BIFURCATION THEORY

3 Bifurcations on a plane. Andronov-Hopf bi-
furcation

The subject of bifurcation theory is the study of structurally unstable sys-
tems. According to Andronov-Pontryagin theorem, bifurcation theory of sys-
tems on a plane has to deal with the following question: in a system which
depends on parameters, as parameter change - what may happen to non-
hyperbolic equilibria, periodic orbits, or to orbits that connect equilibria?
The analysis starts with the so-called codimension-1 bifurcations. The idea
is that if at some parameter value the system has, say, a non-hyperbolic equi-
librium, it is unprobable that it has one more non-hyperbolic equilibrium, or
a periodic orbit with the multiplier 1 exactly at the same moment. In other
words, unless we deal with systems with symmetries or with some special
structures (Hamiltonian, reversible), it seems to be reasonable to study first
bifurcations of systems which have only one structurally-unstable orbit, and
this orbit has to be of the least degenerate type. After the codimension-1
cases are studied, one may proceed to more complicated cases. The list of
codimension-1 bifurcations on the plane is given below.

1. Andronov-Hopf bifurcation (an equilibrium with a pair of pure imaginary
eigenvalues of the linearisation matrix: A = +iw, w # 0). 2 '()

2. Semi-stable periodic orbit (a periodic orbit with the multiplier 1).

3. Saddle-node equilibrium (one eigenvalue of the linearisation matrix is zero,

the other one is non-zero: Ay = 0, Ay # 0). U e

4. A homoclinic loop to a saddle-node (an orbit which tends to a saddle-node
equiliobrium both as t — 400 and t - —00).

5. A homoclinic loop to a saddle equilibrium.
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We start with the Andronov-Hopf bifurcation. Let O be an equilibrium
at (z,y) = 0 of system

doe Yoy = Qg
£(2Yoa( =)0

Assume that the eigenvalues of A are pure imaginary: A = +iw, w # 0.
Then by a linear coordinate transformation one can bring matrix A to the

3 Qs i ; ¥ ;
form ( & , l.e. the system is rewritten as

0
d = 1 ; :
E:;—: =wy + O0(z* + %), % = —wy + O(z* + y?).

Note that if we perturb the system slightly, the equilibrium cannot disap-
pear, nor other equilibria can be born near it. Indeed, the following theorem
holds true.

Theorem Consider a family of systems

B F(v,e)

dt

such that at € = 0 there exists an equilibrium v = v o, and all the eigenviues
of the linearisation matriz at this equilibrium are nonzero. Then the system
has a unique equilibrium v . in a small neighbourhood of v for all small e,
and v . s a smooth function of €.

Proof. Equilibria are found as zeros of F(v,¢). As the matrix =(v,0)
has no zero eigenvalues, it is non-degenerate, therefore equation F(v,2) =0
has a uniquely defined, smoothly depending on ¢ solution v . for all small ¢,

according to the Implicit Function Theorem. O

Thus, the only thing which can happen to the equilibrium with pure
imaginary eigenvalues as parameters change is the change of its stability type:
when the eigenvalues move to the left of the imaginary axis the equilibrium
will be stable, and when they move to the right the equilibrium will become
unstable. However, as we will see below, this process is also accompanied
by the birth of a small periodic orbit surrounding the equilibrium. This
phenomenon is called Andronov-Hopf bifurcation. e
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In order to analyse what is going on here, it is convenient to introduce a
complex variable z = z + 4y (which means ¢ = (2 + 2)/2, y = (z — 2)/(2i)),
then the system will take the form

e O 2
5 =14wz + O0{|2]%).

More specifically, we will write

dz

= = fwz+ az® + bzz + 07 O |z|) (%)

Note that e
2z < 7
S i a2 + b2z + &% + 0(|z)%).

An important observation is that there exists a coordinate transformation
u =z + az? + B2z + v2? such that in the new coordinates there will be no
quadratic terms in the equation. Namely, choose

a = iajw, B = —ib/w, v = —ic/(3w).

Then

d d dz dz
O e —z—zwz+2az—+ﬁz—+ﬁ2m+2’yz

-3 s S
dt dt dt dt +0(|2%) ZW(CVZ +[5ZZ+'yz )

= (a + wa)2® + (b — wp)zz + (c — Jiwy) 22 + O(|z[°),

and we see that with our choice of the coefficients «, 3, v the equation for
the new variable u takes the form

U .
— =1 O(|ul®).
- = dwu + (Jul?)
Let us write this as

g, : ) ; ;

St w4 azu® + anu@ + apui® + agst® + O(Jul?).

