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Normal forms for eleven cases of bifurcations of codimension-3 are considered, basically, in 
systems with a symmetry, which can be reduced to one of the two three-dimensional systems. 
The first system is the well-known Lorenz model in a special notation, the second is the Shimizu­
Morioka model. In contrast with two-dimensional normal forms which admit, in principle, a 
complete theoretical study, in three-dimensional systems such analysis is practically impossible, 
except for particular parameter values when a system is close to an integrable system. Therefore, 
the main method of the investigation is qualitatively-numerical. In that sense, a description 
of principal bifurcations which lead to the appearance of the Lorenz attractor is given for the 
models above, and the boundaries of the regions of the existence of this attractor are selected. 

We pay special attention to bifurcation points corresponding to a formation of a homoclinic 
figure-8 of a saddle with zero saddle value and that of a homo clinic figure-8 with zero separatrix 
value. In L. P. Shil'nikov [1981]' it was established that these points belong to the boundary of 
the existence of the Lorenz attractor. In the present paper, the bifurcation diagrams near such 
points for the symmetric case are given and a new criterion of existence of the nonorientable 
Lorenz is also suggested. 

Papers 

1. Introduction 

It is well known that a local bifurcation analysis 
is based upon a consideration of a normal form on 
the center manifold. An advantage of the normal­
form method is that the normal-form system is de­
termined by the character of the bifurcation rather 
than the specific features of the equations under 
consideration. It is also important to note that 
the dimension of the space of solutions of the orig­
inal equations is not correlated with the dimension 
of the normal-form system which depends only on 
the number of characteristic exponents lying on the 
imaginary axis. 

The local bifurcations of co dimension less 
than 3 generate only one or two-dimensional nor­
mal forms which have been well studied to date 
(see Afraimovich et al. [1989], Guckenheimer & 
Holmes [1986] for details). The essential distinc­
tion of multi-dimensional normal forms is the 

possibility of chaotic behavior. It was shown in Ar­
neodo et al. [1985] that in the case of a bifurca­
tion of an equilibrium with three zero eigenvalues 
and a complete Jordan block there can arise spi­
ral chaos associated with a homo clinic loop to a 
saddle-focus. Spiral chaos in a normal form was 
also found in concrete PDE's describing a convec­
tion in a rotating layer of salt fluid [Arneodo et al., 
1984]. In this list the work of Vladimirov & Volkov 
[1991] should be mentioned where one of normal 
forms for bifurcations of a zero-intensity state of 
the LSA 1 model [Lugiato et al., 1978; Abraham 
et al., 1988] was established to be the well-known 
Shimizu-Morioka model [Shimizu & Morioka, 1976] 
which has a strange attractor of the Lorenz type 
[A. L. Shil'nikov, 1986]. We emphasize that the 
approach based on the reduction to the center 
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1124 A. L. Shil'nikov et al. 

manifold is very promising for the rigorous proof of 
chaos in multiparameter problems, particularly in 
magneto and hydrodynamics. 

Normal forms which can be reduced to the 
Lorenz model in some canonical notation, are here 
considered. They are associated with codimension-
3 bifurcations of equilibrium states and periodic 
motions in systems with a symmetry. We shall 
consider three-parameter families of such systems 
which are assumed to have an equilibrium state with 
either three zero eigenvalues or two zero and a pair 
of pure imaginary eigenvalues. The often roots of 
the characteristic equation are supposed to lie to the 
left of the imaginary axis, which allows the problem 
to be reduced onto a center manifold. Also periodic 
orbits which have three multipliers equal to either 
+1 or -1, or a pair of complex-conjugate multipli­
ers on the unit circle together with two multipliers 
equal to either + 1 or -1 are considered. 

We shall show that normal forms for such bifur­
cations can be reduced by rescaling the phase and 
time variables to the system 

x =y, 

y = x(1 - z) - Bx3 
- AY, (1) 

Z = -o:(z - x2 ) • 

Here 0: and A are rescaled bifurcation parame­
ters and may take arbitrary values. Parameter B 
is determined only from the coefficients of a Taylor 
expansion at the bifurcation point and its value re­
mains unchanged when the small parameters vary. 

System (1) is also remarkable in that the Lorenz 
model [E. Lorenz, 1963] 

x = -a(x - y), 

y = rx - y - xz, 

Z = -bz+xy, 

is reduced to it when r > 1. The connection be­
tween parameters of the two systems is 

o:=b/va (r-l), 

A = (1 + a)/va(r -1), 

B = b/(2a - b) . 

(2) 

It follows from (2) that the region of the Lorenzian 
parameters is bounded by the plane 0: = 0 and the 

surface ~ = ~ (i + 1) which tends to 0: = 0 as 
B -+ O. 

We note also that the particular case of system 
(1) at B = 0 is the Shimizu-Morioka model 

x=y, 

y = x(1 - z) - AY, 

z = -o:z+x2
. 

(3) 

To verify this, one can make the transformations 
x -+ x/va, y -+ yva. 

We shall show that for each B > -1/3 in the 
sector 0: > 0, A > 0 there is a region VLA of exis­
tence of the Lorenz attractor. The idea of the proof 
is to find the bifurcation curve P in the the parame­
ter space (0:, A, B) which corresponds to formation 
of a homoclinic butterfly with unit saddle index or, 
equivalently, with zero saddle value. In accordance 
with L. P. Shil'nikov [1981]' it guarantees the exis­
tence of the Lorenz attractor under some additional 
conditions. 

Figure 1 represents the result of our numerical 
reconstruction of this curve. Note that the curve P 
is the line of intersection of the bifurcation surface 
HI corresponding to the existence of homoclinic 
loops and the surface M corresponding to the unit 
saddle index. The existence of the bifurcation set 
HI in the parameter space of system (1) was proven 
in the paper by Belykh [1984] by the method of com­
parison systems. The proof in this reference can be 
easily revised in order to confirm the numerically 
established fact of the existence of the intersection 

0.8 If 
0.6 

alph. 

