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PREFACE 

The present monograph is a direct  continuation of our  Q u  a1 i t  a t  i v e 
T h e o r y  o f  S e c o n d -  O r d e r  D y n a m i c  S y s t e m s  (QT) published 
in 1966. It may also be considered as a second volume of the definitive 
t rea t i se  on dynamic sys tems and their  applications planned by A. -4. 
Andronov back in the 1040s. All this  notwithstanding, however, T h e o r y  
of  B i f u r c a t  i o n  s can be t reated a s  an independent volume and the 
reader  is only expected t o  be acquainted with the basic concepts of the 
qualitative theory of differential equations on a plane. 

c lass ical  theory (of Poincar; and Bendixson), T h e or y o f  B i f  u r c a t  i o n  s 
presents  relatively recent resu l t s  vihich w e r e  obtained during the las t  
th ree  decades and published - in part or completely - in a number of 
l e t t e r s  and papers  in scientific journals. These  resu l t s  are closely linked 
to  the theory of oscillations and have by now found many important u s e s  in 
physics and engineering.* 

Leontovich, and A. G .  Maier and completed by E. A. Leontovich and 
I. I. Gordon. 
of the monograph, the former  being responsible for  Chapter VI11 and the 
la t te r  for  part of Chapter X N .  
I. I. Gordon. 

The main resul ts  presented in Chapters I11 through VI1 were derived by 
A. A. Andronov and L. S. Pontryagin, and those in Chapters IX through XI1 
by A. A. Andronov and E. A. Leontovich. Chapter VI11 is based on the work 
of N. A. Gubar' and the resul ts  of Chapter XI11 are due to  E. A. Leontovich, 
A. G. Maier, and L. S. E'ontryagin. 
undertaken by Yu. M. Romanovskii. 

The book naturally falls into two par t s  - the theory of s t ructural ly  
stable sys tems (Chapters I through VII) and the theory of bifurcations 
(Chapters VI11 through XIV). 
f i r s t ,  and the reader  will only requi re  some basic information f rom 
Chapters I, 11, IV, and V. 

refer to  proofs of w e l l  known or relatively s imple  and obvious propositions 
contained in QT, and the r eade r  may safely ignore these references.  

These  chapter 
introductions w e r e  written in such a way as to  enable the reader  t o  form 
a c l ea r  idea of the contents of each chapter and t o  decide what chapters  
deserve  detailed study and what can be skipped. 
* 

In distinction f rom QT, the g rea t e r  par t  of which is devoted to the 

The present book, like QT, was begun by A. A. Andronov, E. A. 

K. A. Gubar' and R. R.I. Mints a lso took part in the preparation 

The final version was prepared by 

The general  editing of the book was 

The second part is largely independent of the 

-Although the book contains numerous re ferences  to  QT, many of these 

Each chapter includes a brief introductory summary.  

Same data on structurally stable dynamic systems and bifurcations (without exhaustive pro00 will be 
found in the second edition of A. Andronov, A. Vitt, and S. Khaikin, T h e o r y  of O s c i l l a t i o n r  
( h s c o w ,  1959). 



The book contains numerous drawings and worked-out examples 
illustrating the various mathematical propositions. Unfortunately, space 
limitations prevented u s  f rom including many more  remarkable  examples 
which a r i s e  f rom applications (see, e.g., f 2,3/ 1. 

numbered continuously through the book. 
equations is res t r ic ted  t o  each section. 
book, the equations and lemmas  are numbered according to  the sub- 
sect ions. 

The reference S21.2, (5) is t o  equation (5) in subsection 2 of SZl. 
reference (7 )  is to  equation (7) of the current  section. 
S8.5, Lemma 4 is to Lemma 4 in subsection 5 of $ 8  in QT. 

A list of bibliographical references directly related t o  the subject 
mat ter  of the present volume will  be found at the end of the book. 
References to the sources  in th i s  bibliography a r e  indicated by numbers 
between slashes.  

The sections, theorems,  definitions, figures, and examples are 
The numbering of lemmas  and 

In the Appendix at the end of the 

The 
The reference QT, 

Gor'kii,  1966 

E. A. Leontovich 
I. I. Gordon 
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INTR 0 D UC TION 

The subject-matter  of the qualitative theory of dynamic sys tems is 
formulated in QT. 
of the partition into paths of the domain of definition of the dynamic system. 
12 number of topics relating t o  second-order sys tems (defined in a plane 
region or on a sphere)  a r e  t reated in QT. In par t icular ,  the different kinds 
of paths of different sys tems are identified, the limit s e t s  3f these paths 
a r e  descr ibed,  and methods for  investigating the configuration of paths in 
the neighborhood of an equilibrium s ta te  are given. A l a rge  part of QT is 
devoted to  establishing the minimum information about the paths of a 
dynamic system needed in order  to  determine i t s  topological s t ruc ture  in 
a region. 
an the class  of dynamic sys tems being considered: 
the topological s t ruc ture  of a dynamic system is determined by the 
charac te r  and the configuration of the so-called s i n g u l a r  p a t h s  
(equilibrium s ta tes ,  limit cycles ,  and separa t r ices ) .  ill1 the relevant 
information can be presented in the form of a cer ta in  finite scheme. 
basic problem in elucidating the topological s t ruc ture  of a dynamic system 
is  thus to  find thepart icular  scheme of the system. So far, however, no 
regular  methods have been devised enabling u s  t o  establish the existence 
of limit cycles of a dynamic sys tem,  their  configuration, and the configurk- 
tion of the separa t r ices .  
available which permit solving - and sometimes quite successfully - a 
number of par t icular  problems related to  the existence and behavior of 
limit cycles and separatr ices .  The most useful of these techniques are 
described in QT, together with examples of their  application. 

s t a t  i c - it i s  assumed that the system does not change. On the other 
hand, the main problems treated in the present volume are concerned with 
t h e  c h a n g e s  i n  t h e  t o p o l o g i c a l  s t r u c t u r e  o f  a d y n a m i c  
s y s t  e m  when the sys tem itself changes. As in QT, w e  are dealing with 
autonomous systems on a plane, i.e., sys tems of the form 

The theory is concerned with the topological s t ruc ture  

This  problern is completely solved in QT under cer ta in  limitations 
it is established that 

The 

Only individual par t icular  techniques are 

In QT the approach to  the qualitative s t ruc ture  of dynamic sys tems is 

Let a system of th i s  kind be defined in some region G. What happens 
to  the topological s t ruc ture  of the partition of t h i s  region into paths when 
the system - i.e., the functions P and Q on the right - changes? 

This  question is obviously of independent mathematical significance. 
It is also highly importznt for various applications. 
dynamic sys tems corresponding - under cer ta in  idealizations - t o  physical 

The point is that 



I or technical problems invariably contain a certain number of parameters ,  
and we a r e  generally interested in the changes in the topological s t ructure  
of the system when the parameters  a r e  varied. In particular,  it i s  impor- 
tant to  find the partition of the parameter space into regions each co r re -  
sponding to  identical topological s t ructure  and to  determine the change in 
the topological s t ructure  when the sys tem moves ac ross  the boundary of 
two such regions in the parameter  space. 

for the case of s m a l l  c h a n g e s  in the system. One of the most 
important c lasses  of dynamic systems comprises those systems whose 
topological s t ructure  in a given region d o e s n o t  c h a n g e  under small  
modifications of the right-hand sides of the system. 
generally' known a s  s t r u c t u r a l l y  s t a b l e ,  were  f i rs t  introduced by 
A. Andronov and L. Pontryagin in 14  J under the name of c o a r  s e 
s y s t e m s  or s y s t k m e s  g r o s s i e r s .  

applications, e.g., in various physical problems. The values of the 
parameters  entering the right-hand sides of the system a r e  generally linked 
with the particular physical problem being considered and a r e  only known 
t o  some approximation. If smal l  changes in these parameters  - within the 
experimental margin of e r r o r  - lead to  a change in the topological s t ructure  
o f the  dynamic system, Le., i f t h e  system is  s t r u c t u r a l l y  u n s t a b l e ,  
the topological s t ructure  of the system is clearly not a suitable cri terion for 
analyzing the physical phenomenon. Conversely, if the system is  structurally 
stable,  i ts  s t ructure  may be directly related t o  the properties of the 
physical phenomena. It is  interesting to  r emark  in this  connection that 
Andronov and Pontryagin's t e r m ,  c o a r  s e s y  s t e m s , was originally 
proposed in contradistinction from f i n  e s y s t e m  s whose topological 
s t ructure  would break under the action of arbi t rar i ly  small  external 
disturb an c e s . 
character is t ics  of structurally stable systems. For  systems defined in a 
bounded plane region, this problem was essentially solved in A. Andronov 
and L. Pontryagin's original paper 141, and subsequently elaborated in 

The changes in topological s t ructure  evidently need be considered only 

Such systems, 

Structural stability of a dynamic system is particularly important in 

The f i r s t  problem to be considered i s  that of the distinctive o r  identifying 

/ S I  and 1 6 1 .  
The necessary and sufficient conditions of structural  stability for plane 

regions a r e  relatively simple (see Introduction t o  Chapter VI), but a 
rigorous derivation of these conditions necessitates detailed scrutiny of 
a whole range of important concepts and scrupulous proofs. 
of the present volume (Chapters I through VII) is entirely devoted to  the 
theory of structurally stable systems and, in particular,  to  the derivation 
of these conditions of structural  stability. The book deals only with 
s t ructural  stability of systems in a bounded plane region and on a sphere. 
Note, however, that the concept of s t ructural  stability has been extended 
and investigated, especially in the last  decade, for a number of other 
objects also. Peixoto considered the conditions of s t ructural  stability of 
dynamic systems on an arbi t rary closed surface (see 1 7 1 ) .  Gudkov 181 
introduced the concept of s t ructural  stability of algebraic curves. 
Structural stability of many-dimensional dynamic systems is treated in 
/ 3 2 , 3 3 , 3 6 / .  

The first half 
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Structurally stable sys tems a r e  the rule, so to  say, in the met r ic  space 
It is shown whose points a r e  dynamic sys tems defined in some region. 

in Chapter VI that s t ructural ly  stable sys tems form an  open everywhere 
dense se t  in this space. 
partitioned into components, each consisting of s t ructural ly  stable sys tems 
of identical topological s t ructure .  
components consist of s t ructural ly  unstable dynamic systems.  
dynamic sys tem is al tered or modified, i t s  topological s t ruc ture  will 
change only i f  the sys tem passes  through an intermediate s tage of 
s t ruc tura l  instability. The t h e o r y of  b i f u r c a t  i o n  s, which is con- 
cerned with changes in the topological s t ruc ture  of dynamic systems,  
therefore  appropriately concentrates on s t ructural ly  unstable systems.  
St tucturally unstable s;ystems a r e  a lso of interest  in applications: 
called conservative sys tems (see Chapter XIII), often encountered in 
physics, a r e  s t ructural ly  unstable. 
examination of s t ructural ly  unstable systems.  

The  f i r s t  s tep in this  direction evidently involves a classification of 
s t ructural ly  unstable s,ystems. 
divided into ''less s t ructural ly  unstable" and "more s t ructural ly  unstable." 
This  leads to a classification according to the d e g r e e  s of  s t r u  c t u  r a 1 
i n s t a b  i 1 i t y origin;illy introduced in / 9 / . The leas t  s t ructural ly  
unstable sys tems in this  classification a r e  the s y s t e m s  o f  t h e  f i r s t 
d e g r e e  o f  s t r u c t u r a l  i n s t a b i l i t y :  under sma l l  changes, these 
sys tems ei ther  go to a s t ructural ly  unstable sys tem or retain their  
topological s t ructure .  The complete conditions for  a sys tem to be of the 
f i r s t  degree of s t ruc tura l  instability w e r e  derived for  plane sys tems (see 
/9,  IO/; 
of the f i r s t  degree of s t ruc tura l  instability was found to  have one and only 
one s t ructural ly  unstable singular path, i.e., it has  either a multiple 
equilibrium state, or i multiple l imit  cycle, o r  a saddle-to-saddle 
separatrix." To  establish the bifurcations of a sys tem of the f i rs t  degree 
of s t ruc tura l  instability, it suffices t o  consider the changes in i t s  topological 
s t ruc ture  in the neighborhood of i t s  s t ructural ly  unstable singular path. 
Bifurcations involving a change in the number of l imit  cycles - i.e., 
bifurcations in which kmi t  cycles  a r e  c r e a t  e d or d e s t r o y e d - are 
of par t icular  interest  in theory and in applications. Dynamic sys tems of the 
f i r s t  degree of s t ruc tura l  instability may only exhibit the following 
instances of creation of limit cycles: f rom the multiple focus of the system, 
f rom the multiple cycle_., f rom a loop of a saddle-point separatr ix ,  f rom a 
loop of a saddle-node separatr ix .  The var ious cases a r e  t reated separately 
in Chapters IX through XII. Note that the mater ia l  presented in this  chapter 
applies t o  bifurcations of sys tems of both f i rs t  and higher degrees  of 
s t ruc tura l  inst ability. 

and especially examination of the s implest  bifurcations leads to  a number 
of techniques for  the investigation of par t icular  differential equations. 
These  techniques were successfully applied to  a number of equations of 
special  physical interest  (see, e.g., /2, 3, 20, 25-281) .  

The se t  of s t ructural ly  stable sys tems is 

The "partitions" between these 
When a 

the so- 

We a r e  thus naturally led to  a detailed 

Structurally unstable sys tems can be 

these conditions are derived in Chapter XII). A dynamic sys tem 

The concepts of s t ruc tura l  instability, degrees  of s t ructural  instability, 

* Certain additionai conditions !hould also be rausfied; they are formulated in Chapter XII.  
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Chapter XIV is entirely devoted to examples of dynamic systems, 
analyzed by the tools of the theory of bifurcations. 

Chapter XI11 occupies a somewhat special  position in the book: it 
t rea t s  the creation of limit cycles from closed paths of conservative 
systems.  
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C h a p t e r  I 

JIULTIPLICITY OF ROOTS OF FUNCTIONS AND 
.ZIULTIPLICITY OF INTERSECTION POINTS OF 
TWO CUR YES  

IhTRODUCTION 

In this chapter He consider some fairly elementary concepts relating to 
the r o o t  of  a f u n c t i o n  and the i n t e r s e c t i o n  p o i n t  of  t w o  
c u r v e s .  In $ 1  we define the 6 -  c l o s e n e s s  o f  t w o  f u n c t i o n s  t o  
r a n k  r and the m u  1 t i p 1 i c i t  y of a root of a function. Roughly speaking, 
a root .ro of a function f ( 5 )  is said to be of multiplicity r >  1 if functions 7 ( E )  

“sufficiently“ close to f ( 5 )  cannot have more  than r roots  in a “sufficiently” 
small  neighborhood of xor but there  is any number of functions sufficiently 
c lose  to f (5) which have exactly r roots  in any arb i t ra r i ly  smal l  neighbor- 
hood of so. 
root i s  derived (Theorem 5), which s ta tes  that f (.r,]) = f’ (.ro) = . . . f ( r - * ~  ( ro) = 0, 
p‘) (so) 0. 
in particular, for  polynomials), the root multiplicity defined in this chapter 
coincides with the usucl concept of multiplicity. 

analogous to the concept of root multiplicity of a function, is introduced 
in S 2 ,  and the necessary  and sufficient conditions are established for  r -  
multiplicity of a common point ( x o ,  yo) of two curves  Fi ( x ,  y) = 0 and F? (s. y) = 
= 0, when r = 1 and r = 2 .  
or st ructural ly  s table .  The necessary and sufficient condition of s t ruc tura l  
stability of a point (xo.  yo) is simply 

The necessary  and sufficient condition of r-multiplicity of a 

It follows .irom this condition that for  analytical functions (and 

The m u l t i p l i c i t y  o f  a c o m m o n  p o i n t  of  t w o  c u r v e s ,  

ff r = 1, the common point is said to be s imple 

The conditions for  a common point with r = 2 are more  complicated 
(see Theorem 7). 

J 1. h1ULTlPLICITY OF A ROOT OF A FUNCTION 

1. 6 -c loseness  to r a n k :  r 

\Ve w i l l  consider functions defined a t  all points :VI (r,, I$. ..., z,,) of some 
In open (or closed)  region G (or 4 )  in  n-dimensional euclidean space E , .  

I 



applications we w i l l  be mainly concerned with the cases  n = 1 or  n = 2. 
Here it is assumed, however, that n is any natural number. 

A function is said to be a function of c lass  k in G (or E,), where k is a 
natural number, if it  is continuous and continuously differentiable up to 
order  k, inclusive, in i t s  domain of definition; a function is said to be a 
function of the analytical c lass  in some region if it  is analytical in that 
region." 

G (or C , ) >  8 is some positive number, r a natural number such that r < k  if 
Fo is a function of c lass  k .  

in G (8,) i s  said to be 8 -close to rank r to the function Fo(x,, xZr . . ., x,,) in the 
region G(C, )  if at any point of the region 

Let Fo (xi, x2 ,  . . ., a) be a function of c lass  k or an analytical function in 

D e f i n i t i o n  1 .  Afunction F(xlrx2, ...,x,,) of class k , > r  oranalytical 

where 1 - 1,2, . . ., r ,  all ai are non-negative numbers and a, + a2 +- ... 
... + % = I .  

Clearly i f  two functions a r e  8-close to rank r in some region G, they a r e  
8-close to any rank r, < r in that region; moreover, for any 81, 8 , , 8 ,  they 
a r e  b1-close to rank r in any subregion of G. 

If everywhere in the region we only have the one inequality 

i .e. ,  only the functions a s  such a r e  8-close, but not their  derivatives, the 
functions F and Fo a r e  said to be 8-c 1 o s e t o  r a n k  0. In what follows, 
with r a r e  exceptions, we will always consider 8-closeness at least  to 
rank 1. 
stood a s  qualifying two functions which a r e  8 -close to rank r > 1. 
interesting case is that of a function depending on one o r  s eve ra l  para-  
me te r s  which for any ("arbitrari ly small") 8 > O  can be made 8-close to 
any required rank to a given function Fo (5) by an appropriate choice of the 
parameters .  

r to a given function Fo ( x )  when n = 1 and Fo (5) = 0. 
wi l l  only consider functions defined on the segment [-1, + 11. 

positive number. 
magnitude) p is 8-close to 0 to rank k. 
then for any natural  number r and sufficiently small  p, the function pf ( x )  is 
8 -close to rank r to zero (Le., to the function F ( x )  

Therefore the expression "two 8-close functions" is to be under- 
The most 

Let u s  consider simple examples of functions which a r e  8-close to rank 
To be specific, we 

E x a m p l e  1. Let f ( x ) b e a f u n c t i o n o f c l a s s  k o n j - 1 ,  +1], 6 s o m e  
Then the function pf ( x )  for any sufficiently small  (in 

If f (z) is an analytical function, 

0) .  
E x  a m p  1 e 2. Consider the function 

F, (2) = p sin 5 
I(' 

( p > 0). For any given 6 > 0, an appropriate choice of a sufficiently small p 

* If 5, is closed and Mo is a boundary point, partial derivatives (of any order and type) do not necessarily 
exist at Mo. In this case, a partial derivative at Mo is defined as the limit value of the corresponding 
partial derivative at an inner point M when M tends to d d o  (see /ll/, Vol. I, Sec. 258, p. 589). An 
analytical function in a closed region is evidently defined in some larger open domain. 



will c lear ly  make this function 8-close to zero,  but only to rank 0. 
Indeed, 

I 
P P  

F ;  (x) = -COS < 
and as p decreases ,  the upper bound of F; (5) increases  to infinity. 
fore, if  6 is sufficient’ly small ,  w e  can never choose a p that w i l l  ensure  
6 -c loseness  of F, ( I )  to ze ro  to rank higher than 0. I t  is a lso  clear that, 
by an appropriate choice of a sufficiently smal l  p, the function 

There-  

can be made arb i t ra r i ly  c lose to zero  to rank ni, but never to rank grea te r  
than in. 

\ V e  will now give without proof two theorems R-hich a r e  repeatedly used 
in what follows. 
approximation to functions (see / 2 3 / ,  Sec. 109,  Theorem l), reformulated 
in t e r m s  of our  new ccmcept of 6-closeness to rank r ,  and the other readily 
follows from the f0rmi.r. 

One is Weiers t rass ’s  classical theorem on polynomial 

T h e o r e n t  1. Let F ( x l r x  2 . . . . .  x,)beafunction of class kdefined i n a  
closed bounded region C of the space E,. Fot- m y  t =- a and r -i. k there 
exists a polynotiiinl @ (x,, x2, . . ., z,,) which i s  e-close to rank r to the function 
F (z~, 

region G ,  and F (z,, x 2 .  . . ., xn) = F (,%I) a fiinction of class k defined in that 
region. For any e > O  cmd r < k  there exists a polynomial @ k t , z 2 ,  . . .. x n )  = 
= (1) (Jf) ichich i s  e-close to rank r to the function F (JI) in G such that 

. . ., G )  in G .  
T e o r e wt 2. Let Ma, (J;, xi. . . . . J:) be a point in a closed bounded 

io.’ime 1 = 1,2, . . ., r ,  all 3, are non-negatire zohole numbers, and ai f a2 - 
4 . .  A - c & = l .  

2. The theorem of a small increment of implicit functions 

\Ve now proceed to ,Jrove a theorem which can be called the t h e  or e m 
of a s m a l l  i n c r e m e n t  o f  i m p l i c i t  f u n c t i o n s .  Let F ( z , y , z ) b e  
a function of c l a s s  k defined in the parallelepiped A 

21 %< 2 Q -12 

of the three-dimensional space ESI such that a t  any point of A 

2 1  ,< x Q z,, y, 5 y .c yz, (1) 

F i ( r ,  y. z)+O. 

Let fur ther  

z = ‘ F ( 5 ,  y) 

be a function defined everywhere in the rectangle R 

3 



Ch. 1. MULTIPLICITY OF ROOTS AND INTERSECTION POINTS 

in the plane (5, y) , such that inside this rectangle 

and 

F rom (l), (2), and ( 3 )  i t  follows that rp(x, y) is the unique solution of the 
equation 

F ( x ,  y, 2) -0  ( 4 )  

in A, and the surface 

z - ' p (+ ,  Y) 

has  no common points either with the top or  the bottom of A .  
in virtue of the theorem of implicit functions, rp (5, y) is a function of c l a s s  k .  

function p ( x ,  y, z) defined in A which is 6-close to rank r ( I < r < k )  to 
F ( x ,  y, 2) the equation 

Moreover, 

T h e o r e m  3 .  F o r a n y  e>Othereexis t s  6 > 0 s u c h t h a t f m a n y  

F ( x ,  y, z ) = O  

has a solution 

defined in the rectangle R,  such that (a) @(x, y) is the only solution of 
equation (5 1 in A; (b) @(x, y) is a function of class 2 r ana' i s  e - close to the 
function ' p ( x ,  y) to rank r .  

any point of the rectangle R: 
P r o o f .  According to our  assumptions, inequality (2)  is satisfied a t  

21 < 'p (5, Y) < z2. 

Therefore, if  e, > 0 is sufficiently small ,  we have 

zi < q@, Y) * 8, <zz. 

We choose e,>O which satisfies condition (6), such that e i < e .  

(6) 

By (1) in A 

F;(x ,  y, z ) # O .  
To fix ideas, let in A 

F;(x, Y, 4>0. (7) 

( 8 )  

From (3 ) ,  ( 6 ) ,  and (7) i t  follows that in R 

F ( G  Y, ~ ( x .  Y ) - ~ I ) <  0, F ( x ,  Y, (~(2. y)+ed> 0. 

Now since F and cp a r e  continuous, w e  conclude f rom (8) that a t  any point in 
H 

F ( s ,  Y, ~ ( x ,  y)-el)<-c, F ( x ,  Y, cp(x, y ) + e J > c ,  (9) 

4 



i i .  - . I (  L I P L L C ~ T Y  OF A ROL)I' OF .A F L K C T W L  

LIoreover,  f r o m  inequal i ty  ( 7 )  we conc lude  

F; ( x .  y. z )  m, 

w h e r e  c is a pos i t ive  n u m b e r .  
that  in  1 

(10) 

x.rhere m i s  a pos i t ive  n u m b e r .  
L.et b be  s u c h  tha t  

h > O ,  b < $ ,  8 < f .  (11) 

C o n s i d e r  any  functicm F ( x .  y, ; )def ined in  A which is 8 - c l o s e  to r a n k  r to 
the function F ( s .  y. z )  in  A .  
re1ation.s ( S i ,  ( lo ) ,  a n d  (11) i t  fo l lows  that  in  1 

From t h e  def ini t ion of 8 - c l o s e n e s s  and  f r o m  

a n d  that 

rhen  c l e a r l y  t h e  equa t ion  - 
F ( x ,  y. z ) = O  (5)  

h a s  a unique so lu t ion  z = i ( x .  y)  in  A ,  which is defined in  R and which e v e r y -  
*-here  in R s a t i s f i e s  thc  inequal i ty  

IS(., Y)--(P(". Y ) I < F ! C E .  (14) 

By t h e  t h e o r e m  of i m p l i c i t  func t ions  we now conc lude  tha t  t h e  so lu t ion  
z - =  (F I .X.  y) of equa t ion  (5 )  i s  a funct ion of c l a s s  > r .  

t h e o r e m  is s a t i s f i e d .  
'p (,s. y) are ob ta ined  s u c c e s s i v e l y  f r o m  t h e  s e t  of e q u a t i o n s  

I t  r e m a i n s  to show that  6 > 0 c a n  b e  c h o s e n  so tha t  condi t ion ( b )  of the  
To t h i s  end we note  tha t  t h e  p a r t i a l  d e r i v a t i v e s  of 

F; -7 FIT,) = 1:. 
F; 1- F;vq = U, 

F:x C 2F;,v; + F;, (9;)' C F&iX = 0. 
(15) 

. . . . . . . . . . . . . . . . . . . .  
and t h e  p a r t i a l  d e r i v a t i i . e s  of &-, y) are c a l c u l a t e d  f r o m  a n a l o g o u s  equa t ions :  

Since F ;  ( x .  y ,  z )  # 0 n o w h e r e  i n  A,  t h e  p a r t i a l  d e r i v a t i v e s  of 'p (s, y) t o  o r d e r  r 

and the  r a n g e  of t h e s e  a r g u m e n t s  c a n  be  r e g a r d e d  as a c l o s e d  r e g i o n .  
Hence i t  c l e a r l y  fo l lows  tha t  if  8 > 0 is s u f f i c i e n t l y  s m a l l ,  e.g., 6 < 6!, a n d  
t h e  function 7 is 6 - c l o s e  t o  r a n k  r t o  F ,  t h e  funct ion (p (5 ,  y) is &-close t o  

r a n k  r to 'p (I. y). T h u s  any  p o s i t i v e  n u m b e r  6 s m a l l e r  t han  5 ,  ;, and  6, 

s a t i s f i e s  t h e  t h e o r e m .  

inc lus ive  are con t inuous  func t ions  of the  a r g u m e n t s  F;. F I ,  FI, FIX,  F&. .... F:;', 

- -  
T h i s  c o m p l e t e s  the  proof .  
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Ch. I .  MIJLTIPLICITY OF ROOTS A N D  INTERbECTlUN POINTS 

The previous theorem is naturally generalized to any number of functixie 
I 

and equations. 
functions and two equations. 

We will formulate the corresponding theorem for  two 

Let the functions 

Y, u, u) and Fz@, Y, u, 4 
of c l a s s  k > l  be defined in some parallelepiped II 

X i G X Q x n  y iQy<ya,  ui,<uQuz. ui ,<V,<vz  

in E,. Moreover, suppose that 

do not vanish in ll; aF D ( F , ,  F 2 ) -  F L  Fi. 1) L a n d  I = - -  

2 )  the equation 

aV D ( u ,  4 IF& Fi,, I 
F I ( ~ ,  Y, u, v)=O 

has  in IT the solution 

u = e (z, Y, u), 

defined a t  any point x ,  y, u, xI<x<xz, y,<y<y,, u l < u < u 2 ,  such that 

u, < 0 (5, y, u) < u2. Since %# 0, this solution is unique; 

3) the equation 

F~ (2, Y, U, e (5, Y, UN =o 
has  a solution u=cp(x, y) in the rectangle R, 

XI < 5 << X2, yi 6 I/ Q yz, 
such that u1 < cp (x.  y) <u2. 

It follows f rom condition 1 that the derivative aFZ(3.’  ’’ ’* 
(I‘ ’* ”)) does not au 

vanish in the relevant region, and cp(x, y) is the unique solution of the 
equation F2(z, y, u, e@, y, u)) = 0 .  Therefore the functions 

constitute the unique solution of the system 

in n, which is defined for  all ( x ,  y)E R. 
‘p and I@ are both functions of class k .  

1 < r <  k ,  there exists 8> 0 such that if the functions 

By the theorem of implicit functions, 

T h e o r e m  4 .  Under the above assumptions, forany  e > O  andr,  

F I ( ~ ,  Yt u, 0 )  and Fz(z9 19 u, V) 

are defined in II and are 6-close to yank r to the functions Fl and F 2 ,  
respectively, the equations 

- - 
FI(x, Y, ut u)=O, F ~ ( x ,  yt u, V) = O  

6 



51. \ICLTIPL[CiTY OF A ROOT OF A FUliCTIOZ 

IiaLte a unique solution in n, 
- 

u = ' p ( x ,  Y), v = * ( 2 ,  Y), 

which is defined f o r  all ( x .  y ) ~  R, and the functions 6 and 6 are 6-close to 
rank p to the respectirte functions q and tp. 

Ft (2, y, u. r,) ' 
the solution of the equation Fi (3, y,  u. c)= 0 for  r .  

are independent of x arid y, i.e., i f  w e  are concerned with equations of the 
form F! (u, v )  = 0 and F, (u. c)  = 0. 
changed without difficulty to conform to these new conditions. 
applies to Theorem 3.  

Theorem 4 is proved by applying Theorem 3 f i r s t  to the function 
and then to the function Fz (s ,  y ,  u, 8 (s ,  y, u) ) .  where 0 (s. y ,  u) is 

R e  m a  r k . Theorem 4 clear ly  remains  valid if the functions F1 and F2 

The wording of the theorem can be 
This a l so  

3. Root multiplicity of a function of a single var iable  

The concept of r o o  t m u  1 t i  p 1 i c i t y is generally applied to the roots  
of analytical functions (in particular, polynomials) in connection with the 
calculation of derivatives and factorization of polynomials. In this  sub- 
section w e  will advanc- a general  definition of root multiplicity for a 
function of a single var iable  in  a form that will readily link up a t  a la ter  
stage with a number of other, more  complex concepts in the theory of 
dynamic sys tems.  For analytical functions, our definition w i l l  naturally 
coincide with the usual definition of multiplicity. 

Let 
Y = Fo (4 

be a function defined on some segment It!, z21, where it is a function of c l a s s  
k > 1 or an analytical function, and let xo be a root of the equation 

Fo (2) = 0, 

in lxl, x21. 
changing over  to  a new variable  ;= z - X O )  and suppose that Fo ( x )  is defined 
for  I I 1 Q U ,  where a is some positive number. 

The root 0 of the equation 

For simplicity let zo = 0 (this can always be accomplished by 

Let r be a natural number 
D e f i n i t i  on  2. 

Fo (2) = 0 

i s  called a root of multiplicity r (or an r-tuple root) of this equation and 
also a root of multiplicity r of the function Fo ( x ) ,  Eo (s )  i s  a function of 
class k > r and the following conditions are satisfied: 

F (2) is a function of class r which is 6, - close to rank r to the function F ,  ( x ) ,  has 
at most r roots f o r  I x I ,: eo;  

(b) fm any positive E < E ,  and 6 there exists a function F (x),s-close to 
rank r to the function Fo (c) such that the equation F (I) = 0 has precisely r 
r o o t s f m  I x I < E .  

(a) there exist > 0,  6o > 0 such that any equation F (x) = 0, where 

* Theorem 3 applies to functions of three variables. 
modifications for a function of any number of variables. 

Nevertheless, it c an  be formulated and proved without 

7 



Ch. I. MULTIPLICITY OF ROOTS AND INTERSECTION POINTS 

A root of multiplicity 1 is called a s i m p l e  or a s t r u c t u r a l l y  

A root of multiplicity r a t  the same time may be a root of a lower o r  a 

L e m  m a  1 .  Let F ( x )  be a function defined f o r  1 x / < a  such that 

s t a b  1 e root of the equation. 

higher multiplicity. 

F (2) = z"Q, ( Z ) ,  

where n is a natural number, d, (2) i s  a continuous function, and Q, (0)f 0. 
Then f o r  any e >  0 and 6 >  0 there exist numbers a, ,  a2, . . ., such that 

/ a i I < 6  ( i = i ,  2,  ..., n-i), 

and the function 
F (z) = al t  + azza + . . . + U,,-~Z%~ + z~ (z) 

has at least n different roots for I x I < E. 

P r o o f  . By assumption, 4, (0) # 0. 
6 > 0. Since Q, (5) is continuous, there  exis ts  q, > 0,  q1 < e such that for  
all positive z, z < q ~ ,  

Let Q, (0) > 0, .and choose E > 0, 

F (5) = z"CD (5) > 0. 

We choose one of these z, say zlr and keep i t  fixed. Then 0 < z, < ql  and 
F ( 5 1 )  = 2: Q, (51) > 0. 
F1 (I)  = 
F ( x ) .  

If a , - i  is of sufficiently smal l  magnitude, the function 
+ z"Q, (z)  at  the point x ,  has the s a m e  sign a s  the function 

The number a,-, therefore can be chosen so that 

I a,,+ 1 < 6,  a,,-$ < 0 and F1 (q) = CZ,,-~XT' + z?R (z,) > 0.  

Now consider the function 

Fl (z) = z"-l (a,,-, + JCD (z)). 

For all sufficiently smal l  z, the sign of Fl (5) coincides with the sign of 
a,-l, i.e., i t  is negative. Thus, there  exis ts  a number qr < z1 such that for  
all z, 0 < z < qz, Fl (z) < 0. We choose one of these z, say 52, and keep 
it fixed. Then 

0 < Z Z <  qz < xl < ql < e 

and 

Fl (zl)=U,,-lz~-'+z~CD(z~<o. 

As the next step, consider the function 

Fz (zz) = c%-,zn-* + F1 (z) = zn-' ( G - 2  + + 20 (z)). 
The number is chosen so that 

an-,  > 0, I %-, I < 6, F2 (zl) > 0, Fz (zz) < 0. 

8 
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For small  positive z, F 2 ( x ) >  0, and w e  can choose a number q3<x2and x 3 ,  
0 <13<tl3 such that F ~ ( z 3 ) >  0. Continuing along the same  lines, we obtain 
a function 

- 
F ( z ) = I ' n - l ( x ) = a , x i a 2 z a + .  . . + a , . l z n - ~ + z n ~ D ( x )  

and a set  of numbers  xl. x2 ,  . .., I,-!. x,, such that 

and 

> O  for  odd n, 
( 0  for  even n. 

Z ( I I ) > @ .  F ( X , ) < O .  . . .. F ( X " )  I 
Sow, each of the intervals  ( x , + ~ ,  z,)> i = 1, 2,, . ., n -1, contains a t  least  

one root E ,  of the function P (x), and 

0 <En-) < En-2 <. . .< E3 < E? < 5 1  <E. 

But F ( 0 )  = 0. 
completes the proof of the lemma. 

(D (z: al, a2. . . ., a,,-l) be ,a continuous function of all i t s  arguments for I z I S a ,  
l a , l < ~ ( ~ > O , i = l , 2  , . . . ,  n - l ) , a n d l e t @ ( O ; O , O  ,..,, 0 ) Z O .  The 
proposition of Lemma 1 is then also ti-ue, i .e. ,  we can choose numbers 
a l ,  a*,  . . ., an-, such tha: their magnitudes are arb i t ra r i ly  smal l  and in any 
arb i t ra r i ly  smal l  neignborhood of the point x = 0 the function 

Thus, for [ I [< F ,  F (z) has a t  least  n different roots .  This  

R e  m a r  k 1. Lemma 1 can be generalized as follows. Let 

- 
F @ )  =atr+a2z*+ . . . +a,-ld"'l+znO(x; al, . . . , an-l)  

has  at least n different roots. 

numbers, and the function d, (z: a,. . . ., as before. The above proposition 
is then also t rue for the function 

An even more  general  proposition is the following: let ci i  be any real 

- 
F (4 = alx + (az + cZlal) z* + (a3 + c32% + c31a1) 33 + . . . 

. . . + ~ , - ~ , , - ~ a , - ~ + .  . . fc,-, lal)x"-lfx"@(z; al ,  . . ., a,,-l). 

Both these general propositions are proved along the same  lines as the 

R e  m a  r k 2 .  
lemma . 

the conditions of Lemma 1, namely that some (fixed) coefficients ai are 
zero.  

Sometimes an additional requirement is introduced into 

The function F :z) in this ca se  has  the form 
- F (I) = a &  + ak+ + . . . + a k , - l z k s - l  + (I), 

where 1 < k l  < k2 < . . . < k,+i s n  - 1, and s < n. In this  case w e  can choose 
(sufficiently sma l l )  numbers  aki such that in any arb i t ra r i ly  smal l  neighbor- 
hood of the point z = Cl the function F @) has  a t  least s different roots.  This 
proposition is proved like the lemma.  
functions considered i n  Remark 1. 

A s imi la r  r emark  applies to 

9 
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Ch.1. MULTIPLICITY OF ROOTS AND INTERSECTION POINTS 

T h e  o r e m  5 .  The number x = 0 is a root of multiplicity r of the func- 
tion Fo ( x )  if and only if 

FO(O) = 0. F; (0) = 0, . . . , e-" (0) = 0, Fg' (0) # 0 (17) 

( Fo (t) is naturally assumed to be a function of c lass  k > r ) .  

Suppose that these conditions a r e  satisfied. 
choose e, > 0 sufficiently small  so that for a l l  I z I < E,, we have 

P r o o f  . Let u s  f i r s t  establish that conditions (17)  a r e  sufficient. 
Let I F p  (0) I = m (m > 0). We 

I FbP' (x) I > $ . 
For 6, we take a positive number smaller  than $ (e.g., 6,=  f ). 
any function F ( x )  defined on the same segment as Fo (x) and 8 0  -close to rank r 
to F,(z), we clearly have for I z I < E, the inequality 

Then for 

I F"'(z) I > E- 2 4 4  E.= E> 0. (18) 

Now suppose that some function F ( I ) ,  which is 6,-close to rank r to Po (I), 
has a t  least  r + 1 roots in the interval I z I < E,. Then, by Rolle's theorem, 
the function F' (I) has at  least  r roots in this interval, F" (I) has a t  least  
r -  1 roots,  etc.,  and finally F(r) (z) has no roots altogether, a t  variance with 
inequality (18). 
is 6,-close to rank r to Fo (z), cannot have more  than r roots  for 1 z I < e o ,  
i.e., condition (a )  of Definition 2 holds true.  

Let 11s now prove that condition (b) of Definition 2 is also satisfied. 
function Fo (5) can be written in the form 

Thus, i f  condition (17) is satisfied, any function F (I), which 

The 

F, (I) = zro (I), (19) 

where Q, (5) is a continuous function and Q (0) # 0. 
theorem and conditions (17), we have in the neighborhood of x = 0 

Indeed, by Taylor 's  

F o ( 4 = z  r F ~ ) ( e x )  7 (0 < e  < 1). 

Setting 

Q , ( I ) = ~  for z.fO and a ( 0 ) = l i m @ ( z ) = T ,  FP) (0) 
-0 

we conclude that representation (19) is applicable a t  any point of the segment 
I z I < a ,  (0 (x) is continuous in this segment, and Q, (0) # 0. 

exists a function 
F rom (19) and Lemma 1 it follows that for any e > 0 and 8 > 0 there  

(I) of the form 

- 
P(z)=aiz+azzl+. . . +a,-lz'-i +Z'CD(Z), 

which is 8 -close to rank r to F (I) and has  a t  least  r different roots  for 
1 %  I < E .  

the sufficiency of (17) has been fully established. 
This means that condition (b) of Definition 2 a lso holds true,  and 



51. E.IULT[PLICITY OF A ROOT OF A FCNCTION 

It now remains  to  prove that conditions (17) are necessary.  

1) there  ex is t s  r , ,  1 Q r ,  < r ,  such that 

Suppose 
that these conditions are not satisfied, i.e., e i ther  

Fo (0) == Fb (0) = . . . = pi1-') (0) = 0, (0) # 0, 

or 

2) F , ( O ) = F i ( O ) =  ... =P!'(O)=O. (20) 

U'e will show that in ei.ther case  z = 0 is not a root of multiplicity r .  
w i l l  establish the necessity of conditions (17). 

is a root of multiplicity r, -= r and by definition i t  cannot be a root of 
multiplicity r .  

there  exis ts  a polynomial P (z) which is 6/2-close to rank r to the function 
Fo (z) and such that 

This 

In case 1, the proposition is self-evident: because of sufficiency z = 0 

Consider case 2. Let e and 6 be any positive numbers .  By Theorem 2, 

P(0)  = P'(0) = . . . = P(') (0) =o 

( i f  the function Fo (I) is a polynomial, Fo (I) itself can be chosen as P (2)). 

P (3) has the form zr+W ( x ) ,  where cf, (I) is some polynomial. 
Q(0) # 0 (otherwise, we may take for  P (z) the function xr+i (Q (I)  + y ) ,  where 
y is a sufficiently smal l  number, y #  0). 
polynomial P (5) which is 6/2-close to  rank r to P ( I ) ,  and therefore  6 -c lose 
to rank r to F ,  (z)~ and which has  a t  least  r + 1 roots for I z I < e .  
2' = 0 is not a root of multiplicty r for  Fo (s). This  completes the proof. 

It follows f rom Theorem 5 that for  analytical functions, and in par t icular  
for polynomials, root multiplicity in the sense  of Definition 2 coincides with 
the normal  concept of multiplicity. 

R e  m a r k .  Let z = 0 be a s imple root of the function Fo (z), i.e., r = 1, 
Fo (0) = 0,  Fi (0) # 0. 
F (.r) which is 6,-close to FO (I)  has  precisely one root for  I z I < eo, which is 
moreover  a s imple root. Fur thermore ,  for  any e < e,, e > 0, we san  find 
6 > 0 such that any function F (z), 6-close to Fo (I), has preciselyone (s imple)  
root for  \ z I < E .  

not vanish on the segment I x I < e O .  
and for 6, we may take, say, any positive number which sat isf ies  the 
inequality 

We may take 

By Lemma 1 there  exis ts  a 

Hence,' 

Then there  exist e, > 0 and 6o > 0 such that any function 

Indeed, for  eo we may take any number such that the derivative F; (3) does 
Then on this  segment I F; (z) I ,m > 0 

For  E < e,, 6 is found IJY the same  method. 
We have shown that if  Fo (2) is of class r a n d  condition (20) is satisfied, 

there  exis ts  a function F (z) arb i t ra r i ly  c lose to rank r to Fo (I) which has  a t  
least  r + 1  roots  in any smal l  neighborhood of the point 0. This  proposition 
can be strengthened by showing that under the s a m e  conditions there  ex is t s  
a function F (z) a rb i t ra r i ly  c lose to rank r to Fo (2) which has  a t  least  1 roots  
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in any small  neighborhood of 0, where 1 is a natural  number. 
tion is formulated and proved in the following lemma. 

This proposi- 

L e m m a 2 .  If  

(20) F o ( 0 ) = F i ( O ) = .  . . =F:'(O)=O, 

then f o r  any positive e and 6 and any natural number 1 ,  there exists a 
function F (2) which i s  6 -close to rank r to the function Fo (5) and has at 
least 1 roots f o r  I x I < e  (we reca l l  that the ent i re  treatment i s  confined to  
some segment I I I < u). 

constructed by severa l  different methods. 
the possible constructions. Let e > 0, 6 > 0, and 1 be given. 

1) We choose el < e so smal l  that the function Fo (5) is 8/2-close to 
rank r t o  zero (i.e., to the zero  function) for 0 <=<et, and the polynomial 

P r o o f  . The function F (2) whose existence is to be proved can be 
We wi l l  descr ibe here  one of 

F o ( e l ) + ~ ( z - e l ) + .  . . f,, ~ 6 ' )  (et) (5- 

is 6 -close to  zero to  rank r for  0 < x g u .  
sufficiently small  positive number; this follows f rom conditions (20) and 
from the continuity of the function Fo (5) and i t s  derivatives.  

