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A New Simple Bifurcation of a Periodic Orbit
of “Blue Sky Catastrophe” Type

Leonid P. Shilnikov and Dmitry V. Turaev

ABSTRACT. In this paper, we study a global bifurcation of codimension one
connected with the disappearance (for positive values of a parameter u) of
a saddle-node periodic orbit Lo under the condition that all orbits from the
locally unstable manifold WY of Ly tend to Lo as t — +o00. Conditions are
presented which guarantee the blue sky catastrophe: the appearance of a stable
periodic orbit L, which exists for any small positive values of g but its length
and period unboundedly increase as u — +0.

1. Introduction

One of the main questions of nonlinear dynamics concerns the structure of
the boundaries of stability regions of periodic orbits. It was the question which
gave an initial impulse to the development of bifurcation theory, when Andronov
and Leontovich [1] discovered that for two-dimensional systems of ODE's there
are exactly four principal boundaries of stability of periodic orbits: on the first
boundary the stable periodic orbit bifurcates from a stable equilibrium (which, in
turn, loses stability), on the second boundary the periodic orbit coalesces with
an unstable one and then disappears, on the third boundary the periodic orbit
disappears merging into a homoclinic loop of a simple saddle-node equilibrium state
and on the fourth boundary the stable periodic orbit merges into a homoclinic loop
of a saddle equilibrium state with negative saddle value.

For the multidimensional case this list is extended in the following way. Obvi-
ously, there may be two types of stability boundaries: at the moment of bifurcation
the periodic orbit either does or does not exist. In the first case, the intersection of
the periodic orbit with a local cross-section is the fixed point of the Poincaré map, so
the loss of stability corresponds to a multiplier on the unit circle. We have exactly
three principal (i.e., those which are typical for generic one-parameter families) sta-
bility boundaries here: one corresponds to one multiplier of the periodic orbit equal
to (+1) and the remaining multipliers lying strictly inside the unit circle; this is the
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saddle-node bifurcation (Figure 1) analogous to the two-dimensional case; another
boundary corresponds to one multiplier equal to (—1), when the periodic orbit does
not disappear as it crosses this stability boundary and a period-doubling bifurcation
takes place; the third stability boundary corresponds to a pair of complex-conjugate
multipliers; this bifurcation gives rise to the formation of an invariant torus.

nu>0

FIGURE 1. The bifurcation of a saddle-node periodic orbit. a) At
it < 0 there exist stable and saddle periodic orbits. b) At pu = 0
the periodic orbits unite into the saddle-node. Its strong stable
manifold W** divides the neighborhood into the node region U_
and the saddle region U;. The unstable manifold W* lies in U, .
¢} At g > 0 the saddle-node disappears and all the orbits leave the
small neighborhood.

Stability boundaries of the other type correspond, as in the two-dimensional
case, to the birth of a periodic orbit from the stable equilibrium state (the Andronov-
Hopf bifurcation) or to the merging of the periodic orbit into a homoclinic loop (2] of
either a simple saddle-node equilibrium state (Figure 2) or a hyperbolic equilibrium
state with one-dimensional unstable manifold and with negative saddle value.

The following question immediately arises: Can there be other types of stability
boundaries of codimension one? It can be shown that the list above gives all the
principal stability boundaries for the case in which the length of the periodic orbit
remains bounded when approaching the bifurcation moment (although the period
may tend to infinity if the orbit merges into a homoclinic loop). Thus, the search
for new stability boundaries must presuppose the unbounded growth of the orbit
length.

In the present paper we do find such a stabilitv boundary, which does not
have two-dimensional analogs. The boundary is an open subset of a codimension
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FIGURE 2. A homoclinic loop I' to a saddle-node equilibrium O.

FIGURE 3. The global structure of the set W* in the case under
consideration. The image [* of the intersection I~ of the local
unstable manifold W _ of the saddle-node L with the cross-section
S, is homotopic to zero on the cross-section S). The intersection of
W with the local cross-section S in the node region is a countable
set of circles which accumulate at SN L.

one bifurcational surface corresponding to the existence of a saddle-node periodic
orbit. This open set is distinguished by some qualitative conditions determining
the geometry of the unstable set of the saddle-node (see Figure 3) and also by
some quantitative restrictions (a certain value should be less than 1, see below).
We shall show under these conditions that when the saddle-node disappears, a new
stable periodic orbit arises whose period and length both tend to infinity when
approaching the bifurcation moment (Theorem 1).

This is one of the possible scenarios for the global bifurcation involving the
disappearance of a saddle-node periodic orbit when all the orbits of its unstable set
return to the saddle-node as t — +00.
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The study of this global bifurcation has a long history. Originally, this problem
was raised in the twenties in connection with the study of the transition from
synchronization to the amplitude modulation regime in the van der Pol equation

4 p(l = 2%)2 + wiz = pAcoswt.

Under the assumption that u is a small parameter and that 1 : 1 resonance occurs
(i.e., w —wp ~ i), Andronov and Vitt showed that the transition from the syn-
chronization to the amplitude modulation regime is connected with a bifurcation
involving the birth of a stable limit cycle from a homoclinic loop to a saddle-node
equilibrium state (as in Figure 2) in the time-averaged system. Returning to the
initial equation, one can see that a similar picture occurs for the two-dimensional
Poincaré map, where the saddle-node is now the fixed point of the map and the
homoclinic loop is not a single orbit but forms a continuum of orbits that constitute
the unstable set of the saddle-node. At that time, this kind of analysis was not
carried out.

The study of this bifurcation started in (3] under the assumption that the
dynamical system with the saddle-node is either nonautonomous and periodically
depends on time, or autonomous but possesses a global cross-section (at least at the
part of the phase space under consideration). Essentially, the problem was reduced
to the study of a one-parameter family of C"-diffeomorphisms (r > 2) which has,
at u = 0, a saddle-node fixed point such that all orbits of the unstable set of the
saddle-node return to it as the number of iterations tends to +oc.

Recall that the saddle-node point has one multiplier equal to 1, the remaining
multipliers lying inside the unit circle. Near the fixed point, the diffeomorphism
(the Poincaré map) has the form

(1) {

where z € R, y € R", A is a matrix whose eigenvalues lie strictly inside the unit
circle, H(0,0) = 0, H('ylz}(O,[]) =0, G(0,0) = 0, G{y‘z)(0,0) = (). Here, the fixed
point O is at the origin. It is well known that there exists a C'"-smooth invariant
center manifold of the form y = n(z), where 5(0) = 0, #’(0) = 0. The map on the

center manifold takes the form

= Ay+H(y* Z)l
=z + G(y,2)

S TR

(2) z=z+g(2),

where g(z) = G(n(z),z) € C7, g(0) =0, g'(0) = 0.