0.4 

Ool 

10 16 20 25 

B 

Fig. 1. The numerical reconstruction of the bifurcation curve 
P corresponding to a homoclinic butterfly with unit saddle 
index; here>. = (1 - 0.2 )/0.. 
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of this set with the surface M in the parameter 
space. 

It follows from the work of A. L. Shil'nikov 
[1986] that near the curve P the size of the region 
VLA is exponentially narrow. Therefore, in order 
that the existence of the Lorenz attractor is 
not a fact of the pure mathematics, we continue 
numerically the boundaries of the region VLA and 
show that the region of the existence of the Lorenz 
attractor is sufficiently large and is playing an essen­
tial role in organizing the global bifurcation 
portrait. 

2. The List of Normal Forms 

We shall give the normal forms for eleven cases of 
bifurcations of equilibrium states and periodical or­
bits. The procedure of reduction to the normal form 
is quite regular involving a step-by-step elimination 
of the nonresonant terms (see Arnold [1983], Guck­
enheimer & Holmes [1986], and Wiggins [1990]). 
Therefore, we omit the details of the calculation. 

1. The bifurcation of an equilibrium state with 
three zero characteristic exponents in the case 
of the symmetry (x, y, z) +-+ (-x, -y, z), where 
x, y, z denotes coordinates on the center manifold 
in a neighborhood of the equilibrium state; y, z are 
projections on the eigenvectors and x on the ad­
joined vector. The standard normalizing transfor­
mations reduce the system to the form 

x =y, 
y = x(J1- az(1 + g(x, y, z)) 

- al(x2 + y2)(1 + ., .)) 
- y(>.. + a2z(1 + ... ) 
+ a3(x2 + y2)(1 + ., .)), 

i = -a + z2(1 + ... ) 
+ b(x2 + y2)(1 + ... ) , 

(4) 

where J1, >.., a are small parameters, the letter 9 and 
the dots denote the terms which vanish at 
(x = 0, y = 0, z = 0). 

2. If, in addition to the conditions of the first case, 
the system is invariant with respect to the involu­
tion (x, y, z) +-+ (x, y, -z), then the normal form 
is as follows: 

Normal Forms and Lorenz Attractors 1125 

x=y, 
y = x(J1- az2(1 + g(x, y, z2)) 

- b(x2 + y2)(1 + ... )) 
- 2 

- y(A + alZ (1 + ... ) (5) 

+ bl(X2 + y2)(1 + ... )), 
i = z(a - cz2(1 + ... ) 

+ d(x2 + y2)(1 + ... )). 

3. An equilibrium state with two zero and a pair 
of pure imaginary characteristic exponents. 

Denote by x, y and u coordinates on the center 
manifold, where x, y correspond to the zero char­
acteristic roots and u = zei<p to the pair of pure 
imaginary roots. If the system is invariant with re­
spect to the involution (x, y, u) +-+ (-x, -y, u), the 
normal form is given by 

x =y, 
y = x(J1- az2(1 + ... ) 

- b(x2 + y2)(1 + ... )) 
- 2 - y(A + alZ (1 + ... ) 

+ b1(X2 + y2)(1 + ... )), 
i = z(a - cz2(1 + ... ) 

+ d(x2 + y2)(1 + ... )), 
<P = W - Clz2(1 + ... ) 

+ dl(X2 + y2)(1 + ... ), 

(6) 

where the dots denote the terms which vanish at 
(x = 0, y = 0, z = 0) and depend periodically on 
cp. Omitting the terms of the order higher than 3 
in system (6) yields the truncated normal form 

x =y, 
y = x(J1- az2 - b(x2 + y2)) 

_ y(>.. + alz2 + b1(X2 + y2)) , 

i = z(a - cz2 + d(x2 + y2)) , 

<P = w - CIZ2 + d1(X2 + y2). 

(7) 

Note that, in complete analogy with the bifurcation 
of the equilibrium state with one zero and a pair 
of the pure imaginary eigenvalues [Gavrilov, 1978; 
Guckenheimer & Holmes, 1986], the variable cp does 
not enter the first three equations; therefore, they 
can be considered independently. 
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4. The bifurcation of a periodic orbit with three 
( + I)-multipliers. 

On the center manifold near the periodic orbit, 
we introduce the coordinates (x, y, z, 'ljJ), where'ljJ 
is the angle and (x, y, z) are the normal coordi­
nates. Assume the original system to be symmetric 
with respect to the involution (x, y) +-+ (-x, -y). 
Then the normal form truncated beyond the second­
order terms has the form 

x=y, 
iJ = x(fl- az) - y(.X + a2 z ) , 

i = -a + z2 + b(x2 + y2), 

¢= 1, 

(8) 

(the period of the cycle is supposed to be equal one). 

5. System (8) is also the truncated normal form 
in the case of the periodic orbit with one (+1)­
multiplier and a pair of multipliers equal to -1, 
with no assumption concerning symmetry. 

6, 7. In cases 4 and 5, the additional symmetry 
z +-+ - z leads to the following truncated normal 
form: 

x=y, 
iJ = x(fl- az2 - b(x2 + y2)) 

- y(5. + alz2 + bl(X2 + y2)), (9) 

i = z(a - cz2 + d(x2 + y2)), 

'ljJ=1. 

System (9) is also the normal form truncated 
through third-order terms for the two following 
bifurcations: 

8. When there are three (-1 )-multipliers and the 
Jordan block is not complete; i.e., the associated 
linear part of the Poincare map has the form 

( ~) (-1 1 0) (X) Y = 0 -1 0 y. 
zOO -1 z 

It is also assumed here that the system is invari­
ant with respect to the involution, either (x, y) +-+ 

(-x, -y) or z +-+ -z. 

