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A Proof of Shilnikov’s Theorem for C1-Smooth

ical Systems

Mikhail V. Shashkov and Dmitry V. Turaev

ABSTRACT. Dynamical systems with a homoclinic loop to a saddle equilib-
rium state are considered. Andronov and Leontovich showed (see [1, 3]) that
a generic bifurcation of a two-dimensional C!-smooth dynamical system with
a homoclinic loop leads to the appearance of a unique periodic orbit. Shilnikov
14, 15, 18] proved that in the case of dynamical systems of sufficiently high
smoothness, this result holds true in the multidimensional setting if some ad-
ditional conditions are satisfied. In the present paper we give a proof of the
Shilnikov theorem for dynamical systems in C'.

1. Main theorem

Let us consider a family of C'-smooth vector fields X, on an (n+1)-dimensional
manifold. We assume that the vector field X, and its first derivatives depend on u
continuously. Let the following hold.

(A) The system X,, has a saddle equilibrium state O, and the roots \,,..., A1,
of the characteristic equation of the linearized system at the point O for
pu = 0 satisfy the inequalities Re A, < --- < Re)l; <0 < #.

Thus, we can introduce local coordinates (z,y) (r € R®, y € R!) in a small
neighborhood of O so that the system X, takes the following form near O for © = 0

r=Ar+ ...
(1.1) T=AL
Y=Y t+....
Here A is an (n x n)-matrix with the eigenvalues {\1,..., \,}; the dots stand for

nonlinearities.

TI'he unstable manifold W* of O is one-dimensional (it is tangent to the y-axis
at O) and consists of three orbits: the point O itself and two separatrices leaving
O in opposite directions. The stable manifold W* is n-dimensional; it divides a

small neighborhood of the equilibrium into two parts: U™ and U~ (see Figure 1).
Assume that

(B) for p =0 one of the separatrices T is homoclinic to O, i.e., T C (WsNWH).
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Without loss of generality we assume that the separatrix I' leaves the point O
towards the region U™ (i.e., towards positive y, see Figure 1).

FIGURE 1. The system X has a homoclinic orbit 1" to the saddle
equilibrium O. The stable manifold W? divides a small neighbor-
hood of O into two regions: U™ and U~.

We consider the behavior of orbits in a small neighborhood U of the homoclinic
loop L=0OUT.

For systems on the plane (n = 1) this problem was completely solved by An-
dronov and Leontovich |1, 2, 3| (see also |4]). In particular, it was shown that if
the saddle value ¢ = A; + 7y is nonzero, then bifurcations of the homoclinic loop
produce only one periodic orbit. Thus, the bifurcation of such a homoclinic loop

was proved to be one of the four main bifurcations of the birth of a limit cycle on
a plane.
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FIGURE 2. A two-dimensional invariant manifold M exists near
the homoclinic loop £ = O U if and only if the leading eigenvalue
A1 1s real and simple, the loop does not lie in the strong stable
manifold W?*° and some additional transversality conditions are

fulfilled.

A similar multidimensional problem was considered by Shilnikov [15|. From
the modern point of view, one should immediately obtain a result similar to the two-
dimensional one in the case where a smooth, normally-hyperbolic two-dimensional
invariant manifold exists near the homoclinic loop (see Figure 2). However, the
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existence of such a manifold requires some extra conditions. First, the negative
eigenvalue A, nearest to the imaginary axis must be real and simple. The orbit
1" should not lie in the strong stable submanifold W?®® that corresponds to the
elgenvalues A,,..., Ao. Moreover, some transversality conditions must be satisfied
by the flow map near I' (see (21, 23, 11, 12, 7|, |10] (this also includes the PDE
case), |13]).

In fact, the existence of a two-dimensional invariant manifold is not so relevant
to the dynamics near a homoclinic loop. It was a remarkable discovery of Shilnikov
16, 19| that if the characteristic exponents at the point O satisfy a condition which
reads in our case as Im Ay # 0, — Re A1 < 7y, then generically there exist nontrivial
hyperbolic sets in a small neighborhood of the loop. In other words, the dynamics
near a homoclinic loop to a saddle-focus with positive saddle value is quite opposite
to that in dimension two. As of today, the Shilnikov homoclinic loop is a model of
chaotic behavior, which is very simple to describe and which has a very complicated
dynamics.