When the equation is brought to such form (i.e. with all quadratic terms
killed), the most important coefficient is as;. Its real part L; = Re ag; is
called the first Lyapunov value.



Theorem If L, # 0,then exactly one periodic orbit may be born at the
bifurcations of an equilibrium with a pair of pure imaginary eigenvalues. If
L, < 0, then the equilibrium ts stable at the bifurcation moment, and if
Ly > 0, then the equilibrium is unstable at the bifurcation moment. When
parameters vary in such a way that the equilibrium changes its stabiliy type,

a periodic orbit s born from the equilibrium; the new-born orbit is stable if
Ly < 0 and unstable if L; > 0.




Before starting proving the theorem, recall some facts from the normal
form theory. Consider a system of differential equations near an equilibrium
state at zero. We can always choose a basis such that the matrix of the linear
part of the system will be in a diagonal or a Jordan form; i.e. the system is

written as ]
dx ;
?; = AJ’L'J "|" JjquLl + O(“_CC_”)J

where z;, j = 1,...,n, are the components of vector z; A; are the eigenvalues
of the matrix of the linear part of the system at the equilibrium, and §; may
take values 0 or 1 (all d; are zero when it is possible to bring the matrix to the
diagonal form, e.g. when all X’s are different). Coordinate transformations
of the form
;=2 o talt gl (%)

will not, obviously, change the linear part of the system, but they can modify
nonlinear terms. Thus, it is known that by performing a sequence of trans-
formations of type (**) one can kill all non-resonant terms up to any given
order M (the trasformations are made in the order of increasing value of
|m| = my + ... + my, i.e. we first make transformations with |m| = 2, then
m| =3, etc., up to |m| = M). A term ax('z7?.--z™ in the equation for
%ch is called non-resonant, if

(1 30O N B W

For example, in equation (*) we have A\; = iw and Ay = —iw, so all quadratic
terms are non-resonant:

2iw # iw, w + (—iw) # iw, 2(—iw) # w.
In general, the term 2™ 2™ in equation (¥) is non-resonant if and only if
?
wmy — wmy # w;

therefore all terms with m; # my + 1 can be killed up to any given order.
The recipee is as follows: when all the non-resonant terms up to the order
M are killed, a non-resonant term @G, m,2"* 2™ with m; + my = M + 1 is
killed by the transformation

mizma.

u=z+ )amlmz 2.5
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such transformation does not affect terms of order M or less, nor it changes
the terms of order M + 1 other than a,,,m,2™ 2™, so we can indeed kill the
non-resonant terms one by one in the order of the increase of m; + ma.

Note that this is a part of a general formula: anon-resonant term az}" 5" - - - 7'

in the equation for dx j/dt is killed by the transformation (**) with

a
ML+ oo+ Mgy = A

a =

see Kuznetsov “Elements of applied bifurcation theory”, Ch.3; Shilnikov, Shilnikov,
Turaev, Chua “Methods of qualitative theory in nonlinear dynamics”, Ch.2.

Coordinate transformations which kill non-resonant terms are called nor-
malising transformations. As we just have seen, given any k, by a series
of the normalising transformations we can bring equation (*) to the normal
form

% = twz+(L1+i) 2° 2+ (Lo +iQ) 22 2%+ . A (L +i ) 2T 25+ o(| 2| ). (3%
The numbers L; (the real parts of the coefficients of z**1z* in the normal
form) are called Lyapunov values. Importantly, when we allow a small per-
turbation of the system, i.e. when we imbed the system into a family which
depends smoothly on a parameter ¢, the eigenvalues of the linearization ma-
trix at the equilibrium will depend on e continuously, so any term which was
non-resonant will remain non-resonant for all sufficiently small parameter
values. Therefore, a finite number of the non-resonant terms can be killed
simultaneously for all systems close to the original one. It follows that given
any k fixed, for all small € we may bring the system that undergoes (at € = 0)
the Andronov-Hopf bifurcation to the form '

dz : : e . 3 : Tk Bhat

e (p+iw)z+ (L1 41202274 (Lo i) 22 22 4. - 4 (La+i8%) 2 25 o(| 2|2 FL). (xxx,)
dt

The difference with (x * %) is that all the coefficients depend now on £ and

the coefficient of z is no longer pure imaginary: its real part g goes from

negative to positive values as € changes (at € = 0 we have u(e) = 0).



