Correspondances

La Nature est un temple ou de vivants piliers
Laissent parfois sortir de confuses paroles;
L’homme y passe a travers des foréts de symboles
Qui I'observent avec des regards familiers.

Comme de longs échos qui de loin se confondent
Dans une ténébreuse et profonde unité,

Vaste comme la nuit et comme la clarté,

Les parfums, les couleurs et les sons se répondent.

Il est des parfums frais comme des chairs d’enfants,
Doux comme les hautbois, verts comme les prairies,
— Et d’autres, corrompus, riches et triomphants,

Ayant I’expansion des choses infinies,
Comme I'ambre, le musc, le benjoin et I’encens,
Qui chantent les transports de I’esprit et des sens.

CHARLES BAUDELAIRE
Les Fleurs du Mal, 1857



Preface

Introductory Remarks

Problems in dynamics have fascinated physical scientists (and mankind in
general) for thousands of years. Notable among such problems are those
of celestial mechanics, especially the study of the motions of the bodies
in the solar system. Newton’s attempts to understand and model their
observed motions incorporated Kepler’s laws and led to his development
of the calculus. With this the study of models of dynamical problems as
differential equations began.

In spite of the great elegance and simplicity of such equations, the solution
of specific problems proved remarkably difficult and engaged the minds of
many of the greatest mechanicians and mathematicians of the eighteenth
and nineteenth centuries. While a relatively complete theory was developed
for linear ordinary differential equations, nonlinear systems remained
largely inaccessible, apart from successful applications of perturbation
methods to weakly nonlinear problems. Once more, the most famous and
impressive applications came in celestial mechanics.

Analysis remained the favored tool for the study of dynamical problems
until Poincaré’s work in the late-nineteenth century showed that perturba-
tion methods might not yield correct results in all cases, because the series
used in such calculations diverged. Poincare then went on to marry analysis
and geometry in his development of a qualitative approach to the study of
differential equations.

The modern methods of qualitative analysis of differential equations
have their origins in this work (Poincaré [1880, 1890, 1899]) and in the work
of Birkhoff [1927], Liapunov [1949], and others of the Russian School:
Andronov and co-workers [1937, 1966, 1971, 1973] and Arnold [1973, 1978,
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1982]. In the past 20 years there has been an explosion of research. Smale, in a
classic paper [1967], outlined a number of outstanding problems and
stimulated much of this work. However, until the mid-1970s the new tools
were largely in the hands of pure mathematicians, although a number of
potential applications had been sketched, notably by Ruelle and Takens
[1971], who suggested the importance of “strange attractors” in the study of
turbulence.

Over the past few years applications in solid and structural mechanics
as well as fluid mechanics have appeared, and there is now widespread
interest in the engineering and applied science communities in strange
attractors, chaos, and dynamical systems theory. We have written this
book primarily for the members of this community, who do not generally
have the necessary mathematical background to go directly to the research
literature. We see the book primarily as a “user’s guide” to a rapidly growing
field of knowledge. Consequently we have selected for discussion only
those results which we feel are applicable to physical problems, and have
generally excluded proofs of theorems which we do not feel to be illustrative
of the applicability. Nor have we given the sharpest or best results in all
cases, hoping rather to provide a background on which readers may build
by direct reference to the research literature.

This is far from a complete treatise on dynamical systems. While it may
irritate some specialists in this field, it will, we hope, lead them in the direction
of important applications, while at the same time leading engineers and
physical scientists in the direction of exciting and useful *“abstract* results.
In writing for a mixed audience, we have tried to maintain a balance in our
statement of results between mathematical pedantry and readability for
those without formal mathematical training. This is perhaps most noticable
in the way we define terms. While major new terms are defined in the
traditional mathematical fashion, i.e., in a separate paragraph signalled
by the word Definition, we have defined many of the more familiar terms as
they occur in the body of the text, identifying them by italics. Thus we form-
ally define structural stability on p. 39, while we define asymptotic stability
(of a fixed point) on p. 3. For the reader’s convenience, the index contains
references to the terms defined in both manners.

The approach to dynamical systems which we adopt is a geometric one.
A quick glance will reveal that this book is liberally sprinkled with illustra-
tions—around 200 of them! Throughout we stress the geometrical and
topological properties of solutions of differential equations and iterated
maps. However, since we also wish to convey the important analytical
underpinning of these illustrations, we feel that the numerous exercises,
many of which require nontrivial algebraic manipu lations and even computer
work, are an essential part of the book. Especially in Chapter 2, the direct
experience of watching graphical displays of numerical solutions to the
systems of differential equations introduced there is extraordinarily valuable
in developing an intuitive feeling for their properties. To help the reader
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along, we have tried to indicate which exercises are fairly routine applications
of theory and which require more substantial effort. However, we warn the
reader that, towards the end of the book, and especially in Chapter 7, some of
our exercises become reasonable material for Ph.D. theses.

We have chosen to concentrate on applications in nonlinear oscillations
for three reasons:

(1) There are many important and interesting problems in that field.

(2) 1t is a fairly mature subject with many texts available on the classical
methods for analysis of such problems: the books of Stoker [1950],
Minorsky [1962], Hale [1962], Hayashi [1964], or Nayfeh and Mook
[1979] are good representatives. The geometrical analysis of two-
dimensional systems (free oscillations) is also well established in the
books of Lefschetz [1957] and Andronov and co-workers [1966, 1971,
1973].

(3) Most abstract mathematical examples known in dynamical systems
theory occur “naturally” in nonlinear oscillator problems.

In this context, the present book should be seen as an attempt to extend the
work of Andronov et al. [1966] by one dimension. This aim is not as modest
as it might seem: as we shall see, the apparently innocent addition of a
(small) periodic forcing term f(¢) = f(¢t + T) to a single degree of freedom
nonlinear oscillator,

% + g(x, %) = 0,

to yield the three-dimensional system

X+ g(x, %) = f(1),

or
X =y,
y=—g(x,y) + f(6),
0=1,

can introduce an uncountably infinite set of new phenomena, in addition
to the fixed points and limit cycles familiar from the planar theory of non-
linear oscillations. This book is devoted to a partial description and under-
standing of these phenomena.

A somewhat glib observation, which, however, contains some truth, is
that the pure mathematician tends to think of some nice (or nasty) property
and then construct a dynamical system whose solutions exhibit it. In con-
tras}, the traditional réle of the applied mathematician or engineer is to take
a given system (perhaps a model that he or she has constructed) and find
out what its properties are. We mainly adopt the second viewpoint, but
Our exposition may sometimes seem schizophrenic, since we are applying
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ideas of the former group to the problems of the latter group. Moreover,
we feel strongly that the properties of specific systems cannot be discovered
unless one knows what the possibilities are, and these are often revealed
only by the general abstract theory. Practice and theory progress best
hand-in-hand.

The Contents of This Book

This book is concerned with the application of methods from dynamical
systems and bifurcation theories to the study of nonlinear oscillations.
The mathematical models we consider are (fairly small) sets of ordinary
differential equations and mappings. Many of the results discussed in
this book can be extended to infinite-dimensional evolution systems arising
from partial differential equations. However, the main ideas are most
easily seen in the finite-dimensional context, and it is here that we shall
remain. Almost all the methods we describe also generalize to dynamical
systems whose phase spaces are differentiable manifolds, but once more,
so as not to burden the reader with technicalities, we restrict our exposition
to systems with Euclidean phase spaces. However, in the final section
of the last chapter we add a few remarks on partial differential equations.

In Chapter 1 we provide a review of basic results in the theory of dyna-
mical systems, covering both ordinary differential equations (flows) and
discrete mappings. (We concentrate on diffeomorphisms: smooth invertible
maps.) We discuss the connection between diffeomorphisms and flows
obtained by their Poincaré maps and end with a review of the relatively
complete theory of two-dimensional differential equations. Our discussion
moves quickly and is quite cursory in places. However, the bulk of this
material has been treated in greater detail from the dynamical systems
viewpoint in the books of Hirsch and Smale {1974], Irwin [1980], and
Palis and de Melo [1982], and from the oscillations viewpoint in the books
of Andronov and his co-workers [1966, 1971, 1973] and we refer the reader
to these texts for more details. Here the situation is fairly straightforward
and solutions generally behave nicely.

Chapter 2 presents four examples from nonlinear oscillations: the
famous oscillators of van der Pol [1927] and Duffing [1918], the Lorenz
equations [1963], and a bouncing ball problem. We show that the solutions
of these problems can be markedly chaotic and that they seem to possess
strange attractors: attracting motions which are neither periodic nor even
quasiperiodic. The development of this chapter is not systematic, but it
provides a preview of the theory developed in the remainder of the book. We
recommend that either the reader skim this chapter to gain a general im-
pression before going on to our systematic development of the theory in
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later chapters, or read it with a microcomputer at hand, so that he can
simulate solutions of the model problems we discuss.

We then retreat from the chaos of these examples to muster our forces.
Chapter 3 contains a discussion of the methods of local bifurcation theory
for flows and maps, including center manifolds and normal forms. Rather
different, less geometrical, and more analytical discussions of local bifurca-
tions can be found in the recent books by Iooss and Joseph [1981] and Chow
and Hale [1982].

In Chapter 4 we develop the analytical methods of averaging and pertur-
bation theory for the study of periodically forced nonlinear oscillators,
and show that they can yield surprising global results. We end this chapter
with a brief discussion of chaos and nonintegrability in Hamiltonian systems
and the Kolmogorov-Arnold-Moser theory. More complete introductions to
this area can be found in Arnold [1978], Lichtenberg and Lieberman [1982],
or, for the more mathematically inclined, Abraham and Marsden [1978].

In Chapter § we return to chaos, or rather to the close analysis of geo-
metrically defined two-dimensional maps with complicated invariant sets.
The famous horseshoe map of Smale is discussed at length, and the method
of symbolic dynamics is described and illustrated. A section on one-dimen-
sional (noninvertible) maps is included, and we return to the specific examples
of Chapter 2 to provide additional information and illustrate the analytical
methods. We end this chapter with a brief discussion of Liapunov exponents
and invariant measures for strange attractors.

In Chapter 6 we discuss global homoclinic and heteroclinic bifurcations,
bifurcations of one-dimensional maps, and once more illustrate our results
with the examples of Chapter 2. Finally, in our discussion of global bi-
furcations of two-dimensional maps and wild hyperbolic sets, we arrive
squarely at one of the present frontiers of the field. We argue that, while the
one-dimensional theory is relatively complete (cf. Collet and Eckmann
[198073), the behavior of two-dimensional diffefomorphisms appears to be
considerably more complex and is still incompletely understood. We are
consequently unable to complete our analysis of the nonlinear oscillators of
van der Pol and Duffing, but we are able to give a clear account of much of
their behavior and to show precisely what presently obstructs further
analysis.

In the final chapter we show how the global bifurcations, discussed
previously, reappear in degenerate local bifurcations, and we end with
several more models of physical problems which display these rich and
beautiful behaviors.

Throughout the book we continually return to specific examples, and
we have tried to illustrate even the most abstract results. In our Appendix
we give suggestions for further reading. We make no claims for the complete-
ness of our bibliography. We have, however, tried to include references to
the bulk of the papers, monographs, lecture notes, and books which have
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proved useful to ourselves and our colleagues, but we recognize that our
biases probably make this a rather eclectic selection.

We have included a glossary of the more important terminology for the
convenience of those readers lacking a formal mathematical training.

Finally, we would especially like to acknowledge the encouragement,
advice, and gentle criticisms of Bill Langford, Clark Robinson and David
Rod, whose careful readings of the manuscript enabled us to make many
corrections and improvements.

Nessen MacGiolla Mhuiris, Xuehai Li, Lloyd Sakazata, Rakesh,
Kumarswamy Hebbale, and Pat Hollis suffered through the preparation
of this manuscript as students in TAM 776 at Cornell, and pointed out
many errors almost as quickly as they were made. Edgar Knobloch, Steve
Shaw, and David Whitley also read and commented on the manuscript.
The comments of these and many other people have helped us to improve
this book, and it only remains for each of us to lay the blame for any re-
maining errors and omissions squarely on the shoulders of the other.

Barbara Boettcher prepared the illustrations from our rough notes and
Dolores Pendell deserves more thanks than we can give for her patient
typing and retyping of our almost illegible manuscripts.

Finally, we thank our wives and children for their understanding and
patience during the production of this addition to our families.

JoHN GUCKENHEIMER PHiLIP HOLMES
Santa Cruz, Spring 1983 Ithaca, Spring 1983

Preface to the Second Printing

The reprinting of this book some 24 years after its publication has provided
us with the opportunity of correcting many minor typographical errors and a
few errors of substance. In particular, errors in Section 6.5 in the study of the
Silnikov return map have been corrected, and we have rewritten parts of
Sections 7.4 and 7.5 fairly extensively in the light of recent work by Carr,
Chow, Cushman, Hale, Sanders, Zholondek, and others on the number of
limit cycles and bifurcations in these unfoldings. In the former case the main
result is unaffected, but in the latter case some of our intuitions (as well as the
incorrect calculations with which we supported them) have proved wrong.
We take some comfort in the fact that our naive assertions stimulated some of
the work which disproved them.

Although progress in some areas of applied dynamical systems has been
rapid, and significant new developments have occurred since the first
printing, we have not seen fit to undertake major revisions of the book at this
stage, although we have briefly noted some of the developments which bear
directly on topics discussed in the book. These comments appear at the end of
the book, directly after the Appendix. A complete revision will perhaps be
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appropriate 5 or 10 years from now. (Anyone wishing to perform it, please
contact us!) In the same spirit, we have not attempted to bring the
bibliography up to date, although we have added about 75 references,
including those mentioned above. References that were in preprint form at
the first printing have been updated in cases where the journal of publication
is known. In cases in which the publication date of the journal differs from
that of the preprint, the journal date is given at the end of the reference. We
note that a useful bibliography due to Shiraiwa [1981] has recently been
updated (Shiraiwa [1985]); it contains over 4,400 items.

In preparing the revisions we have benefited from the advice and correc-
tions supplied by many readers, including Marty Golubitsky, Kevin Hockett,
Fuhua Ling, Wei-Min Liu, Clark Robinson, Jan Sanders, Steven Shaw, Ed
Zehnder, and Zhaoxuan Zhu. Professor Ling, of the Shanghai Jiao Tong
University, with the help of his students and of Professor Zhu, of Peking
University, has prepared a Chinese translation of this book.

JOHN GUCKENHEIMER
PHiLiP HOLMES
Ithaca, Fall 1985
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CHAPTER 1
Introduction: Differential Equations
and Dynamical Systems

In this introductory chapter we review some basic topics in the theory of
ordinary differential equations from the viewpoint of the global geometrical
approach which we develop in this book. After recalling the basic existence
and uniqueness theorems, we consider the linear, homogeneous, constant
coefficient system and then introduce nonlinear and time-dependent systems
and concepts such as the Poincaré map and structural stability. We then
review some of the better-known results on two-dimensional autonomous
systems and end with a statement and sketch of the proof of Peixoto’s
theorem, an important result which summarizes much of our knowledge of
two-dimensional flows.

In the first two sections our review of basic theory and the linear system
X = Axisrapid. We assume that the reader is fairly familiar with this material
and with the fundamental notions from analysis used in its derivation. Most
standard courses in ordinary differential equations deal with these topics,
and the material covered in these sections is treated in detail in the books of
Hirsch and Smale [1974] and Arnold [1973], for example. We especially
recommend the former text as one of the few elementary introductions to the
geometric theory of ordinary differential equations. However, most books
on differential equations contains versions of the main results.

1.0. Existence and Uniqueness of Solutions

For the purposes of this book, it is generally sufficient to regard a differential
equation as a system

dx e

S x =S, (1.0.1)
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where x = x(t)€ R" is a vector valued function of an independent variable
(usually time) and f: U — R" is a smooth function defined on some subset
U < R". We say that the vector field f generates a flow ¢,: U - R", where
dx) = ¢d(x, t) is a smooth function defined for all x in U and ¢t in some
interval I = (a, b) = R, and ¢ satisfies (1.0.1) in the sense that

L 65 Dl = 906, ) (102)

for all x € U and 1 € I. We note that (in its domain of definition) ¢, satisfies
the group properties (i) ¢, = id, and (ii) ¢,,; = ¢, o @,. Systems of the form
(1.0.1), in which the vector field does not contain time explicitly, are called
autonomous.

Often we are given an initial condition

x(0) = x,€ U, (1.0.3)
in which case we seek a solution ¢(x,, t) such that
d(xo,0) = xo. (1.04)

(We will also sometimes write such a solution as x(x,, t), or simply x(t).)

In this case ¢(xq,:): I — R" defines a solution curve, trajectory, or orbit
of the differential equation (1.0.1) based at x,. Since the vector field of the
autonomous system (1.0.1) is invariant with respect to translations in time,
solutions based at times ¢, # 0 can always be translated to ¢, = 0.