On the other hand, in the case of a negative saddle value, i.e., if
(C) o =ReA; +7v <0,

the bifurcation of the homoclinic loop leads to the appearance of only one stable pe-
riodic orbit, exactly as for the systems on the plane, no matter what the equilibrium
state O

) is—a saddle or a saddle-focus |1.

In the present paper we give a proof of the corresponding result for C''-smooth
systems. In order to describe bifurcations of X, we introduce the small parameter
1 as described below. Namely, we suppose that

(D) the separatriz I' does not belong to W* if u # 0.
It tollows from continuity with respect to u that after leaving a small neighborhood
of O, the separatrix I for u # 0 stays close to the locus of the homoclinic loop £

until it enters the small neighborhood of O once again. Without loss of generality
we assume that I' enters U™ at u > 0 and U™ at u < 0.

FIGURE 3. At u > 0, a stable periodic orbit L is born from the
loop £ (1 = 0). All the orbits (except for those tending to O) leave
at u < 0.

THEOREM 1.1 (see Figure 3). If conditions (A)—(D) are fulfilled, then there ex-

1sts a small neighborhood U of the homoclinic loop such that at all small 1 > 0 the
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system has a unique periodic orbit L, which 1s stable and, in particular, the sepa-
ratrix I' tends to L ast — +00. The other orbits in U that do not lie in W? either
tend to L or leave U in finite time. For u = 0 the periodic orbit becomes a homo-
clinic loop (which may attract some orbits of U \ W?, the other orbits leaving U).
For all small u < 0 all orbits of U \ W? leave U wn finite time.

FIGURE 4. The Poincare map 1': Sﬂ — SV is defined near S°NW?*.
The image T(W?* N SY) = P} is defined by continuity. The point
P? =T'NS° lies at the distance |d(u)| from SONWs.

PrROOF. We follow the lines of the original proof in |15|. Take a small cross-
section SV of the stable manifold W? so as to intersect the homoclinic loop at
it = 0. The stable manifold of O divides S into two regions: S} = S N U, and
SY = 58°NU_ (i.e., SS)F lies above W?; see Figure 4). Let P be the intersection point
' SY. For p = 0 the separatrix I" forms a homoclinic loop, so P§ € {S° N W*}.
Thus, the intersection point exists for all small . Let d(u) be the distance from
P to W2 N SV taken with the positive sign when SIS SR and the negative one

when P € SY. By assumption (D), the sign of d(u) coincides with the sign of u
(Figure 4).

An orbit which starts at a point P & SQL coes near the stable manifold in
a small neighborhood of O and then leaves the neighborhood staying close to the
separatrix I'. If i is sufficiently small, then moving along I', such an orbit intersects
SY again at some point P near the point P Thus, the Poincaré map 7T: P — P

is defined on S?r in a neighborhood of Ws. On W% N SY the map T is defined

by continuity: T(W?* N SY) = P;. The orbits which start on SY leave a small
neighborhood of O close to the other separatrix and, therefore, they leave the
neighborhood U of the homoclinic loop under consideration. Thus, the Poincaré
map 7 is not defined on SV

Shilnikov proved in |15] that if the saddle value o (see (C)) is negative, then
the map T is strongly contracting for small u (i.e., dist(T Py, TPy) < K dist( Py, P),
where the contraction factor K tends uniformly to zero as both P;, F» tend to W*N
SY). Then, he artificially defines the map 7" on SY. We shall do the same, assuming,

say, that TP = P at P ¢ SY. This extended map is also contracting (with the

same factor K'). In particular, at = 0, this map takes a small neighborhood of the
point P into itself. The same, obviously, holds for all small u. Thus, the Banach
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principle gives the existence of a unique fixed point; moreover, this point attracts
iterations (by the map 7" extended onto all 5 0} of every initial point on SY.

For © < 0 the fixed point is, by definition, the point P7. Since it lies in the
region S° U (W3 N SY) where the Poincaré map is not defined, no periodic orbit
corresponds to this point; it is a homoclinic loop at p = 0 or just a fake at p < 0.