Let us write the system in the polar coordinates z = re':

d ) St dr . d
S i —Te”'””—kir—(p

= e = = e = (utiw)re¥+(Li+ih )r’ e+ ( Ly +if)r’ e +. . A4 (Lp+iQ ) r2 e 4o(r2t

d—[ = gt L D o T L Gty

o F Qir? Qe L o(rR).

As we see, dy/dt is bounded away from zero in a small neighourhood of the
origin, therefore, every orbit (except for the equilibrium at r = 0) rotates
around the origin, i.e. it is either a closed orbit or a spiral. When u = 0,
dr/dt > 0 is positive for all small r if L; > 0 and it is negative for all small
r if L; < 0. Therefore, if L; < 0 the value of r decreases to zero as time
grows, which means the stability of the equilibrium at g = 0; analogously,
the positivity of dr/dt at ¢ = 0 and L; > 0 means that the equilibrium
is unstable at the moment of bifurcation - all this is in agreement with the
claim of the theorem.

ZiZO:

In order to study the behaviour at pu # 0, we note that as ¢ is a strictly
monotone function of time, every orbit that starts at the ray ¢ = 0 (r > 0)
returns to it (at ¢ = 2m) after a finite time ¢ ~ 27 /w. Thus, the Poincare
map T : {¢ =0} %tgo = 27r}is defined by the orbits of the system; the fixed
points of T with r > 0 correspond to periodic orbits, stablr fixed points
correspond to stable periodic orbits, unstable correspond to unstable ones.
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In order to compute the fixed points of T, we rewrite (****) as an integral
equation
tpr(s) + Lir(8)® + Lar(s)® + ... 4+ Lyr(s)**+! + o(r?*t1)
0 WA Ehr(e)2 4 Qor(s)? 4. o 8 er(s) 2 <+ o(r2k)

r(¢) =7r(0) + ds
(we may consider r(t) as a function of ¢(t) since ¢'(t) # 0). When r and pu
are small (this is exactly the case we consider) the derivative of the integral
expression with respect to r is small, hence the integral operator in the right-
hand side is strongly contracting on the space of continuous functions r(s).
Therefore the solution of the integral equation can be found by successive
approximations: r(¢) = limr,(¢) where

S) AR Ll?"n(s)3 4 Lz'r’n(s)fa et et Lk,r”(s)2k+l i O(Tik*'l)
w + Qra(8)? + Qorn(8)t + . .. + Qurn(8)2% + o(r2k) -

# L
prn
rasa(p) = r(0)+ [ £ %,
‘and each new approximation will approximate the solution with the increased
order of accuracy in powers of r(0) and p. By taking the constant function
ro(p) = ro as the first approximation, we will get

U (0 Lar (033 4 Lor{0)® ok Lar (0)2%2

‘ 2k+1
w+ Qr(0)2 + Qor(0) + ... + Qur(0)2* +o(r(0)™").

rife) = 1(0) +

One may check that the second approximation and, hence, all the rest give
negligible contribution to the solution; namely, the solution has the form

@) = 7'(0)-%.—5(/”(0)(1—1—. ) Lar (03 (14 - )+ Ler (03 (1+. . )+ . .+ Ler (0021 (14.. ) +o(r(0)**1)

where the dots stand for small terms of order O(|u| + r(0)2). The Poincare
map T : r(0) — r(2m) is thus

7(0) — T(())+%r—(ur(0)(1+. YL (0)3 (1o Y+ Lar (0 (14 )+ S8 ST it X gty WO el

The fixed points of T' correspond to positive zeros of T'(ry) — ry, i.e. in
order to find them we have to solve the equation

u(l+.. )+Lip(1+.. .)+L2p2(1+. )+ .—%—Lkpk(l—i—. : .))—i—o(pk) =0 (xxxxx)

where p = r(0)* has to be positive and small. When L, # 0, the derivative
of the left-hand side with respect to p is bounded away from zero, i.e. the
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left-hand side of the equation is a monotone function and cannot, hence, have
more than one zero. This proves that no more than one periodic orbit can
be born at the Andronov-Hopf bifurcation in the case Ly # 0.

In fact, since equation (*****) has a zero at p = 0 at p = 0 and the
derivative of the left-hand side with respect to p is non-zero, it follows by
the Implicit Function Theorem that the equation has a root near zero at all
small p. We, however, are interested only in positive p - this corresponds to
sign p = —sign L1, and we have

r¥=p ~ —pu/Dy.

