BIFURCATION THEORY

1 Homoclinic loops

Theory of global bifurcations studies bifurcations in a neighbourhood of
closed connected sets which consist of several orbits. The basic example
is given by a homoclinic loop - this is an equilibrium state and an orbit
which tends to it both as ¢ — 400 and t — —co. Not every equilibrium may
have a homoclinic loop: there must exist at lcast one orbit which leaves the
equilibrium at ¢ = —oo and at least one orbit which enters the equilibrium
at t = 400 (then the existence of a homoclinic loop means that such two
orbits coincide). The first example of such type of equilibrium is given by a
saddle-node: an equilibrium with one zero eigenvalue, the rest of eigenval-
nes to the left of the imaginary axis, and the first Lyaponov value non-zero.
Locally, system near such equilibrium can be written as

% = (A+ f(z,2,€))x |
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Ej— =+ 22 | h(z, 2,€)

where £(0,0,0) = 0 and h = O(|z]* + ||=||*). At ¢ = 0 the system has an
equilibrium O at zero; this equilibrium disappears at € > 0. The only orbit
which leaves O at + = —oo is the positive part of the line = 0. 1f, as time
grows, this orbit returns to a small neighborhood of O from the side of nega-
tive z, it will also tend to O as t — oo (and it will be tangent to the z-axis
at ). Suppose this is the case; denote the corresponding homoclinic loop as
T. Lel U be a sufficiently small neighbourhood of I'. At & = 0 all the orbits
in U tend to O ast > +oo. At small negative ¢ the equilibrium () splits into
two equilibria: a stable Oy and a saddle O_; all the orbits in U, except for
the orbits in the stable manifold of O_, tend to O,. The behaviour at small
positive & is described by the following theorem.

Theorem (Shilnikov) At small & > 0 all the orbits in U tend to a stable
periodic orbit L.. This orbit is homotopic to I and tends to ' as € — 0.
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Proof. Take some small d > 0 and consider two cross-sections to I':
[ : {z = —d} and TI"* : {z = d}. The homoclinic loop intersects 11°**
at the point M°% = (z = 0,z = d). Since this orbit returns to O from the
side of negative z, it must also intersect 11" at some point, M** (provided d
is chosen sufficiently small). Notc also that % # 0 at both points M*™ and
M, Therefore, every orbit which starts on H‘”‘t sufficiently close to M
will, after a finite time, reach 11" near M. Thus, a map T} : 1™ — 11" is
defined by the orbits of the system. Since the ﬂ1ght time from II°% to IT™ is
finite, the map T} is defined for all small € as well. Because on every finitc
interval of time the orbits of a smooth system of diferential equations depend
smoothly on their initial conditions, the map 7T} is smooth. In particular, the
derivative of T} is bounded - this is the only fact we nced about the map 73.

At € = 0 the orbits which start on II'™ tend to O. At positive £ the point
O disappears, so the orbits which start on TI** at £ > 0 must reach . (In
order to show this indeed, we have to prove that 3% ‘i" > 0 all the tuue the orhit
stays in |z| < d. This amounts to showmg || < e—i—z ie e+ 2 >> =] 1t
is enough to check that ||z]|? < & 1 22, which is easy. Indecd if 22 =+ 2
then £ = (¢ + 2”)(1 | o(1)) hence ﬁi—z—l - 22% — o(e + 2%). On the mher
hand, as we showed in the Lemma in the previous Lecture, the coordinates
in the J,—bpa,ce can bo (‘hOben in such a way that d;t < —az? Thus, if
a? = ¢ | 22, then 2% < £(e+2%), Which means that the orbits starting on
the bouudary of the region 22 < £+ 2% must enter the interior of this region,

that is the orbits from inside this region cannot come to its boundary and
have, therefore, remain inside. This proves the claim.) Thus, at € > 0 we
have a map 1j : II"" — II” by the orbils passing near zero.
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Note that the flight time from I to 11™ tends to infinity as ¢ > 10
(would it remain finite, we would take a limit and obtain orbits which come
from II** to [17% at ¢ = 0, but such do not exist). This implies that the map
T, is a strong contraction. Indeed, at € = 0 at the point O the linear part of
the system is

dx dz
:’jt = A.’L‘, ?ﬁ = 0. (**)

The corresponding eigenvalues are zero and the eigenvalues of A. Thus the
sum of any two different cigenvalues has strictly negative real part. This im-
plies that system (**) contracts two-dimensional areas exponentially. This is
a part of the following general statement, which we will leave without a proof:

Lemma Let 71, ...,%ns be eigenvalues of the matrix B, ordered so that
Re v > Revy > ... > Re ym. Let 3 be a number such that

ﬁ>R671+R€’YQ+...+RC’}’k,.

