
M?PA48 Games and Dynamics:
Lecture Notes

Sebastian van Strien (Imperial College)

Autumn 2015

Contents
0 Introduction i

0.1 Practial Arrangement . . . . . . . . . . . . . . i
0.2 What is this course about? . . . . . . . . . . . i
0.3 References for the various chapters . . . . . . . v

1 Replicator dynamics for one population 1
1.1 Nash equilibrium of one population . . . . . . 1
1.2 Evolutionary stable strategies . . . . . . . . . . 3
1.3 Replicator dynamics . . . . . . . . . . . . . . 6
1.4 Rock-paper-scissor replicator game . . . . . . . 14
1.5 Hypercycle equation and permanence . . . . . 18
1.6 Existence and the number of Nash equilibria . . 21

2 Iterated prisoner dilemma (IRP) and the role of reci-
procity 27
2.1 Repeated games with unknown time length . . 27
2.2 Random versions of AllC, AllD and TFT . . . 31



3 Other game dynamics 33
3.1 Best response dynamics . . . . . . . . . . . . . 33
3.2 Logit dynamics . . . . . . . . . . . . . . . . . 35

3.2.1 First motivation for logit dynamics . . . 35
3.2.2 Second motivation for logit dynamics . 35

4 Two player games 37
4.1 Two player replicator dynamics . . . . . . . . . 38
4.2 A 3× 3 replicator dynamics systems with chaos 40
4.3 Two player best response dynamics . . . . . . . 42
4.4 Convergence and non-convergence to Nash equi-

librium . . . . . . . . . . . . . . . . . . . . . . 42

5 Fictitious play: a learning model 45
5.1 Best response and fictitious play . . . . . . . . 45
5.2 The no-regret set . . . . . . . . . . . . . . . . 46
5.3 Fictitious play converges to the no-regret set . . 47
5.4 FP orbits often give better payoff than Nash . . 50
5.5 A conjecture . . . . . . . . . . . . . . . . . . . 51
5.6 Discrete fictitious dynamics . . . . . . . . . . . 52

6 Reinforcement learning 53
6.1 A two player version of this each with two ac-

tions: . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Reinforcement learning and replicator dynamics 57
6.3 Stochastic approximation . . . . . . . . . . . . 58
6.4 What happens if C is not large enough? . . . . 58
6.5 The dynamics of this learning process . . . . . 59
6.6 What if the opponent has a different strategy:

computer experiments . . . . . . . . . . . . . . 60

7 No regret learning 62
7.1 Hart and Mas-Colell’s regret matching . . . . . 63
7.2 Min-max solutions and zero-sum games . . . . 64
7.3 Blackwell approachability theorem . . . . . . . 65



7.4 Universal consistency . . . . . . . . . . . . . . 66



0 Introduction

0.1 Practial Arrangement
• The lectures for this module will take place Monday 9-

11, Thursday 1-2.

• This course does not require any background in game
theory, and in fact the overlap with the game theory course
that is offered by the department is minimal.

• The way this course will be examined, will be agreed
in week 3. It depends on how many students take this
course, on whether there is a preference to do projects as
part of the examination.

• Questions are most welcome, during or after lectures
and during office hour.

• My office hour is to be agreed with students reps. Office
hour will in my office 6M36 Huxley Building.

0.2 What is this course about?
The notion of Nash equilibrium is prevalent in many areas of
science: economics, biology, engineering etc. After all, many
phenomena can be described as versions where someone, or
something, tries to optimise.

The aim of this course is to highlight some situations where
the notion of Nash equilibrium, or related notions, are given a
more dynamic interpretation. So a Nash equilibrium would the
stationary point of some differential equation, or of some other
dynamical process.

Example 1. Consider a population of birds where some will
always fight about a grain (let us call such a bird a hawk),
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and others will always do some posturing but will never fight
(doves). The payoff of getting the grain is G, and the price
for getting hurt is −C. We assume that 0 < G < C. If
a hawk meets a hawk, it either wins (and gets payoff G) or
looses (and get payoff −C). On average this means the payoff
is (G+−C)/2. In this way we get the payoff matrix

meeting Hawk Dove
payoff to Hawk
payoff to Dove

(
G−C

2
G

0 G
2

)
.

How is it that not the entire species develops hawk-behaviour?
Suppose that the frequency of hawks in the population is x and
doves is 1− x. Then the average increase of ‘fitness’ is

x(G− C)/2 + (1− x)G for hawks
x · 0 + (1− x)G/2 for doves.

If x = 1 then the increase of fitness of hawks < 0 and of doves
> 0, and so the number of doves will increase and the number
of hawks will decrease. (Hawks are constantly fighting and
getting injured, whereas the doves will occasionally get lucky.)
When x = 0, the fitness is G resp. G/2, so the number of
hawks will increase. Equality holds when x = G/C.

Example 2 (Prisoner dilemma). Consider two prisoners, which
are in separate rooms so that they cannot communicate. The
prisoners get a higher reward by betraying the other (defect-
ing), but if both coorporate (so stay silent) they get a reduced
sentence. For example we may have the following situation:

Prisoner II Coop Defects
Pris. I Coop

Pris I Defects

(
−1,−1 −3, 0
0,−3 −2,−2

)
.

This table describes the payoff (the number of years prison sen-
tence) in various scenarios. For example if prisoner II defects
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but prisoner I cooperates, then prisoner II will be released and
prisoner I will be 3 years in prison. What should the prisoners
do? If II cooperates then I is better off to defect (he then gets 0
years rather than 1 year prison sentence). If II defects then he
still better to defect (he gets 2 years rather than rather than 3
years). The same holds for II. So the rational behaviour is for
both prisoners is to defect, resulting in a prison sentence of two
years for each.

Example 3 (Repeated prisoner dilemma). Suppose that the pre-
vious set-up is repeated every year? Or to discuss a slight vari-
ant, where two players are asked every week to make a do-
nation of £5. If so, the other player gets a donation of £15,
otherwise nothing. So the situation is described by

II donates declines
I donates
I declines

(
10, 10 −5, 15
15,−5 0, 0

)
.

Of course in one-step this is again a prisoner dilemma. If
this play is repeated many times then the considerations of
the players change of course. We will discuss this situation
in this course. (A political scientist called Axelrod, even or-
ganises computer tournaments which explore which strategy is
the most optimal. One strategy is called TFT (Tit for Tat).)

Example 4. Different types of game dynamics In this course
we will consider various types of game dynamics. For exam-
ple, the first section we will consider the well-known replicator
dynamics.

To emphasise that it is important to consider the detailed
set-up of the game, let us consider the following:

Example 5 (Parrondo paradox). Consider two games Game A
and Game B:
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• In Game A, you lose £1 every time you play.

• In Game B, you count how much money you have left.
If it is an even number, you win £3. Otherwise you lose
£5.

Say you begin with £100. If you start playing Game A exclu-
sively, you will obviously lose all your money in 100 rounds.
Similarly, if you decide to play Game B exclusively, you will
also lose all your money in 100 rounds.

However, consider playing the games alternatively, starting
with Game B, followed by A, then by B, and so on (BABABA...).
It should be easy to see that you will steadily earn a total of £2
for every two games.

Thus, even though each game is a losing proposition if
played alone, because the results of Game B are affected by
Game A, the sequence in which the games are played can af-
fect how often Game B earns you money, and subsequently the
result is different from the case where either game is played by
itself.

Example 6 (Learning algorithms: Reinforcement learning).
The notion of payoff to players also leads to various learning
principles: the higher the payoff from a given action is, the
more likely this action will be taken in the future. There are
various models which make this intuitive notion precise.

Example 7 (Learning algorithms: No-regret learning). A dif-
ferent variant of a learning algorithm is that of no-regret learn-
ing. This is based on the idea that if a different action in the past
would have given a better payoff, assuming the other player
would have done the same.
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0.3 References for the various chapters
• Chapter 1: mainly the book of Hofbauer & Sigmund,

Evolutionary games and population dynamics but an-
other useful book to consult is Weibull, Evolutionary
game theory.

• Chapter 2: chapter 3 of Sigmund’s book The Calculus of
Selfishness.

• Chapter 3: more on this can be found in Hofbauer, De-
terministic Evolutionary Game Dynamics, Proceedings
of Symposia in Applied Mathematics Volume 69, 2011.

• Chapter 4: more on the classification of replicator dy-
namics can be found in Hofbauer & Sigmund, Evolution-
ary games and population dynamics but a more detailed
description can be found in chapter 3 of Cressman, Evo-
lutionary Dynamics and Extensive Form Games.

The description of a chaotic replicator dynamics system
is given in Satoa, Akiyamab and Crutchfield, Stability
and diversity in collective adaptation, Physica D, 210,
2015, 21-57.

For results on chaotic best response dynamics, see for
example my papers on game theory: http://wwwf.
imperial.ac.uk/~svanstri/publications_
by_subject.php

• Chapter 5 follows Ostrovski & van Strien, Payoff perfor-
mance of fictious play, Journal of Dynamics and Games,
vol 1, issue 4, October 2014

• Chapter 6 follows essentially Posch, Cycling in a stochas-
tic learning algorithm for normal form games, J Evol
Econ (1997) 7: 193-207. But there is an extensive litera-
ture on this.
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Some of this work is grounded in the field of behavioural
economics, so to model how people learn, e.g. Erev &
Roth, Predicting how people play games: Reinforcement
learning in experimental games with unique, mixed strat-
egy equilibria. Amer. Econ. 1998, Rev. 88, 848?881.

For a discussion on approximating discrete ‘random’ dy-
namical systems by differential equations can be found
in for example Benaïm, Dynamics of stochastic approxi-
mation algorithms, in: Seminaire de Probabilité,XXXIII,
Lecture Notes in Mathematics, vol. 1709, Springer, Berlin,
1999, pp. 1-68.

For a starting point on reinforcement learning work in the
machine learning community see https://en.wikipedia.
org/wiki/Reinforcement_learning and Sut-
ton, Reinforcement Learning: An Introduction, 1998 or
Murphy, Machine Learning: A Probabilistic Perspec-
tive, 2010.

• Chapter 7 discusses Hart & Mas-Colell, A simple adap-
tive procedure leading to correlated equilibrium, Econo-
metrica, Vol. 68, No. 5 September, 2000, 1127-1150.
Hart, Adaptive heuristics, Econometrica, Vol. 73, No. 5
September, 2005, 1401-1430 has a more extensive dis-
cussion of the literature.

For regret dynamics from a computer science (machine
learning) point of view see for example http://theory.
stanford.edu/~tim/f13/l/l18.pdf and http:
//theory.stanford.edu/~tim/f13/l/l17.pdf

• More general references for the chapters on learning are:
Fudenberg & Levine, The Theory of Learning in Games.
MIT Press. (1999) and Young, Strategic learning and Its
limits,.Oxford, U.K, (2004), or from the machine learn-
ing point of view, see for example Nisan, Roughgarden,
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Tardos and Vazirani, Algorithmic Game Theory, 2007.
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1 Replicator dynamics for one popula-
tion

1.1 Nash equilibrium of one population
We consider a large population where each individual can have
one of a finite set of pure strategies {1, ..., n}. You should
think of these as individuals which can have one of n differ-
ent traits (e.g. colour of eyes, fighting behaviour, personally
characteristics etc). Let xi denote the frequency of strategy i.
So (x1, . . . , xn) is a probability vector.

Let ∆n = {x ∈ Rn; 0 ≤ xi ≤ 1, x1 + · · ·+ xn = 1} be the
(n − 1)-dimensional simplex. So (x1, . . . , xn) ∈ ∆n. Usually
we will fix n and write ∆.

The payoff to strategy i in a population x is ai(x), with
ai : ∆→ R a continuous function (population game).

Let us for the moment consider the case of a symmetric
two person game with n × n payoff matrices A = (aij) and
B = Atr. In the current context this means that you have two
populations I and II which compete. The payoff of population
I depends on (i.e. ‘success’) of a trait i depends on how it does
when it competes with another trait j. With random matching
(that is, random encounters) this leads to the following linear
payoff function of population I

ai(x) =
∑

j

aijxj = (Ax)i.

If a population I with frequency distribution y encounters
another population II with frequency distribution x then the
resulting payoff for the population with distribution y will be

PayoffI(y, x) := y · Ax.

That this is a symmetric two person means that we assume
that in this situation, population II receives an equal payoff of
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y · Ax. Since

y · Ax = ytrAx = xtrAtry

the payoff for player II is described by the matrix B = Atr and

PayoffII(x, y) = x ·By with B = Atr.

We say that x̂ ∈ ∆ is a Nash equilibrium (NE) iff

x · Ax̂ ≤ x̂ · Ax̂,∀x ∈ ∆.

and a strict Nash equilibrium if

x · Ax̂ < x̂ · Ax̂,∀x ∈ ∆ with x 6= x̂.

Note that x ·Ax̂ ≤ x̂ ·Ax̂,∀x ∈ ∆ means that strategy x̂ cannot
be ‘improved’ by another strategy x.

An equivalent way of formulating the notion of Nash equi-
librium is to define the best response map

BR(x) = arg max
y∈∆

y · Ax.

Then x̂ is a NE iff x̂ ∈ BR(x̂).

Example 8. Consider a game determined by A =

(
1 0
0 1

)
.

What are its Nash equilibria? To see this, note that

BR(x) =





e1 if x1 > x2

e2 if x1 < x2

Σ if x1 = x2

So ei ∈ BR(ei) and BR
(

1/2
1/2

)
3
(

1/2
1/2

)
. So e1, e2 and

z := (e1 + e2)/2 :=

(
1/2
1/2

)
are the Nash equilibria. Note

that Az = z and so x ·Az = 1/2 for each x ∈ Σ. So z is not a
strict NE. On the other hand, e1, e2 are both strict NE.
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Example 9. Consider a game determined byA =




1 0 0
0 1 0
0 0 1


.

