BIFURCATION THEORY

2 Systems on a plane. Andronov-Pontryagin
theorem

As opposed to differential equations in R™ with n > 3, where a complicated,
chaotic behaviour is possible, the Poincare-Bendixson theorem says us that
the behaviour of planar systems is always simple - in the limit everything
becomes stationary (equilibrium states) or periodic (closed phase curves), or,
in the third case of this theorem, we have a behaviour somewhat intermediate
between the first two. However, the various possible types of these behaviour
are still too many. Order is introduced by the idea of structural stability due
to Andronov and Pontryagin.

The main point is that differential equations are rarely interesting by
themselves. Usually, we have to analyse them only because we want to un-
derstand the course of certain real-world processes which they model. In
such a case, a system of differential equations, as every model, is only an
approximation of reality. In this way one comes to an idea that whenever a
certain system of differential equations is analysed there exists some “true”
system, which is not exactly equal to the model system under consideration
but is close to it. Therefore, the results we obtain during the theoretical
analysis of the model system will make sense only if we can carry them on to
the true system. The problem here is that we do not know this true system
exactly. However, this problem vanishes if the model system is structurally
stable.

Definition. A system of differential equations is structurally stable if every
sufficiently close system has the same phase portrait.

By closeness we mean closeness along with the first derivatives: two sys-
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It is not easy to define what the phase portrait is: intuitively, phase portrait
is a picture that describes position of the phase curves in the phase space.
Andronov-Pontryagin definition says that two close systems (A) and (B) have
the same phase portrait if there exists a homeomorphism of a plane that takes
the phase curves of (A) to the phase curves of (B), and this homeomorphism
is close to the identity map. This mathematical definition is consistent with
the intuitive idea of a similarity between two phase portraits. Indeed, a
homeomorphic image of a point is a point, so the homeomorphism that takes
the phase curves of (A) to the phase curves of (B) has to take equilibrium
states to equilibrium states, i.e. (A) and (B) have to have the same number
of equilibrium states; moreover, as the homeomorphism is close to identity,
the equilibria of (B) are close to the respective equilibria of (A). The same
holds true for closed phase curves. Furthermore, if an orbit of (A) tends
to some equilibrium state or to a closed phase curve, then its image by the
homeomorphism is an orbit that tends to the corresponding equilibrium state
or a closed phase curve of (B) (the homeomorphism also keeps the direction of
the growth of the time variable along the orbit). Therefore, stable equilibria
and closed orbits of (A) correspond to stable equilibria and closed orbits of
(B), unstable ones correspond to unstable ones, saddles to saddles.

Note however that when we deal with systems in R™ with n > 3 Andronov-
Pontryagin idea of establishing equivalence between systems of differential
equation by means of a homeomorphism that takes phase curves into phase
curves becomes much less useful than in the planar case: it occurs that the
structure of the set of the equivalence classes is too weird. On the contrary,
for systems on a plane a complete characterisation of the equivalence classes
is possible; it was achieved in Andronov, Leontovich, Gordon, Maier, Qualita-
tive Theory of Second-Order Dynamical Systems. Practically most important
part of the classification is given by the following theorem which describes
structurally stable planar systems.



Andronov-Pontryagin theorem A system on a plane is structurally sta-
ble if and only if

1) all its equilibrium states are hyperbolic (stable, unstable or saddles),

2) all periodic orbits have a multiplier different from 1,

3) there are no phase curves which connect saddles.

Proof. First, let us show that these 3 conditions are necessary for struc-
tural stability. Indeed, suppose condition 1 is violated, i.e. a system has
a non-hyperbolic equilibrium. By putting the equilibrium at the origin of
coordinates, we right the system near it in the form
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where u = (z,y) and A is a 2 X 2-matrix with constant coefficients; the
assumed non-hyperbolicity of the equilibrium means that A has one or several
eigenvalues on the imaginary axis. For sufficiently small ¢ the system

%u = Au — cu + o(u)

will be a small perturbation of the original one. The new system will still
have an equilibrium at © = 0, and the linearisation matrix at this equilibrium
will be (A — €1); the corresponding eigenvalues are thus A — e, where X is an
eigenvalue of A. As we see, for positive ¢ the eigenvalues on the imaginary
axis will be moved to the left of it, while for negative ¢ the eigenvalues will
be moved to the right. So, arbitrarily close to the given system there exist
systems with different types of equilibria - no structural stability.
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The same is true for the periodic orbit: if the multiplier equals to 1, then
it can be made less than 1 or greater than 1 by a small perturbation of the
system, hence the stability is changing. That proves structural instability of
systems which have a periodic orbit with a multiplier equal to 1 (condition
2 of the theorem) - we however need to really construct a mechanism of
perturbing the multiplier, or, more generally, of perturbing the Poincare
map.