9. When two multipliers are equal to (+1), and 
the third one to -1: 

and the system is invariant with respect to the in­
volution (x, y) +-+ (-x, -y). 

The normal form 

x=y, 
iJ = x(fl- az2 - b(x2 + y2)) 

_ y(5. + alz2 + b1(X2 + y2)) , 

i = z(a - cz2 + d(x2 + y2)) , 

cp = W - C} z2 + dl (x2 + y2) , 

¢= 1, 

appears in the following two cases: 

(10) 

~O. In the bifurcation of a periodic orbit with a 
pair of multipliers on the unit circle e±iw, 0 < w < 
7r, W =I 7r/2, w =I 27r/3 (the condition of absence 
of the strong resonances) and a pair of multipliers 
equal +1, with the symmetry (x, y) +-+ (-x, -y). 

11. In the bifurcation of a periodic orbit with a 
pair of multipliers on the unit circle without strong 
resonances and another pair of the multipliers equal 
to -1 (symmetry is not required). 

The first three equations of system (8) do not 
depend on 'ljJ. If we omit the last equation, then the 
system is reduced to system (4). Similarly, if we 
omit the last equation in systems (7) and (9), or the 
two last equations in system (11), we then obtain 
system (5). Thus, all of the enumerated normal 
forms are reduced to either system (4) (cases 1, 4, 
5) or to system (5) (cases 2, 3, 6-11). 

Let us consider system (4) for ab > O. Let r2 = 
l-l+ava(l+g(O, 0, -va)) > 0, a > O. The scaling 
of the time t ---t 8/ r, and of the space variables 

x ---t x/fl, y ---t yr/fl, z ---t -va + T: z and 

of the parameters 5. = .h, a = (ar/2? gives the 
system 

x =y, 
iJ = x(1 - z) - ),y + O(r) , 

i=-az+x2 +O(r), 

where parameters a, ), are not already small. If we 
omit the terms of the order r, we then obtain the 
Shimizu-Morioka model (3). 

We shall consider system (5) for c > 0, ad > 
O. In the parameter region r2 = fl - aa/ c(1 + 
g(O, 0, a/c)) > 0 and a > 0, let us make the scal-

ing t ---t 8/r, x ---t xr ~, y ---t yr2 ~, z ---t 

V~ + :2 z, 5. = )'r, a = ar/2. By denoting B = !d 
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and omitting the terms of the order T, we have the 
Lorenz system in the form (1). 

3. Proving the Lorenz Attractor 

We shall show that for each BE (-1/3, 00) a region 
VLA of the existence of the Lorenz attractor exists in 
the sector a > 0, A> O. To do this, we shall point 
out in the parameter space (a, A, B) the bifurcation 
curve of codimension-2 which corresponds to the 
homo clinic butterfly with unit saddle index. 

The equilibrium 0(0, 0, 0) is a saddle for posi­
tive values of parameters a and A. Its unstable man­
ifold Wtf is one-dimensional and consists of 0 itself 
and a pair of orbits (separatrices) rl and r2 ; the 
stable manifold W! is two-dimensional. The sep­
aratrices r 1 and r 2 are symmetrical to each other 
under the involution (x, y, z) +--+ (-x, -y, z). The 
symmetry axis (x = y = 0) lies in the stable mani­
fold W!. In the case where a separatrix comes back 
to the saddle we shall say that a homo clinic loop is 
formed; by virtue of the symmetry both separatri­
ces form loops synchronously. A pair of such loops 
is called a homo clinic figure-8; or a homoclinic but­
terfly (Fig. 2), if r 1 and r 2 come back tangentially 
to each other and to the z-axis. We shall distin­
guish homoclinic loops by the number of their cir­
cuits around the equilibrium states 0 1 and 02 with 
the coordinates (±I/J(B + 1),0, 1/(B + 1)). 

In general, a homoclinic butterfly can be of 
one of the two following types: stable and unsta­
ble. It is well known that stability is determined 
by the saddle index 'Y = IA21/A3, where Ai'S are the 
characteristic exponents Al < A2 < 0 < A3 of the 
saddle. The butterfly is stable for 'Y > 1 and 

z 

x 
-2.00 2. 

Fig. 2. A single homoclinic butterfly. 

Normal Forms and Lorenz Attractors 1127 

unstable for 'Y < 1. The formation of the unstable 
homoclinic butterfly is well known to be the first 
of the two bifurcations [Afraimovich et al., 1977; 
Kaplan & Yorke, 1979] which lead to the Lorenz 
attractor arising. 

We denote the two-dimensional surface in the 
space of parameters (a, A, B) corresponding to the 
unstable single-circuit homoclinic butterfly as HI + . 
Typically, from one side of HI + the separatrices r 1 

and r2 tend to 0 1 and 02, respectively [Fig. 3(a)]; 
from the other side r 1 tends already to 02, and r 2 

to 0 1 [Fig. 3(b)]. This switching is accompanied 
with the homo clinic explosion [Afraimovich et al., 
1977]: in the phase space a hyperbolic set n is born 
which is topologically equivalent to the suspension 
over the Bernoulli shift of two symbols and 

z 

o 
(a) 

z 

(b) 

x 

x 

Fig. 3. The switching of the separatrices while crossing the 
surface HI of a single unstable homoclinic butterfly. 
(a) above HI: the separatrix r 1 tends to 0 1 , r 2 tends to 
02; (b) below HI: r 1 tends to O2, r2 tends to 0 1 . 