In classical texts on ordinary differential equations, such as Coddington
and Levinson [1955], the stress is on individual solution curves and their
properties. Here we shall be more concerned with families of such curves,
and hence with the global behavior of the flow ¢,: U — R" defined for (all)
points x € U; see Figure 1.0.1. In particular, the concepts of smooth invariant
manifolds composed of solution curves, discussed in the books of Hartman
[1964] and Hale [1969] will be of importance. We will introduce these
ideas in the context of linear systems in the next section.

We will not usually need the more general concept of a dynamical system
as a flow on a differentiable manifold M arising from a vector field, regarded
as a map

fiM->TM,

Figure 1.0.1. A solution curve and the flow. (a) The solution curve ¢,(x,): (b) the flow ¢,.
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where TM is the tangent bundle of M. We will therefore not need much from
the theory of differential topology. For those interested, Chillingworth’s
[1976] book provides a good introduction; also see Arnold [1973]. In almost
all cases in which we work explicitly with phase spaces which are manifolds,
we will have a global coordinate system (a single chart) and we can essentially
work in the covering space: i.e., in R" modulo some suitable identification,
as in the cases of the torus T? = R?/Z? and the cylinder S' x R = R?/Z.
Such systems typically arise when the vector field f'is periodic in (some of) its
components. We meet the first such systems in Sections 1.4 and 1.5.

In discussing submanifolds of solutions such as the stable, unstable, and
center manifolds, we shall be able to work with copies of real Euclidean
spaces defined locally by graphs.

We now state, without proof, the basic local existence and uniqueness
theorem (cf. Coddington and Levinson [1955], Hirsch and Smale [1974]):

Theorem 1.0.1. Let U = R" be an open subset of real Euclidean space (or
of a differentiable manifold M), let f: U — R" be a continuously differentiable
(C") map and let xq € U. Then there is some constant ¢ > 0 and a unique
solution ¢(xg,): (—c, c) = U satisfying the differential equation % = f(x)
with initial condition x(0) = x,.

In fact f need only be (locally) Lipschitz, i.e., | f(y) — f(x)| < K|x — y|
for some K < oo, where K is called the Lipschitz constant for f. Thus we
can deal with piecewise linear functions, such as one gets in “stick-slip”
friction problems and in the clock problem (cf. Andronov et al. [1966],
pp. 186ff.).

Intuitively, any solution may leave U after sufficient time. We therefore
say that the theorem is only local. We can easily construct vector fields
S:U — R" such that x(¢) leaves any subset U < R" in a finite time, for
example,

¢ =1+ x2 (1.0.5)

which has the general solution x(t) = tan(t + c). Thus, although there are
many equations on non-compact phase spaces (such as R") for which solu-
tions do exist globally in time, we cannot assert this in specific cases without
further investigation.

Fixed points, also called an equilibria or zeroes, are an important class
pf solutions of a differential equation. Fixed points are defined by the vanish-
ing of the vector field f(x): f(X) = 0. A fixed point X is said to be stable if a
solution x(t) based nearby remains close to x for all time, i.e., if for every
neighborhood V of X in U there is a neighborhood V, < V such that every
solution x(x,, t) with xo € V; is defined and lies in V for all ¢t > 0. If, in
addition, ¥, can be chosen so that x(t) = X as ¢t — oo then X is said to be
asymptotically stable. See Figure 1.0.2.
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(a) (b)
Figure 1.0.2. (a) Stability; (b) asymptotic stability.

ExERCISE 1.0.1. Show that the fixed points of the linear systems

(a) X'=y,_).’= -X;
(b) )E=ya}.)= -X =

are both stable. Which one is asymptotically stable? (Routine.)

The type of stability illustrated in Figure 1.0.2(a) is sometimes called
neutral and is typified by fixed points such as centers. Asymptotically stable
fixed points are called sinks. A fixed point is called unstable if it is not stable:
saddle points and sources provide examples of such equilibria. Hirsch and
Smale [1974, Chapter 9] give a detailed discussion of stability of fixed
points,

The notions of stability defined above are local in nature: they concern
only the behavior of solutions near the fixed point X. Even if such solutions
remain bounded for all time, other solutions may not exist globally.

Exercise 1.0.2. Find the fixed points for the equation x = —x + x? and discuss their
stability. Show that this equation has solutions which exist for all time as well as solu-
tions which become unbounded in finite time. (Solving this equation is straightforward,
but this interpretation of the behavior of solutions may be new to you.)

Often a Liapunov function approach suffices to show that an energy-
like quantity decreases for | x| sufficiently large, so that x(t) remains bounded
for all ¢ and all (bounded) initial conditions x(0). Since it is so useful, we
outline the method here for completeness. For more details, see Hirsch
and Smale [1974, §9.3] or LaSalle and Lefschetz [1961]. The method
relies on finding a positive definite function V: U — R, called the Liapunov
Sunction, which decreases along solution curves of the differential equation:

Theorem 1.0.2 (Hirsch and Smale [1974], pp. 192f1.). Let X be a fixed point for
(1.0.1) and V: W — R be a differentiable function defined on some neighbor-
hood W < U of X such that:

() V(x) =0and V(x) > 0ifx # X; and
(i) V(x) <0in W — {x}.
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Then % is stable. Moreover, if
(iii) V(x) <0in W — {x};

then X is asymptotically stable.

Here
. 5oV LoV
- Z 6xj Xj - jgl axJ- L(X)
is the derivative of V along solution curves of (1.0.1).

If we can choose W(=U) = R" in case (iii), then x is said to be globally
asymptotically stable, and we can conclude that all solutions remain bounded
and in fact approach X as t — co. Thus the stability of equilibria and bounded-
ness of solutions can be tested without actually solving the differential
equation. There are, however, no general methods for finding suitable
Liapunov functions, although in mechanical problems the energy is often a
good candidate.

ExampLE. Consider the motion of a particle of mass m attached to a spring
of stiffness k(x + x3), k > 0, where x is displacement. The differential
equation governing the system is

mi + k(x + x3) =0, (1.0.6)
or, letting x = y

X =y,

j = k( + x3%) (1.0.7)

y= mx x°). .0.

The associated total energy of the system is
2 2 4

E(x, y) = % + k("7 + "7) (1.0.8)

Wenote that E(x, y) provides a Liapunov function for (1.0.7), since E(0, 0) = 0
at the (unique) equilibrium (x, y) = (0, 0) and E(x, y) > 0 for (x, y) # (0, 0).
Moreover, we have

E =myy + k(x + x*)x
= —ky(x + x*) + k(x + x*)y = 0; (1.0.9)

thus (x, y) = (0, 0) is (neutrally) stable. If we add some damping o > 0, to
the system, so that the equation of motion becomes

k
y=— x?) — ay, (1.0.10)
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then the same Liapunov function yields
E = —amy?, 1.0.11)

which is negative for all (x, y) # (0, 0) except on the x-axis. We therefore
modify the Liapunov function slightly to

2 2 4 2
Vix,y) = % + k(% + %) + B(xy + %) (1.0.12)

so that
V = myy + k(x + x3)% + B(xXy + xy + axx)

=(my + ﬂx)(— s(x + x3) - ay) + k(x + x3)y + By + afxy

= —BE G+ ) — am - By (10.13)

If we choose B sufficiently small, V remains positive definite and Vis strictly
negative for all (x, y) # (0, 0). Thus (0, 0) is globally asymptotically stable
fora > 0.

In differentiating V' along solution curves we are trying to verify that all
solutions cross the level curves of V “inwards.” A sketch of the level curves
of E and the modified function V for this example show that those of V are
slightly tilted, so that the vector field is nowhere tangent to them, whereas,
even with damping present, the vector field is tangent to E = constant on
y = 0 (Figure 1.0.3).

ExXERCISE 1.0.3. Using the Liapunov function V = 4(x? + ay*> + ¢z2), obtain conditions
on g, p, and B sufficient for global asymptotic stability of the origin (x, y, z) = (0, 0, 0)
in the Lorenz equations

% =a(y — x); y=px—y—xz 2= —Bz + xy; o, f>0
Are your conditions also necessary?
y

E =const. V= const

i ,-m la 3
Figure 1.0.3. Level curves of the Liapunov functions E and V and the vector field of
equations (1.0.10).
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For problems with multiple equilibria, local Liapunov functions can be
sought, or one can attempt to find a compact hypersurface § = R" such that
the vector field is directed everywhere inward on S. If such a surface exists,
then any solution starting on or inside S can never leave the interior of S
and thus must remain bounded for all time. We use this approach in several
examples later in this book.

The local existence theorem (Theorem 1.0.1) becomes global in all cases
when we work on compact manifolds M instead of open spaces like R":

Theorem 1.0.3 (Chillingworth [1976], pp. 187-188). The differential equation
% = f(x), x € M, with M compact, and fe C*, has solution curves defined
forallteR

Thus flows on spheres and tori are globally defined, since there is no way
in which solutions can escape from such manifolds.

The local theorem can be extended to show that solutions depend in a
“nice” way on initial conditions (cf. Coddington and Levinson [1955],
Hirsch and Smale [1974]):

Theorem 1.0.4. Let U = R” be open and suppose f: U — R" has a Lipschitz
constant K. Let y(t), z(t) be solutions to x = f(x) on the closed interval [y, t,].
Then, for all t € [t,, t,],

(1) — 2(1)] < |to) — Z(to)lex"—"’),

We note that this continuous dependence does not preclude the ex-
ponentially fast separation of solutions typical of the chaotic flows to be
encountered in subsequent chapters, cf. Figure 1.0.4.

y(t) s

y(0)

2( )5

Figure 1.0.4. Exponential separation of neighboring solutions near a saddle point.

Exercise 1.0.4. Which of the following systems give rise to globally defined flows?

(@) x =x,xeR;

(b) x = x, xeR;

(©) X=2+cosx, xeR;

d) x =cos?x,xeS!;

() x= —x, xeR;

(f) x = Ax, x € R", where A4 is an n x n constant matrix.
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(You can integrate all of these directly, but will need linear algebra, reviewed in the next
section, for the last one.)

Exercise 1.0.5. Show that % = x*'? does not have unique solutions for al! initial points
x(0). Under what conditions are solutions unique? (This example is an old favorite in
classical texts on differential equations.)

1.1. The Linear System x = Ax

We first review some features of the linear system

‘%“é‘x= Ax, xeR" (1.1.1)

where A4 is an n x n matrix with constant coefficients. For more information
and background see a standard introductory text on differential equations
such as Braun [1978]; for a more detailed review of the linear algebra from
the viewpoint of dynamical systems theory, Hirsch and Smale [1974] or
Arnold [1973] are recommended.

By a solution of (1.1.1) we mean a vector valued function x(x,, t) de-
pending on time t and the initial condition

x(0) = Xo; (1.1.2)

x(xq, t) is thus a solution of the initial value problem (1.1.1)-(1.1.2). In
terms of the flow ¢,, we have x(x,, t) = ¢,(x,). Theorem 1.0.4 guarantees
that the solution x(x,, t) of the linear system is defined for all r € R and
Xo € R". Note that such global existence in time does not generally hold for
nonlinear systems, as we have already seen. However, no such problems occur
for (1.1.1), the solution of which is given by

x(xo, t) = e4x,, (1.1.3)

where €' is the n x n matrix obtained by exponentiating 4. We will see how
&4 can be calculated most conveniently in a moment, but first note that it is
defined by the convergent series

2!

We leave it to the reader to make use of (1.1.4) to prove that (1.1.3)does indeed
solve (1.1.1)~(1.1.2).

A general solution to (1.1.1) can be obtained by linear superposition
of n linearly independent solutions {x'(t),..., x"(t)}:

2 P
e"=[1+tA+t—A2+--'+;—'A"+~-:|. (1.1.4)

x(t) = il c;x!(t), (1.1.5)

where the n unknown constants c; are to be determined by initial conditions.
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If A hasn linearly independent eigenvectors v/, j = 1,...,n, then we may
take as a basis for the space of solutions the vector valued functions

xi(t) = et (1.1.6)
where 1, is the eigenvalue associated with v/, For complex eigenvalues with-
out muitiplicity, Aj, A; = a; + if;, having eigenvectors v® + iv', we may
take )

x) = e»(vR cos Bt — v’ sin Bt),

xI*1 = e%'(vR sin Bt + v cos Bt), (1.1.7)
as the associated pair of (real) linearly independent solutions. When there
are repeated eigenvalues and less than n eigenvectors, then one generates
the generalized eigenvectors as described by Braun [1978], for example.
Again one obtains a set of n linearly independent solutions. We denote the
fundamental solution matrix having these n solutions for its columns as

X@) = [x'@),...,x"(0) (1.1.8)

The columns x¥(t),j = 1,...,n of X(t) form a basis for the space of solutions
of (1.1.1). It is easy to show that

et = X()XO0)'; (1.19)

we again leave the proof as an exercise.

EXERCISE 1.1.1. Find ¢4 for
[

[2 1 3
A=|0 2 0.
1 0 O
Then solve x = Ax for initial conditions
1 =2 5
xo={1]}. 0} and [ -3
1 2 2

Whaf do you notice about the last two solutions? Look carefully at the geometry of the
solutions and eigenspaces.

Equgtion (1.1.1) may also be solved by first finding an invertible trans-
format.lon T which diagonalizes A or at least puts it into Jordan normal
form (if there are repeated eigenvalues). Equation (1.1.1) becomes

y=1Jy (1.1.10)
v T 'AT and x = Ty. Equation (1.1.10) is easy to work with, but
Since the columns of T are the (generalized) eigenvectors of A4, just as much

Work is required as in the former method. The exponential ¢'4 may be
Computed as

Where J =

¢4 =TeVT™! (L.1.11)
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(cf. Hirsch and Smale [1974], pp. 84-87), where exponentials are evaluated
for the three 2 x 2 Jordan form matrices:

_ ;‘l 0 tA __ e).“ 0 .
A‘[o ,12]’ ¢ ’[0 |’
e - 4 _ am|COS Pt —sinBrt|
A= [ﬂ a]’ et =¢ [sin Bt cos Bt], (1.1.12)

[0 . a1 o
A_[l ,1]’ et_el:t 1]

We also note that if v/ is an eigenvector belonging to a real eigenvalue 4; of 4,
then v’ is also an eigenvector belonging to the eigenvalue e* of e4. Moreover,
if span{Re(v’), Im(+¥)} is an eigenspace belonging to a complex conjugate
pair A;, ; of eigenvalues, then it is also an eigenspace belonging to e*, .

1.2. Flows and Invariant Subspaces

The matrix e can be regarded as a mapping from R" to R": given any point
Xo in R, x(x,, t) = €"x, is the point at which the solution based at x, lies
after time ¢. The operator ' hence contains global information on the set of
all solutions of (1.1.1), since the formula (1.1.3) holds for all points x, € R".
As in the general case, described in Section 1.0, we say that ¢4 defines a
flow on R” and that this flow (or “phase flow”) is generated by the vector
field Ax defined on R": "4 is our first specific example of a flow ¢,.

The flow e4: R" = R" can be thought of as the set of all solutions to
(1.1.1). In this set certain solutions play a special role; those which lie in the
linear subspaces spanned by the eigenvectors. These subspaces are invariant
under ¢'4, in particular, if v/ is a (real) eigenvector of 4, and hence of e*4,
then a solution based at a point ;v € R" remains on span{v} for all time;
in fact

x(ctd, t) = cv’e?, 1.2.1
Similarly, the (two-dimensional) subspace spanned by Re{v’}, Im{v'}, when
v/ is a complex eigenvector, is invariant under ¢*4. In short, the eigenspaces of
A are invariant subspaces for the flow. It is worth returning to Exercise
1.1.1 in the light of this discussion.
We divide the subspaces spanned by the eigenvectors into three classes:
the stable subspace, E* = span{v!,..., v"},
the unstable subspace, E* = span{u’, ..., u™},
the center subspace, E° = span{w!,. .., w"},

where v!, ..., v are the n, (generalized) eigenvectors whose eigenvalues have
negative real parts, u’,..., u™ are the n, (generalized) eigenvectors whose
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eigenvalues have positive real parts and wl, ..., w" are those whose eigen-
values have zero real parts. Of course, n; + n, + n, = n. The names reflect the
facts that solutions lying on E* are characterized by exponential decay (either
monotonic or oscillatory), those lying in E* by exponential growth, and those
lying in E° by neither. In the absence of multiple eigenvalues, these latter
either oscillate at constant amplitude (if 4, 4 = +if) or remain constant
(if 2 =0). A schematic picture appears in Figure 1.2.1, with two specific
examples.

< e
-
Z
>/4:—;<\

v .

{a)

NN
NN

(b) {c)

Figure 1.2.1. Invariant subspaces. (a) The three subspaces; (b)

A_01
o -4/

(E* = span(1, —4), E° = span(1, 0), E* = &); (c)

-1 -1 0
A= I -1 0
0 0 2

(ES = span{(1,0,0), (1,1, 0)}. E = &, E* = (0,0, 1)).