For p > 0, the fixed point is the limit of the iterations of the point P;. This
point is the image of the line W?* N S° and it lies at the distance d(u) from this
line. Therefore, due to the contraction, all the iterations of this point (and their
limit, the fixed point) lie in the ball of radius K (1 — K)~'d(u) with center at P;.
If 1 is sufficiently small, one can assume that K < 1/2 and in this case the radius
is less than d(p). Thus, for 4 > 0 the fixed point of the extended map belongs to
the region Si. Hence, it is a fixed point of the true Poincaré map and there exists
the corresponding periodic orbit of the system.

All this is in a complete correspondence with the statement of the theorem. The
key point in the proof is to show that the Poincaré map is strongly contracting. For
this, computations explicitly involving second derivatives of the right-hand sides of
the system were used in [15]. Below (Sections 2 and 3) we prove the contraction in

the case of minimal smoothness (C'), by using Shilnikov’s boundary value problem
method discussed in [17]. []

At first glance, the passage from, say, C* to C* is an insignificant step. How-
ever, dynamical systems of low smoothness appear naturally when studying high-
dimensional systems reduced to a normally hyperbolic invariant manifold (say, to
the inertial manifold, or to a nonlocal center manifold as in the example below).
The smoothness of such a manifold, and therefore the smoothness of the reduced
system, does not correlate with the smoothness of the original system. In particular,
the conditions for the existence of a C%-smooth invariant manifold are much more
restrictive than for a C' one. Thus, the study of the bifurcational problems in the
case of the smallest possible smoothness may be crucial for a rigorous description
of the high-dimensional dynamics.

As an example, consider a C''-version of the result of Shilnikov [18]: a general-
ization of Theorem 1.1 to the case where the dimension of the unstable manifold of
O is larger than one. Namely, let X, be a continuous family of C l_smooth dynam-
ical systems on an (n + m)-dimensional manifold. Let us modify conditions (A),
(B) in the following way.

(A") The system X, has a hyperbolic equilibrium state O, and the characteris-
tic exponents An, ..., A1,Y,Y2,-..,%Ym ot the point O for n = 0 satisfy the
following condition: Re\, <--- < ReA; <0<y <Reyy < - < Reym.

(B") For u =0 there exists a homoclinic orbit I, i.e., ' C (W NWY).

The conditions (C), (D) remain unchanged.

In this case the dimension of the unstable manifold W* is equal to m and,
moreover, there exists an (m—1)-dimensional strong unstable invariant submanirold
Wyt c W*. The characterizing feature of W"" i1s that all orbits in 1t are tangent
to the linear subspace that corresponds to the eigenvalues s,...,v,, while all

orbits of W% \ W*" are tangent to the eigendirection corresponding to the leading
eigenvalue v. Let us assume the following condition.

(E) The homoclinic orbit I' does not belong to W** (see Figure 3).
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Note that the transversality must be verified only at one point on I' because the
manifolds M3T and WY are invariant with respect to the flow defined by the sys-
tem X,. One can check that condition (F) is equivalent to the requirement in |18
about the nonvanishing of a specific determinant. Note also that conditions (E)
and (F) are not so restrictive, because they are tulfilled in a general posa.mon

It is shown in [13] (in the case of higher smoothness in [22, 12, 6, 7]) that
when conditions (A'), (B), (E), and (F) are fulfilled, then there exists a small
neighborhood U of the homoclinic orbit I' such that, for all p small enough, the sys-
tem X, has an (n+ 1)-dimensional repelling invariant C*-manifold M, depending
contmuou,sly on w and such that any orbit not lying in M, leaves U ag t — +00.
The manifold M, is tangent at the point O to the linear 5’&58}?@66 corresponding to
the eigenvalues (An, ..., A1,7).