In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 1
99

3.
03

:1
12

3-
11

39
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

M
PE

R
IA

L
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 o
n 

02
/1

2/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

1128 A. L. Shil'nikov et al. 

contains a countable set of the saddle periodic orbits 
and a continuum of the nonclosed Poisson-stable or­
bits. Near the bifurcation parameter values, the set 
n lies entirely in a small neighborhood of the ho­
moclinic butterfly which has just split. Its orbits, 
in correspondence with sequences of scrolls around 
01 and 02, are coded by infinite sequences of 1 and 
2; furthermore orbits with any possible codings ex­
ist in n. The co dings { ... 111 ... } and { ... 222 ... } 
correspond to the single-circuit periodic orbits C1 

and C2 respectively, which are symmetric to each 
other. 

The set n is nonattractive, since the two­
dimensional unstable manifolds of its orbits inter­
sect transversely the stable manifold W~ of the 
saddle 0 and, consequently, the orbits close to n 
escape along with the separatrices r1 and r2 to the 
attractors O2 and 0 1 . The absorbing domain for n 
is formed on the bifurcation surface LA1, where f1 
and f2 lie on the two-dimensional stable manifolds 
of the saddle periodic orbits C2 and C1, respectively 
(Fig. 4); at the moment of crossing LAI the set n 
becomes the Lorenz attractor (Fig. 5). 

The rigorous mathematical investigation of this 
bifurcation chain and also that of the structure of 
the Lorenz attractor has been carried out by 
Afraimovich et al. [1982]' where conditions were 
pointed out which the system (more precisely, the 
Poincare map) should satisfy in order that the 
Lorenz attractor would exist. We shall reproduce 
a number of the statements from Afraimovich et al. 
[1982] which we will need in what follows. 

Let us construct the cross-section through the 
equilibrium states 0 1 and 02 (in our case, this is 
{z = 1/(B + 1), Ixl < 1/(B + 1)1/2}. Suppose that 
there exists N such that any orbit originating from 
the rectangle Iyl :::; N on the cross-section comes 
back inside the rectangle [Fig. 6(a)]. The Poincare 
map T along the orbits of the system is smooth 
everywhere except for the discontinuous line TIo : 
x = ho(Y) which is the trace of the stable manifold 
W~ of the cross-section. In order for the formulas 
below to be less awkward, we assume that ho(y) = 0 
(it can be riched by the coordinate transformation 
x ---t x - ho(y) on the cross-section). Then, near TIo 
the map T can be written in the form [Afraimovich 
& L. P. Shil'nikov, 1983] 

x = (x* + Alxl' + 0(x2" yxV))sgn(x) , 

tJ = (y* + Blxl' + 0(x2" yxV))sgn(x) , 
(11) 

z 

x 

-2~ 2. 

Fig. 4. A moment of the emergence of the Lorenz attractor: 
the separatrix r 1 (r 2) lies on the stable manifold of the saddle 
periodic orbit C2(Ct). 

x 

(a) 

z 

x 
-2.00 2. 

(b) 

Fig. 5. Two kinds of the Lorenz attractor: (a) standard, 
(b) with a hole - a lacuna containing a saddle symmetric 
periodic motion Ci2 inside. 
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(a) 

(b) 

Fig. 6. A qualitative representation of the Poincare map T 
for parameters values where a separatrix value A is positive 
(a) and negative (b). 

where A is called the separatrix value and { = 
IA21/A3 is the saddle index, v is equal to IA11/A3 
(here Al < A2 < 0 < A3 are the characteristic 
exponents of the saddle 0), (x*, y*) are the coor­
dinates of the point Ml of the intersection of the 
separatrix f 1 with the cross-section. It is easy to 
check formula (11) assuming the system to be lin­
ear in a neighborhood of the saddle O. The gen­
eral nonlinear case is treated by using the technique 
has been developed by L. P. Shil'nikov [1968] and 
'furaev [1991]. 

Write the map T as follows: 

x = f(x, y) , y = g(x, y) . (12) 

Normal Forms and Lorenz AttractoTs 1129 

If { is less than one and A is not equal to zero, then 
near ITo the inequalities 

11(j~)-111 < 1, Ilg~11 < 1, 

Ilg~(j~)-111 'lIf~1I < (1 _1I(j~)-111)(1 -lIg~lI) 
(13) 

(where II· II = max(x,y) I· I) are valid. 
It follows from Afraimovich et al. [19821 that if 

there exists the curvilinear rectangle 

D: \yl ::; N, h1(y) < x < h2(y) 

(h1(y) < ho(y) < h2(Y», 

such that T D E D, and inequalities (13) hold 
everywhere on D, then the system has the Lorenz 
attractor2. Geometrically, conditions (13) mean the 
contraction along the y-direction and the expan­
sion along the x-direction under the map T. More­
over, these conditions guarantee [Afraimovich et al., 
1982] the existence of the stable invariant foliation 
which leaves the map T is contracting being re­
stricted in. Each stable leaf is of the form x = hS (y) 
(the surfaces x = ho(Y), x = h1(y), x = h2(y) are 
included in the foliation). Besides that, an invariant 
system of unstable leaves of the form y = hU(x) ex­
ists, each of these leaves is transversal to the stable 
foliation. 

The structure of the Lorenz attractor is given 
by the following theorem: 

Theorem 1. [Afraimovich et al., 1982]. Under 
conditions above the system has the two-dimensional 
limit set A (the Lorenz attractor) such that 

(1) the separatrices fb f2 and the saddle 0 belong 
to A; 

(2) saddle periodic trajectories are dense in A; 
(3) A is the limit of a sequence of invariant sets 

each of which is equivalent to the suspension 
over the subshift of finite type with nonzero topo­
logical entropy; 

(4) A is the structurally unstable set: under small 
perturbations the birth and the disappearance of 
the saddle periodic trajectories through the bi­
furcations of homoclinic butterflies happen in A. 