The fixed point O (and the corresponding periodic orbit) is called a saddle-
node if g(z) has a strict extremum at z = 0 (a strict minimum, to be definite);
i.e., g(z) > 0 at z # 0. The saddle-node is called simple if ¢"(0) # 0. In this case
equation (2) takes the form

(3) E=z4+02% +...,

where [, = ¢g”(0)/2 # 0. Without loss of generality one can assume that [; > 0.
One can see (Figure 1b) that a small neighborhood of O is split by the strong-
stable invariant manifold {z = £(y)} (£(0) = 0, £'(0) = 0) into two regions: the
node region {z < &(y)} and the saddle region {z > £(y)}. All orbits from the node
region tend to O along the z-axis. The one-dimensional local unstable manifold
{y = n(z), z > 0} lies in the saddle region, and all its orbits tend to O with the
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iterations of the inverse map. All the other orbits from the saddle region leave the
neighborhood of O with the iterations of both map (1) itself and its inverse.

Let W* denote the global unstable manifold of O (the union of all iterations
of the local unstable manifold). As we mentioned, all orbits of W* are supposed
to return to the node region, i.e., 9W" = O. Thus, here the closure W* is home-
omorphic to a circle. It turns out that W* can be a smooth circle (Figure 4) or it
can be nonsmooth (Figure 5).

u>0

FIGURE 4. When (a) the set W* is smooth, a smooth invariant
curve is born (b) at g > 0.

FIGURE 5. The set W* may be nonsmooth; it may have “folds”
which accumulate at the saddle-node.

To study bifurcations in a small neighborhood of W™ one must introduce a
small parameter p. The functions H and G in (1) should be viewed as depending
on pu. We assume that u is chosen so that the saddle-node disappears when p > 0
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(Figure 1c). Generically, the saddle-node is simple and for p < 0, it degenerates
into two fixed points, one being a saddle and another being stable (Figure 1a). The
map on the center manifold is rewritten in this case as

(4) E=z4+p+lg2?+....

For the case where W* is smooth, it was found in [3] that when the saddle-
node disappears, an attractive smooth invariant curve inherits to W*. If the map
under consideration is the Poincaré map of a global cross-section for some system
of ODE's, then the invariant curve is the line of intersection of an invariant two-
dimensional torus with the cross-section (Figure 4b). The Poincaré rotation number
on the torus tends to zero as u — +0.

This result gave a rigorous explanation of the transition from synchronization
to amplitude modulation in periodically forced nonlinear systems: when u < 0, the
only stable regime is the stable periodic orbit which corresponds to synchronization,
and the invariant torus that exists at u > 0 corresponds to the modulation regime
(see the discussion in [4]).

For the case where W*" is a nonsmooth manifold, it was established in [3]
(under the so-called “big lobe” condition) that there exists a sequence of intervals
(4, pt}) accumulating at g = +0 such that the system has nontrivial hyperbolic
sets at pu € (p, ). Without the big lobe condition (but for one-parameter families
of a special kind), this result was proved in [5], on the basis of a theorem due to
Block on the existence of periodic orbits for endomorphisms of a circle. In [6] the
results of [3, 5] were extended to the general case; there it was also shown that for a
“sufficiently small lobe” there exist both intervals of parameter values corresponding
to complex dynamics (hyperbolic sets) and those corresponding to simple dynamics
(a continuous invariant curve with rational Poincaré rotation number).

An important feature in the nonsmooth case is the existence [5, 6, 7] of pa-
rameter values arbitrarily close to g = 40, which correspond to the existence of
saddle periodic orbits with nontransverse homoclinic orbits. According to our cur-
rent knowledge (see [8]), this leads to extremely complicated dynamics: to the
Newhouse phenomenon (persistence of homoclinic tangencies, coexistence of infin-
itely many sinks) {9, 10, 11, 12, 13, 14], to Hénon-like attractors (15, 16, 7|
and to infinite degeneracies 17, 14}, which make it impossible to give a complete
description of the bifurcations that may occur in this case.

In the present paper we show that if an autonomous system with a saddle-
node does not have a global cross-section, there may be considerably more different
possible cases. Let

&= X,(z)

be a one-parameter family of n-dimensional C"-smooth (r 2 2) dynamical systems
with a saddle-node periodic orbit L at p = 0. We assume that p is the governing
parameter for local bifurcations. Thus (Figure 1), at g < 0 there exist stable and
saddle periodic orbits which combine in one orbit L at g = 0. The local unstable
set W}, . is homeomorphic to the half-cylinder R* x S§'. The orbit L also has a
strong-stable manifold W;¢ that divides the neighborhood of L into two regions:
saddle and node. When u < 0, the saddle-node disappears and all orbits leave its
small neighborhood. Thus, for the Poincaré map on the center manifold

(5) z =2+ g(zp),
the nonlinear part g(z; u) is strictly positive at g > 0.
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Note that if the starting point of some orbit lies in the node region, then the
time which the orbit spends in a small fixed neighborhood of the saddle-node tends
to infinity as ;¢ — +0, as well as the length of the corresponding piece of the orbit.

Suppose that, at g = 0, all the orbits of W}* return to the node region and
tend to L as t — +00, not lying in W7*. The union W* of these orbits may, for
instance, be a smooth two-dimensional surface: a torus, or a Klein bottle (the latter
can happen if the phase space is nonorientable or if the dimension n of the phase
space is not less than four). Asin [3], the smooth invariant two-dimensional surface
is preserved for u > 0. As above, if the set W* is a nonsmooth torus, then saddle
periodic orbits with homoclinic curves may appear at x > 0; the same can happen
if W* is a nonsmooth Klein bottle under some additional conditions [6].

FIGURE 6. A codimension two bifurcation; the unstable manifold
of the saddle-node periodic orbit L tends to the saddle-node equi-
librium O whose unstable manifold, in turn, tends to L. When O
disappears, the configuration shown in Figure 3 emerges.