When there are multiple eigenvalues for which algebraic and geometric
multiplicities differ, then one may have growth of solutions in E°, as the
following exercise demonstrates:

EXErcis 1.2.1. Find general solutions for the linear system % = Ax, x € R? with

0 0 00
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For more information on the flow ¢4, and for a complete classification of
two- and three-dimensional systems, the reader is referred to Hirsch and
Smale [1974] or Arnold [1973].

1.3. The Nonlinear System x = f(x)

We must start by admitting that almost nothing beyond general statements
can be made about most nonlinear systems. In the remainder of this book we
will meet some of the delights and horrors of such systems, but the reader
must bear in mind that the line of attack we develop in this text is only one,
and that any other tool in the workshop of applied mathematics, including
numerical integration, perturbation methods, and asymptotic analysis, can
and should be brought to bear on a specific problem.

We recall that the basic existence—uniqueness theorem for ordinary
differential equations, given in Section 1.0, implies that, for smooth functions*
£ (x), the solation to the initial value problem

x = f(x); xe R, x(0) = x4 (1.3.1)

is defined at least in some neighborhood t € (—c, ¢) of t = 0. Thus a local
flow ¢,: R" —» R" is defined by ¢(x,) = x(z, xo) in a manner analogous to
that in the linear case, although of course we cannot give a general formula
like e*4.

A good place to start the study of the nonlinear system x = f(x} is by
finding the zeros of f or the fixed points of (1.3.1). These are also referred to as
zeros, equilibria, or stationary solutions. Even this may be a formidable task,
although in most of our examples it will not be. Suppose then that we have a
fixed point X, so that f(X) = 0, and we wish to characterize the behavior
of solutions near X. We do this by linearizing (1.3.1) at X, that is, by studying
the linear system

¢=Df(X)E, EeR, (1.3.2)

where Df = [0f/0x;] is the Jacobian matrix of first partial derivatives of
the function f = (fi(x1, ..., X2 fo(X1seres Xadsovvs fuX1se o s X )T (T de-
notes transpose), and x = X + &, |£| < 1. Since (1.3.2) is just a linear system
of the form (1.1.1), we can do this easily. In particular, the linearized flow
map D¢(x)¢& arising from (1.3.1) at a fixed point X is obtained from (1.3.2)
by integration:
D (X)¢ = ePIFE, (1.3.3)
The important question is, what can we say about the solutions of (1.3.1)

based on our knowledge of (1.3.2)? The answer is provided by two funda-
mental results of dynamical systems theory which we give below, and may be

* Throughout this book by smooth we generally mean C®, unless stated otherwise. We note
that we do not always concentrate upon obtaining optimal smoothness in our results.
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summed up by saying that local behavior (for |£| small) does carry over in
certain “nice” cases.

Theorem 1.3.1 (Hartman-Grobman). If Df(x) has no zero or purely im-
aginary eigenvalues then there is a homeomorphism h defined on some neighbor-
hood U of X in R" locally taking orbits of the nonlinear flow ¢, of (1.3.1), to
those of the linear flow e®/® of (1.3.2). The homeomorphism preserves the
sense of orbits and can also be chosen to preserve parametrization by time.

A more delicate situation in which the nonlinear and linear flows are
related via diffeomorphisms (Sternberg’s theorem) requires certain non-
resonance conditions among the eigenvalues of Df (X). We shall not consider
this here, but see the discussion of normal forms in Chapter 3.

When Df (X) has no eigenvalues with zero real part, X is called a hyperbolic
or nondegenerate fixed point and the asymptotic behavior of solutions near
it (and hence its stability type) is determined by the linearization. If any one
of the eigenvalues has zero real part, then stability cannot be determined by
linearization, as the example

X+ex?x+x=0 (1.3.4)

shows. Rewritten as a system (with x; = x, x, = X),

Xy _ 0 1)\/x, _ 0
(’Ez)—(—l 0)(x2) e(xfxz)’ (1.3.5)

we find eigenvalues 4, 1 = +i. However, unless ¢ = 0, the fixed point (x,, x;)
= (0, 0) is not a center, as in the linear system, but a nonhyperbolic or weak
attracting spiral sink if ¢ > 0, and a repelling source if ¢ < 0.

EXERrcisk 1.3.1. Verify that (x;, x,) = (0, 0) is globally asymptotically stable for (1.3.5)
when & > 0. (Use a Liapunov function approach, cf. equation (1.0.10).)

Before the next result we need a couple of definitions. We define the local
stable and unstable manifolds of X, W3, (%), W (%) as follows

Wi(®) = {xe Ul x) - xas t - o0, and ¢,(x) € U for all ¢t > 0},
(1.3.6)
WidX) = {xe Ul¢p(x) > xast - —o0, and ¢,(x) € U for all t < 0},

Where U < R" is a neighborhood of the fixed point %. The invariant mani-
folds w3, and Wt provide nonlinear analogues of the flat stable and un-
stable eigenspaces E°, E* of the linear problem (1.3.2). The next result tells
us that W5,  and WY, are in fact tangent to E°, E* at X.

Theorem 1.3.2 (Stable Manifold Theorem for a Fixed Point). Suppose that
X = f(x) has a hyperbolic fixed point X. Then there exist local stable and
unstable manifolds Wi, .(x), Wi,.(X), of the same dimensions n,, n, as those of
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the eigenspaces E*, E* of the linearized system (1.3.2), and tangent to E°, E*
at X. Wi, (), W& (x) are as smooth as the function f.

For proofs of these two theorems see, for example, Hartman [1964] and
Carr [1981], or, for a more modern treatment, Nitecki [1971], Shub [1978],
or Irwin [1980]. Hirsch et al. [1977] contains a more general result. The two
results may be illustrated as in Figure 1.3.1.

Note that we have not yet said anything about a center manifold, tangent
to E° at X, and have, in fact, confined ourselves to hyperbolic cases in which E*
does not exist. We shall consider nonhyperbolic cases later when we deal with
bifurcation theory in Chapter 3.

(a) (b)

Figure 1.3.1. Linearization and invariant subspaces. (a) Hartman’s theorem; (b) local
stable and unstable manifolds.

The local invariant manifolds W3, W1, have global analogues W*, W*,
obtained by letting points in W3, flow backwards in time and those in Wi,
flow forwards:

Wi ) = | ¢(WieelX))s

t<0
. _ (1.3.7)
WH(x) = | o(Wihe(X)).
t>0
Existence and uniqueness of solutions of (1.3.1) ensure that two stable

(or unstable) manifolds of distinct fixed points X!, X2 cannot intersect, nor

can W*(x) (or W*(x)) intersect itself. However, intersections of stable and
unstable manifolds of distinct fixed points or the same fixed point can occur
and, in fact, are a source of much of the complex behavior found in dynamical
systems. The gibbal stable and unstable manifolds need not be embedded
submanifolds of R" since they may wind around in a complex manner,
approaching themselves arbitrarily closely. We give an example of a map
possessing such a structure in the next section.
To illustrate the ideas of this section, we gonsider a simple system on the
plane:
X =X,

1.3.8
y=—y+x3 (138)
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which has a unique fixed point at the origin. For the linearized system we
have the following invariant subspaces:

E*={(x,y)e Rzlx = 0},
E* = {(x, y) e R?|y = 0}.

In this case we can integrate the nonlinear system exactly. Rather than
obtaining a solution in the form (x(¢), y(t)), we rewrite (1.3.8) as a (linear)
first-order system by eliminating time:

(1.3.9)

Z="T4x (1.3.10)

This can be integrated directly to obtain the family of solution curves

2

x* ¢

==+ -, 1.3.11
y(x) 3t (13.11)
where c is a constant determined by initial conditions. Now Theorem 1.3.1,
together with (1.3.9), implies that W¥ (0, 0) can be represented as a graph
y = h(x) with h(0) = h'(0) = O, since W}, is tangent to E* at (0, 0). Thus
¢ = 0in (1.3.10) and we have

2
W0, 0) = {(x, NeRy = 1‘3-} (13.12)
Finally, noting that if x(0) = 0, then x = 0, and hence x(¢t) = 0, we see that
W*(0, 0) = E°. Note that, for this example, we have found the global mani-
folds; see Figure 1.3.2.

EXErcise 1.3.2. Find and classify the fixed points of the following systems by linearizing
about the fixed points (i.e., find eigenvalues and eigenvectors and sketch the local flows).
Start by rewriting the second-order equations as first-order systems:

@ X+ex—x+x*=0;
(b) X + sin x = 0;

(€) X + ex? +sinx =0;

d) = —-x+x%yp=x+y;
(€ X +e(x2— DX +x=0;

(where zappears let & < 0,¢ = 0,¢ > 0). Can you calculate (or guess) the global structure
of stable and unstable manifolds in any of these cases? (This last part is quite hard if
Yyou are not familiar with the tricks outlined later in this chapter.)

It is well known that nonlinear systems possess limit sets other than
fixed points; for example, closed or periodic orbits frequently occur. A
periodic solution is one for which there exists 0 < T < oo such that x(r) =
x(t + T) for all t. We consider the stability of such orbits in Section 1.5, but
note here that they have stable and unstable manifolds just as do fixed points.
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vs

i

%
7 Ry

(a) (b)

Figure 1.3.2. Stable and unstable manifolds for equation (1.3.8). (a) the linear system;
(b) the nonlinear system.

Let y denote the closed orbit and U be some neighborhood of y; then we
define

(7)) = {xe Ul |p(x) — y| > 0ast - o0, and ¢p(x)e U for ¢t > 0},
() ={xeU]||¢d(x) —y|—>0ast - —o0, and ¢(x)e U fort < 0}.

Examples will follow in the sections below.

1.4. Linear and Nonlinear Maps

We have seen how the linear system (1.1.1) gives rise to flow map
é“:R" - R", when ¢4 is an n x n matrix. For fixed t = 7 let ¢* = B, then
Bis a constant coefficient matrix and the difference equation

X,+1 = Bx, or xm—Bx, (1.4.1)

is a discrete dynamical system obtained from the flow of (1.1.1). Similarly,
a nonlinear system and its flow ¢, give rise to a nonlinear map

Xpe1 = G(x,) or xe— G(x), (1.4.2)

where G = ¢, is a nonlinear vector valued function. If the flow ¢, is smooth
(say r-times continuously differentiable), then G is a smooth map with a
smooth inverse: i.e.,, a diffeomorphism. This is one example of the way in
which a continuous flow gives rise to a discrete map; a more important one,
the Poincaré map, will be considered in Section 1.5.

Diffeomorphisms or discrete dynamical systems can also be studied in
their own right and more generally we nlight also consider noninvertible
maps such as

X x — x2. (1.4.3)
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gxercist 1.4.1. Show that the map (x, y)i= (y, bx + dy — y?) is a diffcomorphism for
p # 0 and calculate its inverse. (This map was suggested as an approximation to the
poincaré map of the Duffing equation, cf. Section 2.2 below, and Holmes [1979a].)

An orbit of a linear map x — Bx is a sequence of points {x;}{2 _ , defined
by x;+1 = Bx;. Any initial point generates a unique orbit provided that B has
no zero eigenvalues.

We define stable, unstable, and center subspaces in a manner analogous
to that for linear vector fields:

E* = span{n, (generalized) eigenvectors
whose eigenvalues have modulus < 1},

EY = span{n, (generalized) eigenvectors
whose eigenvalues have modulus > 1},

E° = span{n_(generalized) eigenvectors
whose eigenvalues have modulus = 1},

where the orbits in E* and E* are characterized by contraction and expansion,
respectively. If there are no multiple eigenvalues, then the contraction and
expansion are bounded by geometric series: i.e., there exist constants ¢ > 0,
a < 1 such that, for n > 0,

n M S
[x,] < ca"|xo) if xo € ES, (144
fx_,ql < co|xo] if xo € E". :
If multiple eigenvalues occur, then much as in the case of flows, the contrac-
tion (or expansion) need not be exponential, as the following exercise
illustrates. However, an exponential bound can still be found if |4;| < 1 for
all eigenvalues.

Exercist 14 2. Compute orbits for

1 10
x—»[(z) Jz_]x and x—»[l |]x

and sketch them on the planc. Show that (0, 0) is asymptotically stable in the first case,
while it is unstable in the second case, even though [ 4| = 1 (cf. Exercise 1.2.1).

In spite of problems caused by multiplicities, if B has no eigenvalues of
unit modulus, the eigenvalues alone serve to determine stability. In this
Case x = 0 is called a hyperbolic fixed point and, in general, if X is a fixed
point for G (G(X) = X) and DG(X) has no eigenvalues of unit modulus, then
X is called a hyperbolic fixed point.

There is a theory for difftomorphisms parallel to that for flows, and in
particular the linearization theorem of Hartman-Grobman and the in-
variant manifold results apply to maps just as the flows (Hartman [1964],
Nitecki [1971], Shub [1978]):
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Theorem 1.4.1 (Hartman-Grobman). Let G:R"— R" be a (C') diffeo-
morphism with a hyperbolic fixed point X. Then there exists a homeomorphism

h defined on some neighborhood U on x such that h(G(£)) = DG(x)h(¢) for all
teU.

Theorem 1.4.2 (Stable Manifold Theorem for a Fixed Point). Let G: R* - R"
be a (C") diffeomorphism with a hyperbolic fixed point X. Then there are local
stable and unstable manifolds W5,(X), W 1,.(X), tangent to the eigenspaces
E, E% of DG(X) at X and of corresponding dimensions. W3 (%), W1, .(X) are as
smooth as the map G.

Global stable and unstable manifolds are defined as for flows, by taking
unions of backward and forward iterates of the local manifolds. We have

Wi (%) = {xe U|G"(x) » xasn — +00,and G"(x) e U, Vn > 0},
Wi(¥)={xeU|G"(x) > Xasn— +o0,and G *(x)e U, ¥n > 0},
and

Wi x) = | G (Wie(X)),

n20
WHx) = UO G(Wiec(X)).

nz
The reader should bear in mind, however, that flows and maps differ crucially
in that, while the orbit or trajectory ¢,(p) of a flow is a curve in R", the orbit
{G"(p)} of a map is a sequence of points. Thus, while the invariant manifolds
of flows are composed of the unions of solution curves, those of maps are
unions of discrete orbit points; see Figure 1.4.1. This distinction will be
important later, in the discussion of global behavior.

wi(¥)

2(p) 8\ , S

Glp) b
s
P E
Figure 1.4.1. Invariant manifolds and orbits for a map G: R? — R2.
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We note that, when we write G2(p), we mean G(G(p)) and, similarly, that
G"(p) means the nth iterate of p under G. Thus, if there is a cycle of k distinct
points p; = G(po), j = 0,...,k — 1, and G*(p,) = po, we have a periodic
orbit of period k. The stability of such an orbit is determined by the linearized
map DG (po), or, equivalently DG*(p ;) for any j. By the chain rule, we have
DG'(po) = DG(G*™'(po)) -+ - DG(G(po)) - DG(po).

Much as for flows, the behavior of the linear map (1.4.1) is governed by
the eigenvalues and eigenvectors of B. Since maps are rarely dealt with in texts
on differential equations or nonlinear oscillations, we include some details
here. For a one-dimensional map, where B = b is a scalar and the orbit of a
point {p;}iZo is simply given by the geometric sequence p; = b’p,, there are
four “common” cases and three “unusual” ones listed below in Table 1.4.1.
We shall see precisely what we mean by “common” and “unusual” later in
this book.

Table 1.4.1. Behavior of the Linear Map x — bx.

Case Description Sketch
Lb<—1 Orientation reversing source < —
4] 0 po p:
2. be(—1,0)  Orientation reversing sink > <
pr 0 p, Po
3. be(0, 1 Orientation preserving sink - ~
oD P & 0 p2r po
4. b>1 Orientation preserving source “ >
0 po p P2
S. b= —1 Orientation reversing, all points > o P
of period 2 ! o~ P2
6.b=0 All points go to 0 on first —— — “
iterate (noninvertible) =ppjzl Po
7.b=+1 Orientation preserving, all -
points fixed 0 Po=P;Vj

In general, the stability type of the fixed point x = 0 is determined by the
magnitude of the eigenvalues of B.If | ;| < 1 for all eigenvalues, then we have
a Sjnk; if |4;{ > 1 for some eigenvalues and |4;| < 1 for the others: a saddle
point, and if |4;] > 1 for all eigenvalues: a source. If |4;| = 1 for any eigen-
Vfllues then a norm 1s preserved in the directions v/ associated with those
€igenvalues (unless they are multiple with nontrivial Jordan blocks).

E.XF-R(‘ISE 1.4.3. Develop a classification scheme similar to that of Table 1.4.1 for the two-
dimensional map x — Bx;
B= (bl 1 bl 2).
bzt b2

Work in terms of the eigenvalues of B. (Hint: For help see Hsu [1977], or Bernoussou
[1977])
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If an even number of eigenvalues have negative real parts, then the map
x +— Bx is orientation preserving, while if an odd number have negative real
parts it reverses orientation. We give some two-dimensional examples (part
of the answer to Exercise 1.4.3) in Figure 1.4.2.