For el we may naturally take any 

2 )  We choose a la rge  natural  number N ,  so that each of the numbers 

1 N ,  N ,  ..., 4 is l e s s  than e,. 

3 )  We choose p> 0 small  enough for the function 

'p (2) = p ~ ' + ~  (I- sin nNx . 
to be 6/2-close to zero  to rank r for  0 <%<e,. 
i 2  1 
- N ,  T ,  . . .. 
and that the functions ' p ( x ) ,  $(I), . . . , qdr) (2) vanish a t  the points x = 0 and 
x i  

Note that the numbers 

a r e  roots  of the function ' p ( x )  which lie in  the interval 0 < z < c i ,  

We now define the function F ( z )  as follows: 

F ( x ) = F o ( z )  for - -a<x<O;  
F ( x ) = ' p ( x )  for  0 < % < e l ;  

F ( X ) = F ~ ( ~ ) - - [ F ~ ( L ~ ) + ~ ( ~ - - ~ ~ ) + .  . . f~ F ( " ( e ~ ) ( x - e l p ]  for  e l < x < u .  

The function F ( I )  constructed in this way is readily seen to be a function 
of c lass  r which is &-close to rank r to the function Fo ( x )  and has  a t  least 
I roots in the interval ( 0 ,  e) .  

The function F ( I )  constructed in the above proof is of c lass  r, but in 
general  i t s  c lass  is not higher than r. 
there  exis ts  a P O  l y n o  m i a l  P (2) which satisfies all the  conditions of the 
lemma (i.e., a polynomial which is 6 -close to rank r to Fo (3) and has  a t  
least  I roots  in the e - neighborhood of 0). 

Theorem 5 that the roots  k, x, . . ., -$ are simple (structurally s table)  roots  

of the function F (I). 
polynomial P ( I )  which is sufficiently close to F ( x )  has a t  least 1 roots  for  
12 I < e, and thus sat isf ies  the requirements  of the lemma. 

This completes the proof of the lemma.  

It is readily seen, however, that 

Indeed, i t  follows from 
2 

But then, in virtue of the r e m a r k  to Theorem 5, any 

L 
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Note that Lemma 2 is a l so  valid for  r = 0. This means, in particular, 
that if the function F,, ( . r )  of c l a s s  k >  1 has  a simple root, x = 0 say, then 
for any e > 0 and 6 > 0 there  exis ts  a function F ( I )  (possibly a polynomial 
P (3))  u hich is 6-close to rank 0 to Fo (r)and whose roots  in the c-neighbor- 
hood of the point 0 a r e  more numerous than any chosen number. 
i f  c loseness  to rank 1 is required, F ( E )  will have only a single root in the 
neighborhood of 0 for  smal l  6 (see r emark  to Theorem 5). 
that the requirement of c loseness  to a cer ta in  rank is highly s ignsicant  in 
the definition of multiple or simple roots .  

D e f i n i t i o n  3. A root x = O  of the function F , ( x )  is  said to be of 
infinite multiplicity or not of finite multiplicity if either 

1) F,  (x) i s  a functicm oj. class r but not of class r + 1 (r>O) and 

However, 

This shows 

F o ( o ) = F ; ( 0 ) = .  . . = F b " ( O ) ,  

OY 
2) Fo (x) is differeniiable to any order over the releL-ant segment, and 

all deritvatires ranish .at the point 0. 
A root s = 0 of the-function Fo (I)  is  said to have a multiplicity higher 

than r (or to be a root of multiplicity > r ,  where r is  a natural number) if 
it has a finite nru1tiplii:ity r' > r  or  i f  it has infinite multiplicity. 

continuous function has  a definite, finite or infinite, multiplicity. Each 
root of an  analytical function which is not identically ze ro  has  a finite 
multiplicity. 

From Definitions 2 and 3 and Theorem 5 i t  follows that the root of each 

4. 
of functions 

Multiplicity of a root re lat ive to a given class 

In our  definition of a root of multiplicity r w e  assumed that a l l  the 
functions ( F ,  (x). F ( s ) ,  etc . )  were functions of class r ,  without imposing 
any fur ther  res t r ic t ions.  For cer ta in  purposes, however, i t  is worthwhile 
considering narrower = lasses  of functions. 

integer)  defined on the segment I x I <a. 
on the following groups: 

Let mqr 'be  the set  of all functions of class r (where r is a non-negative 
W e  will particularly concentrate 

1 )  the se t  211tk' of all functions of class k; 
2 )  the se t  Yl lA  of all analytical functions; 
3)  the se t  %of all polynomials; 
4 )  the se t  W, of all polynomials of degree Q n .  
Clearly, for  any n and k, 

W, c mp c W A  c 

hroreover, if R, e n2 and ki < k 2 ,  we have 

W,, c Wn2 and Fm'") c r"**'. 
We will now define r o o t  m u l t i p l i c i t y  r e l a t i v e  t o  a g i v e n  c l a s s  
m. 
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Ch.1. MULTIPLICITY OF ROOTS AND INTERSECTION POINTS 

D e f i n i t i o n  4. A root z = O  of a function F , ( x ) o f  class Fm is said to 
be a root of multiplicity r relative to the class w if (m c 1137~') and the 
following conditions are satisfied: 

(a) there exist eo > 0 and 6o > 0 such that any function F ( x )  of the class W 
which is &-close to rank r to Fo ( x )  has at most r roots in the interval 
I5 I < eo; 

(b) f o r  any positive F < e ,  and 6 there exists a function F (x )  of the class 
which is 6-close to rank r to F ,  ( x )  and has exactly r roots in the interval 

I Z l < & .  
If 1137 is one of the four classes above (Ijn'*), Sn,, IIJlp, and !Illx), conditions 

(17)  of Theorem 4, 

Fo (0) = F; (0) = . . . = FV-" (0) = 0, F t ' ( 0 )  # 0, 

are both necessary and sufficient for the root z = 0 of the function Fo (z) to 
b e a  r o o t  of  m u l t i p l i c i t y  r r e l a t i v e  t o  t h e  c l a s s  1137. 

(i.e., for  multiplicity relative to the class a) follows le t ter  by le t ter  the 
proof of Theorem 5. 

for the case IIJl = (m,, and r = n. 

Indeed, i t  is readily seen that the proof of sufficiency in this  ca se  

The necessity of conditions (17)  is also proved as in Theorem 5, except 
In this  case, the equalities 

Fo(O)=F;(O)= ... = F ( ' ) - O  0 -  

show that F o  (I) 5 0, which clear ly  contradicts condition (a) of Definition 4.  
It follows f rom the above that if F ,  ( E )  is a function of c lass  912, where W 

is one of the four classes 'J31,. % I p ,  %In, and x = 0 is a root of 
multiplicity r of this  function in the sense  of Definition 2 (i.e.> relative to 
the c lass  W'"), then z = 0 is a root of F o  (z) of multiplicity ' r  in the sense  of 
Definition 4 (i.e., relative to the c lass  (m), and vice versa .  
do not have to consider multiplicity relative to any of the above particular 
c lasses  of functions, and in all that follows root multiplicities are under- 
stood in the sense of Definition 2 .  

Therefore, we 

52.  
TWO CURVES 

1 .  Definition of multiplicity 

THE lLlULTIPLICITY OF A COMMON POINT OF 

Let F ,  (x ,  y) and F ,  (x ,  y) be functions of class k, 1 defined in some closed 

Consider the se t  of equations 
region of the plane (z,y). 

F,(x .  y) = 0, Fz (x ,  y) = 0. (1 1 
Let (C,) and (C,) be the curves  described by these two equations, 

respectively. 
i.e., 

Let equations (1) have a simultaneous solution zO, uo in z, 
Fi ( 2 0 ,  yo) = 0, Fz (Zo, Yo) = 0. 

14 



$ 2 .  hIL'LTPLLCITY OF A CO!.l~.lOS POIKT OF T W O  CCRVES 

The point M o ( q , ,  yo), which is a c o m m o n  p o i n t  o r  a p o i n t  o f  
i n t e r s e c t i  o n  of the curves  ( C , )  and ( C z ) ,  is invariably assumed to  lie 
inside the region b. R[oreover, we may take rO=yo= 0. This  assumption 
clear ly  does not detract  f rom the generality of our  argument.  

i .e.,  1 g r d k  (if  Fi and Fz are analytical functions, r i s  any natural  number).  

Saul to be a cotnmon point of ?nultiplicity r of these curz'es a~ a solution of 
t)iiiltiplicity r of equations (1 i i f  the folloichzg conditions are satisfied: 

(a) There exist eo :. 0,  6,, > 0 such that any two curres B, (I, y )  = U and 
F?(x ,  y) = 0 ,  ic!iere P, and F2 are functions of class r ,  bo- close to rank r to 
FI arid F 2 ,  respectirely, hare at tnost r co))it)zoti points in U,, (Mo). 

cD2 ( x .  y), 6-close to rank r to F ,  (x. y) aizd F? ( E .  Y), such that the ciirres 
@I ( x ,  Y )  = 0 a d  Q2 ( x ,  51) = 0 hare exactly r co))it)zon points in ue (&Io).  

An intersection point of multiplicity 1 is called a s i  m p 1 e or 
s t r u c t u r a 1 l y  s t a b  1 e point of intersection of curves  (C,) and (C?). 

A common point MO of two curves  (1) is said to be m u  1 t i p  1 e or 
s t r u c t u r a 1 l y  u n s t a b 1 e if i t  is not a simple intersection point. Note 
that a common point of two curves  is not necessar i ly  of finite multiplicity. 
Consider the following example. 

Let FO (z) be a function of class r which is not a function of class r +  1 and 
let F,(O)=F;(O)= ... =C'(O). 

d i s  chosen as  some bounded closed region with O ( 0 ,  0)  as i t s  interior 
point. 

Consider t\vo curve:;: 

Let r be a natural  niimher not g rea t e r  than the c l a s s  of F ,  and F P ,  

De f . in  i t i  on 5. A conztnon point M o  (0 ,  0)  of the ciirres (C, )  and (C,) is 

(b) Fov any 6 and E < ( 6  > 0 ,  E > 0) there exist fiinctim2s @, (I. y )  and 

y=O, ~-FO(Z)=O.  (2  1 

O.(O, 0 )  is a coninion pcmint of these curves.  
numbers,  1 some natural  number,  and F (z) a function constructed as in  
Leninia 2 (F1. 3) ,  i.e., a function which is 6-close to rank r to Fo ( x )  and h a s  
a t  least  1 roots  in the interval I x I < E .  

Let E and 6 be any two positive 

The curves  

y =o, y - F ( z )  = 0 ( 3 )  

are then 6 -close to rank r to the respective curves  in ( 2 )  and have a t  l eas t  
1 conimon points in Lf, (0). 
does not ha\-e a finite riuitiplicity. 

i s  said to be  a n  intersection point of infinite multiplicity. 
coninion point O ( 0 ,  0 )  of two curves  is said to be of multiplicity higher than 
r ei ther  i f  it has  finite multiplicity r' > r o r  if i t  h a s  infinite multiplicity 
(see Definition 3, 5 1). 

The intersection point O ( 0 ,  0 )  of curves  ( 2 )  thus 

If  a conimon point 0'' two curves  does not have a finite multiplicity, it 
Finally, a 

2. 
of two curves  

Condition of simplicity fo r  a n  intersection point 

LVe Nil1 now consider the necessary and sufficient condition for a n  
intersection point of two curves  to be a s imple (structurally stable) in te r -  
section point, i.e., a coninion point of multiplicity 1. 
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Ch.1. MULTIPLICITY OF ROOTS AND INTERSECTION POINTS 

T h e o r e m 6 .  The intersection point 0 (0, 0)  of two curves 

Fl (J, Y) = 0 

FZ (5, Y) = 0 

(Cl) 

(CZ) 

i s  of multiplicity 1, i .e.,  simple (structurally stable), if and only if 
. Fi,(O, 0) Fi,(O, 0) (4) = I Fi, (0, 0) F;, (0, 0) l+o. 

P r  o o f . 
Suppose A,,= 0. 
and Pz (5, y) be polynomials which satisfy the following conditions: 

F , ( J ,  y), respectively; 

We will f i r s t  show that A. # 0 constitutes a necessary condition. 
Let E and 6 be some positive numbers. Let further PI (x, y) 

1) PI@, y) and Pz(z, y) are 6/2-close to rank 1 to the functions F , ( z ,  y) and 

2) P i ( 0 ,  o)=  0 ,  Pi,(O, o ) =  G ( 0 ,  o), Pi,(O, o ) =  FI”(0,  0 )  ( i  = 1,2). 
These polynomials exist by Theorem 2, S1. Two cases are possible: 

(a)  a t  least  one of the numbers  P L ( 0 ,  0), P; , (O,  0 ) ,  P L ( 0 ,  O ) ,  P i u ( O ,  0)  
does not vanish; (b)  all these numbers are zero.  

have the fo rm 
Fi rs t  let u s  consider case (a). The polynomials P ,  and P2 in this case 

Pi (z, Y) = A i s +  B,y  + C l i  + . . . . 
Pz (5, Y) = A z J +  Bzy+ C~Z’  + . . . . 

4 Bi where A - 1  
not vanish. For example, let B , #  0. Then either Bz# 0 o r  A 2 = B 2 =  0. 
Consider the polynomials 

B z  I = 0, but a t  least  one of the coefficients A I ,  B,,  A,, B, does 
O- A, 

Fl (x, y) = AIJ + B I Y  + aif + C1s2 + . . . = PI (5, v) + alz, 

FZ (x, Y) = 4 s  + BZY + a@ + CZJ‘ + . . . = PZ (I, v) + a z x  

and the point M ,  (5,. -&z,), where s,# 0. 

a2 so that the two curves  

We choose the coefficients a, and 
B,  

p, (x, y) = 0 and & (J, y) = 0 

pass  through the point MI. Clearly a, and a2 should satisfy the equations 

a,q + c,z; + . . . = 0, 
a z q  + czz; + . . . = 0. 

Dividing through by J, (xi # 0), we get 

a, = -C,q - . . . , a2 = -C ,2,-. . . 

Thus a, and a, a r e  uniquely determinable and can be as smal l  as desired 
for sufficiently smal l  2,. 

inside U, (0) and for  the polynomials PI (J, I/) and PZ (J, g) to  be ?-close to 

PI (2, y) and Pz (5, y). respectively (and hence, 6 -close to the original functions 

We choose 5, smal l  enough for  the point MI to lie 
6 
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F ,  (s, y) and F2 ( x ,  y), re:.pectively). 
= 0 have a t  least  two common points in U e  (0), namely the point 0 and the 
point MI. 
F I  (2. y) = 0 and FZ ( x ,  y)= 0 in case (a)  is not a s imple (s t ructural ly  
s table)  intersection point of these curves.  

Then the curves  pt ( r ,  y) = 0 and PZ ( x ,  y) = 

This c lear ly  signifies that the intersection point 0 of the curves  

In case (b), when 

Pi, (0, 0) = P i v  (0, 0)  =Pi, (0, 0)  = P;v (0, 0)  = 0, 

w e  reason along the same  lines as in case (a), but the previous point 
now chosen a s  MI (x , ,  0). 

is 
The number 3, is chosen so that the polynomials 

6 are -close to the polynomials P I  and Pf, respectively, and the curves  

pi (5. Y) = 0 and PZ ( x ,  y)= 0 pass  through the point kf. 
not a simple point ot curves  (C,) and (C2). We have proved that the condition 
S = 0 is necessary.  Tne sufficiency of this condition follows directly f rom 
Theorem 4, if  we a s sume  that the functions F , ,  F2 and F , ,  FZ of that theorem 
are dependent on x and y only (see r emark  to Theorem 4). This completes 
the proof. 

w e  may take them as the polynomials Pi and P?. 
P ,  ( x ,  y) and P, (r,  y) constructed in our  proof of the necessity of condition (4 )  
are of the s a m e  degree as the polynomials F, and FZ respectively. 

It follows f rom condition (4)  that if  O ( 0 ,  0 )  is a simple 
intersection point of curves  ( C , )  and (C2), the angle between these curves  
a t  the point 0 is other  than zero,  i.e., the curves  are not tangent to each 
other a t  this point. 

R e  m a r k  3.  A simple (structurally s table)  intersection point 0 ( 0 ,  0) 
of the curves  ( C , )  and (C:!) has the following property: there  exist E O  > 0 and 
60 > 0 such that if the functions cD1 ( x ,  y) and ~ D z  ( r ,  y) are &,-close to  the 
functions F ,  ( r ,  y) and F2 (s, y). respectively, the curves  

Thus again 0 ( 0 , O )  is 

R e  m a r  k 1. If the original functions F, (z, y) and Fz ( x ,  y) are polynomials, 
Then the polynomials 

R e  m a r k  2. 

CD, (5, y) = u and (D2 (z, y) = 0 

have exactly one intersection point in U, (0) and this intersection point is 
also simple. hloreovei-, regard less  of how smal l  E < E~ is, So can be made 
sufficiently smal l  so that this  intersection point fa l ls  inside C', (0). 

Theorem 6. 
The validity of this  r e m a r k  follows directly f rom Theorem 4 ($1. 2 )  and 

3. 
of t w o  curves  

Condition of duplicity for an  intersection point 

We have established the necessary and sufficient condition for  a root of 
a function to be of multiplicity r (Theorem 5). 
necessary  and sufficier-t condition for  an r-tuple intersection point of two 
curves  in the general  ca se  (any natural r )  is far f rom being so elementary, 

The derivation of the 
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Ch. I. MULTIPLICITY OF ROOTS AND INTERSECTION POINTS 

and it is therefore not considered here.  
condition is given by Theorem 6. 
d o u b l e  i n t e r s e c t i o n  p o i n t  oftwocurves,  or a n  i n t e r s e c t i o n  
p o i n t  of  m u l t i p l i c i t y  2 ,  which is often used in what follows. 

For r = 1 the corresponding 
We wi l l  now derive the condition for a 

As before, w e  consider two curves 

Fl(2, Y) = 0, Fz (x ,  Y) = 0 

with a common point O ( 0 ,  0). 
c lass  2 in C. 

T h e o r e  m 7. A common point 0 (0, 0)  of the two curves F1 (5, y) .= 0 
and F2 ( x ,  y) = 0 i s  a double intersection point if and only if the followtng 
conditions are satisfied: 

F,  and F2 a r e  now assumed to be functions of 

F i x  (0, 0) Pi, (0, 0) 1 = o; (a) 
" = I Fix (0, 0) F;, (0, 0) 

(b) at least one of the elements in the determinant A. i s  other than zero; 
(c) the number x = 0 i s  a double root of the function Fz (2, cp ( x ) ) ,  where 

y = cp ( x )  i s  the solution of the equation F ,  (x, y) = 0 fm y in some sufficiently 
small rectangle I x I g a ,  I y (this solution exists and is unique in virtue 
of condition (b) and the themem of implicit functions; also cp (0) = 0). 

If F ; ,  (0, 0)  = 0, but some other element of A,, does not vanish, condition 
(c)  should be appropriately reworded. 

P r o o f .  1) Necessity. 
Theorem 6. We will now show that condition (b) is necessary.  
that this condition is not satisfied, i.e., 

Condition (a), A. = 0, is clearly necessary by 
Suppose 

F i x  (0, 0) = Fi, (0, 0) = F i x  (0, 0) =Fi, (0, 0) = 0. 

Let e and 6 be some positive numbers. By Theorem 2, there  exist  
6 polynomials Pi (z, y) and Pz (2, y), %-close to rank 2 to the functions F,  and F a ,  

respectively, such that 

Pi (0, 0) =Pix  (0, 0) =Piv (0, 0) = 0 ( i  = 1. 2) 

(if F ,  and F ,  a r e  polynomials, P, and PZ are identified with F1 and F z ) .  
polynomials Pi and P, a r e  written in the form 

The 

Pi (z, y) = 4.9 + 2Blry + Cly* + . . . . 
Pz (x ,  Y) = A d  +2B,q/+ Cay' + . . ., 

where the omitted t e r m s  are al l  of higher than second order .  
The r e s t  of the proof proceeds along the same lines a s  in Theorem 6. 
Consider the two polynomials 

Pl(G Y) ==%E + Blll + P1(.. Y). 

(.z, Y) = aaz + 8261 + Pz (r. Y) . 
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Lye choose aI. P I ,  u2, 8 2  so that the curves  PI (2. y) = 0 and F2 (I, y ) =  0 pass  
through two fixed points Aft (11, 0) and NI (0,  Y I )  (21 # 0, yl f 0). To this end, 
the following equalities should be  satisfied: 

and 

Uividing through by 11 and yt, respectively, we express  a; and as 
polynomials in zI and y, without a free t e r m .  The numbers  a, and P i  there-  
fore go to z e r o  for 3, -+ 0 and y, & 0, and we can choose x1 and yI so smal l  

that the polynomials -close to rank 2 to the polynomials Pl 

and P, and therefore  6-close to  rank 2 to the functions FI (I ,  y) and FZ (I. y). 
I f ,  moreover,  I z1 I < E ,  [ yl I < E ,  the curves  Bl ( I .  y) = 0 and P, (I, y) = 0 have 
at leas t  3 common points in  c', (0):  these are 0 (0, 0), MI (I,, 0), and N1 ( ( 1 .  y,). 
This c lear ly  proves that the common point 0 af curves  (C,) and (C,) i s  of 
multiplicity higher than 2. 
a l so  necessary.  

of the equation 

0 and Fz are 

&.e have thus established that condition (b) is 

Let u s  now proceed with condition (c). Let y = q (I )  be  the unique solution 

Fl(3, Y) = 0 

in some sufficiently smal l  rectangle/s l<a,  \ylL<fi, such that I(p(z)J<p. Let 

e (2) = F? (". 'F (I)). (5)  

Since ~ ( 0 )  = 0, w e  have 0 ( O ) =  0. Now,  using the equality 

w e  readily see that 

i .e. ,  e ' ( O ) =  0 in virtue o f  condition (a). 

of the function 0 (2). 

the equality 0" ( 0 )  = 0.  
point 2 = 0 are expressed in t e r m s  of the par t ia l  derivatives (up to 
corresponding o r d e r s ,  Lnclusive) of the function F1 ( I ,  y)  a t  the point 0 (0, 0 )  
and the derivatives of the function 0 (2) a t  the point 0 are expressed in t e r m s  
of the partial  derivatives of F1 and F? a t  O ( 0 ,  0). 

positive number smalle.: than 61 on which additional res t r ic t ions w i l l  now 

be iniposed. 
rank 2 to the functions Fl (2, y) and F? (2. y ) ,  respectively,  such that the i r  
values and the values of their  derivatives to second o r d e r  inclusive at the 

Suppose that condition (c)  is not satisfied, i.e., z = 0 i s  not a double root 
Since 6 ( O ) =  e ' ( O ) =  0, this assumption is equivalent to 

Note that the derivatives of the function rp (I) at the 

-3 Let  T be a Thus, let 6" ( 0 ,  0 )  = 0 .  \t.e choose some  E > 0 and 6 > 0. 

Consider the polynomials P I  (2, y) and P P  (2. y),b,-close to 
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point O ( 0 ,  0) coincide with the respective values of the functions F f  ( x 9  g) and 
F z  (2, y) and their derivatives a t  that point (see Theorem 2). By Theorem 3 
(the theorem of a small  increment of implicit functions), if  &i1 is sufficiently 
small ,  there  exis ts  a function y = $ ( x )  which is the solution of the equation 

Pl (2, Y) =o 
for  y in the rectangle 1 %  I d a ,  I y 
function 9 (2) becomes sufficiently close to rank 2 to 'p (z) for  I z Iga ,  and 
the analog of 0 (x),  the function 

We choose 81 so small  that the 

Y (4 = P2 (5, tp (4)* 
becomes sufficiently close to rank 2 to the function 

e (2) = F~ (x ,  MI. 
Clearly I# (0) = y (0) = 0. The derivatives $' (O), I#" (0), y' (0) and y" (0) are 
expressed in t e r m s  of the par t ia l  derivatives of the polynomials Pi and PE 
(to second order  inclusive) a t  the point O ( 0 ,  0). Seeing that the values of 
these derivatives coincide with the corresponding values of the derivatives 
of F ,  and FZ, we readily conclude that 

9' (0) = 9' (0) 7 

y' (0) = e' (0) = 0, 
I#" (0) = cp" (O), 
y (0) = e" (0) = 0. 

y ( x )  is clear ly  an analytical function. 
I x \<a a r e  common points of the curves Pi (x ,  y) = 0, PI (z, y) = 0, i.e., in 
any neighborhood of 0 (0,O) these curves have an infinite number of common 
points. 

the form (since y (0) = y' (0) = y e  (0) = 0) 

If y ( x )  E 0, all the points (%,I# (I)) for  

Now suppose that y (5) is not identically zero.  Then i t  can be written in 

y (z) = 2?a) (4. 

where k, 3, and Q, (0) # 0 (see S1,  (19)). 
Consider the polynomials 

Let 

7 (z) = B2 (5, $ ( x ) )  = a1r + a$' + d ~ ,  (3. 

F ( x )  is a l so  an analytical function. 
lemma w e  know that for any c, > 0 and 8 ,  > 0 we can choose two numbers 
al # 0 and a2 # 0 such that the polynomial pz (3, y) is 6-close to rank 2 to the 
polynomial P a  (z, y) and the equation 

By Lemma 1, S1, and Remark 2 to the 

Y"(x)=O, 

apart  f rom the root x = 0, has  a t  least two more roots  z1 and x2,  1 xt I < ti, 
I z2 I < 8,. This choice of a,, a2 ensures  that the polynomials B, and pz are 
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8-close to rank 2 to the functions F1 and FZ, respectively, and the 
curves 

have at  least  th ree  common points, 

such that if  E,  > 0 is sufficiently small ,  -MI and -VI2 lie in U e  (0). 
however, that 0 (0, 0) is not a double intersection point of the curves  (C,) and 
(C?). The necessity of condition (c) is thus established. 

The polynomial P2 in this  case is of the s a m e  degree as the polynomial F : .  

satisfied. Since Fi , (O.  O ) # o ,  by Theorem 3 for  any 6,>0 we can find b o > O  
such that i f  the functions Fl(r, y) and P,(s, y) are 6,-close to  rank 2 to the 
function F1 and Fz in c, the following holds true; 

Izl,<a, Iyl-<p, and @(z)is &-close to rank 2 to  cp( t ) for lz l<a;  

O ( z ) = F ? ( r ,  ~ ( 3 ) )  for  Izl<o:. 

Therefore, there  exis ts  E ,  > 0 such that for  sufficiently sma l l  6, the equation 

This  means, 

Note that if F ,  and F? are polynomials, they can be used as PI and P?. 

2 )  Sufficiency. Let conditions (a), (b), and (c)  of Theorem 7 be 

1) the equation Fl (3, y) = O  has  a unique solution y=<(z) in the rectangle 

2 )  the function 6(z)=Fz(z, <(z)) is 6-close to  rank 2 to the function 

In virtue of condition (c), x = O  is a double root of the function 0 ( 1 ) .  

6(z\=0, i.e., ZZ(z, ( p ( r ) ) = O  

has  a t  most two roots  which are smal le r  than F, in magnitude. 
positive number smal le r  than e, such that Lfe , (0 )  is entirely contained in the 
rectangle (z1Sa.  I y l S < B .  
k', and k'? are 6,yclose to  rank 2 to F ,  and Fz, respectively, the curves  

Let eo be a 

Then, if do is sufficiently smal l  and the functions 

F,(z, y)=O and Fz(z, y)=O 

cannot have more  than two common points in U , , ( O ) ,  i.e., condition ( a )  of 
Definition 5 of the duplicity of point 0 is satisfied. 

i.e., for any positive & < e ,  and 6 there  exis t  functions PI and F2, 6-close to 
rank 2 to the functions PI and F2,  such that the curves 

It now remains  to show that condition (b) of Definition 5 is a l so  satisfied, 

F,=O and F 2 = 0  

have two common points in C T e ( 0 ) .  
Consider the functions 

and 

For these functions clear ly  6 = cp (z) and 
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C h a p t e r  I I  

DYNA.ZIIC SYSTEiZlS CLOSE TO A GIS'EN SYSTEJI 
AND PROPERTIES OF THEIR PHASE PORTRAITS 

I NT RGDU C T ION 

All the resu l t s  of this  chapter directly follow from the theorems of 
continuous dependence on the initial conditions and the right -hand s ides .  
Although of no intrinsic significance and almost trivial, these resu l t s  a r e  
absolutely essent ia l  for a r igorous treatment of the main mater ia l .  This 
background chapter con.;ists of two sections. 

In 83,  6 - c l o  s e s y :s t e m s are defined and the relevant theorems of 
continuous dependence are stated (Theorems 8 and 9). Some propert ies  of 
regular  mappings are considered. The next section, §4, considers  in te r -  
sections of paths of c lose sys tems with arcs and cycles without contact; it 
is established that the behavior of the paths of system (A) which is 
sufficiently c lose to system (A) relative to a r c s  (or cycles )  without contact 
is on the whole s imi la r  :o the behavior of the paths of the original sys tem 
( A ) .  The reader  who is interested in following the main line of argument 
can skim through this chapter, omitting the proof of the var ious l emmas  
and concentrating only on the relevant statements. The r eade r  must 
acquaint himself, however, with the concepts of e - c 1 o s e r e g i o n  s 
(Definition 7 ) ,  ? - t r a n s l a t i o n  (Definition 8) ,  and e - i d e n t i c a l  
p a r t  i t  i o n s  of  t \ \  o r e g i o n s  i n t o  p a t h s  (Definition S), which are 
introduced in this chapter. 
partition into paths - is the most significant: i t  is used in the definition 
of s t ructural  stability, which is the main subject of the book. 

The las t  of these definitions - e-identical 

§ 3 .  CLOSENESS OF SOLUTIONS. REGULAR 
TRANSFORRIATION OF CLOSE SYSTERIS 

1. Theorems of c loseness  of solutions 

We will consider syst 'ems of differential equations (dynamic sys t ems)  of 
the form 

These sys tems are defined in a bounded region G of the plane ( x ,  y); they 
are often considered, however. only in some closed subregion G* of G. 
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Ch.11. CLOSE DYNAMIC S Y S T E M S  

System (A) is said to be a system of c lass  k or  of analytical c lass  i f  P and 
Q a r e  functions of class k or analytical in G .  

Consider two systems defined in G, 

and 

which both belong to some cltss k o r  are both analytical. 

in G ( m C  *) ifthefunctions P and 0 in G (m E *) are 8 -close to rank r to P 
and Q ,  respectively (see Definition 1, Sl). 

De f i n i t i on  6 .  System (A) is said to be 8 -close to rank T to system (A) 

Let 

P(,Y)-~(,~Y)=P(I,Y), O ( G Y ) - - Q ( G Y ) = ~ ( ~ ,  v). 

The functions p (2, y) and q (z, y) a r e  the i n  c r e m e n  t s of the right-hand 
sides of system (A). 
wi l l  cal l  them 6 - i n c r e m e n t s  of r a n k  T .  System (A) considered in 
conjunction with (A) is called m o d i f i e d (relative to system (A)), and is 
sometimes written in the form 

If these functions a r e  8-close to r3nk r to zero, w e  

Inwhat follows, i f  s y s t e m  (A) i s  6 - c l o s e - t o  r a n k  1 t o  s y s t e m  
(A), w e  s h a l l  s i m p l y  s a y  t h a t  s y s t e m  (A) i s  6 - c l o s e  t o  
s y s t e m (A), omitting the qualification "to rank 1." 

(A). 
Let v # 0, 
95.1). 
small  6 .  Indeed, 

Consider two vector fields defined by system (A) and a 8-close system 

(see QT, Appendix, 
At each point M (I, y) of G two vectors a r e  defined, v ( P ,  Q) and @, 0). 

# 0, and let f3 be the angle between v and 
It is readily seen that this angle is infinitesimal for sufficiently 

and for 
is positive (close to + I). 

Let u s  now formulate for these systems the theorem of continuous 
dependence of solutions on the increments of_the right-hand s ides  and on 
the initial values. 

and 0 which a r e  close to P and Q sin 0 is close to zero while  cos 13 

Let the systems (A) and (A) be defined in G. Let 

z=cp(t---to, 20, Yo), y=$(t--to,  so, Yo) (1) 

be the solution of system (A) corresponding to initial conditions to, xo,  yo. 
Solution (1) is defined for a l l  t in some interval T < t < T .  

be two numbers, such that 7 < T, < to < r 2  < T. Let L be the path c o r r e -  
sponding to solution (1). 

Let T, and TZ 

Let the segment of L corresponding to the values 
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of t ,  7 ,  < f g r ?  be completely contained in the closed region G * (c* c G), and 
let 

- -  
be the solution of systeni (x) corresponding to the initial conditions to ,  q, yo. 

T h e o r e m  8. Far  m y  e > 0 ,  there exist q>0and 6>0, such that if 
I )  ~ ~ o - ~ o ~ < q ,  l&-yol-=‘f; and 2) system (A) is  b-close to sys t em(a) in  G*, 
solution ( 2 )  of system (8) is defined fm all t .  ~ l , < t , < ~ ~ ,  and in this time 
interral - c -  

( c p ( ! - t o , x o o , y o ) - c p ( t - - t o ,  X o r y o ) [ < e ,  

$@--to, x; d- 9(1--10, Z o t  yo)I<e. 

Theorem 8 is a particular case of Theorem 2 f rom subsection 1 in 
the Appendix. 

R e m a  r k . Since the functions c p ( t - t o ,  .to, yo) and 9 (t  - to, io. yo) are 
continuous, and are therefore uniformly continuous in t over  the segment 
q <  t , < T z r  Theorem 8 clear ly  can be strengthened as follows: for  any 
e > 0 ,  w e  can choose q > 0 and 6 > 0 such that i f  in addition to conditions 1 
and 2 above w e  also have condition 3 )  I t’ - t” I < q (t’ and t’ are any two 
values f rom Irl, T ~ I ) ,  ther. 

17(t”-to, 20, y”o)-cp ( t ’ - - to.  Io7 Yo) I<€, 
JC(t”--to, &y”o)-9rp(t’-to, 2-0, Y O ) I < € .  

Theorem 8 can a l so  be formulated in geometrical t e rms .  

Let L be a path of system (A), M0 and MI are the points of this path 

This  formula-  
tion is particularly convenient for  what follows. 

corresponding to t o  and f l ;  the arc MoM1 of L is completely contained in a 
closed region e* (a* cG). M ( t )  represents  the point of L which corresponds 
to time t .  
corresponding to t ime t .  

G e o m e t r i c a l  f o r m  o f  T h e o r e m  8. F o r m y e > O ,  there exist 
q > 0 and 6 > 0, such that if system (A) is 6 -close to system ( A ) i n  C *  and 
the path 2 at f = to passes through the point ,q0 E U, (Ma) ,  the corresponding 
motion along E is uniquely determinable for  any t ,  t o < t , < t l ,  and f a r  these 
t ,  d ( t )  E U, ( M  ( t ) ) .  In particular 3, = h? (fl)  E U, (MI) (Figure 1). 

bounded region, F c G. Consider the solutions 

Similarly, a (e is the point of the path d o f  system (xi) 

The next theorem is a generalization of Theorem 8. Let F be a closed 

2 = c p ( t - - t o -  207 Yo), y = * ( t - t o ,  Z O ,  Yo) 

of system (a) corresponding to var ious points MO (xo, yo) of region F .  
Suppose that each solution ( 1 )  is certainly defined in a closed interval 
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2. E -Closeness of regions. Lemmas  of regular 
transformation 

In this subsection we formulate two propositions concerning the 
substitution of var iables  in sys tems of differential equations. 
is elementary and i s  therefore  omitted. , 

The proof 

F i rs t  w e  have to def me the concept of E -c loseness  of regions. 
D e f i n i t i on  7. The closed regions GI and 4 are said to be E -  close 
I) each point in GI is distant less than Efro)ti G,, and cont.ersely each 

2) each boundary point of G, is distant less than e f rom the boundary 
point in G2 i s  distant less thun E from G,; 

of C2, and cont~ersely etzch boundary point of 6? is distant less than E froin 
the boundary of 8,. * 
-11 E G,, p ( M ,  f Mf)) < e, regions 

Clearly if  G2 is the image of 

Consider a regular  transformation of var iables  of c l a s s  k + 1 

under a topological mapping f and for  any 
and c2 are e-close. 

u --‘F ( X .  y). c = * ( x ,  y). ( 3 )  

which is defined in some region of the plane (.r, y) (see QT, Appendix, S 6 . l ) .  
We say  that this transfcirmation is (E-close to rank r (r ,<k  f 1) to the identity 
transformation 

u = x  , u=y. (4) 

if the functions q (I ,  y) and $ ( x ,  y) in this region are &-c lose  to rank r to the 
functions 3: and y. respectively. 

Suppose that transformation ( 3 )  is considered in an  op?n domain G, and 
GI is a closed bounded region, 6 ,  c G. Let 

x = f ( u ,  r ) ,  y=g(u, c) (5 1 
be the inverse of transformation (3) .  
transformation (3) .  

and the compactness of c, clear ly  show that if transformation (3)  is 
sufficiently c lose to rank r to the identity transformation (4), t ransfor -  
mation (5) in 

8: is the (u. c) image of GI under 

Theorem 4 (the theorem of a smal l  increment of a n  implicit function) 

is arb i t ra r i ly  c lose to rank r to the identity transformation 

x = u,  y = L’. 

If the plane ( u ,  L.) coincides with the plane (z, y) and the axes  x and y coin- 
cide with the axes  u and c ,  respectively, i.e., if  the point .\I* (u, c) is in fact 
a point in the plane (+, y) with the coordinates u, u (relative to the system of 
coordinates defined in t nat plane), then, transformation (3)  being 6-close 
to the identity transformation, we immediately conclude that a: is 6,-close 
to z,, where 61 = v/z6. 

Consider a dynamic system of class k 

SimpIe examples will show that conditions 1 and 2 are independent. 
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Ln.11. CLOSE DYNAMIC SYSTEMS 

defined in domain G of plane (2, y). 
transformation (3)  of c lass  k f 1: 

We apply to this sys tem a regular 
I 

p* (% 4 = 9; (f (% % g 

Q* (ut v) = 9; (f (u, v), g (a, u ) )  P (f (ut v), 

v)) P (f (4 4, g(u, 4) + 
(u, v)) + 

+ 9; (f (u. z 9 ) v  g ( ~ 9  v)) Q (f (u, v), g (u, 4)- 

+ qb (f (u, g (u, 4) Q (f (u, v) 8 0)). 

(A*), l ike (A), is clearly a system of c lass  k. 

notation, we write system (A*) in the form 
Treating u,  u as coordinates in the plane (x, y) and reverting to previous 

(A* ) dx - = P* (5, y), dt -$- = Q* (x, g). 

Let F, c G be a closed bounded region, and GT i t s  image under (3). 

matim (3 is 6 -close to rank k -+ i to the identity transfmmatia in G, then 
G : c G  and system (A*) in 9 is  6-close to rdnk k to system (A). 

Now consider two systems"of c lass  k defined in G (at this stage, it  does 
not matter whether this region is closed o r  open): 

L e m m a 1. For any e > 0, there exists 6 > 0 such that if transfm- 

I 
- 

(A) 2% = P (x, Y), 

- = P ( x ,  dt Y), -;i i-=Q(x, Y). (A) 

dv 
= Q (x ,  y). dt 

d.t du - 

and let  

u = v ( x ,  y), v = * ( x .  El) (3) 

be a regula: transformation of class k + 1. 
to (A) and (A), we get 

Applying this transformation 

-= du dt  P* (4 4, x = P  dv (u, 4 (A* ) 

du dv 
(X* 1 -= d* p* (u, VI, dt = P (u, v) 

and 

which a r e  both systems of c lass  k defined in G* (G* is the image of G under 

F m  any e > 0 there exists 6 > 0 such that if system (A) is 
(3)) .  

L e m  m a 2. 
8-close to rank k to system (A) in  G, then the system(A*) i s  e-close to 
rank k to system (A*) in G*. 
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$3. REGL'L.AR TRA?iSFORhl.4TION OF CLOSE SYSTEMS 

In conclusion of this section, we consider some s imple par t icular  cases 
of increments  to right-hand s ides  of a given sys tem (A), which are often 
encountered in what follows. 

Consider two sys tems defined in G: 

The s ine of the angle 0:' between the direction of the-field described by 
system (A) and the direztion of the field of sys tem (A) a t  any point in  G is 
expressed by 

The angle 0 is positive a t  any point where PQ-QB>O, i t  is negative if  
PG-Qp<O; wherever PG-QP=O the f ie lds  of sys tems (A) and (A) are either 
paral le l  (0=0) or antiparallel (e=n), so that a t  the relevant points the paths 
of sys tems (A) and (A) a r e  tangent to one another. 

Consider increments  of the form 

P = - p f Q y  q = + p f P ,  (6) 

where f = f (z, y) is some function of the same  class as the functions 
Q (z, y), P (z, y), and p is a parameter .  
bounded, then for  sufficiently sma l l  p, p and q-are evidently a rb i t ra r i ly  
smal l  (to some rank r )  increments. 

If the relevant region is closed and 

System (A) then has  the form 

In particular, consider the case f = 1. Then the modified system is 

x = P - p Q ,  d r  -$$=Q+pP, 

The sine of the angle-@ betureen the directions of the field of system (A)  and 
the field of system (A) is expressed by 

In our  par t icular  case ( f  E l), the angle between the fields of (A) and (A) 
is constant everywhere in the region, 

We say in this case that t h e  f i e l d  o f  s y s t e m  (A) i s  r o t a t e d  
t h r o u g h  a c o n s t a n t  a n g l e  r e l a t i v e  t o  t h e  f i e l d  o f  

'The angle between two ordered vectors is defined as the angle not exceeding 180' through which the first 
vector should be rotated so as to coincide with the second vector. 
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Ch.11. CLOSE DYNAMK SYSTEMS 

s y s t e m  (A), o r  alternatively, that increments of the form ( 6 )  for f = 1 
produce a rotation of the field through a constant angle.':: 

system (A) and vice versa. 
L e m  m a 3 .  

P r o o f . 

The states of equilibrium of system (7 1 are those of 

System ( 7 )  is in equilibrium at  any point where 

P - p f Q  = 0, p f P  + Q = 0. (11) 

Since (1 1 ) is a system of linear homogeneous equations for P and Q and the 
determinant of this system 

-;fI=i+pf. 

does not vanish for any x ,  y, equations (11) can be satisfied if  and only if 

p (5, Y) = Q (5, v) = 0. 

i.e., if  and only if  the point x ,  y is a state of equilibrium of system (A). 
This completes the proof. 

S4. 
WITH ARCS AND CYCLES WITHOUT CONTACT 

1. 

INTERSECTION OF PATHS OF CLOSE SYSTEMS 

Intersection with one a r c  without contact 

This section presents a number of elementary, almost self -evident 
propositions which a r e  analogous to those discussed in QT, 53. 
difference-is that together with system (A) we wi l l  also consider modified 
systems (A). 
they will be given detailed proof. 

The main 

Since these propositions a r e  repeatedly used in what follows, 

Consider a system of class k 

(A) dt ~ = P ( - G  Y), +=Q(G Y), 

defined in G, and let c* be a closed region, Q c G .  The modified system 

(m d r  -= dt  p " ( G Y ) ,  - $ = B ( x . y )  

is also defined in G .  
Consider an a r c  I or  a cycle C ,  which a r e  without contact for a path of 

system (A) completely contained in g*.  The following self -evident 
proposition is given without proof. 

system @)in  8*, the arc I (the cycle C )  i s  without contact for paths of 
system(A), and these paths make with arc 1 (cycle c) an angle of the same 
sign (see QT, Appendix, 55.5) as the paths of system(AX 

L e m  m a 1 .  There exists 6o > 0 such that if system (A) is 8,-close to 

* With increments of this form, the field vectors of system (A) are not only turned through a constant angle 
but also stretched in a ratio of J/v. W e  are concerned only with directions, however. 
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$4. LNTERSECTIOh {IF PATHS WITH ARCS AivD CYCLES \VITtiOCT CONT.ACT 

To simplify fur ther  formulations, w e  will now introduce the concept of 

D ef i n i t i  o n 8. The inapjing f oj' a set E in a tnetric space R into the 
e - t r a n s l a t i o n .  

sattie space is called E-translation* i f  f i s  a topologkal mapping and i f for  
each point J I E E  the dislance beticeen the original and the image is  less 
than P ,  p (M, f (31)) < E .  

respectively, H c G ,  
then the same system is considered in two different subregions of G ;  
alternatively, €I and may coincide). 

