WU(£i) = 1 or such that dim WU(£i) = 
2s. Thus, we arrive at the following corollary: 

In a small neighborhood of the system with 
the contour C, in the Newhouse regions there 
exists a dense set of systems for which the clo­
sure of sinks has a non-empty intersection with 
the closure of sources. 

It is not clear how to introduce correctly the no­
tion of attractor for such kinds of systems, but the 
previous statement shows that the attractor here 
may happen to contain sources as well as the re­
peller may happen to contain sinks. 

These results have a direct relation to the prob­
lem of hyperchaos. Usually, those attractors are 
called hyperchaotic for which more than one posi­
tive Lyapunov exponent is found. As we see, for the 
contour under consideration, the number of positive 
Lyapunov exponents may vary for different orbits 
if the system belongs to a Newhouse region. It is 
not clear, therefore, in what sense the number of 
positive Lyapunov exponents can be considered as 
a characteristic of such a system as a whole. For 
instance, if the system has an absorbing domain 
containing the contour, then all the periodic orbits 
appearing in a small neighborhood will belong to 
the maximal attractor whose dimension, estimated 
from below by the maximal dimension of the un­
stable manifolds of the periodic orbits, is therefore 
equal to the dimension 2s of the phase space. This 
holds true though all the orbits lying in the neigh­
borhood of the contour spend most of the time near 
the "basic" orbits L1 and L2 the dimension of the 
unstable manifolds of which is very low (it is equal 
to 2). Nevertheless, if one made calculations by the 
Kaplan-Yorke formula [Kaplan & Yorke, 1979] with 
characteristic exponents of L 2 , this would give the 
proper value 2s for the dimension of the maximal 
attractor and not only an estimate from above as 
usual. 

Analogous results can be established, evidently, 
in a neighborhood of any contour which is (1) per­
sistent, for which (2) the realization conjecture is 
valid and (3) dL > 1. For instance, this is true for 
multi-dimensional systems possessing orbits of ho­
moclinic tangency as it was shown in Gonchenko 
et al. [1993b, 1995]. The example that we consider 
here provides additional arguments for the point of 
view proposed in Gonchenko et al. [1995] that: 
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Coexistence of orbits with the different 
numbers of positive Lyapunov exponents is 
a general property of systems with high­
dimensional attractors. 

Note that, by definition, the quantity dL which 
we call the Lyapunov dimension of the problem is 
none other than the integral part of the maximum 
of the Lyapunov dimensions calculated at the or­
bits Li by the Kaplan-Yorke formula for the restric­
tion of the linearized flow onto the center subspace 
N C

• If the realization conjecture is valid for some 
contour, then in its small neighborhood there may 
appear orbits with dL-dimensional unstable man­
ifolds. This means that, in the general case, the 
Kaplan-Yorke formula (modified so that taken into 
account the factorization along strong-stable and 
strong-unstable foliations) seem to give a proper 
estimate for the dimension of the maximal attrac­
tor (compare with Douady & Oesterle [1980J; 
Il'yashenko [1982}; Babin & Vishik [1983]). 

Another important consequence of validity of 
the realization conjecture would be that if the Lya­
punov dimension d L is sufficiently high for some 
contour, then the study of the bifurcations in its 
neighborhood is a multi-parameter problem: ac­
cording to the realization conjecture, periodic or­
bits having (dL - 1) non-trivial multipliers on the 
unit circle may appear in a neighborhood of the 
contour and the study of the bifurcations of these 
orbits requires at least (dL -1) independent control 
parameters (in spite of the fact that the contours 
under consideration may occur, for instance, in gen­
eral one-parameter families of dynamical systems). 
Therefore, if dL is large, the detailed bifurcation 
analysis is, evidently, impossible. For such kinds 
of contours the determination of the dimension of 
the problem (which includes not only the calcula­
tion of the quantities dc and dL but requires also 
a proof of some kinds of realization theorems) is 
not just a preliminary step like in the local bifur­
cation theory, but it is, presumably, a final step of 
the investigation. 
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