Due to this result, the study of the (n + m)-dimensional system is reduced
to the study of the (n + 1)-dimensional system on the invariant manifold M.
Evidently, for the reduced system conditions (A)—(D) hold, and therefore, Theorem
1.1 immediately carries over to the multidimensional case. Note that the periodic
orbit L born from the loop is now stable only on the invariant manifold M, and
since the manifold is repelling, the orbit L is unstable in the normal directions.
Thus, in this case, L is a saddle periodic orbit with m~dimensional unstable and -

(n + 1)-dimensional stable manifolds.

v value problem

In order to prove Theorem 1.1, we need appropriate estimates (strong contrac-
tion) for the Poincaré map near the homoclinic loop L. The study of the solutions
near the equilibrium state is the most complicated point here because the flight
time near O is unbounded and, therefore, we need the estimates which hold for
arbitrarily large times. The question on the local estimates does not appear if the
system can be linearized in a neighborhood of the equilibrium point. However, the
smooth linearization requires a lot of resonance restrictions plus extra smoothness.
Therefore, to find suitable estimates near the equilibrium, we use a meth@d based
on the consideration of a certain boundary value problem (see (17, 19, 8, 9, 20
In this section we investigate solutions of the Shilnikov boundary value pmbiem fOT
the case in which the smoothness of the system is C* only.

Let us introduce local coordinates (z,y) (r € R™, y € R*) in a neighborhood

of the saddle O so that the system X, takes the form

(2.1)

Here A is a matrix (n x n) such that Spectr(A) = {A1 ... Ay}. The functions f and
g are smooth with respect to (z,y) and depend contmuousiy on u along with the
derivatives. Moreover,

0@, y) (z,y,1)=0

According to [17], for any 7 > 0 and Y and y' small enough, in a small neigh-
borhood of O there exists a unique orbit {z(¢), y(t) }+cpo.- of system (2.1) which
satisfies the following boundary conditions:

(2.3) z(0) =2,  y(r)=y.
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Let us denote the solution of this boundary value problem by

(2.4) x(t) =z(t; 2",y mop),  y(t) =yt 20yt T w).

I'he theorem below follows from [17] (for completeness, we present a proof; ||(z, y) |l
denotes max(|z]), |y])))

T'HEOREM 2.1. For any small € > 0, if ||[(z°,y")|| < &, then ||(z(t),y(t))]| < &
i (2.4) for all 't € [0,7] and all small u. The solution (2.4) depends smoothly

on (t;z°,y',7) and, along with the derivatives, depends continuously on . The
follounng estimates hold for the derivatives:

oz, y) Nz, y)

—at —B(T—t
(2.5) 5.0 < Ce ™, l 5 l < Ce Blr—1).
where C, o, and 3 are some constants such that
(2.6) C>0, Redp, <--<RelMi<-a<0<fB<n.

Moreover, as € decreases, the constants o and 3 can be made arbitrarily close to
' Re \1| and ~, respectively.

PROOF. It follows from (2.2), that for any small £ > 0 there exists a small
e > 0 such that for ||(z,y)|| < € and for small u

o0(f,9) H
2.7 , < €e, < €.
2.7) IFol<ee |28 <
Note also that for any \ so that
(28) ,_1_’513,}( Re A; < —A,

the norm of x € R™ may be defined so as to have

(2.9) e < e ™ for s> 0.

Consider the Banach space H of continuous functions (z(t),y(t)) defined for
t € |0, 7], with the uniform norm

(2.10) |(2(2),y(t)) || = Sup. |(z(t), y(2))]l-

Let H. be the e-neighborhood of zero in H (i.e., H. is the set of continuous functions
with norm not greater than €). Let us take a small € > 0 and introduce the integral

operator 1': . — H that maps a function (z(t),y(¢)) to the function (Z(t), 7(¢))
defined by the following rule:

7(t) = eMiad 4 / A9 £(2(s), y(s), ) ds.
(2.11) ’

t
g(t) = eyt 4 / V=) g(x(s), y(s), u) ds.