2Inequalities (13) coincide with conditions a), b), d) in V. 
S. Afraimovich et aL [1982] up to the replacement x onto y 
and f onto g. We have omitted the condition c) from this 
reference because it follows from a), b) and d). 
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1130 A. L. Shil'nikov et al. 

Generally speaking, orbits of some points of 
D can be non-asymptotical to the Lorenz attrac­
tor (if the condition of the complete dilation is not 
satisfied [Afraimovich et al., 1982; Afraimovich & 
L. P. Shil'nikov, 1983]). Such orbits, if any, form 
a one-dimensional invariant set ~ = U~O~i where 
~i is either a saddle periodic orbit or a nontriv­
ial hyperbolic set equivalent to the suspension over 
the subshift of finite type. Each component ~i lies 

M1 

\.. y----'-- .. ..J 

P-f 1)2, 

(a) 

Jri Xo %2 

\... 
Y ....A. 

"V 
.J 

D-f D2 
(c) 

in a lacuna - "a hole" within the Lorenz attractor. 
The crucial role in the evolution of the Lorenz at­
tractor is played by the lacuna which contains the 
symmetric figure-8 saddle periodic orbit Ci2 with 
the coding { ... 1212121212 ... } [see Fig. 5(b)]. 

Depending on the sign of the separatrix value 
A the Lorenz attractor may be of the two types: 
orientable (A > 0) and nonorientable (A < 0) (one 
more type can occur in nonsymmetrical systems, 

Mi 

.. " ~ 
D1 D2. 

(b) 

Fig. 7. The Poincare maps satisfying to conditions (13). 
(a) There is the Lorenz attractor within the absorbing do­
main Dl U D2 which is bounded by the stable manifolds III 
and II2 of the saddle fixed points corresponding to the single 
periodic orbits Cl and C2 • (b) The region D between III and 
II2 is not taken onto itself under the Poincare map. Most of 
trajectories escape along with the separatrices r l and r 2 to 
the attractors 02 and 0 1 . (c) This is the moment of forma­
tion of the absorbing domain and, therefore, of the Lorenz 
attract or . The separatrices are lying on the stable manifolds 
of the saddle periodic orbits C2 and C l . The phase por­
traits associated with the maps (a), (b) and (c) are shown in 
Figs. 5(a), 3(b) and 4 respectively. 
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namely the so-called semi-orient able Lorenz attrac­
tor which we shall not consider here). In the ori­
entable case, the curves x = hl(y) and x = h2(y) 
bounding the region D [Fig. 7(a)] are, typically, the 
traces ITI and IT2 of the stable manifolds of the 
single-circuit cycles CI and C2 , which are born from 
the homoclinic butterfly when "I < l. 

This bifurcation takes place, if x* = 0 in for­
mula (11). It is easily seen that for small x* < 0 
the following estimates 

distance(ITi , ITo) '" (lx*I/A)lh 

and 
distance(Mi , ITo) '" Ix*1 

are valid, where Mi are the points of the first in­
tersections of the separatrices r i with the cross­
section. If A > 0 and "I < 1, then 

Ix*1 » (lx*I/A)!/'Y . (14) 

Hence, despite conditions (13) holding, the Lorenz 
attractor is not born after this bifurcation since the 
region D is not taken onto itself under the map T 
[see Fig. 7(b)]. 

In order for the Lorenz attractor to be born, it 
is necessary that the points Mi lie inside the region 
D; i.e. inequality (14) should be violated. This can 
be achieved, if either value A or ("I - 1) is close to 
zero. The precise statement, which enumerates the 
main cases of the homo clinic bifurcations leading to 
the appearance of the Lorenz attractor, is given by 
L. P. Shil'nikov [1981]. We formulate here only the 
consequence from that theorem (see also Robin­
son [1989] and Rychlic [1989]) which we apply to 
system (1). 

Theorem 2. Let a system have a homoclinic but­
terfly and either (1) "I = 1 and 0 < A < 1 or 
(2) A = 0 and 1/2 < "I < 1, 1/ > 1. Then in the 
parameter plane (x*, 1 - "I) in case (1) and (x*, A) 
in case (2) there exists an open set VLA adjoined 
to the point P(O, 0) such that for parameter val­
ues from VLA the system has an orientable Lorenz 
attractor. 

In both the cases of Theorem 2 the region VLA 

of the existence of the Lorenz attractor is bounded 
by two curves LAI and LA2 which originate from 
the point P(O, 0) (Fig. 8). The sequence of the bi­
furcations while moving from LAI to LA2 is 
described in Afraimovich et al. [1982] and A. L. 
Shil'nikov [1993] 

Normal Forms and Lorenz Attmctors 1131 

Theorem 3. On the parameter plane (x*, c) [c = 
1-"1 in case (1) andc = A in case (2)] the following 
six bifurcation curves comes from the point P(O, 0) 
(Fig. 8): 

(1) the curve LAI on which the separatrix r l lies 
on wg

2 
and, symmetrically, r2 lies on wg1 [see 

Fig. 4; on the cross-section the points MI and 
M2 lie on IT2 and ITI, respectively, see Fig. 7( c)]. 
This is the moment of forming the absorbing 
region D, and the hyperbolic set n, being born 
from the homoclinic butterfly, becomes attrac­
tive. On crossing LAI the set n transforms into 
the Lorenz attractor; 

(2) the curve LC which corresponds to the appear­
ance of the simple lacuna containing the sym­
metric figure-8 saddle periodic orbit Ci2. 
Formation of the lacuna occurs when r I and 
r2 lie on the two-dimensional stable manifold 
ofCi2 [Fig. g(a)]; 

(3) the curve PF on which the cycle Ci2 
undergoes the pitch-fork bifurcation: a pair of 
asymmetrical saddle periodic orbits C l 2 and C21 
bifurcates from it and the cycle Ci2 becomes 
stable. The basins of the Lorenz attractor and 
now stable cycle Ci2 are separated by the two­
dimensional stable manifolds of the cycles Cl2 

and C21. 
(4) the curve LA2 on which the separatrices r l and 

r 2 lie on the stable manifolds of C21 and C12, 
respectively [Fig. 9(b)]. At this moment the 
Lorenz attractor is terminated and a nonattrac­
tive hyperbolic set remains on its place; 

2)S=A 

Fig. 8. The bifurcation diagram for a homoclinic butterfly 
with either 'Y = I, 0 < A < 1 or A = 0, 1/2 < 'Y < I, 1/ > 1. 
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z 

x 
-2.00 2. 