Let us describe one such construction. Let a system on a plane have an
orbit L of period 7 and let S be a cross-section to it. Let T'(z) = pz + o(x)
be the Poincare map on S (the coordinate z on S is chosen such that z = 0
corresponds to LN S) and let §(z) be the time the orbit starting at S needs
to hit S again, #(0) = 7. For any point M in a small neighbourhood of L, the
phase curve that passes through it has an intersection with S at some point z
after which it arrives to M at the time moment ¢ where t € [0,6(z)). We can
consider the pair (z, t) as coordinates of M, since they determine the position
of M completely: we start at = on S and the point where we arrive after time
tis M. However, these are not good coordinates for the small neighbourhood
of L: we have to identify the point (z, 6(z)) with (T'(z), 0), i.e. our coordinate
system is discontinuous. Good coordinates are, for example, (y(z,t), s(z,t))
defined by

y=za(t) + T(2)(1-a(f), s=t+(-0@)1-at) (¥

where « is a smooth function which equals identically to 1 near zero and to 0
near 7 (in particular, «(6(z)) = 0 for all small z, as 6(z) is close to 7 = 6(0)).




At z = 0 we have y = 0 and s = ¢, and it is easy to check that
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T'(0) = p > 0). Therefore, by the Implicit Function Theorem, z and t are
uniquely defined smooth functions of y and s for all small y: z = £(y, s),
t = n(y,s), so (y,s) are good coordinates in a small neighbourhood of L
indeed. Note that the range of the variable s is independent of z: «(t) van-
ishes identically as t approaches 6(z), so the values of s approaches 7, i.e.
the range of s is [0,7). Recall that in the coordinates (z,t) we have to glue
the points (z,60(x)) and (T'(z),0) - they correspond to the same point at the
cross-section S. In the (y, s) ccordinates they both correspond to the same
y = T(z) and, respectively, s = 7 and s = 0, so in the new coordinates
we simply glue the points (y,7) and (y,0), with the same value of y. By
definition, x is the coordinate of intersection of the phase curve with S, so it
does not change along the orbit (until the new intersection happens), hence
dz/dt = 0. Thus, by differentiating (*), we find

% = (2 — T(2))a'(t) = (€, 5) — T(Ey, )’ (n(y, 5)),

ds

2 = 1= (1= 0(2))d(t) =1~ (7~ 6(E(y, 5))) (n(y, 5)).

This is just the form our original system of differential equations takes in the
new coordinates. Note that near the cross-section S where our coordinate
system is discontinuous (we have there s jumping from 7 to 0), the function «
is identical constant (0 or 1), so o = 0, and we see that dy/dt = 0,ds/dt = 1
near S, hence the right-hand sides have no discontunities. Now take any 7
close to T. Replacing T to T in (*) will define us new functions y = £(z, 1),
s = f(z,t), close to the original £ and 7. System
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will be a small perturbation of the original one and, by construction, the
Poincare map for it will be given by z +— T(z). So, we have achieved our
goal - we can create an arbitrary small perturbation of the Poincare map by
a small perturbation of the right-hand sides of the system.



Let us now proceed to condition 3. Suppose system (A) has an orbit I’
that connects two saddles, O; and Oy. That means I is an unstable separatrix
of O; and, at the same time, it is a stable separatrix of O,. Consider a family
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At € = 0 system (A,) coinsides with (A). At € # 0, the vector

e.=(f+eg,9—¢f)

at the right-hand sides of (A.) makes a non-zero angle with the vector e, =
(f,g) at the right-hand sides of (A):
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By definition, the orbits of (A.) are tangent to the vector field e, so for

every point on the curve I' the orbit of (A.) that passes through it makes a

non-zero angle with I' (as I is the orbit of (A) and, hence, is tangent to e ).

All orbits of (A.) cross I' in the same direction, and it is easy to see that
;@@éﬁé—%paratr@_)g of ( Q_i;moves, as € changes, to one side of I', while
thetable separatrix of J5)moves in the opposite direction. As we see, the
coimmtﬂles O, and O, disappears for arbitrarily small e,
which means that system (A)(is not structurally stable in this case.
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So, the conditions of the theorem are mecessary for structural stability.
Now goes the sufficiency part. Let system (A) satisfy conditions 1,2,3 of the
theorem. Instead of proving the existence of a homeonorphism which maps
the orbits of system (A) into orbits of a close system, we will prove something
less formal and more informative. Namely, we will give a quite transparent
picture of the behaviour of orbits of system (A) and show that this picture
does not change when the system changes slightly.