Previously we did not know of any essentially different situation in which the set
W* is not a manifold. First, consider the following example. Let a two-parameter
family of three-dimensional vector fields have, at some value of the parameters,
a saddle-node periodic orbit L and a saddle-node equilibrium state O (Figure 6).
Suppose that all orbits of W}' tend to O as t — 400 and that the one-dimensional
separatrix of O tends to L. If one of the parameters is varied so that O disappears
and L does not, then the set W* will have the form shown in Figure 3. The
intersection of W* with a local cross-section S to L will be a union of a countable set
of circles accumulating at the point S L (Figure 3). Evidently, any neighborhood
of this point in the set W* is not homeomorphic to a disk. Therefore, in this case
WU is not a manifold.

Systems having a simple saddle-node periodic orbit with the set W* as shown
in Figure 3 constitute codimension one surfaces in the space of smooth flows in R”
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(n =2 3). Below, we shall show (see Theorem 1) how open subsets are distinguished
on these surfaces so that for any one-parameter family X, that intersects such a
subset transversely at p = 0, the system X, has (at all small p > 0) an attractive
periodic orbit whose period and length tend to infinity as u — +0.

Note the relation of this result to the problem of the “blue sky catastrophe”
[18]. The original formulation was as follows: Does there exist a continuous one-
parameter family of smooth vector fields on a compact manifold that have a closed
orbit L, at all u > 0 and, as p — +0, the period of L, tends to infinity so that L,
disappears at = +0 at a finite distance from the equilibrium states'?

Virtual bifurcations of such kind were called blue sky catastrophes by Abraham.
The first example of such a catastrophe was constructed by Medvedev [19] for a
one-parameter family of vector fields on a Klein bottle with a saddle-node periodic
orbit at g = 0. Medvedev’'s family was of a rather special kind: the system that
corresponds to g = 0 is also embedded in a one-parameter family of conservative
vector fields all orbits of which are closed. The Poincaré map for this conservative
family has the form

p=—-p+w(p) modl,
where w — 00 as g — +0. This map has two fixed points, all other points are of
period two. Basically, Medvedev used the fact that this family can be perturbed
so as to have only two periodic orbits: one stable and one unstable fixed point; the
stable fixed point corresponds to a stable periodic orbit whose period and length
tend to infinity as g — +0.

In a generic perturbation of Medvedev's one-parameter family both fixed points
bifurcate infinitely many times as pp — +0, changing their stability (this was noticed
in [20] and studied in more detail in [21]). Formally, the blue sky catastrophe
also takes place here because the structural stability of the periodic orbit under
consideration was not required in the original formulation.

The construction proposed in the present paper gives another solution to the
blue sky problem. At the same time, it seems to be more adequate because the
periodic orbit in Theorem 1 is stable (attractive) for all ¢ > 0 and this property
holds for an open set of one-parameter families.

The precise formulation of the result is given in the next section. The proof
is based mostly on the evaluation of the local (Lemma 1) and global (Theorem 2)
“through™ map at small g > 0: the proofs are presented in Section 3. The com-
putations are quite straightforward if the smoothness of the system with respect
to the phase variables and the parameter is sufficiently high (in this case reduction
to an almost autonomous normal form is possible) (22, 23, 7, 26]; the general
case of low smoothness which we treat in the present paper requires more delicate
calculations.

In fact, the results of Section 3 are applied to an arbitrary configuration of the
set W*, allowing one to establish a correspondence between the dynamics near W
and the dynamics of the one-dimensional essential map introduced in Section 2.
The essential map is defined on a circle and its degree m defines the topological
type of W*“. Thus, at m = 1, the set W*" is homeomorphic to a torus, at m = —1
it is a Klein bottle. The present paper deals with m = 0, which corresponds to
W as shown in Figure 3. In this case, under the conditions of Theorem 1, the
dynamics of the essential map is trivial, so the main result follows immediately from

'The latter implies that the length of L, also tends to infinity.
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the reduction principle of Theorem 2. More examples of the use of this principle
can be found in [6] for the case in which W* is a torus or a Klein bottie and in
(22, 23] for other cases.

In particular, these papers treat the case |m| = 2, which is possible in R"
for n > 4. In this case hyperbolic attractors (the Smale-Williams solenoids) may
appear via an analog of the blue sky catastrophe. More examples based on the
disappearance of saddle-node invariant tori are given in [23].

2. Main: results

Let U be a small neighborhood of W* and Uy a small neighborhood of L, U €
U. Let us cut Uy by a local cross-section S and consider the coordinates (y, z, ©),
where ¢ € [0,1] is the angular variable and (y, z) are the normal coordinates,
z € R is a coordinate on the center manifold, v € R”~? is a vector of coordinates
corresponding to the multipliers less than 1 in absolute value; the values ¢ = 0 and
@ =1 correspond to the points lying on S.

The surfaces ¢ = 0 and ¢ = 1 are assumed to be glued by some involution,
namely, by changing the sign of a number of components of the vector y. If this
number is even (this is the orientable case, where the product of the multipliers of
L is positive), then Uy is a solid torus. If this number is odd (the nonorientable
case, where the product of the multipliers of I is negative), then Uy is the product
of a Mébius strip and a disc D™ 2.

As it is well-known (see, for example, [24]), under an appropriate choice of the
involution that glues the surfaces {¢ = 0} and {¢ = 1} one can without loss of
smoothness introduce coordinates such that the linear part of the system near L is
independent of . Thus, the system near L takes the form

g = Ay + H(z,y,¢; 1),
(6) ¢ = Glz,9,9; 1),
p=1,

where H and G vanish at (y =0,z =0, u = 0) along with the first derivatives
with respect to (z,y); the eigenvalues of the matrix 4 lie strictly to the left of the
imaginary axis. We also assume that the center manifold W€ is locally straightened,
so that it takes the form {y = 0}. Correspondingly,

(7) H(z,0,0;p) = 0.

Further, let us straighten the strong stable invariant foliation [27, 28] trans-
verse t0o the center manifold. The leaves of the foliation are given by

{z = Qly; . 7', 1), ¢ = const},

where 2’ is the coordinate of intersection of a leaf with the center manifold; @ is
a C"'-function (it is C" with respect to y). The straightening is the coordinate
transformation z — 2. Tt brings the invariant foliation to the form {z = const, ¢ =
const}. Thus, the last two equations in (6) now become independent of y and the
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system can be rewritten as follows:

y = Ay + H(z,y, ¢ 1),
(8) 2= G(z,; ),
@ =1.

By construction, the new function G is the former one taken at {y =0}; soit is
still a C"-function.