(a) 

z 

x 

(b) 

Fig. 9. The separatrix rl(r2) lies on the stable manifold of 
the saddle figure-8 cycle: (a) symmetric, which is accompa­
nied by the emergence of a simple lacuna; (b) asymmetric -
this bifurcation destroys the Lorenz attractor. 

(5) the curve H2 on which the remaining hyperbolic 
set inclinates into the double-circuit homoclinic 
butterfly (Fig. 10); 

(6) the curve SN corresponding to the saddle­
node bifurcation of the cycles C1 and C2 . These 
cycles coalesce with the stable single-circuit cy­
cles Ci and C2, respectively, and annihilate. In 
the case of the bifurcation 'Y = 1 these cycles ex­
ists everywhere in a neighborhood of the point P 
in the sector bounded by the curve S N and by 
the right branch of the curve H1 which corre­
sponds to a stable homoclinic butterfly ('Y > 1). 

Theorem 3 gives the complete description of 
bifurcations while splitting the symmetric homo­
clinic butterfly with 'Y = 1. In the case A = ° 
the bifurcation patience is more complex. Thus, in 

z 

x 
-2. 2. 

Fig. 10. A double-circuit homoclinic loop. 

addition to the result of L. P. Shil'nikov [1981]' the 
following theorem can be established by the meth­
ods of Afraimovich et al. [1982]' A. L. Shil'nikov 
[1990] and Turaev [1991]: 

Theorem 4. Let a system have a homoclinic but­
terfly with zero separatrix value and 0 < 'Y < 1. 
Then the region VL-A of the existence of the nonori­
entable Lorenz attractor adjoins to the point P(O, 0) 
on the parameter plane (x*, A) (see Fig. 8) 

The attractor is called nonorientable because 
within it there exists a dense set of saddle peri­
odic orbits with negative multipliers, whose invari­
ant manifolds are homeomorphic to a Mobius strip 
[Afraimovich et al., 1982]. The Poincare map T 
in this region is schematically shown in Fig. 11 ( a). 
The images of the right and the left half 
of the region D have the distinctive "hook" -shape 
[Afraimovich & L. P. Shil'nikov, 1983]. The Lorenz 
attractor is situated between the traces IIi and 112 
of the stable manifold of the figure-8 cycle Ci2' 

In order to prove the existence of the Lorenz at­
tractor in model (1) we use the first case of 
Theorem 2. Note that, concerning the local bifur­
cations, parameters a, ..\ and B of the model play 
different roles. Here a and ..\ are the rescaled small 
parameters and their values can be arbitrary. The 
parameter B is determined through coefficients of a 
Taylor expansion at the moment of the bifurcation 
and its value remains unchanged while changing the 
small parameters. Therefore, we shall show the ex­
istence of the Lorenz attractor on the plane (a, ..\) 
for fixed values B. 

At B = 0 the point of codimension-2 with 
the coordinates (a = 0.606,..\ = 1.045) which 
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n'o 

• \ )I 
V 

, .. y 

D1 D2 !)i D2 
(a) (b) 

.n:~ Xo Jt'2. 

l~ ____ ~y~ ____ ~A ____ ~y 

(c) 

Fig. 11. The Poincare map corresponding to (a) a non-orientable Lorenz attractor, (b) a transition from a Lorenz attractor 
to a quasi-attractor, (c) a heteroclinic contour including the single saddle periodic cycles 0 1 and O2 • 

corresponds to the single-circuit homo clinic butter­
fly with 'Y = 1 was found by A. L. Shil'nikov [1986]. 
We have continued numerically the curve P asso­
ciated with this bifurcation from the point (B = 
0, a = 0.606, ,X = 1.045) in the space of the three 
parameters. This curve lies on the surface M ; 
a'x = 1 - a 2 defined by the condition 'Y = 1 and 
has the form a = ",(B), where", is a function 

monotonic on the interval B E (-1/3,00), 
",( -1/3) = 0, ",(00) = 1. 

The graph of the function ", is shown in Fig. 1. 
The end points (a = 0, ,X = 00, B = -1/3) and 
(a = 1, ,X = 0, B = 1) of the obtained curve cor­
respond to the cases where system (1) is solved ex­
actly. Near these points the existence of the given 
curve can be analytically shown, in analogy with the 
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work of Robinson [1989] and Rychlic [1989]. Note 
that without the assumption of the closeness to the 
integrable cases, the existence of the bifurcation 
set (HI in our notations) corresponding to the for­
mation of single-circuit homo clinic loops has been 
proved for system (1) by Belykh [1984] at B > O. 
Revising the method he used, it may be shown that 
this bifurcation set actually intersects the surface 
M thereby confirming the results of the numerical 
calculation. We have also checked numerically that 
everywhere on this curve the separatrix value A is 
positive and less than unity; i.e. the conditions of 
Theorem 2 are fulfilled. 