It is easy to see that any solution of the boundary value problem (2.3) is a fixed

point of the integral operator 7' and any fixed point of the operator (2.11) is a
solution of the boundary value problem. Therefore, the existence and Uniqueness

of the solution of the boundary value problem follows from the fact that T is a
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contraction operator that maps H. into itself. Indeed, take any function (z,y)
from H.. Using (2.7)-(2.9), its image (Z,y) by T is estimated as follows:

2] < e 2] + / =9 ¢ | (2(s), y(s))| ds
<ol + S - e @)

1G] < e Dy + / "0 | (2(s), y(s))| ds

o q v
<e Ty + 2 (1 - e (@, y) e

’Y

(2.12)

On the interval 0 < ¢ < 7 the factors e~ and e~ 77"t are bounded in 0, 1].
Therefore, if ||(z,y)||z < € and ||(2°,y")| < ¢, then assuming that

(2.13) Emax(A\ 7,y ) < 1

we get ||(Z,9)||g < &; i.e., the e-neighborhood of zero in H is indeed I-invariant.
To show contraction, take any functions (z1,y1) and (z2,y2) from H.. As
above, we have the following estimates:

(2.14)

Thus, if € is so small that (2.13) holds, the contraction follows, 1.e.,

(1 — Zo, 71 — P2) |l < qll(z1 — z2,y1 — y2)|lm, with ¢ < 1.

According to the Banach principle for contraction mappings, the operator I
has a unique fixed point in H. for all (zY,y*, T, 1), i.e., the boundary value problem
(2.3) has a unique solution. It depends smoothly on the boundary data (2, y*)
because the integral operator T is smooth on H. (i.e., its Frechet derivative 1s
uniformly continuous) and it depends smoothly on (Y, y') so the latter is true for
1ts fixed point as well.

Since 7' is a smooth contracting operator smoothly depending on the parame-
ters (2, y'), the iterations of any initial function in £, converge to the fixed point,
along with the derivatives with respect to (330, yl). Thus the sequence of functions
(20, Y0), (z1,Y1), (x2,92), ..., obtained by the iterations

(2.15) (Tn+1(t), Yn41(t)) = T'(2n(t), yn(?))

with (zo(t),yo(t)) = 0, converges to the solution of the boundary value problem
and the derivatives 9(x,,,yn)/0(x°, y') converge to the corresponding derivative of
the solution.

Thus, to prove estimates (2.5), it is sufficient to check that tor appropriately
chosen constants C, «, and 3 (see (2.6)), if some function (z,y) satisfies (2.5), then
its image by T satisfies (2.5) as well with the same constants.
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By differentiating (2.11), we obtain

of 9d(z(s),y(s))
| A(t—s) A
(2.16) o o(x,y) Ox" s,
[" —sy 09  O(x(s),y(s))
2.1 [ et 22 L ds.
( 7) € 6(5;37 y) OxY 4

If the first inequality of (2.5) holds for (z(s),y(s)), then the equations above give
(using (2.7))—(2.9)):

g

8x0

” < e + Cfmax

or if « is close to and less than A, then

0.15) |otato. 56

OxY

<e

2.19) |

for 8 close to and less than .
T'hus, the image (7, y) satisfies estimates (2.5) with the new constant factor

Cnew = 1+ CQa

where ¢ = {max((A — o)™, (v — 8)7!). Given a and 3, assume ¢ is so small that
q < 1. In this case, if C' > (1 — q)_l, then Cheyw < C, which completes the proof of
estimates (2.5).

It remains to prove the smoothness of the so};ution of the boundary value (2.1),
(2.3) with respect to ¢ and 7. Since (z(¢;2% y, 7, 1), y(t;2°, 4y, 7, 1)) is an orbit
of the system X, the smoothness with respect to ¢ follows immediately. Let us
now fix any initial point (z",y") and let y'(7) be the y -coordinate of its time
7 shitt by the flow X,. From the definition of (x(¢;z° vt 7, u), y(¢t; 2%, ', 7, )
as the umque Soiutmn of the boundary value problem (2. 1) (2.3), we see that
(x(t; 20,y (1), 7, 1), y(t; 20,y (1), 7, 1)) is the time ¢ shift of (2", yY), independently
of the value of 7. Thus,

- (2.20) j]; (x(t; 2",y (1), 7, 1), y(&;2° v (1), 7, 1)) = 0.