D e j i  n i t i  on  9. A partition of H b y  the paths of system ( A )  and a 
partition oj. i7 by  the paths of systetti (A) are said to be E - identical, or in 
sytribols 

lvow consider sys tems ( A )  and (A) in regions H 5nd k (closed or open), 
C G  (in particular, ( 4 )  and ( A )  may coincide, and 

(If, A ) & @ ,  .T), 

i j  there exists a ttiappiiig of H onto 2 which is an E - translatz'pz and tohich 
transforms the paths 0,'. systein (A)into the paths of systein(A).** 

i f  these partitions have the same  topological s t ruc ture  and are "distorted" 
o r  "translated" one relative to the other by an  amount less than E .  

ensure  €-identity 

Thus, the partitions of H and 3 by the paths of ( A )  and (x) are €-identical 

To 

( H ,  A)&((r7, 1). 

H and should be horr.omorphic and E -close to each other .  Noreover ,  i t  
i s  necessary that the partitions of these regions by the paths of the c o r r e -  
sponding sys tems have the same  topological s t ruc ture  (see QT, 15, 
Definition V). 
in general, since even if they are satisfied, there  may prove to be no 
topological mapping of H onto a which conserves  paths and is a t  the same  
t ime an €-translation. 

of system (A) ,  is defined by the paramet r ic  equations 

These necessary conditions, however, are not sufficient 

Now suppose that the arc 1 ,  which is an arc withoat contact for  the paths 

z = i ( s ) ,  Y==g(S)* 

w h e r e  a s s  4 b. f (s) 
and g (s) are continuous1.y differentiable continuous functions. Let 1 3 ~  > 0 be 
the number introduced in Lemma 1, i.e., such that for  a l l  modified sys tems (-a do-close to system ( A )  in 8* (8* c G ) ,  th_e arc 1 is an  arc without contact. 
We will only consider modified sys tems ( A )  which are &-close to system (A) .  

According to the definition of an  arc without contact, 

* The term e-translation is generally understood in a wider iense. Indeed. 8-translation is defined as a 
continuou.? mapping (not n e e  isarity topological) which translates each point of the set by less than e. 
However, we will have opportunity to use this concept only in relation to  topological mapping;, and 
therefore in what folIows e-translation is understood in the restricted iense of Definition 8.  

** A mapping which transforms paths into paths is given in QT (15. Definition V). 
mappinz. such that any two points of a path of system (A) are mapped into points of one path of system (x), 
and any two  points of a path of system (A) are mapped by the reverse mapping into two points of one path 
of system (A). 
m a p p i n g  w h i c h  m a p s  p a t h s  i n t o  p a t h s  or more briefly a p a t h - c o n s e r v i n g  m a p p i n g .  

This is a topological 

In QT this mtpping iscal led an i d e n t i f y i n g  m a p p i n g .  We wilI refer to it as a 
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Let 

x=cp ( t  - t o ,  5 0 1  Yo), Y =  9 ( t - - o ,  SO? Yo) 

be a general  solution of system (A) and 

- - 
x=cp(t--to. t o ,  Yo). I / = Q ( f - - l o ,  20, Yo) 

Then the equations a general  solution of system (A). 
+ = c p ( t - t o ,  f ( s ) ,  g ( s ) ) = @ U ,  4, Y=$(t--to.  f (4, g ( s ) ) = Y ( t ,  4 

and respectively 

- 
s=cp((t-fo), f (s), g ( s ) ) = 6 ( t ,  s), u=$((t- to) ,  f (4. g ( s ) ) = Q ( t t  4 

for any fixed sL a < s < b ,  a r e  equations of that path of system (A) (and 
respectively (A)) which for t = to c r o s s e s  the a r c  I a t  the point (j (s), g (s)) 
(i .e. ,  a t  the point of the a r c  I which corresponds to the given value of the 
parameter s). 
that 

According to the definition of the functions cp, 9, @, 6 w e  see 

- 
Q, ( t o ,  s) = Q, ( t o ,  s) = f (SI, Y ( to ,  s) = f ( t o ,  s) = g ( s ) .  (5) 

Now suppose that a t  any point Mo (zo, YO) of the a r c  1 (to = f (s), go = g (s). a d s < b )  
solution (1) is defined for a l l  t ,  to<f,<T (s), * where T (s) is a continuous 
function (in particular,  it may be a constant), and that the corresponding 
a r c  of the path is completely contained in G* and has no common points with 
the a r c  1 ,  except Mo. Evidently, under these conditions, the functions 
CD ( f ,  s), 'Y ( f ,  s) a r e  a pr ior i  defined everywhere in the closed region 

a < s < b ,  t,<t,<r(s). ( 6 )  

By QT, 51.3 ,  Lemma 5, the functions Q, and '4 have continuous f i rs t -order  
partial  derivatives in region (6). which are expressed by 

t @;v, s ) = d ( t - - t o ,  f(49 g ( s ) ) ,  
Q,: ( t ,  s) = cp;, ( t  - t o ,  f (4, g (s)) f '  (4 + 'pio ( t  - to* f (4. 8 (4) d (s), 

'Yi ( t ,  s) = 9; (t  - tor f (4, g (s)), 
% ( 4  S ) = 4 G o ( 1 - - o ,  f(4, g(S)) f ' (S)+$P;o(~-- fo ,  f (4, g ( s ) ) g ' ( s ) .  

(7) 

Further ,  by QT, 53.5 .  Lemma 8, equations (3 )  

x =  Q, ( t ,  s), I/ = Y ( t ,  s) 

define a regular mapping of region ( 6 )  onto some closed region Kin  the 
plane ( x ,  g) with the a r c  I a s  par t  of i t s  boundary (see Figure 2; region (6) 
is shown in Figure 3). 
contained in @. 

In the light of our assumptions, region K is 

* Or for all t ,  to  > t > 7 (z). This case is analyzed precisely in the same way. 
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gE 

54 

FiCCrRE 2. FIGL'RE 3 

L e m  m a 2. For any e > 0, there exists 6 2 0  such that if the system (A) 
is 6-clo:e to (A)  in G*, the functions 6 (f, s) and Y ( t ,  s) cmresponding to 
system (A) are defined in region (6), hace continuous f i r s t -  order partial 
derittatices in this region, and are &-close there to the functions Q, ( t ,  s) and 
Y ( t ,  s). 

The proof of this  lemma follows directly f rom Theorem 9 (§3)  and from 

L e m m a  3. (a) There exist 6 > 0 and h > 0 such that the system i s  
Appendix, subsection 1, Theorem 3. 

6 -close in b to systew(A!, the mapping 

(4  x = 6 (t .  s), y = F (t ,  s) 

is  a regular mapping of the rectangle 

a<s ,<b ,  It--t,l,<lr (8 ) 

in the plane ( t ,  s) onto the closed region K" in the plane (x ,  y), and R i s  entirely 
contained in @. 

the transformation 
(b) Let K be a closed region which is the image of rectangle ( 8 )  under 

x = D ( t ,  4, Y=Y(t, s), (3  ) 

corresponding to the rrinitiglrr system(A). For any e > 0 ,  there exists 
8* > 0 such that if system <A) is 6*-close to ( A )  in @, I? i s  E -close to K .  

mapping (see QT, Appendix, S6.1), we have to prove that an  appropriate 
choice of6>Oand h > Owill make (4) a one-to-one mapping in rectangle ( 8 )  
and that everywhere in this rectangle 

P r o o f . Let u s  fir st  prove (a). According to  the definition of a regular 
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Ch.11. CLOSE DYNAMIC SYSTEMS 

By QT, 53.4, Lemma 3, there  exis ts  ho > 0 such that the mapping (3) 
is regular  in the rectangle 

a,<s,( b,  I t - to I<ho. (10) 

Hence, a t  any point ( t ,  s) of the rectangle ( lo) ,  the determinant 

has  the same sign. Suppose that this  sign is positive. Then a t  any point 

remembering that the rectangle is compact and the elements  of the 
determinant A are continuous, we conclude that there  exist q > 0 and u > 0 
with the following property: 

if  

I From the las t  relation and Lemmas 1 and 2 i t  follows that there  exis ts  

I and s i ( i  = 1, 2, 3, 4) satisfy (11), 2 is an arc without contact for the paths 

f o r  which (4) is not a regular  mapping of the rectangle (8) into the plane 
(z, y). As 6 and h we choose any two numbers satisfying the inequalities 

6 < 8 0 ,  h<ho,  h < % .  (13) 

This_ choice clear ly  does not detract f rom the generality of our argument. 
@ and Y a r e  single-valued functions. Now, by (12). 

in rectangle (10) and hence also in  rectangle (8). 
is not regular  only if i t  is not one-to-one, i.e., i f  in  rectangle (8) there  is 
a t  least  one pair of different points (t', SI) and (t", SI) which are mapped 
under (4) into the same point of the plane (z, y). i.e., such that 

Therefore mapping (4) 
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Xpplying Taylor 's  expansion to these equalities, w e  see that 

Gt ( t l ,  SI) ( t ' - t")  + 8): ( t l ,  SI) (s'-s*) =o, 
Ti(!?. SZ) ( 1  - t " ) + R ( t 2 *  s * ) ( s ' - s J ' ) = O .  ( 1 5 )  

whsre t ,  and t2 a r e  numbers lying between t' and t', and si and s, are 
numbers  lying between s'and s". We will now show that I s '  - s" I S G .  

i f  I s' - s" I <,.T, w e  have I sl - .s2 I < u. Fur thermore ,  I fl - t2 I < I t - t' I < q 
and I tt - to I < ko.l t 2  - t3 I < ho by (13). 
fied, and by ( 1 2 )  

Indeed, 

Hence, inequalities (11) are sa t i s -  

The las t  equality sh,3ws that system (15) considered with respect  to 
t' - t". s' - s" has  a nowanishing determinant, i.e., t' = t". .s' = s*. This  is 
at variance with the s tar t ing assumption that (t', s') and ( t " . s " )  are two 
different points in the rectangle (8). 

Let u s  consider two sequences of positive numbers  ht and h i ,  i = 1,2, .  . ,, 
satisfying conditions (13), such that lim&,=limki=@. 

if proposition (a)  ,of the lemma is not t rue,  then for each pair  6i and k, there  
exis ts  a system ( A i )  which is &;-close to system (A) and a pair of points 
(t:. si). (t:. s;) such thatIsI-s;I,oand 

Hence I s' - s" J > u .  

We have seen that 
I - =  i+= 

(16) 
- 

;D i  ( t L ,  Si) =ac ( t i ,  s:), vi ( t i ,  s;) = Y, (f:. s;), 

u-here 
\ t ; - f o ( < h i  - 0  andiff-), ( h i - 0 ,  we have limtl=limtl=to. 

can pick out  suitable srbsequences, so that si and s: can always be made 
to converge. Let lims;:=sA, lims?=s;. Clea r lya<s ;g t ,  a < s ; < b .  and [ s ~ - s ~ l b > u ,  

From the definition of ib, and qi and by Theorem 8 ( 8 3 )  together with the 
r emark  to that theorem. we obtain the equalities lim&i (t i ,  s;) -4, (to, s;) and 

lim&,, (t; ,  s ; ) = ( D ( t , ,  s;) and s imilar ly  for  'Yi. 

(16), w e  get 

and ?L a r e  the functions corresponding to sys tem (xi). Since 
If necessary w e  

z--.. ,-a 

&-I ,*= 

I - *  

Therefore ,  taking the limit in 
2 - *  

or, f rom (5), 

These relations are a t  variance with the inequality Is:-& 120. 
tion ( a )  of the lemma is thus proved. 

which completes the proof of the lemma.  

smal l  arud the sys tem (A) is 6-close in g* to the system (A), the paths of 
system (A)  which meet a t  t = to the arc 1 (a rc  without contact) have no 
common points with the arc I for  a l l  other values of f .  t i  t o ,  I f - co I<h. 

Proposi-  

The validity of proposition (b)  follows directly f rom Theorem 9 (§3) ,  

R e  m a r  k . It follo.w_s directly f rom Lemma 3 that i f  6 > 0 is sufficiently 
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01.11. CLOSE DYNAMIC SYSTEMS I 
Let now MO ( X O ,  YO) be an interior point of the a r c  1 ,  corresponding to the 

L e m  m a 4.  For any e > 0 ,  hO> 0, there exist q > 0 ,8  > 0 which satisfj 

intersects 

value SO of the parameter  s (a < so(b) .  

the following condition: 
some point in U, (Mo) ,  and L" i s  the path of system (A)  which at t = to passes 
through the point M, then f o r  some t* ,  I t* - to I < ho, the path 
the arc 1 at the point M 4 ,  such that the arc MM* of the path f; is entirely 
contained in U. (M,) (Figure 4) .  

system (A) i s  8 -close to_systei m (A)  in *, 
! 

M is 

FIGURE 4 FIGURE 5 

P r  o of. Fix e > 0 and ho > 0. Without loss  of generality w e  may take 
U. (Mo) C G*. 
the values of the parameter s,so - crgs,<so + a, is completely contained in 
U, ( M o ) .  
that there  exist  8 > 0 and h, O < h < h o ,  such that the mapping 

Choose u > 0 such that the par t  of the a r c  I corresponding to 

By Lemma 3 (a), using the continuity of a l l  the functions, we see 

s=tD(t, s), y=Y((t ,  s), (3)  

corresponding to system (A), and also the mapping 

(4) 
- 

z=a,(t, s), y=f#((t, s), 

corresponding to any system (A) which is 6-close to system (A) in @, a r e  
regular in the rectangle 

in 
pli 

the 
sne 

onto a 
, is evj 

. closed region H (or g) 

.dently an interior point 
in the 
of H 

and 17. 
Lemma 3 (b), 8 can be cosen so small  that a is +-close to H. 
boundary of is $-close to the boundary of H .  

positive number smaller  than G .  
U, (Mo)  is completely contained in each region I?. 

Let r be the distance of M o  f rom the boundary of H (Figure 5). By 
Then the 

For '1 we can take any 

Indeed, if q < 5, it is readily seen that 

But then f rom the 
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54. INTERSECROX OF PATHS W I T H  ARCS A N D  CYCLES WITHOCT CONTACT 

definition of r? and the inequality h < ho we conclude that the par t icular  q and 
S that w e  have chosen satisfy the condition of the lemma.  

the arc without contact I which is contained entirely in 1 (i .e.s  the end-points 
of the a r c  i. do not coincide with the end points of I ) .  Then for any E > 0 and 
h 7 0 theEe exist q > 0 and 6 > 0 which satisfy the following condition: if 
system (A)  is 8 -close to sys tem (A) in E*,  N is any point whose distance 
from the_arc 1 is less tnan q (i.e., Jf E L', ( I ) ) >  and E is the path of the 
system (A) which a t  t = to passes  through the point .V3 then for  some f* ,  
IF - t o  ) < h ,  the path 
XM* of the path E is en:irely contained in U ,  (A). 

rhe validity of this proposition can be established in the usual way by 
reductio ad absurdum, using Lemma 4 and the compactness of the arc 1. 

A s  before, let the arc without contact 1 lie inside the region 6*. Con- 
s ider  some inter ior  point .If0 (so, yo) of this region which does not belong to 1 .  
Let the path L of system (A) pass  through the point -)fa) a t  t = t o .  and at  
t = T i- toit  c r o s s e s  the arc 1 a t  a point M ,  which is not an end-point of the 
arc 1 .  
(Figure 6). 

Q. E. D. 
R e  m a r k  . Lemma 4 ban be generalized as follows. Let i. be a par t  of 

i i t e r sec t s  the arc 1 a t  the point M*, and the arc 

Moreover, let the a r c  M o X  of L be entirely contained in G* 

L e m i n a  5 .  F m  any e>O, h>O, there exist q > O  and d > O  such that if 
systein ($1 is a - close to system (A) in E*, .go E U,, (.wd, and is the path of 
systein (A)zuhich at t = t o  passes through the point;M,, then at some t=G the 
path L crosses the arc I at the point M so that (a) I T - z I c h ;  (b) z%€Uc(~vf);  
(d the arc ROL% of the path Z is Contained entirely in G+; (d) i j  I.r'-tol< 
< I r - t o ( ,  then i @ ( t ) c U c ( M ( t ) )  fm all tc[?,  to]; if, on the other hand, l>-tol, 
>17--t01, then . @ ( t ) € U , ( M ( t ) )  for all t c [ z ,  to] and the arc of the path L coyre- 
sponding to t E I;, T ~ ]  i s  entirely contained in U. ( M  (z)) * (Figure 6 ) .  

Lemma 5 is an  obvious corol lary f rom Theorem 8 ( 8 3 )  and Lemma 4. 
R e  m a r  k . Lemma 5 can be generalized like the preceding lemma {see 

remark  to  Lemma 4). 
each path which a t  t = to passes  through the point Mo (q, yo) of this  se t  inter  - 
sec ts  a t  some t = 7 (30, y,) the a r c  without contact 1 a t  the point M (zo, yo), always 
remaining inside G until the intersection point is reached; then for given 

Indeed, consider a compact se t  F i n  G* such that 

* Here,  as i n  the following. M ( t )  IS the point of the path of the relevant system which corresponds to the 
time t for the particular motion chosen along the path. 
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e > 0 and h > 0, the numbers q > 0 and 8 > 0 entering Lemma 5 can be chosen 
independently of the point M o  E F ,  and wi l l  thus satisfy the lemma i r r e spec -  
tive of the particular point Mo E F that is taken. In what follows, the compact 
set  F is generally identified with some a r c  without contact 1’ which has no 
common points with the a r c  1 .  

(t, s) and q ( t ,  s), were 
considered only for  t such that t - to I<ho, where ho > 0 is some sufficiently 
small  number. 
Q ( t ,  s) and Y ( t ,  s) a r e  determined for a l l  t and s in the closed region 

In Lemma 3 the functions Q, ( t ,  s),Y ( t ,  s), and also 

Let u s  now again consider the case when the functions 

a,<s,<b, to<t ,<7(s) ,  * ( 6 )  

where 7 (s) is a continuous function. We assume, as before, that for all 
t and s f rom this region, (0 ( t ,  s), Y (f, s)) E G * and that if to < ~ Q T  (s) and s, d 
a r e  any two numbers from [a ,  bl, at  least  one of the following two inequali- 
t ies  is satisfied: 

Q ( t?  s) # Q, (lo, s’), YJ ( t ,  s) # y (to, s’), 

i.e., any path of system (A) defined by the equations 

x=cp(t--to. f(sh g ( s ) ) = Q , ( t ,  4, y = $ ( t - t 0 ,  f(s), g ( s ) ) = y u ,  SI, ( 3 )  

has no common points with the a r c  1 for t going f rom to to T (s), except the 
one point a t  t = t o .  

We have noted above that under these conditions equations (3) define a 
regular mapping of the region (6)  in the plane ( t ,  s) onto some closed region K 
in the plane ( x ,  y) (Figure 2). 

8 -close in G* to system(A), the functions a ( t ,  S) and f ( t .  s) are defined in the 
region ( 6 )  and the equations 

Consider the following lemma. 
L e m  m a  6 .  F m  any e > 0 there exists 8 > 0 such that if system (A) is 

x=&((t ,  s), y = Q ( t ,  s) (4  1 

describe a regular mapping of (6 1 onto some closed region R ,  4 c G*, such 
that the regions K and K are e-close. 

region (6)  is regular,  since the other propositions of the lemma a r e  
contained in Lemma 2. 
suffices to show that the paths of aqy system (A) which i s  8-close to  the 
system (A) have no common points with the a r c  1 for f f rom the interval 

P r o o f  . It suffices to show that for small  6 the mapping ( 4 )  of the 

To establish the regulzrity of the mapping (6), it 

t o  < t ,< ‘C (S). 

By Le_mma 3, there  exist  8% > 0 and h > 0 such that the paths of any 
system (A) 6,-close to system (A) which intersect the arc I at  t = to have 
no common points with this a r c  for t f rom the interval to < tQto  + h .  
Here h can be taken arbi t rar i ly  small. Let to + h < 7 (s) for all s, aQ’s<b. 
6, > 0 is chosen so small  that a l l  the conditions of the lemma, pop ib ly  
except the regularity of the mapping, a r e  satisfied for systems (A) which 
a r e  b,-close to (A).  

* Or t o  t > ‘F (J). Condition (6) is used without loss of generality. 

35 



SI 

Consider the region 

a S s , < b ,  t 0 i h 4 t S z ( s )  (17) 

in the plane ( t .  s) (the cross-hatched part of Figure 7).  
particular choice of 6, a.nd h ,  mapping ( 3 )  maps this  region onto some closed 
region H in the plane (.r. y) a t  a positive distance from-the a r c  1 (Figure 8). 
If 6 > 0.6 < 6, is sufficiently small ,  and the system (A)  is 6-close to  the 
system (A), mapping ( 4 )  maps the region (17) onto region ?i which is suf- 
ficiently c lose to H and therefore has  no common points with the arc 1 .  
Since b < SI, 6 clear ly  sat isf ies  all the conditions of the lemma.  Q. E. D. 

Because of the 

2. 
without contact 

Pa ths  of c lose sys tems between two arcs 

Let u s n o w  consider the intersection of the paths of sys tem (A) and of 
system (A) c lose to (A) with two a r c s  without contact. 
l emmas  . 

which lie in G* and have no common points. 

We will prove two 

Let I ,  and 1, be two arcs without contact for the paths of sys tem (A)  
Let 

x=fl(S),  Y=i?t(S) 

be the paramet r ic  equa.tions of the arc I , .  Suppose that the path of 
system (A) which a t  t = f~ passes  through the point (f, (s), g, (5)) of the arc I ,  
in te rsec ts  the arc l 2  a t  some f = T (s); the part of this  path corresponding 
to t f rom the interval t o . < t t , < T  ($1 iS entirely contained in G* and has  no 
conimon points with li 01' 12> except i t s  two end-points (to fix ideas, we 
take T (s) > t o ) .  

therefore bounded function of s. Let MI and M z  be any two points of the 
arc I , ,  other than i t s  end-points, corresponding to the values si and s2 of the 
parameter  s, a < sI < s z < b .  Let fur ther  the paths L ,  and L2 that pass  through 
the points Mi and M 2  a t  t = t o  meet the arc l2  a t  the points N ,  and N 2  for  
TI = 'F (SI) and T Z  = T (s?), respectively; IV, and N z  do not coincide with the 
end-points of 1 2 ,  ei ther .  
5 3 . 6 ,  Remark 2 to Lemma 10) limited by the segments  MIMz and Nl.Vz of the 
arcs I ,  and 1 2  and by the segments  MINl and M2:Vn of the paths. 
our  assumptions, I' c G* (Figure 9). 

In QT, 5 3 . 6 ,  Lemma 9 i t  has  been shown that T (s) is a continuous and 

Let r designate an elementary quadrangle ( see  QT, 

Because of 
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FIGURE 9 

L e m p a  7. Foranye>Othereexist  q>Oanda>Osuch thatif 

(a) if a, and 

system (A) is  a-close to system (A)then I ,  and I ,  are arcs without contact 
for the paths of system(A), and m m e m e r  

are kwo points of the arc I t  whichJie in U, (M,)  and U ,  (hi2), 
respectively, and 2, and z, are the paths of system (A)  which pass through 
these points at t = to, the paths z, and E2 at t > to intersect the m c  1, at points m, and H2 which lie in U,(N,) and U, (Nz), respectively, and the sec t ip s  
i@ffli and 2,zz of these paths, together with the sections Hi&2 and N,R2 of 
the arcs 1% and I ~ ,  delineate a region I’ which constitutes an elementary 
quadrangle f o r  system(A); 

to the elementary quadrangle r. 
(a) the elementary quadrangle F i s  entirely contained in I? and is  e-close 

P r  o o f . Consider the transformation corresponding to system (A): 

r = c o ( t ,  s), y = Y  (f, 8 ) .  (3)  

By assumption, (P and Y a r e  defined for a l l  f and I satisfying the 
inequalities 

I 

I 

I 

to< t <T (4, aQ 8 Q b, (18) 

and for  all these t and s the points ((P ( t .  s), Y ( t .  s)) belong to  G*. 
Lemma 3, it  is readily seen, however, that the t interval in (18) always 
can be somewhat increased; therefore,  there  exis ts  a cer tain ho > 0 such 
that the functions 

By QT, 53.4, 

and Y a r e  also defined for 

u , < s , < ~ ,  t o < t , < ~ ( ~ ) + h o  (19) 

and for a l l  these values of the parameters  the points ((P(f,s),Y ( t ,  s)) lie in G*. 
The points ((P ( t ,  s), Y ( t ,  s)) for which siQs4s2, T (s) < t< T (s) + ho evidently lie 
outside the elementary quadrangle r, Le., these points and the interior 
points of l2  close to I’ lie on the two s ides  of the a r c  La. 

h>O, h<ho ,  there  exist  6 > 0  and q > O  such that l i  and la are a r c s  without 
contact fo r  any system (A) which is a-close to sys tem (A) in c?*, and 
moreover:  

. - < t < ~ ( ~ ) + h ~ )  and for these values of the parameters  they are e-close to the 
fuqctions (P and Y, respectively, the points ( g ( t ,  s). q(t,  8 ) )  lying in G*; 

By Lemmas 1,2,5 and r emark  to Lemma 5, we see that for  any t > O  and 

1) the functions & i t ,  s), ( t ,  s) a r e  defined for all t and I ( a < s g b ,  to< 
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2 )  if  .\I(j1(s), gl (s)), sl,<s,<s2 is a point of the section .M11Z12 of the a r c  I ,  
L is the path of system (A) passing through this  point a t  f = t o r  .V is the point 
of the path L which bel.sngs to the section .V1.l; of the arc It. and corresponds 
to the t i E e  7 ( s ) ,  .$(;) is a point of the arc I , ,  .@€C,(M), 
system {A) which a t  t =: to  passes  through the point .<I (Figure- 9), then the 
path 
in L;,(.V) (Figure 9). 

is the path of 

- -  - ^  

c r o s s e s  the arc I? a t  f = T ( s ) ,  I? (S ) - -Z(S) (  ( h  a t  a point .S which l ies  

Let gl(T2) be the value of the parameter  s corresponding to the point 

It follows f rom (I) ,  in particular, that the paths t, and 
.r?, (&). 

of system (A) 
passing through the po:ints Aol E c', (M,) and .G-EDT, (.M2), respectively, meet 
the arc l2 a t  the points . ~ l € U z ( . S l )  and .T2CLre(-S2). 
before in Lemma 62 we can show that if 8>0 is sufficiently small ,  each 
path E of sys tem (A), which. a t  t = t o  in te rsec ts  the arc I ,  a t  the point 
$I ( I ( ; ) ,  g G ) ) ,  :I,<;,<&, and meets  the arc I? a t  f -T(s), has nq common points 
with I ,  and I? for  intermediate values of t ,  f o < t < G ( s ) .  But then the region 

limited by the sections . ~ l .~z , - . i l . ~ t  of the arcs 1, and I? and by the section2 
. ~ , . T l ,  .o#? of the paths L ,  and L? is an  elementary quadrangle of sys tem (A). 
Pa r t  (a )  of the lemma is thus proved. 

is E-close to the elementary quadrangle r and T c G+ follows directly f rom 
Theorem 9 ( § 3 . 1 )  and f rom proposition 2 above. 
of the lemma. 

R e  m a r k  . 
between . I f t  and .%Il. 

Moreover, arguing as  

- -  

That for  the given choice of 8>0, 

This  completes the proof 

Let -\I; and be any two points of the arc t1 which lie 
By Lemma 7 i t  is readily seen that if,6 > 0 is 

sufficiently smal l  and sys tem (A) is S-close t,o 
system (A), the arcs of the paths of sys tem (A)  
lying between the par t  M;M; of the arc II and the 
corresponding section of the arc l 2  belong to the 
elementary quadrangle I' of the original sys tem 
(A) (Figure IO). 

"r' W e  will prove another lemma which per ta ins  
4 to elementary quadrangles r and F made up of 
a, r, paths of t,"o sufficiently c lose dynamic sys tems 

FIGI'RE 10 (A) and (A). 
what follows. We re ta in  the same  notation as 
before. Let s land s2, a < s l < s 2 < b ,  be the values 

of the parameter  s along the arc I t ,  corresponding to the points MI and M2r 
2, and 7, the values of s corresponding to the points fi, and %?(al E c', (.+Il), 
.Q, E U, ( M ? ) ,  q > O  is sufficiently small). 
of the path Li ( i  = 1,2) which is par t  of the boundary of the quadrangle r 
correspond to t values f rom the interval t,,<t,<r (st), and the points of the sec - 
tion *@iJTi of the path 2, ( i  = 1,2) which is par t  of the boundary of the quadrangle 

Consider a topological mapping 'p of the section M i N i  of the arc II onto 

This lemma is repeatedly used in 

Then the points of the section M i N i  

correspond to t values f rom the interval t ~ < < f < ~  ( s i )  (Figure 9).  

the section f i I ~ *  such that 'p (MI) = fiTl, 'p ( M 2 )  = &,. 
the l inear  mapping defined by the equation 

A suitable mapping 'p is 

- - 5 - 5  - s-s2 s = s , d + q  - sz-sl s , - s 2 '  

where s is the value of the parameter  in the equations of the arc 1, c o r r e -  
sponding to some point M f rom M I M z ,  ?nd 2 is the value of the same  
parameter  corresponding to the point M which is the image of the point M .  
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The mappings cp of the a r c  M1M2 onto the a r c  M , M z  are not res t r ic ted to 
linear mappings of the form (ZO), and in what follows other cases  wi l l  a lso 
have to be considered. 
the form 

The general  mapping can obviously be expressed in 

- 
s = 0 (s), 

with equation (20)  considered a s  a particular case.  
sion of the mapping cp is not given, we will always define it by equation (20). 
however. 

system (A) i s  6 -close in G* to system(A), and the distance between any 
point M of the section M , M 2  of the arc I ,  and its image 'p ( M )  is less than 9, 
Le., p ( M ,  'p (MI )  < '1, then there exists a path-conserving topdogical mapping 
T of the elementary quadrangle r onto P (also conserving the direction of 
motion along the paths) which coincides along the section MiMz of the arc L, 
with the mapping 'p and is in fact its &-translation. 

Every point P (z, y) of the elementary quadrangle r lies on the 
path L of system (A)which a t  t = to passes  through the point M Cf, (s), g, (5)) of 
the a r c  1, .  The numbers 
t ,  s can be regarded a s  curvilinear coordinates of the 2oint P E I?. Here s 
varies  f rom st to s2. If s is fixed, t varies  f rom to to 7 (s), and the point P 
t r aces  the section M N  of the path L (Figure 11). 
of the point P a r e  x ,  g, and 

If the explicit expres-  

L e m,m a 8. For any e > 0 there exist 6 > 0 and 9 > o such that if 

P r o o f . 

Let the point P (5, y) correspond to some time t .  

The Cartesian coordinates 

x = a , t ,  s ) = ' p ( t - - t o ,  f ( 4 ,  g ( s ) ) ,  
?/='Y(t. S ) = S ( t - - t o ,  f (SA g ( s ) ) .  

Similarly the point P"(z, 3 of the elementary quadrangle 
correspond to the curvilinear coordinates 7, G, ;i<G<& to<;<<; G), and 

can be made to 

c I-- - - c  
r = c D ( t , s ) ,  v= 'P( t ,  s). 

N 

"/---I: 'I 
FIGURE 11 

We wi l l  now define new curvilinear coordinates A, I in the elementary 
quadrangle r : 

S=S, t = t o + k ( ' C ( S ) - f o ) .  

If s is fixed (st<s<s2) and h varies  f rom 0 to 1, the point P t ravels  along the 
entire section MN of L .  In the elementary quadrangle F w e  introduce new 
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coordinates i, by the analogous relations 

-4s t goes f rom to to G G ) ,  

point P (k, s) of the quadrangle is mapped onto a new point T ( P )  = p ( c  6, where 

X a l so  va r i e s  f rom o to 1. 
Let u s  nou find the inlapping T of thequadrangle r ,  assummgthat  each 

- - 
s.=u)(s) .  h- i . .  

n other words, a point P with the Cartesian coordinates 

2 = @ ( t o  3- (5  (S) - t o ) ,  S), y = 'Y ( t o  j- k (T (9) - t o ) ,  S)  

s nlapped under T into a point P with the Cartesian coordinates 
- -  - I 

z = @ ( C o + k ( T  (0 ( ~ ) ) - L O ) ,  0 ( S ) ) ,  ;= (r (a (s))--to)t a (s)). 

The mapping T defined in this way is clear ly  a one-to-one mapping of 
the quadr_angle r onto 1;; it maps the paths of sys tem (A) into paths of 
sys tem ( A )  conserving the direction of motion, and coincides with the 
mapping 'p along the section .1f,.112 of the arc 1 , .  It is readily seen that T is 
also a continuous mapping; this follows f rom the continuity of the functions 
'D. If' ,  6, (p, a, T, and (,the las t  two functions are continuous by QT, 53.6, 
Lemma 9 ) .  T is therefore a topological mapping. 

Finally f rom Lemma 2 and also from Lemma 5 and the corresponding 
r emark  i t  follows that i.f q > 0 and 6 > 0 are sufficiently small ,  then 
p ( P ,  7' ( P ) )  < e fo r  any P E r. This completes the proof of the lemma.  

sufficiently small ,  the parti t ions of the elementary quadrangles r and 
the paths of the corresponding sys tems are &-identical (see Definition 9).  

s a m e  notation and further assume that, apar t  f rom the mapping 'p of the 
section M , J f ~  of the a r c  1, onto the section dgl.fi2 of the s a m e  a r c ,  t he re  i s  
a l so  given a mapping a of the section ~ll,.V, of the path L ,  onto the section 
- ~ , . ~ ,  of the path z,, such that 

R e  m a r  k . It follows f rom Lemma 8 that i f  q > 0 and 6 > 0 are 
by 

We retain the The following lemma is a s t ronger  version of Lemma 8. 

- - 
a (W,) = MI, a (.VI) =.Yi, 

and a mapping $ of the section Jf2S2 of the path L2 onto the section .c2.v2 of 
the path z2, such that - - 

p (.)I?) = -112, $ (.VVc) = N 2  

(Figure 9) .  

systetn (A) is 6 -close to system (A) and the mappings 'p, a, a d  $ are 
q -  translatioris (Definition 8, 0 4 . 4 ,  there exists a path - conserving topo- 
logical wrapping T of' the eleiiientary quadrangle r anto lr"(iohich also 
consewes the directiov! o j  rktotion ) that coincides on the sections J1 ,X2 ,  .$I,.v,, 
arid M2SL. of the bounda,ry of the eletnentary quadrangle r with the wiappings 
'p. c*, and $, respectirely, and is  an &-translation. 

L e tn pi a 9. F m  at!g e > 0, there exist 6 > 0 arid q > 0 such that If 
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P r o o f . The argument constitutes a minor modification of the line of 
reasoning which established the proof of Lemma 8. 
lemma, we introduce a coordinate A varying f rom 0 to 1 along each section 
of the pa? of system (A) in r and along each se_cti_on of the path of 
system (A) in T. 
over introduce the coordinates p and ;. respectively, which vary f rom 0 to l 
and a r e  linearly related to the parameter  s: s=s, (1 - p) + s2p along the a r c  
M I M z  and s =';I (1 --p) +';,> along the a r c  iI?,&,. The mappings (p, a ,  and $ 
can be defined by the appropriate relations F=rp (p), x, = a ( I ) ,  = $ ( I ) .  (We 
use  he re  the same  notation (p'a. $. 
cause any confusion.) Here I1 is the value of the parameter  h on the path E ,  
at the point corresponding to the point I ,  on the path Lt (i = 1,2). 

As in the previous 

Along the sections M I M z  and MtMz of the a r c  li we more-  

This is not quite rigorous, but need not 

Clearly 

For T we take a mapping which maps the point ,P (x,!) E r defined by the 
parameters  p, I ( O & p & l ,  O&h<l)  onto the point P ( z ,  y) with the parameters  
p, 4 related to p and I by the equalities 

a (0) = p (O)=O, a (1) = p (1) = 1, rp(0) = 0. rp (1) = 1. 

- 
i; = rp (PI v h"= a (4 (1 - P) + B ( I )  P' 

In other words, the point P (z, y) E r with the coordinates 

= Q, ( t o  + (Si (1 --P) + SZP).), 8, (1 --PI + SZIL), 

($0  + Is (Si (1 -I4 + SZP), si (1 -PI +sap) Y = 

is mapped onto a point p ( z ,  3 with the coordinates 

~ = 6  ( t o + ~ a ( ~  (1-p) + B  (11) PI; 61 (1-q (PI) +sa9 (PI). 

Y = q ( ( t o + ~ a ( h )  ( ~ - P ) + B ( ~ ) P I ;  6 i  (1-q ( C L ) ) + ~ + ( P ) ) ,  

- - 
si (1-q (PI) +% 
st (~-vw)+&w)- 
- 

The mapping T defined in this way is readily seen to be a path-conserving 
topological mapping of the elementary quadrangle I? onto ?? which coincides 
with the mappings q,  a, B on the corresponding sections of the boundary. If 
now 6 and q a r e  sufficiently small ,  and Y can be made a s  %lose 5s  is 
needed to Q, and Y, a ( I )  and $ ( I )  to 1,; and a to p and I ,  and sl and 8 2  to s,and 
s2, respectively. But then for  sufficiently small  6 and q the mapping T is 
an e-translation. Q. E. D. 

rangle I? formed by the a r c s  of the paths of system (A), 
system (A), we will only consider modified systems (A) of one particular 
form, namely systems 

Retaining the previous notation, let u s  consider the elementary quad- 
Here, with 

(A 1 - 
d"=P d t  (S, Y), 2 = B  (z, Y). 

such that a t  any point of 61 which is not a state of equilibrium of system (A) 
we have 

P"QQP#O. (21) 

Thus, a t  any nonequilibrium point in 6 we have either P@-QF>O o r  
PQ-QF (0. 
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An example of such sys tems is provided by 9 3 . 2 ,  where we described 
sys tems of the form 

f ( 5 .  y) being a function which does not vanish in E'. 

equilibrium s ta tes  of s,ystem (A), the acgle between the direction of the 
field of sys tem (A)  and that of system (A) re ta ins  a constant sign. 

Condition (21)  c lear ly  indicates that a t  those points in c* which are not 

Together with the paramet r ic  equations of the arc I ,  

x = / I  (s), Y = R I ( S )  

w e  will consider paramet r ic  equations of the arc L? 

z=f2 (Z) ,  y=gz(S), Z,<546. 

The parameter  s along the arc I ,  is so  chosen that the paths of sys tem (A)  
intersecting the arcs I ,  and L2 make with these arcs angles  of the s a m e  
sign. This c lear ly  implies  that the determinants 

both have the s a m e  sign. 
to the case schematica.lly shown in Figure 12) .  

Suppose that D l  > 0 and D z  > 0 (this corresponds 

FIGL'RE 12 

Let and < b e  the values of the parameter  7 corresponding to the points 
.Vi and .V~,of the arc 1 2 .  

between 
Lo the path of sys tem (A) which passes  through the point -1.1, for t = t o ,  No the 
point a t  which the path L o  meets  the arc Zz for t = T (s,), so the value of the 
parameter  s corresponding to the point NO (F, < so < g). 
the path Lo clear ly  partitions the elementary quadrangle F into two elemen- 
ta ry  quadrangles rl and r2 and is par t  of the boundary of the two quad- 
rangles  (Figure 12) .  The points of the quadrangle rl (or I+,) are descr ibed 
by the coordinates 

Also let No be some point of the arc 1 ,  which lies 
and i V 2 ,  so the corresponding value of the parameter  s (sI < so < s a ) ,  

- 

The section M w V o  of 

x = @ ( t .  s), y = Y ( t ,  S), 
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where 

si ,< S Q  So. to Q t 4 5 (s) 

(or s o g s ( s z ,  t o < t < ~  (s), respectively). 
I't (r,) clearly includes the section NiN0(NoN1)  of the a r c  1, corresponding 
to the values g<<sgz (<gsgs2) of the parameter s. The sections M a 2  and 
N f 1 2  of the a r c s  I ,  and 12, respectively, l ie on the positive side of the path 
Lo and the sections M a ,  and N,&, fall on its negative side. 

Let S be some point of the section MOM2 of the a r c  I , ,  other than M2, 
and let S* be the corresponding value of the parameter  s. 

L e m m a 10. 
system(A) in @ and at any point in G* 

The boundary of the quadrangle 

Clearly, so<sL < sa. 
There exists 6 > 0 such that if system (A) is 6 -  close to 

PQ"-QP> 0,  (23) 

then any path L" of this system which at t = t o  meets the section MoS of the 
ayc 1, at the point A7 will cross the sectionNJf, of the arc l2 at the point 
at t = ; ,  so that the section I@@ of Z has no common points with the arcs 1, 
and I , ,  except its two end points, and is completely contained in the 
elementary quadrangle r2. A similar proposition holds true if the point s 
lies on the section MOMl of the arc I ,  and Pd-QF<O. In this case, the 
section f i f i  of E i s  entirely contained in the quadrangle P,. 

system (A)  is 6-close to system (A) and i t s  path 2; passes  through some 
point 2 of the a r c  MQS at t = t o ,  then at t =< the path 
some point 8 so  that the section M f i  of Z has no common points with the 
a r c s  1, and 1 2 ,  except i t s  end points, and is entirely contained in the 
start ing quadrangle r. 
ally satisfied, the section M f i  of 

Let T denote the parameter  (t ime) along the path 
it f rom the parameter  t of the paths of system (A)) .  
motion along the path L" is described by the equations 

P r  00:. By the r emark  to Lemma 7, there  exis ts  6>0 such that i f  

meets  the a r c  l 2  at 

We will now show that if inequality (23) is addition- 
is entirely contained in rz. 

(so as to distinguish 
The corresponding 

.=cp(T), y=$(O. (24) 

The section ~@fi of z is generated a s  T goes f rom to to ?G), where_ 2 is 
the value of the parameter  on the arc 1, corresponding to the point M. 
Because of the particular choice of 6 ,  this section of L i s  completely 
contained in the start ing quadrangle I'. Indeed, for  any T ,  t , g T g G ( r ) ,  

x=aI((t,s), y=Y((t ,s) .  

where s and t a r e  some numbers satisfying the inequalities 

si Qs<sz, to<t<T (s). 

This evidently means that the equations 

(D(t,  s ) = G ( T ) ,  Y(t, s )=$ (T )  

I 
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for any T f rom the inte.-val [ t o ,  T G ) ]  have a unique solution for f and s in the 
region (25) .  L V e  write this solution in the form 

t - t ( T ) ,  s = s ( T ) .  

ds Let u s  calculate z. Differentiation of ( 2 6 )  with respec t  to T gives 

The determinant of this  system is 

where 

Since by assumption D,>O, w e  have D<CJ and ( 2 7 )  is a C r a m e r  sys tem.  
Therefore,  

But 

Therefore 

Using ( 2 3 )  and the inequality D =  -Ill[ (0 we conclude that a t  any point of 

the section .G.y of the path L ,  i .e . ,  for all T, 

s ( T )  is an increasing function of T .  
for t o < T - i ; ( y )  a l so  s ( T ) > s o .  
.h"T of 
proof. 

The next lemma is concerned with a single arc  without contact, but the 
paths are assumed to meet it twice. 
points of the arc I ;  suppcse that any path of the system (A)  that mee t s  the 

dr _ -  
f , i T d T ( s ) ,  ,T>O, i.e., 

Since T = t , ,  s=s>s0,  we conclude that 
This evidently means that the en t i re  section 

t ies  inside the elementary quadrangle r2, This  completes the 

Thus, le t  MI and 3 f Z  be two inter ior  
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section M I M z  of the a r c  I a t  t = to c r o s s e s  the a r c  1 again at  some 
7 = 7 (s) > to. At the intermediate values of t ,  to < t < 7 (s), these paths, 

however, have no common points with the 
a r c  1 .  