Denote as R,u the time-# shift of the vector u by the system

du

— = Bu, * % ok

7 (%)
and as Vol(uy,v,...,v,) we denote the volume spanned by the vectors
V1,Vag -,V Then there exists a constant ¢’ such that for every k vectors

U1y Usgs--- Uk
VOl(RtE 1 Rty 2y Rty_k) S CeﬁtVOl(p_th L 11{11&7) (* * **)
for every ¢ > 0.

Note that (****) holds true for every linear system close to (¥¥¥), i.e. we
may replace matrix B by any (even time-dependent) matrix B(t) uniformly
close to B and we will still have (****), with the same § and with ' in-
dependent of B and of the vectors v,va,...,Ug- Indeed, (****) holds for

every 3 > Re y1 + Re y2+. ..+ Re y. Thus, we may take @' slightly smaller
than 8 and (¥¥**) will still be true with some other constant C:

Vol(Ru 1, R, - ., Rewy) < e Vol(uy, v, -, 2)-
This inequality implies that there exists 7 > 0 such that
VOI(RTQ 1 R’FQZ’ LRRE R’rgk) ..<— KeﬁTVOl(ﬂ 12Uy 11_).14:)

3



with K < 1. If we fix such 7, then this inequality will obviously hold true
for every lincar system close to (***), i.e. by replacing matrix B with any
matrix B(t) uniformly close to B we will still, with the same 7, have

Vol(Rrv 1, Rrg, - -+, Rug) < e Vol(v 1,4, -, L)

for every k vectors v, vy, . . . , V5. By iterating this inequality n times, we find
Vol(Rw 1, R, ..., Rwy) < e¥Vol(uy,vs, ..., 0k)

for t = nr. Thus, inequality (****) indeed holds true with C' = 1 for any
system close to (***) provided ¢ is divisible by 7. As the interval between any
two such consecutive moments of time is finite (it equals to 7) the volume
spanned by the vectors R, v s, .., Ry can only acquire a bounded
factor during this time interval, so we find that (****) indeed holds true for
every linear system close to (***) and for all ¢ - with some common factor
C>1

Thus there exist & > 0 and C' > 0 such that for any pair of vectors » and
v in the (z, z)-space the arca spanned by R;u and Ryu decays exponentially:

Area(Reu, Rw) < Ce ** Area(y, v).

Here R, is the time-t shift by the system (**) or by any linear system close
to (**), i.e., for all small €, we have uniform exponential contraction of areas
by the system linearised along any orbit which passes near (z, z) = 0 (for all
times the orbit stays there).

We are now ready to prove that the map To is strongly contracting.
Namely, we will show that

Hgdg;To(w)H < Qe

where z is the coordinates on the cross-section o . {z = —d}, Q is a
constant, t(x) is the flight time from the point = € II‘" to the point To(z) €
T : {z = d}, and & > 0 is the same exponent as that entering the formula
for the exponential contraction of areas by the linearised system. In order to
prove this formula, we note that the derivative of Tp is a linear map which
acts on any vector u in I as follows: T?(x)u is the projection of the vector
Riyzyu (time-t(z) shift of u by the system linearised along the orbit of z) to
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the cross-section TI”* along the vector v, which is tangent to the orbit at the
point Ty(z) (i-e. along the vector of the right-hand side of the system at the
point (Ty(z),z = d)). Note that the vector v, is bounded away from zero
for all small € and the angle between v, and TI”* stays bounded away from
zero as well (because the z-component of v, is bounded away from zero - it
equals to € + d® + ...). Therefore, the length of the vector Tg(x)u coincides
with the area spanned by this vector and v, - up to a factor bounded away
from zero and infinity. Absolutely analogously, the length of the vector u
coincides, up to a factor bounded away from zero and infinity, with the area
spanned by this vector and the v, which is tangent to the orbit at the point
¢ € I : z = —d. Thus, to prove that T} is contracting, it is enough to show
that
Area(T}(z)u,v,) < Ke "™ Area(u,v )

for some constant K > 0 independent of z and u.
Recall that the vector Tj(x)u is obtained from the vector Ry)u by pro-
jecting along the vector v, therefore