What are its Nash equilibria? Note that ∆ in this case is a
triangle. BR takes values e1, e2, e3 on three convex regions
(draw this) which meet at (1/3, 1/3, 1/3). At this midpoint,
one has that (1/3, 1/3, 1/3) ∈ BR(1/3, 1/3, 1/3) = Σ and so
this is a NE. Along the line segment where the e1 and e2 meet,
BR =< e1, e2 > and so where this line meets Σ we get another
NE. Continuing this analysis, we see there are 7 NE’s.

1.2 Evolutionary stable strategies
x̂ is an evolutionary stable equilibrium (ESS) if for all x ∈
∆, x 6= x̂ one has for ε > 0 small enough,

x · A(εx+ (1− ε)x̂) < x̂ · A(εx+ (1− ε)x̂). (1)

Here the size of ε > 0 is allowed to depend on x.

Lemma 1. strict NE =⇒ ESS =⇒ NE.

Remark: Every game has a Nash equilibrium, but there are
games without an ESS.

Proof. First assume x̂ is a strict NE. Then x ·Ax̂ < x̂Ax̂. This
inequality is what the ESS condition (1) reduces to if we take
ε = 0. By continuity the ESS condition then also holds for
ε > 0 small.

Now assume that x is an ESS. For each x 6= x̂ we can let
ε→ 0 in the ESS condition and we obtain x · Ax̂ ≤ x̂Ax̂.

Example 10. Consider a game determined by A =

(
1 0
0 1

)
.

What are its ESS? We know this matrix has three NE’s. Let
us check which of these are ESS’s. Let us check whether z =
(e1 + e2)/2 is an ESS. Note that x · Az = 1/2 for each x. For
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z to be an ESS, we need that for ε > 0 small, and all x 6= z we
have x ·A(εx+ (1− ε)z) < z ·A(εx+ (1− ε)z). This reduces
to x ·Ax < z ·Ax. This is supposed to hold for all x 6= z so in
particular for x = e1, but this is clearly not true. So z is not an
ESS. Note that, in fact, we could have used the next lemma to
conclude that z is not an ESS.

Let us now show that e1 is an ESS. So we need to show
that for all x = (x1, x2) 6= ê1 and all ε > 0 sufficiently small,
x ·A(εx+(1−ε)e1) < e1 ·A(εx+(1−ε)e1) when x 6= e1. This
is equivalent to ε(x2

1 + x2
2) + (1− ε)x1 < εx1 + (1− ε) which

holds since x1 6= 1. [If we take ε = 0, then the ESS inequality
becomes x · e1 < e1 · e1 which clearly holds when x 6= e1. So
for ε > 0 the ESS inequality also holds.] In the same way we
get that e2 is also an ESS.

Lemma 2. If x̂ is a Nash equiliibrium then there exists c ∈ R
so that (Ax̂)i = c for each i with x̂i > 0. In particular, if
x̂ ∈ int ∆ is a NE then there exists c ∈ R with (Ax̂)i = c for
each i. If x̂ ∈ int ∆ is an ESS, then there exists no other NE.

Proof. Substituting ei for p in the definition of the NE, we get

ei · Ax̂ ≤ x̂ · Ax̂.

This holds for all i = 1, . . . , n. Write x̂ =
∑
λiei with λi ≥ 0

and
∑
λi = 1. Summing over the previous inequality we get

x̂Ax̂ =
∑

λiei · Ax̂ ≤
∑

λix̂ · Ax̂ = x̂ · Ax̂.

But we would get strict inequality if ei ·Ax̂ < x̂ ·Ax̂ for some i
for which λi > 0, which is clearly impossible. Hence ei ·Ax̂ =
x̂ · Ax̂ for all i = 1, . . . , n for which x̂i > 0.

Hence, by what we used proved, if x̂ is an interior NE, then
for each x ∈ ∆ one has x · Ax̂ = c (here we use that x is
a probability vector). Assume that x̂ is also an ESS, i.e. for
each x 6= x̂ and ε > 0 small, one has x · A(εx + (1 − ε)x̂) <
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x̂ · A(εx + (1 − ε)x̂). But since x · Ax̂ = x̂ · Ax̂ = c, this
inequality reduces to x ·Ax < x̂ ·Ax for each x 6= x̂. So x 6= x̂
cannot be a NE.

Lemma 3. The ESS assumption (1) is equivalent to the as-
sumption that for all y 6= x̂ sufficiently close to x̂,

y · Ay < x̂ · Ay (2)

Moreover, if x̂ ∈ int ∆ is an ESS then

y · Ay < x̂ · Ay for all y ∈ ∆ (3)

Proof. Each y which is close to x̂ can be written in the form
y = εx + (1 − ε)x̂ where we choose x ∈ ∂∆ and so that
moreover, if x̂ ∈ ∂∆ then x is chosen so that it is not in the
same face of ∂∆ as x̂. Since the points x of this type are not
close to x̂, we can find some ε0 > 0 so that for all such x the
inequality (1) holds for ε = ε0. Substituting the definiton of y,
in (1) gives x · Ay < x̂ · Ay. Multiplying this inequality by ε
and adding to both sides the inequality the term (1− ε)x̂ · Ay,
gives the required inequality y · Ay < x̂Ay.

Now assume that x̂ ∈ int ∆ is an ESS. Then by the previous
lemma, there exists c so that for all x, x ·Ax̂ = c = x̂ ·Ax̂. This
means that x ·A(εx+ (1− ε)x̂) < x̂ ·A(εx+ (1− ε)x̂) reduces
to the required inequality x · Ax < x̂ · Ax for all x ∈ ∆.

Example 11. ConsiderA =

(
G−C

2
G

0 G
2

)
. Then

(
G/C

(CG)/2

)

is its unique ESS.

Example 12. Show that A =




0 1 −1
−1 0 1
1 −1 0


 does not

have any ESS. What are its NE? Assume x ∈ int ∆ is a NE.
Then there exists c so that (Ax)i = c for each i. So x1 − x3 =
−x1 + x3 = x1 − x1 = c, which gives c = 0 and xi = 1/3,
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and the point (1/3, 1/3, 1/3) is a NE. Now consider whether
x can be a NE when x3 = 0. Then Ax = (x2,−x1, x1 − x2).
[Note I don’t always write a column vector when I should.] In
fact, one draw the set where ei ∈ BR(x) consists of a convex
region containing (1/3, 1/3, 1/3) (see the lectures for a draw-
ing). From this diagram follows that (1/3, 1/3, 1/3) is the only
NE. Is x̂ = (1/3, 1/3, 1/3) a ESS? Again we need to consider
the inequality x ·A(εx+(1− ε)x̂) < x̂ ·A(εx+(1− ε)x̂). This
reduces to x · Ax < x̂ · Ax. That is, x1(x2 − x3) + x2(−x1 +
x3)+x3(x1−x2) < (1/3)[(x2−x3)+(−x1 +x3)+(x1−x2)].
Note that both the left and right hand side are zero, so this the
inequality does NOT hold.

1.3 Replicator dynamics
One proposal to describe a mechanism which explains why
Nash equilibria and ESS can appear as a dynamic process is
the following system of differential equations

ẋi = xi((Ax)i − x · Ax), i = 1, . . . , n. (4)

Note that this implies that

d

dt

xi
xj

=
xi
xj

((Ax)i − (Ax)j). (5)

Lemma 4 (Nash equilibria and equilibria of the ODE). .

1. Any Nash equilibrium x̂ is an equilibrium of this equa-
tion.

2. If x̂ is the omega-limit of an orbit x(t), and x̂ ∈ int ∆
then x̂ is a NE.

3. If x̂ is Lyapounov stable, then it is a NE.
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Proof. By the previous lemma, if x̂ is a Nash euqilibrium then
there exists a c so that (Ax̂)i = c for each i for which x̂i > 0.
It follows that (Ax̂)i − x̂ · Ax̂ = 0 for each of these i. For the
other i one has x̂i = 0.

If x̂ is not a Nash equlibrium then there exists x so that
x · Ax̂ > x̂ · Ax̂. It follows that there exists i so that ei · Ax̂ >
x̂ · Ax̂. Hence there exists ε > 0 so that for x close to x̂ (here
we reuse the name x), ei · Ax > x · Ax > ε. Hence ẋi > εxi
when x is close to x̂ and so it is impossible that x(t) → x̂ as
t→∞.

Example 13. Give an example of a system for which not every
stationary point x̂ is a NE. (Hint: there may be indices i with
x̂i = 0 when (Ax̂)i > c where c is as above.)

Example 14. Describe what happens for

A =




0 1 0
0 0 2
0 0 1


 (6)

What are its NE’s? What are its ESS’s? Let us first check
whether A has any interior NE x. Then (Ax)i = c and so
x2 = 2x3 = x3 = c. So c = x3 = x2 = 0. So there is
no interior NE. Looking at the level sets of BR we see that
e1 is the only NE. Is x̂ = e1 a EES? Note that Ax̂ = 0, so
x ·A(εx+ (1− ε)x̂) < x̂ ·A(εx+ (1− ε)x̂) reduces to x ·Ax <
x̂ ·Ax. This is equivalent to x1x2 + x22x3 + x3x3 < x2 which
is not the case when x1 = x2 = 0, x3 = 1.

Solution example 14. Denote by Zi,j the set where the best
response is indifferent between i, j. Then Z1,2 = {x2 = 2x3},
Z1,3 = {x2 = x3} and Z2,3 = {2x3 = x3} = {x3 = 0}.
These are all lines through e1. By considering the position, of
these lines, it follows the triangle has regions where BR = 1

and BR = 2 Note that Ax =




x2

2x3

x3


, Hence (x2/x3)′ =
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(x2/x3)(2x3− x3), (x1/x2)′ = (x1/x2)(x2− 2x3), (x1/x3)′ =
(x1/x3)(x2 − x3). This shows that on the sides of the triangle
there are no additional singularities. It follows that the phase
portrait is as follows. Note that each of the corners ei is a sin-
gularity, but only e1 is a Nash equilibrium.

Theorem 1. If x̂ is an ESS then it is asymptotically stable for
the replicator system.

If x̂ ∈ int ∆ is an ESS then it globally attracts all initial
points x ∈ int ∆.

Proof. Consider the function P (x) =
∏
xx̂ii . Let us show that

this has a unique maximum at x̂. First notice that when f
is a convex function on some interval I , then f(

∑
pixi) ≤∑

pif(xi) for x1, . . . , xn ∈ I and all pi with pi ≥ 0 and∑
pi = 1. If f is strictly convex, then a strict inequality holds

except when all the xi are equal. Applying this to f = log
on [0,∞] (which is concave, so we get the opposite inequal-
ity) gives

∑
x̂i log(xi

x̂i
) =

∑
x̂i>0 x̂i log(xi

x̂i
) ≤ log

∑
x̂i>0 xi ≤

log
∑
xi = log 1 = 0. Hence

∑
i x̂i log xi ≤

∑
i x̂i log x̂i and

so P (x) ≤ P (x̂) with inequality only if x = x̂.
So let us now show that we can consider P as a Lyapounov

function:

Ṗ

P
=

d

dt
(logP ) =

d

dt

∑
x̂i log xi =

∑

x̂i>0

x̂i
ẋi
xi

=

8



=
∑

x̂i((Ax)i − x · Ax) = x̂ · Ax− x · Ax
Since x̂ is evolutionary stable, the equation (2) gives that the
r.h.s. is > 0 and so Ṗ > 0 for all x 6= x̂ close to x̂. It follows
that orbits starting near x̂ converge to x̂.

If x̂ ∈ int ∆ then (3) implies that Ṗ /P > 0 everywhere and
so x̂ attracts all points in int ∆.

Example 15. Consider the matrix A =




0 6 −4
−3 0 5
−1 3 0


.

Show that E = (1/3, 1/3, 1/3) is a rest point which is asymp-
totically stable. To see this, compute the eigenvalues of the
linearisation at this fixed point. Show that this point is not an
ESS, by showing that e1 = (1, 0, 0) is an ESS.

Solution example 15. Note that the lines Zi,j all go through

E. Ax =




6x2 − 4x3

−3x1 + 5x3

−1x1 + 3x2


. From this one can see that the

lines Zi,j are as in the figure, and so E is a Nash equilibrium.
This also determines the singularities and the arrows on the
sides of the triangle, as (xi/xj)

′ = (xi − xj)[(Ax)i − (Ax)j].
Indeed, Z2,3 ∩ [e2, e3] and Z1,2 ∩ [e1, e2] are singularities, and
of course e1, e2, e3 are also singularities. Note that 2 and 3 are
suboptimal strategies at Z2,3 ∩ [e2, e3] and so this point is not
a Nash equilibrium. Similarly, e2, e3 are not Nash equilibria.
On the other hand, Z1,3 ∩ [e1, e3] and e1 are Nash equilibria. In
summary, this game has three Nash equilibria and three addi-
tional singularities.

The singularity Z2,3 ∩ [e2, e3] = (0, 5/8, 3/8) is a saddle
point. Indeed on [e2e3] we have (x2/x3)′ = (x2/x3)[5x3 −
3x2]. This shows that the arrows along this side point towards
(0, 5/8, 3/8). In the assignments you are asked to show that
this point is indeed a saddle point.

9



To compute the eigenvalues in E =




1/3
1/3
1/3


 we write

xi = E + hi and let h be the vector with components hi. Note
that

∑
hi = 0. Since all components of AE are equal we have

that h · AE = 0 and so

x · Ax = (E + h) · A(E + h)
= E · AE + h · AE + E · Ah+O(h2)
= E · AE + E · Ah+O(h2).

(7)

and

(Ax)i − x · Ax = (Ah)i − E · Ah+O(h2). (8)

Taking 1 to be the vector with 1’s we get

E · Ah = (1/3)1 · Ah
= (1/3)(−4h1 + 9h2 + h3)
= (−5/3)h1 + (8/3)h2

and
(Ah)1 = 6h2 − 4h3 = 4h1 + 10h2,
(Ah)2 = −3h1 + 5h3 = −8h1 − 5h2.