Let the paths L, and Lz passing through the 
points M 1  and Mzs  respectively, c r o s s  the 
a r c  1 for the second time at  the points N l  and 
Nz, which a r e  again different f rom the end- 
points of the a r c  1 (if & or Lo is a closed 
path, M 1  and Nl, or respectively M Z  and N 2 ,  
coincide). W e  assume that the sections 
M 1 M 2  and NINZ of the a r c  1 have common 
points, i.e., they intersect,  since otherwise 
w e  could have reduced the treatment to the 
previous case of two distinct arcs without 
contact I ,  and l a .  

FIGURE 13 

Let Ct ( i  = 1,2) be a simple closed curve 
which coincides with the path L,  if this path is closed; otherwise, this 
simple curve is made up of a section M f N l  of the path Lf  and a section M I N ,  
of the a r c  1 (Figure 13; compared QT, 53 .9 ) .  

curves C1 and GI. This region, together _with its boundary, is entirely 
contained in G*. As before, let system (A) be 8-close in z* to system (A) 
and let  8 > 0 b,” so small  that the a r c  1 remains  an a r c  without contact for 
the paths of (A). 

Let g1 be a point of the a r c  I ,  sufficiently close to Ml, and li?, a point of 
the a r c  1, sufficiently close to Ma; let  z, and La be the paths of sys tem (A) 
which a t  t = t o  pass  through the points Ml and-hz, respectively. 
we readily see that when the points I%?l and M a  are sufficieGly close to Ml 
and Mz, and 8 is sufficiently small, the paths L, and & a t  zi and y2 (&>to 
and 7 2 > t O ) ,  respectively, will again c r o s s  the a r c  1 at points %, and w,. 
The sections I%?,zl and gZH2 of the paths zl and E2 have no common points 
with the a r c  I ,  except the crud points. 
curve which coincices with L; if this is a closed path and otherwise is made 
up f rom a section M i x i  of the path Et and a section @at of the a r c  1 .  Let W 
be the region formed by the simple closed curves Cl and E$. 

system (A) i s  6 -close in @ to system (A) and the points fii and I%, lie in 
u, ( M , )  and u, ( M A  respectively, then 

Let W be a region whose boundary is formed by two simple closed 

By Lemma 5 

L e t  E, ( 1  = 1,2) be a simple closed 

L e m p a  11.  F m  any e>O there exist 8>0 and q > O  such that if 

(a) the points N, and Nz lie in U. (N,) mLd U. (N2), respectively; 
(b) each path passing through a point in fi crosses the m c  1 both fm 

(c) iV i s  e-close to W.  
The validity of this lemma is readily established by drawing an auxiliary 

increasing and decreasing t ;  

a r c  without contact which partitions w into two elementary quadrangles, 
to which Lemma 7 is then applied. 

the propositions of Lemma 8 in general  do not 
hold true,  i.e., without additional assumptions regarding the exact nature 
of the paths in W we cannot maintain that for any small  q5nd  6 the par t i -  
tions of W and @ by the t ra jector ies  of systems (A) and (A) are e -identical. 

Note that for W and 
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In conclusion of this chapter w e  will prove another lemma which i s  

Let C, and C2 be two s imple cl_osed curves,  which a r e  cycles  without 
concerned with regions delimited by two cycles  without contact. 

contact for  the paths of system (A);  one of these curves,  Cp say, lies 
inside the other curve.  Suppose that each path L of sys tem ( A )  passing at  
t = t,, through the point 111 of the cycle C, in tersects  for  some T = T (W) > to  
the cycle CS at  the point .V, so that the section J1.V of the path L has  no 
common points with the cycles  C1 and C2, other than i t s  end-points 
(Figure 14). 
C?, so  that 11. c C*. 

Let W be a closed annular region between the cycles  Cl and 

L e v i  wi a 12. 

(a) cycles C, and L'? are cycles without contact for the trajectories of 

(b) the partition of V by paths of system (A) i s  E -identical to the 

P r o o f  . 

For a,ay E > U there exists 6 > 0 such that if SyStepTi ( K )  is 
b -close to system (A) in  C*, then 

sgstevi (A); 

partitian 01 this region $ 5 ~  paths of systerii(Al. 
Draw any two paths which intersect  the cycle without contact 

C',. They clear ly  partition into two elementary quadrangles. Applying 
Lemma 8 to each of these quadrangles, w e  readily verify Lemma 1 2 .  
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C h a p t e r  III 

THE SPACE OF DYNAMIC SYSTEMS AND 
STRUCTURALLY STABLE SYSTEMS 

INTRODUCTION 

In this chapter w e  define the concepts of a s t r u c t u r a l l y  s t a b l e  
s y s t e m  and a s t r u c t u r a l l y  s t a b l e  p a t h  and establish some of 
their  elementary properties.  
system is in fact the cornerstone of this  book. 
in 56 (Definitions 10 and 12). 
structuraJly stable in some two-dimensional regioc W if  a sufficiently close 
system (A) partitions W (or some close region w )  into paths in a manner 
which is topologically identical to the partition of W by system (A), and an 
infinitesimal translation suffices to change over f rom one partition to the 
other.  It can be shown that structurally stable systems constitute, so to 
say, a majority in the set  of all dynamic systems. Indeed, a given 
dynamic system is structurally stable a s  a rule,  and structurally unstable 
systems are an exception. 
importance in the analysis of physical problems. 

in the set  of dynamic systems in a plane region o r  on a sphere,  so as to 
convert this set  into a metr ic  space. 
natural, and apparently the simplest ,  way. The a im of the metr ic-space 
approach to the set  of dynamic systems is to permit operating with 
geometrical concepts, which a r e  intrinsically less  abstract  in discussion. 

In §6 some basic definitions a r e  introduced: the definition of a 
structurally stable system in a plane region (56.1) and on a sphere (56.2). 
and the definition of relative s t ructural  stability. 

p a t h s  a r e  defined. 
i f  system (A) is structurally stable in some neighborhood of L .  
proved that if a system is structurally stable in some region, a l l  i t s  paths 
in that region a r e  structurally stable (Lemma 1). Therefore, if  there is 
at  least  one structurally unstable path in some region, the sys tem is 
structurally unstable in that region. It is proved (Theorem 10) that a 
structurally stable system may have only a finite number of s ta tes  of 
equilibrium in a closed region. Finally, the m u  1 t i p 1 i c i t y of a n 
e q u i  l i  b r i u  m s t a t  e is defined and it is shown that a structurally stable 
equilibrium state M u ( z O ,  yo) is of necessity simple, i .e. ,  

The concept of a structurally stable dynamic 
Exact definitions a r e  given 

Roughly speaking, we say that sys tem (A) is 

Structurally stable systems a r e  of considerable 

Chapter 111, 55 is of introductory nature. I ts  aim is to define a metr ic  

The metr ic  is introduced in the 

In 57, s t r u c t u r a l l y  s t a b l e  and s t r u c t u r a l l y  u n s t a b l e  

It is 
A path L of sys tem (A) is said to be structurally stable 
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$5. T H E  SPACE OF DYNAMIC SYSTElIS 

1. The space of dynam.ic sys tems in a plane region 

In this section we will operate  with met r ic  spaces  whose points are 
identified with dynamic systems.  
a more  graphic geometr ic  form to the fundamental concepts and arguments  
of our  theory. 

sphere.  
w e  invariably assume that a l l  the relevant sys tems are defined in the same  
closed region c of the plane. If necessary,  w e  %will assume,  without 
mentioning i t  explicitly, that the sys tems are also defined in a la rger  open 
domain (which contains E ) ,  but the analysis  w i l l  always be confined to G.  
IVe will often have to consider  dynamic sys t ems  (defined in a )  in some 
closed or open subregions of G .  In this  case, w e  always assume that the 
c losures  of these subregions are entirely contained in G, i.e., they lie a t  
a finite distance f rom the boundary of 8. 

of the analytical c l a s s  i n  
be a given natural  nunib,-.r, r ; : k .  
our  space, i.e., two dynamic sys tems 

The introduction of these spaces  lends 

We a r e  concerned with dynamic sys tems in a plane region o r  on a 
In what follows, when dealing with dynamic sys tems on a plane, 

Ali dynamic sys tems of a given c l a s s  k ( k  is a fixed natural  number)  or 
Let r will be t reated a s  points of some space.  

Let fur ther  .If, and Sfr be two points in 

(&I I) 
d r  
 PI(^, d t  Y). % = Q I ( ~ ,  Y), 

Consider the maximum of the absolute value of the dlfference 
between the functions P ,  and P2 in c, i.e., 

m a l  t Pi (2. Y) - P3 (I, Y) I. 
(S. uj;c 

and also the maxima of the absolute values of the differences between 
the corresponding derivatives of these functions to o rde r  r ,  inclusive, i.e., 

and s imi la r  expressions for  the functions Q, and Q2 and their derivatives, 
i.e., 

(3)  
mar_ I QI-Q?! 

(x. Y E G  

and 

The largest  of the numbers  (1)--(4) is taken as  the distance between 
the points MI and MZ in the space of dynamic sys tems.  
axioms of met r ic  spaces  are readily verified. 

the above maximum metr ic  is designated R?’ (or R z ) ,  respectively). Clearly 

All the fundamental 

The space of dynamic sys tems of class k (or of analytical c l a s s )  with 
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the set  of all dynamic systems of c lass  k which a r e  8 -close to rank r in 
to the system of c lass  k 

d X  du - = Po (I. Y) 7 = Qo ( x ,  Y) dt 

constitutes a 8-neighborhood of the point MO in the space Rr).  
proposition is t rue  for points in the space Rh“. 
clearly consider the spaces 

A similar  
For  a fixed k ,  w e  may 

RL”, RL”, . . ., RLk’. 

They consist of the same elements (dynamic systems of c lass  k defined in 
G ) ,  but have different metr ics .  
me t r i c s  a r e  thus different. 
of the point M in metr ic  space R ,  and let 1 <rl < r z < k  . 
system Mo of c lass  k and the neighborhoods 

- 
The 8 -neighborhoods defined by these 

Indeed, let Ub (MI R )  denote the 8 -neighborhood 
Consider a dynamic 

U.3 (Mo I RP))  and ub ( M o  I RP)) .  

Clearly U a ( M o  I R F ) )  c Ua ( M ,  I R F ) ) .  but the r e v e r s e  inclusion is not 
always t rue.  The space RIi) wil be designated Ri (without superscript) .  
space Rl clearly contains each of the spaces 
of dynamic systems of the analytical c lass ,  we can consider an infinite 
sequence of spaces 

The 
RV) ( k  = 1, 2, . . . ). In the case  

El:‘), R:”, . . . , RZ), . . . 
As before, a l l  these spaces consist of the same elements but have different 
metr ics .  Since any system of c lass  k. 
is also a sys tem of c lass  k , ,  and an analytical system is a sys tem of any 
class ,  we clearly have 

Let now k l < k z  and choose a fixed r .  

RP? 2 RC 2 RZ). (5 1 
It is readily seen that any space in (5) is a subspace of all the preceding 
spaces in the sense that the distance between any two elements defined in 
this space coincides with the distance between these elements in the 
enclosing space. 

2. The space of dynamic systems on a sphere 

Dynamic systems on a sphere a r e  generally defined in t e r m s  of o p e n  
c o v e r i n g s  of the sphere (see QT, Appendix, 57.3). 
purposes of defining a metr ic  in the set  of dynamic systems on a sphere,  
it  is better to consider c 1 o s e d c o v e r i n g  s . 
closed coverings a s  follows: let S be a sphere (e.g., a sphere in the 
three-dimensional space €la described by the equation a? + ys + z* = l), and 

However, for 

W e  will define these 

X = { G l ,  Gz, .. ., GNJ 
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some o p e n  covering of the sphere.  
= 1,2,. . ., N )  is homeomorphic to a closed region Hi of the plane ( ui, v i ) ,  
we say  that the covering 

If the closure 5, of each G; (i = 

constitutes a c 1 o s e d covering of the sphere S. Under this  definition, 
each closed covering of the sphere is related to  some open covering, but 
not every open covering corresponds to  a closed covering. 
the G ,  can be a pierced sphere (i.e.* a sphere with a single point removed). 
Note, however, that this  res t r ic t ion of the concept of a closed covering 
does not res t r ic t  the class of dynamic sys tems being considered. 

precisely in the s a m e  wa.y as i t  is defined in t e r m s  of open coverings 
( see  QT, 52.2). 

Thus, none of 

A dynamic system on a sphere  is defined in t e r m s  of closed coverings 

Consider a closed covering 

- - -  
= {GI, G?, . . ., &} 

of the sphere S .  
( I , .  r c .  
( u t ,  rL)  onto the region G, of the sphere  S ,  defined by the equalities 

In each of the c, w e  define a local system of coordinates 
To this end, w e  consider a mapping of some  region pc of the plane 

2 = qt (4, %), y = *' ( U ' .  r,) ,  J = x ,  (u,, U J .  ( 6 )  

The mapping ( 6 )  should satisfy the following conditions : 
1 )  This is a topological mapping of the plane region E ,  onto z,; 
2 )  the functions q', *,. x c  are functions of class k + 1, if the dynamic 

3 )  the functional determinants 
system is of class k, and analytical, if  the dynamic sys tem is analytical; 

do not vanish simultaneously anywhere in  E : .  

is defined by specifying in each E?i (i = 1,  2,. . ., *V) a dynamic system of 
c l a s s  k (or of the analytical class, respectively) 

A dynamic sys tem (A; of class k (or of the analytical class) on a sphere 

Moreover, in each region 

the dynamic sys t ems  ( A j )  and (A,) are transformed into one another by the 
same  transformation which t ransforms the coordinates u,, v j  into uk. vk (see 
QT, 81.10,  and a l so  § 2.2, Definition 1) .  

A dynamic sys tem (A) defined in this  way is descr ibed in t e r m s  of a 
sys tem A' of local coordinates on a sphere,  which in i t s  turn is descr ibed 
by the covering 
be specified using any other  sys tem K* of local coordinates defined by the 

and equations (6) .  The s a m e  dynamic sys tem (A) can  
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closed covering 
- z* = {GF, e, . . . , Gif..) 

and equations analogous to ( 6 )  (see QT, 52.2). 

convert this s e t  into a metric space, we will descr ibe a l l  the dynamic 
systems using one fixed system K of local coordinates on a sphere.  
Suppose this system is defined by a closed covering 
set  of equations (6 ) .  
(or of the analytical c lass ) .  

To define a metr ic  in the se t  of dynamic systems on a sphere and thus 

= {c,, . . ., 8,) and a 

Let system (A) be described by the equations 
Consider two dynamic systems (A) and (A) of c lass  k 

(A,) au(= du 
d t  ut ( w r  01). +=vi (ut. ut) 

( i  = 1, 2, . . ., N )  and system (A) by the equations 

(A,) 
Choose a natural number r > l ,  such that r < k ,  i f  k is the c lass  of the 

system (for analytical systems, any r can be chosen). 
numbers 

Consider the 

max lUi(U1, ~ t ) - B i ( U i .  U1)I  ( 6 = &  2, ..., N ) ,  
(Ui. V i ) €  ii, 

and also the numbers 

as wel l  a s  s imi l a r  expressions for  the functions V i  and 8, and their  partial  
derivatives to order  r ,  inclusive. 
taken a s  the distance between the dynamic systems (A) and (A). 
axioms of a metr ic  space a r e  readily seen to hold true.  

The space of dynamic systems of c lass  k (or of the analytical c lass )  on 
a sphere with this maximum metr ic  is designated RI" (or I?:)). 
at  the end of 95.1 pertaining to analogous spaces of dynamic systems on a 
plane are applicable to the spaces R f )  and R r )  of dynamic systems on a 
sphere.  

a sphere a r e  said to be 8-close to rank r ( r g k ) ,  if the distance between 
them in space Rg)  (R:)) is l e s s  than 6 .  

depends on the fixed system K of local coordinates-on the sphere.  The 
distances between the dynamic systems (A) and (A) defined in this way 
using different systems of local coordinates K and X* a r e  in general  
different. It can be seen, however, that the me t r i c s  defined by various 
systems of local coordinates a r e  all equivalent, i.e., they induce the same 
topology in the space of dynamic systems.* This is obvious f rom the 
following proposition: for any S > 0, there exis ts  8* > 0 such that any 
dynamic sys tem (A) which is 8*-close to system (A) in the metric defined 

The largest  of all these nzmbers is 
All the 

The r e m a r k s  

Two dynamic systems (A) and (A) of c lass  k (or the analytical c lass )  on 

R e  m a  r k . The metr ic  defined in the set of dynamic systems essentially 

I * See A l e k s a n d r o v .  P . S .  Combinator ia lTopolo~.  Chapter 1, $2:3. 
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by the local coordinate system K* is 6-close to (A) in the 
by the coordinate sys tem K. 

This proposition can be proved without difficulty, and 
exerc ise  to the r eade r .  

metr ic  defined 

is left as an  

$6 .  
DYNAhIIC SYSTE3.I 

DEFINITION OF A S T R U C T U R A L L Y  STABLE 

1. Dynamic sys t ems  on a plane 

Let 

be a dynamic sys tem defined in  a bounded closed region 6, and W a closed 
or open subregion of G." 

D e f i n it i o n  10. il dynamic system (4)  is  said to be structurally 
stable in 11- c G if there exists an open domain H containing lr, 

- wc H C  R c G ,  

which satisfies the fo_llouling condition: for any E > a , there exists 6 ==. 0 
such that if system (A) is 6-close to system (A) in 8, one can find a region 

f o r  which 

(see $4.1, Definition 9). 
i f  system (A)  is not s t ructural ly  stable in region W ,  i t  is said to be 

s t r u c t u r a l l y  u n s t a b l e  i n t h a t  region. 
Evidently a dynamic system (A) is s t ructural ly  unstable in W i f  for  any 

H. 1V c H c R c G,  there  exis ts  E,! > 0 with the following property: for  any 
6 > 0 and any H ,  there  exis ts  a-system (A) 6 -close to (A) such that the 
partition of by the paths of (A) is not e,-identical to the partition of H by 
the paths of (A). 

It follows f rom Definition 10 that if  system (A) is s t ructural ly  stable in 
iL', the topological s t ruc ture  of the partition of some neighborhood fl of W' by 
the paths of sys tem (A) doe2 not change in a cer ta in  sense  on passing to a 
sufficiently c lose system (A), or more  precisely, an  infinitesimal t rans la -  
tion-will t ransform H into so  that the paths of (A) coincide with the paths 
of (A). This property explains the t e r m  s t r u c t u r a l l y  s t a b l e  s y s t e m .  
An alternative t e rm used in the Russian l i terature  is a c o a r s e s y  s t e m ,  
which implies  that the topological s t ruc ture  of the partition of a given 
region by paths is not affected by smal l  changes in sys tem (A) or, in  other 
words, the s t ruc ture  can r e s i s t  smal l  disturbances in  sys tem (A). 

H e r e  we will analyze a s t ructural ly  unstable system. 
Examples of s t ructural ly  stable sys tems are considered a t  a la te r  stage. 

' As we have noted in the previsu; section, it is implicitly assumed that the closures of the relevant sub- 
regionj are  entirely contained i n  G, i.e., they 3re at a finite Jistance from the boundary of C. 
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E x a m  p 1 e 3.  Consider the system 

It is defined on the ent i re  plane, so that any closed region on the plane 
can be taken a s  6. Let be the region defined by the inequality 

xe + y* 100. 

W is defined by the inequality 

ts + y* Q 16. (3)  

We wi l l  now show that system (2)  is structurally unstable in region (3).  
Define H a s  

2 + g 25. (4) 

Any positive number can be taken a s  e,. 
point 0 (0, 0) and the c i rc les  

The paths of system (2)  a r e  the 

For small  y, system (5) is arbi t rar i ly  close in to  sys tem (2), the 
point 0 (0,O) is the focus of system (5), and all the other paths of this system 

a r e  spirals  (see QT- $1.14, 
Regardless of what H we choose, i t s  partition 
by the paths of system (5) clearly cannot be 
e,-identical to the partition of region (4) by the 
paths of system (2). 
system (2)  in region (4), except the equilibrium 
point 0, a r e  closed, whereas system (5) has no 

Indeed, all the paths of 

.-, - " ,  . _  
l ishes the s t ructural  instability of system ( 2 )  
in region (3). 

Before proceeding any further with our 
analysis, we would like to offer some back- 
ground information on structurally stable 
systems. Structurally stable sys tems were 
f i r s t  considered in 1937 by A. A. Andronov and 

FIGURE 15 

L. S. Pontryagin 141, who originally called them s y s t B m e s g r o s si e r 
or c o a r s e s y s t e m s . 
in a particular region W lying inside a cycle without contact. The definition 

They considered, however, dynamic systems 
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o f  a s t ructural ly  stable sys tem in such a region is very s imple.  Indeed, 
system (A) defined in a region It’ lying inside a cycle without contact !? is 
said to be s t ructural ly  stable in_that region if for  any E > 0 there  exis ts  
5 > t) such that for  any system (A)  6 -close to sys tem (A) 

e I 

(if - ,  d) E (W, A) 

Substantial simplificati2n is achieved here because u-e <o not have to 
consider e i ther  the region H 3 I V  or the corresponding H :  the ent i re  
analysis  is confined to If’. It can be shown that in region I f -  lying inside a 
cycle without contact r both definitions - Definition 10 and the definition 
in 1 4 j  - are equivalent. Unfortunately, in case  of a general  region It., a 
s t ructural ly  stable system cannot be defined without introducing an  
auxiliary region II (see Appendix, subsection 5). 

simplest dynamic sys tems,  just as the s imple roots  of a function can be 
regarded as the most e lementary among a l l  the roots  or simple (nonmulti- 
ple) intersection points of two curves  a r e  the most e lementary among a l l  
the intersection points. 
a simple intersection point of two curves,  and a s t ructural ly  stable system 
in a cer ta in  region - are analogous in the sense  that u n d e r  s m a 11 
d i s t u  r b a n c  e s (of the function, the pair  of curves ,  or the dynamic 
sys tem)  the object remains  intrinsically unaffected and only a smal l  t rans-  
lation or shift is obserced (see r emark  to Theorem 5, § I>  Remark 3 to 
Theorem 6 ,  S2, and the definition of a s t ructural ly  stable system).  

necessary and sufficient conditions for a dynamic system to be s t ructural ly  
stable in a given region It’. These conditions, like the conditions of 
simplicity of a root or simplicity of an intersection point of two curves,  
a r e  analytically expressed in the form of inequalities between cer ta in  
quantities which are continuous functions of the right-hand s ides  of the 
dynamic system. Hence i t  follows that the sys tems which are structurally 
stable in 1). (see $5) form an open se t  in  the met r ic  space R,. 

The definition of a s t ructural ly  s table  system using the metr ic  space R1 
can naturally be formulated as follows: 

The systern (A) cmesponding to a point Jf E R1 is said to be stricctzivaliy 
stable in W i f  there exists a region H ,  fi: c H c R c G ,  such that the 
Jolloicing condition is satisfied: for any E > 0 we can choose 6 > 0 such that 
if ’0 E U6 (;%I), the follouvng velation holds true f o r  fhe system ( A )  c m r e -  
sponding to the point A? ~ n d  some -region 2 E G: 

Structurally stable sys tems (in a given region) are in a sense  the 

These three concepts - a simple root of a function, 

In what follows (Chapter VI, §18.2,  Theorem 2 3 )  w e  w i l l  der ive the 

, , e  
(H, .i) = ( H ,  A ) .  

Note that i t  does not follow directly f rom the definition of a s t ructural ly  
stable system that s t ructural ly  stable sys tems (in W )  fo rm an  open subset in 
R I .  This  proposition follows, as u-e have remarked  above, f rom the 
analytical conditions of s t ruc tura l  stability. 

The proof is self-evident and is therefore omitted. 

stable in any subregion it-, of i t ’ .  

W e  conclude this section with two simple, but highly important lemmas.  

L e m >ti a 1. If systmz (A) i s  structurally stable in I!’, it is structtrvally 
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The next lemma deals with substitution of variables.  Consider a regular 
mapping of c lass  2, 

u='p("* Y), u=$,(+, Y). ( 6 )  

defined in 6, which maps this region into some region @in  the plane (u, u).  

is transformed by this mapping into some sys tem 

defined in c* (see 13.2). Let W be some subregion of G and W* the image 

Lemma 2 follows from the uniform continuity of the functions cp and q. 
Equations (6)  can be considered a s  defining a certain substitution of 

variables.  
system is a property which is invariant under a substitution of variables of 
c lass  2.  

Lemma 2 thus signifies that the s t ructural  stability of a dynamic 

2.  Structurally stable systems on a sphere 

The only case of interest  among dynamic sys tems on a sphere is that 
when the system is defined on the entire sphere.  
system defined in a region whose closure does not coincide with the ent i re  
sphere evidently can be considered a s  a system defined in a plane region 
(see QT, 12 .2 ,  r emark  following equation (10)). 

The definition of s t ructural  stability of a dynamic system on a sphere,  
on the one hand, is substantially simpler than the analogous definition on 
a plane, since one does not have to consider the auxiliary region H.': On 
the other hand, the analysis on a sphere involves certain difficulties, 
since the metric defined in the space of dynamic systems on a sphere 
depends on the particular system of local coordinates chosen on the sphere 
(see r emark  a t  the end of 55.2). 
fundamental difficulty. 

F i r s t  let u s  define the concept of e-identity on a sphere, analogous to 
Definition 9. 

D e f i n i t i o n  1 1 .  Let ( D ) a n d  (6 )be twodynamicsys t emsdef inedona  
sphere S .  The partition of the sphere S by  the paths of system (D) i s  said 
to be e-identical to the partition b y  the paths of system (6), m in symbols 

Indeed, a dynamic 

This, however, does not constitute a 

Also see the remark in the previous subsection concerning the definition of structural stability of a system 
inside a cycle  wirhout contacr. 



When speaking of an  &-translation, w e  naturally assume that some 
metr ic  is defined on the sphere,  e i ther  internal or induced by the enclosing 
euclidean space. 

local coordinates on the sphere  and measure  the distances between two 
dynamic sys tems relat ive to this coordinate sys tem (see 15.2). 

D e f i n i t i o n  12. A dynamic system (D) on a sphere S is said to be 
structzcrally stable if f o r  any e > 0 there exists 6 > 0 such that, for any 
system (6) ,  6 -close to system (D),  we hace 

(S ,  D )  (S, 5) 

To define a s t ructural ly  stable system, w e  introduce some sys tem of 

Otherwise sys tem (D) is said to be s t r u c t u r a l l y  u n s t a b l e .  
If a dynamic sys tem (D) on a sphere  is s t ructural ly  unstable, there  

exis ts  eo >,0 with the fo:llowing property: for  any 6 > 0 there  ex is t s  a 
system (D) 6-close to (D), such that partitions of the sphere  ( S )  by the 
paths of (D) and (6 )  are n o t  eo-identical. 

the sphere.  W e  now have to establish that the concept of a s t ructural ly  
stable sys tem is in fact independent of the choice of the local system of 
coordinates on the sphere,  or in other words, we have to show that i f  
sys tem (D) is s t ructural ly  stable when the met r ic  (in the space of dynamic 
sys tems)  is defined in t e r m s  of some system of local coordinates K ,  it is 
also s t ructural ly  stable in the met r ic  defined using any other system of 
local coordinates K *. 
proposition formulated a t  the very eqd of 15  (in the r e m a r k  to 55.2). 
Definition 1 2  is thus meaningful, and s t ructural ly  stable sys tems on a 
sphere  can be analyzed in a metr ic  introduced using an  a rb i t r a ry  fixed 
system of local coordinates. 

Let (A) be a dynamic: system on a sphere  and W some subregion of the 
sphere  whose c losure  F: does not coincide with the ent i re  sphere .  
choose a system K of local coordinates so that a t  least  one of the compo- 
nents of the closed covering 
entirely contains ff', i.e., rf'c GI.  F r o m  the definition of the sys tem of 
local coordinates and or' a dynamic sys tem on a sphere (see 15.2) w e  see 
that Let W -  c o r r e -  
spond to some W* on the plane, iT* c Hi. System (A) on the sphere  thus 
corresponds to some dynamic system (Al) in gl. 

L e m  m a  3.  If (A)  I S  a structurally stable system on a sphere, the 
dynainic system ( A l )  is shctzcrally stable in w*. 

This lemma follows directly f rom the definitions of s t ruc tura l  stability 
(Definitions 10 and 1 2 )  and the uniform continuity of the mapping of G ,  onto 
Hi. 

sys tem (D)  is s t ructural ly  stable on a sphere,  i t  is s t ructural ly  stable in 
any subregion of the sphere .  

Definition 12 makes use of a particular system of local coordinates K on 

This proposition clear ly  follows f rom a previous 

We 

corresponding to this system, Gl say, 

corresponds to some region Fl on the plane ( u l ,  cI). 

In s impler  language, Lemma 3 can be formulated as follows: if 

3. Structural  stability of dynamic sys tems in Rg' and Rg) 

In the above definitions of s t ructural ly  s table  and s t ructural ly  unstable 
dynamic systems,  (A)  and (D) w e r e  assumed to  be sys tems of c l a s s  1, and 
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we have considered all systems 8-close to (A) and (D) to rank 1. 
words, we considered points in the space R1 with their  respective 8-neigh- 
borhoods (see §5). 
the possible systems of c lass  1, but in the systems of some narrower 
class ,  e.g., analytical systems or systems defined on a plane whose right- 
hand s ides  a r e  polynomials. 

Moreover, sometimes w e  have to consider 8-closeness to some higher 
rank, and not only to rank 1. 
confined to Rl ,  but to some other space RI" or  RY'. 
at  the concept of r e l a t i v e  s t r u c t u r a l  s t a b i l i t y  of a dynamic 
system, i.e., s t ructural  stability relative to some space in which the given 
dynamic sys tem is a point.* 
analogous to Definitions 10 and 12 ,  and we will therefore give only the 
definition of a structurally stable dynamic sys tem on a plane relative to RY). 
As before, we consider systems defined in a bounded plane region. 

De f i n  i t  i o n  13. A dynamic system ( A )  of class k is said to be 
structurally stable in W relative to R r )  (w c '@ c G;  r 6 k ) i f  there exists an 
open domain H containing w, 
following condition: f o r  any e > O  one can choose 8 > 0 such that if (A) is 
a system of class k 8-close to rank r to ( A )  in there exists B f m  which 

In other 

In some cases ,  however, w e  are not interested in a l l  

This evidently means that the analysis is not 
We thus naturally a r r i v e  

The corresponding definitions a r e  entirely 

c H c a c G , which satisfies the 

- - . e  
(H, A )  = ( H .  A )  

(also see Definition 10). 

b l e  i n  W r e l a t i v e  t o  Rr). 

corresponding to point M in Rr' is structurally stable in W relative to this 
space if there  exists a domain H ,  wc X c gc G, satisfying the following 
condition: for  any e 2 0 we can choose 8 > 0 such that if a E Ua (M I Rr)), 
then for  the sys tem (A) corresponding to the point fi and some H" c G we 
have 

Otherwise, system (A) of c lass  k i s  said to be s t r u c t u r a l l y  u n s t a -  

Using geometrical terminology, we say that a dynamic sys tem (A) 

(B, A) ( H ,  A ) .  

"Simple" s t ructural  stability (in the sense of Definition 10)  is clearly 

Let kt and kz be natural  numbers, ki < k z ,  (A) a dynamic system of c lass  
s t ructural  stability relative to the space Rl .  

kz (and thus also of class k , ) ,  and r a natural  number, r < k , .  
then belongs to both RK) and RG). 
follows f rom Definition 13 that if  sys tem (A) is structurally stable in W 
relative to RK), it is also structurally stable relative to RK). 
(A) is an analytical system, then for any natural  k and r 6 k  system (A) 
belongs both to RP) and to R!? c RJ". 
relative to RY), it  is also structurally stable relative to R?. All these are 
particular ca ses  of the following general  proposition, which follows directly 
f rom the definition of s t ructural  stability: i f  a dynamic sys tem (A) belongs 
to two spaces one of which is a subspace of the other and i f  the system is 
structurally stable in W relative to the enclosing space, it is structurally 
stable in W relative to the enclosed space. 

* Instead we can speak of structural stability relative to a given class of dynamic systems. 
be explicitly stared what w e  mean by &closeness (i .e. ,  to what rank). 

System (A) 
We reca l l  that RG) c RK). It c lear ly  

Similarly, if 

If (A) is structurally stable in W 

Ext then it should 

60 



5 6 .  SL‘RLCTL‘RALLY STABLE DYhALIIC SYSTmIS 

Let fur ther  r, c= r2 ::h ~ (A) is a dynamic system of c l a s s  k, 111 is the 
point corresponding to (A) in E:” (or in  RP’; w e  reca l l  that both these 
spaces  are made up of the same  points, but the corresponding met r ics  are 
different, see 15.1). Then, i f  s y s t e m  (A) i s  s t r u c t u r a l l y  s t a b l e  
i n  I i ’ r e l a t i v e  t o  Ryl) ,  i t  i s  a l s o  s t r u c t u r a l l y  s t a b l e  i n W  
r e  1 a t i  v e t o  E;“?’. 
relation 

This  follows directly f rom Definition 13 and f rom the 

1.6 ( . I f  1 RF”) c L’b ( L\f 1 R:”) 

(see $5.1). 

system (A) is s t ruc tu rd ly  stable in I f -  relative to  R;’* i t  is a l so  s t ructural ly  
stable re la t ive to Rh:’ 
turally stable in ti’ relative to Rh“’, i t  i s  a l so  s t ructural ly  s table  re la t ive to 
,;Ill ( r ,  < r? .<k) ? These propositions clear ly  do not follow directly f rom the 
definition of relative s t ruc tura l  stability. Moreover, i f  sys tem (A) belongs 
to two spaces  Rand R*, such that R* c R, then in general  sys tem (A) may 
prove s t ructural ly  s table  in W relative to the enclosed space  R*, whereas  i t  
i s  s t ructural ly  unstable re la t ive to the enclosing space R.  

However, i f  a t  the cost  of generality we concentrate on the spaces  RY’ 
and Ra“, which are of the main interest  in the analysis  of dynamic sys tems,  
the situation is considerably simplified. It can be shown that i f  sys tem (A) 
belongs to one of these spaces ,  the necessary and sufficient conditions for  
i t s  s t ructural  stability (in W )  relative to these spaces  are a t  the s a m e  time 
the necessary and sufficient conditions of i t s  s imple s t ruc tura l  stability 
(i.e.> s t ruc tura l  stability re la t ive to R,) .  
derivation of the necessary and sufficient conditions of s t ruc tura l  stability 
(518.4, Remark d); additional proof (in connection with RF’ or R!:’) is 
naturally required only for the necessary conditions of s t ruc tura l  stability, 
Thus, if  system (A) belongs to  RF’ or Rr’ and is s t ructural ly  s table  in IF’ 
relative to the corresponding space, i t  is simply s t ructural ly  stable. 
Therefore, w e  do not have to consider s t ruc tura l  stability re la t ive to these 
spaces  and in  what follows w e  can concentrate on s t ruc tura l  stability in the 
sense  of Definition 10. 

I s  the r eve r se  a l so  t rue?  In other words, can we maintain that i f  

( r g k ,  -= k2) or, alternatively, if sys tem (A) is s t ruc-  

This  will be established in the 

The situation is clear ly  the s a m e  for dynamic sys t ems  on a sphere.  
The above arguments  pertaining to dynamic sys tems are analogous to the 

var ious arguments  offered in 51.4 in connection with roots  of functions and 
a t  the end of $2 in the analysis  of intersection points of two curves.  
analogy between dynamic systems,  on the one hand, and functions or pa i r s  
of curves ,  on the other ,  unfortunately breaks  down a t  one significant point. 
Let u s  discuss  this  aspect  in some detail.  

W e  will consider the analogy between dynamic sys tems in  a plane region 
G and pa i r s  of curves  F1 (z, y)=O,  F? (z, y) =O. At the end of S2 we considered 
the multiplicity of the i i t e rsec t ion  point of two curves  relat ive to a given 
c lass  Bl of functions. %R w a s  identified in par t icular  with the class a,, of 
all polynomials in two \,ariables not higher than of degree n and the necessary 
and sufficient condition of s t ruc tura l  stability of the intersection point of two 
curves  relative to this  ,class was established to  coincide (A # 0) with the 
condition of s t ruc tura l  stability in the sense  of Definition 5 (S2.1). 

This  

61 



ch.111. THE SPACE OF D Y N A M I C  SYSTEMS A N D  STRUCTURALLY STABLE SYSTEMS 

By analogy with the c lass  of functions Sn, we can consider the c lass  of 
dynamic systems (on a plane) whose right-hand sides a r e  polynomials not 
higher than of degree n.  
The s t ructural  stability relative to PI, is defined in the usual way (6-close- 
ness  should be considered to rank 1 or to higher rank). 
between the pairs  of curves  in \a,, and the dynamic systems in %, is unfor- 
tunately incomplete. The point is that the attempts to derive the necessary 
and sufficient conditions of s t ructural  stability of dynamic systems relative 
to the c lass  8, so far have remained unsuccessful. 
do not know of any particular example of a system 

We wi l l  designate this c lass  of systems by 8,. 

The analogy 

On the other hand, we 

(P and Q a r e  polynomials of not higher than n-th degree)  which is s t ructur-  
ally stable in some region relative to the c lass  B1, and structurally unstable 
in the sense of Definition 10. 
these systems and of the necessary and sufficient conditions of s t ructural  
stability relative to the class  et, thus remains  open at  this stage. 

The question of the possible existence of 

17. STRUCTURALLY STABLE AND STRUCTURALLY 
UNSTABLE PATHS. NECESSARY CONDITION OF 
STRUCTURAL STABILITY OF AN EQUILIBRIUM 

1. Structurally stable and structurally unstable paths 

Our immediate problem is the derivation of necessary and sufficient 
conditions of s t ructural  stability of dynamic systems on a plane and on a 
sphere.  This problem is discussed in this section and also in Chapters IV, 
V, and VI. The concepts of s t r u c t u r a l l y  s t a b l e  and s t r u c t u r a l l y  
u n s t a b  1 e p a t h s introduced in this section considerably simplify the 
approach to our problem. It is assumed throughout this chapter that a l l  
the systems a r e  dynamic sys tems of f i r s t  c lass  defined in a fixed plane 
region 8, and 6-closeness is always interpreted as closeness to rank 1. 
In other words, the analysis is confined to Ri .  
systems on a sphere,  this is not stated explicitly. 

o r  an open region W ,  and L some complete path of sys tem (A). 
definition of s t ructural  stability and Lemma 1, §6 we see  that if  L is 
entirely contained in W ,  then there  is a certain neighborhood V of L where 
the system (A) is structurally stable. Moreover, c V.* 

turally stable in some neighborhood V of L ,  V c W, while it is structurally 
unstable in W. 

and s t r u c t u r a l l y  u n s t a b l e  p a t h s .  

structurally stable if there exists a certain neighborhood V ,  Z c V c 7 c G, 
where system (A)  is structurally stable. 
structurally unstable. 

When dealing with dynamic 

Let (A) be a dynamic system which is structurally stable in a closed 
F rom the 

The r eve r se ,  naturally, is not always true: sys tem (A) can be s t ruc-  

These considerations lead to the concept of s t r u c t u r a 1 l y  s t a b  1 e 

D e f i n i t i o n  14 .  A path L of a dynamic system (A) is said to be 

Otherwise, L i s  said to be 

requirements. 
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According to Definition 14, to establish s t ruc tura l  stability of a path L it 
suffices to show that systeni (A) is structural ly  s table  in s o  m e  neighbor- 
hood t-, c V .  To establish s t ruc tura l  instability, on the other hand, w e  
have to show that system (-4) is s t ructural ly  unstable in any region which 
contains L .  
st ructural ly  unstable in any arb i t ra r i ly  smal l  neighborhood of L .  
a r r i v e  a t  the following n e c e s s a r y  a n d  s u f f i c i e n t  c o n d i t i o n  of  
s t r u c t u r a l  i n s t a b i l i t y  of  a p a t h .  

A path L is structur&lly unstable i f  for  any E > 0 there  is a neighborhood 
i’. zc I‘ c i= c c’,(L) 

L e rn ni a 1. 1’. system ( A )  is  stmctuvally stable in If’, any path of this 
system which is erttise1,y contained in It- i s  stviicturally stablc. 

This  follows directly f rom Lemma 1, $6 and f rom Definitions 10 and 14. 
-4s w e  have seen  above, the proposition contained in this lemma w a s  in fact 
the reason for  introdacing the concept of  a s t r u c t u  r a 1 l y  s t a b  1 e path. 
By Lemma 1, i f  there  is a t  least one s t ructural ly  unstable path of 
system ( A )  in W, the system is s t ructural ly  unstable in It’. The next 
question to a s k  is w h e t h e r  a b s e n c e  of  s t r u c t u r a l l y  u n s t a b l e  
p a t h s  i n  It’ n e c e s s a r i l y  l e a d s  t o  s t r u c t u r a l  s t a b i l i t y  o f  
t h e  s y s t e m a s a w h o  1 e i n It’. Only the potentially limiting paths 
are of importance in connection with this problem. 
and § 1 5 . 6 ) ,  these paths include 

1)  equilibrium states ,  2 )  closed paths, 3 )  paths which are a t  the 
same  t ime a- and o-separa t r ices ,  i.e., a- and w-orbitally-unstable paths 
approaching the equilibrium s ta tes .  

stable. 

For this it is necessary  and sufficient that system (A) be 
LVe thus 

where system (A) is s t ructural ly  unstable. 

As  is known (QT, §4.6 

We will now establish which of these three  types of paths are s t ructural ly  

2. 
stable system 

Finite number of equilibrium s ta tes  in  a s t ructural ly  

Let 

- 
be a dynamic system defined in G ,  and le t  

a f inite nunrbev of equilibrirm states in SS;. 

a dynamic system (A) 3-close to  (A)  which has  only a finite number of 
equilibrium s ta tes .  Cioose some S > 0. F rom Weiers t rass ’s  theorem 

(§ 1.1, Theorem 1) there  exist two polynomials P* (z, y). Q* (z, y). which are z- 
close in 6 to the func t ims  P (z, y),-Q (2, y). 

be a closed region, tV c G .  
T h  e o Y e ni 10. I f  systeni (A)  i s  structrivallg stable in F, it has only 

P r o o f .  \Ve will f i r s t  show that for  any ( A )  and any 6 > 0, there  ex is t s  

& 

If P* and Q* are irreducible, (A) can be chosen as the system 

63 



Ch.111. THE SPACE OF DYNAMIC SYSTEMS AND STRUCTURALLY STABLE SYSTEMS 

6 Indeed, this system is Z-close, and hence also 6-close, to system (A). 

Its equilibrium states  a r e  determined f rom the set  of equations 

P* (x ,  y) = 0, Q* (I, Y) = 0, 

and since the largest  common divisor (P*, Q*) = 1, these equations have only 
a finite number of solutions according to  the Bkzout theorem (see /12/, 
Chapter 111, 53.1). 

the form 
Now suppose that P* and Q* a r e  not irreducible.  They can be written in 

P'(5, Y) =Pi (x,  SI) R (19 4, 
Q' (5, Y) = Qi ( 2 s  SI) R (2, Y), 

where R ( x ,  y) are polynomials of higher than ze ro  degree, and Pi and Q, are 
irreducible,  ( P I ,  Qj)= 1. 

Consider the polynomials 

(I, Y) = Pi (G Y) [ R  (z, Y) + a19 
Si (5, Y) = Qi ( ~ 7  Y) tR (2, Y) +PI*  

where a and j3 a r e  r e a l  numbers satisfying the following conditions: 

is irreducible with R+B,  and the polynomial Q, is irreducible with R+a. 

PI (G y) = P I  (x ,  Y) PZ (G y) . . . p .  (x ,  y) be the factorization of the polynomial Pi 
into irreducible factors.  

1) a and j3 a r e  sufficiently small ,  

F i r s t  w e  have to show that such real numbers always exist .  

2) aZj3. 3)  the polynomial P,(z, g) 

Let 

Consider the polynomials 

R (2, Y) +Si$ R ( G  Y ) + B Z ~  * * * )  R(G v)+L R(G V) + & + i t  (1) 

where B r  a r e  any sufficiently small  different numbers. 
of the polynomials in (1) is irreducible with P, (5, y). 
polynomials is reducible a t  least by one of the polynomials p ,  ( x ,  y), ..., p .  ( x ,  g). 
Since the number of polynomials in (1) is one higher than the number of 
polynomials p I  (5, y). a t  least  two polynomials in (l), R (2. y) + f l k  and 
R (5, y) + P I ,  k # 1 ,  say, are reducible by the same polynomial p t  ( x ,  g). Then 
their  difference - f I t  is reducible by p i  (2, g), which is absurd since p h  # fl,. 