Thus, Theorem 2 allows us to state that a re­
gion of the existence of the Lorenz attractor of model 
(1) exists on the plane (a, ,X) for any B E (-1/3, (0). 
The same takes place for any system close enough 
since the Lorenz attractor cannot disappear under 
small perturbations [Guckenheimer & Williams, 
1979; Afraimovich et al., 1982]. We establish, there­
fore, that the sector of existence of the Lorenz at­
tractor in a small neighborhood of the origin in the 
phase space adjoins to the point (0, 0, 0) in the 
space ofthe small parameters (p" a, .\) at ab > 0 for 
the first case of our normal form list and at c > 0, 
ad > 0, 3bc + ad > 0 for the second case. The re­
maining cases are essentially more complicated be­
cause of the presence of the angle variables. We 
only note that any model (finite-parameter family 
of differential equations) in which bifurcations cor­
responding to these cases occur cannot be "good" 
in the sense of Gonchenko et al. [1990]. 

4. Global Bifurcation Analysis 

It follows from A. L. Shil'nikov [1986] that near the 
points PB(a = TJ(B), ,X = a-I - a) corresponding 
to the homo clinic butterfly with unit saddle index, 
the width of the region VLA is of the order e- I /(1--y); 

i.e. it is extremely narrow. Therefore, in order to 
give real content to the statement of the existence 
of the Lorenz attractor, it is necessary to continue 
the curves LAI and LA2 out of the small neighbor­
hood of the point PB and to investigate the global 
structure of the boundary of the region VLA. 

Figures 12-14 show the typical bifurcation dia­
grams on the parameter plane (a, ,X) for three val­
ues of B, respectively: B = 1, B = 0, B = -0.1075. 

1. B = 1. (Fig. 12) The curve HI of the single­
circuit homo clinic butterfly intersects the line 'Y = 1 
at the point P(a = 0.830, ,X = 0.374) from which, 

in correspondence with the theory above, the curves 
LAl, LC, SN, PF, LA2, H2 originate. 

On the curve HI, to the right of P, the cycle 
Ci2 [Fig. 15(a)] sticks into the stable b > 1) ho­
moclinic butterfly and a pair of stable single-circuit 
periodic orbits Ci and C2 [Fig. 15(b)] is born. They 
collapse into the equilibria 0 1 and O2 on the curve 
AH: (a + 'x)(1 + a,X) = 2a corresponding to the 
Andronov-Hopf bifurcation. This bifurcation is su­
percritical on the branch AH- of this curve and 
subcritical on AH+. The point Q(a = 0.551, ,X = 
0.366), at which the first Lyapunov value vanishes, 
is the limit point of the curve SN originating from 
the point P and corresponding to a pair of non­
rough single-circuit periodic orbits of the saddle­
node type. The region of existence of the cycles Ci 
and C2 is bounded by SN and the curves HI + and 
AH-. The saddle periodic orbits C1 and C2, being 
born from the homo clinic loops on the branch HI + , 
either coalesce with Ci and C2 on SN or collapse 
into 0 1 and O2 on the branch AH+. 

The curve LAI is terminated by the point (a = 
0, ,X = 0), LA2 by the point Rl(a = 0.3247, ,X = 
0.2679) on H2, where the separatrix value A, van­
ishes for double-circuit loops. It should be noted 
that the curves LAI and LA2 do not belong entirely 
to the boundary of the existence of the Lorenz at­
tractor. The third boundary curve AZ which links 
the points R2(a = 0.247, ,X = 0.252) on LAI and 
R3(a = 0.3218, ,X = 0.2671) on LA2, corresponds 
to the vanishing of the separatrix value A. This 
curve is analogous to that found in Bykov & A. L. 
Shil'nikov [1992] for the original Lorenz model. 

Geometrically, the vanishing of the value A is 
accompanied with a contact of leaves of the stable 
and the unstable foliation at the points MI and M2 
corresponding to the first intersection of the sepa­
ratrix fl and f2 with the cross-section [Fig. l1(b)]. 
Below the curve AZ, the distinctive hooks appear 
for the Poincare map, like in Fig. 6(b); we do not 
give the precise formulations here. 

Whereas the curves LAI and LA2 separate the 
regions of the simple and the Lorenzian dynamics, 
the curve AZ plays an essentially different role. Be­
low AZ the nontrivial hyperbolic sets with an infi­
nite number of the saddle periodic orbits preserve 
as before, but the formation of the hooks implies 
the homo clinic tangencies of the stable and unsta­
ble manifolds of these trajectories. For instance, 
the curves corresponding to the homo clinic tangen­
cies of the invariant manifolds of the single-circuit 
periodic orbits [C1 and C2i see Fig. l1(c)], and the 
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Fig. 12. The (a, A) bifurcation diagram for B = 1. 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

o. 0.4 0.6 o. 

Fig. 13. The (a, A) bifurcation diagram for B = o. 

double-circuit saddle periodic trajectories (C12 and 
C21) start, respectively, from the end points R2 and 
R3 of AZ. 

The presence of homoclinic tangencies implies 
the plethora of different dynamical phenomena, 

namely an appearance of a large and even infinite 
number of co-existing stable periodic trajectories 
with the narrow and judge basins [Gavrilov & L. P. 
Shil'nikov, 1973; Newhouse, 1979], non-rough pe­
riodic trajectories [Gonchenko & L. P. Shil'nikov, 
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Jt 
2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 
0.1 o. o. o. 

Fig. 14. The (0:, oX) bifurcation diagram for B = -0.1075. 

x 
-2.00 

(a) 

z 

o 
(b) 

x 

Fig. 15. The transition through the curve HI corresponding to a stable homoclinic butterfly: (a) below HI, the stable 
symmetric figure-8 cycle 0;2 is the unique stable limit set, (b) above HI' the cycle 0;2 is broken into the two stable single 
cycles 0 1 and O2 • 

1986], period-doubling cascades, Henon-like attrac­
tors, and so on. 