So ẋi = xi((Ax)i − x · Ax) gives

ḣ1 = ((1/3) + h1) ((17/3)h1 + (22/3)h2 +O(h2))) =
= (1/9) (17h1 + 22h2) +O(h2).

ḣ2 = (1/9) (−19h1 − 23h2) +O(h2).

So the linear part is equal to In Assignment 1, you are asked to check and correct this
calculation, including that of the linear part and eigenvalues.

(1/9)

(
17 22
−19 −23

)

The eigenvalues of the matrix are (1/3)(−1± i
√

2).
To see that e1 is an ESS it is sufficient to check that (x −

e1) ·A(εx+ (1− ε)e1) < 0 when ε > 0 small. Another way of

10



seeing this, is to observe that it is sufficient to show that P = x1

is a strict Lyapounov function. (To see that this is sufficient,
have a look at the proof of the previous theorem. There it is
shown that Ṗ /P = x̂ · Ax − x · Ax and by Lemma 3 ESS is
equivalent to the statement that this term is positive for x close
to x̂.) But we have that (x1/x3)′ = (x1/x3)[(Ax)1−(Ax)3] and
(x1/x2)′ = (x1/x2)[(Ax)1 − (Ax)2] where the square bracket
terms are both positive. This means that the speed vector along
the line P = x1 = ε lies in the cone in the figure, and so P is
strictly increasing.

Additional arguments are needed to show that the saddle-
separatrices are as shown.

In the current setting, we say that A corresponds to a zero-

11



sum game if aij = −aji. In this case x · Ax = −x · Ax = 0
and the replicator dynamics becomes

ẋi = xi(Ax)i.

Example 16. Consider the following matrices, determine the
corresponding NE’s and the phase diagrams of the replicator

dynamics. A =




0 2 0
2 0 2
1 1 1


; Z1,2 and Z1,3 correspond to

2x2 = 2x1 + 2x3 resp 2x1 + 2x3 = x1 + x2 + x3. These are
the same lines. Z1,3 corresponds to 2x2 = x1 + x2 + x3 = 1,
so x2 = 1/2. So Z1,3 = Z1,2 = Z2,3 and this lines consists
entirely of NE’s. These are stationary points of the system, so
in particular there are no ESS’s. In summary, this system has
infinitely many NE’s and three additional singularities.

The arrows along the boundary can be seen by using (xi/xj)
′ =

(xi/xj)[(Ax)i−(Ax)j]. Along [e1, e2] we get (Ax)1−(Ax)2 =
(2x2− 2x1), so a sign change at x1 = x2 = 1/2. Along [e1, e3]
we get (Ax)1 − (Ax)3 = (2x2 − 1) = −1 < 0 and along
[e2, e3] we get (Ax)2 − (Ax)3 = (2x1 + 2x3 − 1) = 2x3 − 1
which has a sign change. Along Z1,2 = Z1,3 we have that
Ax = (1, 1, 1) so this means that all these points are singulari-
ties of the replicator system. Note that everywhere (x1/x2)′ =
(x1/x2)(Ax)1−(Ax)2 = 2x2−(2x1 +2x3) = −4x2−2 which

shows that orbits converge to the line Z1,2 = Z1,3.

12



Example 17. Consider A =




1 5 0
0 1 5
5 0 4


 determine the cor-

responding NE’s and the phase diagrams of the replicator dy-
namics. Is there an ESS? Z1,2 corresponds to x1 + 4x2 = 5x3, The expressions for Zij were corrected on 1 Nov
Z1,3 to 5x2 = 4x1 +4x3 and Z2,3 to x2 +x3 = 5x1. These lines
intersect at E := (3/18, 8/18, 7/18), so this is a Nash equilib-
rium. Note that from the form of the indifference equations,
it follows that each side of ∆ is intersected by precisely two
indifference lines. This, and since BR(ei) = ei−1, implies that
there just two possible positions for the Zij lines, as shown in
the figure. Since Z1,2 does not intersect [e1e2], the situation is
as in the left figure.

Once we see this, we also obtain that orbits are rotating
about the NE. Is this NE an ESS? Since the NE lies in the
interior of ∆ the ESS condition corresponds to xAx < x̂Ax
for x close to the NE. Write (x1, x2, x3) = (3/8 + h1, 8/18 +
h2, 7/18+h3). So we need to check (x−x̂)Ax = (h1h2h3)Ax <
0. This is equivalent to (h1h2h3)A(h1h2h3) < 0. Since h1 +
h2 + h3 = 0, the last expression is equal to h2

1 + 5h1h2 + h2
2 +

5h2h3 + 5h1h3 + 4h2
3. Substituting h3 = −h1 − h2 gives that

this is equal to

h2
1+5h1h2+h2

2+5h2
2−5h2h1−5h2

2−5h2
1−5h1h2+4(h1+h2)2 =

3h1h2 + 5h2
2.

13



This expression does not have a constant sign for h1, h2 ≈ 0.
So the attracting NE is not an ESS. Nevertheless solutions con-
verge to E. Indeed, write x = E + h. Then, using (8), This calculation is incorrect. Exercise: correct it.

ḣ1 = (3/18 + h1)(h1 + 5h2)

ḣ2 = (8/18 + h2)(h2 + 5h3) = (8/18 + h2)(−4h2 − 5h2).

The linear part of this system is

1

18

(
3 15
−32 −40

)
.

This has eigenvalues −1.0279 ± i · 0.2341 so the system is
locally stable. To show that the system is globally stable one
needs additional methods.

Exercise 1. Consider the replicator dynamics associated the
following systems:

1. A =




0 10 1
10 0 1
1 1 1


.

2. What is the effect to the replicator dynamics ẋi = xi((Ax)i−
x · Ax) of adding to the first column of A the vector


1
1
1


?

1.4 Rock-paper-scissor replicator game
There is a class of systems which have only one Nash equi-
librium and for which B(ei) = ei+1. So this suggests cyclic
behaviour, and are therefore called rock-paper-scissor games.
Let us consider the replicator dynamics in one example of this
situation; in the general case the analysis is the same but com-
putationally more involved.
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Example 18. Consider the matrix A =




0 1 −b
−b 0 1
1 −b 0




when b > 0. If b = 1 then this is a zero-sum game because then
A + Atr = 0, but otherwise it is not a zero-sum game. Show
that V := x1x2x3 is a constant of motion when b = 1 and draw
the phase diagram. If b 6= 1, it is a Lyapounov function; draw
the phase diagram. This game is called a rock-paper-scissor
game. Explain why.

Ad Example 16. Note that BR(ei) = ei−1: so the best re-
sponse is cyclic. This matrix has an interior NE at (1/3, 1/3, 1/3).
As in Theorem 1 take P = (x1x2x3)1/3. By the calculation
in that theorem, Ṗ /P = x̂ · Ax − x · Ax = (x̂ − x) · Ax.
Write x = 1/3 + hi. A calculation shows that (x̂ − x) · Ax =
(b/3− 1/3)(h1 + h2 + h3) + (b− 1)(h1h2 + h1h3 + h2h3) =
(1− b)(h2

1 +h2
2 +h1h2) where in the last equality we used that

h3 = −h1 − h2. So Ṗ /P > 0 when b ∈ (0, 1) and Ṗ /P < 0
when b > 1. So interior orbits starting at x 6= E, spiral out to
the boundary when b > 1 and towards E when b ∈ (0, 1).

Let us see whether there are other Nash equilibria. This can
be done in a number of ways. One way is to calculate BR along
x2 = 0. The payoff there is (x2 − bx3,−bx1 + x3, x1 − bx2) =
(−bx3,−b + (1 + b)x3, 1 − x3) where we used x1 = 1 − x3.
BR(e1) = 3, BR(e3) = 2 and x ∈ Z2,3 ∩ [e1, e3] along this
side implies x3 = (1 + b)/(2 + b) and then e2Ax = e3Ax > 0.
Moreover, Z1,3 holds when x3 = 1/(1 − b) /∈ [0, 1]. Since
e3Ax, e1Ax are decreasing while e2Ax increasing when going
from e1 to e3 and also e1Ax = −bx3 < 0 along the side, it
follows that the graphs of eiAx along the side [e1e3] as in the
figure. By symmetry we obtain also the intersections of these
with the other sides. It follows that there are no NE’s along the
sides.

Another way of concluding the positions of Zij goes as in
Example 17.
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Moreover, along [e1, e3] one has (Ax)1 − (Ax)3 = −bx3 −
(1 − x3) = (1 − b)x3 ≤ 0 as b > 0 and x3 ∈ [0, 1]. So
(x1/x3)′ < 0 and there are no singularities along this side of
the triangle. So solutions spiral out/in depending on whether
b > 1 or b ∈ (0, 1), and the arrows on the sides of ∆ are as
shown.

Lemma 5. Consider A =




0 1 −b
−b 0 1
1 −b 0


 with b > 1.

Then

z(T ) =
1

T

∫ T

0

x(t) dt

depends continuously on T and converges to some polygon
with corners A1 = (1, b2, b)/(1 + b + b2),A2 = (b2, b, 1)/(1 +
b+b2) andA3 = (b, 1, b2)/(1+b+b2). Note thatAi, Ai+1, ei+1

are collinear. (Later on we shall see triangle is the orbit under
the best response dynamics.)
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Proof. Using the expression of the replicator dynamics and di-
viding by T gives

log(xi(T ))− log(xi(0))

T
=

1

T

∑

j

aij

∫ T

0

xj(t) dt−
1

T

∫ T

0

x·Axdt.

Since x(t) spends most of the time close to corners of the sym-
plex (there the speed is small, and between corners it is large)
and since aii = 0,

lim
T→∞

1

T

∫ T

0

x · Axdt→ 0.

Take a sequence Tk → ∞ so that x(Tk) → x with Tk cho-
sen to that x1 = 0 and so that x2, x3 > 0 (so for this subse-
quence x(Tk) converges to a point x somewhere in the middle

of one of the sides of the triangle ∆). So
log(xi(T ))− log(xi(0))

T
→

0 for i = 2, 3 and therefore
∑

j

a2jzj =
∑

j

a3jzj = 0.

This means −bz1 + z3 = z1 − bz2 = 0. Combined with z1 +
z2 + z3 this means z = A1 := (b, 1, b2)/(1 + b+ b2).

Permuting 1 and 2 in this argument (and 1 and 3) gives that
z is equal toA2 = (1, b2, b)/(1+b+b2) andA3 = (b2, b, 1)/(1+
b+ b2).

Similarly, if x(Tk) converges, say, to e3 then we obtain
log(xi(T ))− log(xi(0))

T
→ 0 for i = 3 and therefore

∑

j

a3jzj = 0.

This means z1−bz2 = 0. So during the long time interval when
x(T ) stays near e3, the average z(T ) travels along this segment
between A1 and A2.
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Later on we will consider non-symmetric rock-paper-scissor
games, and ask whether these can lead to chaotic dynamics.

Exercise 2. Show that Ai, Ai+1, ei+1 are collinear.

1.5 Hypercycle equation and permanence
Is it possible that orbits don’t converge to the boundary and
also not to a Nash equilibrium in the interior?

Let us consider an example of such a situation. Consider

A =




0 0 0 . . . k1

k2 0 0 . . . 0
0 k3 0 . . . 0
. . . . . . .
0 0 0 . . kn 0




To simplify the analysis we will consider the case that ki = 1.
So the replicator dynamics is described by

ẋi = xi(xi−1 −
n∑

j=1

xjxj−1). (9)

where we cyclic notation, i.e. we take x0 = x4.

Lemma 6. This system has an interior Nash equilibrium which
is stable for n ≤ 4 and unstable for n ≥ 5.

Proof. E = (1/n)(1, 1, . . . , 1) is a Nash equilibrium. The lin-
ear part of the system at this point is the matrix

A =




−2/n2 −2/n2 −2/n2 . . −2/n2 1/n− 2/n2

1/n− 2n2 −2n2 −2/n2 . . . −2/n2

−2/n2 1/n− 2/n2 −2/n2 . . . 2− /n2

. . . . . . .
−2/n2 −2/n2 −2/n2 . . 1/n− 2/n2 −2/n2



.
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This is an example of a circulant matrix

A =




c0 c1 c2 . . . cn−1

cn−1 c0 c1 . . . cn−2

. . . . . . .

. . . . . . .
c1 c2 c3 . . . c0



.

It is easy to check that the eigenvalues of such a matric are
equal to

γk =
n−1∑

j=0

cjλ
jk, k = 0, . . . , n− 1

and corresponding eigenvectors

(1, λk, λ2k, . . . , λ(n−1)k), k = 0, . . . , n− 1

where λ = e2πi/n. In our setting this leads to γ0 = 1 and

γk =
n−1∑

j=0

−2

n2
λjk +

1

n
λ(n−1)k =

λ−k

n
, k = 1, . . . , n− 1

where we use that the first sum in this expression vanishes. The
eigenvalue 1 with the eigenvector (1, 1, 1, . . . , 1) (when k = 0)
corresponds to the motion orthogonal to the simplex ∆ so is not
of interest. When n = 3, we get γk = (1/2)e2kπi/3, k = 1, 2.
The real parts of both these eigenvalues are negative, so the
singularity is stable. When n = 4, we get γk = (1/2)e2kπi/4,
k = 1, 2, 3 and we see that the eigenvalues γ1, γ3 lie on the
imaginary axis. Using a Lyapounov function, see below, we
show below that in spite of this the singularity is stable when
n = 4. For n > 5 there are eigenvalues with positive real part.
So in this case the singularity is of saddle type, i.e. both the
stable and unstable manifold of the singularity is non-empty.
So the singularity is certainly not locally stable.
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Let us show that the boundary of the simplex ∆ is repelling.
Define the Lyapounov function P (x) = x1, . . . , xn−1. This
function is zero on the boundary of ∆ and positive in the inte-
rior of ∆. We get that

d

dt
(logP ) =

n∑

i=1

ẋi
xi

= 1− n
n∑

j=1

xjxj−1.