Area(Ty(z)u,v,) = Area(Ri), vs)-
Thus, we are left to show that
Area(Ryzyu,v,) < Ke ™ Area(u, v ),

but this inequality follows from the earlier established fact that the time
shift R, by the linearised system exponentially contracts areas - just note
that v, = Ry, because both v, and v, are tangent to the same orbit.




Thus, we have shown that T} is a contracting map, with the contraction
constant O(e~**). As the derivative of T} is uniformly bounded for all small
£, we have that

d
|53 0 To(@)]] = O(e)

as well. Since the flight time ¢ tends to infinity as ¢ — +0, we find that the
map T} o Tp : IT"™ — T is a contraction for all sufficiently small € > 0. By
Banach contracting map principle, this map has a unique fixed point which
attracts iterations of all other points. Since the map 77 o7y is defined by the
orbits of the system under consideration, the fixed point corresponds to the
sought stable periodic orbit. O

(See more about saddle-node homoclinics in Shilnikov,Shilnikov, Turaev,Chua, Ch. 12).

Another example is given by a homoclinic loop to a saddle equilibrium
state. Assume that a system of differential equations has a hyperbolic equi-
librium state with one-dimensional unstable manifold and an n-dimensional
stable manifold. We may write the system locally near the equilibrium in
the following form

B (A+ f)s,
( * * * %)
% = (v +9(z,9))y,

where y € R, z € R, 4 > 0, the eigenvalues Ay, ..., A, of the matrix A
lie strictly to the left of the imaginary axis, the functions f and g vanish
at zero. The y-axis is the local unstable manifold W*; it consists of three
orbits: one is the equilibrium O itself, and the other two are y > Oand y <0,
these orbits tend to O as t — —oo and they leave a neighbourhood of Oast
grows. We assume that one of this orbits - I (let it be the orbit with y > 0)
_ forms a homoclinic loop, i.e. it returns to a small neighbourhood of O and
enters the local stable manifold W# : {y = 0}, so it tends to O ast — +o0.
The stable manifold is an n-dimensional submanifold of R™+! so it divides a
small neighbourhood of O into two parts: Uy : {y > 0} and U_ : {y <O}. If
we perturb our system, the orbit I' may miss W* and arrive either in Uy or
in U_. Let us consider a one-parameter family of systems which continuously
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depend on a parameter € in such a way that at ¢ = 0 we have our original
system with the homoclinic loop I' while at £ # 0 the loop splits: at € > 0
the orbit T" enters U,. and at £ < 0 the orbit I" enters U_.

U

ws a
e

.

<<

Denote as ¢ the so-called saddle value:
o =~+max{Re \j,...,Re An}.

Assume that o < 0. As all eigenvalues A have negative real parts, this con-
dition may be rephrased as the real part of the sum of any two different
eigenvalues of the linear part of the system at O is strictly negative, i.e. the
system linearised at O contracts two-dimensional areas exponentially (as we
explained above). If we consider a sufficiently small neighbourhood V of T,
any orbit in V' will spend most of the time in a small neighbourhood of O:
each round along T outside the small neighbourhood of O is accompanied by
a long time spent in the neighbourhood of O before the orbit can leave the
neighbourhood (indeed, when an orbit from V' enters the neighbourhood of
O it is close to W*; as the orbits from W?* stay in the neighbourhood of (0]
for all positive times, the orbits of points which are close to W* must spend
a long time in the neighbourhood). It follows that the strong contraction of
areas during the long time the orbit stays in a neighbourhood of O overcomes
any possible expansion of areas during a bounded time of the excursion out
of the neighbourhood which the orbit makes following the homoclinic loop T'.
Thus, the system in V' exponentially contracts two-dimensional areas. This
implies that the map T defined on a small cross-section II to I' by the orbits
of the system is contracting (see a proof of an analogous statement in the
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previous theorem). This property holds true for all small €. Therefore, the
map 7' can have no more than one fixed point and this point must be stable.
The fixed point of T' corresponds to a periodic orbit of the system, so there
can be no more than one periodic orbit in V' and this orbit is stable. Note
that the contracting map T is defined only on the half of the cross-section
I, namely T : II, — IT where II, = IIN {y > 0} (the orbits starting at
y < 0 leave V and do not return to IT). Moreover, it is not always true that
T(I,) C 11 (for example, when & < 0 the loop splits outwards, which means
the point I'N1I lies in the region y < 0, so the orbits starting on I, close to
W will, after one round in V near I', arrive on II close to I'N1I, i.e. outside
of I1,). Therefore, eventhough the map T is contracting, we cannot imme-
diately guarantee the existence of the fixed point. In fact, the fixed point
always exist at small € > 0 and disappears at € < 0, which gives us the follow-
ing theorem (see a proof and more discussion in Shilnikov,Shilnikov, Turaev,Chua,
Ch.13):