Now, since y*(7) depends smoothly on 7 and
(z(t; 2™y, 1), y(t 20,y (1), 7, )

depends smoothly on y' (as we just have proved), the smoothness of
(x(t; 27yt 7o),y (2%, 4" (1), 7, 1))

with respect to 7 follows from (2.20) immediately (useful expressions for the deriva-
tives are given by (3.13), (3.14) in the next section). ]
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3. The Poincaré m

Now let us prove that the Poincaré map near the homoclinic loop L is strongly
contracting. This map is represented as a superposition of two maps: Tj,c and 1o,
where T'... is defined by the flow near the equilibrium point and Zgj, 18 defined by
the flow near the global piece of the homoclinic orbit I'. "T'nese maps are defined
on small cross-sections S° and S* (which we construct below): Tige: S 0+ S and
Tglo: S - S O.

The n-dimensional stable manifold W# of the point O is tangent to the piane
y = 0 at the point O = (0,0) at p = 0. Thus, W* is locally the graph of a smooth
function

(3.1) y =y’ (z,p), vy (0,u)=0,

0y° (z, p)

M 0.
ﬁﬂj (ﬂ),u):O

The unstable manifold W% of O is locally the graph of a smooth function

y 0z" (y, 1)
(3.2) r=z"(y,pn), z"(0,un)=0, e = ().
Y (y,1)=0
For u = 0, the orbit I' tends to O as t — +o00. Therelfore, the surface
(3.3) SO ={(z,y): Izl =¢& lz —zT,y —y7 || < 6}

s a cross-section for the orbits close to ' if p is small enough. Here (z™,y™) are
the coordinates of the first intersection of I with the surface ||x|| =& at u =0 (see
Figure 7), and £ and ¢ are small positive constants.

b TR
Ll

[ R T B
- . n
4 - g mo= o= 1
]
.......
T [
X e -
. Ce .
L ] - -
A .
N e
. " a
] -
P
+ = -
.
.

[y

e e - = — -

FIQURE 7. Two cross-sections can be constructed in the neighbor-
hood of O: S° near the point (zt,y™) and S* near (z~,y~ ). The
flow defines the maps 1joc: SS)F — St and Ty, St 89,

The manifold W* consists of three orbits: the equilibrium point O and two
separatrices, one of which is the orbit I' forming the homoclinic loop for p = 0.
Without loss of generality we assume that the orbit I' leaves O towards the posi-
tive y. So, for small positive 6 and y~ and for small u, the surtace

(3.4) St={(z,y):y=vy", [[(x —z7)| <}

s a cross-section for the orbits close to I'. Here (z—,y ) are the coordinates of the
first intersection of I' with the plane y =y~ at u = 0.

Both cross-sections S° and S! are n-dimensional. Without loss of generality,
we take (T1,...,Zn) as the coordinates on the cross-section S* and (z1,...,Zn-1,¥)
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as the coordinates on SY. Below we use the following notation (see Figure 7): So
tor the intersection of W*¢ with S°: 83_ for SYNUT and S° for S°NU ~; also (zY, y)
for the coordinates on the cross-section S° and 2! for the coordinates on S,

As we mentioned, the Poincaré map T near the homoclinic loop is the super-
position of the two maps 7},. and Lg1o- The local map is defined on S9 . it takes the
region that corresponds to small y° greater than y* (2", i) to a small neighborhood
of the point ' = 2= on §? (the orbits starting with y° < y® (2", 1), i.e., below
the stable manifold, go close to the other separatrix and do not reach S'). By
continuity, the map 7j,. may be defined at ¢° = Yo (zV, p1):

CZ—ylo't:S(()) =T .

I'he global map takes a small neighborhood of the point z! = z~ on S! into S
(see Figure 7). The flight time from S to SO is bounded, therefore, the map 1510
1s a diffeomorphism. In particular, its derivatives are bounded. Thus, to show the
required contraction of the Poincaré map 1 = Ty 0 Tise, it is sufficient to prove

the following lemma which, basically, shows that the local map 18 arbitrarily strong
contracting in a sufficiently small neighborhood of SP.

LEMMA 3.1. The map Tio. can be written as rt — oz, 9% 1), where L 1S @
C! function of (2, 4Y) defined on Sﬂ J Sy and its first derivatives vanish on Sy .