For n = 2 and n = 3 this function is strictly positive on the
interior of ∆ except at the Nash equilibrium E. When n = 4
then

d

dt
(logP ) =

n∑

i=1

ẋi
xi

= 1− n
n∑

j=1

xjxj−1 =

1− 4(x1x4 + x2x1 + x3x2 + x4x3) =

1− 4(x1 + x3)(x2 + x4) ≥ 0

and this is zero only when (x1 + x3) = (x2 + x4) = 1/2, since
(x1 + x3) + (x2 + x4) = 1. The only invariant subset of the
latter set is E and so again the Nash equilibrium is stable (and
in fact attracts all orbits starting in the interior of ∆). Notice
that for any arbitrary n

d

dt
(logP ) =

n∑

i=1

ẋi
xi

= 1− n
n∑

j=1

xjxj−1 > 0

whenever x ∈ ∆ is close to one of the corners ei of ∆, and
so x(t) moves then away from the boundary of ∆. In the first
project you are asked (based on Hofbauer and Sigmund’s book)
to show that orbits move away from the boundary when n ≥ 5.
So for n ≥ 5, the attracting set is neither the boundary of ∆
nor the singularity E.
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1.6 Existence and the number of Nash equilib-
ria

In this section we will show that each game has a Nash equi-
librium, and in fact that for "most games" the number of Nash
equilibria is odd. In fact, we will prove a result which will as-
sign to each Nash equilibrium an index, and state that the sum
of the indices is equal to (−1)n−1 where n is the number of
dimensions.

To discuss this, we will need to discuss some background
on degree theory on the index of a vector field. Several results
on this background will not be covered in these lectures.

To start with, let assume that M,N are smooth manifolds.
These were defined in the differential equations course. But if
you don’t know what a manifold is, then think of for example
M = Rn, M is an open ball in Rn, M = S1, M = S2 or
M = T 2.

Moreover, let f : M → N be a smooth map. We say that
y is a regular value if f−1(y) 6= ∅ and if for each x ∈ f−1(y)
the map f locally smoothly invertible near x, i.e. Dfx is an
invertible matrix. In this case, define

signDfx =

{
+1 if it is locally orientation preserving
−1 if it preserves orientation.

Definition. Let f : M → N be a smooth map and that y is a
regular value. Then the degree of f at a point y ∈ f(M) \
f(∂M) is equal to

deg(f ; y) =
∑

x∈f−1(y)

signDfx.

Example 19. Let S1 = R/Z and f : S1 → S1 be defined
by x 7→ 2 = nx. Then deg(f, y) = n for each y. Let M
be an open ball in N := Rn and define f(x) = −x. Then
deg(f, y) = (−1)n for each y ∈ N = f(M).
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Theorem 2. The degree of a map has the following useful
properties:

• The degree deg(f, y) of f : M → N is the same for each
regular value y of f , see figure in lecture. So this why
we speak also of deg(f).

• If ft : M → N is a family of smooth maps depending
smoothly on t, then deg(f0) = deg(f1).

Definition. Consider X : Rn → Rn, and assume x0 is an iso-
lated zero of X . We will view X as a vector field, so at each
point x ∈ Rn we have a vector X(x). Take a small sphere S
centered at x0 on which X has no zeros, and define the map

f : S → Sn−1, by f(x) =
X(x)

|X(x)| .

Then the degree of X at x0 is defined as

ind(X, x0) := deg(f).

The same definition applies ifX is a vector field on a manifold.

Example 20. The index of a saddle point in R2 is −1, and of a
source and a sink is 1.

Lemma 7. Assume that X is a vector field, and x0 an iso-
lated singularity and that its linearisationA := DX(x0) is non-
singular (i.e. invertible). Then ind(X, x0) is equal to the sign
of the determinant of A.

In particular, we have ind(−X, x0) = (−1)n · ind(X, x0)
where n is the dimension.

It is easy to check this in dimension two or for linear vector
fields. The general case can be seen by deforming the vector
field continuously to the linear one, without introducing new
singularities.
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Example 21. Consider the vector field X(x) = −x on Rn.
This corresponds to the differential equation x′i = −xi, i =
1, . . . , n. Then according to the previous theorem, ind(X, 0) =
(−1)n. Moreover, the associated map is equal to f(x) = −x,
and so again deg(f, 0) = (−1)n.

The following remarkable theorem is related to the famous
Brouwer fixed point theorem.

Theorem 3 (Poincaré-Hopf theorem). Let X be a vector field
which is defined on a compact manifold M (you may assume
that M is a compact subset of Rn), and assume that if M has a
non-empty boundary then for each x ∈ ∂M one has that X(x)
points outwards.

Then ∑

x,X(x)=0

iX(x) = χ(M)

where ξ(M) is the Euler characteristic of M .

In this course we won’t develop the machinery to compute
(or even to formally define) the Euler characteristic of a space.
For this you need some homology theory, a subject which is
covered in most courses on algebraic homology, and so outside
the scope of this course. However, let us give some examples.

Example 22. The sphere S2 in R3 has Euler characteristic 2.
A surface which is made up of a sphere with g handles, has
Euler characteristic 2− 2g. So for example the torus has Euler
characteristic 0 and the pretzel Euler characteristic −2. In fact,
assume that you describe a surface as a convex polyhedron.
Then its Euler characteristic ξ = V − E + F where V,E, F
are the number of vertices, edges and faces. For example, for
a cube V = 8, E = 12, F = 6 and so ξ = 2 while for a
tetrahedron, V = 4, E = 6, F = 4 and so again ξ = 2.
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Similarly, an open or closed ball B in Rn has Euler charac-
teristic 1 whereas the sphere Sn in Rn+1 has Euler characteris-
tic 1 + (−1)n.

Example 23. The above theorem implies the Brouwer’s fixed
point theorem if we assume that the map involved is smooth.
This theorem says that any continuous map f : B → B from a
ball in Rn has a fixed point. Let us assume that f is smooth, B
is the unit ball and by contradiction assume that f has no fixed
point. Then we can define the vector field X(x) defined by
X(x) = x − f(x) has no zeros and points along the boundary
to the exterior of B. But this contradicts the Poincaré-Hopf
theorem as ξ(B) = 1.

Example 24. The above theorem also implies the so-called
hairy ball theorem: If X is a vector field on S2 then

∑

x,X(x)=0

iX(x) = 2.

In particular X has at least one zero. The reason this is called
the hairy ball theorem is that it implies that a hairy ball has
to have places where the "hair sticks up". Note that the above
theorem also implies that it is impossible to have a vector field
on S2 with just one saddle point.

Application to game theory
We say that a singularity x0 of a vector field X is regular if

the linear partA = DX(x0) is invertible, and say that a game is
regular if at each Nash equilibrium x̄, the replicator dynamics
has a regular singularity (i.e. the linearisation is invertible - so
no zero eigenvalue).

Remark 1. Assume that x0 is a regular singularity of the vector
field X and let Xλ is a family of vector fields depending differ-
entiably on λ with X0 = X . Then by the implicit function the-
orem, there exists a function λ→ x0(λ) so that X(x0(λ)) = 0.
(So the singularity moves smoothly as the parameter varies.)
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Theorem 4. Each n × n matrix A has at least one Nash equi-
librium. Moreover,

1. if A is a regular game, then the number of its Nash equi-
libria is odd.

2. Consider a Nash equilibrium x̄ of the replicator dynam-
ics ẋ = X(x) on the boundary of ∆ and let B = DX(x̄)
its linear part. Then any eigenvalue corresponding to any
eigenvector of B which is transversal to the boundary of
∆ is negative. Hence the stable manifold of x̄ points into
the interior of ∆, and the unstable manifold of x̄ is either
empty or fully contained in ∂∆.

3. Most n× n matrices are regular.

Proof. Consider the following slight modification of a replica-
tor equation:

ẋi = xi((Ax)i − x · Ax− nε) + ε. (10)

and let Xε be the vector field defined by the r.h.s. of this ex-
pression. Along ∂∆, the vector field Xε(x) has no singulari-
ties, and points into the simplex ∆. This means that along ∂∆
the vector field −Xε(x) points outwards. So, by the Poincaré-
Hopf theorem, the sum of the indices of the singularities of
−Xε is equal to 1. Now note that X and −X have the same
singularities, and by Lemma 7 at each singularity x0 we have
ind(−Xε, x0) = (−1)n−1ind(Xε, x0) because the dimension of
∆ is n−1. It follows that for each ε > 0, the sum of the indices
of the singularities of (10) is equal to (−1)n−1.

For any singularity p(ε) of (10) we have

(Ap(ε))i − p(ε) · Ap(ε)) = nε− ε

pi(ε)
.

Hence, for any limit point p̄ of limε→0 p(ε) we have that

(Ap̄)i ≤ p̄ · Ap̄
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and so p̄ is a Nash equilibrium.
Moreover, if all singularities of the replicator system X0

are regular, then X0 has finitely many singularities (each one
is isolated). Each of these singularities moves smoothly with
ε and remains a singularity of Xε, i.e. of (10). Moreover, the
number singularities of (10) remains the same for all ε ≥ 0
small. This proves the first assertion of the lemma.

To prove the 2nd assertion, let us consider a singularity x̄
on the boundary, i.e. with x̄i = 0. Because of the form of
the equation, the i-row of the linearisation B is of the form
(0 0 . . . zi . . . 0 0) where zi = (Ax̄)i − x̄ ·Ax̄ appears on the i-
position and the other terms are zero. It follows that any eigen-
vector with a non-zero i-component has eigenvalue zi. Since
we assumed that the system is regular and it is a Nash equilib-
rium, we have zi < 0. Hence the 2nd claim holds.

It is not so hard to prove the 3rd assertion, but we will not
do this here.

Example 25. In Example 15 we had three Nash equilbria: e1, E
and [e1, e3]∩Z1,3. The first one is a sink, the 2nd a source, and
the final one a saddle, so with index +1,+1,−1. The sum of
these numbers is equal to +1 + 1 − 1 = 1 = (−1)3−1. In
several other examples we had a unique NE which was a sink
or source in the interior (or a centre) and so there the theorem
also holds.

Exercise 3. Give a heuristic argument which shows that if a
game has only regular singularities, then the Nash equilibria
on the boundary move into the interior of ∆ and the other sin-
gularities move out of ∆.
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2 Iterated prisoner dilemma (IRP) and
the role of reciprocity

In this chapter we will consider the prisoner dilemma game and
donation game from the introduction of these notes.

In the latter game the payoff is
(
b− c −c
b 0

)

where we assume b > c > 0. (This game works as follows:
If a player pays c into the scheme the other player receives a
benefit of b.) So if you cooperate and the other player too then
you receive b − c, but if you do but the other person not, then
you loose −c.

Of course this is a special case of the prisoner dilemma
game (

R S
T P

)
with T > R > P > S.

Note that the 2nd strategy dominates the first one (i.e. the
2nd row dominates the first one).

Of course if this game is repeated exactly 100 times, then
by induction you can deduce that best strategy is both players
is to never donate (i.e. always defect).

In this chapter we will consider various more realistic sce-
narios in which you don’t know how many times this game is
repeated.

Various alternative strategies, i.e. Tit for Tat strategies are
then discussed.

2.1 Repeated games with unknown time length
Let us assume that after each round there is a probability w that
the game is repeated at least one more round, where w ∈ [0, 1].
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So the probability of the game taking exactly n rounds is
wn(1−w). This means that the expected duration of the game
is

1(1− w) + 2w(1− w) + . . . nwn−1(1− w) + · · · = 1

1− w.

Let us assume that the payoff at time n is equal to An. Then
the expected value of the total payoff is

∞∑

n=0

wn(1− w)[A0 + · · ·+ An].

It is easy to see that this is equal to the convergent series

A(w) := A0 + wA1 + w2A2 + . . . .

Since An is finite, this sum exists. As the expected duration of
the game is 1/(1−w), the average payoff per round is therefore

(1− w)A(w).

In the limiting case w = 1, the above sum in the definition
of A(w) does not converge, but instead we can look at the limit
of the average payoff:

A(0) + · · ·+ A(n)

n+ 1
.

Let us the case where the players consider three strategies:
AllC, AllD, TFT. This means Always Cooperate, Always De-
fect or Tit For Tat (TFT means cooperate if and only if the other
player cooperated last time).

Let us assume that in the TFT strategy, in the first round the
player cooperates. Then the payoff matrix is

1

1− w




b− c −c b− c
b 0 b(1− w)

b− c −c(1− w) b− c



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where strategies are AllC, AllD, TFT.
To see this, consider the situation where both players co-

operate. Then the payoff An = b − c and so A(w) = (b −
c)/(1−w). If both players play TFT then they will keep coop-
erating, and so the payoff is again A(w) = (b− c)/(1− w). If
I play TFT and the other player plays AllD, then A0 = −c and
An = 0, so A(w) = −c. On the other hand, if I play AllD and
the other player TFT, then A0 = b and from then on An = 0,
so A(w) = b.

When we let w → 1 then we get the case where the game
is repeated infinitely often.

Instead of the above situation, let us change the payoff ma-
trix, by adding to each column a multiple of the vector 1. As we
have seen this does not change the replicator dynamics. Let’s
do this so the 2nd row consists of all 1’s, and then multiply the
matrix by (1− w). This gives

Â =



−c −c bw − c
0 0 0
−c −c(1− w) bw − c


 .

Then

(Ax)1 = −c+ wbx3 , (Ax)2 = 0 and (Ax)3 = (Ax)1 + wcx2.