We designate this polynomial a s  R (5, y) + B .  

that the polynomials R + a and Qi are irreducible. 

Suppose that none 
Then each of these 

Thus at least one of the polynomials in (1) is irreducible with Pi (2, y). 

Exactly in the same way we can show that there  exis ts  a number a such 

they can be taken different. 
are 

d 3-close to the polynomials P* and Q*, respectively, and thus 8 -close to the 

Since a + p, the polynomials R + a and R + fl a r e  irreducible (otherwise, 
the difference a - $ would be reducible by a zero degree poiynomial, which 

Conditions 1, 2, 3 are thus all satisfied. 
W e  choose a and 0 sufficiently small  so that the polynomials P and 

* functions P and Q. 
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i s  impossible). 
follows, using a well-known algebraic theorem, that ( p ,  0) = 1. 
system 

F r o m  ( E  f a, R + p) = 1, ( P t ,  Q,) = 1 and condition 3 it 
Then the 

d r  - dy x = P ( z ,  id, x=az, v) 

i s  6 -close to system (A) and has  only a finite number of equilibrium s k t e s .  
W e  have thus established that for  any 6 > 0 there  exis ts  a system (A) 

6 -close to (A) which has  only a finite number of equilibrium states .  
that this  lemma is true for any system (A), whether s t ructural ly  stable or 
unstable. 

Let now (A)  be a s t ructural ly  stable system in @ with an  infinite number 
of equilibrium s ta tes  in w. From thedefinitionof s t ructural  stability, for  any 
E > O  there  exis ts  6 > O  such that i f  (A) is 6-close to (A) then 

Note 

( H ,  A) 2 (p, .2), (2)  

where N and H" are some regions, H 3 F .  

has  only a finite number of equilibria in a plane. 
If and thus a l so  
of (A),  which contradicTs the s tar t ing assumption. 

i t  has  only isolated equilibrium s ta tes  in that region. 

inside point of tl' is necessar i ly  i s o  1 a t  e d . 
a lso  inevitably an isolated equilibrium state .  
since a sys tem which is s t ructural ly  stable in IT is evidently s t ructural ly  
stable in some region containing r. 
brium s ta tes  can  be s t ructural ly  stable. 

s ta tes ,  w e  need only cc'nsider isolated points. 

We have seen  that a systerll (A) 6-close to (A) can be chosen so that i t  
Then, in vir tue of (2), 

should contain only a finite number of equilibrium s ta tes  

If system (A) is s t ructural ly  s table  in some region F> 
Q. E. D. 

C o r o l l a r y .  

Indeed, by Theorem 10 w e  conclude that an equilibrium state  which is an 
A boundary point of lvis 
This follows f rom Theorem 10, 

From Theorem 10 and Definition 14 i t  follows that only isolated equili- 

Therefore, as we are concerned with s t ructural ly  s table  equilibrium 

3. Multiplicity of an equilibrium s ta te  

Consider a dynamic system 

defined in z. 
This  Mo is an intersection point of two curves  

Let Mlo (z0, yo) be an  equilibrium state  of this  system, .Ifo E C 

P ( 2 .  y)=O, Q(z, y)=O. ( 3 )  

The m u l t i p l i c i t y  o f  t h e  e q u i l i b r i u m  s t a t e  M o  is defined as  
the multiplicity of the intersection point .%Io of the two curves  ( 3 )  (see $2.1). 

D e f i n i t i o n  15. An equilibrium state M o  (xo, yo) of a dynamic system is 
said to be of multiplicity r (OY r -tuple) if Mu i s  a common point of multipli- 
city r of cumes (3) .  
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An equilibrium state of multiplicity 1 is said to be s i m p  1 e . 
An equilibrium state Mo is said to be of infinite multiplicity if M o  is an 

intersection point of infinite multiplicity of curves  (3) .  
An equilibrium state  MO is said to be of multiplicity higher than r if it  

is of finite multiplicity r' > r or has infinite multiplicity. 
Finally, an equilibrium state  is said to be multiple if i t s  multiplicity is 

> 1. 
From Definition 5 (§2.1) and Definition 15 we see  that if  an equilibrium 

state M O  is of multiplicity r ,  then system (A) is a system of c lass  k > r  and 
the follow_ing are satisfied: a )  there  exist  E, > 0 and 60 > O  such that any 
system (A) 6,-close to rank r to system (A) has a t  most r equilibrium states  
in Ueo(Mo); b)  for any e < eo and 6 > 0 there exis ts  a system (A) 6-close to 
rank r to system (A) which has a t  least  r equilibrium states  in U , ( M o ) .  

The following theorem establishes the necessary condition of s t ructural  
stability of an isolated equilibrium state.  

T h e o r  e m 11. An isolated equilibrium state M o  (x0,  yo) is structurally 
stable only if it is simple (of multiplicity l ) ,  i .e. ,  a necessary condition 
of structural stability of an equilibrium state i s  the inequality 

P r o of . 
and multiple. 
state,  there  exis ts  a region H containing Mo with fhe following property: 
for any e>  0 there  is 6 7 0, such that if  sys tem (A) is 6-close to system (A)  
then 

Let an isolated equilibrium state  MO be structurally stable 
By the definition of s t ructural  stability of an equilibrium 

where % is some region. 
small  neighborhood of M o .  
that MO is the only equilibrium state of (A) inside U, (Mo) (this 
since M o  is an isolated equilibrium state). 
the form 

Clearly H can be identified with any sufficiently 
We take Ueo(M0) as H, where eo > 0 is so  small  

Relation (5)  is now written in 
exists 

FIGURE 16 

Let W be a neighborhood Ue0/z (Mo) (Figure 16) .  Some positive number 

smaller  than 2 is chosen a s  E .  System (A) is taken to be sufficiently close 
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to (A),  so that relation ( 6 )  is satisfied; moreover  (z) has a t  least  two 
equilibrium s ta tes  in 11'. 
(and not a s imple)  equilibrium state  of (A) (see 52.2,  Definition 5 and 
Theorem 6 ) .  

Such system (x) exis t s  because A?+ is a multiple 

& is generated from CEO (,%Io) by an e -translation, where E < ?. There-  

fore, as is readily see.?, W = Cto,q (Mo) c &.',: Hence, in 
least two equilibrium s ta tes  of (A). 
in 
that .Ilo is a s t ructural ly  stable equilibrium s ta te  which is not a simple 
isolated equilibrium state  leads to a contradiction. 
proof. 

brium s ta te  &Io (z0. yo) for  which 

there  are a t  
This contradicts relation ( 6 ) ,  since 

(X<,) there  is only one equilibrium state  of (A).  Thus, the assumption 

This  completes the 

Theorem 11 can be alternatively s ta ted as follows: an isolated equili- 

(i.e., a multiple s ta te )  is not s t ructural ly  stable. 
Thus, in our  analysis  of s t ructural ly  stable equilibrium states ,  we need 

consider only simple equilibrium states ,  which is the subject of the next 
chapter. 

' Indeed, take some point M € W outside HI. Let f denote the e-translation which transforms CLo into 2, 
and let I'be the boundary of the neighbarhood U E o ( M ) ,  Fthe boundary of 2 (f'=f(r)), andM=f(.M). 

6y sssuniption p(M, %) <$. The sesment .MS contains at  least one point s o f  the boundary r. There-  

fore p (Jf. 5) < %. Let s"=f (,S), where S ( r .  Then p (S. 3) < +. This leads fo the inequality 

p (S, M) Q p (AI, s ) + p  (g, S) < 2, which is impossible since p (S, Fi')=?. 
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C h a p t e r  IV 

EQUILIBRIUM S T A T E S  OF S T R U C T U R A L L Y  S T A B L E  
SYSTEMS.  SADDL E - T 0- SADDLE S E P A R A  T R  IX 

INTRODUCTION 

We have shown in Chapter I11 ($7 .3 ,  Theorem 11) that if a dynamic 
system is structurally stable in some bounded region, it has  only simple 
equilibrium states  in that region. In this chapter we will establish which 
of these simple equilibrium states  a r e  structurally stable equilibria. 
chapter is divided into four sections, S 8 through %11. 
that a s i m p  1 e n o d  e (ordinary, dicri t ical ,  o r  confluent) and a s i m p 1 e 
f o c u s * a r e  structurally stable s ta tes  of equilibrium. 
these different cases  is exactly the same, and we therefore consider only 
the ordinary node. 

In §9 weprove tha ta  s i m p l e  s a d d l e  p o i n t  (i.e., asimpleequilibrium 
state which is a saddle point) is a structurally stable s ta te  of equilibrium. 

In § l o  we consider a simple equilibrium state with pure imaginary 
character is t ic  roots, and it is proved that these equilibria a r e  structurally 
unstable. 
the creation of a closed path f rom a multiple focus (Theorem 14). 
cording to this theorem, if 0 is a m u  1 t i p  1 e f o c u s of system (A) (i.e., 
a point with pure imaginary character is t ic  values which is neither a center 
nor a center-focus),  infinitesimally small  increments will convert the 
system (A) into a modified system which has  a closed path in any arbi t rar i ly  
small  neighborhood of 0. 

closely linked with § lo ,  and hence its place in the present chapter.  Indeed, 
§ l l  deals with a s a d d l e  - t o  - s a d d l e  s e p a r a t r i x ,  and it is proved 
that such a separatr ix  extending between two saddle points is a structurally 
unstable path of the dynamic system. 
separatr ix  goes to saddle points which may be different or coincident. 

The 
In $8 it is proved 

The proof for 

Incidentally L highly important theorem is proved concerning 
Ac- 

Equilibrium states  do not f igure in 511. This section, however, is 

For  t + + 00 and t +  - DJ the 

§8. 
A SIMPLE FOCUS 

1. Canonical sys tem 

simple s ta tes  of equilibrium. 
* A simple node is a simple equilibrium state which is a node (the characteristic values are real numbers of 

equal sign). 
imaginary. 

STRUCTURAL STABILITY OF A NODE AND 

In this subsection we will review the basic propositions concerning 
Detailed proof will be found in QT, Chapter IV. 

* A simple focus is an equilibrium state with complex characteristic values, which are not pure 
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15.ithout loss of generality, we consider a simple equilibrium state  a t  the 
origin, i.e., a t  the point 0 (0.0). The dynamic system in th i s  case can be 
written in the fo rm 

(1 1 - = a a z + b y + q  d r  (z, y), $=cz-;dy+q((r, y), 
d t  

where the functions 9 (5,  y) and I$ ( I ,  y) are continuous and continuously dif- 
ferentiable to first o r d e r  in I and y in c; 
and I$ and their  par t ia l  derivatives all vanish: 

a t  the point 0 (0. 0), the functions q 

'F('?, U ) = $ ( U ,  O ) = ' F ; ( O ,  O ) = q ; ( o ,  O)=I&(@, O)=$.k(O.  0 ) = O .  (2)  

Since 0 is a simple equilibrium, 

Applying a non-singular l inear  transformation to system (1) w e  can  

reduce it  to a canonical fo rm described by a mat r ix  (z i) in a normal  

Jordan fo rm.  
characterist ic equation 

Let ri., and A.2 be the charac te r i s t ic  values, Le., the roots  of the 

. L o  (4 )  
1 a--E. 

c d 4 . 1  

or 

i . ? - - a E . + l = O ,  (5) 

where 

We should distinguish between the following cases: 
I. The characterist ic roots  ;.! and 1.2 are real, different, and of the s a m e  

sign. System (1) is then reduced to the canonical form 

where i lk2> 0. 
ordinary node). 

11. 
form 

The equilibrium point 0 (0, 0) is then called a n o d  e (an 

E., and ).,are equal, i.e., ?. ,=h=h.  System (1) reduces  ei ther  to the 

or  

where p+O. 
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In case ( 8 ) ,  the equilibrium 0 is callec a d i c r i t  i c a 1 n o  d e  ~ and in 

111. h, and & a r e  real, different, and of opposite signs. In this case,  
case (9)  a c o n f l u e n t  n o d e .  

the canonic form of the system is a s  in case  I, i.e., (7). but A i l z  = A < 0. 
The point 0 is then called a s a d  d l  e p o i n  t . 
canonical form of system (1) is then 

IV. hi and hz a r e  complex numbers, which a r e  not pure imaginary. The 

I where h i , 2 = a f  pi, a + O  p>O. The equilibrium state 0 is then a f o c u s  
(a s i m p l e  f o c u s ) .  

canonical form of system (1)  is then 
V. hi and & a r e  pure imaginary numbers, Li=pi ,  &=-p i ,  f5=#=0. The 

In this ca se  0 is called an equilibrium state with pure imaginary I 
character is t ic  roots.  

stable equilibrium state,  and in case  V i t  is structurally unstable. 

0 (0,O) in each of these five cases  is investigated in QT, 57 and S8. 

the s t ructural  stability (for detailed proof, see QT, $7). 

We will show that in cases  I through IV the point 0 is a structurally 

The behavior of the paths of the dynamic system in the neighborhood of 

We will now review some of the properties which are  used in establishing 

In case  I (a node), all the c i rc les  

P + ya = rs (12) 

of sufficiently small  radius r a r e  contact-free cycles for the t ra jector ies  
of the system. 
path with 0 as i t s  limiting point goes to 0 for t -+ + 00. 

Let 0 be a s t a b  1 e n o  d e ,* i.e., hl < 0, hz < 0. 
Let 

Then any 

be me of these paths, M ( t )  a point of this path with the coordinates x ( t ) ,  y ( t )>  
and let p ( t )  = 1/z (t)P+ Y (t)* be the distance of M f rom the origin. 
t -t + 00, p ( t )  goes monotonically to zero.  
n o d  e (Ai > 0, hz > 0) ,  p ( t )  + 0 for t --t - 00. 
s i m p 1 e f o c u s (case IV), the situation is precisely the same as for an 
ordinary node. 
without contact cycles, and any path (13) which for t = t o  c rosses  one of 
these c i rc les  goes to 0 for t + + 00 if the node or the focus is stable ( h  (0, 
or a < 0, respecitvely) and to t -+ - 00 if the node or the focus is unstable 
( h  > 0, or a > 0, respectively). In either case,  p ( t )  -+ 0 monotonically. 

In the case of a c o n f l u e n t  n o d e  (case 11, canonical system (9 ) )  the 
c i rc les  (12) are replaced by ell ipses 

For 
In the case  of an u n s t a b  l e  

In the case of a d i c r i t i c a 1 n o d  e (case 11, canonical system (8)) or a 

Indeed, c i rc les  (12)  of sufficiently small  radius  r a r e  
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where k is some positive number." 
e l l ipses  a r e  without contact cycles  for  the paths of system (9). 
stable (unstable) node, i.e., for  k < 0 (A > 0), each path initially crossing 
such a cycle without contact approaches the point 0 for  t -+ +- 00 ( t  -+ - 00). 

For  sufficiently smal l  r ,  a l l  these 
For  a 

2. Structural  stability of a s imple node and a focus 

\Le w i l l  prove that a simple s ta te  of equilibrium which is a n o d e  
(ordinary, dicritical, 0:- confluent) o r  a s i  m p 1 e f o c u s is a s t ructural ly  
stable path of the dynarr.ic system. The main part of the proof is contained 
in Lemma 1 below. 

Let 

be a dynamic sys tem defined in some region a,, and 0 (0, 0) an  equilibrium 
state  of this sys tem which is a s imple node o r  a s imple focus (0 c GI). 
system (A) is given in c inonical  form.  

L e tn ttt a 1 .  
with the following property: f o r  any E > 0 there exists 
systeiti !B) dejyned in E ,  is u -close in E ,  to system (A) and 0 (0. 0)  is an 
equilibrium state of system (B l ,  then 

There exists a neighboyhood {r of the equilibuititn state 0 
> 0 such that <f 

e 
( H ,  . 4 ) = ( H ,  B).  

P r o o f  . Fi r s t  consider the case when 0 is an  ordinary node (case I). 
System (A) has  the form (7 ) :  

(A  j dz -= d t  ).*f fq(s, Y). $==.2Y,*(X,  Y). 

We take 3.t < 0, J.2 < 0, i .e. ,  a stable node. 
Let u s  summar ize  some of the resu l t s  f rom QT, Chapter IV. 
In QT, 9 6 . 3  i t  is shown that the functions 'p and $ can be represented in 

a cer ta in  neighborhood cf 0 in the form 

'F (J. Y) =*a", \I* Y) 4- Y g 2  (z, Y)t Ip (3, Y) = x i !  (f, Y) 5 Y/? (I, Y), (15) 

where 

i 1 

gl (5, Y) = 1 'fk (tr, CY) dt ,  g? (5, Y\ = j ( F Y  ( t ~ ,  t ~ )  d t ,  (16) 
0 a 

and i ,  and f 2  are s imilar ly  expressed in t e r m s  of the derivatives of $(z, y). 
The functions g, ,  g2, f,. fz are continuous and 

a"! (0, 0) = g: (0, 0) = f ,  (0, 0)  = f 2  (0, 0)  = 0. (17)  

Let 

s = s ( t ) ,  Y = Y ( t )  (18) 

For k we can take any positive number, satisfying the inequality k C 4 >. See QT, 57.1. 
CI 
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be a path of system (A). Its equation in polar coordinates is 

Since 

w e  have f rom (A) and (15), using the standard relations s=pcos8, y = p s i n 8 ,  

9 = 2ps ( t )  [ I t ,  cos2 e + & s i n g  e+  cos) eg, + cos e sin e ( g 2 + f , )  + sins ef,j, (21  ) 

where f l ,  f2, g,, g, are functions of p cos e and p sin 0.  
A, cosp 0 + Az sin' 8 is negative for a l l  r e a l  0 and is periodic in 0. 

The expression 
Its maximum 

value is therefore - m ,  where m > 0. Since g,. g,, f , .  f 2  are continuous 
functions which vanish at  the origin 0 (0, O), there  exists some ro > 0 such 
that if p ( t )<ro,  then 

I cosa Og, +cos e sin e (gz + f,) +sin* etz  I < f . 
The expression in square brackets in (21) is thus definitely less than 

2m m _ _  <-T, so that 

From ( 2 2 )  it  follows immediately that all the c i rc les  

x2+ys=rs, (23) 

where r<roa  a r e  cycles without contact for paths of system (A). Indeed, 
for a path (18) to be tangent to one of these c i rc les  at the point @ ( t o ) ,  ~ ( 1 , ) )  

we should have z(to)x'(to)+y(to)y' ( t o ) = O s  i. e., dpiF) =0,  which contradicts 

(22).  
we see  that 

Now separating the variables in (22) and integrating f rom to to t> to ,  

pa ( I )  < pz (to) e-m(l-to), 

whence i t  follows that for f+ + w, p ( t )  goes to zero (monotonically, as we 
see  f rom (22)).  
t = topasses  through the circle  

We thus obtain, a s  required, that any path (18) which for 

c r o s s e s  a l l  the concentric c i rc les  of smaller  radi i  as t increases  and 
approaches the point 0 for t -+ + co. 

We will show that the H defined in this way satisfies the lemma. 

to system (A) and for which 0 is an equilibrium state.  

Let Co be the circle  (24)  and H the region inside this c i rc le  (i.e., Ur0 (0). 

Let (B) be a dynamic system defined in c,, which is sufficiently c lose 
System (B) can be 
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written in the fo rm 

where ai are sufficiently smal l  numbers, and the functions (p and 3 are 
sufficiently c lose to the functions g, and $, respectively; moreover ,  (p and 7 
and their  f i r s t  derivatives vanish a t  0. 

(p and 7 can be represented,  like 'p and J., in the form 

where zii_and TLare expressed in the form (16) in  t e r m s  of the f i r s t  der iva-  
t ives  of 'p and'$. 

Let 
p = i ; ( t ) .  e=G( t )  

be a path of sys tem (B) defined by the equations in polar coordinates. 

Using (B) and (25) to calculate q, we obtain 

# #  -- d;;" ( I )  - 2 3  [(Ai cos25 + 1.2 sin2 ir, + (at c o s ~  e'+ (a2 as) cos tt s i n  e + dt - -  # -  - -  
f Z; sine e) C g ,  C O S ~  6 + (g,  f f , )  cos 8sin tl+ f2 sin? m .  (26) 

If sys tem (B) is sufficiently c lose  to  system (A) in 4 ,  the expressions 
in brackets  in the right-hand s ides  of (21) and (26) are sufficiently c lose to 
each other  in G I ,  and hence a l so  in B." 
f?, the expression in brackets  in(26)  is less than - 4 m  < - f in H .  

fore, if  system (B) is sifficiently c lose to  sys tem (A), the expression in 

brackets  in (26) is a lso  l e s s  than -7 in 8. 
consequences is satisfied for  sys tem (B) in g.  
exis ts  ui > 0 with the following property: if system (B) is u,-close to  
sys tem (A)  in  G,, all the circles (23) are cycles  without contact for  the 
paths of system (B) and any path of this  sys tem which for  t = to passes  
through the c i rc le  (24) in te rsec ts  all the concentric circles of sma l l e r  rad i i  
as t increases ,  approaching the point 0 for  t -f + OO:PT 

Let ri be a positive number such that r,  < ro, r1 < $. 

In virtue of the par t icular  choice of 

There-  
- 

Then relation (22) with a l l  the 

Hence i t  follows that there  

.L* 

C1 is a c i r c l e  of . 
I 

radius  r ,  centered a t  0, HI is the region inside this  circle, and G' the r ing  
between the c i r c l e s  Co and C1 (Figure 17). 

We can now apply Lemma 1 2  (14.2). By this lemma,  there  ex is t s  
> 0 such that i f  sys tem (B) is 02-close to sys tem (A) the partition of ST; by 

the paths of sys tem (B) is E -identical to  the partition of by the paths of 

- 1  

We compare the values of thesc expressions in  the same point (z, y), i.e., w e  take p = p ,  8=8. The 
closeness of the Functions 5 and & to f i  andqi, respectively, follows from equations (16) and the analogous 
relations for 'fi and T i .  Here closeness is to be understood to rank 0. 
Hence i t  follows, in  particular, that the point 0 is a node or a focus of system (6). It c ac  be shown with 
much less effort, using the continuous dependence of the characteristic roots on the system coefficients, 
that for sufficiently close systems (B), 0 is a node. This is not enough for our purposes, however. It is 
clear from the proof that, among other things, system (8) has no h i t  cycles in p. 

* *  
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system (A). 
can be chosen so that each point M E CO is mapped into itself: 

The mapping T of w o n  itself corresponding to this e -identity 

T ( M ) = M .  

Let a be any number satisfying the inequalities a > 0, a < ul, a < ua. 

we have just pointed out, a mapping of the ring 
onto itself which is an e-translation, which t rans-  
forms  the paths of sys tem (A) into paths of 
system (E), and which leaves unchanged all the 
points of the boundary circle  CO. 
be T. It is defined on FT> and hence on the circle  
C,. Let N E C , ,  L a path of sys tem (A) passing 
through N, M an intersection point Of L with Co, z a 
path of system (E) through M ,  and N a n  intersection 
point of with the circle  C,  (Figure 17) .  Clearly 

Let 
system (E) be o-close to system (A) in cl. Since u < u2, there exists, a s  

Let this mapping @ 
Y 

T (N) = 3. 
The mapping T i s  originally defined in the ring w. 

Now let S be any point 
FIGURE 17 W e  will now continue it to the ent i re  & i n  the 

following way. Let T (0) = 0. 
in Hi, which is not 0. The path L of system (A) 

passing through S a t  t = ti clearly c r o s s e s  the circle  Ci at  the point N for 
t = to  < t l .  
tt on the path L"of system (B), if a t  t = to the path z passes  through the point 
N = T ( N )  ("time reflection," s ee  Figure 17). Since the radius of Cl is l e s s  

than;, w e  have p (S. 3) < e.. 
The mapping T continued in this way is now defined in the entire H .  

is evidently an e-translation which t ransforms the paths of (A) into the 
paths of (E). 

(a, A )  2 (a, B ) ,  and also ( H ,  A )  ( H ,  B ) .  This completes the proof of the 
lemma for the case when 0 is an ordinary node. 

If 0 is a dicri t ical  node o r  a focus, the lemma is proved precisely in 
the same way. 
lines, and the only change is that the concentric c i rc les  (12)  a r e  replaced 
by a family of ell ipses (14), and H i s  taken as the region lying inside one 
of these ell ipses.  

a simple node or focus. 

Let T ( S )  = s', where 3 is the point which corresponds to the time 

It 

We have thus established that if (E) is 6-close to (A), then 

If 0 is a confluent node, the proof proceeds along the same 

The proof of the lemma is thus complete. 
We now proceed with the fundamental theorem of s t ructural  stability of 

T h e o r  e m 12. The equilibrium state M,, (x0 ,  yo) of the system 

(A) 
d x  
~ = P ( s ,  g), % = Q ( x ,  g) 

f o r  which A =- 0, a # 0 (Le.,  a node or  a focus) i s  structurally stable. 

brium is a t  the origin 0 (0.0). and system (A) is given in canonical form. 
This evidently can be achieved with the aid of a l inear transformation. 
Lemma 2, §6.1 and f rom the definition of a structurally stable system 
(Definition 14, 17 .1)  Mo is a structurally stable equilibrium state  of the 
original system i f  and only if 0 is a structurally stable equilibrium state 
of the transformed system. 

P r o o f  . Without loss of generality, we assume that the state of equili- 

By 
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The proof will be ca r r i ed  out for  the case  when O i s  an ordinary node. 
In the other cases (confluent and dicr i t ical  node, focus) the proof is exactly 
the same.  System (A) is taken in canonical form (7).  

circle Co of sufficiently smal l  radius  ro centered a t  0. 
region satisfying the condition H c Gt, gt c G (Figure 18; c is the original 
region used to define the closeness  of systems) .  
from the boundary of G. Let this distance be d .  

Let H be the region considered in Lemma 1, i.e., the inter ior  of a 
Let GI be some 

c, is a t  a positive distance 

FIC L'RE 18 

Let E be some positive number. By Lemma 1, there  exis ts  o > O  such 
that if sys tem (B) is defined in 
an  equilibrium s ta te  a t  0 (0. 0), then 

where it is 0-close to  sys tem (A) and has  

2 
( H ,  -4) = ( H ,  B ) .  

Let 6 be a positive number, 6<:, with the following property: if 

sys tem (x) is 6-close to  system (A) in e, then (A) has  only one equilibrium 
state  Ot ( E o ,  qo) in and 

P (0, 0,) = m< Po. (28) 

where po is a fixed number satisfying the inequalities 

PO<%, p o < d  (29) 

and an additional condition which will be formulated a t  a la te r  stage. 
6 exis ts  in virtue of Remark 3 to Theorem 6 (52.2). 

This  
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Consider the transformation 

x=u+Eo* y = v + q o ,  (30) 

where O,&, qo) is the previously mentioned equilibrium state of system (a) 
6-close to system (A). Let system (A) be 

Transformation (30) reduces it to the system 

dv 
$==Pu+&09 u+qo). ; i r " i Z ( U + E O ,  V + % ) ,  

$=P( ,+Eo:  Y + q o ) .  $=w+&O* Y+(lO). (B) 

which, changing over from u and u to x and 1, respectively, takes the form 

System (B) is defined in G*, which is obtained when a is translated by a 
vector v ( - E o ,  -qo). 
i .e . ,  ct cG*. Therefore both (A) and (B) a r e  defined in 8,. Clearly i f  po is 
sufficiently small ,  (A) and (B) a r e  sufficiently close in F, .  The third 
condition imposed on po in addition to (29)  is the following: po i s s u f f i - 

c i e n t l y  s m a l l  s o  t h a t  i f  v-<po, s y s t e m  (B) i s  : - c l o s e  

t o  s y s t e m  (X i )  i n  4.  

Since by a_ssumption v m <  po<d,  G* contains zi, 

Note that 0 (0, 0) is the equilibrium state of system (B). 
Let K be the inside of a circle  of radius ro centered at  0, (Figure 18). 

K is obtained when H i s  translated by a vector 
coordinates E o ,  qo). 
Transformation (30) t ransforms regio_n K into region H, system (A) into 
system (B), and the paths of system (A) in K a r e  transformed into the 

paths of system (B) in H .  

mapping, we conclude that 

v (i.e., a vector with the 
Hence K c 8, and sys tem (A) is therefore defined in K. 

Since v m  < po < G, and (30) is a topological 

8 - 
(K, X) 2 ( H ,  B ) .  

definition of 6 and in virtue of the conditions imposed on pa. system (B) is 

;-close to system (A) in (?, and relation (31)  is satisfied. 

system (B) is a-close to  system (A) in a,. 
an equilibirum state  of system (B). 
and from (31) and (27) we clearly have 

(31) 

Let now (?i) be some system 6-close to (A) in E. Then, f rom the 

Now, since 8 < %s 
Moreover, the point 0 (0.0) is 

Therefore relation (27)  is also satisfied, 

( H ,  A )  2 (K, x). (32) 

We have thus shown that for any e > 0 there  exis ts  6 > 0 such that if 
system (A) is &-close to (A) in 6, relation (32) applies. 
i t s  turn that system (A) is structurally stable in H, i.e., 0 is a structurally 
stable state of equilibrium of sys tem (A). 

This implies in 
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A s  w e  have noted above, the s t ructural  stability of a dicr i t ical  or a 
confluent node and of a simple focus is proved exactly in the same  way; in 
the case of a confluent node, H is the inside of the corresponding ellipse. 
This  completes the proof of the theorem. 

i t s  statement. 
give he re  the al tered formulation and the corresponding proof. 

There exists a neighborhood H* of a simple node m a focus 0 enclosed 
in a cycle without contact tchich has the following property: fm any E > 0 
there exists 6 > 0 such that if system (A) is 6-close to system (A) ,  then 

Note that the s t ruc tura l  stability of the equilibrium state  0 follows 
immediately f rom this  proposition. W e  wi l l ,  conversely, prove this lemma 
proceeding f rom the previously established s t ruc tura l  stability of the 
point 0. 

P r o  o f . 
given in canonical form.  
centered a t  0, which contains no other  equilibrium s ta tes  except 0 and no 
closed paths of the system. 

Let H* be a c i rc le  of radius  f centered a t  0. 

E* > 0, e.g., e *  < 6. 
that i f  system (A) is 6*-close to (A), then 

R e  m a  r k 1. Lemma 1 can be strengthened by omitting condition 2 f rom 
It will be used in this  form in what follows, and we therefore 

(Z* A )  G (P** I ) .  

Consider the case when 0 is an ordinary node and sys tem (A) is 
Take a sufficiently smal l  circle H of radius  r 

System (A) is s t ructural ly  s table  in  this  circle. 

We take a sufficiently smal l  

Because of s t ruc tura l  stability there  exis ts  8* > 0 such 

e* - 
( H ,  A )  E(&', 2). ( 3 3 )  

Since E* <;, w e  conclude that H* c H'. 
K* contains no closed paths of system (A). 
clear ly  a cycle without contact for  system (A). 

H* is thus enclosed by a cycle without contact of system (A) and a l l  
sys tems sufficiently c lcse  to (A) have no closed paths in F*. 
the proof proceeds along the same  lines as th? proof of Lemma 1, but the 
paths of system (A) and of the close sys tem (A) in general  tend to different 
points 0 and 6. 

Hence, and by (33) ,  i t  follows that 

The boundary circle of H* is 
- 

The r e s t  of 

R e  m a r  k 2. A s imple s ta te  of equilibrium M o  (q, yo) of the system 

is a node or a focus i f  

p; ( 2 0 ,  Yo) PI (20, YO) 
' = / Q ' (  x 20, YO) Q; (20, YO) 

6 = p; (zo, YO) + Q& (20, YO) # 0. 

If system (6) is sufficiently c lose t," sys tem (A), there  is precisely one 
equilibrium s ta te  0-(& iTo) of sys tem (A) in a sufficiently smal l  neighborhood 
of the equilibrium state  Mo. 
point dare not marked1,y different f rom A and 6, so that A > 0 ,  &#O, and the 
point 0" is a simple node or focus. It is readily seen  that if  0 is an ordinary 
node, b is a l so  an ordinary node, and if 0 is a s imple focus, d is a lso  a 
simple focus. If, however, 0is a confluent node, dis ei ther  an  ordinary 

The quantities 3 and corresponding to the 



59.  STRUCTURAL STABILITY O F  A SADDLE POINT 

1. 
nearly identical transformation 

Reduction of the system to canonical form by a 

In our proof of the s t ructural  stability of a simple equilibrium state  
which is a saddle point, we assume as before that the saddle point coincides 
with 0 (0,O) and the dynamic system has the canonical form 

where hi& < 0. Without loss of generality, we may take 

%>0, ;L,<o. (1) 

We wi l l  show that any system sufficiently close to system (A) can be 
reduced to canonical form by a transformation which is as close to the 
identity transformation as desired.  

L e m m a  1 .  i f the  system 

is  sufficiently close in E to  system (A), a nearly identical linear transfm- 
mation will reduce system (A) to the f m m  

where e ,  and e2 are infinitesimal, and the functions 
tlteir f i r s t  derivatives vanish at the point 0 (0.0) and are arbitrarily close 
to the cmresponding functions g, and 9. 

Let eo and B2 be two positive numbers with the following pro- 
perty: for  any system (A) Bo-close in E to system (A), there  is precisely 
one equilibrium state  a (Eo, qo) in U,, (O), and this equilibrium state  is a 
saddle point. 
Definition 5 (S2.1), and also from the fact that small  changes in system (A) 
leave the determ-inant A = liX2 negative. 

the equilibrium state  of (A) lying in U, (0). 
written in the form 

and 5 together with 

PI- o o f .  

The existence of these eo and Bo follows from Theorem 6 and 

Let system (A) be 6 -cl_ose to system (A), where 8 5  6,, and let a (to, qo) be 
System (A) clear ly  can be 
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and i f  6 > 0 is sufficiently small ,  the numbers  ai, P I ,  E O .  qo can be made as 
smal l  as Cesired and 'pl and sl w i l l  be a rb i t ra r i ly  c lose to the corresponding 
functions 'F and 5, vanishing together with their derivatives a t  the point 
a (Eo, qo). Applying the transformation 

2= .Y+Eo,  y = Y f q o ,  ( 3 )  

we obtain the sys tem 

where v2 and $2 vanish a.tO(0, 0) together with their derivatives. 
If the numbers  ai anti pi are sufficiently small ,  the matr ix  

is sufficiently c lose to the matr ix  

and the charac te r i s t ic  roots  of the matr ix  (5) are therefore  c lose to h, and 
j.2. 

\ V e  will now establish the existence of a non-singular matr ix  S which is 
close to the unit matrix and sat isf ies  the relation 

W e  wri te  these charac te r i s t ic  roots  in the form A . , + E ~ ,  A2+e2. 

We s e e k  S i n  the form 

Right-multiplying (7) by S, we write i t  in the form 

(P r s  q )  (:h 1 2  a? f P? ) = ( ' . l S e l  ?.2!ez)(r t). (8)  

Comparing the elem'ents in the left- and the right-hand s ides  of (8), we 
obtain four equations: 

p (A, i a 1 )  4- Q P l =  ( 1 1  f €1) p .  P.r t Q (bf B2) = (Ai + E l )  Q (9)  

and 
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The determinant of this system of homogeneous equations in p and q is 
equal to the characterist ic polynomial of the matr ix  (5) for b=hl  + e l .  
since k1 + e, is a character is t ic  root of the matr ix  (5), this determinant 
vanishes. 
solution satisfying only one of these equations. 

But 

Hence, equations (11) a r e  equivalent, and i t  suffices to find a 
Let p =  1, and the second 

equation in (11) gives q =  
hl--hz+el-fh~ 

Similarly, seeing that 1, + e2 is a character is t ic  root of the matrix (5), 

we take S =  1 in (10) and find r =  
A 2 - h  -k %--ai 

These numbers p ,  q, r ,  s satisfy equations (9)  and (lo), and therefore 
the matr ix  

I 

satisfies the matr ix  equation (7). 
close to t_he unit matrix for  sufficiently small  at ,  pi, et ( i  = 1, 2), i.e., when 
system (A) is sufficiently close to system (A), and it is therefore a non- 
singular matrix.  Applying the transformation 

Since h l Z h 2 ,  the matr ix  S is arbi t rar i ly  

u = p X +  qY, u = rX+ sY, (13)  

where p ,  q. r ,  s a r e  the matr ix  elements f rom (12), to sys tem (4) and writing 
x and y for u and u ,  respectively, w e  obtain the system 

(14) 
d x  

= (kit- ei) X +  'pa ( x ,  v), = ( h ~  + e,) Y+ ~ l r r  (11. Y) 

(see QT, §6.2), i.e., system (B). 
sufficiently close to system (A), transformation (3)  and (13), as we have 
seen, a r e  arbi t rar i ly  close to the identity transformation. 
inverse transformations a r e  also arbi t rar i ly  close to the identity transfor - 
mation, and the-same applies to their  product. 
forms  system (A) into system (14). We have thus shown that if system (A) 
is sufficiently close in to system (A), a l inear t r ans fo r sa t ion  arbi t rar i ly  
close to the identity transformation will reduce system (A) to the form (14), 
i .e. ,  to the form (B). 
arbi t rar i ly  small ,  and the functions 'ps and $ s r  as is readily seen, are 
arbi t rar i ly  close to the functions cp and $, respectively. 
the proof of the lemma.* 

If sys tem (A), i.e., sys tem (Z), is 

But then the 

Now, this product trans; 

The numbers el and ez in this transformation a r e  

This completes 

2. Proof of the structural  stability of a saddle point 

Before proceeding with the actual proof, we briefly review the proce- 
dure for investigating the pattern of the paths of system (A) near a saddle 
point 0 (0, 0). For more details, see  QT, S7.3. 

' In our proof of Lemma 1 we only made use of the fact that At # A,, without resorting to the different s i g a  
of L, and Lr. The lemma therefore remains valid when 0 (0, 0) is an ordinary node, and not only a saddle 
point. This proposition, however, was not needed in our proof of the structural stability of the node. 
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System (A), in accordance with relations (15) f rom S8, is written in 
the form 

where f , ,  f ? ,  g,. g, are continuous functions which vanish a t  the point 0 (0, 0). 
LVithout loss of generality, we again take 

1.1 > O ,  i zZ<O.  (1 1 
The ent i re  analysis  is confined to a neighborhood of the point 0 where 0 

Let k be a fixed positive number. 
is the only equilibrium state  of system (A). 

and focus our  attention on the rectangle with i t s  ver t ices  a t  .4 (q. kq), 

diagonals of this rectartgle (Figure 19).  
rectangle, and R to i t s  inter ior .  
positive number. 
between the diagonals of the rectangle R and the diagonals a lso.  

We draw the s t ra ight  lines y = * k s  

(-- ZO. k z d ,  E ,  (-- 20, -- kzd, A I  (SO. - k z d .  These s t ra ight  l ines  are the 
Let E correspond to the en t i re  

zo is understood to be  a sufficiently smal l  
Consider the intercepts  of horizontal and ver t ical  lines 

A ff 

Y 
I 

Y 
4 4 
FIGURE 19 

Let L be a path of sys tem (A) corresponding to the solution 

z = z ( t ) ,  y = y ( t ) .  

If a t  t = t o>  the path L c r o s s e s  the diagonal y = kx (or  y = - kz) a t  some 
point other  than the origin, we have 

If a t  f = to,  the path L c r o s s e s  an intercept of the ver t ical  line between 
the diagonals of the rectangle R, w e  have 

where 

I - / < k .  
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ch. IV. EQUILIRRIUM S T A T E S  OF STRUCTURALLY STABLE SYSTEMS 

Finally, if a t  t = t o ,  the path L c rosses  the intercept of the horizontal 
line between the diagonals of the rectangle R, we have 

(19) 

and 

(20)  z ( to)  i 
m G T .  

Since the functions f l  and gi a r e  continuous and vanish at  the point 0 (0, 0), 
relations (161, (17), and (19) for  sufficiently smal l  solead to the equalities 

where xl,  x2, x ,  are some numbers which satisfy the inequalities, say, 

( i =  1, 2, 3. 
sign - to the diagonal B A , ) .  

It follows f rom (21)-(23) (see QT, 17.3) that the paths of system (A) in 
the rectangle R make the pattern shown in Figure 20. On each of the s ides  
A B  and A , B ,  of the rectangle R there  is one point - D and D 1 ,  respectively - 
through which an a -separa t r ix  of the saddle 0 passes,  and on each of the 
s ides  A A ,  and BB,  there  a r e  the points C and C, through which pass  a- 
separatr ices ,  which are the continuation of the o -separatr ices .  The s ides  
of the rectangle a a r e  segments without contact for the paths of system (A). 
Through any point inside E ,  which is not the origin 0 and does not belong 
to  one of the above separatr ices ,  passes  a path of the system (A) which 
emerges  from the rectangle R through on2 of the s ides  A B ,  A& as t decreases  
o r  through one of the s ides  A A , ,  BB,  as t increases .  

The sign + in (21)  corresponds to the diagonal A B , ,  and the 

5438 

i 

I FIGURE 20 
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-A11 the above relations and propositions clear ly  remain  valid if a is 
replaced by any smal le r  "concentric" rectangle 
t~ = 5 k r ,  whose s ides  a r e  paral le l  to the coordinate axes  (the rectangle 
.4'B'B,.4; in Figure 20). 

so that equalities (21)--(23) are applicable. 
rectangle R corresponcing to this  x 0 .  

with the s a m e  diagonals 

It is assumed in what follows that the number xo > 0 is sufficiently small ,  
We hence consider the 

L e tn ni  a 2. Ij a dynainic systern ( A )  has the canonical 30rtii 

arid i s  silff'iciently close to systerii ( A ) ,  the patter?, of paths of systeui (A)  in 
rectangle a i s  sitnilar to the pattevn of paths of system ( A ) .  
on each of the sides AL: and d l B ,  of the rectangle R there is one point - b  - 
atid B,- through which passes an a-separatrix of the_ saddle 0 of systerniA), 
and on the sides A-4 , and BB,  there are points 
cz - separatvices that cottstitute the contiriuatiun of the O -  separatrices. The 
sides of the rectangle 2 are segments without contact for the paths oj. 
system (A),  and each bath of systetn (A)passing through an interim point 
of' the rectangle R which i s  neither a separatrix nor the point 0 eitierges 
frot)i R through one of [he sides A B ,  A ~ B ,  as  t decreases and through one of' 
the sides A.4, ,  BB,  as t increases. 

If system (A) is sufficiently c lose to sys tem (A), h", and x2 are 
sufficiently c lose to kt .and IC, Cespectively. 
0 is a saddle point of s,ystem (A). 
s ta te  of system (A) (47.3, Definitio? 15 and Theorem 11). 
follows that a l l  dynami,z sys tems (A) which are sufficiently c lose to (A) 
have precisely one equ.ilibrium s ta te  in a, namely the point 0 (0, 0). 
ther analysis  of (16)-(20) shows that relations ana_logous to  (21)-(24) 
apply to the paths x = 3 ( t ) ,  y = 
close to,@).:': 
system (A) in rectangle 
\QT, J7.3), and the proof of the lemma is complete. 

which is sufficiently c lose to (A) for  Lemma 2 to apply. 
the separa t r ices  of system (A) passing through the points D ,  DI ,  C, C i s  
respectively (Figure 20), and t,, Ll,, E , ,  z,, the separa t r ices  of system (A) 
passing through the pointsb,  6,. 2. c1, respecitvely, which lie on the s ides  
of the rectangle fi ( E  i t s  on the side A B ,  8, on the s ides  A,B,, etc.).- 

6 -close to system (-4) (2nd the separatrices L ,  and Z, pass through the 
points D and d at t = t o ,  m y  two points of these separatrices cmresponding 
to the sattie tato aye distant less than e f rom each other. A sitnilar 
proposition applies to (2n-v of the separatrices L,,, L,. L , , .  

proof applies to the other separa t r ices .  

is entirely contained in  U, , l (0 ) .  