To get a feel for the rich and complex behavior possible for nonlinear
maps the reader may like to experiment with the following two examples.
Solutions may be conveniently obtained on a programmable pocket calcu-
lator or a minicomputer:

EXERCISE 1.4.4. How many fixed and periodic points can you find for the following one-
dimensional map and two-dimensional diffeomorphism? Discuss their stability. Let
the parameter p vary over the ranges indicated. Can you find “bifurcation” values of
at which new periodic points appear?

(@) x> ux(l — x); pe[0,4],
(b) (x, )= (3, —3x + py — )i pe[2,4]
(This problem is much harder than it looks. For instance, there are infinitely many

periodic points for (a) if 3.7 < u < 4. We only expect you to find a few low period ones
in each case.)

As a final example of a two-dimensional map with rather rich behavior,
consider the simple linear map

X 1 1\/x
2 _ m2/72
(y) — (1 2)(})), (x,y)e T* = R*/Z%, (1.4.5)
Im
C IR xt)‘ L. [+ e
Ve N 2\ -~ T ~ ’/ \
‘|’ /)/./ Re \;“\ } t\’\z )‘1:
S r'l A= :[’ o
2 b ¢ 2l p ¢ b ¢ l‘z

B' A -

yo'c A B
ﬁ < [ . S
1 & Xy > X

p'cC

(@) e oo l—m e

Figure 1.4.2. Orientation preserving (a), (b) and orientation reversing (c) linear maps

)
0 i)

Position of eigenvalues with respect to unit circle in complex plane shown above orbit
structures. The oriented rectangle ABCD is mapped to A'B'C'D’ in each case.
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where the phase space is the two-dimensional torus. On the plane (the
covering space) we simply have a saddle point, with eigenvectors v!'? =
1,3z \/5)/2)7 belonging to the eigenvalues 4, , = (3 + \/5)/2. Since the
map is linear, W¥(0) = E*, W*(0) = E* and thus span{(l, (1 + \/5)/2)7} is
the unstable manifold and span{l, (1 — \/3)/2)7} the stable manifold.
However, our phase space is the torus, T2, obtained by identifying points
whose coordinates differ by integers. The map is well defined on TZ since it
preserves the periodic lattice. Any point of the unit square [0, 1) x [0, 1)
mapped into another square is translated back into the original square; for
example, if (x, y) = (—1.4, +1.2), we set (x, y) = (0.6, 0.2). See Figure 1.4.3.
Thus the unstable manifold “runs off the square™ at (2/(1 + \/3), 1) and
reappears, with the same slope, at (2/(1 + \/3), 0),torunoffat (1, (\/3 - 1)/2),
etc. Since the slopes of W* and W* are irrational ((1 + \/3)/2) these manifolds
are dense in the unit square (or wind densely around the torus). Thus each

manifold approaches itself arbitrarily closely, and hence is not an embedded
submanifold of T2

Exercist 1.4.5. Show that the map of equation (1.4.5) has a countable infinity of
periodic points and that the set of such points is dense in T2, (First show that a point %
is periodic if and only if both components of x are rational numbers with the same
denominator.)

ExXERCISE 1.4.6. Describe the set A = W3(0) n W*(0) of intersections of the invariant
manifolds for the linear map on the torus. What do you think that this implies for the
structure of “typical” orbits? (Hint: See Chillingworth [1976], pp. 235-237.)

Arnold and Avez [1968, pp. 5-7] have nice illustrations of the torus map.
Also, see Chapter 5 for more information on the invariant sets of such maps.

.y

(0,1) 4,1
w!(0)
wS(0) -

N

/

/(0'5)\ (1,0)
(a) (b)

Figure 1.4.3. The linear map on the torus (the hyperbolic toral automorphism). (a) On
R2, the covering space: (b) on T2,
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¢ ')

aew! (p)NwS(p)

Gl(q) q

Figure 1.4.4. Homoclinic orbits.

This example might seem rather artificial, but as we shall see, many
physically interesting systems have similar properties. In subsequent
chapters we shall see that a Poincaré map associated with the forced Duffing
equation with negative linear stiffness

X + ax — x + x* = Bcoswt, (1.4.6)

which is a nonlinear diffeomorphism of the plane, possesses a hyperbolic
saddle point p whose stable and unstable manifolds intersect transversely
somewhat as in the torus map above (cf. Figure 1.4.4). It is fairly easy to see
that, if there is one point g € W¥(p) n W*(p), with g # p, then, since G*(q) — p
as n = + 00, and the approach is governed by the linear system for |q — p|
small, there must be an infinite set of such homoclinic points. Moreover,
if the map is orientation preserving (as our Poincaré maps are), then the two
homoclinic points g, G(g) must be separated by at least one further point in
WH(p) n W*(p) (marked § in Figure 1.4.4). The orbit {G"(q)} of g is called a
homoclinic orbit and plays an important réle in the global dynamics of the
map G. In particular, the violent winding of the global manifolds W*(p)
and W*(p) in the neighborhood of p leads to a sensitive dependence of
orbits {G"(x,)} on the initial condition x,, so that the presence of homoclinic
orbits tends to promote erratic behavior. This underlies the chaotic be-
havior exhibited by the examples of Chapter 2 and in the subject of much of
Chapters 5 and 6. If the stable and unstable manifolds W*(p,), W*(p,) of two
distinct fixed points intersect then the resulting orbit is called heteroclinic.

EXERCISE 1.4.7. Show that the stable manifold of a saddle point of a two-dimensional
map cannot intersect itself.

1.5. Closed Orbits, Poincaré Maps, and
Forced Oscillations

In classical texts on differential equations the stability of closed orbits or
periodic solutions is discussed in terms of the characteristic or Floquet
multipliers. Here we wish to introduce a more geometrical view which is in
essence equivalent: the Poincaré map. Since the ideas are so important, we
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devote a considerable amount of space to familiar examples from forced
oscillations.

Let y be a periodic orbit of some flow ¢, in R" arising from a nonlinear
vector field f(x). We first take a local cross section T = R", of dimension
n — 1. The hypersurface £ need not be planar, but must be chosen so that
the flow is everywhere transverse to it. This is achieved if f(x) - n(x) # O for
all x € Z, where n(x) is the unit normal to X at x. Denote the (unique) point
where 7 intersects £ by p, and let U < Z be some neighborhood of p. (If y has
multiple intersections with Z, then shrink Z until there is only one inter-
section.) Then the first return or Poincaré map P: U — X is defined for a point
qge Uby

P(q) = ¢/, (1.5.1)

where T = 1(g) is the time taken for the orbit ¢,(q) based at ¢ to first return
to Z. Note that 7 generally depends upon g and need not beequalto T = T(p),
the period of y, However, t —» T as g — p.

Clearly p s a fixed point for the map P, and it is not difficult to see that the
stability of p for P reflects the stability of y for the flow ¢,. In particular, if p
is hyperbolic, and DP(p), the linearized map, has n, eigenvalues with modulus
less than one and n, with modulus greater than one (n, + n, = n — 1), then
dim W*(p) = n,, and dim W*p) = n, for the map. Since the orbits of P
lying in W* and W* are formed by intersections of orbits (solution curves)
of ¢, with Z, the dimensions of W*(y) and W*(y) are each one greater than those
for the map. This is most easily seen in the sketches of Figure 1.5.1.

As an example, consider the planar system

x=x—y—x(x*+ y?),

(1.5.2)
y=x+y— yx*+ y?),

part of WY(y)

oS part of
.- S
o W (y)

(a) (b)

Figure 1.5.1. The Poincaré map. (a) The cross section and the map; (b) a closed orbit.



24 1. Introduction. Differential Equations and Dynamical Systems

and take as our cross section
Z={xy)eR*x>0y=0}

Transforming (1.5.2) to polar coordinates r = (x + y?)}/2, 0 = arctan(y/x),
we obtain

P =rl—r),

b=1, (1.5.3)

and the section becomes
Z={r0)eR* x S'ir>0,0 =0}

It is easy to solve (1.5.3) to obtain the global flow

1 -1/2
ddro, o) = ((l + (—2 - l)e_z‘) Jt+ 60).
ro

The time of flight 7 for any point g € Z is simply T = 27, and thus the Poincareé

map is given by
1 -1/2
P(ry) = (1 + (7 - l)e“‘") . (1.54)
0

Clearly, P has a fixed point at r, = 1, reflecting the circular closed orbit
of radius 1 of (1.5.3). Here P is a one-dimensional map and its linearization

is given by
1 3/2 -4r
3G (29)
ro=1 2 ro ro

=e 4" <1 (1.5.5)

dP
dro

DP(1) =

ro=1

Thus p = 1 is a stable fixed point and y is a stable or attracting closed orbit.

We note that we could have computed DP(1) a little more simply by
considering the flow of the vector field (1.5.3) linearized near the closed orbit
r = 1. Since (d/dr)(r — r®) = 1 — 3r2, this is

E = _25’
1.5.6
61 (1.5.6)
with flow
D(&o, 00) = (e™#&o, t + Bo). (1.5.7)

Hence DP(1) = e~ 220 = ¢~ 4" as above.

To demonstrate the general relationship between Poincaré maps and
linearized flows we must review a little Floquet theory (Hartman [1964],
§IV.6, 1X.10). Let X(r) = x(t + T) be a solution lying on the closed orbit v,
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pased at x(0) = p € L. Linearizing the differential equation about y, we
obtain the system

¢ = DM, (1.5.8)

where Df(X(t)) is an n x n, T-periodic matrix. It can be shown that any
fundamental solution matrix of such a T-periodic system can be written in
the form

X(@) = Z@)e'®;  Z@t) = Z(t + T), (1.5.9)

where X, Z, and R are n x n matrices (cf. Hartman [1964], p. 60). In
particular, we can choose X(0) = Z(0) = I, so that

X(T) = Z(T)e™ = Z(0)e™® = €Tk, (1.5.10)

It then follows that the behavior of solutions in the neighborhood of y is
determined by the eigenvalues of the constant matrix e”®. These eigenvalues,
Ay ---sAq, are called the characteristic (Floquet) multipliers or roots and
the eigenvalues yu,, . .., 4, of R are the characteristic exponents of the closed
orbit y. The multiplier associated with perturbations along 7y is always
unity; let this be 2,. The moduli of the remaining n — 1, if none are unity,
determine the stability of y.

Choosing the basis appropriately, so that the last column of e'® is
(©,...,0, 1)T, the matrix DP(p) of the linearized Poincaré map is simply the
(n — 1) x (n — 1) matrix obtained by deleting the nth row and column of
e™® Then the first n — 1 multipliers 4,,..., 4, are the eigenvalues of the
Poincaré map.

Although the matrix R in (1.5.9) is not determined uniquely by the
solutions of (1.5.8) (Hartman [1964], p. 60), the eigenvalues of e™® are
uniquely determined (e™® can be replaced by any similar matrix C~'eTRC).
However, to compute these eigenvalues we still need a representation of X,
fmd this can only be obtained by actually generating a set of n linearly
independent solutions to form X(t). Except in special cases, like the simple
example above, this is generally difficult and requires perturbation methods
or the use of special functions.

Exercise 1.5.1. Repeat the analysis above for the three-dimensional systems obtained
by adding the components # = pz and then 2 = y — 22 to (1.5.3): consider u < 0,
# =0, and g > 0. Sketch the stable and unstable manifolds of the periodic orbits in
each case. (This is fairly simple.)

EXER(‘ISF, 1.5.2. Find the closed orbits of the following system for different values of g,
and ;0 F = Wy, + pyr? — %), 0 = 1 — 2 Discuss their stability in terms of the

Oincaré map. (While the analysis is simple here, since the r and § equations uncouple,
this is 4 nontrivial example which will reappear in Chapter 7.)

We have seen how a vector field f(x) on R" gives rise to a flow map ¢,
on R" and, in the neighborhood of a closed orbit, to a (local) Poincaré map P
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on a transversal hypersurface Z. Another important way in which a flow
gives rise to a map is in non-autonomous, periodically forced oscillations.
Consider a system

%=f0,1); (uheR x R, (1.5.11)

where f(-,t) = f(-,t + T)is periodic of period T int. System (1.5.11) may be
rewritten as an autonomous system at the expense of an increase in dimension
by one, if time is included as an explicit state variable:

% = f(x, 6),
6=1; (x,0)e R" x S

The phase space is the manifold R* x S*, where the circular component
S' = R (mod T) reflects the periodicity of the vector field f in 6. For this
problem we can define a global cross section

T = {(x,0) e R* x §'|6 = 6}, (1.5.13)

since all solutions cross T transversely, in view of the component § = 1
of (1.5.12). The Poincaré map P: X — X, if it is defined globally, is given by

P(xg) = 7 ¢1(xq, 0o), (1.5.14)

where ¢,: R" x §' - R" x S! is the flow of (1.5.12) and = denotes projection
onto the first factor. Note that here the time of flight T is the same for all
points x € X. Alternatively, P(xq) = x(xq, T + 6;), where x(x,, t) is the
solution of (1.5.12) based at x(x,, 6¢) = X,.

The Poincaré map can also be derived as a discrete dynamical
system arising from the flow (x,t) of the time-dependent vector field of
(1.5.11). Since f is T-periodic, we have Y(x, nT) = y"(x, T) 4f yr(x). The
map P(x,) = Y {(x,)is in this sense another example of a discrete dynamical
system of the type considered at the beginning of Section 1.4.

The system

(1.5.12)

(1.5.15)

with solution

-1
$dxo, o) = ((x_lo - t) U+ 90),

and the Poincaré map

-1
P(x,) = (x](, - 271:) s Xq€(—o00, 1/2m)

on X = {(x,8)]0 = 0} shows that P may not be globally defined. Here,
trajectories of ¢, based at x, > /2% approach oo at a time t < 2n. However,
P: U - X is usually defined for some subset U < Z.
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(a) (b}

Figure 1.5.2. The Poincaré map for forced oscillations. (a) A periodic orbit of period
T and the fixed point p = P(p); (b) a subharmonic of period 2T.

We illustrate the Poincaré map for forced oscillations in Figure 1.5.2.
As in the previous case, it is easy to see that a fixed point p of P corresponds to
a periodic orbit of period T for the flow. In addition, a periodic point of
period k > 1 (P*(p) = p but P{(p) # pfor 1 <j < k — 1) corresponds to a
subharmonic of period kT. Here P* means P iterated k times, thus P2(p,) =
P(P(p,)); etc. This, of course, also applies for the autonomous case discussed
earlier. Such periodic points must always come in sets of k:py,...,Py-1
such that P(p;) = p;4 1,0 <i < k — 2and p, = P(p—).

EXERCISE 1.5.3. (a) Show that the periodic orbits of (1.5.12) can only have periods kT for
integers k.

(b) Show that periodic orbits can only have period T if n = 1.
(c) Show that the Poincaré map for forced oscillations is orientation preserving.

(Hint: Use uniqueness of solutions in R" x S'.)

Since the definition of the Poincaré map relies on knowledge of the
flow of the differential equation, Poincaré maps cannot be computed unless
general solutions of these equations are available. However, as we shall
see in Chapter 4, perturbation and averaging methods can be used to approxi-
mate the map in appropriate cases and valuable information can thus be
obtained from the marriage of conventional methods with the geometric
approach of dynamical systems theory.

We now consider two examples from the theory of oscillations.

Forced Linear Oscillations

W§ Start with a problem for which a general solution can be found and the
Poincare map computed explicitly. Consider the system

X+2fx+x=7ycoswt; 0B <1, (1.5.16)
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U[ D)8 s

Here the forcing is of period T = 27/w. Since the system is linear, its solution
is easily obtained by conventional methods (cf. Braun [1978]):

or

x(t) = e™#(c, cos wat + ¢, sin wyt) + A cos wt + Bsin wt,
(1.5.18)
where w, = /1 — B? is the damped natural frequency and 4 and B, the
coefficients in the particular solution, are given as
= (1 — o?y . B= 2Bery
[(1 - w?)? + 4p%0?])’ [(1 — w?)? + 4f%w?]’
The constants ¢, ¢, are determined by the initial conditions. Letting
X =X, = Xjpand X = x; = x,4,att = 0, we have

x0)=x0=c¢c,+4 }=¢'1=x10“/‘1, }
%(0) = x50 = —fc; + wyc, + wB 3 = (x20 + B(xy0 — A) — @B)/w,f
(1.5.20)

(1.5.19)

Thus, since ¢(x,0, X290, 0) is given by (1.5.18) and
X5(t) = %,(t) = e {—=P(c, cos wyt + ¢, sin w,t)
+ w (—cy sin wyt + ¢, cos w,t)}
—w(4 sin wt — B cos wt),

we can compute the Poincaré map explicitly as 7+ @,,,(X10, X20, 0). In the
case of resonance, w = w; = \/1 — B?, we obtain

P(xlo, Xzo) = ((xlo - A)e_z"’”“’ + A, (xzo - wB)e—z"m"’ + wB). (1.5.21)

As expected, the map has an attracting fixed point given by (x,, x,) =
(4, wB) or ¢, = c, = 0. The map is, of course, linear and since the matrix

oP, 0P,
0x10 8x30 e Q)
X10 0X20 — [e . _2,/;/“,] (1.5.22)
oP, 0P, €
0x10 aXZO

is diagonal with equal eigenvalues, the orbits of P approach (4, wB) radially,
cf. Figure 1.5.3.