PROOF. According to Section 2, given 7 > 0 and small z°, 4!, there exists a
unique orbit (z(t),y(t)) = (z(t; 2°, yt, 7, ), y(t; 2%, y1, 7, 1)) which, at t = 0, starts
with the point (2°,y(0)) and reaches the point (z(7),y") for t = 7. Thus, fixing
y' =y~ and ||2°| = £, we see that the orbit of a point (z,yY) & SY reaches the

cross-section S*' at a point ! at the time T(zV, Y, p) if and only if

(3.5) y” =y(0;2% y~, (2% 40, p), )

and

(3.6) vt = (", y%, p) = (72, 9%, w); 2%y, (2,40, 1), ).

It follows from (3.5) that
(3.7) _?f__m__<_(?_?i )“19_@/_ o7 _(__8_3_{ )1
| Ox" OT t—0 OxY t:()? 8y0 ot t=0 |

By (3.6) and (3.7)
0w Ox Ox Ox oT
= (= += |
Oox?  0x0| __ ot |,_. Or|,__J)0x"

- Ox Ox Ox Oy Ay

S IS (-
O _ (03]  ow )_@:__ Or|  dz| \(dy| \'
0y°  \ot|,__ ~ or|,_ oy \ ot =y OT |, J\OT|,_,)
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(because, the limit 7 = +oo corresponds to a starting point on the stable manitold
W, or, what is the same, to (z", yV) € 57). Accordmg to Theorem 2.1,

!a(fﬂ, y) < C, < Ce 7T,
0z |, =0
310 5(z,y) )(a y)
i < Ce 97, < C.
axo {—T 8:!] =T

Thus, by virtue of (3.8), (3.10), it is suflicient to show that

—1
(3.11) lim (9:’5 0t ) (9’%’- ) ).
t=T 8T t=0

r—+oo \ Ot i or

To find estimates for the derivatives of z, y with respect to 7, note that by

the definition of the function (x,y) as the unique solution of the boundary value
problem (2.1), (2.3), we have the identities

[e—ten

y(t; 20yt o p) =yt 20, y(r + A x® yt, mop), T+ AT, ),

(3.12) 0o 1 _ 0 1 |
LU(t,:I? y Y 77-Hu) :ZL'(t—I—AT,SC(“AT,J} v Y 7T9“)9y :T_'l_ATHU’)'

Differentiation of (3.12) with respect to A7 at A7 = 0 gives

oy (9y
(313) 57__ ay ‘t—-—'r
and
or Ox oxr .
Now, by (3.10) and (3.14) we have
0x 0x o
(3.15) | _ + 5 = O(e*”) as T — +00

Since 9|~ is bounded away from zero (this is the value of y on the cross-
section S'), it remains to estimate Oy/ Oy' from below. For this, let us consider the
orbit (z*(t;2°, 4% u),y*(t;2°,y", u)) which starts at the point (z°,4") for t = 0,
i.e., the solution of the initial value problem.

All the time during which the orbit (x*(t),y*(¢)) is in a small neighborhood ot
the equilibrium state O, the following estimate holds for any fixed v* > =:

d || 0(x"(¢),y"(¢)) A0z (t), y* (1))
at Oy’ oyY

(this is true because the spectrum of the linearization matrix of the system (2.1)
at the point O lies to the left of the straight line Re(-) = v on the complex plane).
Since v* may be chosen arbitrary close to v and « arbitrary close to —Re A1 (see
Theorem 2.1), we may assume by condition (C) that

N

(3.16)

(3.17) a4+ v <O.
Inequality (3.16) implies
0y* (1) *t
(3.18) H o ! < ce

for some positive constant c.
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By definition,

(3.19) y =y (1327, y(0;2°, v, T ), T, )

(recall that the star indicates the solution of the initial value problem, whereas

y without the star corresponds to the solution of the boundary value problem).
Identity (3.19) implies

oy™ | Oy |
3.20 — | —= | = 1.
( ) 8@/0 N —ts ayl |t=0
By (3.18) and (3.20),
9, 1 )
(3.21) H ’y1 > —e 17
0y —0 C

Now, by (3.15),

(3.22) (g‘f

which, along with (3.17), gives the lemma. []

=T
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