* 

Specifically, 

avid C, through tchich pass 

P r o o f  . 
Therefore  E., > 0, x? < 0 ,  and 

The point 0 (0.0) is a simple equilibrium 
Hence i t  readily 

Fur -  

( t )  of any system (A)  which is sufficiently 
The situation with regard to the pattern of paths of 

is therefore exactly the same  as for system (A)  

In the following two lemmas,  (A) is a dynamic sys tem in canonical form 
Let L,,  L , , ,  L,, L , ,  be 

L e )?I ?ti a 3. For aiiy e > 0 ,  there i s  6 ==- 0 such that if systein ( A )  i s  

P r o o f . 

Let e > 0 be given. 

The proof is ca r r i ed  out for  the separa t r ix  L,. The s a m e  

Consider a rectangle R', "concentric" with R, which 
Letd ' .  B', B;,  and A ;  be the ver t ices  of this  

This is so because if system (x) is sufficiently close to  system (A), the functions 7, and 2~ are arbitraril) 
close to f i  and gi ,  respectivel) (I = 1.21, as we see from equations (151, 95 and the corresponding 
reiations for f i ,  7,. gi. 
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rectangle; 
of the rectangle (Figure 21) .  
point D for t = to and through the point D’for t = T > to. 
number, T, > T. 

By TheoTem 8 (53) there  exists a segment K I K z  of the side A B  of the 
rectangle R containing the point D and a number 6,> 0 with the following 

D’ is the intersection point of the separatr ix  L, with the side A’B’ 
Suppose the separatr ix  L, passes  through the 

Let T ,  be some 

property: if  system (A) is 8,-close to 
system (A), M,, is a point-of the segment K I K z ,  

through fi, at  t = to ,  M ( t ) ,  3 ( t )  the points of the 
paths L, and L” corresponding to the t ime t ,  then 
p (M ( t ) ,  
points M (T,) lie inside the rectangle R’. 

K ; K ;  of the side A’B’ of the rectangle R’ con- 
taining the point D‘ (Figure 21) and a number 
62 > 0 with the following property: a s  Lde- 
c reases ,  all the paths of any system (A) which 
is 6,-close to (A) passing through the points of 
the segment K ; K ;  c r o s s  the side A B  of the 
rectangle R at the points of the segment K I K z .  

Consider the paths L, and La of system (A) 

is the path of sys tem (A) which passes  

( t ) )  < e for  a l l  f ,  f o < f < T i  and a l l  the 

By Lemma 5, $ 4  there  exis ts  a segment 

A, 

FIGURE 21 

which at  some t pass through the points K ;  and K ; ,  respectively. 
points lie on different sides of the separatr ix  L,, with the increase in f the 
paths L, and Lz will c r o s s  the diagonals OB’ and O A ’ o f  the rectangle R’,  

Since these 

will also meet the diagonals OB’ and OA‘ ,  respectively, with increasing t .  Then 
by Lemma 2 the intersection point Br of the separatr ix  &,, with the side A‘B’ 
of the rectangle R’ l i es  between K ;  and K ; .  

6 -close to system (A), i t s  separatr ix  L”, evidently c ros ses  the segment K ; K ;  
(since 6 < I!$), and hence also the segment K I K z  (since 8 < 6 , ) .  
intersection point of the separatr ix  E, with K,K, .  
t r ices  L, and &, pass  through the points D and b,  respectively, a t  the same 
time t o .  

All the points M ( t ) ,  n? I t )  of these separatr ices  corresponding to t > T, lie in- 
side the rectangle R’, i.e., in U.lz (0). 
points is therefore l e s s  than E .  We have thus established that if system (A) 
is 6 -close to system (A), p ( M  i t ) ,  fi ( t ) )  < e for  any t , ro .  This completes the 
proof of the lemma. 

Let I be any a r c  without 
contact that meets  the separatr ix  L, at a single point S, which does not 
coincide with the endzpoints of 1 .  Then for  any e > 0 there e x i s t t 8  > 0, 
such that-if system (A) is 6-close to sys t em (A), the separatrix L, of 
system (A) meets  the-arc I at  a single point ge and p (S, 3) <e; if in addition 
to the above, L, and L, pass  through S and 
these separatr ices  corresponding to the same time i > to  a r e  a lso distant 
l e s s  than e from each other. 
difficulty. 
sufficiently small ,  the points S and 3 (or D and a) are arbi t rar i ly  close.  

Let 6 be the smallest  of the three numbers 6,r82183. If system (B) is 

Let b be the 
Suppose that the separa-  

Then, since 6<a5 for any t ,  to< t < Ti, we have p ( M  ( t ) ,  lii ( t ) )  < e. 

The distance between any pair  of sEch 

R e  m a r  k . Lemma 3 can be generalized. 

a t  t = to, any two points of 

This proposition can be proved without 
In what follows we wi l l  only make use  of the fact that if 8 is 
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$3. STRK'CTL'RAL STABILITY OF A SADDLE POIKT 

W e  now proceed to the next le-mma. Retaining the notation of Lemma 3, 
w e  again consider the rectangle R and the separa t r ices  L,, L t , ,  Z,,. L , ,  of 
the saddle point 0. 

the two s ides  of the point D, and on AIBl w e  choose two points S2 and S 3  lying 
on the two s ides  of D 1  (Figure 22) .  Let 
I.. L,,  L 2 .  L 3  be the paths passing through 
these points. 
creases, these paths meet the s ides  A.4, 
and BB1 of the rectangle R a t  the points 
T ,  T I ,  T Z ,  T B ,  respectively. Let H be the 
region delimited by the segments  
S S , ,  S2S3, T T 3 ,  T I T 1  and the a r c s  ST and 
S i T I  ( i  = 1, 2, 3)  of the paths L and L i .  
H is a canonical neighborhood of the 
equilibrium state  0 (QT, S19.2). The 
separa t r ices  L,,L,, .  La, and L,, of 
sys tem (A) partition the canonical neigh- 
borhood H into four regular saddle-point 
regions, which are designated u, U I .  0 2 ,  0 3  

(Figure 22) .  
by the arcs OD and OC of the sepa ra -  

On the s ide A B  of the rectangle R we choose two points S andS,lying on 

A s  the parameter  t in-  

&a 
4s 

& & 

FIGURE 22 

The region u is delimited 

t r ices ,  the point 0, the arc S T  of the path L ,  and the segments  DS and CT; 
the boundaries of the _other regions ui are s imi la r  to the boundary of (5. 

in canonical form.  Let 6 > 0 be so  sma l l  that, f i rs t ,  Lemma 2 holds 
t rue and, second, the points b and B, [the intersection points of the 
separa t r ices  z, and I,, with the segments  A B  and A t B , )  lie inside the 
segments-S,S and S2S3, respectively. Let z, &, E , .  z3 be the paths of 
system (A) which pass  through the points Sc S1, S t ,  S1, re2pectively (in 
Figure 22, these paths and the separa t r ices  of sys tem (A) are marked by 
dashed lines). 

analogous to H .  
of the saddle point 0 of system (8) into four regular  saddle-point regions a 
aqd 01 ( i  = 1,2,3), which a r e  analogous to the regions (5 and ut. 

regions u and u are assumed to be closed. 

is 6 -close to system (A), we hatie 

Consider system (A) which is 6-close to  sys tem (A) and is a lso  given 

Let 3 be the canonical neighborhood of th_e saddle point 0 of system (A) 
Like H ,  the neighborhood His partitioned by the separa t r ices  

All the 

L e))? i)i  a 4 .  For any F > 0 ,  there exists 6 > 0, such that if systerit (A) 

P r o o f  . We will show that if  6 is sufficiently small ,  there  ex is t s  a 
mapping 8 (or Bi, i = 1, 2, 3, respectively) which maps u (and 0;) onto 
the mappings 0 and et (a) are e-translations, (b) map paths into paths, and 
(c )  e and e,, Bi and e2, 8: and e3# e 3  and 8 coincide on the arcs of the 
separa t r ices  OD, OCl. ODl, OC, respecitvely. 

(gi ) ;  

Lemma 4 clear ly  follows directly f rom this  proposition. 
To fix ideas, let u s  consider the region 5 and the corresponding 

(Figure 23). 
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a. IV. EQUILIBRIUM STATES OF STRUCTURALLY STABLE SYSTEMS 

,I I F  \ c  A 

I I 
FIGURE 24 FIGURE 23 

Let e > 0 be given. As in Lemma 3, we consider the rectangle R' with 
the ver t ices  A ' ,  B' ,  B ; ,  A ; ,  which is "concentric' ' with R and is entirely 
contained in U e l z  (0). In (5 we draw the path EF which meets the s ides  
A B ,  A A t ,  A'B',  A'A; of the rectangles R and R' a t  the points E, F, E ' ,  F', 
respectively (Figure 24). 
shown in Figure 24  {their ver t ices  a r e  TSEF, E'EDD', FF'C'C, respectively). 
By Lemma 9, 54.2, for any given e ,  there  exis ts  a pair  of numbers 
qt,  6, ( q ~ ,  6,; 23.6,)  for the quadrangle I (11, 111) with the Lollowing property: 
if  system (A) is 6, (b2 ,  g3)-close to szs tem (A), I (11, 111) is the corresponding 
elementary quadrangle of system (A), and mappings a r e  given of the side?- 
FE, E S ,  and ST of_the quadrangle I onto the respective s ides  FE,  &s, and ST 
of the quadrangle I (or of the s ides  DD'.DE, and EE' of the quadrangle I1 and 
the sides CC', C'F', and F'Fof the quadrangle III), which a r e  qi-translations 
(or qz-, q3-translations, respectiv-ely), therz exis ts  a Lath-conserving 
mapping of the quadrangle I onto I (I1 onto 11, I11 onto 111) which is an 
e-translation and coincides with the given mapping on the three s ides  of the 
quadrangle. 

Let 6, > 0 be so small  that if system (x) is 6,-close to (A), the segments 
EE', E'F', and F'F of the path of system (A) can be mapped onto the respective 
segments E2,%'p, and pF of the path of system (A) through the point E, and 
the segment ST can be mapped onto the segment ST by mappings which a r e  
q4-translations, where q, < min {q,, q2, q3). The existence of such 8,  is seU- 
evident. 

rectangle R at  the point K lying between D and E(Figure 25), and the 
segment C'F' a t  the point L'. From QT, S7.3 it  follows that i f  point K is 
sufficiently close to D, L ' i s  arbi t rar i ly  close to C'. 

so that i f  the length of the segment DK is l e s s  than <%, the length of C'L' 

is l e s s  than <%. 
satisfied: i f  system (&) is 6,-close to system (A), we have 100" I 
I C'? I <$, the a r c  DD' of the separatr ix  L, can be mapped onto the a r c  ad' 
of the separatr ix  
can be mapped onto the a r c  p c  of the separatrix E ,  by an q,-translation. 

Let I, 11, 111 be the elementary quadrangles 

Draw the path KL' of system (A) which c r o s s e s  the side A B  of the 

We choose the point K 

Let 65 > 0 be so small  that the following condition is 

3, 
by an q,-translation, and the a r c  C'C of the separatrix La 
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5 ' .  STRL'CTCRAL STASILITY OF A SADDLE POINT 

The existence of such 6> follows f rom Lemma 3 and from general  considera-  
tions concerning the phase por t ra i t s  of erose sys tems (see Lemma 5 ,  14.1). 
Let finally & > O  be such ?hat i f  system (A) is 6,-close to system (A), the 
paths of (A) and (A) passing through any point .lI of the segment KE w i l l  
intercept with increasing t the s ide  A'A; of the rectangle R' a t  two points 
which are distant less th2.n q 3  f rom each other. 

t: 
FIGURE 25  

We will now show thct if 6 is a positive number l e s s  than any of our  
8 ,  ( I g i 4 6 )  and system (-4) is 6-close to sys tem (A), then 

To prove this  we will establish the existence of a mapping 13 which 
rea l izes  the relation (26). 
\Ve will descr ibe these successive s tages  by indicating what is mapped 
onto what and to what closeness. 
is taken to ensure that paths are s t i l l  mapped into paths. 

1 )  S T  onto S T .  EE' onto EE',  E'F' onto E'F', F'F onto PF, all these to 
c loseness  q, < min {qt. q p .  ql}. 

2 )  ES onto ES identically (to ze ro  closeness) .  - 
3 )  !Mappings 1 and 2 are extended to I: I onto I to c loseness  E .  

4 )  D K  onto 6 K  (c loseness  automatically < 2$ < q?), KEonto K E  identi- 

5)  Mappings 1 and 4 a r e  extended to 11: I1 onto I"I to c loseness  E .  

6 )  K'L'onto I?Z' arbi t rar i ly ,  K'E'onto R'6' using the mapping which is 

7) Mappings 1 and 6 a r e  extended to a mapping of the elementary 

The mapping e is constructed in severa l  stages. 

When the mappings are extended, care 

cally, DD' onto dB' to c loseness  q-.  

induced by the identical mnpping of KE onto itself. 

quadrangle K'E'F'L' onto the quadrangle d'8'k'p. 
lie in  L;, 2 (0), the closeness  is automatically less than E .  

induced by mapping 4, DK onto dS. 

Since both quadrangles 

8) 0 into itself, D'O onto 5'0. OC' onto O?, D'K' onto 3 3 b y  the mapping 
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ch. LV. EQUILIBRIUM STATES OF STRUCTURALLY STABLE SYSTEMS 

9)  Mappings 6 and 8 a r e  extended to a mapping of the regular saddle- 
point region L'K'D'OV"' onto the analogous region fiI?&OC?, 
by QT, 518.4. Lemma 11. This mapping is an e-translation, since both 
saddle-point regions a r e  in U.,2 (0). 

induced by the mapping of D'K' in 8 and the mapping of K'E in 6 .  
closeness is <q3. 

This is feasible 

10) C'C onto ? E  to closeness q 3 ,  C'F'onto p p  using the mappings 
The 

11) Mappings 1 ai id  10 a r e  extended to 111: I11 onto 111 to closenes 
Mappings 3, 5, 7, 9, and 1_1 jointly define a mapping 8 of the regular  

saddle-point region u onto u .  
and maps paths into paths, i.e., it  has the properties (a) and (b). 
mappings 

Note that on the a r c  OD of the separatr ix  L ,  the mapping 0, should coin- 
cide with_the given mapping 8. Therefore, in constructing the mapping of 
DD'onto DD' in 4, closeness to  q2 is not enough: we should ensure close- 
ness  to q: < q ~ ,  and correspondingly replace 62 by 8: < 8:. This is clearly 
always feasible. A similar  r emark  applies to the mappings €I2 and e3 .  -The 
se t  of four mappings 8, 8,, 02. 
This mapping real izes  the relation (25). 
completed. 

It is readily seen that 8 is an e-translation 
The 

( i  = 1 , 2 , 3 )  of ui  onto ri are constructed in the same way. 

can be treated a s  a mapping of H onto H .  
The proof of the lemma is 

Xh e o r  e m 13,  An equilibrium state M o  ( x o ,  yo) of the system 

f o r  which A < 0 (a saddle point) is structurally stable. 
Theorem 1 3  is proved in the same way a s  Theorem 1 2  ($8). 

However, instead of Lemma 1 and transformation (30), used in 58  in our 
proof of Theorem 12,  w e  should use  Lemma 4 and a linear transformation 
which reduces the modified system 

P r o o f .  

to the canonical form 

If system (x) is sufficiently close to (A), this transformation, by 
Lemma 1, is arbi t rar i ly  close to the identity transformation. 
ments used in the proof of Lemma 1 2  therefore still apply. Q. E. D. 

if  H is a sufficiently small  canonical neighborhood of the saddle point 0, then 
for any E* > Othere exis ts  6* > 0 with the following property: if  system (A*) 
is 6'-close to system (A), then 

The argu- 

R e  m a r k 1. From Lemma 4 and the proof of Theorem 13 we see that 

(27) 
e* 

( H ,  A) = (H*, A*), 

where H* is the canonical neighborhood of the saddle point O* of system (A"). 
Indeed, re la t ioa  (27)  follows from relation (25)  of Lemma 4 and f rom 

the relation (g ,  3 )  
But x" is a canonical neighborhood, and H* and A* are obtained f rom 

- 
( H * ,  A * )  which is obtained in the proof of Theorem 13. 

and A", 
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respectively, by a linear transformation (Tpecifically, by the transformation 
which reduces  ( M )  to the canonical form (A)). Therefore  H* is a lso  a 
canonical neighborhood of the saddle point O*. 

As we have already noted, i f  Mo ( ro,  yo) is a s imple saddle 
point of system (A), any system sufficiently c lose to (A) has  precisely one 
s ta te  of equilibrium in a sufficiently c lose neighborhood of M0, which is 
a l so  a saddle point. 

R e  m a  r k 2. 

§ 10. 
STATE WITH PURE IRIAGINARY CHARACTERISTIC 
ROOTS 

STRUCTURAL INSTABILITY OF AN EQUILIBRIUhI 

1. 
character is t ic  roots (a review) 

investigation of an  ecpilibrium s ta te  with complex 

\.+'e will show in this  section that an equilibrium s ta te  with pure 
imaginary character is t ic  roots  is s t ructural ly  unstable. 
sections, w e  will study, ,without loss  of generality, canonical sys tems of 
the form 

As in the previous 

(1) -dr--: 0's --By-;-'F(r,y). - - = p I T * ( x , y ) ,  dty 
dl 

where $ li 9. 
c l a s s  k ', 1 or analytical in c; they vanish a t  the point 0 (0, U) together with 
their f i r s t  -order  par t ia l  derivatives. 

W e  always assume that $ > 0. and $ are functions of 

System (1) is a particc.lar case of the sys tem 

The phase portrai t  of system ( 2 )  near  the point 0 (0. 0) is studied in 
We will only summar ize  the corresponding resul ts ,  detail in QT, 58. 

which are needed in what follows. 

relations I = p cos 8, y = p sin 8. 
gives the se t  of equations 

\Ve u se  the s a m e  notation as  in  QT. 
System ( 2 )  is investigated in polar coordinates, introduced by the 

The transformation to polar coordinates 

where 

~ ( p ,  e ) = a p i g  (pcose,  psin8)cose+Ip(pcose, psine)sine,  

P P 
0 (p, 6) = - case- p ( p c 0 ~ 6 .  p s i o 6 )  sin 8. ( 4 )  tp (p cos 6, p sin 6) 

It is fur ther  assumed that 

a (0, e) = o (5) 

fo r  --a3 c B < + m .  This condition ensu res  the continuity of the function 0. 
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I Ch.IV. EQUILIBRIUM STATES OF STRUCTURALLY STABLE SYSTEMS 

System ( 3 )  can be reduced to a single equation 

I which is obtained by dividing the f i r s t  equation in (3) through the second 
equation. 
form as R ( p ,  0): 

The right-hand side of equation ( 6 )  is written in abbreviated 

I System ( 3 )  and equation (6), and hence the function R(p,  e), a r e  consi- 
dered in the s t r ip  

-p* < p < p* ( 8 )  

of the (p, 0) plane, where p* is a sufficiently small  positive number. 

partial derivative with respect to p in the ent i re  s t r ip  ( 8 ) ,  and 
Elementary calculations show that the function R (p, 0) has  a continuous 

for any 8. The existence of a continuous derivative of R with respect  to p 
indicates that the existence and uniqueness theorem and the theorem of 
continuous dependence on the initial conditions both apply to equation (6)  
in the s t r ip  (8) (QT, Appendix, 48.2). 
I po I < p* 

Therefore,  for any eo and por 
there  exis ts  a unique solution of equation (6) 

satisfying the condition 

f (eop eo, pol = p0. (11) 

Solution (10) is defined in  some (maximum) interval (e,, e,) which contains 
the point Bo. Moreover, 

f (0; eo, 0) = 0, (12) 

so that p = 0 (the axis  0 in the (0, p) plane) is a solution of equation (6). 
solution is defined for  all 6, - w < 8 < w. 

of integral  curves  of equation (6) .  

This 

The family of paths of system (3)  in  s t r ip  (8) coincides with the family 
If 

P=P(Q,  e = e w  

is a solution of system (3), 2 is the corresponding path, and (po, e0)is a point 
on this path, 

P = f (0, eo, p0) (13) 

is the equation of this path. 

90 



910. i TRC CI ’ I  R.:.L LYS’r.ABlLITY c T  AX EQLrIL[SRIK’.\! STATE 

The relation between the paths of sys tem ( 2 )  in the (I. y) plane, on the 
one hand, and the paths of  sys tem ( 3 )  in the (p .  0) plane (or, equivalently, 
the integral curves  of equation (ti)), on the other, amounts to the following: 
the path p = 0 of system ( 3 )  in the (p. 8 )  plane corresponds to the equilibrium 
s t a t e0  (0 .0)  of sys tem ( 2 )  in the (s. y) plane. 
other than the axis  8, which lies in the s t r ip  (8) and corresponds to  the 
solutionp = p ( t ) .  8 = 8 ( t ) ;  let ( 1 3 )  be the equation of this  path. 
plane, t corresponds to a path L of sys tem ( 2 )  lying inside a c i rc le  of 
radius  p* centered a t  the point 0, which descr ibes  the solution 

z : - = p ( t ) c o s e ( t ) ,  y = p ( t ) s i n e < t )  ( 1 4 )  

Let now t be a path of system (3) ,  

In the (z, y) 

of this  system. 
path L i n  polar coordinates. Note that if  L is a closed path, there  is only 
one path 
there  is an infinity of such paths corresponding to i t ,  with the paramet r ic  
equations 

Equation ( 1 3 )  can be considered as the equation of the 

of sys tem ( 3 )  zorresponding to it; i f ,  however, L is not closed, 

p = p ( t ) ,  t l=e ( t ) -+2kn  ( k = 0 .  5 1, & 2 ,  ...; see QT, S 8.3). 

The investigation of the paths of sys tem ( 2 )  in the neighborhood of 0 ( 0 , O )  

For any E > 0 there  ex is t s  
is based on the following proposition: 

at t = t., passes  through some point .%Io in  C‘,, (O), o ther  than the point 0 itself, 
will c r o s s  with the increase  and decrease  in t every half -line 8 = const 
without leaving U, (0) (Figure 26)  (QT, §8.4, Lemma 3) .  

> 0,  such that any path of sys tem (2)  which 

FIGLrRE 26. 

Take any r ay  8 = Bo. p > 0 (or p < 0) .  By the las t  proposition, i f  po is 
sufficiently smal l  (e.g., I po I < bo), solution ( 1 3 )  

P = / (87 00. Po) 

i s  defined for a l l  8 ,  Flog 8 .c Bo $. 2n. 
The function 

Pi = i (eo 3- k eo. Po) = fen (Po) 
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is known a s  the s u c c e s s i o n  f u n c t i o n  on the r a y e = e O ,  since the 
points M o  (po, 0,) and M i  (pi. eo) are two successive intersection points of a 
path of system ( 2 )  with this ray obtained for increasing t (for p > 0; for 

< 0 and increase in e corresponds to a decrease in t ) .  

any number, w e  may take without loss of generality eo = 0, and for the 
corresponding succession function fo (po) we simply write f (PO). 

dB < 0, Since eo is 

Thus, 

f (Po) = f (2n; 0, Po). (15) 

Since f (e, eo, 0) E 0, we have 

To determine the behavior of the path L of system ( 2 )  which passes  
through the point M o  with the polar coordinates po, 0 (po > 0). consider the 
function 

If d (PO) = 0, the path L through M o  is a closed path. 
d (po) < 0 (d (po) > 0), L is a spiral  which for t+ + 00 (or t -+ - 00 ) either 
approaches the equilibrium state  0 or tends to a closed path enclosing the 
point 0. 

The equilibrium state  0 of sys tem ( 2 )  is a stable (unstable) focus if and 
only if f o r  a l l  sufficiently small  po > 0, d (po) < 0 (d bo) > 0). 

If, however, 

2. Calculation of the first focal value 

Since the right-hand side R (p, e) of equation (6)  has a continuous partial  
derivative with respect  to p. the solution of this equation f (0; eo, po) is 
continuously differentiable with respect  to po (QT, Appendix, 58.3). The 
succession function f (po) therefore has  a continuous f i r s t  derivative, whose 
value a t  po = 0 we will now calculate. 

Note that by definition f (e; 0, po) satisfies the differential equation 

Differentiation with respect  to po gives 

As we know (1131, 524, Theorem 16), the mixed partial  derivative in 
the left-hand side is continuous and is thus independent of the o rde r  of 
differ entiation. Theref o r  e 
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This is a v a r i a t i o n  a 1 e q u  a t i  o n relative to the initial value po. 

clear ly  a l inear differential equation with the unknown $. 
(9)  we see that for  po=O equation (20)  takes the form 

It is 

F r o m  ( 1 2 )  and 

Let u s  determine the corresponding initial condition. 
Therefore  

By (111, f(0; 0, po) = po. 

(22 )  
d i  (e: 0. p0) = 

apo 1e=o 

Integrating (21) with the initial condition (22),  w e  obtain 

Hence, using (17) and (15), we find 

2n 2 
d ' ( O ) = e  6-1. 

The number d ' (O) i s  called the f i r s t  f o c a l  v a l u e  of the 
equilibrium state  0." WE. see  from (24)  that for an equilibrium state  with 
p u r e  i m a g i n a r y  c h a r a c t e r i s t i c  r o o t s ,  in particular for  the 
equilibrium state  0 ( 0 , O )  cif system (l) ,  t h e f i r s t f o c a 1 v a 1 u e 
i s  z e r o .  

3. 
multiple focus 

The theorem of the creation of a closed path from a 

An equilibrium state  with pure imaginary character is t ic  roots  is called 
a f o c u s  (either stable o r  unstable), a c e n t e r ,  or a c e n t e r  - f o c u s  
(QT, 58 .6 ) .  

De f i n  i t i on 16. An equilibrium state of a dynamic system which has 
pure imaginary characte:vistic roots and is a focus will be called a 
multiple focus. 

T h  e o r  e In 14 (theorem of the creation of a closed path f rom a 
multiple focus). I f  the equilibrium state Ma (io, yo) of a dynamic system (A) 
is a multiple focus, then for any e > 0 and 6 > 0, there exists a system (A) 
6 -close to ( A )  which has at least m e  closed path in the e -neighborhood 
of lW0.  

W e  w i l l  use  this theorem in  our  proof of the s t ruc tura l  instability of an 
equilibrium state  with pure imaginary roots.  It is, however, a l so  of 
considerable independent significance. 

As before, i t  suffices to consider the equilibrium s ta te  0 (0,O) 
of the canonical system 

P r o o f . 

The i-th focal value is the number d i )  (0) (if it exists. of course). 
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Let @ > O a n d s u p p o s e t h a t  O ( 0 , O ) i s a  s t a b l e  f o c u s .  Aswehavenoted 
at  the end of $10.1, there exists ro > 0, such that for a l l  po. 0 < P O  < ro, the 
function d (p0) is defined and d (po) < 0 .  

Let ri be some fixed number, 0 < r, < ro. 

d (rl) < 0. 

Then 

Consider the modified system 

dx - 
==ax-@By+cp(x, By), 

(A) 
~ = b + ~ B y + w Z ,  Y) 

with the corresponding functions F, 
functions F, a, etc., relating to sys tem (A). 
magnitude, system (A) is arbi t rar i ly  close to system (A). 
seen that the functions 3 and 8,  and therefore a lso R", a r e  arbi t rar i ly  
close to the respective functions F, 0, and R ($10.1, (4) and (6)), a t  least  
to rank 0. Then by Theorem 1, Appendix, subsection 1, the solutions 

f (0, eo, po) and r ( 6 ,  Bo, pa) of the equations $= R (p. e) and $=% (p, 6) a r e  

arbi t rar i ly  close to each other over a finite range of values of 8, and hence 
the numbers d ( r , )  and z ( r , )  a r e  also arbi t rar i ly  close. 
conclude that i f  ;is sufficiently small ,  we have 

etc., which a r e  the analogs of the 
If a" is sufficiently small  in 

It is readily 

Using (25) we thus 

d"(rl) < 0. (26)  

Let % be so small  that inequality (26 )  is satisfied; we choose this 
number p o s i t i v e ,  a">O. Then, by (24) 

- 
$ ( O ) = e  2n a 6-1>0. (27)  

Since d' (pa) is continuous, d' (po) > O  for a l l  sufficiently small  pa; in other 
- 

words, dc(po) is an increasing function in a certain range. Hence, using 
the equality di(0) = 0 (see (15), (16), (17)), we conclude that for all suffi- 
ciently small  positive pOa B(pO)>o. In particular,  for some rzr O<rz<ri, 

d"(rz) > 0. (28) 

From inequalities (26 )  and (28)  and the continuity of 3 it follows that 
there  exis ts  a t  least  one r3,_r2 < r3 < r,, such that 2 (rs) = 0. 
that the path L", of system (A) passing through the point with polar coordi- 
nates ( r3 ,  0) is a closed path. - 
Eo is entirely contained in U, (0). 

solution of the equation $ = R" (p, e) corresponding to system (A). 
solution corresponding to the closed path L", is p = 7(e; 0, r3).  

solution of the equation 

(see (12)).  

This signifies 

It is readily seen that i f  a and rl are sufficiently small ,  the closed path 
Indeed, let  p = f (0; 0, p) be the general  

The 

The general  

= R" (p, e) is p = f (e; 0, po), and f (8; 0, 0) 0 

If a and rl a r e  sufficiently small ,  (A) is arbi t rar i ly  close to 
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sys tem (A), the function R (p, 0) is arb i t ra r i ly  c lose  to R (p, e), and r3 is 
arb i t ra r i ly  c lose to zero. Therefore, by the theorem of continuous 
dependence on the right-hand s ide and the initial conditions (Appendix, 
subsection 1, Theorem 2), for  a l l  '3, 0,<8,<2n, the difference 7(e; 0, r J )  - 
f (e; 0,  I)), equal to 7 (e; 0, r3 ) .  is less than e, i .e. ,  

U< ?(e; 0,  r3) < E .  

This  indicates that the closed path zo is entirely contained in U, (0). 
Since by assumption 0 ( 0 , O )  is a f o c u s of sys tem (A), 

there  are no closed paths in a sufficiently sma l l  neighborhood Uof 0. 
the other hand, any system (A) sufficiently c lose to (A) with a > 0 h a s  a t  
least  one closed path in c'. 
path is c r e  a t  e d f rom the multiple focus. 

conditions r2 < r3 < r , ,  2 ( r 3 )  = 0, the closed path Eo is a pr ior i  a l imit-  
continuum from the imide  (it may, however, a l so  be a limit-continuum 
from the outside, and thus a limit cycle). 
of these numbers, Eo i s  a pr ior i  a limit continuum from_ the outside. 

by the system 

Q. E. D. 

On 
R e  m a  r k 1. 

We wil l  say in what follows that this closed 

R e  m a r k  2.  Clearly, if r3  is the l e a s t  of numbers  satisfying the 

Similarly, i f  r 3  is the largest  

R e  m a r k  3 .  In our proof of Theorem 14, sys tem (A) can  be replaced 

whose vector field is obtained f rom the field of sys tem (A) by rotating 
through an angle tan-" p (_see end of §3) .  I€ @ > 0, the point 0 (0,O) is a 
s imple focus of system (A), which is stable fo_r p > 0 and unstable for  p < 0. 
I€ 0 (0.0) is g stable focus of sys tem (A), and 2 is the function corresponding 
to system_(x), we %an again find rl and r 2 ,  such that 0c r2 < rl < ro and 
d Vi) < 0, d (rt)  < 0, d ( r?)  > 0. 

The last inequality is satisfied for  sufficiently smal l  r? if  p < 0. 
have the following prcposition: if  0 (0. 0) is a multiple focus of system (A), 
a sufficiently smal l  rotation of the vector field through a positive angle or 
through a negative angle c rea t e s  a closed path in an  a rb i t ra r i ly  smal l  
neighborhood of 0. 

We thus 

4. Proof of s t ruc tura l  instability 

TI2 e o  r e V I  15. The state of eqtrilibuiuiu ?\Io ( x o ,  yo) of the system 
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P r o o f . We will c a r r y  out the proof for an equilibrium state 0 (0,O) of 
system (A) in canonical form (1) (by Lemmas 1 and 2, S6.1, this can be 
done without loss of generality). 
state of system (A). According to Definition 14 (57.1) this implies that 
system (A) is structurally unstable in some neighborhood H of the point 0. 
where H can be made arbi t rar i ly  small .  

F rom the definitiznof s t ructural  stability, for any E > 0 there  is 6 > 0 
such that for each (A) which is 8-close to (A) we have 

(29)  

Let 0 be a structurally stable equilibrium 

(If, A )  A (2, 4, 
where Hi s  some region. 
only equilibrium state of system (A) in it.  

The neighborhood H i s  made so small  that 0 is the 
The next step is to make 8 so 

small  that the region r?, obtained f rom H by ,E- 

translation, contains the point 0. Finally, (A) is 
identified with system ( 2 )  with sufficiently small  
non-zero a. 

brium state  of (A). 
H contai ts  only one equilibrium state  of (A), 
system (A) has only one equilibrium state in B, 
namely the point 9. 
focus of system (A). - H e n c ~ ,  in a sufficiently small  
neighborhood of 0 system (A) has no closed paths. 
Under the e-translation realizing relation (29), 
point 0 is mapped into itself (since this is a path- 
conserving translation). 
not have any closed paths in a sufficiently small  

Under these Zonditions 0 E H" and i t  is an equili- 

I 
It follows from (29) that, a s  

Since a # 0, the point 0 is a 

@ 
FIGURE 27 

Therefore system (A) does 

neighborhood of 0, either.  This indicates that 0 is neither a center nor a 
center-focus for (A), i.e., it is inevitably a focus. 

We have shown so far that if  0 (0, 0)  is a structurally stable s ta te  of 
equilibrium of system (A), 0 is a multiple focus. 

Let U be the neighborhood UT (O), where r is so small  that system (A) has 
no closed paths in U and the only equilibrium state  in this neighborhood is 0; 
moreover, system (A) is structurally stable in U. 
conditions a r e  satisfied since 0 is a structurally stable multiple focus. 

Let W denote U,,z (0) (Figure 27). 

that if  sys tem (A) is 8-close to (A), w e  have 

(u, A )  = (U, A ) ,  

For a small  r,  these 

I Fix E > 0, e (2, and let 8 > 0 be so  small  

e - -  

where @is some region. 
a closed path & in W ;  this system (A) exis ts  in virtue of Theorem 14 
(i.e., the theorem of creation of a limit-cycle f rom a multiple focus). 

and then, by (30), U contains a closed path of system (A). 
our choice of U. 

System (z) is a system 8-close to (A) which has 

Note that W c b.* Therefore @contains the closed path of system (A), 
This contradicts 

The contradiction establishes the fallacy of our original 

* All the points of W are distant more than I from the boundary of U. Therefore a I--translation cannot 2 4 
move any point of W outside the "translated" region f. Also see foomote on p.61. 
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assumption, namely that the equilibrium state  0 of system (A) is s t ruc  - 
turally stable. 
s t ructural ly  unstable. Q. E. D. 

If (A) is a sys tem of c l a s s  S, but not of class iV - 1 (dV> 1). 
it can be t reated as a point in any of the spaces  R:’, l,<lS,<.V, l ,<r ,<k 
(see $5.1). If (A) is a:? analytical system, i t  can be t reated as a point of 
any space R Z ’ ( k  is any natural number, I , < r , < k )  or of any space R:’(ris 
any natural number). Theorem 15  of s t ructural  instability remains  valid 
re la t ive to any of thesz spaces  containing sys tem (A). 
the modified system (A) used in our  proof of s t ruc tura l  instability differs 
f rom system (A) by the analytical increments  & and ay ,  and is therefore  
par t  of any space containing (A). 

equilibrium s ta tes  a r e  simple nodes, foci, and saddle points. F rom 
Remark 2 to Theorem 1 2  and Remark 2 to Theorem 1 3  i t  follows that i f  
point 0 is_a structural ly  s table  equilibrium s ta te  of sys tem (A), any 
system (A) sufficiently c lose to (A) has  precisely one equilibrium s ta te  in 
a sufficiently smal l  neighborhood of the point 0, which i s  a l so  s t ructural ly  
stable and is a point of the s a m e  type as that of system (A) (i.e., a node, 
a focus, or a saddle point, respectively). 

W e  have thus proved that this equilibrium state  is 

R e  m a r k  1. 

This  i s  so because 

R e  m a r k  2.  Thecrems 11, 1 2 ,  13, and 15 show that s t ructural ly  stable 

$11. A SADDLE-TO-SADDLE SEPXRATRTX 

A s  is known (QT, f 4 . 6  and §23.1), i f  a dynamic sys tem considered in 
a bounded closed region has  a finite number of equilibrium states ,  the a-  
or o-l imit-set  of any path of this system is ei ther  (a) an equilibrium state, 
(b) a closed path, o r  (c)  a limit continuum comprising a finite number of 
separa t r ices ,  which are continuations of one another f rom the same  
direction, and a finite number of equilibrium states .  

stable sys tems have. 
s t ructural ly  stable equilibrium states .  
path is discussed in the next chapter .  
stable system with a limit continuum of the form (c). 
compr ises  the separa7rices  of s t ructural ly  s table  saddle points (since other 
s t ructural ly  s table  equilibrium points have no separatr ices) ,  and each of 
these separa t r ices  tends to a saddle point for  both f + - 00 and t - t  + 00. 
Such a separa t r ix  is said t o  g o  f r o m  o n e  s a d d l e  p o i n t  t o  
a n o t h e r ,  and for  brevity we will refer to it as a s a d d l e  - t o - s a d d l e  
s e p a r a t  r i x . 
distinct or coincident. 
s e p a r a t r i x  i s  s t r u c t u r a l l y  u n s t a b l e  (Theorem 16). Hence i t  
follows that the limit s e t  of the paths of a s t ructural ly  stable sys tem is 
ei ther  an  equilibrium state  or a closed path. 

We would like to establish what limit s e t s  the paths of s t ructural ly  
In the preceding sections we have identified the 

The s t ruc tura l  stability of a closed 
At this  stage, consider a structurally 

This continuum 

The two saddle points of such a separa t r ix  are ei ther  
We w i l l  show that a s a d d l e  - t o  - s a d d l e  

1 .  The behavior of the separa t r ix  under vector  field rotation 

Let 
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FIGURE 28 

Consider a modified system (A:) of the form 

where p is a parameter .  
(A:) is arb i t ra r i ly  close to (A). 
1 3  (23 .2 ,  Lemma 3). 
( A )  and (A*) coincide and that a t  any point which is not a state  of equilibrium 
the field of system (A) makes a constant angle f3 with the field of system(A*),  
such that 

Clearly, i f  p is sufficiently small  in magnitude, 
System (A*) was considered at the end of 

It was shown that the se t s  of the equilibrium states  of 

For  p > 0 this angle is positive. According to S9 (see 59, Lemmas 2 
and 3 and r e m a r k  to Lemma 3), if  (A*) is sufficiently close to system (A), 
i.e., if  p is sufficiently small ,  0 is a saddle point of system (A")), whereas 
system (A) has a single separatr ix  L: of the saddle point 0; this separatr ix  
meets  the arc 1, and there  is only one intersection point C*. 
a (o-)-separatrix of the saddle point 0 of system (A), L: is an a (a-)-separa- 
t r ix  of the saddle point 0 of system (A*). 
parameter  s corresponding to the point C*. 

then s,' > s,; i f ,  however, p > 0 and Lo i s  a o - separatrix, then s: < so.* 

If L, is an 

Let s: be the value of the 

L e m  m a 1 .  If p > o and Lo is an a-separatrix of the saddle point 0, 

\!'e naturally assume that the above condition is satisfied, namely that the paths of system (A) make 
positive angles with the arc without contact 1. 
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P r  00 f . Kithout loss  of generality we may take the saddle point 0 of 
sylsteni (A )  to coincide v;ith the origin and write (A)  in the canonical form 

= > . , s i  9: (5, = P (x, y), 

&g -!- 'p (5, y) = Q (5. y). 

d t  
(1) 

_ =  2 
w h e r e  i., > 0. A? < 0. 

-4 ,  D .  B1. A I  (Figure 20). 
in Fi-gure 20. A s  the separa t r ix  L,, we take L,. 
part icular  case, when the a r c  without contact 1 is the s ide .4Ac of the 
rectangle E.':: The positive direction along 1 is defined as the direction from 
A ,  to A, and the parameter  s is identified with y .  
the paths of syst-em (A) fo rm positive angles with A i . 4 .  

As in J5, consider a sufficiently smal l  rectangle with vertices 
The paths of system (A)  in  this rectangle are shown 

W e  will f i r s t  prove a 

Under these conditions, 

Note that i f  LA) is a system sufficiently close to system (l), then 
1 ) system (A) has  a single equilibrium s ta te  6 in the rectangle B, which 

is also a saddle point an3  is arb i t ra r i ly  close to 0 (I) ,@);  
2)  the-sides of the rectangle are arcs without contact for  the paths of 

system (A), the paths le.iving R through the s ides  A A I  and BB, and entering 
the rectangle R through AB and ?&; 

CHI a t  the points 
C,, and the separa t r ices  2, and z,, cross the s ides  A B  and dlB1 a t  the points 
fi and d,, respectively, .,vhich are arb i t ra r i ly  close to D and D,. 

3)  the separa t r ices  I;, and LI, of system ( E )  c r o s s  the s ides  A.4, and 
and c,, respectively, which are arb i t ra r i ly  close to C and 

The validity of propositions 1 and 2 above is self-evident. 
The validity of proposition 3 follows f rom propositions 1 and 2, the 

theorem of continuous dependence on the right-hand s ides ,  and from the 
fact that ,a closed path cannot enclose only one equilibrium s ta te  of 
system (A)  if it is a saddle point (see QT, 5 11 .2 ,  Corollary 1 of Theore_m 29 and 
$11.4, TheoreniJO), so that R contains no closed paths of system (A}."" 

For system (A) we takes a system (A'::) of the fo rm 

Let 11 > 0 ;  this number is  assumed to be so sma l l  that conditions 1 , 2 , 3  
above are satisfied. 
a, viz. ,  the point 0, which is a saddle point, and the separa t r ix  L; of this 
saddle point c r o s s e s  the segment -41.4 a t  a point C*. Let yo be the ordinate 
of the point C, and y; the ordinate of the point C*.  
w e  have to establish that y:7y,. 
which passes  a t  t = t ,  through the point C. 
a positive angle with L*, L*enters into the region W ,  limited by 
the simple closed line UD,d,CO,  as t increases  (Figure 29).  
point .\I* f rom I f '  which l ies  on the path L*. 
systeni (A)  passing through X* c r o s s e s  the segment .lt:l at the point A- which 
is below the point C, and as t dec reases  it crosses the segment f l i . l l  a t  the 
p i n t  .Y. Consider the region II-, limited by the simple closed curve  .Y.-ltK.V. 

Then system (A"') has  a single equilibrium state  in 

To prove the lemma, 
Consider the path L * o f  system (A ) 

Since the separatrix L ,  makes 

Take some 
A s  t increases,  the path L of 

* I t  LZ resdiil;: seen that i t  the rect..neIe 
. ~ru i~c . c  the prev!ouc condinom Imposed on the arc !>ithout contiict t. 
Ihc reader  ii a d ; w d  tfi w o r k  ou:  the complete xoof  of propeir ior i  ?. 

is rufficicntly sm211, each cf its siJes, ZnJ in particular d d l ,  

*. - 
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The path L makes a positive angle with L* at  the point M*. and therefore a s  
t decreases,  L* penetrates into W,. A s  t dec reases  further,  the path L* 

should emerge  f rom this region. 
L*, however, may c r o s s  neither the segment 
K A 1  nor the a r c  N K  of the path L .  
fore ,  a s  t decreases ,  L* will c r o s s  the 
segment N A I .  But then a l l  the paths of 
system (A*) passing through various points 
of the segment A J  wil l  c r o s s  the segment 
N A I  a s  t decreases ,  i.e., none of these paths 

W' is the separatr ix  L: of system (A*). Hence 
it follows that the separatr ix  L; c r o s s e s  the 
segment A I A  a t  a point C*above C, a s  origi-  
nally stated. The corresponding proposition 
for  the o-separatr ix  Lais  proved along the 
same lines. 
a particular case,  when the a r c  without 

The path 

There- 

4s 

N 

+z=& 
4w 

FIGURE 29 

Our lemma is thus proved for 

Now, by Lemma 10, 44.2, we see  that contact is the segment A I A  (or B A ) .  
the lemma also holds t rue for any a r c  without contact 1 ,  which satisfies 
the relevant conditions. 