EXERCISE 1.5.4. Compute the Poincaré map for the linear oscillator in the case when
1 — 2 = w,. What happens when # = O and w = 1?
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X2

(A,wB)me—

Xy

Figure 1.5.3. The Poincaré map of the linear oscillator equation (1.5.16).

EXErcISE 1.5.5. Consider the forced “negative stiffness” Duffing equation X + ax —
x + x> = Bcost, a >0, f = 0. Show that: (a) solutions remain bounded for all time
(¢, is globally defined); (b) for 1 > a > f > 0 there are precisely three periodic orbits
of period 2, one a saddle and the other two attractors. Discuss the structure of stable
and unstable manifolds of these periodic orbits by considering the structure of the
associated manifolds of the fixed points of the Poincaré map. (This is quite difficult.
For (a) you must find a closed curve on which all solutions are directed inward. For
(b) you can perturb from the case § = 0, which is quite simple to analyze.)

The Duffing problem will be taken up in more detail in Chapter 2. As a
second example we take a nonlinear system which we linearize about two
equilibria.

The Periodically Perturbed Pendulum

The equation of motion of a pendulum with a periodically excited support
may be written as a nonlinear Mathieu equation:
¢+ (@ +PBcost)sing =0, >0, (1.5.23a)
or
¢=no,
g=—(a2+5c050)sin¢, i (9,0,0)eS' x Rx SL.(=R x T?
=1,
(1.5.23b)

Note that the equilibrium positions (¢, v) = (0, 0) and (m, 0) of the unforced
problem (8 = 0) still yield ¢ = 6 = 0 when B # 0. Thus for all § we have
Periodic orbits given by (0, 0; 6(¢)), (7, 0; 8(¢)) with 8(t) = t + t,. Linearizing
the vector field about these orbits we obtain the linear Mathieu equations

(ﬁ =0, (ﬁ =0,
V= —(a® + BcosB)¢p, and o = (a® + B cos 8¢,
é = l, 0 = 19

(1.5.24a, b)
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respectively, where we have retained the same variables (¢, v) as for the
original nonlinear problem.

We now investigate the stability of these periodic orbits. When f # 0,
equations (1.5.24) represent problems in Floquet theory. When f = 0 we
have the simple pendulum and solutions near ¢ = 0 and ¢ = & are given,
respectively, by the general solutions of the linear oscillator ¢ + ¢ = 0:

(d)) _ C?( cos.at ) + cg( sin ot )
v —a sin at a cos at
¢ . eat x e-dl
and (v = i oo +c3 e (1.5.25a, b)

Letting (¢(0), (0)) = (¢o, vo), We find that ¢ = ¢, ¢ = vy/a and
i + vo/a « _ $o — vo/a
o = ¢’_°_2_°_/_ g = oo,

Integrating these solutions for one period T = 2= of the forcing perturbation,
we obtain the linearized Poincaré maps

Yo .
DP,(0,0) (fo) _ ( ¢o cos(2ma) + . sm(2mx)), (1.5.262)

o —ag, sin(2na) + v, cos(2na)

and

Do
¢ + ) 2na (¢ - _) =2na
Py, 0) #0) = 1 ( ° ° (1.5.26b)
Yo 2 2na -2na
(ao + vo)e*™ — (adpo — vo)e
Thus the linearized operators are
1.
cos(2ne) - sin(2ma)
DPy(0,0) = o
L—a sin(Qra)  cos(2ma)
[ 1.
cosh(2ra) - sinh(2na)
and DPy(m,0) = o . (15.27a,b)
| « sinh(2ra) cosh(2na)
The eigenvalues of these matrices are

A9 5 = cos(2na) + isin(2na) and Af , = cosh(2na) + sinh(2na)

— ei21¢a’ e—iZﬂﬂ, Zna’ e Zna‘

(1.5.28a, b)

We conclude that the orbit (0, 0, 8(z)) is neutrally stable, with eigenvalues on
the unit circle, and that at (=, 0, 8(r)) is of saddle type with one eigenvalue
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within and one outside the unit circle. Note, however, that when a = n/2;
n = 0,1,2,...the eigenvalues of the neutrally stable orbit are +1 (resp. —1)
with multiplicity two. We shall return to this below.

We now turn to the more interesting case when f # 0. As is well known,
the general solution of (1.5.24) can be written as

()
o(t)
where x'(t) and x%(t) are two linearly independent solutions. Thus X(t) =

[x'(2), x*()] is a fundamental solution matrix. The linearized Poincaré map
can be obtained as

) = x'(1) + €370, (1.5.29)

DP; = X(2m)X ~1(0), (1.5.30)

since, using (1.5.29) we have

¢(2m)\ _ ¢ ) _ y-1mf PO
(v(21r)) = X(Zn)(cz) and (Cz) =X (0)(0(0)). (1.5.31)
Our problem now becomes one of calculating a pair of linearly independent
solutions, a problem solved in many classical textbooks by special functions
(Mathieu functions) arising from series solutions, or by perturbation methods
(cf. Nayfeh and Mook [1979]). Rather than repeating such analyses, we
shall derive an interesting property of the eigenvalues of DP,; and use this to

discuss the stability of solutions for § 3 0, small. We choose an independent
pair of solutions x!(t), x?(t) such that

x(0) = ((1)) x2(0) = (‘1’) and  X(0) = I = X"'(0)

Then we have
_ _[e'Cn) ¢*(2m)
DP; = X(2n) = [v‘(27z) vz(2n):|’ (1.5.32)

where X(1) = D¢,, the linearized flow. We claim that the determinant
of DP, (the Wronskian of the solutions x, x2) is unity for our system. To
see this, consider the determinant of the linearized flow D¢, :

A = det(D¢,) = ¢'v? — ¢t
:ii_tA = éle + ¢|l32 _ ¢°Zvl _ 4)213‘ = ¢1132 - ¢2‘31
= ¢'[+(a* + Bcos 1)p?] — ¢?[+(a® + Bcost)p!] = 0. (1.533)

Thus A maintains its value. But setting ¢ = 0 and using

_ ('O N1 _ [(#*©@) _ (0
(0 = (v‘«»)' (0) x(0) = (v’(O)) = (1)
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we have A = 1. Therefore det DP;, = det D¢,, = | also, and the (linearized)
Poincaré map is area preserving. The eigenvalues of (1.5.32) are

Mao=at/a* -1, a=¥o'@n) + v*(2n)), (1.5.34)

and we have
A, = 1. (1.5.35)

Thus, when f # 0 as well as when 8 = 0, the eigenvalues are either complex
conjugates with nonzero imaginary parts, real and reciprocal, or multiple
and equalto +1 or —1.

Now as f increases from zero, the eigenvalues of DP, vary continuously,
starting as those of DP,, and we therefore have the following result.

Proposition 1.5.1. The periodic orbit (0, 0, (1)) is neutrally stable for B # 0
and sufficiently small, provided that o # n/2,n € Z. The periodic orbit (n, 0, 6(t))
is of saddle type for B # 0, sufficiently small and all a # 0.

ProoF. Thesecond assertion iseasily proved,sinceif & < 0 then the eigenvalues
of DPy(=, 0) are given by e” 2™ < 1 < ¢2™ and since those of DPy(r, 0) vary
continuously with f, we can choose a $, > 0 such that forall 0 < g < f,,
DPy(n, 0) has eigenvalues 1/4; < 1 < A4. Proof of the first assertion proceeds
similarly, except that we must exclude the critical valuesa = 0,4, 1, 3,...,
since for those values the eigenvalues of DPy(0, 0) are +1 with multiplicity
two, and we cannot know how they will split as § increases from zero. These
critical values are, of course, the resonance conditions familiar from texts
on linear parametric excitation (cf. Nayfeh and Mook [1979]). 1

Note that when « = 4,3,...and 4, , = — 1 the eigenvalues can split and
take the form —4; < —1 < —1/4,(4; > 0) when f # 0. As we shall see in
Chapter 3, this bifurcation of the Poincaré map typically involves the
appearance of an orbit twice the original period. Here, for example, the
instability corresponding to the second subharmonic (T = 4x) appears for
p>0anda =1

Arnold [1978, §25] has a nice treatment of parametric resonance in
periodically perturbed Hamiltonian systems. He also works in terms of the
Poincaré map.

EXERCISE 1.5.6. Consider the system
é=v,
b= —(a + Bcos )¢ — yv,

where the damping parameter 7 > 0 is fixed. Using arguments similar to those above,
show that the solution (¢, v) = (0, 0) is asymptotically stable for all « and sufficiently
small . (Hint: First show that det DP; = ¢~ 2" in this casc )
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1.6. Asymptotic Behavior

Before we can get down to some specific examples of flows and maps, we need
a little more technical apparatus. In this section we define various limit
sets which represent asymptotic behavior of certain classes of solutions, and
in the next section we discuss equivalence relations. While our definitions are
fairly general, we concentrate on two-dimensional flows and maps for most
of our examples. In Section 8 we shall give a more complete review of two-
dimensional flows.

We first define an invariant set S for a flow ¢, or map G on R” as a subset
S « R" such that

¢(x)eS(orG(x)eS) forxeS forallteR. (1.6.1)

The stable and unstable manifolds of a fixed point or periodic orbit
provide examples of invariant sets. However, the nonwandering set is
perhaps more important to the study of long-term behavior. We have
already seen that fixed points and closed orbits are important in the study of
dynamical systems, since they represent stationary or repeatable behavior.
A generalization of these sets is the nonwandering set, Q. A point p is called
nonwandering for the flow ¢, (resp. the map G) if, for any neighborhood U of p,
there exists arbitrarily large ¢ (resp. n > 0) such that ¢(U)n U # &
(resp. G"(U) n U # &).Qisthe set of all such points p. Thus a nonwandering
point lies on or near orbits which come back within a specified distance of
themselves. Fixed points and periodic orbits are clearly nonwandering. For
the damped harmonic oscillator

X +oax +x=0, (1.6.2)

(x, x) = (0,0) is the only nonwandering point; but for the undamped
oscillator

X+x=0, (1.6.3)
all points p € R? are nonwandering, since the (x, X) phase plane is filled with a

continuous family of periodic orbits.

EXERCISE 1.6.1. Find the nonwandering sets for the following flows and maps:

(@) ¥ + &(x? — 1)% + x = 0 (van der Pol's equation, ¢ > 0).
() 0=y —sin6.0eS (takep < l.pg=1,andp> 1).
(©) 0+sing=40es".

|
) x> (l ;)x, x € T? (see §1.4).

((d) is difficult: try to find a dense orbit; recall that points with rational coordinates are
Periodic; cf. Exercises 1.4.5-1.4.6.)
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Not all invariant sets consist of nonwandering points. For example, the
linear map

X [é ;]x; x € R? (1.6.4)
has invariant subspaces (eigenspaces) given by
E=(2,-1),
E* = (1,0)7,

but points p € E° are all wandering (except (0, 0)). The points g € E° are,
however, nonwandering, since they aré all fixed.

Since the set of wandering points is open, Q is closed, and it must contain
the closure of the set of fixed points and periodic orbits. Wandering points
correspond to transient behavior, while “long-term” or asymptotic behavior
corresponds to orbits of nonwandering points. In particular, the attracting
set and attractors will be important. However, before defining an attractor
we need another two ideas.

A point p is an w-limit point of x if there are points ¢, (x), ¢,,(x), ... on the
orbit of x such that ¢, (x) - pand t; - co. A point q is an a-limit point if such
a sequence exists with ¢, (x) = gand t; > — co. Formaps G the t; are integers.
The a- (resp. w-) limit sets a(x), w(x) are the sets of « and w limit points of x.
See Figure 1.6.1.

A closed invariant set A < R" is called an attracting set if there is some
neighborhood U of 4 such that ¢(x) € U for ¢t > 0 and ¢,(x) - A ast — oo,
for all x € U.* The set | ),<o #(U) is the domain of attraction of A (it is, of
course, the stable manifold of A). An attracting set ultimately captures all
orbits starting in its domain of attraction. A repelling set is defined
analogously, replacing ¢ by —t. Domains of attraction of disjoint attracting
sets are necessarily nonintersecting and separated by the stable manifolds of
nonattracting sets. See Figure 1.6.2.

In many problems we are able to find a “trapping region,” a closed simply
connected set D < R"such that ¢,(D) = Dforallt > 0.For this, it is sufficient
to show that the vector field is directed everywhere inward on the boundary
of D. In this case we can define the associated attracting set as

A= () (D).
t20

For maps, a closed set A is an attracting set if it has some neighborhood U
suchthat G"(U) - Aasn — o0. Asinthe case of flows, if D is a trapping region
(G(U) = U), then the associated attracting set is

A= ) GD)

nz0

In Chapter 2 we shall use this idea in studies of several problems.

* {n Chapter § we shall relax this definition somewhat
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a limits set for points
in annulus

w limit set for points
in D0Maq}

Figure 1.6.1. Examples of « and w limit sets. D is the open disc bounded by the outer
periodic orbit.

EXERCISE 1.6.2. Show that there is a trapping region for the flow of the system

% = pyx — x(x* + y?) — xy?,
(x,y) e R%,
Y=y — Wx* + y?) — yx*

for all finite values of y,, u,. Find the fixed points and discuss their stability. Show that,
for u, = p, > 0, the line x = y separates two distinct domains of attraction. (Hint:
Let D be the closed disc with boundary x? + y? = c for large c.)

EXERCISE 1.6.3. Show that there is a solid ellipsoid E given by px? + oy? + a(z — 2p)* <
¢ < oo such that, for suitable choices of @, B, p = 0, all solutions of the Lorenz
equations

X=oy—x); y=px—-y-xz; z=-—fz+xy;
enter E within finite time and thereafter remain in E (cf. Sparrow [1982], Appendix C).

_. separatrix (=w%(q))

Figure 1.6.2. Domains of attraction: of the closed orbit yPZZZ73 and of the fixed point

NN\
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EXERCISE 1.6.4. Consider the system

Xx=x—x3

_ (x,y) e R~

y= -y
Find the nonwandering set, Q, and the « and w limit points of typical points x € R2
Show that the closed interval [ —1, 1] of the x-axis is an attracting set, although most
points in it are wandering. Where do you think most orbits will end up?

The last problem should help motivate our working definition of an
attractor as an attracting set which contains a dense orbit. A repellor is defined
analogously. Thus, in Exercise 1.6.4 there are two distinct attractors:
the points (+ 1, 0). As we shall see in Chapter. 5, it is very difficult to show in
examples that a dense orbit exists, and in fact many of the numerically
observed “strange attractors” may not be true attractors but merely attract-
ing sets, since they may contain stable periodic orbits. We shall meet the
first such examples in Chapter 2.

An example due to Ruelle [1981] shows that, even in one-dimensional
flows, attracting sets can be quite complicated. Consider the system

%= —x sin(g), (1.6.5)

which has a countable set of fixed pointsat x =0and +1/n,n=1,2,....
The interval [—1, 1] is an attracting set, but it contains a countable set
of repelling fixed points at +1/2n, n = 1, 2,... and attracting fixed points
at +1/(2n— 1), n=1, 2,..., as the reader can check by considering the
linearized vector field

)

However, the fixed point x = 0 is itself neither a repellor nor an attractor.
Conley [1978] defined *quasiattractors” earlier to cover this type of example.

= % cosnm.  (1.6.6)
x=t1/n

EXERCISE 1.6.5. Describe the set of fixed points for the map

f:x—»|x[’cos(ln(ll?)), xe[—1,1]

fora <0, =0,and a > 0.

A further example may help to illustrate some of the ideas of this section.
In the analysis of the weakly forced van d-¢ Pol equation, which we shall
outline in Section 1 of Chapter 2, the phase portrait shown in Figure 1.6.3
occurs. Clearly, the closed curve y U {p}, including the fixed point p, is an
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N

Figure 1.6.3. A planar phase portrait in the averaged van der Pol equation.

attracting set, but the point p is neither an attractor nor a repellor, being
simultaneously the a and w limit point for all points x € y. In fact y is filled
with wandering points and the fixed points p and g are the only components
of the nonwandering set. Since there is a dense orbit in y U {p}, our attracting
setis in fact an attractor, but it is clear that, in the absence of perturbations, all
solutions except those based at g tend towards p from the left as t = + co.
This example, among others, should warn us that our definition of an attractor
may not be the most appropriate for physical applications, and we shall
therefore modify it in Chapter § in the light of examples arising from physical
problems.