We note also that on the curve AZ the points 
are dense where the system has homoclinic loops 
with zero separatrix value. It was mentioned above 
that to each such points there adjoins (from below) 
the sector which corresponds to the existence of the 
non-orientable Lorenz attractor. These homo clinic 
loops have a very large "number of scrolls" hence 

the non-orient able Lorenz attractors appearing are 
also multi-circuit, in the sense that the Poincare re­
turn times of the trajectories of such at tractors are 
very long. Furthermore, the basins of these attrac­
tors are extremely thin. 

The attractive sets containing an infinite num­
ber of saddle periodic trajectories together with 
"weak" stable periodic orbits (or with other 
at tractors ) and homo clinic tangencies are called 
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quasiattractors [Afraimovich & L. P. Shil'nikov, 
1983] or "wild" attractors. Thus, the curve AZ 
separates the regions of the Lorenzian and wild dy­
namics on the parameter plane. 

In contrast with the Lorenz attractor, the struc­
ture of quasiattractors is not clear. Moreover, it was 
shown in Gonchenko et al. [1993] that a complete 
description of their structure cannot be obtained 
due to uncontrolled bifurcations which densely oc­
cur in the "wild" regions. 

2. B = 0 (the Shimizu-Morioka system). The 
bifurcation diagram (Fig. 13) looks like the corre­
sponding diagram for the case B = 1. Note, how­
ever, that at B = 1 the curves H1, H2 and AH 
finish at the point (a = 0, A = 0); but at B = 0, 
AH finishes at (a = 0, A = V2), and H1 and H2 
finish at (a = 0, A = 2.154 ... ). 

The essential difference of the Shimizu-Morioka 
system from the case B = 1 is that we have, < 1/2 
everywhere on the curve AZ at B = 1, whereas at 
B = 0 the index, can be less than 1/2 [to the left 
of the point G(a = 0.33, A = 0.87)] or greater than 
1/2 (to the right of the point G). The branch of the 
curve AZ from G to the point R3(a = 0.12, A = 
1.45) belongs entirely to the boundary of the region 
of existence of the Lorenz attractor and the passage 
through AZ is the same as described above for the 
case B = 1. 

To the right of the point G, the curve AZ is 
not already the boundary of the region of the ex­
istence of the Lorenz attractor. On AZ there is a 
countable set of the codimension-2 points Ri, cor­
responding to the homoclinic butterflies with zero 
separatrix value. In contrast with the branch deter­
mined by the condition, < 1/2, these points are 
not dense on AZ. To each such point the region 
of the existence of the orient able Lorenz attractor 
adjoins by a narrow sector (see previous section). 
When approaching AZ there appear the lacunas in 
the Lorenz attractor with multi-circuit periodic tra­
jectories inside, and the destruction of the Lorenz 
attractor occurs when the separatrices lie on the 
stable invariant manifolds of such cycles. 

Figure 16 shows this bifurcation on the bound­
ary component LA3 for the asymmetrical saddle 
four-circuit cycle. The curve LA3 begins with the 
point Rl(a = 0.57, A = 0.66) where the separatrix 
value A vanishes for the double-circuit homoclinic 
loop. 

The second essential feature of this bifurcation 
diagram is the presence of the point T( a = 0.38, 
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x 
-2.00 2.0 

Fig. 16. Disappearance of the Lorenz attractor on the 
boundary LA3: the separatrices tend to the asymmetrical 
saddle four-circuit cycles. 

x 
-2.00 2. 0 

Fig. 17. A heteroclinic contour containing all equilibrium 
states. 

A = 0.79) on the boundary of the region of exis­
tence of the Lorenz attractor. This point is also 
of codimension-2 and corresponds to the formation 
of the heteroclinic contour including all three equi­
librium states: the saddle 0 and the saddle-foci 
01 and O2 (Fig. 17). In accordance with Bykov, 
[1980, 1993], the existence of such points implies 
that there is a countable set of points n correspond­
ing to more complicated contours with same 
properties. A countable set of bifurcation curves of 
homo clinic butterflies spirals to each such a point. 
Besides this, lines of homoclinic and heteroclinic or­
bits of the saddle-foci 01 and O2 come from these 
points and finish at (a = 0, A = 0). 

The complete bifurcation analysis of the 
Shimizu-Morioka system is given in A. L. Shil'nikov 
[1993]. 
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~_H;'_-__ ~1r ____________ __ 

Fig. 18. A fragment of the bifurcation diagram in the parameter space (0, A, B). 

3. As the parameter B decreases, the structure 
of the boundary of the region of existence of the 
Lorenz attractor is simplified. We shall not describe 
all reconstructions of the boundary, but only point 
out the final moment B = -0.1075 ... 

The associated bifurcation diagram is shown in 
Fig. 14. At this value B there occurs the over­
linkage of the bifurcation curves corresponding to 
the double-circuit homo clinic butterflies. This is 
stipulated with the fact that the bifurcation surface 
of such loops has the saddle shape in the three­
parameter space (a, .x, B) (see Fig. 18). The upper 
branch H2+ of the intersection of this surface with 
the plane B = -0.1075 ... lies entirely in the re­
gion where the separatrix value A is positive. Since 
the curves LAI and LA2 starting from the point 
P( a = 0.542, .x = 1.387) are situated between this 
branch and the curve HI of the single-circuit homo­
clinic butterfly, the value A is also positive 
everywhere on them. 

Thus, the region of the existence of the Lorenz 
attractor adjoined to P is bounded only by these 
curves and goes up to (a = 0, .x = +(0). When B 
is decreasing till -1/3, the point P tends to (a = 
0, .x = +(0), and the region of the existence of the 
Lorenz attractor moves away to infinity. We note 
that the down branch of the curve H2 intersects the 
line I = 1 thereby causing the appearance of the 
new regions of the existence of the Lorenz attractor 
near these intersections. 
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