In the new coordinates, the strong-stable invariant manifold W}* is the surface
{z = 0}; the node region U_ now corresponds to small negative z and the saddle
region U/, corresponds to small positive z.

As we mentioned, the invariant foliation is a priori C"~!. However, but it can
be shown (Lemma 4) that it is, in fact, C" everywhere except for W;* at u = 0.
The coordinate transformation which reduces (6) to (8) has the same smoothness.

According to the theorem “on the embedding into an autonomous flow™ (see [5};
cf. Lemma 5 of the present paper), there exists a transformation of the coordinate
2: 2+ Z(z,¢) which brings the second equation of (8) to an autonomous form for
i = 0 (note that this transformation is identical at ¢ = 0 and is uniquely defined
by the nonlinear part g of the Poincaré map on the center manifold (see (2))).
Therefore, we assume

oG

—_— 0.
de =0

i

(9)

In other words, at u = 0 the last two equations of (8) take the form
(10) ¢ = g(z2), $=1,

where g(0) = 0, §'(0) = 0. If z # 0, then g(z) > 0. It is shown in Section 3 (see
the comments after Lemma 5) that the “embedding” transformation z — 2 is C”
at z # 0. Thus, system (8) after the transformation is C"~! at z # 0, whereas the
flow map between any two cross-sections that do not intersect {2 = 0} remains C".

Take small positive ¢* and £~. Consider two cross-sections Sp: {z = —&¢7}
and S;: {z ="} to the flow X,,. In the orientable case, S, and S, are solid tori
S' x D" 2; in the nonorientable case, they are homeomorphic to the product of
the Mobius strip and the disc D" 3.

At p = 0 (hence, at all small z), all orbits of W' return to the node region
U~ = {z < 0} in finite time. Therefore, the flow X, defines a diffeomorphism T;
by which a small neighborhood of the intersection line I : {y = 0} = W" N S, is
mapped into Sy. This map has the form

(11) yo = pler, yii ). wo = q(@1,v1;#) mod 1,

where the coordinates on Sy and S| are denoted by (g, yo) and (@), y1 ) respectively;
C7"-smooth functions p and ¢ mod 1 are l-periodic in .

The curve Y = Tyl : {yo = p(1,0;0), o = q(;,0;0) mod 1} is the inter-
section of W* and Sy. Note that the function ¢ can be written in the form

(12) q(p, y: ) = mp + qolp, i 1),

where ¢y is periodic in ¢. The integer m defines the homotopy class of [* in S;
(the sign of m defines the orientation of " with respect to [ 7).
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F1GURE 7. If the phase space is four-dimensional (or higher), the
cross-sections Sy and S; are at least three-dimensional. Therefore,
the image I of the curve [~ may be a multi-round closed curve.
The figure gives an example with two rounds (m = 2).

If the dimension n of the phase space is greater than three, then S, is at
least three-dimensional and the integer m may be arbitrary (see Figure 7 for the
case m = 2). At n = 3, the cross-section Sp is a two-dimensional annulus in the
orientable case. Therefore, in this case m can only take the values 1 (Figures 4, 5), 0
(Figure 3) and —1 (the latter only on nonorientable manifolds). In the nonorientable
case at n = 3, the cross-section Sy is a Mobius strip, therefore, we can only have
m=0,+1,42. At n = 2, Sy coincides with [ and we can only have m = +1.

Note that the structure of the set W" is completely determined by the way
W* adjoins to L from the side of the node region. It is not hard to see that the
intersection of W" N U_ with any cross-section of the kind {¢ = const} consists,
at m # 0, of |m| pieces glued at the point {z = 0, y = 0} = Ly N {¢ = const}.
It is clear that pieces of W corresponding to different values of m are mutually
nonhomeomorphic. It is also clear that W* is a manifold if and only if m = +1 (a
torus or a Klein bottle respectively).

We define the essential map

(13) w = f(p) = my + qo(p, 0;0).

It is defined at & = 0. By construction, it is obtained as follows: apply the map T to
the intersection line of the unstable manifold W* = W<n U, with the cross-section
S, and then project the image on the center manifold along the leaves of the strong-
stable foliation. The projection is done in Sp, which lies in the node region where
the foliation is defined uniquely (27, 28]. Thus, once the cross-sections Sy and S;
are fixed, the essential map is defined uniquely modulo coordinate transformations
on the center manifold (the center manifold in the node region is not unique, but
systems on different center manifolds are conjugate by the projection along the
strong stable invariant foliation, therefore the choice of another center manifold is
equivalent to a coordinate transformation on the initial one).

In fact, the set of coordinate transformations which keep the system at g = 0
in the form (10) is rather small. Indeed, a new coordinate ¢ must satisfy

d
ET ew — @) =0,
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hence the difference ., —  must be constant along the orbits of the system. In
particular, it is constant on L. Now, since any orbit on the center manifold tends
to L either as t — +oo or as t — —o00, it follows that v — ¢ = const everywhere
on W€, Fuarther, since the equation for 2z in (10) must remain autonomous, one can
show that only autonomous (independent on ¢) transformations of the variable z
are allowed. Indeed, consider first & transformation which is identical at = 0. By
definition, it does not change the Poincaré map of the cross-section S: {p = 0},
therefore, by the uniqueness of the embedding into the flow, if such. a transformation
keeps the system autonomous, it cannot change the right-hand side. We see that if
Znew = 2z at @ = 0, then the time evolution of z,., and the time evolution of z is
governed by the same equation, which immediately implies that zye = z for all ¢
in this case. Since an arbitrary transformation is a superposition of an autonomous
transformation and a transformation of the kind we have just considered, this proves
the claim.
Thus, the only possible coordinate transformation is

(14) ¢ —  + const, z = Z{z).

For the essential map, the effect of such a transformation of z is equivalent to
the shift of the cross-sections Sy and Sy to z = Z71(—¢7) and z = Z (™)
respectively. Since the evolution of z is autonomous, the flight time from a cross-
section {z = const} to any other cross-section of this form depends only on the
position of the cross-sections, but does not depend on the initial point on the cross-
section. Thus, any shift of Sy or S is equivalent to a rigid rotation of ¢, or ¢
respectively. We see finally that

the essential map is uniquely defined by the system at u = 4, modulo
an arbitrary additive constant and a shift of the origin:

@) = o+ e+

The essential map carries most of the information on the global saddle-node
bifurcations. As we mentioned, its degree m defines the topological type of W*. If
Im| = 1, then W" is smooth if and only if f(y) does not have critical points (cf.
with [5, 6]). Below (Theorem 2), we give a precise formulation to the following
reduction principle:

the bifurcations in U(W™) at u > 0 follow the bifurcations in the
family of one-dimensional maps

(15) B =w(p)+ f(¢) mod 1,
where w increases to infinity as p — +0.