This example also illustrates why we include the requirement that
¢(x)e U for all t > 0, x € U, since there are orbits starting to the right
of p which leave a neighborhood of p only to eventually return as ¢ — co.
The reader should compare this requirement with our definitions of local
stable and unstable manifolds in Section 1.3.

EXERCISE 1.6.6. Show that the circler = 1is an attracting set for the flow arising from the
vector field

F=r—1r @#=1=cos26.
Which of the equilibrium points are attractors and which repellors? Describe the «
and o limit sets for typical points inside and outside the circle r = 1 and in the upper
and lower half planes.

EXERCISE 1.6.7. Construct an example of a two-dimensional flow with an attractor
Wwhich contains no fixed points or closed orbits. (Hint: Consider linear translation on the
torus T2 = R?/Z2 given by the vector field § = o, ¢ = B.)

~ We note that we have not specified that an attractor should be per-
Sistent with respect to small perturbations of the vector field or map. While
this has been a requirement in many previous definitions, many of the
examples which we consider in this book almost certainly do not have such
Structurally stable attractors. Nonetheless, the idea of structural stability
plays an important role in dynamical systems theory, and it is to this that
We now turn.
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1.7. Equivalence Relations and Structural Stability

The idea of a “robust” or “coarse” system—one that retains its qualita-
tive properties under small perturbations or changes to the functions in-
volved in its definition—originated in the work of Andronov and Pontryagin
[1937]). A very readable introduction to the special case of planar vector
fields may be found in the text on nonlinear oscillations by Andronov
et al. [1966]. In Chapter 5 we shall question the conventional wisdom
that robustness or structural stability is an essential property for models
of physical systems, but since the concept has played such a large réole in
the development of dynamical systems theory we discuss it briefly here.
We first discuss the idea of perturbations of maps and vector fields.

Given a map F e C"(R"), we want to specify what is meant by a perturba-
tion G of F. Intuitively, G should be “close to” F, but there are technical
issues involved in making a workable definition. We refer the reader to Hirsch
[1976] for a full discussion of function spaces and their topologies. Since
we have avoided the use of function spaces in this book, we make the follow-
ing definition which suffices for our discussion of structural stability.

Definition1.7.1. If Fe C'(R"), r, ke Z*, k < r,and £ > 0, then G is a C*
perturbation of size ¢ if there is a compact set K < R" such that F =G
on the set R" — K and for all (iy,...,i,) with i; +---i, =i < k we have
[(8Y/0x% - - - Oxi'XF — G)| < e.

We remark that in this definition the functions F and G might be vector
fields or maps.

Now that we can discuss the “closeness™ of maps or vector fields, we can
consider the questions of topological equivalence and structural stability:

Definition 1.7.2. Two C" maps F, G are C* equivalent or C* conjugate (k < r)
if there exists a C* homeomorphism h such that h o F = G o h. C° equivalence
is called topological equivalence.

This definition implies that h takes an orbit {F"(x)} to an orbit {G"(x)}.
The notion of orbit-equivalence is also what we need in the case of vector
fields:

Definition 1.7.3. Two C" vector fields, f, g are said to be C* equivalent (k < r)
if there exists a C* diffeomorphism h which takes orbits ¢{(x) of f to orbits
@%(x) of g, preserving senses but not necessarily parametrization by time.
If h does preserve parametrization by time, then it is called a conjugacy.

The definition of equivalence implies that for any x and ¢, there is a t,
such that

h($!,(x)) = $7,(h(x)). (L7.1)
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One reason that parametrization by time cannot, in general, be preserved
js that the periods of closed orbits in flows can differ.
We now come to the major definition:

Definition 1.7.4. A map F € C'(R") (resp. a C" vector field f) is structurally
stable if there is an ¢ > 0 such that all C*, ¢ perturbations of F (resp. of f)
are topologically equivalent to F (resp. f).

At first sight the use of C° equivalence might seem crude and we might
be tempted to use C* equivalence with k > 0. This is too strict, however,
because it implies that if f and g have fixed points p and g = h(p), then the
eigenvalues of the linearized systems ¢ = Df(p)¢ and 5§ = Dg(q)n must be
in the same ratios (we prove this in the appendix to this section). For example,

the linear systems
X 1 0]/x
= 1.7.
(ﬁ) [0 1](y) (172

®=B12Mﬁ (17.2b)

are not C* orbit equivalent for any ¢ # 0 and k > 1. In this example the lack
of differentiable equivalence is clear, since in the first case solution curves are
given by graphs of the form y = C,x, and in the second by y = C,|x|'**.
Any such pair of curves with C,, C, # 0 are not difftomorphic at the origin.

Note that homeomorphic equivalence does not distinguish among nodes,
improper nodes, and foci: for example, the two-dimensional linear vector
fields with matrices

Do b [ o] = 73]

all have flows which are C° equivalent to that of the node with matrix

-1 0
! a3

Howevcr, the C° equivalence relation clearly does distinguish between
sinks, saddles, and sources.

As a further illustration of structural stability of both flows and maps,
consider the two-dimensional linear differential equation

and

x=Ax, xeR? (1.7.4)
and the map

x> Bx, x € R2. (1.7.5)



40 1. Introduction. Differential Equations and Dynamical Systems

Suppose in the first case that 4 has no eigenvalues with zero real part, and
in the second that B has no eigenvalues of unit modulus. We claim that, if
these conditions hold, then both systems are structurally stable.

Consider a small perturbation of (1.7.4):
X = Ax + ¢f (x), (1.7.6)

where f has support in some compact set. Since 4 is invertible, by the implicit
function theorem, the equation

Ax + &gf(x) =0 .77

continues to have a unique solution X = 0 + @(¢) near x = 0, for sufficiently
small &. Moreover, since the matrix of the linearized system

& = [4 + sDf (D¢

has eigenvalues which depend continuously on ¢, no eigenvalues can cross
the imaginary axis if ¢ remains small with respect to the magnitude of the
real parts of the eigenvalues of 4. Thus the perturbed system (1.7.7) has a
unique fixed point with eigenspaces and invariant manifolds of the same
dimensions as those of the unperturbed system, and which are ¢-close locally
in position and slope to the unperturbed manifolds. Similar observations
apply to the discrete system (1.7.5) and a corresponding small perturbation

x> Bx + eg(x). (1.7.8)

In both cases the problem is that of finding a homeomorphism which takes
orbits of the linear system to those of the perturbed, nonlinear system.
Specifically, for the discrete systems, we must prove that there is a homeo-
morphism h such that the following diagram commutes:

RZI—8 L, R2
h h
IRZ B+.g Rz

For the flow we replace B by ¢'*4 and B + ¢g by the flow ¢,, generated by the
vector field (1.7.7) (they are conjugate in this case).

The proof is now essentially the same as that of Hartman’s theorem and
the reader is referred to Pugh [1969] or Hartman [1964, Chapter 9].

It should be clear that a vector field (or map) possessing a non-hyperbolic
fixed point cannot be structurally stable, sir.ce a small perturbation can re-
move it, if the linearized matrix is noninvertible, having a zero cigenvalue, or
turn it into a hyperbolic sink, a saddle, or a source, if the matrix has purely
imaginary eigenvalues. Similar observations apply to periodic orbits and
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we are therefore in a position to state an important requirement for structural
stability of flows or maps: all fixed points and closed orbits must be hyperbolic.
However, as we shall see, this condition alone is not enough to guarantee
structural stability, since more subtle, global effects also come into play.

Structurally stable systems have rather “nice” properties in the sense
that, if a system is structurally stable, then any sufficiently close system
has the same qualitative behavior. However, as we shall see, structurally
stable behavior can be extremely complex for flows of dimension >3 or
difftomorphisms of dimension >2. Also, it will turn out that structural
stability is not even a generic property—that is, we can find structurally
unstable (and complicated) systems which remain unstable under small
perturbations, and which, in fact continually change their topological
equivalence class as we perturb them. We shall meet our first examples of
such systems in Chapter 2.

We have not defined or discussed the notion of generic properties in this
section because their definition is formulated in terms of function spaces.
Interested readers should consult Chillingworth [1976] or Hirsch and
Smale [1974] for introductions to the subject.

Before closing this section we wish to stress that the definition of structural
stability is relative to the class of systems we deal with. In our main defini-
tion we have allowed all C', ¢ perturbations by C” vector fields on R". If we
restrict ourselves to some subset, say all C" Hamiltonian vector fields on
R2, then things are different and we find that the linear system

%=y,
Y w#0, (1.7.9)

y = —w?x,

possessing an elliptic center at (x, y) = (0, 0) surrounded by a continuous
family of non-hyperbolic closed orbits, is stable to small perturbations
within this subset. However, the system

xX=y,
Y (1.7.10)
y= 0,

possessing a degenerate line of fixed points on the x-axis, is not structurally
stable, since we can find a Hamiltonian perturbation which yields an isolated
fixed point near (0, 0) which is either a center or a hyperbolic saddle point. Of
course, both systems are structurally unstable with respect to perturbations
by general C* vector fields. In this book we concentrate on dissipative systems
and pay little attention to the special properties of Hamiltonian systems
(but see Section 4.8).

EXF.‘R(‘ISE 1.7.1. Show that the vector fields x = —x, X = —4x,and X = — x> are all C°
¢quivalent. Which ones are structurally stable? Find explicitly the homeomorphisms
relating their orbits.
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EXERCISE 1.7.2. Which of the following systems are structurally stable in the set of all one-
(or two-) dimensional systems?

(a) X = x; (b) x = x%;

(c) %X = sin x; (d) X = sinx;

(&) X +2Xx +x=0; ) ¥+ % +x=0;

@ ¥+ %x+x*=0; (h) $+x2—=1)x+x=0;

() 6=1,6=2:(0,0)eT? () 0=1,¢=m(6d)eT?
k)O=2—sin6.¢=1:0,¢)eT> () 06=1-2sin0,¢=1;(0,¢)e T~

(The criteria for determining structural stability of one and two dimensional flows are
discussed in the next two sections.)

Appendix to Section 1.7: On C* Equivalence

Here we show that C* equivalence, k > 1, implies that two systems must
have the same ratios of eigenvalues when linearized at corresponding fixed
points.

If X and Y are C* orbit equivalent then there is a C* diffeomorphism
h: R" - R" such that k “converts” the system x = X(x) into y = Y(y), i.e,
since y = h(x) we have

Dh(x)X(x) = t(h(x))Y (h(x)), (1.7.11)
where 7: R" - R is a positive scalar function which allows reparametriza-
tion of time.

We now suppose x = p is a fixed point for the flow of X, so that y = g = h(p)
is a fixed point for Y. Differentiating (1.7.11) and setting x = p, y = g, we
obtain

D?h(x)X(x) + Dh(x)DX(x) = Dt(h(x))Dh(x)Y (h(x))
+ H(h(x)DY (Hx)DH(x);
since X(p) = Y(q) = 0, this gives (1.7.12)
Dh(p)DX(p) = 1(q)DY(q)Dh(p),

or
DX(p) = (9)Dh(p)~ ' DY(q)Dh(p). (1.7.13)

Thus the two matrices DX (p) and D Y(q) are similar, up to a uniform scaling
by the constant t(q). Hence ratios between eigenvalues are preserved. (If
we do not allow reparametrization of time, then DX(p) and DY(q) are
strictly similar.)

1.8. Two-Dimensional Flows

In this section we provide a review of some of the theory of two dimensional
flows. The Jordan curve theorem, and the fact that solution curves are one di-
mensional, make the range of solution types on the plane rather limited. The
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planar system is therefore fairly well understood. However, the reader should
realize that we provide only a sampling of the many results here. Andronov
and co-workers [1966, 1971, 1973] have well over a thousand pages on the
subject and Lefschetz [1957] should also be consulted for more details.
Many examples of two-dimensional systems arising in engineering and
physics are given by Andronov et al. [1966] and in the books of Minorsky
[1962], Hayashi [1964], and Nayfeh and Mook [1979]. Here we concentrate
on some special classes of systems and give a number of examples, some
classical and others less familiar, which will prepare us for the material to
follow.

Systems on two manifolds other than R’ are more complicated and can
display surprisingly subtle behavior. In the remainder of this chapter we
therefore concentrate on the planar system, although we end with some
examples of systems on cylinders and tori.

Suppose that we are given a differential equation

X = f(x )

x, el c R? (1.8.1)
y=g(xy),

where f and g are (sufficiently smooth) functions specified by some physical
model. In approaching equation (1.8.1) we normally first seek fixed points, at
which f(x, y) = g(x, y) = 0. Linearizing (1.8.1) at such a point (X, y), we
obtain
o _ . of _ _
; 5{ (%, 7 a—f, (%, 9
(5‘) ) } ) o t-oree (82
) = or = x, y)E. 8.
| Bxy By (”’2 ’
ox 7 oy

If the eigenvalues of the matrix Df(X, y) have nonzero real parts, then the
solution &(r) = eP/*9¢0) of (1.8.2) not only yields local asymptotic
behavior, but, by Hartman’s theorem and the stable manifold theorem, also
provides the local topological structure of the phase portrait. The following
exercise shows that the insistence of nonzero eigenvalues is necessary:

EXERCise 1.8.1. Sketch the phase portraits of the following two nonlinear oscillators and
Of their linearizations. (You may need to read on to review analytical methods for two-
dimensional systems.)

(@) X+ ¢l%)%+x=0:6<0,c=0,¢>0;
B) ¥+ %+ex?2=0,e<0,e=0,¢>0.

After locating the fixed points and studying their stability (perhaps using
(lqcal) Liapunov functions in the case of nonhyperbolic points), we next
Wish to ascertain whether (1.8.1) has any periodic orbits. Here the following
two results are useful:
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Theorem 1.8.1 (The Poincaré-Bendixson Theorem). A nonempty compact w-
or a-limit set of a planar flow, which contains no fixed points, is a closed orbit.

For a proof, see Hirsch and Smale [1974, p. 248] or Andronov et al.
[1966, p. 361].

This result can be used to establish the existence of closed orbits, as in the
exercise below:

EXERcISE 1.8.2. Use the Poincaré-Bendixson theorem to prove that the van der Pol
oscillator X + &(x> — 1)x + x = 0 has at least one closed orbit. (First find two nested
closed curves, C,, C, such that the flow crosses C, inward and crosses C, outward.)

Proving uniqueness in the above example is considerably harder unless
¢ € 1; see Hirsch and Smale [1974, Chapter 10], for example. However,
if the vector field is such that C, and C, can be chosen to bound a narrow
annulus, R, then it may be possible to prove uniqueness by showing that
0f/0x + 0g/dy is everywhere negative (or positive) in R. We give such an
example in Section 1 of Chapter 2.

The next result enables us to rule out the occurrence of closed orbits in
some cases:

Theorem 1.8.2 (Bendixson’s Criterion). If on a simply connected region
D < R? the expression of /0x + dg/dy is not identically zero and does not
change sign, then equation (1.8.1) has no closed orbits lying entirely in D.

Proor. This result is a simple consequence of Green’s theorem, for on any
solution curve of (1.8.1) we have dy/dx = g/f or, in particular

J(f (x,y)dy — g(x, y)dx) = 0
b4

on any closed orbit y. This implies, via Green’s theorem, that

of  Og _
JL(a—x + 5) dxdy =0, (1.8.3)

where S is the interior of y. But if 9f/dx + dg/0y > 0 (or <0) on D, then we
cannot find a region S < D such that (1.8.3) holds. Hence there can be no
closed orbits entirely in D. O

Exercise 1.8.3. Find sufficient conditions for the system % + ax + Bx + x’x + x> =0
to have no closed orbits. Are they also necessary?

For a generalization of Bendixson’s ciiterion, Dulac’s criterion, see
Andronov et al. [1966, p. 305].

In addition to fixed points and closed orbits, we have already met examples
of other limit sets of two-dimensional flows in Section 1.6. In fact for planar
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flows, all the possible nonwandering sets fall into three classes (Andronov
o al. [1966], §V1.2).

(i) Fixed points;
(ii) closed orbits; and
(iii) the unions of fixed points and the trajectories connecting them.

The latter are referred to as heteroclinic orbits when they connect distinct
points and homoclinic orbits when they connect a point to itself. Closed
paths formed of heteroclinic orbits are called homoclinic cycles. We note that
the fixed points contained in such cycles must all be saddle points (if they are
hyperbolic), since sinks and sources necessarily have wandering points in
their neighborhoods. Some examples of such limit sets are shown in Figure
1.8.1. We will meet specific systems which display almost all of these behaviors
later in this book.

Exercise 1.8.4. All the examples of planar flows in Figure 1.8.1 are structurally unstable.
Why? (Hint: In (a)-(c), try adding a small perturbation near the homoclinic cycles.)

In flows on nonplanar two-dimensional manifolds, such as the torus,
limit sets which are neither closed orbits, fixed points, nor homoclinic
cycles can arise. In particular, irrational linear flow such as that generated
by the vector field

6, ¢) e T?; (1.8.4)
= 1[,

has a dense orbit and thus every point on T2 is nonwandering. In spite of
its apparent artificiality, we shall subsequently see that this example arises
naturally in the study of coupled oscillators.