Note that the best response is always e2 if w < c/b but that
if w > c/b then BR(e1) = e2, BR(e2) = e2 and BR(e3) is
multivalued an equal to BR(e3) =< e1, e3 >. So let us assume
that w > c/b. Note that the 3rd row is dominating the 1st
one when x2 > 0 and that (Ax̃)1 = (Ax̃)2 = (Ax̃)3 holds
for x̃ with x̃3 = c/wb and x̃2 = 0. Using slightly annoying
calculations we get

x·Ax = (Ax)3−x2g(x3), where g(x3) = w(b−c)x3−c(1−w).

Hence ẋ3 along the line g(x3) = 0 and so this lines is invariant.
Note that

g(x̂3) = 0 ⇐⇒ x̂3 =
(1− w)c

w(b− c)
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which is< 1 iffw > c/b. Note that x̂3 < x̃3 wheneverw > c/b
because then (1− w)/(b− c) < 1/b.

Along x2 = 0, we have ẋ2 = 0 and (Ax)3 − x · Ax =
x2g(x3) = 0, so ẋ3 = ẋ1 = 0. So x2 = 0 consists of sin-
gularities. The singularities with x2 = 0 and x3 ≥ c/wb are
attracting (and Nash equilibria) and the the singularities with
x2 = 0 and x3 < c/wb are not Nash equilibria.

There are no interior singularities because (Ax)3 > (Ax)1

when x2 > 0.
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2.2 Random versions of AllC, AllD and TFT
Let us consider a modification of the previous set-up, in which
a player makes a probabilistic response to the other players po-
sition.

More precisely, in each round there are four possibilities:
(C,C), (C,D), (D,C), (D,D). Let us label these as 1, 2, 3
and 4 with payoff for the first player of R, S, T, P , and let x(n)
be the probability that each of these is played at time n (so this
is a probability vector in R4).

Let us describe the probabilistic set-up by vectors (f, p, q)
and (f ′, p′, q′) for each player. For example, a player that chooses
the TFT strategy from the previous section is described by
(f, p, q) = (1, 1, 0), which means that he plays C in the first
round (f = 1), will definitely reciprocate a C with a C (p = 1
but punish a D with a D (q = 0).

More formally, f, f ′ ∈ [0, 1] gives the probability that the
first and 2nd player Similarly, let p, q be the probability of
player I responding in the next round with C when player II
plays respectively C, D. So assume that player I cooperates
with probability c(n) in round n, then the probability of player
II cooperating in round n+ 1 is equal to

c′(n+ 1) = p′c(n) + q′(1− c(n)) = q′ + ρ′c(n)

where ρ′ = p′ − q′. The probability of player I cooperating in
round n+ 2 is equal to

c(n+ 2) = q + ρc′(n+ 1) = A+ uc(n)

where ρ = p− q, A = q + ρq′ and u = ρρ′. It follows that

c(2n) = v + un(f − v)

where f is the probability of player I choosing C in the first

round and v =
q + ρq′

1− ρρ′ . A similar equation holds for c(2n +
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1). In the special case of the donation game (with coefficients
b, c), and again considering the situation of a probability 1−w
after each round of terminating the game, we obtain the average
payoff per round of strategy (f, p, q) against (f ′, p′, q′) is

−c(e+ wρe′) + b(e′ + wρ′e)

1− uw2

where e = (1− w)f + wq, e′ = (1− w)f ′ + wq′.
Let us consider the three possible strategies: e1 = (1 −

ε, 1 − ε, 1 − ε), e2 = (kε, kε, kε) and e3 = (1 − ε, 1 − ε, kε).
Using some simplifications we obtain the (normalised) payoff
matrix

A =




0 −1 δσ
1 0 −κσ
δ −κ 0




where δ = wε, κ = 1 − w + wkε, σ =
bθ − c
c− cθ and θ =

w(1−(k+1)ε). This corresponding to the following replicator
dynamics:
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3 Other game dynamics
Let us consider several dynamical systems which are related to
the replicator dynamics. As a test case we shall consider the
rock-scissor-paper pay-off matrix

A =




0 −b a
a 0 −b
−b a 0


 (11)

Remember that this system as a unique Nash equilibrium at
E = (1/3)1. Moreover, writing x = E + z then

∑
i zi = 0 we

have

z ·Az = (a− b)(z1z1 + z2z3 + z1z2) =
(b− a)

2
[z2

1 + z2
2 + z2

3 ]

This means that E is an ESS when 0 < b < a and it is NOT an
ESS when 0 < a < b. Note that orbits move away/towards the
Nash equilibrium if z · Az < 0 resp. z · Az > 0 for all z ∈ R3

with
∑

i zi = 0. (This follows as in Theorem 1.)

3.1 Best response dynamics
Define as before BR(x) = arg maxy yAx and let

ẋ = BR(x)− x. (12)

This is called the best response dynamics, and this is much
older than replicator dynamics. Note that BR(x) is a non-
empty convex set. In fact, it is upper semi-continuous. (What
does that mean?) It follows from general principles that the the
best response dynamics has a solution in the sense that there ex-
ists a solution t 7→ x(t) of (12) with x(0) = x0 so that t 7→ x(t)
is almost every where differentiable.
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Example 26. Consider Example 11 from above and take V (x) =
maxiAx. Then V (x) = ei · Ax where i = i(x) = BR(x) is
piecewise constant. So V̇ = ei · A · x = ei · A(ei − x) =
−eiAx = −V except at the Nash equilibrium E. Note that
V (E) = (a − b)/3. So when a > b then V (E) > 0 and
V (x) ≥ V (E) for all x ∈ ∆. Indeed, write x = z + E with∑
zi = 0; therefore

∑
i(Az)i = 0 and max(Az)i ≥ 0. It fol-

lows that orbits reach E in finite time. If a < b then V (E) < 0
and so the solution does NOT converge to Nash, but to the set
where V = 0, which is a triangle, called the Shapley triangle.

Example 27. Let us consider the BR-dynamics from the re-

maining example 15 in Section 1.3, whereA =




0 6 −4
−3 0 5
−1 3 0


.

Notice that the BR-dynamics is multivalued along the indiffer-
ence lines. Along the segment of the lineZ2,3 where the regions
2 and 3 meet in example 15, there is a unique continuous exten-
sion of the flow, see the lecture. Along the segment of the line
Z1,3 where regions 1 and 3 meet the ‘flow’ is non-continuous.
See lectures.
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3.2 Logit dynamics
Although the best response dynamics has major benefits, since
the orbits are piecewise straight arcs, the corresponding solu-
tions do not depend continuously on initial conditions and one
does not have the flow property. For this reason some people
prefer to use a smoother version of the best response dynamics.
One possible definition goes as follows. Consider the ‘logit’
function

L : Rn → ∆ defined by Lk(u) =
euk∑
j e

uj
, k = 1, . . . , n.

Corresponding to this one has the logit dynamics

ẋ = L(Ax/ε)− x.

3.2.1 First motivation for logit dynamics

Note that when ε → 0 and the k-th component of u is larger
than its other components then L(u/ε) → ek. So when ε > 0
is small, then one can think of L(Ax/ε) as an approximation of
the BR(x). Note that L(Ax/ε) is a unique probability vector
whereas BR(x) can be set-valued.

3.2.2 Second motivation for logit dynamics

Another way to obtain (or motivate) the logit dynamics goes as
follows. Let us consider random variables εi : R → R and the
function

L̂ : Rn → ∆ defined by L̂k(u) = Prob(uk + εk ≥ uj + εj∀j).
A real valued random variable ε is simply a measurable
function from a probability space Ω to R. The space Ω has
associated to it a collection of subsets F which are called
the measurable sets, and a measure µ : F → [0, 1] with the
main property that µ(∪Ai) =

∑
i µ(Ai) when Ai ∈ F are a

countable and mutually disjoint.

Let us show that if we choose εi appropriately that L̂ is
equal to L. Define F (x) = exp(− exp(−x)) is monotone in-
creasing and converges to 0 and 1 as x → −∞ resp. x → ∞.
So F is a cumulative distribution function and to say that ε ∼ F
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means that Prob(a ≤ ε ≤ b) = F (b) − F (a) dx. (Or in other
words, Prob(a ≤ ε ≤ b) =

∫ b
a
f(x) dx where f is the deriva-

tive of F . This is called the probability distribution function
which in this case is e−xe−e−x .) Note that, by rewriting and
considering εk for the moment as given, and using that the εj
are independent, we get

L̂k(u)|εk = Prob(εj ≤ uk − uj + εk ∀j 6= k)
=
∏

j 6=k exp(− exp(uj − uj + εk)).

Now in fact εk is not given, but has probability distribution
e−se− exp(−s) and so substituting s = εk and then t = e−s,

L̂k(u) =
∫∞
−∞
∏

j 6=k e
− exp(uk−uj+s)e−se−e

−s
ds.

=
∫∞
−∞ e

−e−s
∑

j exp(uk−uj)e−s ds

=
∫∞

0
e−t(

∑
j exp(uk−uj)) dt

=
e−t

∑
j exp(uk−uj)

−∑j exp(−(uk − uj))

∣∣∣∣∣

∞

t=0

=
euk∑
j e

uj
.

This gives the claimed result.
Note that singularities of the logit dynamics are not neces-

sarily Nash equilibria (and vice versa).

Example 28. Let us for example considerA from (11) as above.

Then AE is (a − b)1 and L(AE/ε) =
e(a−b)/ε

∑
j e

(a−b)/ε = E. So

in this case the Nash equilibrium is indeed a singularity of the
logit dynamics. The linearisation of the Nash equilibrium can
be done explicitly.
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4 Two player games
So far we looked at a game with one population with different
strains, and analysed whether a particular make-up x̄ is ‘opti-
mal’, in the sense that is a Nash or an ESS equilibrium.

A more general situation is when there are two populations
which are competing. In this case we have two matrices A,B
and assume that the positions of the two populations are de-
termined by two probability vectors x and y, the payoff and
best-response maps for the two populations is respectively is

x · Ay , BRA(y) = arg maxx∈∆ x · Ay,
y ·Bx , BRB(x) = arg maxy∈∆ y ·Bx.

(13)

We then say that (x̂, ŷ) is a Nash equilibrium iff

x̂ ∈ BRA(ŷ) and ŷ ∈ BRB(x̂).

Note that it is not necessary that A,B are square matrices
(and that the dimension of the probability spaces for x and y
are equal). So A would be a n × m matrix and B a m × n
matrix, which means that player A has n strategies and B has
m strategies to choose from.

Note that if A = Btr then y · Bx = x · Ay and so x̂ ∈
BRA(x̂) implies also x̂ ∈ BRB(x̂). So (x̂, x̂) is a NE for the
game determined by (A,B). This is the symmetric case which
we considered so far. It follows from Theorem 4 that any sym-
metric game (one with A = Btr) has a symmetric Nash equi-
librium. If A+Btr = 0 then we say that the game is zero-sum.

In fact, there is also 2nd convention for defining the payoff
of two players, namely to define the payoff and best response
functions, namely

x · Ay , BRA(y) = arg maxx∈∆ x · Ay and
x ·By , BRB(x) = arg maxy∈∆ x ·By.

(14)
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With this convention a zero-sum game corresponds toA+B =
0. The benefit of the 2nd convention becomes clear in the fol-
lowing example:

Example 29. Let us consider the situation where both players
have two strategies and so the payoff matrices are 2 × 2: A =(
a1 a2

a3 a4

)
and B =

(
b1 b2

b3 b4

)
. If we use the convention

from (14) then one can combine these two matrices using the

following notation
(

(a1, b1) (a2, b2)
(a3, b3) (a4, b4)

)
. This corresponds to




Payoff’s Player B Player B
chooses left chooses right

Player A chooses top (a1, b1) (a2, b2)
Player A chooses bottom (a3, b3) (a4, b4)


 ,

4.1 Two player replicator dynamics
The replicator dynamics corresponding to two populations is
defined as

ẋi = xi((Ay)i − x · Ay)
ẏj = yj((Bx)j − y ·Bx)

if we use the first convention for A,B as in 13.
Let us consider the 2x2 case, with payoff matrices A =(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
and use the first conven-

tion for the moment. This gives

ṗ1 = p1[a11q1 + a12q2 − p1(a11q1 + a12q2)− p2(a21q1 + a22q2)]
= p1(1− p1)[α1 − q1(α1 + α2)]

q̇1 = q1[b11p1 + b12p2 − q1(b11p1 + b12p2)− q2(b21p1 + b22p2)]
= q1(1− q1)[β1 − p1(β1 + β2)]

where
α1 = a12 − a22, α2 = a21 − a11

β1 = b12 − b22, β2 = b21 − b11.
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It turns out that there are three possibilities:

Proposition 1. There are three possibilities for a 2× 2 replica-
tor dynamics system (apart from the degenerate case), namely
(i) α1α2 > 0, β1β2 > 0, α1β1 > 0 (battle of the sexes),
(ii) α1α2 < 0 or β1β2 < 0 (dominated strategy),
(iii) α1α2 > 0, β1β2 > 0, α1β1 < 0 (zero sum case). The
dynamics in the first and last one is as drawn below.
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Exercise 4. Give examples which correspond to these figures.
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4.2 A 3 × 3 replicator dynamics systems with
chaos

A well-known example of a two-player game is

A =




εx −1 1
1 εx −1
−1 1 εx


B =




εy −1 1
1 εy −1
−1 1 εy




Note that this game is zero-sum if A + Btr = 0 so when
εx + εy = 0. For this game numerical investigations by Sato,
Akiyama and coworkers show chaos.
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4.3 Two player best response dynamics
The best response dynamics corresponding to two populations
is

ẋ = BRA(y)− x
ẏ = BRB(x)− y

Example 30. Let us consider the example of
(

(−1, 1) (0, 0)
(0, 0) (−1, 1)

)

(so we use convention 14). Here both players have opposite in-
terests (the sum of the payoff’s is always zero) and there is a
unique interior NE, namely at E = (1/2, 1/2) × (1/2, 1/2).
Let us show that in this case solutions go to this NE. Take

V (x, y) = BRA(y)Ay + xBBRB(x).