This was used explicitly in [6] for the case [m| = 1; the study in [5] was
essentially based on the same idea. In terms of [25], for the orbit of W* intersecting
51 at ¢ = @y, the derivative f'(y1) equals the conventional multiplier of the orbit,
i.e., the quantity which determines the value of the multiplier of a periodic orbit
that may be born nearby when I disappears.

The theorem below is another consequence of the reduction principle.

THEOREM 1. Let m = 0 and |f'(@)] < 1 for all ¢. Then, for all small > 0,
the system X, has a stable periodic orbit L, (nonhomotopic to L in U) which
attracts all orbits of U.
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Notice that we do not require here that the saddle-node L be simple. If it is,
however, a simple saddle-node, then systems close to Xy and having a saddie-node
periodic orbit close to L constitute a codimension one bifurcational surface in the
space of dynamical systems. By construction, the function f depends continuously
oh the system on the bifurcational surface. Thus, if the conditions of Theorem 1
are fulfilled for some system Xg, they are also fulfilled for all close systems on the
bifurcational surface. This implies that Theorem 1 is valid for any one-parameter
family that intersects the surface transversely near X,. In other words, our blue
sky catastrophe occurs generically in one-parameter families.

The proof of Theorem 1 is based on the calculation of the Poincaré map 7 =
Ty o Ty of the cross-section Sy, which is defined by the orbits of X, for all small
t > 0. Here, 7} is a global map defined by (11) and Ty: Sy — S is the through
map defined locally near L at p > 0.

Since the last two equations in (8} are independent of y, the map Ty : (yo, wo)
(y1,41) 1s written in the form (for some C7-function Y)

(16) y1 = Y {0, Yo, 1),

¢1 = o + T(wo,u) mod 1.
The function 7 is the flight time from Sy to S;. It is a smooth function periodic
in ¢g. Clearly, we have (g, 1t) — 00 as p — +0. In the next section we prove the

following

LEMMA 1. If (9) is satisfied at p = 0, then O /0 uniformly tends to zero as
i — +0 in the C™'-topology.

Denoting w(p) = 7(0, i), from this lemma we obtain
(17) (w0, ) = wlp) + o(1).
Besides, since the spectrum of the matrix A(u) from (6) lies strictly to the left of

the imaginary axis and since, by (7), 7 = (A + h)y for some O '-function h, it is
routinely shown that

(18) [Yicr— < Ofe)
for some positive . In fact, we shall note in the next section that
(19) IYller — 0 as p— 0.

Collecting formulas (11), (12), (13), (16), (17), and (19) we obtain the following
result.

THEOREM 2 (reduction principle). As u — +0, the Poincaré map T = Ty o T}
approaches (along with all derivatives) the map

(20) y=0, @=w+f(p) modl

In the case of Theorem 1 (|f/(p)] < 1), the map (20) is contracting. Hence, for
each w it has a unique attractor, namely, the unique stable fixed point. The same
is clearly valid for all close maps, in particular, for the map 1" at small 1 > 0. Since
the map 7" is defined by the orbits of the flow X, the fixed point corresponds to
the attractive periodic orbit L, of X,. This proves the theorem: the period of L,
grows in proportion to w(u) and it tends to infinity as u — +o00; since the vector
field of X, does not vanish in U, it follows that the length of L, also tends to
infinity.
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The rest of the paper is devoted to the proof of Theorem 2. For greater general-
ity, we consider also the case where the system depends on p smoothly: we assume
that

the first derivatives of the right-hand sides of (6) with respect to the
phase variables (y, z, ) are C"™~! with respect to all variables and p.

Assume also that the local Poincaré map near L depends monotonically on u, i.e.,
(21) 9,,(0;0) >0

in (5). In this case we prove that dw/du # 0, i.e., w can be taken as a new parameter
and g may then be considered as a function of w which tends to zero as w — co.
We prove (Lemma 9) that all derivatives of u with respect to w tend to zero also.
Lemma 1 remains valid, concerning now the derivatives of 7/, with respect to both
w and . Theorem 2 reads exactly as before, “all the derivatives” now include the
derivatives with respect to w.

3. Calculation of the through map

In this section we give the proof of Lemma 1 and other facts related to the
proof of Theorem 2. Let {29, 2;,...} be an orbit of the local Poincaré map (5) of
the system X, on the center manifold at u > 0:

(22) zjv1 = z; + 9(z5: 1),

where the variable z is assumed to belong to some small interval [—e~, e*].

Since g > 0 if u > Oorif g = 0 and 2z # 0, the sequence {z9,21,...} is
monotonically increasing: zp < z; < -+ < z; < ... in this case. We shall use the
following simple estimate:

g1 1-1
(23) Y9z =) (s -2)=z-2<et +e.
=0 1=(
LEMMA 2. For some smooth function ¢
0z, _ 9(zim) { }
24 Udy B _— (2t
(24) 5 M) xp sz “

1=0)

where ¥, E, o Y{zi; ,u) 5 umfomly bounded for all p 2> 0 and for all zy and
720 such that —e~ < zp < z; €€t

Proor. By differentiating (22), we obtain

dz]+l

25 :
(25) B0

= (g} . and 25 ﬁ(1+ z;
B 0z Dzy i—0 g e

Thus relation (24) is fulfilled for

(1+ gi(z;#))g(z:#)_

(26) = 9(z; )

Since

1
9(zp) = g(z + g(z;u)i 1) = g(z;u)(l +/n 9:(z + sg(z:p)i ) d3)~
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it follows that

1
iy < zas 1) — g (2 + Zit i) 1
@) [ (2i; )] T mie o o 00e ) o2 |92 (=35 1) — 9221 + sg(zi 1) 1)
< Cglzi ),
where "
T |92 (5 14)]

1 —max,eo- o+ g, (z )] |
Since g/, is small by assumption, the factor ' is finite. Hence, the uniform bound-
edness of Zf;& ¥(z;, p) follows from (27) and (23), which yields the lemma. O

LEMMA 3. At small 1 20, for any k = 1,...,r the following estimate holds:
Oz
D2

uniformly for all zy and z; from [—e7 1], provided zg is bounded away from zero.