F\/h—#l.ig) /«(—f[,{j')
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For positive L; we therefore obtain the existence of the periodic orbit at
i < 0, i.e. when the equilibrium state is stable, while for L; < 0 the periodic
orbit is born at p > 0 which corresponds to the lost of stability by the equi-
librium. = Stability /instability or the newborn periodic orbits is checked by
the evaluation of the derivative of the Poincare map T at the corresponding
fixed point: the derivative less than 1 corresponds to a stable orbit (this is
the case L; < 0) and the derivative greater than 1 corresponds to an unstable
orbit (the case L; > 0). O :
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The above theorem describes the most general case of the Andronov-
Hopf bifurcation. One can however ask what happens if L; = 0 at the
bifurcation moment? Using the same arguments as in the previous case we
may conclude that if all Lyapunov values from L; to L;_; Valliéh'at the
moment, of bifurcation, then :
the stability of the equilibrium state at the bifurcation moment is dct(rmzned
by the sign of Ly if Ly < 0, then the equilibrium is stable at the moment of
bifurcation, and if L;, > 0, then the equilibrium at the moment of bifurcation
1s unstable
(to see this just note that the sign of dr/dt in (****) coincides with the sign
OkaWhelly,ZLl:...:Lk,1:0). :

If we have an equilibrium state with a pair of pure-imaginary eigenvalues
and the first (kK — 1) Lyapunov exponents vanishing, when we perturb the
system the values of Li, ..., L;_; may become non-zero, however they will
be small. Therefore, if L; # 0 at the moment of bifurcation, then the k-th
derivative of the left-hand side of equation (*****) for the fixed points of the
Poincare map T will stay bounded away from zero. This means that this
equation cannot have more than & roots.

Exercise: show that it is always possible to chose the values of u, L, ...,
Li_1 such that this equation will have exactly j positive roots, where j is
any number from 0 to k. See e.g. Shilnikov, Shilnikov, Turaev, Chua “Methods
of qualitative theory in nonlinear dynamics”, Ch.11

- As we see, if Ly, # 0 than no more than k periodic orbits can be born at
the Andronouv-Hopf bifurcation. These periodic orbits are always nested and
surround zero. Typically, they have alternating stability types, with the most
outer periodic orbit stable if L; < 0 and unstable if L; > 0 - it obviously has
to inherit the stability of the equilibrium at the bifurcation moment. :

Another interesting fact. Suppose we have a family of systems which de-
pend on a parameter ¢ and suppose that at € = 0 the point (z,y) = 0 is an
equilibrium state that undergoes Andronov-Hopf bifurcation. Denote as A(g)
an eigenvalue of the linearisation matrix at the equilibrium. By assumption
1(0) = ReA(0) = 0. Assume that p/(0) # 0, i.e. p changes with a non-zero
velocity as € varies - namely, as € changes sign, p changes sign as well which
means that the equilibrium changes its stability type. Under this assumption
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the set of all periodic orbits that lie in a small neighbourhood of zero forms,
in the space of variables x, y and €, a smooth surface ¢ = p(x,y) where
P00} =0:-Vp(0,0)=0

For a proof just note that equation (¥*****) for the fixed points of T is, under
the assumption y'(g) # 0, uniquely resolved with respect to e.

- In conclusion let us consider the case of Andronov-Hopf bifurcation with
Li = 0 and Ly # 0 in more detail. Equation (*****) for the fixed points of
the Poincare map reads in this case as

p(l+ )+ Lip(1+...) + Lyp*(1+...) =0, yrEe A0}

Since Ly # 0, the second derivative of the left-hand side is non-zero, and it
follows that if uLy < 0, then the equation has exactly one positive root.

'./\/~l4'z(\l’+[2‘?&

S

If uwLs > 0, then the equation has, in general, either 2 or 0 positive roots, and
the boundary between these 2 cases correspond to a double root p* where
the left-hand side of the equation vanishes along with its first derwatwe So,
at these root we also have :

Ly +2Lap* (1 + . ..) +op) = 0

This gives p* = — L1 /(2Ly)+o0(|L1|+|p|) (recall that p and L, are small here).
The positivity of p* is achieved when L;L, < 0. Plugging the expression for
g into the original equation, we find the following equation for the curve £

a1



which separates on the (u, L1)-plane the region with 2 periodic orbits from
the region with 0 periodic orbits: ;