Theorem (Shilnikov) At & > 0 a stable periodic orbit is born from the
homoclinic loop of a saddle equilibrium with a negative saddle value. This
orbit attracts all the orbits from V (except for the equilibrium O itself and
the orbits in its stable manifold) which do not leave V. At e < 0 all the
orbits except for those in W*(O) leave V' as time increases.

Thus, we have one more example of the birth of a stable periodic orbit
from a homoclinic loop: it is born as the homoclinic loop splits inwards (as
we saw, the condition o < 0 which ensures the area-contraction property is

of the most importance here).
<<




The case o > 0 is pretty much different. We start with the systems on a
planc. Let a system

dx

i -z + oz, y),
dy

S = o(z,y)

(with X > 0, > 0) have a homoclinic loop to the saddle at zero. We assume
that the saddle value o = v — X is non-zero. Behaviour at o < 0 is described
by the previous theorem. Since the case o > 0 here is reduced to the case
o < 0 by the time reversion ¢ — —t, we have the following result:

Theorem (Andronov-Leontovich) At o < 0 a single stable periodic orbit
is born as the homoclinic loop splits inwards. At ¢ > 0 a single unstable
periodic orbit is born as the loop splits outwards.

é/o

O ¢ 79 O ¢ <o

In higher dimensions we have, generically, two different cases of the be-
haviour near the loop in the case ¢ > 0. In the first case the nearest to the
imaginary axis eigenvalue A; of the matrix A in (¥FFEE) is real:

0>\ >R8Aj (322)
In the second case A; is complex:
O>R€)\1:R6>\Q>R6)\j (_]_>_3)

Theorem (Shilnikov) In general, at o > 0, if the nearest to the imaginary
axis eigenvalue ), is real, then a single saddle periodic orbit is born as the
homoclinic loop splits, and if the nearest to the imaginary axis is a pair of
complex-conjugate eigenvalues Ay 2 = p & ww, then dynamics near the homo-
clinic loop is chaotic and infinitely many saddle periodic orbits coexist with

the loop.
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We will not give a proof here, just make some illustrations for a three-
dimensional case. In a small neighbourhood of the equilibrium state O we
take two cross-sections to a homoclinic loop T: one cross-section, I, to
the piece of T' that comes out of O and the second cross-section, ™, to the
piece of T that enters O. The stable manifold divides II*™ into two halves; the
orbits which start on one of the halves, 1% reach II°* after an unboundedly
long time spent in the neighbourhood of O. The orbits which start on I1ow
follow T, hence they all arrive to II"* after a finite time. Thus, the orbits
of the system define two maps: Tp : II" — % and T : et — 11,
The map T} corresponds to a finite flight time, so it is a smooth map; since
the cross-section IT°* is small, we may approximate 77 by a linear map.
To get an impression of map Ty we assume that the system is linear in the
neghbourhood of O. Thus, in the case of real eigenvalues, we write the system
near O in the form

d dx dzx
‘C'l% =Y, —1 = ATy, =1 AT

(y >0 > A, > X). The solution is y(t) = y(0)e”, z1(t) = =1 (0)e,
a(t) = z2(0)e*?*. We take the cross-section II"* be z; = d and et - {y =0}
for some small § > 0. Then the points in TI** are parametrised by z» and v,
while the points in II"* are parametrised by z, and . The flight time from
ITi® to IT°% is found from the condition y(0)e” = 4, ie. t = — %ln y—(‘?—). Now,
we find that the map Tp : I — I is given by

xlzé(%) , 1:2:3;2(%)

where v = |A1]/7 < s = |X2|/7- The positivity of the saddle value means

v<l1.
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By assuming that the map T : II°#¢ — II" is linear, we obtain the
following formula for the composition map T'=T; o Ty : e — I1in:

7 =€+ ay” + bxay®,

(T)
Ty = zt + cy" + d.’L‘Q’ys.