(28)

< const -g(z;; @)

Proor. By Lemma 2, the estimate (28) holds at & = 0. Suppose it is fulfilled
for all k < kg for some ky. In this case similar estimates holds for the same k for
any smooth function of z;. Indeed, if 3 is some C*-function of z, then the kth
derivative of 3(z;) with respect to z; is represented as the sum of terms of the form

const.asﬁ <5k12j> (akszj)
923 \ 9z dzps )

where 1 <s <k, ki =21,..., k21, and k1 + -+ + ks = k. By (28), the absolute
value of such term is estimated from above by O(g(z;; 1)°). Indeed, since g is small,
it follows that

ok 3
8_20? < const -g(z;; 1)
In particular, the validity of (28) at all k¥ < kg < r — 1 implies that

gk .

(29) % < const -g(z;; 1),
K,/ .

(30) %’ZS’M < const -g(2;; 1),
Oz

where 10 is given by (26). By Lemma 2,

o+l _ ko (g{::j;M) B‘l"j(zo;.u)>
8z§°+1 8zé’0 g{zo5 1)

Thus, the (kg + 1)th derivative of z; is represented as the sum of terms

- ) ( - : ) ( - o )
31 25y Lb e FEHD)
(81) (8z§1 90255 4) 8252 9(zo; ) 8zé°3

taken with some constant coefficients; here, ky + ko + k3 = kqg. _

The first factor in this product is estimated by (29), the second factor is
bounded if zy is bounded away from zero. The derivative 8%V, /325 is uniformly
bounded at any £k < kg because

o° g1 Bap; j1
(32> ‘578 j‘[ - ; 025 gO(;Q(Z’iEM)) Sconst-(&ﬂL +e7)
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(see (23), (30)}). Therefore, the third factor in (31) is uniformly bounded. Thus,
estimate (28) remains fulfilled at £ = ky + 1. By induction, this proves the lemma.
L]

Let us now prove that the strong stable invariant foliation of system (6) is ¢~
smooth outside the strong stable manifold. This is a necessary step to ensure the
transition from (6) to (8) without an essential loss of smoothness.

LEMMA 4. Let the leaves of the strong stable invariant foliation of system (6)
be given by {z = Qy, z', ¢, 1), ¢ = const}, where 2’ is the intersection of the leaf
with {y = 0}. Then Q is O7 with respect to (y,z',¢) in the region { > 0} U
{1 =0,z40}.

Proor. It suffices to prove the smoothness of the strong stable foliation z =
Q(y, 2, 1) of the local Poincaré map II: § — S given by (1), where the center
manifold is straightened to {y = 0} so that

(33) HO,z,0) =0, and G0,z u) = g(z; p).

Thus, § = (A{g) + h(y, 2, 1))y for some C7~lfunction h. Since z grows sub-
exponentially, this equation gives

(34) lyillor—r < O(e™),
where y;, as a function of a point (y, z), is the y-coordinate of the jth iteration of
this point by II; here a > 0 is such that the spectrum of A lies strictly inside the
circle | - | = e™® in the complex plane.
By invariance of the strong stable foliation, we must have
(35)
Qy, 7', 1) + Gy, Qy, 2, p), 1) = QA + H(y, Qy. 2, 1), 1), 2 + 9(z' 1)),

Thus, at i+ > 0, once @ is defined on the fundamental domain et < 2/ < et +
g(et, 1) in an arbitrary (smooth) way, by applying (35) repeatedly we can define
it on a whole neighborhood of the origin (because at ¢ > 0, for any 2’ € [—¢,& 7|
some iteration of it by (5) enters the fundamental domain). At g = 0 the function
Q is defined by continuity. It is well-known [27, 28], that this procedure indeed
defines a C"~!-function Q. Moreover, Q; is also C"~'. Thus, we have only to prove

the existence and continuity of Qg?y,. By (35)

J—1
o4 oQ
(36) E?(y7z,7/u’) = @(yJazJaﬂ) ’ Ej(p(yjaz.j’fl’)?
where
_ L+ g.(zp) _
14+ Gy, Qy, 2, 1), 1) — Q) (y, 2, W) HL(y, @y, 2, 1)y 1)
here, zy = 2/, z1,.... 2y is the orbit of 2/ by the map (5) with the last point z; in

the fundamental domain, and y; is the y-coordinate of the jth iteration of the point

(v, Q(y, 2, 1)) by the map (1): (y;, Q(y;, 25, 1)) = W (y, Qly, z', ).
This formula defines @, as a " '-function at g > 0 and at p =0, 2/ > 0. At
z' < 0, the limit g — +0 gives

d
(37) Q - (y,2',0) H@ Yi, %, 0)

g=0
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(since y; tends to zero exponentially as j — 400, uniformly in y, it follows from (33)
that ¢; tends exponentially to 1, i.e., the product converges uniformly; moreover,
QL (s, 25, ) — 1, because Q(0, z, u) = 2z by definition).

It remains to prove that (37) defines a C" *-function at 2/ < 0. For this, one

must show that the series
J k

> o By, 2, 0)

% VEETE
= 0z
converges absolutely and uniformly in u for all £ < » — 1. Since ¢ is smooth, it
suffices to prove that the series

J
z 9* (y; ﬁl
Dz

=0

converges absolutely and uniformly for £ < » — 1. The latter immediately follows
from (34), (23), and (28). The lemma is proved. [

Another result necessary to properly define the essential map (13) is given by
the following lemma.

LEMMA 5. There exists a unique smooth function g(z) such that at ;= 0 the
local Poincaré map on the center manifold

(38) z=2+g(z0)
cotncides with the time-1 map of the flow
(39) z2=g(z).

The function g is given by
9(%;0) eXp{ — 5 (a 0)} at z <0,
i=0

g0 exp{ — 3 (=0} at 2 >0,

i=—1

(40) a(z) =

where {z;} is the orbit of z = zy by the map (38); ¥ is the function defined by (26).
PROOF. The map (38) coincides with the time-1 map of flow (39) if and only
if

(41) f%ﬂ.

Since z = 0 is the fixed point of (38) with multiplier equal to 1, it follows that §
must vanish at zero along with §’. Taking the limit z — 0 in (41), we get

im g(z) =
(42) o otz !