2
= 4L—I;+0(Lf), LiL; < 0.
This curve corresponds to a collision of 2 periodic orbits into 1, a semistable
periodic orbit which will be considered in more detail in the next lecture.
As we see, the plane of parameters (u, L1) is separated into 3 regions (cor-
responding to different numbers of periodic orbits) by two bifucation curves:
 the curve p = 0 and the curve £ described above. When we cross p = 0
the equilibrium undergoes Andronov-Hopf bifurcation: at L; < 0 a stable
periodic orbit is born, at L; > 0 an unstable periodic orbit is born. When
we cross the curve £ we have a bifurcation of a semi-stable periodic orbit: a
stable and an unstable periodic orbits collide and disappear. The following
pictures show what is called bifurcation diagrams: the plane of parameters
is divided into regions of the same qualitative behaviour and the phase por-
traits are given for each of the regions and for each of the bifurcation curves
which separate the regions. Further reading: Guckenheimer and Holmes, Ch.3;
Kuznetsov “Elements of applied bifurcation theory”, Chs.3.8; Shilnikov, Shilnikov,
Turaev, Chua, Chs.2,9,11 s
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Exercises.

1. The system ' = y, ¥ = —x + ey + 2° + xy has an equilibrium at
: . o e S ;
zero. The linearisation matrix is A = i Its eigenvalues are

Alg == £l = 543. At £ = 0 we have Re A = 0, i.e. the equilibrium
undergoes the Andronov-Hopf bifurcation. At £ = 0 the eigenvalues are +¢

1 St
g | To proceed to the basis of

the eigenvectors means to introduce a new (complex) variable z such that

(z )':Z( i ) +E( _1?, ), Lo = 2 b dy =g —E)2 = (:r:—.z'y)/Q._

The equation for z at ¢ =0 is

and the corresponding eigenvectors are

e (@'—iy') /2 = iz—i(2+5)}/2+(22—=52) /2 = iz+(1—i)2 [2—iz5—(1+4)32/2.
Make the normalising transformation
u=2z+1i(1—14)2%/2 — 2z +i(1 +i)Z%/6.
We obtain
u'—iu :"_z"—z‘z+(1—'z:)z2/z+-z'zf+(1+z‘)22/6+_z’(1~¢)z_z¥"—z(z)’—z’2+1(1+7:)2(2)’/3 =
= (1=9)2%—(1+4)2%/3+i(1-5)z(iz—izZ+.. .j‘—z(—i2+iz2+. ) =(izH(1=0)2 /2+. . )z +

Ll ey (T a2t/ 2 L L Y8 =2t sd = b 2L

where the dots stand for irrelevant terms (of order 4, or of order 3 - other
than 2%%). As we see, in the new coordinates the system at € = 0 takes the
form

o =du+vPa(l - 54)/2+...,

i.e. the first Lyapunov value L; = 1/2 > 0. How many peuodlc 01b1ts is
born at € > 07 At ¢ < 07 Are they stable or unstable? :

2. Show that all Lyapunov values are zero for the zero (’qulhbnum of the
system ' =y, ¥ = —x + zy + z°. Hint: the system is reversible, i.e. it
does not change when we change t — —f, * — —ux; this means that every
“orbit which crosses the y-axis is symmetric with respect to it, so every orbit
near zero is closed. Note that if we imbed our system into a family which
depends on a parameter £ such that the equilibrium at zero will change its

- stability as £ varies across zero, the surface filled by the closed orbits in the
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(x,y,e)-space will be just the plane £ = 0, so no closed orbits will exist near
zero at € # 0.

3. Show that all Lyapunov values are zero for the zero equilibrium of the
system ' = y, ¥ = —r + 2°. Hint: the system has a first integral H =
%(y2 + %) — %333; so every orbit is a level line of H(x,y), and these level lines
near zero are closed. i

4. How many periodic orbits is born at € # 0 near (z,y) = 0 in the system
=y, y =—x+ey+y?

5. Show that, given any n, system z’ = —z+0(x2+4?), v = V2y+0(z>+1?)
can be brought to a form 2’ = —2 + O(|z|" + |y|*), ¥' = V2y+ O(|z|* + |y|*)
by a polynomial coordinate transformation. :

6. Show that if all the eigenvalues of a matrix A are strictly negative, any
equation z = Az + O(]|z||*) may have only a finite number of resonant terms.
7. Bring the system ' = y+zxz, ¢ = 22 +y?>+ 22, 2/ = —2z+ zy to anormal
form up to the second order (kill all nonresonant quadratic terms). -
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