It is c lear  from the above proof that the lemma remains  
valid i f  sys tem (A*) is given in the form 

Q. E. D. 
R e  m a r  k . 

dr _-  dt -'-PLf(5> Y)Q. $=Q+Pf(3tY)', 

with f (5, y) > 0 everywhere in &, except the saddle point, where it may 
vanish. 

2. Proof of s t ructural  instability 

T h e o r e m  16. A saddle-to-saddle separatrix is a structurally 
unstable path. 

P r o o f  . 
a a-separatr ix  of the saddle point 0'. 
distinct points (the same proof will apply i f  these two points coincide). 

turally stable in any sufficiently small  neighborhood H of th_e separatrix Lo. 
Then for any e > 0 there exis ts  6 > 0, such that i f  system (A) is 8-close 
to system (A), we have 

Let the path Lo be also an a-separatr ix  of the saddle point 0 and 
To fix our ideas, let 0 and 0' be two 

Let the separatr ix  Lo be structurally stable, i.e., system (A) is s t ruc-  

( H ,  A)  (3, 

where gis some region. 
Lo and choose e < d. Let T be the mapping which real izes  relation (2)  (i. e., 
T is an e-translation which t ransforms H into I? and maps paths into paths). 
Under the mapping T, the separatrix Lo of system-(A) is clearly mapped 
into a saddle-to-saddle separatrix L", of system (A) which l ies  in H (the 
latter follows f rom the inequality E -= d ,  so that the e-translation does not 
move the path Lo out of H ) .  

Let d be the distance f rom the boundary of H to 
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LVe thus see that if  L, is a s t ructural ly  s table  patkof  sys tem (A), then, 
for any neighborhood If of this  path, every  system (A) sufficiently c lose to  
(A)  has  a saddle-to-sad?.le separa t r ix  which is entirely contained in E l .  
will show that the las t  condition is not satisfied in a cer ta in  neighborhood 
H .  This  contradiction a i l1  evidently establish the validity of our theorem. 

Let L , ,  L , ,  L 3  be separa t r ices  of the saddle point 0, and L;, L ; ,  L; sepa ra -  
t r i ce s  of the saddle point 0', none of them coinciding with Lo. 
separa t r ix  L, (.L'z) we cho3se a point dl, (Mi) and draw through this  point an 
arc  without contact 1 ,  (Z;)> whose end points do not coincide with ill, (N;) ( I  = 
= 1 ,  2, 3 ) .  Let fur ther  the point M, (X) be the only common point of the 
arc 1 )  ( 1 ; )  with the separa:rices of the saddle points 0 and 0' (Figure 30). 

W e  

On the 

6 r, 
FIGURE 30 

H is taken to be a sufficiently smal l  neighborhood of the path Lo; i t  is 
so smal l  that 0 and 0' a r e  the only equilibrium s ta tes  of sys tem (A)  in this  
neighborhood, and the ar-s without contact Z i  and 1; ( i  = 1,2, 3 )  lie outside H. 

arc without contact I , ,  which is .ent i re ly  contained in H and which has  no 
common points with the separa t r ices  of the saddle points 0 and 0'. other 
than M0. 

Let -If0 be a point on the separa t r ix  Lo. Through this point w e  draw an  

Consider the sys tem 

- = P - p Q ,  d z  2 = Q + p P .  d t  d t  

Let p>U. If p is sufficiently small ,  the only equilibrium states of 
system (A) in H are 0 anc  0; these equilibrium s ta tes  are saddle points, 
and their separa t r ices  E ,  and 1; ( i  = 1, 2 , 3 )  c r o s s  the respect ive arcs without 
contact I ,  and 1 ;  (in vir tue %f the r e m a r k  to  Lemma 3, S9). hloreover, the 
saddle point 0 of sys tem (A)  has a separa t r ix  %,, which c r o s s e s  the arc lo a t  
the point .Go, and the saddle point O ' h a s  a separa t r ix  2; which c r o s s e s  the 
arc 1, a t  the point .GA. 
lie on the arc-& on different s ides  of the point .Ifo (Figure 30). 
that sys tem (A) does not have in H a separa t r ix  going f rom saddle point 0 to 
saddle point 0'. 

Clearly Y cannot 
be one of the separa t r ices  E ,  or z; ( 1  = I ,  2 ,  3), since these separa t r ices  

By the lemma of the previous subsection, .q, and 
We will prove 

Indeed, suppose that such a separa t r ix  ex is t s  (cal l  i t  y).  



Ch.1V. EQUILIBRIUM STATES OF STRUCTURALLY STABLE SYSTEMS 

c ros s  the a r c s  l t  ( I ; )  and emerge f rom H .  Hence y should coincide both with 
and z;, Le., a t  some t =&, it  should pass through the point &,,and a t  some 

t =Ti it  should pass  through the point I@:. Clearly, G<?;. Let 5 @)be the 
intersection point of one of the separatr ices  Zi (Zi), the separatr ix  Z, (2:), 
say, with the bountary of region H . o  We choose 3 ( g )  a s  the f i rs t  inter-  
section point of Zs(L,) with the boundary, i.e., a l l  the points of this separa-  
tr ix between Oand S’ (between O’and 2,)  a r e  entirely contained in N. Con- 
s_ider a simple closed line OMoM;OS7$0 made up of a r c s  of the paths z3 and 
Lj, the section a0M; of the arcl,, and the sections O a 0  and GiO’of the 
separatr ix  y. 

corresponding to the time X-T, whece T is-a sufficiently small  positive 
number and %+.<<-.. The points Miand M , ,  a s  i s  readily seen, lie on 
two different s ides  of th_e a r c  without contact lo .  Therefore, one of these 
points l ies  outside H* (M,in Figure 30), and the _other l ies  inside this 
region. But then the path y, moving from 2, to Miwith the increase in t ,  
should c ros s  the boundary of H*.  This is impossible, however, since for 
&+z<t ~ 2 i - r  the separatr ix  cannot c r o s s  itself somewhere alongOBOor 
MAO’. nor can it c o r s s  the a r c  without contact lo. 
separatr ix  y cannot have common points with the a r c s  Os” and OF of the 
separatr ices  z3and z,, nor with the boundary of region H .  
proved that there is no separatr ix  in H going from 0 to 0’. 

If a dynamic sys tem (A) is structurally stable in  a 
bounded region, the a- ando-limit  s e t s  of any path of this system are 
either equilibrium states  or closed paths. 

has a finite number of equilibrium states  (Theorem 10, 07.2). 
by QT, S4.6 and S23 .1 ,  each l imit  se t  of the system is either an equilibrium 
state, or a closed path, o r  a limit continuum comprising saddle-to-saddle 
paths. 

This line delimits a certain subregion N*of H .  
Let &,be the point of y corresponding to the t ime &+T, and Bithe point 

Moreover, for any t ,  the 

We have thus 
Q. E. D. 

C o r o 11 a r y  . 

Indeed, i f  sys tem (A) is structurally stable in a bounded region, it only 
Therefore, 

The las t  possibility, however, is ruled out in virtue of Theorem 16. 
R e m a r k  1. System (A) 

-=P-pQ, dz $ = Q + p P  
dt  

i s  a system of the same class  a s  the original system (A), and for suffi- 
ciently sma l l  p it is arbi t rar i ly  close to (A) to any rank. 
the proof of Theorem 16 it follows that a saddle-to-saddle separatrix of 
system (A) is a structurally unstable path relative to any space R!?, R!,“ 
containing (A) a s  a point. 

with 

Hence and f rom 

R e m a  r k 2. In the proof of Theorem 16, system (A) can be replaced 

where the function f ( x ,  y) maintains a constant sign everywhere in(% except 
the saddle points, where i t  may vanish. 
Lemma 1, S 11.1. Thus, i f  p # 0  is sufficiently-small, the saddle-to-saddle 
separatr ix  disappears on passing from (A)  to  ( A f ) .  

This follows from the remark  to 

It is assumed, without loss of generality, that the boundary of B is a simple smooth closed curve. 
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C h a p t e r  I7 

CLOSED PATHS IN S T R U C T U R A L L Y  
S T A B L E  SYSTEiVIS 

INTRODUCTION 

In the present  chapter w e  consider closed paths and classify them into 
The chapter is made up of 

In 512 we investigate the configuration of 
To  this end, we draw an  arc 

s t ructural ly  stable and s t ructural ly  unstable. 
f o u r  sections (412 through 415). 
paths in the neighborhood of a closed path Lo. 
without contact 1 which in te rsec ts  L, and on this arc consider the succession 
function f (n) and the function d (n) = f (n) - n, where n is the parameter  
defined on  1. It is es:ablished that e i ther  I) a cer ta in  neighborhood of Lo 
contains no closed pa.:hs other than L,  i tsel f ,  i.e., Lo is a limit cycle, or 
21 a l l  the paths passing through the points of some neighborhood of Lo are 
closed paths, or finally 3 )  any arb i t ra r i ly  smal l  neighborhood of Lo con- 
tains both open and closed paths, other than Lo itself. 
analytical, only cases 1 and 2 are possible. 
s t ructure  of the dynamic system in  a neighborhood of the path Lo depends 
on the propert ies  of the function d (n); particularly significant is the 
quantity d' (n,,), ,where no is the value of the parameter  on the a r c  1 c o r r e -  
sponding to the intersection of i with L o .  

In 413, a relatively simple system of curvilinear coordinates is in t ro-  
duced in the neighborhood of the closed path Lo which makes i t  possible to  
calculate d' (no) .  This system is introduced as follows: through every point 
.I1 (s) of Lo. corresponding to the time s, a segment of the normal is passed, 
and to the points on this segment w e  ass ign the coordinates r and n, where 
n is the value of the parameter  on the normal. The arc I is identified with 
one of these normal  segments. It is established that i f  the equations of the 
close path L, ares = q ( t ) ,  y = $ ( t ) ,  where and 9 are periodic functions of 
period T ,  then 

If the system is 
The par t icular  topological 

T 
i [r;tocti. t ( i ) k Q k t W s ~ .  W ~ ) C I  ds 

d' (i) =e'' - l = e J - 1 .  

Lf the integral J in this equality does not vanish, Lo is an  isolated closed 
path, i.e., a limit cycle, and i t  is called a s i  m p 1 e 1 i m i  t c y  c 1 e .  It is 
proved that if  J < 
limit cycle. 

Lo is a stable limit cycle, and i f  J > 0, Lo is an  unstable 

If L , i s a l i n i i t c y c l e a n d J = u ,  L , i s c a l l e d a  m u l t i p l e  l i m i t  c y c l e .  
In 414 i t  is proved that any simple limit cycle is a s t ructural ly  stable 

path of a dynamic system (Theorem 18). Finally, in 515 we consider a 
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closed path Lo with J = 0 and prove that this path is structurally unstable. 
The proof uses  Theorem 19, which is of considerable independent interest  
(this is the theorem of creation of a closed path f rom a multiple limit 
cycle). 

much in common with the investigation of an equilibrium state  with pure 
imaginary characterist ic roots, presented in § 10. 

Note that the investigation of a structurally unstable closed path has 

512. 
SUCCESSION FUNC TION 

A CLOSED PATH AND ITS NEIGHBORHOOD. 

1. Xntroduction of the succession function 

Let 

be a dynamic system of c lass  N or an analytical system, defined in z. 
Suppose that (A) has a closed path Lo in G. Let 

z=(P(t), Y = c P W  (1) 

be the motion corresponding to this path. 
functions of the same period, which we denote z (r > 0). W e  are interested 
in the configuration of the paths of system (A) in the neighborhood of Lo. 
Let e, > 0 be so small  that U. (Lo) does not contain any equilibrium states  of 
(A) (this eo exists since Lo is a closed path). 

without contact I which is contained in  U, (Lo), ensuring that Mo remains  
an inner point of 1. 
be done, say, by specifying the parametr ic  equations of the a r c  1 :  

'p (t)and I@ ( t )  a r e  periodic 

On L o r  we choose some point M o  and pass  through this point an  a r c  

On the a r c  I ,  we define some parameter  n .  This can 

5 = gl(n), Y = gz (n). (2)  

The parameter  n = no corresponds to the point Mo on the a r c  1 .  

a r c  1 corresponding to 
Let q > 0 be so small  that all the paths crossing at  t = to the par t  of the 

no -q 4 n 4 no + q ( 3 )  

c r o s s  the a r c  1 again for t grea te r  than tor without leaving U,, (Lo) prior  to 
the second intersection. This q exis ts  by QT, 53.8, Lemma 13. In this 
way, on the par t  of the a r c  1 corresponding to the values (3) of the para-  
meter  n ,  w e  have defined a s u c c e s s i o n  f u n c t i o n  

G = f (n), (4 ) 

constructed in  the direction of increasing t (QT, 53.8). 
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Let M' be the poinl. of 1 corresponding to n = no - q, L' the path of (A) 

with increasing t .  The point .V'evidently 
corresponds to n = f (no - q). .Y is ei ther  

I different f rom M'or coincides with it. If 
the two points coincide, L' is a closed path, 
and w e  denote by r' the annular region be- 
tween the paths Lo and L'. If M' and h ' a r e  
different points, L ' i s  not a closed path, and 
r' is the annular region limited by the path Lo  
and the closed curve consisting of the turn 
hft.v# of the path L'and the par t  .M',Vof the 
a r c  I (Figure 31) .  

Similarly, taking M" to be the point of the 
a r c  t corresponding to n= no + q, w e  intro- 

analogous to r' (Figure 31). Regions of this 
type w e r e  considered in QT, 53 .9 .  From 

passing through .\I,, ;7 the point a t  which L c r o s s e s  the a r c  1 the second time 

FIGURE i I  duce a path La, a point N", and a region r". 

QT, , 5 3 . 9 ,  Lemma 14 and Remark 1 to the lemma, we clearly see that 
1 )  regions r 'and L-" together with their  boundaries a r e  contained in 

2 )  every path passing through a point of r ' c r o s s e s  the segment MoN'(or 
No.V', i f  S'lies on I between Mo and M )  of the a r c  1 for both increasing and 
decreasing time t .  
c r o s s e s  the segment Mo4VR(or M O W )  of the a r c  I for both increasing and 
decreasing t .  

('eo (Lo); 

Similarly, every path passing through a point of I'" 

2. 
closed path 

The configuration of paths in the neighborhood of a 

Let u s  first establish the possible configuration of a single path passing 
near a closed path. 
through a point M * o f  the a r c  I corresponding to the value of the parameter  
n*. I n* - no I < '1. 
successor  of M*) of the path L* (with the arc I ) .  Ai** corresponds to n =  f (n*). 

To this end, w e  take a path L*which for t = to passes  

Let N** be the succeeding intersection point (the 

We introduce an auxiliary function 

J (n) = f (4 --n, (5) 

which is analogous to the function d (p) used in the investigation of a multiple 
focus ( S l O . 1 ,  (17)). The function d (n) is a pr ior i  defined for al l  the values 
of n satisfying inequality (3) ,  I n - no )<q. 
to Lemma 13, if system (A) and function ( 2 )  belong to c lass  N ( o r  to the 
analytical c lass) ,  the function f (n), and hence d (n), a r e  functions of the c l a s s  
.V (or analytical). 

A s  we show in QT, S3.8, Remark I 

The following case:; should be considered: 
1 )  d (n*) = 0 ,  i.e., n* = f (n*). 

2 )  

In this ca se  M* and iM** coincide, and L* is 
a closed path completely contained in I" and r". 

the case n* > 0, d (n*) .: 0. In this case,  L* is not a closed path, M** is a point 
n* > 0, d (n*) -= 0 or n* < 0, d (n*) > 0 .  To fix ideas,  le t  u s  consider 
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path contained completely in r" (r'), or to Lo .  As increases  ( t  > t o ) ,  the 
path L* ei ther  leaves I?' (r') or goes to a closed path in f" (I?) which is 
different f rom Lo.  

section WM' of the arc without contact I .  
point of r' and r" cro:;ses this  section M'M" of the a r c  1 ei ther  with increasing 
or with decreasing t .  
of the paths which pass  through points of r' and I". 

in the neighborhood cf a closed path L o -  
the function d ( n )  = f ( 1 2 )  - n. 
closed path Lo on the arc without contact, w e  nave d (no)  = 0. 
two cases should be considered: 

a )  there  ex is t s  m > U, m<q,  such that d ( n )  $ 0  for  all n ,  0 < I n - no I s m ;  
b)  for any m > 0 ,  there  ex is t s  n, 0 < [ n - no I < m ,  such that d (no)  = 0 .  
Let u s  consider case a in some detail. A11 the paths passing through the 

Cases  1,2, 3 above clear ly  cover  all the types of paths which c r o s s  the 
Every path passing through a 

We have thus established the possible configuration 

Let u s  now consider  the topological s t ructure  of the dynamic system (A) 

Since n = no corresponds to the point Mo of the 
The following 

To this end, w e  again introduce 

points of the arc 1 which correspond to the values of the parameter  n ,  
0 < I n - no[<<m, are not closed. 

The closed path L i  in this case is isolated, i.e., i t  is a limit cycle (QT, 
C4.9). Because of the continuity of d ( n ) ,  we conclude that in case a, d ( n )  has  
the same sign for  all positive n and the same  sign for a l l  negative n (I n 1 < m ) .  
The following four subcases  are therefore possible : 

aLjd(n)<O for n>no, d ( n ) > O  for n<no; 
a 2 ) d ( n ) > O  for n>no, d ( n ) < O  for n < n o ;  
a s ) d ( n ) < O  for  n>no, d ( n ) < ' J  for n<no; 
a 4 J  d ( n ) > O  for n>no, d ( n ) > O  for n<no. 

In case  al, all the paths passing for  a sufficiently smal l  6 through the 
points of Ua ( L o )  which do not coincide with Lo go to Lo for  t -+ + 00, whereas  
for decreasing f, they leave Ug ( L o ) .  The limit cycle Lo is s t a b l e  , and w e  
shal l  say that all the paths sufficiently c lose to L o ,  which do not coincide 
with L o ,  w i c d  o n t o  L o .  

In case a 2 ,  all the paths sufficiently close to Lo (which do not coincide 
with L o )  go to Lo for t -+  - 03, and for  increasing t ,  they leave U6 (Lo) .  
this case, the limit cycle Lo is u n s t a b  1 e .  
paths paths u n w i n d  f r o m  L o .  

lie on one side of Lo go to Lo for t -+ f00 and leave Lr6 ( L o )  as  t decreases ;  the 
paths lying on the other  side of L o ,  go to Lo for  t -+ --co and leave Ua (Lo) as 
t increases .  

The l imit  cycle in  cases a3 and a4 is said to be s e m i  s t a b 1 e . 
paths c lose to the sernistable cycle L o  ,xind onto L,, on one side and 
unwind from Lo on the other s ide  of the cycle. 

number of closed p a t i s  in this case. 
analysis, we will only note that this case, like the analogous case of a n  
equilibrium state  with pure imaginary character is t ic  values (see QT, S8.6), 
covers  an  infinity of .iarious possible topological s t ruc tures  of the neighbor - 
hood of the closed path L o .  
pletely determined by the propert ies  of the function d ( n )  and depends on the 

In 
We shall say  that all these 

In cases a3 and a 4 >  all the paths which pass  through points of U., ( L o )  and 

The 

Let u s  now consid,sr case b. Any neighborhood of Lo contains a n  infinite 
Without going into a detailed 

Any par t icular  topological s t ruc ture  is com-  
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s t ructure  of the set  of i t s  roots and on the signs of the function d (n) when- 
ever  it does not vanish. 
all  the paths through the points of a sufficiently small  neighborhood of Lo a r e  
closed. 

In particular,  if  for sufficiently small  R ,  d (n) = 0, 

3. The case of an analytical dynamic system 

W e  wi l l  now consider in g rea t e r  detail the case of an analytical system 
(A) and establish al l  the possible topological s t ructures  of the neighborhood 
of a closed path. 
succession function in the neighborhood of a closed path Lo in o rde r  for  this 
closed path to be a limit  cycle of a certain type (stable, unstable, or semi-  
stable). The arc I (Le., the functions (2))  is assumed analytical. 
i f  (A) is analytical, the succession function n = f (n) is also analytical 
(QT, 53.8, Remark 1 to Lemma 13). 
path L, the parameter  n = no. so that 

We will derive the conditions to be satisfied by the 

Then, 

A s  before, we assign to the closed 

f (no) =no for d (no) = 0. ( 6 )  

In the case  of an analytical dynamic system (A), we have to consider two 

1) At least  one of the derivatives d(') (nn) does not vanish, i.e., there  
possibilities: 

exis ts  a natural number k > l  such that 

d' (no) = d" (no) = = dtk-" (no) .I 0, dk) (no) # 0. (7) 

In this case,  expanding the function d (n) around n = no in powers of n - nor 
we get 

d (n)=(n--no)k[d'k)(nO)+(n-n~) d'k"'(no)+. . . I =  
= (n-no)k [d(')(no) +(n-no) CD (n)], (8) 

where Q, (n) is some analytical function. 
d (n) in the neighborhood of no coincides with the sign of the number 
(n - no)k d(k)  (no). Hence it readily follows that for an even k, we have case as 
o r  a 4  (according as dch) (no) is negative or positive), i.e., a semistable l imit  
cycle is obtained. F o r  an odd k and d(k)  (no) 0, we have case  al, i.e., a 
stable l imit  cycle, and finally for odd k and d' (no) >0,  we have case az, i.e., 
an unstable limit cycle. 

It follows f rom ( 8 )  that the sign of 

Let u s  consider separately the case k = 1, i.e., when 

d ' ( n o ) = f ' ( n o ) - 1 # O .  (9) 

The closed path Lo in this ca se  is called a s i m p l e  l i m i t  c y c l e .  A 
simple l imit  cycle is evidently either stable o r  unstable, according as d' (no) 
is positive o r  negative, or, equivalently, according a s  f' (no) < 1 o r  f' (no) > I. 

m u  1 t i p 1 i c i t y k .* The multiplicity of the cycle evidently coincides with 
the multiplicity of the root n = no of the function d (n). 

These definitions of a s i m p l e  l i m i t  c y c l e  and a m u l t i p l e  l i m i t  c y c l e  of  m u l t i p l i c i t y  k 

If k >  1, the closed path Lo is called a m u l t i p l e  l i m i t  c y c l e  of  

are linked with the choice of the a m  without contact 1. For these definit ion to  be meaningful, we have 
t o  show that they are independent of the  particular choice of the  am. No proof of this wi l l  be given here, 
but later (913) an  invariant definition of a simple l imit  cycle wil l  be formulated. 
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2 )  All the derivati.vesd(') (no) a r e  zero,  

d' (no) = d" (no) =: . . . = d'" (no) = . . . = 0. 

Then, by analyticity, 

d (n) = 0, 

i.e., a l l  the paths through the points of a sufficiently smal l  neighborhood of 
the path L o  are closed. 

We have thus shown that any closed path of an analytical dynamic system 
is a simple or a multiple l imit  cycle, or e lse  all the paths through the 
points of a sufficiently small  neighborhood of the path L o  a r e  closed. In the 
case  of an analytical dynamic system, the necessary and sufficient condition 
for a closed path Lo t,2 be a l imit  cycle is that a t  least one of the derivatives 
dtcl (no) (i ;> 1) vanishes. 

4. The case of a nonanalytical dynamic system 

Let u s  now consider the case when a dynamic system (A) is not analytical 
and belongs to the c lass  .V. 
assumed to belong to the c l a s s  Z. Then, by QT, 53.8, Remark 1 to 
Lemma 13, the succession function n = f (n) is a lso  a function of class N .  

sufficient conditions .lor a closed path to be a limit  cycle. 
that not all the derivatives of the function d (n) 

The a r c  I (i.e., the functions (2) )  is a l so  

In this case,  proceeding along the same lines as before, we can find the 
Indeed, suppose 

d' (no), . . ., d'" (no) 

vanish at n = n o ,  and there  is a number k, l ,<k,<.V,  such that 

d' (no) = . . . = dtk-" (no) = 0, dk' (no) # 0. (10) 

From this condition z.nd from the equality d (no) = 0 ,  we obtain using Taylor 
expansion 

where O<e<l. 

(n - no)k in (11) for n - no of sufficiently small  absolute value coincides with 
the sign of dk) (no). 
f rom (8), that we obtain one of the c a s e s  al, az r  a3, and a4 according as k is 
even or odd and dk) (no) is positive or negative. 

separately.  

Since the k-th derivative is continuous, the sign of the coefficient of 

Then it follows from ( l l ) ,  as in the previous section 

As for  an analytical dynamic system, we consider the case k = I 

In this case,  the path is called a s i  m p 1 e 1 i m i  t c y  c 1 e , as before.* 
The condition that a t  least  one of the numbers d ( k )  (no), k = 4 ,  2, ..., N does 

not vanish is sufficient, but not necessary,  for the closed path Lo of a 
system (A) of c lass  .V to be a l imit  cycle. 
' Sec footnote t o  the definition of simple and multiple l imit cycles in 512.3. 
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If for a system of c lass  N 

d”’ d’ (no) =d” (no) = 6 . .  = 

I 

additional information regarding the function 
draw definite conclusions about the topologic 
system near  the closed path Lo.  

113. 
BORHOOD OF A CLOSED PATH. 
ON A NORIbIAL TO A PATH 

CURVILINEAR COORDINATES IN THE NEIGH- 
SUCCESSION FUNCTION 

1. 
closed path 

Curvilinear coordinates in  the neighborhood of a 

In the previous section we demonstrated that the succession function f (n) 
on an a r c  without contact 1 (or the function d (n)  = f (n) - n) and the values of 
i t s  derivatives a t  the point no corresponding to a closed path Lo are of the 
greatest  importance for  investigating the topological s t ructure  of the 
dynamic system in the neighborhood of Lo. 
the succession function, we introduce an auxiliary system of curvil inear 
coordinates in the neighborhood of L o .  
polar system of coordinates, and the treatment that follows is not unlike 
the analysis of the paths near  a focus (110). 

To calculate the derivatives of 

This system is analogous to the 

Let 

be a dynamic system (of c lass  N o r  analytical), Lo a closed path of this 
system, 

z=(P(t)t Y = l p ( t )  (1) 

the motion corresponding to the path L o ,  T > 0 the period of the functions ‘p 

and Ip. Note that the functions cp and ~p, being solutions of a system (A) of 
c lass  N (or an  analytical system), are functions of c lass  N + 1 (or 
analytical). In particular,  they a r e  a pr ior i  known to have continuous 
second derivatives. 
contact for  the construction of the succession function near  the closed 
path i s  immaterial .  We therefore choose 1 as the simplest  of these 
a rc s ,  namely a segment of the normal to the path Lo. 
system of curvil inear coordinates in  the neighborhood of Lo which is the 
most convenient for our purpose. 

path a t  that point and lay off segments of length 6 Vcp’ (s)I + 9’ (s)* on either 
side of Lo along the normal.  

drawn through different points of L~ have any points in comman. 

In what follows, the particular choice of the a r c  without 

We wi l l  construct a 

Through every point M (cp (s), Ip (s)) of the path Lo we draw a normal to the 

L e  m m a  1 .  If 6 > 0 i s  sufficiently small, no two segments of normals 



The proof of this lemma using the usual compactness considerations and 
the existence and continuity of the second derivatives of the functions q and 

'1 is given in the Appendix, subsection -1:. 
W e  will take 6 > (J to be so smal l  that Lemma 1 

is satisfied. 
length 6 1 q' ( s ) ~  - q' (s)'-laid off the normal  on the 
positive (negative) side of the path L, ,  form a s imple 
closed curve I?, (r2). The curves  F, and r- are 
"concentric" with the path Lo and enclose a region 0 
of the plane (2, y). Q is clear ly  homomorphic to an 
open c i rcu lar  ring (Figure 36) .  

t:quilibrium s ta tes  in SI. 

Then the ends of the segments  of 

I'IGi,R€ .n 

condition is a l so  satisfied. 

For a sufficiently smal l  6 ,  system ( A )  has  no 
We w i l l  assume that this 

m 
M'e introduce the functions 

,shere  s stands for  the time t .  These functions are defined on the ent i re  
plane (s, n), but w e  wil l  only consider them in  the s t r ip  

- - ~ < ( s < ~ x .  -6<n<8. ( 3 )  

The functions (F and 3; clear ly  have the following propert ies :  
I )  i f  ( A )  is an ana ly txa l  system, (F and 3 are analytical functions; i f  

[A) is a system of c l a s s  .\, and are also functions of class .V, and 
moreover  qand  T have continuous derivatives with respect  to  n of all o r d e r s  

and continuous mixed derivatives q, 4 for any k and s.<-\. 

functions of s of period T. 

.b..l - d k + l  - 
en - , . S I  &I- ,751 

2 )  The functions (p and $ with their partial derivatives a r e  periodic 

3 )  q (s. 11) 
- - 

q (s). 11 (s, 0 )  = J' (s), i.e., for  n =ij the equations . r = c ( s ,  n ) ,  
Z- $(s. n )  a r e  the parametr ic  equations of the path Lo where the parameter  s 

coincides with t .  
4) The functional determinant 

for n = 0 is equal to 

i.e., for n=O i t  does not vanish for any s , - - s o < s < + m .  

periodicity of the functions 9, and $ in s, we see that for all sufficiently 
sniall 1 1 ,  

From property 4 and the compactness of the segment u,<s,<T, using the 

1 ( S .  n) =+ u. 
( 5 )  

Finally, i t  is readily seen  that if  6 is sufficiently small ,  all the normal  
segments  a r e  arcs without contact for the paths of (A). 
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Let 6 be so small  that a l l  the above conditions a r e  satisfied. 

1) The segments of normals of length 26 vq' (s)I fq '  ( s ) ~  I 

To help 
the reader ,  we l is t  them he re  again. 

different points of the path Lo do not intersect.  
particular,  that the region 8 is homomorphic to a circular  ring. 

Hence it follows, i n  

2 )  All these normal segments a r e  a r c s  without contact for the paths of 

3 )  There  a r e  no equilibrium states  of (A) in 9. 
4 )  The determinant A (s, n) does not vanish in the s t r ip  (3). 
Consider the mapping defined by the equalities 

. 
(A). 

(6) z=G(s, = 'P (s) +nrp' (SI, 
g=$(s, n) =Q(s ) -nq ' (s ) .  

It has the following properties:  
a )  Mapping ( 6 )  maps the s t r ip  ( 3 )  of the (s. n) plane onto the annular -- , . -, * 
b)  The axis n = 0 is mapped by (6)  into the path L o ,  the l ines  n =  

= C, 0 < I c 1 < 6 parallel  to the axis s are mapped into nonintersecting simple 
closed curves which lie one inside the other in 8 (these curves a r e  
' 'concentric" with Lo) .  

normal segments to &(Figure 37). 
c )  The segments s = const, - 8  < n<6, of the s t r ip  ( 3 )  a r e  mapped into 

FIGURE 37 

d)  All the points (s, n) with the same value of n and s differing by 
multiples of the period T, i.e., all the points of the form (s + k T ,  n), 
k = 0,  f 1, f 2 ,  . .., a r e  mapped into one point of the plane (5, u). 

However, for  any fixed so, i t  is 
one-to-one on the "half -open" rectangle in the (s, n) plane, defined by the 
inequalities 

e )  The mapping ( 6 )  is now one-to-one. 

s ~ ( s < s ~ + + ,  - 8 < n c b .  (w) 

and i t  maps each of these rectangles onto 9. 

i t  is one-to-one in any sufficiently sma l l  region of the s t r ip  (3). 
moreover A (s, n) # O  and the mapping ( 6 )  is continuous, it is r e  g u  1 a r in 
every small  region of this kind. 
1 o c a 11 y r e g u 1 a r . 
in 8. 

It follows f rom property e that (6) is a locally one-to-one mapping, i.e., 
Since 

In other words, the mapping (6) is 
s and n can be considered as curvilinear coordinates 

To every point in 9 corresponds one value of the coordinate n and an  

I 
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infinity of values of s, d.iffering by multiples of t h e  period T (the situation is 
analogous in this respect  to the polar coordinates on a plane). 

2. Transformation to the variables  s, n in  a 
dynamic system 

Take the system (A} 

d 2  _ -  d t  - p (I, Y). $ = Q (I, Y) 

and change over  - quite formally at  this stage - to the new coordinates s and 
n .  Differentiating 

- 
z=cF(s,n), y = T ( s , n )  

with respect to 1 and using (A), w e  find 

dz - ds - dn 
~ = ' F ; ~ + f c p ; , ~ = P ( g , ( s .  n), T ( S .  n)), 

*=i j ;$+fg=Q(v(S, d t  n), i j ( s ,  n)). 

By condition 4, the determinant 

( 7 )  

does not vanish in the s t r ip  (3 ) .  Equations ( 7 )  a r e  therefore solvable for 

d? dn 

Since (see (2) )  

is a solution of system (A), we have 

d6 ( S .  G) 
-- us 

a$ (s, 0)  - p (g, (s. O ) ,  i (s. O)) ,  7 = Q (9, (s. 0)  u (s. 0))  

for  all s, O , < S < T .  

P (G (s, 

Hence i t  follows that 

i (st 1))) G (S, 0)  -Q (% (s, Oh lP (s, 0))  & (s, 0) = 
= ~ : ( s , O ) ~ ~ ( S , ~ ) - $ ( S . O ~ $ , ( S , O ) = A ( S , O ) .  (10) 

Bycondition(5), A ( s ,  0)gOfor  all s, O,<s,(r. 
equality therefore does not vanish for all s, O,<s<z. But then, f rom the 

The left-hand side of the las t  

I I3  



R (s, 0) 3 0. 

Therefore n = 0 is the solution, and the axis s in the plane (s, n) is an 

All the integral curves  of equation (12)  lying in the s t r ip  (3)  evidently 
integral  curve of equation (12). 

coincide with the paths of (8). If 

(16 )  s = s ( t ) ,  n = n ( t )  

is a path e of ( 8 ) ,  and so, no is a point on this path, the solution n = f  (s; so. no) 
of equation (8) is an equation of 2 in the coordinates s. n. 
moves the path t into the line 

The mapping ( 6 )  

2 = 6 (s ( t ) ,  n ( t ) ) ,  Y =3 (s ( t ) ,  n ( t ) ) ,  (17) 

* The treatment of these subjects is analogous to the treatment of paths near a focus. See $10.1 and also 
QT, 68.3. 
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Ixhich, in  virtue of local  regularity of \ 6 ) ,  is a path of system (A) lying in 
the ring I!. 
in $2  is a n  image (under ( 6 ) )  of a t  l eas t  one path 
i.e., i t  is an image of ,it least  one integral curve of equation (12).':: 

Let this  pzth be L .  It is readily seen  that e v e r y path L of (A) 
of (8) in the s t r ip  (3 ) ,  

The q u a t i o n  

( 1 3 )  n = r (s: so. no) 

of the path i in the plane !s. n) may be treated as an  equation in  curvilinear 
coordinates s. n of the ?ath L on the plane ( I ,  y) .  
fact in our  analysis  of the succession function. 
normal  tij Lo which l ies  in  
corresponding to s =  0 ,  

solution on the initial conditions, and also from the fact that 
equation ( l 2 ) ,  we directly have the following propositions : 

I. 
and sufficiently smal l  ,7,, is defined for all s ,  v,<s,<T and can be written in  the 
form 

U'e will make use  of this 
Let I be the segment of the 

and passes  through the point . I f o  of the path L o  
As we know, 1 is an a r c  without contact for (A). 

- 0 solves  
From the theorettis of existence and continuous dependence of the 

Any solution n = f (s; so, no) of equation ( 1 2 )  for  all possible so. O < S ~ < T  

n = f (s; 0, n;) .  

For system (A) this  means,  in geometrical t e rms ,  that every path of 
the system passing through a point in  a sufficiently smal l  neighborhood of 
I.,, c r o s s e s  the normal  1 (for s = 0) and a l so  all the other  normals  to Lo in the 
ring i2> and then crosses the normal  1 again (for s = T )  (Figure 38). 

that for n - 0, f = 1 (sq?e ( l o )  and ( 8 ) ) ,  and since the numerator  and the 

(lenominator of the expression for $ in  (8) do not r eve r se  their sign in  the 

s t r ip  (3J2 we have :; > 0 in this  s t r ip ,  i.e., an  increase  in s corresponds 

to an increase  in t ,  an11 vice ve r sa .  

N o t e  

11. For any e > O ,  there  ex is t s  q > 3. q = q ( E ) ,  such that if no I < q, then 

I f (s. 0, no) I < e  
for a l l  s. O < S , < T .  

This  implies  that the par t  of a path of sys tem \A) lying between two 
successive intersection points of the path with the arc without contact I is 

' Thc p t h  1, of (.A) is a n  h a s <  of  one  (if it is claed) or infinitely many (if i t  is o p e d  parhs of system (8) .  

t k ' ~ ,  w i l l  not ci> into this problen. SeeQT. 9E.3. 
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Setting n,=O in equation (23) and integrating with the initial condition (24), 
we find 

Since f ( s ;  0, O ) = O  (see (19)), the integrand in (25) is equal to v. 
Differentiation of ( 1 2 )  with respec t  to R gives 

Let  

u s  calculate i t  explicit:.y. 

- _ -  - _ -  where P = P ( G .  $ ) , P k = P k ( F ,  q),  etc. 

n = U ,  only the f i r s t  fraztion remains  in the right-hand side of ( 2 6 , .  
F r o m  (9)  w e  see that for  n = 0 ,  P('p ,  9 )  $i-Q('p. ip) 9;  = 0 .  

We have 

Therefore ,  for 

Z = ~ ( ' F ( S ) *  1C'(s)), $-=Q(T(S), 

The left-hand s ide of the las t  relation is the integrand in (25). Therefore ,  
s 
1 <W;+Q&[in N'P' !s)ll"tV ( ~ ) P ) I ' )  ds 

- - rif (t: 0. no) = ,o 
on,, l-=o I 

I'F, tc))lzC [ ~ ,  (0j12 
,$ [pi ('P (sf. * (*i)+Q; (P (s), 0 (s))Id* 

- - (29) IT' ( S P L I + ' ( S ) P  

From (18) and (29). setting S = T  and remembering that the functions 'p and 
rb and their derivatives a r e  periodic, we finally obtain an expression 
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for f' (0): 

% 

D e f i n i t i o n  17. The numbev 

is called the characteristic index of a closed path Lo. 
r. 

Direct calculations show that \ [P '  ( 'P (SI,$ (4) + Q; ('P (4, 9 (4)l cis, and there  - 
fore the character is t ic  index x .  a r e  invariant under a transforniation of 
coordinates, i.e., they do not depend on the particular system of coordinates 
in  which the dynamic system is described. 
completely determined by the closed path Lo.  
x # O ,  thend' (0) + O ,  and the closed path Lo is a l imit  cycle (112.3 and 512.4). 

0 

This integral  is therefore 
ff the character is t ic  index 

D e f i n i t i  o n  18. A closed path Lo is called a simple limit cycle if 

IK ((P ( 4 9  9 (s)) + 4% ((P (4, 9 (411 d s  f 0 (33 )  

w, equivalently, i f  the characteristic index x does not vanish. If Lo i s  a 
limit cycle and x = 0, i.e., condition (33) is not met, the path L ,  is said to 
be a multiple limit cycle. 

Note that i f  x = 0, the closed path Lo is not necessar i ly  a limit cycle 
(see 112.4). 

From 912.3, 112.4, and equation (31), we have the following theorem. 
T h e  o r e m 17. A simple limit cycle Lo is stable if  

ana' unstable i f  this integral is positive. 

$14. 
SIMPLE LIMIT CYCLE 

PROOF OF STRUCTURAL STABILITY OF A 

I18 



be a dynamic system of class S',. 1 or an  analytical system, defined in  G. 
Let L., be a closed path 3f (A)  in G ,  which is a s imple limit cycle. Let a l so  

r = q ( t ) .  y = * ( t ) ,  (1 1 
where 9, and q- are periodic functions of period T, descr ibe the motion 
corresponding to the cyzle L o .  

The present  section IS concerned with the proof of the following theorem. 
T h e o Y e )vi 18. An) simple limit cycle L ,  of a dj*numic system ( X i  is a 

P r o o f  , 
structurally stable path. 

define a parameter  n on this normal, as in the previous section.'' 
point Mo corresponds to n = V on the normal. 
negative values  of n correspond to the points of the normal  which lie inside 
Lo,  and positive n to the points of the normal  which lie outside L o  (Figure 39) .  
Consider the part of the normal  corresponding to n. 0 6  I n l<n*. Jf n* > 0 is 
sufficiently small ,  the corresponding par t  of the normal  is an  a r c  without 
contact, which w e  denote 1 .  

We draw a normal  through some point bfo of the path L o  and 
The 

To fix our  ideas, l e t  the 

Let n = f (n )  be a succession function constructed in the direction of 
increasing t .  
a r c  1 (this can be accomplished by using a sufficiently smal l  n*). 
the function 

W e  may take i t  to  have been defined everywhere along the 
Consider 

d (n) = f (n) -n. 

Clearly d (0) = 0, and from the definition of a simple limit cycle, 
Let d' (u) < 0,  i.e., the limit cycle Lo is stable. If L o  is an  unstable limit 
cycle, the proof is completely analogous. 

d' (0) fi). 

* I f  the m i n t  YO corresponds t o t  =- 0 o n  the path L o ,  the equations of the normal are (see $ 1 ~ 1 .  115,) 

.I = ~ ~ I u - ~ z $ ' ( O ) ,  y=t(O)-nq' (O) .  
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c h . V .  CLOSED PATHS IN STRUCTURALLY STABLE SYSTEMS 

Since 0 is a simple root of the function d (n), this function has  no other 
roots  in  a sufficiently small  neighborhood of 0. 
roots  for  0 < I n [(a*. Under this assumption, all the paths crossing the 
a r c  1 a r e  not closed, going to the l imit  cycle Lo for  f-+ + 00. 

Let L, be a path through some point P, of the a r c  1 corresponding to 
n = n,, 0 < nI < n* (i.e.> a path through some point outside Lo)> and Lz a path 
through some point Q, corresponding to n= nz, nz<O, nz I < n* (Le., through 
a point inside L o ) .  

We assume that d (n) has no 

We have thus generated a sequence of points 

P, ,  Pz. . . ., P,. . . . 
of the path L ,  lying on the par t  of the a r c  I outside Lo which evidently go to 
the point M o .  and another sequence of points 

Q j Y  Qzt * .  . * Qn, . . . 
of the path Lz  lying on the par t  of the a r c  1 inside La ,  which a l so  go to the 
point M o  (see QT, 93 .7 ,  Corollary 2 of Lemma 11). Evidently, any path 
crossing the segment P i p z  (QIQz) of the a r c  I at  any of the points other than 
the ends successively c ros ses  every other segment PkPktI (QkQk+I)  a t  one 
and only one point which is not an end point. 

through the point Mi of the path L o ,  which has  no common points with 1. 
section of the normal through the point M ;  can be chosen as such an a r c .  
W e  take n* > 0 to be so small  that each path crossing the a r c  1 for  t = to 
c rosses  the a r c  1’ fo r  t )  to r  and has  no other common points with either 1 or 
1’. 
L2) c r o s s  the a r c  1‘ at  the points P; and Q ; ,  respectively (Figure 39) .  

the segment P 2 P I  of the a r c  1 ,  and Cz a simple closed curve formed by the 
a r c  QIQz of the path Lz and the segment QzQl of the a r c  1. Let fur ther  H be 
the region limited by the curves C, and C,. 
passing through the points of H evidently c ros s  the a r c  1 a t  points which fall 
between QI and P,, and Lo is the only closed path between these paths. The 
segments PIQl and P;Q; of the a r c s  without contact I and 1’ divide the region 

f i r s t  quadrangle by A,,  and the second by Az, 
Let u s  now consider modified systems (A) sufficiently close to (A). 

Lemmas 1,2, and 11 of 94 and the remark_ to Theorem 5 (§1 .3 ) ,  there  
exis ts  a number 61 > 0 such that for any (A) which i s  &-close to (A) 

Together with 1 ,  le t  u s  consider another a r c  without contact 1’ passing 
A 

Let the paths passing through the points P ,  and Q, (i.e., the paths L, and 

Let CI be a simple closed curve formed by the arc P I P z  of the path L, and 

All the paths of system (A) 

into two elementary quadrangles P,P;Q;Q, and P;PzQ,Q;. We denote the 

By 

1) the a r c s  1 and 1‘ a r e  a r c s  without contact; 
2 )  on the a r c  1 for all n, I n l g n * ,  a succession function n”=f(n)  is defined; 
3) the equation b ( n ) = f ” ( n ) - n = O  has  a single root n” such that l Z l < n * ,  and 

4) all the paths of system (A) which fo r t= t , c ros s  the segment P,Q,  of the 

Let & and L’, be the paths of system (A) 6,-close to (A) which pass  

this root satisfies the conditions nz <E < n, and L? (G) (0; 

a r c  1 ,  c r o s s  for t > to  the a r c  l ’ ,  without mee_ting again the a r c  1 before this 
t ime.  
through the points P ,  and Q, of the a r c  I ,  respectively, and P; and Q; the 
intersection points of these paths with the a r c  1’. 