/z ds Z—z g(#z0)
2 9(8) §z) + 39 (2) (2 = 2) +o(z — 2) )
here we use the smoothness of g at zero.
Differentiating (41), we obtain
1 "(z;0 1
(43) Tels0) 1,
(z) 49(2)

because




182 LEONID P. SHILNIKOV AND DMITRY V. TURAEV

Therefore, for z < 0,
-1

d(z) = §=) [ [ (1 + ¢ (z:50)
=0

which gives (40) by virtue of (42), (24), and (25). The series 3, % ¥(z;0) is
convergent due to (27), (23). For z > 0 formula (40} is obtained in the same way.

Thus, the smooth function § satisfying (41) is indeed defined uniquely and
it must be given by (40). It remains to prove that the function § defined by
(40) is smooth (obviously, it satisfies (43) and (42), which implies (41) for smooth
functions). The first derivative is given, for z < 0, by the formula (we use (24)):

+oo - j—1 +co
4
§(z) = {gf(;;) — Zw/(zj; 0)g(z;;0) exp{ ZQ/)(Z@'; {})}jl exp i = Zw(zj; 0)}
=0 N =0 #=0

The series here are uniformly convergent and bounded by virtue of (27) and (23).
Moreover, since g.{(;0) = 0 and ¥,(0;0) = 0, it follows that §'(—0) = 0. Anal-
ogously, ' (+0) = 0; i.e., the function § defined by (40) is smooth at zero. The
lemma is proved. ]

Note that the series > .o 1(2;0) for 29 < 0 and ST (2450 for 29 > 0
absolutely converge together with the derivatives with respect to 2o up to the order
r — 1 because all partial sums are uniformly bounded according to (30), (23). Thus,
the function g is C7' at z # . Hence, the time ¢ shift z — 7 (z) of the system
(39) is C" with respect to z at z # 0.

If z +— (2, ) denotes the time ¢ shift of the point (2, ) on the center manifold
of system (8), then 7_,(z, ¢) is the projection of the point (z, ) onto the local cross-
section §: {¢ = 0} by the backward orbit. By uniqueness of g, the transformation
z — Z(z,¢) = m, 07, is the unique l-periodic transformation in o which is
identical at ¢ = 0 and which brings the last two equations of (8) to the autonomnous
form (10). As we just showed, the transformation is C” at 2 # 0, hence, the essential
map and the map T of Theorem 2 are €7 indeed.

Now let us proceed directly to the proof of Theorem 2 {first, for the case where
the right-hand sides depend only continuously on ). At p > 0, for any zp there
exists an integer N (zp) such that the Nth iteration zx of 2o belongs to the interval
£, =10,g(0; u)[ (N > 0for zg < 0and N <0 for zp > 0). Let

N

‘ 9(0; )

Since |zn| < g(0; 1) and gz, 1) = ¢(0; 1) + gL(0; 1)z + o(zy), it follows that
g(zn; 1) /g(0; n) — 1 as g — +0. Thus, by Lemma 3, we get

LEMMA 6. All derwatives of ((z; 1) are uniformly bounded.

Let us define

(44) o(z; ) = 6{C(2); ) — N(z),
where
¢ ds RSSO
(15) oG = [ gm0l [ g

(46) (¢ ) = SO
’ 9(0; 1)

7
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and x(¢) is a C"-function equal to 1 at |{| < § and equal to zero at | — 1| < § for
some small § > 0. Note that

(47) lim GG p) =1,
0
(48) Jim (0(Gi) — ) =0,

where the limits are taken in C"-topology.

By definition, o(z; i) satisfies
(49) o(zp) = oz p)+ 1.

LeMMA 7. The function o(z; 1) is C7. Moreover, for small z % 0 we have

do 1

(50 lim =2 = —
(50) w0 dz g(z)’
where the limit is taken tn the C" '-topology; § is the right-hand side of system
(10), defined by (40).

PROOF. By definition, o is C” on I,,. Thus, by virtue of (49) it is sufficient to
check the continuity of the derivatives of o at z = 0. By (45) and (46), for small
z > 0 we have

7l ) = fi g(f;su) " X(g(ﬁzs .u)) [/ 5(%8-@ - 1]

and for small 2z < 0

75 m) = /b g(ff#) b X(9(0z u)) [j[”g(”’” —(g's_ﬂ) N 1}

By the definition of x, in both cases we see that if, say, |z| < é¢{0; 1)/2, then

7 ds
)= [ G !

which is indeed a C"-function for all small 2
Now, by (44)—(46) and (24),

N-1
61) oLe1) = 0GR s e { S bl

=0
for z < 0. Thus, (50) follows immediately from (47), (48), Lemma 6 and (40). The
case z > 0 is analysed in the same way. The lemma is proved. C

Now note that Lemma 1 follows from Lemma 7 almost immediately. Indeed,
let the orbit by system (8) of the point (z = —£7, ¢, ¥0) of Sy intersect S, at the
point (z = €T, ¢1,41). Then, by construction

(52) 0(207 f‘”) + N(ZO) = 0(21:#) o Ar(z1)7
where
(53) ZO = Mg (mgurw())v Z - 77w—t,Ol( ?‘191)

here, as above, N is the number of iterations necessary to get into I, and m(z, )
is the time ¢ shift of z by the flow (8).
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Differentiating (52), we get

(920 @Zl 3:,01
54 o (20 ) = =ol(zt u) — =
(54) 2 m) Don (2", u) 5o Do
As y— 40,
(55) mi(2,0) > 7i(2)

where 77 is the time t shift by the autonomous flow (10). Thus, by (50) and
(53)-(55)

0
(56) a2 RN
oo cr
as ;o — +0, which is exactly the statement of Lemma 1.
To complete the proof of Theorem 2, it remains to prove (19). It is sufficient

to show that as j — 400,
(57) lyillor — 0

uniformly for all u; here y;, as a function of (o, Z0), is the y-coordinate of the jth
iteration (y;, z;) of the point (yo,zo) by the local Poincaré map II: § — .5 given
by (1). We assume that the center manifold is straightened, i.e., (33) holds. By
differentiating of (1) r times, we obtain

(58)
Ty oy O ST TR NP
+——“"7(A+Hy(y.’]7zﬁ)) )‘|’H (?/J’ZJ>(3( )) +O( )

(Yo, z0)" d(yo, zo Yo, 20
(we have used that by (34), (33) all the derivatives of y; and of / up to order r—1
tend to zero exponentially as § — +c0). Now note that 8z;/0(yo, 20) is uniformly
bounded (z; is independent of i when the strong stable foliation is straightened,

and 0z; /0%y is bounded according to Lemma 2), whereas H z(f) (y,z) tends to zero
as y — 0 (by (33)). Thus, since I}, is small, (58) can be rewritten as

e
which gives (57).