One can show that similar formulas (with insignificant corrections) are true
indeed for the map T, without the assumptions that the system is locally
linear (see a proof in Shilnikov,Shilnikov,Turaev,Chua, Ch.13). Therefore, our
map is a good model for the true map T'. Note that this map is defined only
at y > 0. As y — +0, the point in II¥* tends to the stable manifold of O,
therefore the corresponding orbit becomes closer and closer to I', hence its
intersection point with II™* (this is the image of the original point by 7) must
tend to the point M = I'NII™. As (Zs,7) = (z,€) at y = 0, we see that
M = (z*,e). The homoclinic loop corresponds to M € W?, i.e. to e = 0.
Positive € correspond to the loop split inwards, negative e correspond to the
loop split outwards.

An important assumption is that the coefficient a in (T) has to be non-
zero (this is the “generality” assumption of Shilnikov theorem). As it is easy
to see from (T), the image of any line {z, = const,y > 0} by T is a line
tangent to the same line To — 2t = £(y — g), hence the image of the whole
of II*" is a thin wedge transverse to W#. The map T contracts in the z-
direction, which implies, as one can show, that within the wedge there is a
curve ¢ invariant with respet to T, such that the forward iterations of any
point by the map T tend to £ (unless they leave II'*). The restricion of T" to
¢ has, obviously, the form

g=e+ay’ +oy").

As v < 1 and a # 0, the derivative of this map at y = 0 is infinite, hence
it is expanding at small y. It is easy to see that T, has a single unstable
fixed point at ag < 0. The unstable fixed point of T, corresponds to the
saddle fixed point of 7' (since the curve £ is attracting). Since the map 7' is
defined by the orbits of the system, its fixed point corresponds to a periodic
orbit. Thus we have found that a saddle periodic orbit is indeed born as the
homoclinic loop splits (outwards, if a > 0, and inwards if a < 0).
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Similar computations show that in the case of complex A; the image of I
by T is no longer a wedge, but rather a “snake”. The intersection T NI
consists of an infinite sequence of “half-coiles” m; the preimage T my, is
a horisontal strip which, as computations show, lies strictly below the top
of 7, if the saddle value o is positive. This hints that the map T' acts on
each of the strips T !7;, as the Smale horseshoe map - which implies chaos
and, in particular, saddlc fixed points exist on each of the infinite sequence
of strips. The analysis of bifurcations of this structure as the loop splits is
too complicated to be ever accomplished in full detail. We note only that
any finite number of the Smale horseshoes (hence, chaos) survives any small
perturbation of the system.

This describes the main ideas behind Shilnikov theorem. Note that if
o < 0, the snake in the case of complex ); also exists, however the top of
each of the half-coil 7 lies below the corresponding preimage strip, so no
Smale horseshoes exits in this case. We also note that unlike the case o < 0,
the above description of behaviour or/and bifurcations near the homoclinic
loop is valid only under certain “generality” conditions. Thus, if condition

— 0 is violated in the case of real );, then more than one periodic orbit
can be born (e.g. a stable one is possible) and chaotic dynamics is also
possible. Another obvious case where infinitely many periodic orbits can be
born at the bifurcations of a system with a homoclinic loop to a saddle with
real eigenvalues corresponds to a multiple eigenvalue: A\ = Ay > ... > A
In this case, by a small perturbation of the system the eigenvalues A2 (the
nearest to the imaginary axis) can be made complex and the perturbation can
be made without destroying the loop. Then, by Shilnikov theorem, infinitely
many saddle periodic orbits will immediately appear near the homoclinic
loop.

(Further reading: Shilnikov,Shilnikov,Turaev,Chua, Ch.13)
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