Thus, in two-dimensional flows the global structures of solution curves
are generally far richer than those of one-dimensional systems, in which
periodic orbits cannot occur and the fixed points are ordered and necessarily
connected to their immediate neighbors and only to them. Whether or not
such heteroclinic connections are likely to exist in higher-dimensional
Systems depends upon the relative dimensions of stable and unstable mani-
fqlds of neighboring fixed points, but in any case they are generally very
difficult to find, unless the system possesses special symmetries or other
Properties. Our first main example illustrates this point, as well as introducing
two important special classes of systems: Hamiltonian and gradient flows.
Ineach type of system, the level curves of a real valued function determine the
global structure of the flow.

We consider the example

X=—{x— Ay + xy,

1.8.5
y=Ax — Ly + 3#(x* — y?), (183
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(a) {b)

/4‘\
(c) (d)

Figure 1.8.1. Some limit sets for flows on the plane. (a) A homoclinic orbit or saddle-
loop; (b) double saddle-loops; (c) homoclinic cycles formed of heteroclinic orbits;
(d) bands of periodic orbits.

which arose as an averaged system (cf. Chapter 4) in wind induced oscilla-
tion studies (Holmes [1979b]). Here 0 < { < 1 is a damping factor and
A(lA] €« 1) is a detuning parameter. When { =0, (1.8.5) becomes a
Hamiltonian system (Goldstein [1980]):

. OH . OH
X = a_ys = - a_x’ (1.8.6)
for which the Hamiltonian (energy) function
__ Ao 2 1 . X
He ) = =56+ + 2(xy X (187)

is a map H: R* - R. The critical points of H correspond to the fixed points
of the flow of Hamilton’s equations (1.8.6). Moreover, since

dH O0H, O0H, J0HOH O0HOH

ar -t oy Y= oy Oy Ox 0. (18.8)
the level curves H(x, y) = constant are solution curves for (1.8.6). Thus for
our example the phase portrait may easily be drawn as in Figure 1.8.2. Such
a system is said to be integrable, since the solutions, or integral curves, lie
along level curves of a smooth function.

Notice that the three saddle-points at p;=(—24, 0)and p,  =(4, i\/g,l),

are connected. The connecting curves I';; = W*(p;) n W*(p;) are examples of
saddle connections or heteroclinic orbits (if such a curve connects a saddle
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Figure 1.8.2. Phase portrait of equation (1.8.5); { = 0,4 > 0.

to itself it is referred to as a homoclinic orbit). Here these orbits occur as a
result of the Hamiltonian integral constraint, although saddle connections
can occur in non-Hamiltonian systems. The reader should check that when
{ > 0 all three connections are broken and the unstable manifolds W*(p))
now have components which approach the fixed point at (x, y) = (0, 0) as
t - +o0. This point is then a sink, with eigenvalues —{ + il. Realizing
that the I, ; are each intersections of two one-dimensional curves, W*(p;) and
W*(p;), in the plane, we would indeed expect such intersections to occur
only under special circumstances, and, if they do occur, that they would be
broken by arbitrarily small perturbations. Such connections are thus
structurally unstable in the space of all vector fields on R2, We shall return to
this point later, in sketching the proof of Peixoto’s theorem. Note that
Intersection of W*(p;) and W*(p;) implies that portions of the two curves are,
In fact, identified: they cannot merely intersect, as shown in Figure 1.8.3(b), or
the solution based at the intersection point g would have two possible
futures and pasts, thus violating uniqueness of solutions.

Upon linearizing a planar Hamiltonian system at a fixed point, one finds
that trace(Df) = 0 and thus all fixed points are either saddles or centers;
o sinks or sources can exist. This reflects the more general fact that
Hamiltonian flows preserve volume (or, in the two-dimensional case, area);
a result known as Liouville’s theorem. For more information on this and
Other results applicable to higher-dimensional Hamiltonian systems, the
reader should refer to classical mechanics texts such as Goldstein [1980]
or Arnold [1978].
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Py

(o) (b)

Figure 1.8.3. Heteroclinic points g € W*(p,) & W*(p,) for flows in R2. (a) Admissible;
(b) not admissible.

EXERCISE 1.8.5. Show that a differential equation of the form % = f(y). y = g(x) always
possesscs a first integral F(y) + G(x), the level curves of which are solution curves. Use
this fact to study the global solution structure of the system % = —y + y*, j = x — x3,

A special subset of conservative nonlinear oscillator problems with which
we shall be concerned in this book takes the form
X+ f(x)=0, (1.8.9)
or, as a planar vector field with y = x:
X =y,
y=—f(x).

Such a Hamiltonian system always possesses a first integral (at least
formally):

(1.8.10)

H(x, y)———+ ff(x)dx““y + V(x), (1.8.11)

where V(x) is sometimes called a potential (energy) function, since in me-
chanical applications it often corresponds to a stored energy (cf. Andronov
et al. [1966], Marion [1970]).

Any fixed point of (1.8.10) must lie on the x-axis, and correspond to a
critical point of V(x). Thus the real valued function V:R — R effectively
determines the local form of the vector field and hence the flow near each
fixed point. Andronov et al. [1966, Chapter 2], Nayfeh and Mook [1979]
and others give exhaustive accounts of the various cases. For example, if the
critical point of V is nondegenerate (quadratic) then the fixed point is either
a hyperbolic saddle or a center, while if the leading term in the Taylor
expansion of V is cubic or higher, then the fixed point is degenerate. Here
we note that the special structure also enat les one to obtain information on
the global structure of solution curves, which are simply given by H(x, y) =
¢ = constant, or

y=+2c - V) (1.8.12)
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and are thus symmetric under reflection about the x-axis. A major con-
sequence of this is that, if there are two saddle points with the same energy
jevel, corresponding to two maxima of V(x), with no higher maximum
between them, then they must be connected by heteroclinic orbits.

Exercise 1.8.6. Find and classify the fixed points and sketch phase portraits for the
Hamiltonian systems:

@@ ¥ +x—x'=0;

) 5+ x+x*=0;

(c) £ +sinx=0;

() % +sin x = B, B (0,2).

Equation (1.8.5) provides an example of another special type of system.
When A = 0 the system is a gradient vector field

. ov . ov L., 2 1 [y 2
= ax’ y= ay’ V(x’y)_z(x +y)+§(?_xy’

(18.13)

with a sink at (0, 0) (for { > 0) and saddles at (0, —2{) and ( i-\/gc, 0.
For a general discussion of such fields see Hirsch and Smale [1974, pp. 199ff.].
We note that the potential function V: R* - R can be regarded as a Liapunov
function. In this way it is possible to show that minima (resp. maxima) of V
correspond to sinks (resp. sources) of the n-dimensional system:

% = —grad V(x), (1.8.14)

for general potential functions ¥: R* — R. In fact any critical point of V, at
which grad V = 0, must be a fixed point of (1.8.14), and the saddle points
of V are, of course, saddle points of (1.8.14). Now let V' ~!(h) be a level
(hyper-) surface of V. Then, since for any point xe V~'(h) at which
grad V(x) # 0, the vector —grad V(x) is normal to the tangent to the level
surface at x, solution curves of (1.8.14) cross the level surfaces normally
and point “downbhill” in the direction of decreasing V.

ExERrcise 1.8.7. Show that the nonwandering set of a gradient vector field on R? contains
only fixed points and that no periodic or homoclinic orbits are possible. (Hint: Use
V(x) as a “Liapunov-like” function and modify the usual arguments to work globally.)

EXercise 1.8.8. Sketch the phase portraits of equation (1.8.5) for { = 0 and { > 0, with

A <0, =0, >0. Which cases are structurally stable in the set of all two-dimensional
vector fields?

The special properties of gradient vector fields enabled Palis and Smale

[1970] to obtain an important general result for such systems in n dimen-
sions:

Theorem 1.8.3. Gradient systems for which all fixed points are hyperbolic and
all intersections of stable and unstable manifolds transversal, are structurally
Stable.
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For a moment we will step into n dimensions (n > 2) to consider this
result. There should be no trouble regarding hyperbolicity, but the trans-
versal intersection condition requires some discussion. As we shall see in
sketching the proof of Peixoto’s theorem, saddle connections for planar
systems such as I';, = W¥%(p,) n W%(p,) of Figure 1.8.1 can be removed
(=broken) by small perturbations and are thus structurally unstable. How-
ever, suppose that one has a three-dimensional system with a pair of saddle
points p,, p, and dim W*{p,) = dim W*(p,) = 2. It is now possible for
W*(p,)and W*(p,) to intersect transversely on an orbity = W*(p,) ¥ W*(p,)
(F = transversal intersection), so that, at any point g € y, the tangent spaces
T,W*p,), T, W¥(p,) span R3 (Figure 1.8.4). If such a transverse heteroclinic
orbit exists then it is possible to show that it cannot be removed by an
arbitrarily small perturbation, and is thus structurally stable. However,
transverse homoclinic orbits cannot exist, since dim W¥%p) + dim W*(p) < n
and for transversality we require dim W*(p,) + dim W*(p,) > n (Figure
1.8.5).

Transverse saddle connections cannot exist at all in two dimensions,
since the saddle points have one-dimensional stable and unstable manifolds
and a connection y = W¥(p,) n W*%(p,) is necessarily an open interval on
which W¥(p,) and W*(p,) are identified. The tangent space to such a curve
at any point g € y is thus one dimensional (Figure 1.8.3(a)).

Returning to planar flows, we recall a useful result which relates the
existence of closed orbits and fixed points. This involves the (Poincaré)
index of a fixed point. We start with the general idea of the index. Given a
planar flow, we draw a simple closed curve C not passing through any
equilibrium points and consider the orientation of the vector field at a point
p = (x, y) € C. Letting p traverse C anticlockwise, the vector (f(x, y), g(x, ¥))
rotates continuously and, upon returning to the original position, must have
rotated through an angle 2nk for some integer k. (The angle is also measured
anticlockwise.) We call k the index of the closed curve C and it can be shown
that k is independent of the form of C in the sense that it is determined solely
by the character of the fixed points inside C.

ws(p,)
u
W(p,)

Figure 1.8.4. A transverse heteroclinic orbit in R>.
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~

Figure 1.8.5. A nontransverse homoclinic orbit in R?,

If C is chosen to encircle a single, isolated fixed point, X, then k is called
the index of X. The reader can verify the following statements either by direct
examination of the vector fields (cf. Figure 1.8.6) or by evaluation of the
curvilinear integral

1 dy\l _ 1 g(x y) fdg—gdf
k= o Ld{arctan(d—x)} =2 Ld{arctan(/ o y))} f f2 Ty

(18.15)

as in Andronov et al. [1966, §V.8]:

Proposition 1.8.4.

(i) The index of a sink, a source or a center is + 1.
(i) The index of a hyperbolic saddle point is —1.
(i) The index of a closed orbit is +1.
(iv) The index of a closed curve not containing any fixed points is 0.
(V) The index of a closed curve is equal to the sum of the indices of the fixed
points within it.

As a direct corollary to these statements, we find

Corollary 1.8.5. Inside any closed orbit y there must be at least one fixed
point. If there is only one, then it must be a sink or a source. If all the fixed
Points within y are hyperbolic, then there must be an odd number, 2n + 1,
of which n are saddles andn + 1)either sinks or sources.

Degenerate fixed points having indices different from +1 are easily
Constructed. The system

x = x?,
. (1.8.16)
y= -5
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(a)

(¢c)
(b)

(d)

Figure 1.8.6. Indices of fixed points and closed curves. (a) Sinks and sources; (b) a
hyperbolic saddle point; (c) closed orbits; (d) C contains no fixed points.

for example, has a degenerate saddle-node of index 0 at (0, 0), while that of
the system

2 }

— yz’
2xy

%
Il

X

(1.8.17)

<.
I

has index 2, cf. Figure 1.8.7.
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(b)

Figure 1.8.7. Indices of some nonhyperbolic equilibria. (a) The saddle-node; (b) the
vector field of (1 8.17).

The following exercise shows how our second example was chosen and
analyzed:

EXercise 1.8.9. Letting z = x + iy, show that the vector fields in the complex plane
defined by

(=2 and z=2

have unique fixed points at z = O((x, y) = (0, 0)), with indices k and —k, respectively.
(Here 2 denotes the complex conjugate). (Hint: Write % = Re(z*), y = Im(z*) and let
z = re®) Sketch the vector fields near such fixed points having indices 3 and —3.

A further simple but useful technique for the global approximation of
Sf)lution curves is provided by the method of isoclines. Eliminating explicit
time dependence from (1.8.1) we obtain the first-order system

dy _g(x,)

dx  f(x,y)’

Neglecting for the moment the fact that (1.8.18) might not be well defined
on f(x, y) = 0, we seek curves y = h(x) or x = h(y) on which the slope of

(1.8.18)
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the vector field dy/dx = ¢ is constant. Such curves are given (perhaps
implicitly) by solving the equation

g(x, y) = cf (x, y) (1.8.19)

and are called isoclines.
If a sufficiently close set of isoclines is constructed, then the solutions of

(1.8.1) can be sketched fairly accurately. An example will help to illustrate
the method:

x = x% — xy,

. ) (1.8.20)

y=-y+x-

We first find the two fixed points at (x, y) = (0, 0) and (1, 1), and ascertain
that their linearized matrices are

Df(0,0)=[g _(1)] and Df(l, 1)=[; :i] (1.8.21)

with eigenvalues 0, —1, and + i, respectively. Thus the fixed points are
both nonhyperbolic and no conclusions can be drawn from Hartman’s
theorem. We next note that if x(0) = 0 we have x = 0, and thus the y-axis is
an invariant line on which the flow is governed by y = —y; in fact it is the
global stable manifold of (0, 0). The vector field is also vertical on the line
y =X

We go on to seek isoclines on which dy/dx = ¢ € (~ %0, ), which are
obtained from

(=y + x%) = c(x* — xy),

or

- (1 - C)xz défh

T h). (1.8.22)

Some of these curves, and the associated directions of the vector field, are
sketched in Figure 1.8.8(a). In addition to plotting isoclines, it is sometimes
also useful to sketch the vector field on specific lines, such as the line y = 1.

While the vectors sketched in Figure 1.8.8(a), together with the knowledge
that the y-axis is invariant, give a general indication of the structure of
solution curves, detailed information on the local structure near the
degenerate fixed points is best obtained by the center manifold methods
described in Chapter 3. Application of these techniques, which will follow
as exercises and examples in that chapter, ?how that (0, 0) is the w limit
point for all solutions starting nearby in tae left-hand half plane (x < 0)
and the « limit set for a curve of points nearby with x > 0, while use of the
Hopf stability formula of Section 3.4, shows that (1, 1) is a (weakly stable)
spiral sink. We leave it to the reader to complete the global analysis:
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EXERCISE 1.8.10. Prove that (0, 0) is the w limit point for all points {(x, y) € R?|x < O}.
Show that, if there are no closed orbits surrounding (1, 1), then (1, 1) is the w limit point
for all points {(x, y) € R?|x > 0}. Describe some possible structures involving closed
orbits in the right-hand half plane. Can you verify that, in fact, no closed orbits exist?
(cf. Figure 1.8.8(b)). (Warning: In numerical integrations, unless very small step sizes are
taken, fictitious periodic orbits appear.)

As this example shows, the method of isoclines is rather tedious to apply
and often gives incomplete results. Its use is now generally superceded by
numerical integration of the system. However, in some cases the idea of

C=0.25 =
c=0 2‘01)!
\
c=2
c=0.5 1 ,}
w | "
¢=075 /
N ¢
&z £—yc=1
-2.0 , 2.0
X
c=2
-1.0
¢

(a)

Figure 1.8.8. Isoclines and a partial phase portrait for equation (1.8.20). (2) Isoclines;
(b) 2 numerically computed phase portrait (Runge-Kutta method, step size 0.02).



56 1. Introduction‘ Differential Equations and Dynamical Systems

isoclines and invariant lines can be used to obtain precise information.
For example, in the homogeneous cubic system

x = ax® + bxy?,

. " s (1.823)

y = cx*y + dy’,
which we shall meet as the normal form of a degenerate vector field in
Chapter 7, we can demonstrate the existence of certain invariant lines in the
phase portrait. Clearly the x- and y-axes are invariant, since x(t) = 0 for
all ¢t if x(0) = 0 and similarly y(¢) = 0 if y(0) = 0. On these lines, the vector
fields are simply x = ax® and y = dy®, respectively. We claim that, for
suitable values of g, b, ¢, d, further invariant lines passing through the origin
can exist. Let them be given by y = ax. Then, dividing the two components

of (1.8.23) we obtain
dy y(cx? + dy?)
" x@x by (1.8.24)

For y = ax to be invariant, we also require that dy/dx = a, so that the vector

field is everywhere tangent to y = ax. Thus, from (1.8.24) we obtain
(cx? + da?x?)