This proves Theorem 2 for the case of continuous dependence on u. Let us now
consider the case where the first derivatives of the right-hand sides of the system
(6) with respect to (y,z,¢) are C"~1 with respect to all the variables and p. By
(21), one may assume

Bryj

3"yj11 ;o
(o, 20)"

“5 JU,ZO

+ 03‘4.1.00(1),

(59) p=9(0; 1)
Let

1.2y < ds .
(60) S 7= j; 9> (s )’

this is a well-defined expression for p > 0. Since ¢ is small, it follows that

g{z ) ~ g(z"s 1)

for all z € [~e~,et] and 2’ € [z, 7 = g(z; u)] (here “~” means that the ratio of the
left-hand and right-hand sides is bounded away from zero and infinity).
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This implies that

J
1
(61 e S(ZQ, Z")a
) Zg 9z 1) ’
where z; is the jth iteration of zy, given by (22). Tt is immediately seen that as
j — +oco, while zg and z; remain in the small interval [—£7, 7], we have

(62) (20, 2)

J

(because in the left-hand side of (61) g; = z;41 — #; must be unboundedly small for
an unboundedly large number of ¢’s in order to have an unboundedly large number
of iterations on the bounded interval) and

§(20, 7))
MaX; ¢z, 2,] (1/9(z 1))

(because ¢, is small provided g is small, so the number of points z; for which
g(zi; 1) ~ mMiN,e[,, -, ¢ Erows unboundedly as min.c(z, 2,19 — +0).
Now note that by (22), we have

(63) — +00

Ozit1 Oz; p
a“"—'u = (1 +g.(z55 1)) aTj +9u(253 1)-

Comparing this formula with (25) we obtain (see (24), (21}, and (61))

6213' N 823' J Iy 8ZZ'+1
on = P pACHN) 9%

=0

J

= g%, 1) eXp{gw(zi;m} > %%EXP{ - gw(a;m}

=0

(64)

~ Q(Zj;ﬂ)'f(ZOaZj)-

LEMMA 8. Forany ki =0,...,7v — 1, ko =0,...,7, ki + ko < 7 the estimate
HF1tkz .

}(9,&:’“182]52

holds uniformly for all u > 0 and for all zy and z; from [—e,et], provided 2y is
bounded away from zero.

(65) < const -g(z;; ,u){kl(fzo; 2;)

PROOF. The case k; = 0 is given by Lemma 3; (k1 = 1, ks = 0) is given by
(64). The lemma is proved by induction, in the same way as Lemma 3. Assume
that it is proved for all k; < kY. Then for any smooth function 3 of z and In

‘ 051 1F2 8255 )
Ok 925

for these values of ky; for a proof note that this derivative is the sum of terms of

the kind
851+8216 gFrtkiz OFsnrtkssz 5
const - — 82( - kj)...(___k_i)
(’ju 18Zj B,UJ 11 82012 8;,5’“8218,20322
where 0 < s; <k, 1 <814+ 50 <k +ko, b+ koyt =k — sy, kig+---+
ksy2 = ko. By (66), the absolute value of such a term is estimated from above by

(66)

‘ < comst -g(z;; 1)E" (29, 2;)
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O(g(zj; p) 26875125, z;)). Since g is bounded away from zero by (63) and since
g is small, (66) follows.
By (66) and (23)

L ghthe Az )

foq & 7@2
G==( ! B,U; 1530

Applying (66) and (67) with § =1, f =g and 3 =g, to formula (64), we get for
ki = k(l) 4+ 1

(67)

! < const -£M (20, 24)-

-1

. 1

: < const -g(z55 )™ (20, 25) D =

a’uklﬁzkz | REAR ! — g(Zi;lu')
0 =0

which, by (61), coincides with (65). By induction, this gives the lemma. 0

Let w(p) denote the flight time of the point (20 = —¢, g = 0) on Sy to the
point {7,y = w — M) on the cross-section S 1 where M denoctes the integral part
of w. In our notation

Zpi(—e ) = W—(w—JXJ)(E+7UJ - M),

where zy is the Mth iteration of z by the map (5) and w_,(z, ¢) is the projection
on the local cross-section S : {@ = 0} by the flow of (8). Thus,

Oz

68 I 222
(68) s
or, by {64),
(69) w, ~ & =E(—e,eT)
(since zps is close to €™, it follows that 23 and g(zar; 1) are bounded away from
7ero).

By (69), w;, never vanishes, so w can be regarded as a new parameter and p
becomes a function of w. By (68), (65), and (69),

wg? < const (u,fL)"j ;

and it is easy to see (just differentiate the identity p(w(p)) = p k times} that the
following estimate holds.

LemMa 8. Forallk <r —1, we have

!k\ . 1
(70) gl < const — .
w £¥

In particular, this implies that for any function smooth with respect to g, its
derivatives with respect to w tend to zerc as w — +o0o0. Moreover, plugging (70)
into (66), (67) yields

N iak”k?ﬁ(z o)

(Ylj ‘E L 37#&2 ’ < const g(zﬁ p’)a
I | gki+k

' ~ 07T Bz 1)

72 — < const

e % Buk: Dz c

for any smooth function 8 of (z,u). Revisiting the proof above for the case of
continuous dependence on i, we now immediately reprove Lemmas 4 and 6, in
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the sense that Q’(ysz’@ is C"~' with respect to all variables and w (Lemama 4) and
all derivatives of ¢! with respect to z and w are uniformly bounded (Lemma 6).
Formula (19} (where C" now refers to the space of functions whose first derivatives
with respect to (yo, wo) have r—1 continuous derivatives with respect to (vn, wo,w))
is proved in the same way as before.

To get Lemma 7, where the “C" Y-topology” now refers to the derivatives both
with respect to z and w, note that the transition from (51) to (50) is justified by
(72) applied with § = ¢ and by (47) (the relation (48) follows from (47), (45)). To
prove the w-dependent version of the limit (47), note that G((; u) = gL (s 1} and
G(0; 1) = 1; hence, the validity of (47) follows from (71) applied with 8 = g..

Lemma 7 implies Lerama 1 which (together with (19)) gives the theorem.
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