Notice

BRA(y)Ay ≥ xAy and xBBRB(x) ≥ xBy = −xAy.
It follows that V (x, y) ≥ 0. Moreover, at E = (EA, EB) we
have V (E) = BRA(EB)AEB +EABBRB(EA) = EAAEB +
EABEB = 0. Moreover,

V̇ = BRA(y)Aẋ+ ẋB BRB(x)
= BRA(y)A(BRB(x)− y) + (BRA(y)− x)B BRB(x)
= −V

where in the last step we used A + B = 0. It follows that
V (x(t), y(t)) = e−tV (x(0), y(0)). This means that orbits tend
exponentially fast to the Nash equilibrium E. The orbits spiral
to the NE as in the 2nd figure in the picture below.

4.4 Convergence and non-convergence to Nash
equilibrium

One of the main reasons Fictitious Play was introduced in the
50’s is that it hoped that it would be a way for players to con-
verge to a Nash equilibria (or to the set of Nash equilibria).
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For zero-sum games this is indeed the case. Indeed, the
argument given in the previous example generalises to:

Theorem 5. Assume that (A,B) is a zero-sum game. Then the
best response dynamics and also the FP dynamics converges to
the set of Nash equilibria of the game.

In fact, one has convergence to Nash equilibria for 2 × 2
and 2× n games and several other classes of games.

Example 31. For general 2 × 2 there are only 4 types of dy-
namics (up to re-labelling the axis), see the figure below. For

example, when
(

(1, 1) (0, 0)
(0, 0) (1, 1)

)
there are three Nash equi-

librium, namely E = (1/2, 1/2) × (1/2, 1/2) and (0, 0) and
(1, 1). The orbits then are as in figure 3 below.

4 Colin Sparrow and Sebastian van Strien

correspond to this situation, for example when
�

(0,−1) (0,0)
(0,0) (−1,−1)

�
. Case (2) cor-

responds to
�

(−1,1) (0,0)
(0,0) (−1,1)

�
. Here both players have opposite interests (the sum

of the payoff’s is always zero). Player B is copying A’s behavior (because the largest
component of pAB is then equal to the largest component of pA), whereas player
A is doing the opposite to what player B is doing. Finally, Case (3) corresponds

to
�

(1,1) (0,0)
(0,0) (1,1)

�
where both players agree to choose the same strategy. In the

prisoner dilemma
�

(3,3) (0,5)
(5,0) (1,1)

�
the players always move to the bottom right cor-

ner, see Case (4) and for both players the best response is always the 2nd strategy
(BRA,BRB are both constant in this case), even though they both would receive
higher payoffs playing the first strategy.
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Fig. 1.2 The possible motions in 2×2 games (up to relabeling, and shifting the indifference lines
(drawn in dotted lines).

In fact, it is easy to see that the dynamics in any 2× 2 game is topologically of
one of these types. Therefore, from this point of view, the next interesting case is
that of a 3× 3 game. (The dynamics of 2× 3 games can be essentially reduced to
that of a 2×2 game, with a normal direction added, see [vSS09, Theorem 1.5].) In
a later section we will review some results on 3× 3 games, and see that these are
much more complicated than 2×2 games.

1.3 Convergence to Nash equilibria in the zero-sum case

If B+A = 0 then we have a so-called zero-sum game. It was shown in the 1950s by
Robinson [Rob51] that then the differential inclusion (1.4) converges (albeit slowly)
to the set of Nash equilibria. This situation corresponds to Case (2) in Figure 1.2.

Of course, matrices A,B for which A + B �= 0, could have the same best re-
sponses BRA and BRB as matrices Ã, B̃ for which Ã+ B̃ = 0. For example, (A,B) =�

(2,−1) (1,0)
(1,0) (2,−1)

�
and (Ã, B̃) =

�
(1,−1) (0,0)
(0,0) (1,−1)

�
have the same best responses.

(Indeed, since pB is a probability vector, ApB = pB +

�
1
1

�
= ÃpB +

�
1
1

�
and hence

player A has for both games the same best-response; for player B the same holds be-

Figure 1: The possible motions in 2 × 2 games (up to relabeling,
and shifting the indifference lines (drawn in dotted lines).

However, in general one does not have convergence.

Example 32. Take

Aβ =




1 0 β
β 1 0
0 β 1


 Bβ =



−β 1 0
0 −β 1
1 0 −β


 , (15)

where we use the 2-nd convention.
Note thatEA×AB whereEA := (1/3, 1/3, 1/3) andEB :=

(1/3, 1/3, 1/3)′ is the Nash equilibrium. (How can one work
out that there are no other Nash equilibria?).
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For β = 0 this corresponds to the situation that A = Id
so wants to copy what player two is doing, and B prefers 3,
2, 1 when player A plays 1, 3 and 2, so player B want so do
something different from playerA. This games was introduced
by the Nobel prize winner Shapley in 1964, to show that the
dynamics of FP does not necessarily converge to a Nash equi-
librium, but to a periodic orbit.

For β = φ where φ is the golden number (i.e. φ := (
√

5−
1)/2 ≈ 0.618), the game is equivalent to a zero-sume game
(rescaling B to B̃ = φ(B − 1) gives A + B̃ = 0). Hence in
this case by Theorem5 play always converges to the interior
equilibrium EA, EB.

For β ∈ (φ, τ) where τ ≈ 0.915 the dynamics is chaotic.

 ̀= 0

YA simplex YB simplex

44



5 Fictitious play: a learning model
There are several models for learning, for example

• fictitious play (many people, starting with Brown and
Robinson in the 50’s), Fudenberg, Levine,....

• reinforcement learning (Roth, Erev, Arthur...)

• no-regret learning (Hart, Mas-Colell, Foster, Young, Kalai,
Lehrer,....

Some of these aim to model human behaviour while others are
aimed at providing efficient algorithms for computing various
generalisations of the Nash equilibrium.

5.1 Best response and fictitious play
Let x(t) and y(t) be the actions (past)play of the two players,
and let

p(s) =
1

s

∫ s

0

x(u) du and q(s) =
1

s

∫ t

0

y(u) du.

Then a player decides to play the following action at time s:

x(s) ∈ BRA(q(s)) and y(s) ∈ BRB(p(s)) for s ≥ 1.

Note that this means that this equivalent to

ṗ(s) =
1

s
(BRA(q(s))− p(s))

q̇(s) =
1

s
(BRB(p(s))− q(s)).

(16)

Note that if we take the time-reparametrisation s = et, then we
obtain the best-response.

ṗ(t) = (BRA(q(t))− p(t))
q̇(t) = (BRB(p(t))− q(t)).
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We further denote the maximal-payoff functions

Ā(q) := max
p̄∈∆

p̄Aq and B̄(p) := max
q̄∈∆

pBq̄, (17)

Let us show that playing fictitious dynamics leads to no-regret.

5.2 The no-regret set
Assume that players A and B have respectively m and n ac-
tions.

Definition. A joint probability distribution P = (pij) over
S := {1, . . . ,m} × {1, . . . , n} is a coarse correlated equilib-
rium (CCE) for the bimatrix game (A,B) if (pij), i = 1, . . . ,m
and j = 1, . . . , n is a matrix with all entries ≥ 0 and so that∑

ij pij = 1 ∑

i,j

ai′jpij ≤
∑

i,j

aijpij

and ∑

i,j

bij′pij ≤
∑

i,j

bijpij

for all i′, j′. The set of CCE is also called the Hannan set.

One way of viewing the concept of CCE is in terms of the
notion of regret. Let us assume that two players are (repeat-
edly or continuously) playing a bimatrix game (A,B), and let
P (t) = (pij(t)) be the empirical joint distribution of their past
play through time t, that is, pij(t) represents the fraction of
time of the strategy profile (i, j) along their play through time
t. Then

∑
i,j aijpij(t) and

∑
i,j bijpij(t) are the players’ aver-

age payoffs in their play through time t.
For x ∈ R, let [x]+ denote the positive part of x: [x]+ = x

if x > 0, and [x]+ = 0 otherwise. Then the expression
[∑

i,j

ai′jpij(t)−
∑

i,j

aijpij(t)

]

+
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can be interpreted as the regret of the first player from not hav-
ing played action i′ throughout the entire past history of play.
It is (the positive part of) the difference between player A’s ac-
tual past payoff and the payoff she would have received if she
always played i′, given that player B would have played the
same way as she did. Similarly,

[
∑

i,j

bij′pij(t)−
∑

i,j

bijpij(t)]+

is the regret of the second player from not having played j′.
This regret notion is sometimes called unconditional or exter-
nal regret to distinguish it from the internal or conditional re-
gret1. In this context the set of CCE can be interpreted as the
set of joint probability distributions with no regret (i.e. the re-
gret is ≤ 0).

5.3 Fictitious play converges to the no-regret set
We now show that continuous-time FP converges to a subset
of CCE, namely the subset for which equality holds for at least
one i′, j′ in (18).

Theorem 6. Every trajectory of FP dynamics (16) in a bimatrix
game (A,B) converges to a subset of the set of CCE, the set
of joint probability distributions P = (pij) over SA × SB such
that for all (i′, j′) ∈ SA × SB
∑

i,j

ai′jpij ≤
∑

i,j

aijpij and
∑

i,j

bij′pij ≤
∑

i,j

bijpij,

(18)
where equality holds for at least one (i′, j′) ∈ SA × SB. In
other words, FP dynamics asymptotically leads to no regret for
both players.

1Conditional regret is the regret from not having played an action
i′ whenever a certain action i has been played, that is, [

∑
j ai′jpij −∑

j aijpij ]+ for some fixed i ∈ SA.
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Note that an FP orbit (p(t), q(t)), t ≥ 1, gives rise to a joint
probability distribution P (t) = (pij(t)) via

pij(t) =
1

t

∫ t

0

xi(s)yj(s)ds.

When we say that FP converges to a certain set of joint proba-
bility distributions, we mean that P (t) obtained this way con-
verges to this set. (The envelope theorem asserts that, under some examples,

the maximum of a function depending on a parameter de-
pends smoothly on this parameter. In this case the parame-
ter is q(t). Can you prove this directly?

Proof of Theorem 6. Let Ā and B̄ be defined as in (17).
By the envelope theorem we have that

Example: q(t) =

(
t

1− t

)
, A = I . Then Ā(q(t)) =

max(t, 1− t) and p̄A
(

1
−1

)
is equal to 1 and −1

dĀ(q(t))

dt
= p̄ · A · dq

dt
.

when BRA(q) is unique and p̄ ∈ BRA(q). Therefore, since
x(t) ∈ BRA(q(t)) and y(t) ∈ BRB(p(t)) for t ≥ 1,

d

dt

(
tĀ(q(t))

)
= Ā(q(t))+t

d

dt

(
Ā(q(t))

)
= Ā(q(t))+t·x(t)·A·dq(t)

dt
.

Using (16) and Ā(q(t)) = x(t) · A · q(t), it follows that

d

dt

(
tĀ(q(t))

)
= Ā(q(t))+x(t)·A·(y(t)− q(t)) = x(t)·A·y(t)

for t ≥ 1. We conclude that for T > 1,
∫ T

1

x(t) · A · y(t) dt = TĀ(q(T ))− Ā(q(1)),

and therefore

lim
T→∞

(
1

T

(∫ T

0

x(t) · A · y(t) dt

)
− Ā(q(T ))

)
= 0.

Note that

1

T

∫ T

0

x(t) · A · y(t) dt =
∑

i,j

aijpij(T ),
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where P (T ) = (pij(T )) is the empirical joint distribution of
the two players’ play through time T . On the other hand,

Ā(q(T )) = max
i′

∑

j

ai′jqj(T ) = max
i′

∑

i,j

ai′jpij(T ).

Hence,

lim
T→∞

(∑

i,j

aijpij(T )−max
i′

∑

i,j

ai′jpij(T )

)
= 0.

By a similar calculation for B, we obtain

lim
T→∞

(∑

i,j

bijpij(T )−max
j′

∑

i,j

bij′pij(T )

)
= 0.

It follows that any FP orbit converges to the set of CCE. More-
over, these equalities imply that for a sequence tk →∞ so that
pij(tk) converges, there exist i′, j′ so that

∑
i,j(aij−ai′j)pij(tk)→

0 and
∑

i,j(bij − bij′)pij(tk) → 0 as k → ∞, proving conver-
gence to the claimed subset.

Let us denote the average payoffs through time T along an
FP orbit as

ûA(T ) =
1

T

∫ T

0

x(t)·A·y(t) dt and ûB(T ) =
1

T

∫ T

0

x(t)·B·y(t) dt.

As a corollary to the proof of the previous theorem we get the
following

Proposition 2. In any bimatrix game, along every orbit of FP
dynamics we have

lim
T→∞

(
ûA(T )− Ā(q(T ))

)
= lim

T→∞

(
ûB(T )− B̄(p(T ))

)
= 0.

where as before

Ā(q) := max
p̄∈∆

p̄Aq and B̄(p) := max
q̄∈∆

pBq̄,
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Another consequence is:

Proposition 3. Let (A,B) be a bimatrix game with unique,
completely mixed Nash equilibrium (EA, EB). If Ā(q) ≥ Ā(EB)
and B̄(p) ≥ B̄(EA) for all (p, q) ∈ Σ, then asymptotically the
average payoff along FP orbits is greater than or equal to the
Nash equilibrium payoff (for both players).

5.4 FP orbits often give better payoff than Nash
Consider the one-parameter family of 3 × 3 bimatrix games
(Aβ, Bβ), β ∈ (0, 1), given by

Aβ =




1 0 β
β 1 0
0 β 1


 , Bβ =



−β 1 0
0 −β 1
1 0 −β


 . (19)

This family can be viewed as a generalisation of Shapley’s
game. This system has been shown to give rise to a very rich
chaotic dynamics with many unusual and remarkable dynami-
cal features. The game has a unique, completely mixed Nash
equilibrium E, where E = (1

3
, 1

3
, 1

3
) × (1

3
, 1

3
, 1

3
), which yields

the respective payoffs

uA(E) =
1 + β

3
and uB(E) =

1− β
3

.