=0, 1.8.25

r=a (ax? + ba2x?) ( )

or
a*(d — b) = (a - ¢),
which has the two roots

a=t./(@a—-c)d-Db) (1.8.26)

provided that (@ — c¢) and (d — b) have the same sign. The reader should
check that on such a line the flow is determined by the one-dimensional

system
. (ad — bc\ ,

Exercise 1.8.11. Sketch some of the phase portraits for (1.8.23) for various chpices of
(a, b, ¢, d). (Refer forward to Section 7.5 if you become discouraged.)

EXERCISE 1.8.12. Use the method of isoclines to locate the limit cycle of the van der Pol
oscillator

X422 -1)x+x=0.

We end this section with some examples of systems with nonplanar
phase spaces. The first is the inevitable pendulum, which is, in nondimensional
variables,

0 + sin0 = 0. (1.8.28)
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This provides a classical example of a system with a nonplanar phase space.
The configuration variable 6 e [ —=, ) is an angle and hence, defining the
velocity 0 = v, the phase space is seen to be the cylinder, and the system
becomes

6 =vo,

) ®,v)es! x R (1.8.29)
o= —sin 6,

This conveniently avoids the embarrassment of an infinite set of distinct
equilibrivmpointsat® = tnm,n = 1,2,...,whenthereare only two physical
rest positions at § =0 and § = n = —n. The phase portrait of (1.8.29)
is easily sketched from knowledge of the first integral H: S x R —» R:

2

H(®, v) =5 + (1 = cos ). (1.8.30)

(The constant 1 need not be included, but originates in the physical problem,
in which the potential energy V(6) is of the form mgl(1 — cos 6) for a pendu-
lum of mass m and length [, where 0 is measured from the downward vertical,
so that V(0) = 0.) The phase portrait is, of course, periodic in 8 with period
2r (Figure 1.8.9).

The cylindrical phase space is obtained by identifying 6 = —n(4A4") and
6 = +n(BB'). A nice sketch appears in Andronov et al. [1966, p. 98]. It is
important to recognize that orbits such as that marked ab in Figure 1.8.9 are
in fact closed orbits which encircle the cylinder: such orbits correspond to
rotary rather than oscillatory motions of the pendulum, and the two classes
of motions are separated by the homoclinic orbits to the saddle point.

EXERCISE 1.8.13. Sketch the phase portrait for the damped pendulum 0+ 2a0 +sin 0 =0,
0<a <, and the pendulum § + sin @ = B, subjected to applied torque § > 0.
Consider 8 < 1and f > 1. Also consider the damped pendulum with torque § + 2a6 +

sin 0 = B. Both undamped systems possess homoclinic and periodic orbits; can the
damped systems possess any such orbits? (This is quite difficult. Refer forward to

Section 4.6 if you like.)
-\ "’b
/ .“

Figure 1.8.9. The phase portrait for the simple pendulum.
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In addition to its application in classical mechanics, the system § + 20 +
sin 8 = B provides a discrete (single mode) approximation to the sine-
Gordon equation, which is important 1n physics as a model of wave func-
tions in the superconducting Josephson junction (cf. Levi et al. [1978]).
We will return to this example in Section 4.6,

A second canonical example of a system defined on a two-dimensional
manifold is the flow on a torus T2 = S' x S§*:

0=16.9x 2, g
é = 9(6, b); 6, ¢) e T?; f, g(2n)-periodic in 6, ¢.  (1.8.31)
A special and important case is the linear system:
(? . (1.8.32)
é=b

As is well known, if a and b are rationally related then one has a continuous
family of periodic orbits on T2, whereas if a/b is irrational, one obtains dense
nonperiodic orbits. Since the irrational and rational numbers are each
dense in R, either of these two topologically distinct cases can be approxi-
mated arbitrarily closely by the other, and hence the system is structurally
unstable for all values of a, b.

The linear flow (1.8.32) is more important than its special form might
suggest, since any (nonlinear) flow on T2 with no equilibrium points or
closed orbits necessarily arises from a vector field C° equivalent to (1.8.32)
with a/b irrational. We will return to this in Section 6.2.

Flows on two-tori also occur in linear undamped systems with two
degrees of freedom, as follows. Consider the system

F+oix=0 §F+awiy=0, (1.8.33)

where we have written the equations in the canonical (normal mode) co-
ordinates, so that the two modes are uncoupled. The system possesses two
independent first integrals:

¥

.2
Hix, %) = +

y 2
=kla Hz(y,}.’)=‘5‘+‘

wix? w3y
2 2
each of which remains constant as the four-dimensional solution vector
(x(2), x(t), ¥(2), y(t)) evolves with time. The two integral constraints imply
that solutions are confined to a two-dimensional torus which is the product
of the two ellipses in (x, X) and (y, y) spaces given by the constraints. To see

this, we perform coordinate changes to action angle variables (Goldstein
[1980], Arnold [19787):

X = /%Sinol, JE=,/2(1)|[|COSO|,
1
21, . 7
y= Jslnoz, y=\/2w21200502,
2

=k,, (1.8.34)

(1.8.35)
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to obtain
h=0 L=qo (1.8.36)
6, =, 0, = w,,
which, for initial conditions (19, 19, 69, 69), has the solution
L =1, L)=13,
0,(t) =w,t +6%,  0,0t) = w,t + 69. (1.8.37)

Thus, the four-dimensional phase space is filled with two-dimensional tori
givenby I, = I9, I, = I9 and each torus carries rational or irrational flow,
depending on the ratio w,/w,. In general, n degree of freedom integrable
Hamiltonian systems give rise to flows on n-dimensional tori (cf. Arnold
[1978], Goldstein [1980], for examples). The fundamental paper on toral
flows by Kolmogorov [1957], which is the basis of the KAM theory, is
reprinted in Abraham and Marsden [1978] (cf. Sections 4.8 and 6.2).

Exercise 1.8.14. Consider the Hamiltonian system on R* with Hamiltonian
H(x, X, y, y) = ¥3/2 + y*/2 + x*/2 + x*/3 + y?/2 — y3/3. Show that there are two
independent integrals and describe the orbit structures of the system. (This represents a
special case of the “anti-Hénon-Heiles” system (cf. Hénon and Heiles [1964], Aizawa
and Saitd [1972]).)

Flows on two-tori (and, more generally, n-tori) also arise in studies of
coupled nonconservative limit cycle oscillators. For example, consider two
identical van der Pol oscillators coupled by weak linear interaction, f, with
weak de-tuning, é:

%+ o(x? — )X + x = By — x),

) , 0<I3l,1Bl << (1838)
F4e(? =1y +y=px—y) — oy

For 6, =0 it is known that each van der Pol oscillator possesses an
attracting limit cycle given (approximately) by

1.8.39
W) = 2 cos(t + 69), W(t) = —2sin(t + 69), ( )

where 69, 09 are arbitrary (phase) constants determined by the initial
conditions (cf. Section 2.1). The product S x S! of the two circles of radius 2
In the (x, %) and (y, y) planes is a two-torus T2 = R*. However, unlike the
members of the two-parameter family of two-tori in the Hamiltonian example
above, this one is an attractor; in fact, nearby orbits approach it exponentially
fast and as we shall see, it persists under perturbations. Thus a small per-
turbation, such as the addition of weak coupling (8, & < ¢), cannot destroy
the torus as a whole, which remains an attracting set.
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However, since the vector field on the torus may be written
6,=-1, 0,=-1, (8,0,)eT? (1.8.40)

it carries linear (rational) flow, which is structurally unstable. Thus, while
the torus as a whole is preserved, the structure of orbits within it changes
radically when the oscillators are coupled. Rand and Holmes [1980] have
studied (1.8.38) and generalizations of it, and show if |B| > |6/2] > O,
then there are precisely two hyperbolic periodic orbits on the torus, one an
attractor and the other a repellor. Such a situation is called 1:1-phase
locking or entrainment. Many other studies of phase locking have been
carried out, see Nayfeh and Mook [1979] and references therein for examples.

The perturbation schemes employed typically neglect high-order terms
(terms of O(e?)), but since the coupled flow with two hyperbolic orbits is
structurally stable (cf. Peixoto’s theorem in the next section), the result is
qualitatively correct for the full system, for the addition of the neglected
terms constitutes a small perturbation. However, for |6/2| > |B|, the
approximate analysis predicts that the flow on the torus will contain no
attractors or repellors, but that all orbits will either be periodic or there
will be an orbit dense on T2, This structurally unstable situation tells us
nothing (directly) about the true flow on T2 In fact one can expect a very
complex sequence of bifurcations to occur directly after phase locking
breaks. We shall discuss such situations in Section 6.2,

EXERCISE 1.8.15. Construct a structurally stable system on 72 with two closed orbits.

1.9. Peixoto’s Theorem for Two-Dimensional Flows

With various examples of two-dimensional flows in mind, we are now ready
to state and sketch the proof of Peixoto’s theorem, which represents the
culmination of much previous work, in particular that of Poincaré [1899]
and Andronov and Pontryagin [1937]. Letting 27(M?) denote the set of all
C" vector fields on two-dimensional manifolds, we have

Theorem 1.9.1 (Peixoto [1962]). A C" vector field on a compact two-dimensional
manifold M? is structurally stable if and only if :

(1) the number of fixed points and closed orbits is finite and each is hyperbolic;
(2) there are no orbits connecting saddle points;
(3) the nonwandering set consists of fixed points and periodic orbits alone.

Moreover, if M? is orientable, the set of structurally stable vector fields is
open-dense in X'(M?).

One can deal with planar fields provided that there is a compact set
D = R? such that the flow is directed inward (or outward) on the boundary
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of D, otherwise it is easy to construct systems with countably many fixed
points or closed orbits. We also remark that, if the phase space is planar,
then conditions (1) and (2) automatically imply that (3) is satisfied, since
there are no limit sets possible other than fixed points, closed orbits, and
homoclinic cycles, and the latter are excluded by (2).

Peixoto’s theorem implies that typically a two-dimensional vector
field will contain only sinks, saddles, sources, and repelling and attracting
closed orbits in its invariant set, Figure 1.9.1(a). Structural stability is a
generic property for two-dimensional flows on orientable manifolds.
Many of the ingredients of Peixoto’s theorem were proved by Andronov and
his coworkers (cf. Andronov et al. [1966]) in the decades following 1935.
Here we shall sketch the proof of the structural stability part.

The first condition (hyperbolicity of fixed points and periodic orbits)
follows from a consideration of the linearized flow or of suitable Poincaré
maps. It can be shown that the sets of such linear flows and maps contain
open dense sets of hyperbolic flows and maps, respectively (cf. Hirsch and
Smale [1974], Chapter 7). Thus, if a nonlinear flow contains, say, a non-
hyperbolic fixed point, then a small perturbation suffices to render that point
hyperbolic; similarly, a hyperbolic fixed point remains hyperbolic under all
sufficiently small perturbations.

The second condition is demonstrated as follows. Suppose two saddles
p1, p» were connected, so that W*(p,) » W(p,) = T for the flow of the
vector field

Xy = fi(xy, X3),

X2 = fo(x1, X3).

(cf. Figure 1.9.2). We perturb (f,(x,, x,), f2(x;, X,)) by addition of a field
(e, (xy, x3), £da(x,, X;)) having compact support, vanishing outside some

A 9Hf B B

(a)

X8 s & ) -

(b)

Figure 1.9.1. (a) Some structurally stable nonwandering sets on R2; (b) some structurally
unstable nonwandering sets on R2.
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Figure 1.9.2. A saddle connection.

(small) region U chosen to straddle I' as shown. It is easy to choose the
perturbation such that orbits entering U are all “pushed upward” (or
downward), causing I to break; Figure 1.9.3. Similarly, if the two such
manifolds do not intersect, then a sufficiently small perturbation cannot
cause them to intersect.

The third condition is necessary to exclude structurally unstable non-
wandering sets such as the torus T2 with irrational flow, as occurs in the
linear flow

a,
¢E=b,

with a/b irrational (cf. the discussions in Section 1.8 above). Of course, if one
has rational flow on T2 then the torus is filled with a continuous family of
nonhyperbolic closed orbits.

The proof that the set of structurally stable flows on orientable manifolds
is open dense is more difficult and involves the closing lemma of Pugh
[1967a, b]. We will not sketch this here, but see Palis and de Melo [1982],
for example

6. 9) e T?, (19.1)

Exercise 1.9.1. Sketch phase portraits for the family X = p + x2 — xy, y = y? —
4x? — 1 and show that a saddle connection exists for 4 = 0. What happens for u > 0;
u < 0?(Cf. Guckenheimer [1973] and Section 6.1.)

Even though Peixoto’s theorem guarantees that, in generic families of
planar systems, the structurally stable ones occupy a set of full measure, the
occurrence of infinitely many unstable (bifurcation) systems in some neigh-
borhood cannot be excluded. The following example is due to Jacob.Palis
(who proposed it in connection with moduli of saddle connections, a topic

(a) (b)
Figure 1.9.3. (a) A broken connection; (b) (e¢,, £¢).
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which we do not discuss in this book). Consider the one-parameter family
% = f,(x), x € R?, with phase portraits as indicated in Figure 1.9.4(a)-(c)
for u <0, u =0, u>0.For u < 0 there are two hyperbolic closed orbits,
and at u = 0 these coalesce in a single “ semistable” orbit, which is the w limit
set for nearby points inside it and the a limit set for nearby points outside.
For u > 0 no closed orbits exist. In an annular strip containing the orbits,
all we see is a local saddle-node bifurcation of closed orbits, but globally
the stable and unstable manifolds of the saddle points r and g are involved in
a crucial manner. For u < 0 the « limit set for points on the left-hand branch
Wi(r) of W(r) is the repelling closed orbit y,, while the w limit set for points
on both branches of W*(q) is the attracting closed orbit y,. At 4 = 0 these
two orbits merge in y,, which is the w limit set for points in W*(q) and the «
limit set for points in Wi(r). To see what happens to Wi(r) and W*(q) when
u > 0, we take a local section, Z, as indicated in Figure 1.9.4(b). For u = 0,
7o pierces X at p,, and the sets Wi(r) n £ and Wi(q) n Z, Wi(q) N X are
each countable sequences of points accumulating at p,, the former from
above, the latter two from below; cf. Figure 1.9.5(a), (b). Let Wi(r)n £ =
{rdzy, Wi@ n Z = {q:}iZ, Wi@) 0 £ = {337+

z w;(r

)

(a)

(c)
Figure 1.94. (a)u < 0;(b)u = 0;:(c) . > 0.
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Figure 1.9.5. The cross section. (a) u < 0;(b) . = 0;(c)u > 0.

We have a Poincaré map defined on some neighborhood U < ¥ and, by
our construction, P~(r) = r;, 1, P(q) = qi+1, P(@)) = g}4,. Clearly, for
u > 0, all orbits pass through the annular region and thus leave the top of £
going forward, and the bottom going backward, after a finite number of
iterates. (This number goes to infinity on g — 0*.) Thus, between y = 0 and
u = & for any ¢ > 0, a countably infinite set of points r;, g;, g, j = N, must
pass each other on Z. Hence, in the interval u € [0, £], there are countably
many heteroclinic saddle connection bifurcations, and the bifurcation
set is a countable sequence of points yu; accumulating on y = 0 from above.
However, since the structurally unstable systems occur at isolated points
H;, we still have an open dense set of structurally stable systems in the
neighborhood of x = fy(x).

With Peixoto’s theorem in mind Smale proposed that one might study
systems on compact n-manifolds satisfying conditions (1) and (3) of Theorem
1.9.1 but with (2) suitably modified in the light of Theorem 1.8.3. Such systems
are now called Morse-Smale systems.

Definition. A Morse-Smale system is one for which:

(1) the number of fixed points and periodic orbits is finite and each is
hyperbolic;

(2) all stable and unstable manifolds intersect transversally;

(3) the nonwandering set consists of fixed points and periodic orbits alone.

In the definition of transversal intersection, we include the empty set,
for clearly if two manifolds do not intersect (i.e., are bounded away from
each other), then a small perturbation cannot cause them to intersect.

The following conjectures were then proposed:

A system is structurally stable if and only if it is "orse-Smale:
Morse-Smale systems are dense in Diff {(M) or Z'(M);
Structurally stable systems are dense in Diff'(M) or Z(M).
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(Here Diff"(M) (resp. 2"(M)) denotes the set of all C" diffeomorphisms
(resp- vector fields) on finite dimensional manifolds M.) In the following
pages we shall study examples of systems which show that all three con-
jectures are false. All that can be salvaged is part of Conjecture 1: Morse-
Smale systems are structurally stable (the converse is false). One of the
major contributions to the fall of Conjectures 1 and 2 was Smale’s construc-
tion of the horseshoe map: a two-dimensional diffeomorphism with a
complicated invariant set which was suggested by certain problems in forced
oscillations. Before meeting this map in Chapter 5, we shall consider some
examples of three-dimensional systems, including periodically forced single
degree of freedom oscillators, which have very complicated solution struc-
tures. These systems provide additional counter-examples to the conjectures
above, and they are therefore of historical as well as practical interest.