First, we notice that if conditions of the theorem are fulfilled, all the
periodic orbits are either stable or unstable (since the multiplier is not 1).
Therefore, for each periodic orbit L; there exists a neighbourhood U; such
that all orbits inside U; tend to L; as t — 400 in case L; is stable, or as
t — —oo in case L; is unstable. Similarly, for each of the stable (unstable)
equilibria O; there exists a neighbourhood V; such that every orbit start-
ing at V; tends to O; as ¢ — +o00 (resp., to t = —o00)). For every saddle
equilibrium Oy, we have a small neighbourhood W}, such that the stable sepa-
ratrix divides W}, into 2 open halves, W, and W, such that the orbits that
start at W, leave W}, following one unstable separatrix and the orbits that
start at W leave Wy following the other unstable separatrix. According to
the Poincare-Bendixson theorem all bounded orbits tend either to a periodic
orbit, or to an equilibrium state (they cannot tend to a set containing equi-
libria and connecting orbits because there are no connecting orbits here, by
assumption 3 of the present theorem). Therefore, if we fix any disc of some
large radius R, every orbit after a finite time either leaves the disc or enters
one of the neighbourhoods U;, V; or W}. Therefore, for every point there is
a neighbourhood Z such that after some fixed time all the orbits from this
neighbourhood either leave the large disc together, or enter the same one
of the neighbourhoods U;, V; or Wi. By compactness of the disc, we may
cover it by a finite number of such neighbourhoods Z,. Now it remains to
note that the whole picture survives any sufficiently small perturbation: for
exactly the same finite set of the neighbourhoods Uj, V;, Wy and Z,, both
for the system itself and for every sufficiently close system the orbits that
start at U; or at those Z,, which enter U; after a finite time shift, tend to the
corresponding periodic orbit L;; the orbits that start at V; or at those Z;,
which enter V; after a finite time shift, tend to the corresponding equilibrium
state O;; for some of the neighbourhoods Z; all the orbits leave the large disc
after a finite time; and the rest of the neighbourhoods Z; and W, is divided
by a stable separatrix of some saddle into two open halves such that all the
orbits in one half share the fate of one of the unstable separatrices of the
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saddle while the orbits in the other half share the fate of the other separatrix
of the same saddle (each of the separatrices tends to one of the stable equi-
libria or periodic orbits). To actually prove this we need the following fact:
hyperbolic equilibria and periodic orbits do not disappear at small changes
of the right-hand sides of the system and change continuously, moreover the
separatrices of saddles change continuously as well - this will be addressed
later in a more general context. O




We have seen in the proof that if any of the 3 conditions of Andronov-
Pontryagin theorem are violated, then by an atbitrarily small perturbation
they can be made fulfilled. In other words, if a system on the plane is not
structurally stable, then a small perturbation can always make it structurally
stable (and if it is structurally stable, then every close system is structurally
stable as well - and has “the same structure”). Thus, Andronov-Pontryagin
theorem describes the behaviour which is most typical for systems on a plane.
Note that a similar statement is no longer true in higher dimensions: 3-
dimensional structurally unstable systems are as typical as structurally stable
ones. Returning to systems on a plane, analysis of structurally unstable
systems starts making sense when we consider families of systems which
depend on parameter (or several parameters). In such families, when the
parameter change within an interval of structiural stability the behaviour
does not change, but at some moments (called bifurvational moments) some
of the conditions of Andronov-Pontryagin theorem may become violated;
crossing such parameter values will cause changes in the system behaviour.
Knowing which changes happen under which conditions can be quite helpful:
if we know the behaviour at some parameter value and what happens at the
bifurcation parameter values, we can recover the behaviour at all parameter
values.

Further reading: Guckenheimer and Holmes, Ch.1



Exercises.
1. Prove that the system z” = z is structurally stable, and the system z” =
—x is structurally unstable.
2. Prove that the system 2’ =z +y — z(2* +4?), ¥ = —z+y—y(z®+9?)
is structurally stable, and the system 2/ = y + (y? —2® +2)(22® —z), ¢ =
x — 22° — y(y? — 2% + z*) is structurally unstable.
3. Are the following systems structurally stable: 2’/ = y + 9% — 2%y, ¥ =
—x—z2—¢y3 andzr' =122 ¢ =xy?
4. Prove that the following system is structurally stable 2’ = 1—2z—y?%,¢/ =
1 — 6z + y? (hint: show that the system has no periodic orbits; if such an
orbit exists, it cannot intersect the line y = 1/ \/5, as any orbit that enters
the region y > 1/4/2 from the region y < 1/v/2 must do it with ¢/ > 0, i.e.
it intersects the line y = 1/v/2 at z < 1/4, however any orbit that enters the
region {y > 1/v/2,z < 1/4} can never leave it as on the boundary of the
region the vector field looks inside - e.g. 2’ < 0 at z = 1/4, > 1/4/2 - so the
hypothetical periodic orbit has to lie entirely in the region y < 1/ V2 where
the divergence f + g; of the vector field is strictly negative, but this would
contradict the classical Dulac theorem that states that the integral of the
divergence of the vector field over the region inside a periodic orbit is always
zero; similar arguments show that there is no orbit going from a saddle to a
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