To check the hypothesis of Proposition 3, let q = (q1, q2, q3)> ∈
∆B, then

Ā(q) = max {q1 + βq3, q2 + βq1, q3 + βq2}

≥ 1

3
((q1 + βq3) + (q2 + βq1) + (q3 + βq2))

=
1

3
(q1 + q2 + q3)(1 + β)

=
1 + β

3
= uA(E) = Ā(EB).
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Moreover, equality holds if and only if

q1 + βq3 = q2 + βq1 = q3 + βq2,

which is equivalent to q1 = q2 = q3, that is, q = EB. We
conclude that Ā(q) > Ā(EB) for all q ∈ ∆B \ {EB}, and by a
similar calculation, B̄(p) > B̄(EA) for all p ∈ ∆A \ {EA}. As
a corollary to Proposition 3 we get the following result.

Theorem 7. Consider the one-parameter family of bimatrix
games (Aβ, Bβ) in (19) for β ∈ (0, 1). Then any (non-stationary)
FP orbit Pareto dominates constant Nash equilibrium play in
the long run, that is, for large times t we have

ûA(t) > uA(E) and ûB(t) > uB(E).

In fact, for this game FP also improves on the set of corre-
lated equilibria. Here we say, that a joint probability distribu-
tion P = (pij) is a correlated equilibrium (CE) for the bimatrix
game (A,B) if
∑

k

ai′kpik ≤
∑

k

aikpik and
∑

l

blj′plj ≤
∑

k

bljplj

for all i, i′ and j, j′.

5.5 A conjecture
There are certainly examples of games where the opposite holds,
namely where a FP orbit is Pareto dominated by the Nash pay-
off. However, a numerical study suggests this is extremely rare.
For many games FP orbits Pareto dominate Nash play, and con-
jecturally, for a very large proportion (say %99 percent), FP
orbits dominate Nash play for large periods of time.

Note that this all depends on the choice of the matrices.
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Theorem 8. Let (A,B) be an n×n bimatrix game with unique,
completely mixed Nash equilibrium E. Then there exists a
linearly equivalent game (A′, B′), for which Ā′(q) > Ā′(EB)
and B̄′(p) > B̄′(EA) for all p 6= EA and q 6= EB, and so for
(A′, B′) FP payoff Pareto dominates Nash payoff.

5.6 Discrete fictitious dynamics
Sometimes it is more natural to consider discrete time, so as-
sume that t ∈ N. In this case we let p(0), q(0) be the a priori
believe at time t = 0 of the probability that player B resp A
thinks the strategies will be played. The updating rule about
these believes is then

p(n+ 1) =
np(n) + ei
n+ 1

, q(n+ 1) =
nq(n) + ej
n+ 1

So

p(n+1)−p(n) =
1

n
(ei−p(n)), q(n+1) = q(n)+

1

n
(ej−q(n)).

This should be considered as the discrete approximation of the
continuous best response dynamics

ṗ = BRA(q)− p, q̇ = BRB(p)− q.
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6 Reinforcement learning
In this section I will describe the the Arthur and Erev-Roth
models for reinforcement learning. These are closely related
to fictitious play.

Assume:

• at each time period t, each of the two players chooses an
action x(t) resp. y(t) (here we will write xt and yt for
simplicity). In fact, yt could also be ‘nature’ or a player
which has a totally different way of choosing strategies.

• the payoff for playerA is given by a function ut = u(xt, yt)
which for pure actions can be written in the form xt ·Ayt.
In this current set-up we assume that the payoff is always
strictly positive.

Define a variable θtx ≥ 0 which describes the ‘propensity’
of playerA to play x at time twhich is updated in some manner
according to how "good playing x" has been. Let θt be the
vector of these numbers with x-th component equal to θtx.

Then, at time t, A plays x with probability

ptx =
θtx∑

x′∈X θ
t
x′

and let pt be the corresponding probability vector. So the action
xt is chosen according to the probability vector pt. Several
updating rules have been proposed for θtx:

Let ut = u(xt, yt) ∈ R be the payoff of player A at time
t and et be the vector with the xt component 1 and all other
components 0.

(I) Erev-Roth Cumulative payoff matching (CPM) (dat-
ing back to 1995) is:

θt+1 = θt + utet.

53



(II) The Athur model from (1993), is closely related:

θt+1 = (θt + utet)
C(t+ 1)

Ct+ ut
,

where C is the sum of the coordinates of θ1.
Note that the models are quite similar, the latter is just a

rescaled version of the former one. Both models have in com-
mon that they reinforce playing a particular action depending
on the payoff it resulted in.

In the 2nd model, we have by induction that the sum of the
coordinates of θt is equal to tC for all t ≥ 1. Indeed, by the
induction assumption, the sum of the coordinates of θt + utet

is equal to Ct + ut, and so the induction step follows. This
property makes the 2nd one slighlty easier to work with and in
the rest of this section, we will consider only the 2nd model.

Note that player A does not need to observe the actions
of player B to determine θt, only his own utility pay-off. It is
assumed that each pay-off is> 0 and that θ1 has all strictly pos-
itive coordinates. This implies that the probability of choosing
action x at time t+ 1 is at least

θ1
x

|θ1|+ tK

where θ1 is the sum of the coordinates of the initial propen-
sity vector and K an upper bound for the utility of all actions.
It follows that all actions are chosen with positive probability
infinitely many times.

Note that in the 2nd model

pt+1 :=
θt+1

(t+ 1)C

= pt +
ut

Ct+ ut
(et − pt)

= pt +
ut

Ct
(et − pt) + εt
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where εt = O(1/t2). Note that ut, et, εt are random variables
which depends on the actions x1, . . . , xt and y1, . . . , yt chosen.
If we set

f(pt) = E(ut(et − pt)|{(x1, y1), . . . , (xt, yt)})

then we can write the previous equation as

pt+1 = pt +
1

Ct
f(pt) +

1

Ct
µ(pt) + εt

where E(µ(pt)|{(x1, y1), . . . , (xt, yt)}) = 0. Note that pt+1

and f(pt) depends on x1, . . . , xt and y1, . . . , yt.

6.1 A two player version of this each with two
actions:

Now do the same for the other player. Then the action yt player
B chooses depends on qt, and so we obtain the discrete time
stochastic process:

pt+1 = pt +
1

Ct
f(pt, qt) +

1

Ct
µ(pt) + εt

qt+1 = qt +
1

Ct
g(qt, qt) +

1

Ct
ζ(qt) + εt.

(20)

Note that this is the Euler approximation of a differential equa-
tion with decreasing time steps. Indeed, then the points

(p1, q1), (p2, q2), . . . , (pn, qn)

should correspond to an approximation of the solution of the
differential equation

ṗ = f(pt, qt), q̇ = g(pt, qt)

at time
1

C
+

1

2C
+ · · ·+ 1

(n− 1)C
.
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Let us simplicity assume that each of the players has two
actions and that the payoff matrices are A and B are equal to

A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
where we use the

1st convention. Note that

f(pt, qt) = E(
ut(et − pt

t
)

= pt(a11q
t + a12(1− qt))(1− pt)+

(1− pt)(a21q
t + a22(1− qt)(0− pt)

= pt(1− pt) ((a12 − a22)− qt((a21 − a11) + (a12 − a22)))

and similarly for g. So we get

f(p, q) = p(1− p)[α1 − q(α1 + α2)]
g(p, q) = q(1− q)[β1 − p(β1 + β2)]

where
α1 = a12 − a22, α2 = a21 − a11

β1 = b12 − b22, β2 = b21 − b11

Now compare this with the replicator dynamics

ṗi = pi[(Aq)i −p · Aq]
q̇j = qj[(Bp)j −q ·Bp]

This also gives

ṗ1 = p1[a11q1 + a12q2 − p1(a11q1 + a12q2)
−p2(a21q1 + a22q2)]

= p1(1− p1)[α1 − q1(α1 + α2)]
q̇1 = q1(1− q1)[β1 − p1(β1 + β2)]

So
ṗ1 = f(p1, q1), q̇1 = g(p1, q1)

is the two person replicator dynamics that we already encoun-
tered in Subsection 4.1. As we saw there, the dynamics of this
two person replicator system can be completely described. If
there is an interior NE then there are two possibilities, where
the diagram on the right corresponds to a a game which is
equivalent to a zero-sum game.

56



� ⌥✏⇥⇥⌃↵�✏�⌃�⇤ �⌘ ��� �✏⇧⇤⌃⇤⇣ ◆⌫⇤✏ ⌃�⇥ ⌘�⇧ ⌦⇤ ⌦ ⇣✏ �⇥

+3 )�6��⌥$⇥�6↵ �↵�33 ⇢/#6636 �! ⇤  $#✓36, )3�3�✓�⌥3) ⇡2 �↵3 ⌥⇥✓⇡3� �!
6���⇢� #⌥) ✓�(3) �#6↵ 3�⇥�/�⇡��#⌦ *↵3 $#✓3 ↵#6

#� �⌥3 ✓�(3) �#6↵ 3�⇥�/�⇡��⇥✓ #⌥) ⌥� 6���⇢� �⌥36 �✏ ⇥� ⇧ ⇥ ⇥ ., �� ⇧ � ⇥ .
#⌥) ⇥� ⇧ �� � .

⇡� 3(#⇢�/2 �⌥3 6���⇢� �#6↵ 3�⇥�/�⇡��⇥✓ �✏ ⇥ ⇧ ⇥ � . �� �� ⇧ � � . ↵�/)6⌦
⇢� �⇧� 6���⇢� �#6↵ 3�⇥�/�⇡��# #⌥) # ⌥�⌥56���⇢� �⌥3 �✏ ⇥� ⇧ ⇥ ⇥ ., �� ⇧ � ⇥ .

#⌥) ⇥� ⇧ �� ⇥ .⌦

+3 )� ⌥�� ⇢�⌥6�)3� )3$3⌥3�#�3 ⇢#636 �⌥ �⇥� #⌥#/26�6 #⌥) #66⇥✓3 �↵#�
⇥� ⇧ ⇥ ⌅⌥ . #⌥) �� ⇧ � ⌅⌥ .⌦

*↵3 6��⇢↵#6��⇢ )�✏3�3⌥⇢3 3�⇥#���⌥ �1� ⇢#⌥ ⇡3 633⌥ #6 # 6��⇢↵#6��⇢#//2
 3��⇥�⇡3) &⇥/3� 6⇢↵3✓3 !�� �⇠,⌘� ⇧��↵ )3⇢�3#6�⌥$ 6�3 6��3⌦ *↵⇥6, �⌥ �↵3
⇡3$�⌥⌥�⌥$ �↵3 6��⇢↵#6��⇢ �⌥⌫⇥3⌥⇢3 �6 /#�$3⌦  ⇥� #6 �↵3 6�3 6��3 )3⇢�3#636, #
/#⇧ �! /#�$3 ⌥⇥✓⇡3�6 ⇢�✓36 �⌥�� 3✏3⇢� #⌥) �↵3 6��⇢↵#6��⇢ 6↵�⇢⇤6 ⇢#⌥⇢3/ �⇥�
6⇥⇢↵ �↵#� �↵3 #⇢�⇥#/ ✓����⌥ �6 ⇣3�2 ⇢/�63 �� �↵3 3( 3⇢�3) ✓����⌥, ⇧↵�⇢↵ �6
$�⇣3⌥ ⇡2 �↵3 )�✏3�3⌥��#/ 3�⇥#���⌥⌦ *↵�6 $�⇣36 6�✓3 �⌥�⇥����⌥ !�� �↵3 �3/#5
���⌥6↵� ⇡3�⇧33⌥ �↵3 /�✓�� 63�6 �! �↵3 6��⇢↵#6��⇢  ��⇢366 #⌥) �↵�63 �! �↵3
)�✏3�3⌥��#/ 3�⇥#���⌥⌦

'�� $#✓36 �! �2 3 #� �↵3 �3 /�⇢#��� 3�⇥#���⌥ ↵#6 # ⇢�⌥��⌥⇥⇥✓ �!  3���)�⇢
6�/⇥���⌥6 �633 '�$⌦ ��⌦ ⌃⌥ �↵3 !�//�⇧�⌥$ ⇧3  ��⇣3 �↵#� # ⇢���36 �⌥)�⌥$
6�#�3✓3⌥� ↵�/)6 !�� �↵3 6��⇢↵#6��⇢ /3#�⌥�⌥$ #/$����↵✓⌦ "� ��6� 6�$↵� �↵�6
633✓6 ⌥�� ⇣3�2 6⇥� ��6�⌥$⌦ 0�⇧3⇣3�, �↵�6 )�✏3�3⌥��#/ 3�⇥#���⌥ �6 ⌥�� 44$35
⌥3��⇢⌅⌅, 6� �↵#� #⌥ #�⇡���#��/2 6✓#// ⇢↵#⌥$3 �! �↵3 ⌫�⇧ ⇢#⌥ )36���2 �↵3
⇢�⌥��⌥⇥⇥✓ �!  3���)�⇢ 6�/⇥���⌥6⌦ 03⌥⇢3, �� �6 ⌥�� ⇢/3#� �↵#� # 6��⇢↵#6��⇢
)�✏3�3⌥⇢3 3�⇥#���⌥ ⇧↵�⇢↵ �6 6�✓�/#� �� �↵3 )�✏3�3⌥��#/ 3�⇥#���⌥ /3#)6 ��
⇢2⇢/36⌦ &⇣3⌥ �↵3 6�/⇥���⌥6 �! �↵3 )3�3�✓�⌥�6��⇢ )�✏3�3⌥⇢3 3�⇥#���⌥
⇤�⇥� ⌥ ⇤� ⇥ �

� ⇥ ⇤�⌃ �, ⇧↵3�3 � ⇥ . �6 �(3), �⇧↵�⇢↵ �6 �↵3 &⇥/3� 6⇢↵3✓3 �! �↵3
⇢�⌥��⌥⇥�⇥6 �3 /�⇢#��� 3�⇥#���⌥� #�3 ⌥��  3���)�⇢, ⇡⇥� 6/�⇧/2 6 ��#/ �⇥�⇧#�)6
�� �↵3 ⇡�⇥⌥)#�2⌦

✓⌃⇣⌅ �⌅ *↵3  ↵#63  ����#�� �! �⇥ ⌥ ⇥ ⌃⇤� !�� �↵3 ⇢#636 ⇢� #⌥) #� ⇧↵3�3 �↵3 �3 /�⇢#��� 3�⇥#���⌥
↵#6 #⌥ �⌥�3���� �(3)  ��⌥�⌦ *↵3 ⌫�⇧ �! �↵3 )�✏3�3⌥��#/ 3�⇥#���⌥ ⇢���36 �⌥)6 �� �↵3 3(5
 3⇢�3) ✓����⌥ �! �↵3 6��⇢↵#6��⇢  ��⇢366

�-◆ %⌦ ⌧�6⇢↵

6.2 Reinforcement learning and replicator dy-
namics

Based on this, Posch (1997) showed the following:

Theorem 9. In a two-player two strategy game, we have the
following possibilities:

• if the game has no strict Nash equilibrium and equiva-
lent to a zero sum game (as in the previous figure on the
right), then the learning algorithm has a continuum of
asymptotically cycling paths. Almost all paths that are
not asymptotically cycling converge either to the interior
fixed point or to the boundary;

• at least one strict Nash equilibrium and C ≥ ajk, bjk for
j, k = 1, 2, then the learning algorithm a.s. converges to
the set of strict Nash equilibria. All strict Nash equilibria
are attained in the limit with positive probability.
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6.3 Stochastic approximation
To prove this, note that the abstract form of the stochastic pro-
cess is

xn+1 − xn = γn+1Vn+1

where Vn+1 is a random variable of the form

Vn+1 = F (x) + Un+1

and where Un+1 is a random variable. Since γn → 0, this
should be related to the differential equation

dx

dt
= F (x).

There is an extensive literature about this, see the introductory
section.

In these notes we will not be able to discuss these results,
and more specifically to what extend the learning process from
equation (20) can indeed be modelled by the replicator differ-
ential equation. To explain the issues that are at stake, let us
show specifically what’s going on.

6.4 What happens if C is not large enough?
Proposition 4. Suppose that 0 < C < ak,l, bk,l for all k, l.
Then

Prob{ lim
t→∞

pt → 1, lim
t→∞

qt → 1} > 0.

Proof. Let us show that there is a positive probability that pt →
1. To do this, let us show below that if player A plays action
1 forever then

∏∞
t=1 p

t > 0. This in turn implies that player A
chooses action 1 forever with positive probability, because after
all
∏
pt is the probability that player A chooses the 1st action

forever. Moreover, as pt < 1 and
∏∞

t=1 p
t > 0 implies pt → 1.

(Another way of seeing this is that the propensity θtx for the
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first action x = 1 keeps increasing, while θt2 remains constant.
This then implies that with positive probability pt → 1.)

Note that
∏∞

t=1 p
t > 0 is equivalent to

∑
(1 − pt) < ∞.

Note that

pt+1 = pt +
ut

Ct+ ut
(et − pt).

This means that if player A chooses action 1 at time t and
player B action j then

pt+1 = pt +
a1j

Ct+ a1j

(1− pt).

So writing dt = 1− pt we get

dt+1 = dt − a1j

Ct+ a1j

dt

or
dt+1

dt
= 1− a1j

Ct+ a1j

= 1− a1j

Ct
+O(1/t2).

Since aij > C for all i, j, there exists α > 1 and t0 so that for
t ≥ t0

dt+1

dt
< 1− α

t
.

This implies by the Raabe test that
∑∞

t=1 dt converges. (The
Raabe test states the following. Assume |cn/cn+1| → 1 and
n(|cn/cn+1| − 1) → R. Then

∑
cn converges if R > 1 and

diverges if R < 1.)

6.5 The dynamics of this learning process
Theorem 10. In the case of a 2×2 zero sum case, the learning
algorithm has a continuum of asymptotic cycling paths.
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Similarly, we have

Theorem 11. Assume that the game has at least one strict Nash
equilibrium. If C ≥ ajk, bjk then the learning algortithm a.s.
converges to the set of strict Nash equilibria. Moreover, each
Nash equilibrium is attained with positive probability.

Proof. There are several versions of this result. For example
Posch (1997), Hopkins & Posch (2005) and references in these
papers.

6.6 What if the opponent has a different strat-
egy: computer experiments

Consider the following game:
(

2, 1 1, 2
1, 2 2, 1

)
.

Suppose the 2nd player uses

1. fictitious play;

2. takes a (myopic) best response to player 1’s current ac-
tion;

3. plays the minmax strategy.

Then player 1’s average payoff converges rapidly to 1.5. In-
deed, Beggs [2005] did some computer simulations. Against
each opponent the ER rule was run 100 times in a run of length
10,000, with initial reinforcements (1,1.5).

The mean average payoff was
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1. 1.48 st.dev. 0.04

2. 1.49 st.dev. 0.01

3. 1.5 st.dev. 0.003
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7 No regret learning
There are several results that describe ‘no regret learning’ algo-
rithms to ‘learn’ the correlated equilibrium (CE) of a bimatrix
game.

To put this in context, we have the set of Nash equilibria
(NE), the correlated equilibria (CE) and the course correlated
equilibria (CCE). These are related as follows:

NE ⊂ CE ⊂ CCE.

We saw that the best response dynamics converges to the CCE
set.

Let us first recall the definition of the the CE set. Assume
that A has m actions and player B has n actions. We say that
the matrix (pij), i = 1, . . . ,m and j = 1, . . . , n is a probability
distribution if all its entries are ≥ 0 and

∑
ij pij = 1. A joint

distribution is a correlated equilibrium (CE) for the bimatrix
game (A,B) if
∑

k

ai′kpik ≤
∑

k

aikpik and
∑

l

blj′plj ≤
∑

k

bljplj

for all i, i′ and j, j′.
So this means that if you consider pij as the proportion of

time up to time t that action i, j was chosen, then t (
∑

k aikpik)
is the payoff resulting from action i. The first inequality means
that player A would not have been better off by switching ac-
tion i to action i′. The 2nd inequality means that the same holds
for player j.

Note that a Nash equilibrium corresponds to the special
case where (pij) is a product distribution, so correspond to the
situation that there are two probability vectors p∗, q∗ and that
pij = p∗i · q∗j .

In this section we will discuss some results related to learn-
ing models which converge to CE.
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7.1 Hart and Mas-Colell’s regret matching
Suppose that the two players have played actions xi, yi for time
i = 1, . . . , t. Let WAi(j, k) and WBi(j, k) be the regret at
time i that the player chose j instead of k. More precisely, for
i = 1, 2, . . . , t, define

WAi(j, k) =

{
ek · Ayi if xi = ej
xi · Ayi if xi 6= ej

and similarly for WB. So this gives the payoff A would have
received at time i, assuming player B would have done the
same, if only he had played k whenever he actually played j.
Then define

DAt(j, k) =
1

t

(
t∑

i=1

[WAi(j, k)− xi · Ayi]
)
.

So this is what player A would have gained (or lost) on average
up to time t had he played action k whenever he actually played
j. Now define

RAt(j, k) = max(DAt(j, k), 0).

Let j∗ be the action of player A at time t and define the com-
ponent of pt+1 by

pt+1
j =

1

µ
RAt(j∗, j) for all j 6= j∗

pt+1
j∗ = 1−∑j 6=j∗ p

t+1
j when j = j∗

Here µ is chosen so large that the above vector is a probabil-
ity vector. This means that the probability of switching to a
different stratefy is proportional to their regrets relative to the
current strategy. For player B define similarly RBt and qt+1.

Theorem 12 (Hart and Mas-Colell). Provided we fix µ suf-
ficiently large, if player A follows this algorithm then almost
surely RAt(j, k)→ 0 as t→∞.
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Moreover,

Theorem 13 (Hart and Mas-Colell). Provided we fix µ suf-
ficiently large, if both players follow this algorithm then the
resulting frequency of actions up to time t tends to the CE set
as t→∞.

Foster-Fohra and Fudenberg-Levine have related results.
We will not explain the proofs of these theorems, but prove

a related results namely "universal consistency".

7.2 Min-max solutions and zero-sum games
Before going into no regret learning it is good to state a well-
known fact which is related to zero-sum games.

Theorem 14. For any matrix A one has

vA := max
x

min
y
x · Ay = min

y
max
x

x · Ay := vB. (21)

In fact, (21) is equivalent to the existence of a Nash equilibrium
(x∗, y∗) of the game (A,−A) and vA = vB = x∗ ·A·y∗ is called
the value of the zero-sum game.

Proof. Since miny x · Ay ≤ miny maxx x · Ay = vB, we have
vA ≤ vB. To prove the opposite inequality, let (x∗, y∗) be a
Nash equilibrium of the zero-sum game (A,−A). This means
x∗ ∈ BRA(y∗) and y∗ ∈ BRB(x∗) where B = −A. This
equivalent to the requirement that for all x, y,

x · Ay∗ ≤ x∗ · Ay∗ and x∗ · Ay∗ ≤ x∗ · Ay. (22)

(Note that B = −A and hence the 2nd inequality is ≤). The
previous two inequalities are equivalent to

max
x

x · Ay∗ = x∗ · Ay∗ = min
y
x∗ · Ay.
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It follows that

vB := min
y

max
x

x · Ay ≤ max
x

x · Ay∗ = x∗ · Ay∗

= min
y
x∗ · Ay ≤ max

x
min
y
x · Ay := vA.

This proves the first assertion of the theorem. In fact, (21) im-
plies that there exists a Nash equilibrium. Indeed, take x∗, y∗

so that miny x
∗ · Ay = v = maxx x · Ay∗. Let us show that

x∗, y∗ is a NE. Indeed for all x, y,

x∗ · Ay ≥ min
y
x∗ · Ay = v and x · Ay∗ ≤ max

x
x · Ay∗ = v

Substituting for x∗, y∗ for x, y it follows that v = x∗ · Ay∗ and

x∗ · Ay ≥ x∗ · Ay∗ ≥ x · Ay∗.
and hence the conditions (22) for NE are satisfied.

7.3 Blackwell approachability theorem
Assume that player A decides to play pt, t = 1, . . . and his ad-
versary plays qt, t = 1, 2, . . . . Now assume that the player re-
ceives a payoff vector (rather than a payoff number) and denote
this payoff A(pt, qt) ∈ Rk and let at = (1/t)

∑t
t=1A(pt, qt).

We say that C is approachable if for each probabilities {pi, qi}t−1
i=1

there exists a choice pt (which is independent of the choice for
qt so that at converges to a convex set C ⊂ Rk (in the Eu-
clidean norm). Blackwell’s Approachability Theorem gives a
necessary and sufficient condition for C ⊂ Rk to be approach-
able. In the setting of this theorem it will turn out that pt only
depends on C, at−1 and A(pt−1, qt−1).

Note that A(p, q) can be written as

A(p, q) =
n∑

i=1

m∑

j=1

piAijqj

but where Aij is a vector.
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Theorem 15 (Blackwall’s Approchability). For any closed con-
vex set C the following are equivalent.

1. C is approachable;

2. for each q there exists p so that A(p, q) ∈ C;

3. every half space containing C is approachable.

Proof. (2) =⇒ (3) Consider a half-space H = {a ∈ Rk;n ·
a ≤ v} which contains C.

∀q∃p with A(p, q) ∈ C =⇒ ∀q∃p with n · A(p, q) ≤ v =⇒

∃q∀q with n · A(p, q) ≤ v =⇒ C is approachable

Here the exchange of ∀q∃p to ∃q∀p follows from the minmax
theorem and in the conclusion one chooses the pt = p where p
is from the last line.

(3) =⇒ (2) Since each half-space H ⊃ C is approachable,
there exists for each such half-space H and for each q some p
with A(p, q) ∈ H . Since this holds for each such half-space
we also have ∀q ∃p with A(p, q) ∈ C.

(1) =⇒ (3) trivially follows from C ⊂ H .
(3) =⇒ (1) is the most interesting part of the proof. Let

P (at) be the closest point in C to at, let nt = P (at) − at and
let vt = P (at) · nt. Then let Ht be the half-space containing C
through P (at) orthogonal to nt. That is, Ht = {a;nta ≤ vt}.
Since Ht is approachable, ∀q ∃p so that ntA(p, q) ≤ vt. By the
minmax theorem this implies ∃p ∀q so that ntA(p, q) ≤ vt. Let
pt be this choice. With some further work one can show that
||at − P (at)|| ≤ A/

√
t and so at → C.

7.4 Universal consistency
Let us given an application of this. Take a real valued payoff
A(p, q) and consider vector valued Â(p, q) with components
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A(p, q) − A(ei, q), i = 1, . . . , n. So this is the gain or loss if
player A would choose strategy p instead of strategy i.

Now consider the convex region C = {a; ai ≤ 0 ∀i}. For
each q there exists p so that each of the components of Â(p, q) ≤
0: choose p = ei∗ where i∗ = arg minA(i, q). It follows that
the 2nd condition of Blackwell’s approachability theorem is
satisfied. In particular there exists a strategy pt so that for each
q1, q2, . . . , qt one has

lim sup
t→∞

(
1

t

t∑

s=1

A(ps, qs)−min
1

t

t∑

s=1

A(i, qs)

)
≤ 0.
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