Condition 3 signifies that among the paths of system (A) &-close to (A) 
which c r o s s  the a r c  1 ,  there is only one closed path E,, and this path is a 
stable l imit  cycle crossing the a r c  1 a t  a point M o  between the points P ,  and 
Q, on this a r c .  Evidently, the path L”, l i es  outside the closed path Eo,  and 



the path z2 inside Lo. 
points. 

The segment Pl.G7, of the a r c  /contains  a sequence of 

- - -  
PI. P , .  Pa, . . . 

of the path < converging to the point -Go (here PI coincides with PI) ,  and the 
segment Ql.@, of the a r c  1 contains a sequence of points 

of the path L2 convergin: to the point .Go (here ol coincides with Q,). 
tfer simple closed curves analogous to the curves C ,  and C2, namely the 
curve 2, consisting of the arc PIP, of the path z, and the segment p2Fl of the 
arc 1 ,  and the curve ?, consisting of the arc old2 of the path z2 and the 
segment C,o, of the arc !. 
the curves  ??, and c2. All the paths of system (A)  through the points of 
region 
fore,  not a single closed path of system (A), except the path &, passes  
through any of the point:; in ti. 
without contact 1 and 1' partition the region 17 into two elementary quadrangles 
P , P , ~ ; I / ~  and F;P202G;,  which are designated A, and &, respectively (these 
quadrangles are analogcus to the quadrangles &and A? of system (A)).  

i s  6-close to system (A), then 

Consi- 

Let u s  fur ther  consiger the region kenclosed by 

There-  evidently cross the arc 1 at point? lying between Ql and P I .  

The segmen_ts P,o,  and of the arcs 

- -  ..- 

ii e will show that for any E > 0, there ex is t s  8>0 such that i f  system (A) 

e - -  
( H ,  A )  = (H ,  . A ) .  

In this way w e  shall  have proved that Lo is a structurally stable path (see 
17.1 and Definition 10, $6.1). 

is sufficiently small ,  and system (A) is &-close to system (A), w e  can 
construct a topological mapping 'p of the segment P,Q,  of the arc 1 onto itself 
.which has  the following properties:  

(a )  The points P ,  and QI are mapped into themselves, i.e., p (PI) = PI,  
'p rQ,)= 0,. Points lying on one path of system (A)  are mapped into points 
of one path of system (A)  (and vice ve r sa ) .  

(b)  The mapping 'p is a n-translation (i .e. ,  fo r  any point ,If of the 
segment PIQl ,  .o fJf. p (ill)) -=c n I. 

\ V e  wi l l  first construct a topological mapping of the a r c  P I Q I  onto itself 
which satisfies property (a )  above, without bothering with property (b) for 
the time being. 
P,.\I% and then on the segment QI.lfo. The segment P , M 0  is mapped onto the 
segment F,,e,, in the following manner:  

1) T a k e  any topological mapping T~ of the segment P I P t  onto the 
segment such that 

Let n be any positive number. W e  shall  f i r s t  show that i f  6?, 0 < 6? < b 1  

This mapping is constructed separately on the segment 

TI (PI)  =PI. TI (P2) = P , .  

21 Assuming that the mapping TFR-,  of the segment P&$k onto ph-,P, (k = 
= 2. 3. 4 ,  . . . )  has been constructed,  we define qA as  the mapping of P4PGL,  onto 
ii$,,, i n  d u c e d by the mapping 9 k - I  in the fol1owing sense: i f  .Me_, and . ! I k  

are two successive intersection points a t  which some path L of system (A)  
meets  the path l as  t increases ,  which lie in  the segments Pk- lPk and P I P h . , ,  
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respectively, and M k W l  an? iGk are two successive intersection points a t  
which path 2 of system (A) meets  the arc 1 as t increases ,  which lie in the 
segments &.$A and p.&+fr respectively, and if ' p k - l  ( h f k - 1 )  = -2fh-1, then I I 

I 

' P h  (ivh) = i v k  

(Figure 40). 
with the path 5 are shown separately for  c lar i ty .  
system (A) ((A)) passing through points of the segment P I P ,  (Pip,) meets  each 
of the segments  PkPI14, ($k&), k = 2 ,  3, 4,  . . ., precisely in one point, the 
mapping ' p h  is single-valued. Clearly, 

In this figure, the intersections of the arc I with the path L and 
Since every a r c  L (Z)of 

3) Let cp((Mo)=Mo and suppose that 'p coincides with 'pR on the segment 
P,$Pk+g (k E 1, 2, . . .). 

FIGURE 40 

W e  obtain a mapping tp defined on the segment P , M , .  Exactly the s a m e  
mapping 'p is constructed on the segment QIMo(i.e., we f i r s t  take an 
a rb i t r a ry  mapping 'pT of QiQz on ol&, and then the induced mappings (PA of 
Q ~ Q R + ~  on & a + , ) .  A s  a resul t ,  we obtain a mapping 'p of P,Ql onto p,ol. 
mapping 'p constructed in this  way sat isf ies  condition (a)  above and is a 
topological mapping.':. 

The 

* W e  can readily write an analytical expression defining the mapping 'p. Let f(n) be the succession function 
on the arc I defined by system (A), and r(n) an analogous function for system (x). 
which defines a topological mapping of the segment P,P,  onto Ripz. 
[ f (n) jk - '  = f ( k - ' )  (n) defines a mapping of P I P z  on PkPa+l. This is a topological mapping, and the 
inverse mapping therefore exists. The corresponding function for the inverse mapping wi l l  be designated 

segment PkP&l, n the value of the parameter corresponding to  this point M ,  and ;the value of the 
parameter corresponding to q ( M ) ,  we have 

Let g(n) be a function 
Clearly, the iteration 

(n). The functions T("- ' )  and f - ( k - l )  are treated similarly. Then if M is a point of the 

\"-'I gf-\"-"(n). 

An analogous expression is obtained for the mapping cp on the segment QkQk+l. I(*) (n)= [f (n)f is not a 
symbol of a derivative here: this is the k-th iteration of the function f. i.e., f (f (f (. . . f (n) . . .))). 

122 



!Ve will now show that fo r  a sufficiently small  & 2  and an appropriate 
choice of q r  and g,,*. the mapping g, constructed according to the above 
formula jvill satisfy con,jition (b), i.e., i t  will be a 0-translation. 
this, w e  s ta r t  with a fix,-.d u > 0 and choose a sufficiently la rge  natural 
number I, so that the segment P,Ql of the a r c  I is entirely contained in 
I ' ,  ? (.llo) (the point Mo evidently lies on this segment). 

respectively) c r o s s  all the segments  Pipitl (Q,Q,+,, respectively) fo r  
i - -  2, 3,  .... I - 1 in a fin:.te time (see QT, $3.8 ,  Lemma 13). 
this and f rom S4.2, Lemmas 7 through 11, that for  sufficiently smal l  62 and 
an appropriate choice of the mapping 'p, and 'pi* 

tained in C,-arz (.If,,); 

- 1 ,  2, .... I - 1 ) i s a  o-translation; 

- 1. 3. . . ., I -  1) is a u-translation. 

the fo rmer  into the la t ter ,  the mapping 'p is a u-translation on the 
segment P,Q,. 
these conditions the mapping 'p of P,Q, is a a-translation. 

We have thus shown that if  a2 is sufficiently small ,  and sys tem (g) is 
a:-close to system (A), we can construct (for any 0 ) 9 )  a mapping q of the 
segment P,Q, of the arc 1 onto itself which sat isf ies  conditions ( a )  and (b). 

to [,A), we have 

To prove 

A11 the paths passing for  t = to  through points of the segment P I P 2  ( Q 1 Q 2 ,  

I t  follows from 

1 J the section p,G, of the arc 1 (containing the point .\?d) is entirely con- 

2 )  the mapping qh of the segment PAPAAI onto the segment Pk& ( k  = 

3 )  the mapping q: of the segment QhQk+, onto the segment q& ( k =  

Since the two segments  P,Q, and p,@, lie in U,.2 and the mapping g: moves 

Hence and f rom conditions 2 and 3 i t  follows that under 

LVe will now show tha: for  any E > 0 and for system (A) sufficiently c lose 

(H,  A)  & ( E ,  d). 

Let e > O  be fixed. By Lemma 8, S4.2, there  exist u'>O and &>O, & ( b 2  
which satisfy the following condition: if q'  is a mapping of the segment P;Q; 
of the arc I' onto the szgment p;o;  of the same arc, which i s  a o'-translation, 
and sys tems (A)  and (A)  a r e  d,-close, there  exis ts  a mapping T, of the 
elementary quadrangle -I! onto the quadrangle ?12 which coincides with q'on 
P,Q;, moves paths into paths, and is an &-translation. Let & > O ,  d , < h 2  be 
sit smal l  that if  sys tem ( E )  is 6,-close to  system (A), there  ex is t s  a 
mapping T of the elementary quadrangle A, on the quadrangle 6, satisfying 
the following conditions: 

segment onto itself; 
1) TI coincides on PI(), with the previously described mappinq q~ of this 

2 1 T, moves paths into paths; 
3 )  TI is an  €-translation; 
31 on P@;, the mapping T is a 0'-translation (moving this segment into 

'The existence of a number 6, > 0 with the above propert ies  follows from 
Leninia 8, S4.2, and f rom the fact that for  c lose sys t ems  the mapping cp is 
a n  a rb i t ra r i ly  smal l  translation (property b). As the number J w e  choose- 
an  a rb i t r a ry  positive number, smal le r  than ei ther  6 ;  o r  6 , .  
be &-close to system (A) .  
then a mapping TI of the cuadrangle A ,  onto SI with propert ies  1 through 4. 
The mapping q' is identified with the mapping T, on the segment P;Q; (which 

P;Q,  ). 

Let system (A)  
X'e construct a mapping 'p of the segment P,Q,, 
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moves this segment into p;G),  and a s  the l a s t  step we construct a mapping Tz 
of the elementary quadrangle Az onto a,, which coincides with cp'on P;Q;, 
moves paths into paths, and is an e-translation. 

with Tz on A 2  moves the region €I into r?, conserves paths, and is an E- 

translation. This indicates that 

It is readily seen that the mapping T which coincides with Ti on A, and 

( H ,  A )  & (ii, A",. 

The proof of the theorem is thus complete. 
R e m  a r k  . It follows from our proof that i f  Lo is a simple l imit  cycle 

of a dynapic  system (A), there  exist  E* > 0 and 6* 2 0 such that any 
system (A) 6*-close to (A) has  a single l imit  cycle Lo in the e*-neighborhood 
of the paths L o ,  and the character is t ic  indices of the cycles Lo and 2, have 
the same sign ( i ,e , ,  the cycles Lo and 2, a r e  either both stable or both 
unstable). 

J15. STRUCTURALLY UNSTABLE CLOSED PATHS 

1. The fundamental lemma 

Let, as before, 

be a dynamic system of c lass  N > I  o r  an analytical system in region G ,  
Lo a closed path of this system ( L O c G ) ,  

the motion corresponding to this path, cp ( t ) ,  q ( I )  are periodic functions of 
period T > 0. rp, I), being a solution of system (A) of a c lass  2 1, a r e  a 
pr ior i  functions of c lass  2 .  

B such that fm all S, - 00 < s < + 0 0 ,  

L e m m a  1 .  There exists a function of class 2, z = F (x ,  g), defined in 

(4 
(b) 
p r o o f  of (a). 

F (9 (s), $ (s!) = 0; 
(F;  ('P (4, + (s)))* + (FI ('P (s), $ W)* z 0. 

We wi l l  f i r s t  construct a function F (3, v) of c lass  2 
satisfying conditions a and b not in the ent i re  region 
neighborhood of the path Lo. 

but only in some 

To this end, consider the se t  of equations 

where a ( s )  and b ( s )  a r e  periodic functions of period 7 which belong to c lass  2, 
such that the functional determinant 
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does not vanish for any s: 

For a (s )  and b (s) w e  may take the functions $' (s) and - cp' ( s ) ,  respectively, 
provided they are functi.ons of c l a s s  2 (this will be so i f  ( A )  is a system of 
c l a s s  2, say). If, however, $' ($)and - cp' (,s)are functions of c lass  1, but 
not of c l a s s  2,  a (s) and t t  (s) can  be identified with trigonometric polynomials 
of period T which ensure  an  adequate approximation to 9' (s) and - cp' (s). 
I'hese polynomials exist in vir tue of W'eierstrass's theorem (see /ll,/, 
L'ol. 3 .  Sec. 734, p. 580) evidently meet condition (4). 

Let 6 be some sufficiently smal l  positive number. 
as equations which define the mapping of the s t r ip  

W e  will consider ( 2 )  

-CO ( s ( f o s ,  -6,<n,<d (5)  

in the plane (s, n) into the plane (I, y ) .  
Under this mappinq, the ax is  s is clear ly  moved into the path Lo> and 

every ver t ical  segment 

s-const, --6,<n,<6 

of the s t r ip  (5) is moved to a straight segment I ,  through the point .TI (s) of 
the path L o  corresponding to the value s of the parameter .  
condition (4), the segment Isdoes not touch the path L o  at the point ,I/ (s). 
3loreover, from the the3rem of implicit functions and from condition (4 )  
it follows that in  a sufficiently smal l  neighborhood of any point (s ,  0) of 
the axis  s, the mapping (i2) is one-to-one. But then i t  can be shown, 
precisely a s  in Lemma 1, 513.1, that if 6 is sufficiently smal l ,  no two 
segments  I ,  corresponding to different points of the path Lo (e.g., for  
OKs < T) intersect .  
The s t r ip  (5)  is then mo7;ed by mapping (2)  into some closed ring 
plane (I. y) enclosed by simple closed curves  f, and rn (Figure 41). 
sufficiently small ,  then at  any point of the s t r ip  (5 )  

in virtue of 

W e  wi l l  assume that this condition is indeed satisfied. 
in the 
If 6 is 

Ne will assume that this condition is a l so  satisfied. 

Mapping ( 2 )  of s t r ip  (5) onto the region is ent i re ly  analogous to the 
mapping ( 6 )  considered i:i 513.1 and i t  has  s imi la r  propert ies .  In 
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part icular ,  the mapping ( 2 )  is locally one-to-one in s t r ip  (5), and by virtue 
of condition ( 6 )  i t  is also regular,  i.e., this mapping is locally regular .  

Let u s  consider ( 2 )  as a se t  of equations in s and n, assuming that 
(I, y) E Q. 
precisely one value of n and infinitely many values of s, such that the 
numbers s, n satisfy equations ( 2 )  (the various s differ by a multiple of T). 
The particular n is therefore a single-valued function of x ,  y. 
designate i t  by F (I, y): 

In virtue of the above, to every point ( 5 ,  y) E P there corresponds 

We will 

(7) n = F ( z ,  y). 

If we consider only the local situation, s may also be regarded as a single- 
valued function of x and y. 
virtue of the theorem of implicit functions). 

sat isf ies  conditions (a) and (b) of the lemma.  

(cp (s), q (s)), the value of n corresponding to the path Lo is zero  in virtue of 
equations (2).  

w i l l  be regarded a s  single-valued functions of x and y .  

gives 

Moreover, n and s are functions of c lass  2 (in 

We will show that the function of c lass  2 defined by relation (7), F (I, y), 

Condition (a)  follows directly f rom the fact that a t  every point (I, y), i .e.,  

The proof of (b) will be based on local considerations, and both n and a 

P r o o f  o f  (b). Differentiationof (2)wi threspec t tox  and yrespectively 

1 = [cp’ (4 + nu’ (41 g + a  (4 t 

(8) 
O = [ $ ’ ( s ) + n b ’ ( s ) ] ~ + b ( s ) ~  

and 

o = [cp’ (s) + na’ (s)] 2 + a (s) * , 
l = [ q ’ ( s ) + n b ‘ ( s ) j  zs+b ( s ) ~  an . 

aY av 

ay 

I For n = O ,  each of the systems ( 8 )  and (9), considered as a l inear  system 
of equations in  the par t ia l  derivatives, has  a determinant A (s) which does not 
vanish in virtue of (4). Solving these systems and remembering that 
n = F ( x ,  y) and that for n = O ,  z=cp(s), y=Q(s) ,  we find 

Hence, 

(F; (cp(s), q ( s ) ) ) 2 + ( F ; ( c p ( s ) ,  l$(s)))2= [~‘(s)’a+[*’(s)P A I 
The l a s t  expression does not vanish, since i f  cp’ (s) = Q‘ (s) = Ofor some s, 
(cp (s), $ (s)) is an equilibrium state  of system (A), and this contradicts the 
fact that the point (cp (s), Ip (s)) belongs to the closed path Lo. 
thus proved. 

r ing 

Condition (b) is 

W e  have thus shown that there exis ts  a function F (I, g)of c lass  2 in the 
which sat isf ies  conditions (a)  and (b) of the lemma.  
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The boundary of the- ring 5 compr ises  the two simple curves  I", and r2 
.with t h e  paramet r ic  ecquations 

.r = 9 (s) f 6a (S) ,  y = 11' (s) + &5 (S)  

and 

.r = cp (s) - 6a (Y), y = $ (Y) -6b ( s ) .  

The right-hand s ides  of these equations are functions of c l a s s  2 .  
fore, by Lihitney's theorem (see  I l l / ,  Vol. 1, para .  260, p .  594), the 
function f' (I ,  y)can be continued to the en t i re  region 
c l a s s .  
propert ies  (a)  and (b). 

F (I. y ) o f  class IV $- 1 which sat isf ies  conditions ( a )  and (b) of the lemma.  
rhe proof is the s a m e  as before, but a (s) and b r s )  are functions of class 
.v - 1. 

R e m  a r k  2. Let the plane ( I .  y)  in which system (A) is defined be a 
coordinate plane of the three-dimensional space (z, y. z ) .  

I - F ( I .  y), where F is the function discussed in Lemma 1, is the equation 
of a surface through the path L o .  
points of this path the surface does not touch the plane ( I ,  y). 

There- 

without changing i t s  
The continuation of the function evidently re ta ins  the s a m e  

This completes the proof. 
R e  m a r k  1. If (A)  is a system of class S > 1, there  ex is t s  a function 

The equation 

It follows from condition (b) that a t  the 

2. 
multiple l imit  cycle 

The theorem of the creat ion of a closed path f rom a 

Ne recal l  that a closed path L,, is said to be a l imit  cycle if  i t  is 
i s o  1 a t  e d ~ i.e., i f  any neighborhood of the path does not contain any closed 
path except Lo itself. In this case,  as we have seen  in 512.2, a l l  the paths 
which pass  through points sufficiently c lose to the path L ,  ei ther  w i n d  
o n  t o  Lo (a stable l imit  ax is )  or u n w i n d  f r o m  Lo (unstable l imit  cycle), 
o r  else paths on one s ide of Lo unwind from i t  and paths on the other  s ide 
urind onto it (a semistable  cycle). 
character is i t ic  index is not ze ro  (Definition 18, $ 1 3 . 3 ) .  

creat ion of a closed path f rom a multiple focus (Theorem 14). 

multiple littiit cycle).  Let (A) be a dynattiic systetn of class IV ,'. i (or 
analytical), L o  a multiple titnit-cycle of the system. For any t' > 0 and 
i, 
to rank r<,V (r  < +- a) and which has at least two closed paths in the E -  

neighborhood of L , .  
The proof of Theorem 19 is based on Lemma 1, and in all 

other respec ts  follows the proof of Theorem 14. 
the previous sections, a succession function f (n) and a function 
d (n) = f (n) - n on some  normal  to  the path L o .  
the normal, defined by equations (2) in 912.4. 
limit cycle, there  ex is t s  n* > 0 such that f o r  all n, I n I -== n*. n # 0, a 
succession function f ( ! I )  and f (n) - n = d In) # 0 (d (0) = 0) are defined. 

A limit cycle is called multiple i f  i t s  

W e  w i l l  now prove ;L theorem which is the analog of the theorem of the 

T h  e o r e  ttz 19 (theoretn of the creation of a closed path from a 

o,, there exists a system ( A )  of the sattie class which is 6-close to (A) 

P r o o f  . 
We w i l l  consider, as  in 

Let n be the parameter  along 
Since by assumption L o  is a 

Let 1 
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be the segment of the normal corresponding to the values of n such that 
1 n I<n*. 
unstable or a semistable cycle proceeds along the same lines).  
.all n, I n I c n*, n # 0 ,  

To fix ideas, le t  Lo be a stable l imit  cycle (the proof for an 
Then for 

d ( n ) = f  (n)-n<O, if n > 0 ;  
d(n)=f(n) -n>O,  i f  n<O. 

We wi l l  f i r s t  prove the theorem for system (A) of c lass  1. 

path of system (A) whose ends l ie on our normal and correspond to the 
values n and f (n)of the parameter  (i .e. ,  an arc between two successive 
intersection points with the normal), I n I<<*, is contained in U, ( L o ) .  

Let E > 0 and 6 > 0 be given. Let n* > 0 be so small  that each a r c  of a 

Take any nl, 0 < nl < n*. By (12), 

d (nt) < 0. (13) 

Let further a,, 0<8,<6, be so small  that if system (a) is 6,-close to 
system (A) then (5) the normal I remains  an a r c  without contact for the 
paths of system (A); (b) for all  n, Inl<n*, the functions 7 ( n )  and d"(n) a r e  
defined on the normal; (c)  the a r c s  of the paths of system (A) between two 
successive intersection points n and 7 (n) with the normal (In I Q n *) a r e  
contained in U, (Lo),  and (d) the following inequality is satisfied: 

J(nl) < 0. (14) 
The existence of a number 6 satisfying the above conditions follows 

We will cGnsider modified systems of a special form, a s  follows. 
Let F (z, y) be afunction of c lass  2 satisfying the conditions of Lemma 1, 

f rom Lemmas  1,2, and 11 of 84. 

and p any rea l  number. We take a modified sys tem (A) of the form 

Clearly, (A) is a system of c lass  1, and if  p is sufficiently small  in 
absolute value, (A) is arbi t rar i ly  close to (A). 

path L o r  and the function F ( r ,  y) has been defined so that it satisfies the 
equality 

Since z=cp(t), ~ = g ( t )  is a solution of system (A) corresponding to the 

the functions cp((t), g( t )  a r e  a l so  a solution of system (A), i .e. ,  the path Lo of 
sys tem (A) is also a path of system (A). 

Let p be so s_mall that (A) is 6,-close to (A). 
satisfied, i .e. ,  d (nl)<O. 

Let u s  compute s(0). 

Inequality (14) is then 

By definition d ' (O)=O,  i.e., 
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Differentiating and Q" with respec t  to I and y,  respectively, and 
using (15) and (16), we find 

.( 

\ IPk((cp(4, + ~ s ~ ) + ' ? L ( ~ ( s ) ,  $(s)) lds= 
i 

The le t te r  J identifies the integral in the right-hand side of the equality. 
From property (b) of function F i t  follows that J > 0. 
we see that 

Finally, f rom (17) 

Let p)OL Then 2(0):>0, i.e., the path L o i s  an  unstable l imit  cycle of 
system (A). Hence, f '3r  all sufficiently smal l  n > O ,  a(,) > O .  

In par t icular  for some n,, O < n Z < n , ,  

B(n,) >o. (19) 

The continuity of the function ;and inequalities (14) and ( 1 9 )  show that 
between n, and ng there  is a t  least one value ,R*>O such that a(,*)= 0. 
number corresponds to a closed path L* of (A) which does not coincide with 
Lo. 
(A)  lying in L'e (Lo)  is Lo itself. 
when (A) is a sys tem of class 1. 

If (A) is a system of c l a s s  S > l .  r g S ,  and the closeness  is considered 
to rank r, the proof proceeds along the same  lines, but F ( r ,  y) is a function 
of c l a s s  -'+ 1 (see Remark 1 to Lemma 1) and p is sufficiently smal l  for 
( A )  to be &close to (A) to rank r .  

apply i n i t s  original form.  
of Lo an analytical function F (I, y) satisfying conditions (a)  and (b); this 
may be accomplished as  fo r  sys tems of c l a s s  A'. 
cannot be continued to the en t i re  region in  general .  W e  will therefore 
adopt a slightly different course.  

To fix ideas, le t  u s  suppose, as before, that L o  is a stable (multiple) 
l imit  cycle. W e  choose some n,. 0 < nl < n * .  
fixed h > 0, w e  construct a function F (z. y) of class ( r  + 1) which sat isf ies  
the conditions of Lemma 1 and consider the sys tem (x), 
positive number, Sufficiently smal l  for  (A) to be  close to (A) to r a n k  r and 

for  the following inequality to be satisfied: 

This 

By condition (c) imposed on 8 , .  L * c  U,(Lo) .  The second closed path of 
The theorem is thus proved for  the case 

Let now (A) be an  analytical sys tem.  In this case, Lemma 1 does not 
Indeed, w e  can  construct  in the neighborhood 

This function, however, 

rhen d (n,) < 0. Taking a 

p is chosen as a 
a 

d(n , )  -== 0. 
Since for  p > 0,  2 (0) > 0 and a l so  d"(0) = 0, we have for  sufficiently smal l  
nz>Oand n 3 < 0  

2 (n.) > o (19) 
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(Figure 42a) .  
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2 (n.3) < 0 

FIGLIRE 42 

Let u s  now consider an analytical system (A, ) q-close to (A) to rank r, 

where q q is taken to be sufficiently small  so that a succession 

function f * ( n ) i s  defined on the a r c  1 for system (A'") and the following 
inequalities a r e  satisfied: 

:-. 

d* (nt) < 0, d* (nz) > 0, d* (n3) < U. (21 1 
Clearly, (A, ) can be chosen as any system whose right-hand s ides  a fe  

polynomials providing a sufficiently close fit to the right -hand s ides  of (A).  

Since q <+, system (A) is 6-close to (A) to rank r .  

that there  exist  a t  least  two values of n (which lie between n, and n2 and 
between nz and nSr respectively) for  which the function d* vanishes.  
values of the parameter  correspond to two closed paths of system (A':.). 
For sufficiently small  6, these paths c lear ly  l ie  in U, (Lo) ) .  

These instances are illustrated in Figure 42, b and c. 
theorem is thus complete. 

multiple l imit  cycle, there exist systems (A) a rb i t ra r i ly  close to (A) which 
have a t  least  three closed paths in any arb i t ra r i ly  small neighborhood of 
Lo. 
same l ines  as in the proof of the theorem (see Figure 42a illustrating the 
stable case) .  
(regarding the existence of a t  least  three closed paths) is in general  
inapplicable. 

It can be readily seen that i f  Lo is a multiple limit cycle 
of system (A), there exis ts  a system (A;:?) arb i t ra r i ly  close to (A) which has  

It follows from (21) 

These 

The case of unstable o r  semistable Lo is treated along the same lines. 
The proof of the 

R e  m a r k  1. It is readily seen that i f  LA is a stable or  an unstable 

The validity of this proposition can be established reasoning along the 

For  a semistable cycle L o ,  however, the las t  proposition 

R e  m a r k  2 .  

any arbi t rar i ly  small  neighborhood of the cycle L o .  We wi l l  prove this 
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proposition for  the case  of analytical sys tems.  
construct,  as before, .I system (AI)  of c l a s s  1 of the type ( A )  for which 
L,,  i s  a simple liniit cy-le and which has  another closed path L ,  close to Lo. 
I f  L ,  is a simple liniit cycle, w e  take a polynomial (and therefore 
analytical)  system (A. I sufficiently c lose to (AI) .  Because of the 
s t ructural  stability of the cycles  L ,  and L ,  of sys tem (Ai),  system (A' ) 
wi l l  have sLructurally :;table cycles  f.: and L; in a close neighborhood of 
I . . ,  a n d  L t L  If L , i s  not a simple l imit  cycle of (Ai), we construct a 
sys tem \A,)  related to the cycle L ,  in the same  manner as  sys tem ( .K)  is 
related to cycle L,>n the proof of J3eorem 15. 
or' the number p ,  ( A t )  will be so-close to (A,) that in any arb i t ra r i ly  smal l  
neighborhood of L o  the system (Al)  will _have a s imple l imit  cycle I%,. The 
path L ,  will be a s imple l imit  cyc_le of (AI) (see proof of Theorem 15). I t  
noiv remains  to approx-mate to (AI) with a sufficiently c lose analytical 
s y s te m . 
proof is based directly on Leninia 1. 

The first ,  sf'p i s  to 

For a n  appropriate choice 

Let u s  prove another lemnia ;vhich will be needed in the following. 

L c ) t i  t t t  n 2. Let 

Its 

he a dytiattiic spstetti 41' class .I-: 1 dgfined i t i  region C, and x = q ( t ) ,  y = IF (1) 
ci c~losccl path L qf tlie s.ysteni ( L  c 
(i .c. ,  simple) l i t t i i t  cycle. For a)ig 6 > o, there exists an nrbitunrilg sttiall 
tieiqhboi-hood i' of the path L atul n dynatriic sgstet)? iB i  of class .Y iritlt tlic 
w/bLloic.itiq properties: 

idiich is riot a stnrcturallp stable 

(a, Sy.sterti (€3)  is 8 -close to ratik .V to sj.qterir (-4) in E .  
(b) Systett? (I31 coiricides with spstetti (-4) outside tlie neighbat-hood r. 
(c9 Tlic! patlt L ?f systeitz ( A )  is a stvrrctiirallg stuble l i l t l i t  cycle of 

sy.ctetti i R i . 
P r o o f .  Since ( A )  i.; a system of class .V, 'p and 11 are functions of 

class S f 1. 
coordinates s and ti defined by the relations 

In the neighborhood of the path L ,  we introduce curvil inear 

X = ( F ( S ) ~ ~ $ ' ( S ) ,  y=$(s ) - -nq ' (~ ) .  (22 i 

In Lemma 1 w e  have seen that to every  point (I. y ) o f  a sufficiently smal l  
neighborhood of the path L corresponds precisely one value of the 
parameter  n ,  

R = F (5. Y), 

and infinitely many values of s, such that the numbers  s and n satisfy 
equations (22 ) .  By the theorem of implicit functions, F (2. y) is a function of 
c l a s s  .Y, 

numbers  such that n3 < n3  < n,. 
(iefined by the respective inequalities 

Let R ,  be a sufficient1,v smal l  positive number, and nZ and n3 some positive 
Let iL.. (I, and V be the neighborhoods of L 

lnl<n3.  I-nl<nz, I n l < n , .  
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Clearly, 
W C U C V  

(see Figure 43a, where the neighborhood W i s  cross-hatched).  

b 

FIGURE 43 

Let y (n) be a function satisfying the following conditions: 
(a) y (n) is a function of c lass  N defined for all n, I n I < n,; 
b) y ( n ) = l  for  J n l g n , ,  

y ( n ) = O  fo r  n 2 < J n J < n , ,  
O < y ( n ) < i  fo r  n l g ( n l < n ,  

(Figure 43b). 
condition (b). 

stable l imit  cycle of (A), there exis ts  a system 

There evidently exist  functions y (n) of any c lass  satisfying 

In our proof of Theorem 1 9  we established that if  L is not a structurally 

of c lass  N arb i t ra r i ly  close to (A) to rank N for which L is a structurally 
stable cycle.  
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Consider a system (B) which coincides with system (A) in c-Vand is 
expressed by the equations 

d r  
; 1 T = = P ( r .  Y ) i l p " ( I ,  Y)--p(.r, Y ) l Y ( F ( Z , P ) ) ,  

g = Q (2. Y) + rd (2, Y) -Q (I, Y)l T ( F  (z, Y)) 
i B )  

in the neighborhood 1. of the closed path. It is readil_y seen  that in the 
neighborhood W, system (B) coincides with sys tem (A), i.e., L is a 
s t ructural ly  stable l imit  cycle for  (B). hIoreover, in V - U system (B)  
coincides with system (A). - C: too. 
Finally, (B)  is evident1;y a system of c-lass iV and is arb i t ra r i ly  c lose to 
rank .V to system (A), provided that (A) is sufficiently c lose to (A). 
System (B) thus sat isf ies  all the propositions of the lemma.  This com-  
pletes our  proof. 

Hence, (B) coincides with (A) in 

3. 
character is t ic  index 

Structural instability of a closed path with a ze ro  

T h  e o  r e  H I  20. A closed path Lo of system (A)  f o u  which 

5 l -pL(T(4? $(S) )+Ql (cp(S) ,  $(s))lds=O 

is structurally irnstable (in relatimi to any of the spaces R!;', r<LV, if (A) 
is a spstevn of c b s s  N ,  ard Rr', if (A)  is an analytical system). 

system of c l a s s  -V and s t ruc tura l  instability is treated in relation to the 
space R';', where i ,<r<X.  

st ructural ly  stable in same  neighborhood H of L o .  
there  ex is t s  6 > 0 such that i f  system ( A  ) of class N is 6-close to rank r to 
system (A), we have 

P r o o f  . We shal l  f i r s t  prove m e o r e m  2 0  assuming that (A) is a 

Suppose, contrary to the proposition of the theorem, that the path L o  is 
Then for  any e > 0, 

( H ,  A )  E ( H * ,  A*), 

where H* is some region. 
necessar i ly  a l imit  cycle of (A). 

above (which is a normal  to L o ) ,  R a neighborhood of the path Lo with the 
property that each path 3f sys tem (A) passing through a point of R meets  
the arc without contact I both for  increasing and decreasing f. Any sufficiently 
small  canonical neighborhood of the path L o  may be taken as 52 (see QT, 5 2 4 . 3 ) .  
Regardmg the neighborhood H ,  w e  assume that i t  lies inside R a t  a 
positive distance from the boundaries of this region. Let  e > 0 be so 
smal l  that a region H* generated by an e-translation of H is contained in  R, 
i.e., H* c '2. 
that i f  (A) and (A: ) are C-close, relation ( 2 3 )  is satisfied. 
be so  smal l  that if system ( A  ) is &-close to (A), every  path of (A*) 

We will now show that L ,  in this  case is 

Let 1 be the arc without contact for the paths of sys tem (A) considered 

Let 6 > 0 be a number corresponding to this E in  a sense  
Let a i ,  0 -= 6i < 6, 
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C o r o l l a r y .  
a s imple l imit  cy(  

(loes not vanish. 
rhe valklity of 

rheorerns 18 and 

51s. m w c r c  p i i  LI- [ Z 5 l - i W . E  C L ~ ~ S E D  P.-\I~!s 

X d o s e d  path Lo is structurally stable 
:le, i.e.. the character is t ic  index 
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this proposition f o l l o w s  directly f rom 
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C h a p t e r  VI 

NECESSARY AND SUFFICIENT CONDITIONS OF 
STRUCTURAL STABILITY OF SYSTEMS 

INTRODUCTION 

In the previous chapters w e  derived a number of necessary conditions 
of s t ructural  stability of a dynamic system. 
that i f  a dynamic system (A) is structurally stable in a closed bounded 
region c*, then: 

It may have only a finite number of equilibrium states  in &*, which 
a r e  of necessity simple nodes, saddle points, or foci ( A  < 0 o r  A > 0 and 
a #  0; 

We established, in particular,  

I. 

see  17, Theorems 10 and 11, and 110, Theorem 15). 
All the closed paths of system (A) are simple l imit  cycles (i .e. ,  11. 

paths 2 = 'P (4, I/ = II, (4 for  which J = 

where z is the period of the functions'q and cp; see 915, Theorem 20). 
111. 

Theorem 16). 
In the present chapter, we will prove that conditions I through I11 a r e  

both n e  c e s s a  r y  and s u f f i c i e n t  for  structural  stability of a system 
in G*. A rigorous proof of this proposition, although essentially simple, 
requires  a fairly lengthy and tedious analysis. 
of Theorem 76 in QT, 529.4. 

(P;  ('P (4. 'P (s)) + Q; (cp (s), 'P (4)) ds # 0, 

System (A) does not have saddle-to-saddle separatr ices  in c*((s11, 

It is analogous to the proof 

Chapter VI consists of three sections (516, §17, 118). 
In $16 we prove that i f  system (A) is structurally stable in G*, it  may 

have only a finite number of closed paths in 6* (Theorem 21). and hence 
only a finite number of orbitally unstable paths and semipaths (Theorem 22). 
The concept of a r e g i o n  w i t h  a n o r m a l  b o u n d a r y  is also intro-  
duced in $16. A normal boundary is made up of a finite number of simple 
closed curves,  each of which is either a cycle without contact or consists 
of an even number of alternating a r c s  without contact and a r c s  of paths. 
The fundamental theorem of s t ructural  stability i s  proved for regions with 
a normal boundary, since this assumption greatly simplifies the proof 
without imposing a significant restriction. 

this section that a region e* with a normal boundary can be partitioned into 
canonical neighborhoods of equilibrium states  and l imit  cycles and into 
elementary quadrangles. This partition is actively used in the proof of the 
fundamental theorem. 

a r e  the necessary and sufficient conditions of s t ructural  stability for a 

517 is completely devoted to supplementary material .  It is proved in 

In 518, we give a complete proof of the fact that conditions I through 111 
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5,ystem [%.A) in  c* (The,2r'em 2 3 ) .  
necsessary and sufficient conditions for  s t ructural  stability on a sphere 
(Theorem 2 4 i .  At the end of the section, $18.4 offe1.s a nuniber, of signifi- 
c*anf r emarks  and supplements. These include a theorem which states that 
the structurally stable sys tems forni a n  open set in the space of a l l  dynamic 
systems in a plane retgion (Theorem 25)  and on a sphere (Theorem 2 5 ' )  and 
ti rheorcni according to Lvhich the structurally stable sys tems are every-  
Lvhere dense in the space of the dynamic systenis \Theor.em 2 6 ) .  
theorems indicate !hat "almost all" the dynamic sys tems are structut-ally 
stable,  and structurally unstable sys tems are a n  exception. 

2. reader  ivishing to get h i s  teeth into the nieat of the theory without 
further. delay may s k i p  the proof of the fundamental theorems 2 3  ($18 .2  1 
ami 24  (S18.3j and onl:.- peruse $16,1,  the statement of Theorem 2 3  in  S18 .2 ,  
iiml a l so  S 1 8 . 3  and S l E . 4 .  

In 518.3 we prove that these are also 

These 

1. 
stable sys tems 

Finite number of closed paths for structurally 

Before proceeding with the proof of the sufficiency of conditions I 
through 111 ( see  introduction to this chapter)  for s t ructural  stability of a 
s g s t e n i ,  we ;vi11 show that these conditions allow only a finite number of 
c*losa(I paths in a structurally stable system. 
c:onciition 11, each closed path in a structurally stable sys tem is isolated. 
rhis conclusion in i tself ,  hosever ,  does not establish that the number of 
closed paths is finite, since a condensation point for the points of closed 
paths evidently need not belong to a closed path. 

T h  e n  y e  tti 21. If syslerri (A)  is st~-ctctiil-ally stable iri G*, it may hace 
otilly u finite niotibel- OJ' closed pntlzs i)t G*. 

P i . o o f .  
has  a n  infinite number of closed paths in  c*. 
of t h e s e  paths and choose a n  a rb i t r a ry  point on each path. 
be the sequence of these points, .It, E L i .  Since G* is compact, the sequence 
{ .If .  i has a t  leas t  one condensation point, and without loss  of generality we 
may assume that { - ) I r }  :.s a convergent sequence ( i f  this is not so, we can 
always choose a conve:,gent subsequence). 
point . T I * .  
neighborhood of .I/*. 
system, no such point .If* may exist in z*. 
brium, w e  \vi11 designate by L* the path through Ma. 
s e t s  of the path L* lie i n  6*, w e  will denote them by K,z and Kd, respectively.  

Note that in virtue of 

Suppose t.?at this proposition i s  not true,  i.e.,  a sys tem ( A )  
Take a sequence L , ,  L 2 ,  L a ,  

Let Xi, M2, .If3. , .  . 

Let the sequence converge to a 
Thus closec. paths completely contained in  c* pass  through any 

\Te will noLc- show that i f  (A)  i s  a structurally stable 
ff N * i s  not a state of equili- 

Ii the a- and a- l imit  

\C~e have to consider the following alternatives:  
I )  ,I/* is a s imple focus o r  a s imple node. 
2 )  .If* i s  a s imple saddle point. 
3 )  The path I.* leaves G* as t increases  or dec reases .  
4) K ,  or Ku i s  a node o r  a focus. 
.?,I K ,  or Ku is a closed path. 
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6 )  K ,  or K,  is a saddle point. 
7 )  K ,  or K ,  is a limit continuum, comprising a saddle point and 

Let u s  consider each of the seven cases  separately. 
Case  1 is inapplicable, since all the paths passing sufficiently close to 

Case 3 is inapplicable, since i f  L* leaves G*, any closed path LA passing 

saddle -to-saddle separa t r ices  which are continuations of one another. 

a node or  a focus go to that singular point, and a r e  therefore not closed. 

sufficiently close to M* also leaves G*. This contradicts our  assumption 
that all the closed paths are completely contained in G*. 

saddle -to-saddle separatr ices .  
Case 7 is inapplicable, since a structurally stable system has  no 

We can now concentrate on the remaining cases .  
Case 4. Let K ,  be a node o r  a focus 0. Let U, (0) be a sufficiently 

small  neighborhood of the point 0, so that all the paths through this neigh- 
borhood go to the point 0 for t +  + 00 and 
a r e  thus not closed. Since the path L* has  - points in U, (0), the theorem of the con- 

c lose to M* also passes  inside U ,  (0), and is 
thus not closed, contrary to the definition 

Case 5. Let K, be a closed path. W e  
choose an  a rb i t ra ry  point S on this path. 
Any neighborhood U, ( S )  contains points o 
the path L*, and by the theorem of con- 
tinuous dependence on the initial values, i t  
a lso contains points of any closed path L k  

passing sufficiently close to M * .  But then 
K ,  is not an isolated closed path, which 
clashes with the s t ructural  stability of (A). 

Case 6 .  Let K ,  be a saddle point, so 
that L* is a separatr ix  of one of the saddle points of the system. Since a 
s t ructural ly  stable system has  no saddle-to-saddle separatr ices ,  there  are 
two alternatives: L*leaves c* as t increases  (case 3),  o r  KO is a node, a 
focus, o r  a closed path in  8* (cases  4 and 5). 
applicable, as we have shown above. 

Case 2 .  Let M* be a saddle point. Consider a sufficiently smal l  
canonical neighborhood U of this  point, limited by a simple closed curve C ,  
which is made up of four a r c s  without contact and four a r c s  of paths 
(Figure 44). W e  take U to be so  small  that the saddle point M* is the only 
equilibrium state of (A) contained in U .  
infinite number of points MI which belong to the paths Lk. However, none 
of the closed paths of system (A) may be completely contained in U ,  since 
such a closed path, i f  i t  existed, would not enclose any equilibrium s ta tes  
or  would enclose at  most one equilibrium state, which is a saddle point. 
This is forbidden by QT, J11.2, Theorem 30 and Corolldry 1 f rom 
Theorem 29.  
on the curve C .  
points {ah} converging to some point M* E C .  n?* is not a state of equi- 
librium, and i t  can be taken as the initial point M*. 
our problem to one of the cases 3 -  7, which are inapplicable. 

FIGURE 44 

None of these cases is 

By assumption, U contains an 

Therefore each closed path L& has  a t  least  one point ii?k lying 
Since this  curve is compact, w e  can select  a sequence of 

W e  have thus reduced 
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None of the c a s e s  1 throuqh 7 is thus applicable. 

In QT, $15, we inti-ocluced the concept of orbital  stability and d i s -  

This establishes the 
validity o i  the theorem. 

t i n p i s h e d  between orbitally stable and orbitally unstable paths. 
not repeat the previous resul ts  here .  It sufiices to say that if system :A] 
is structurally stable in region ti*, i t s  orbitally unstable paths in this reg ion  
are a l l  the equilibriuni s ta tes ,  limit cycles,  and saddle-point separatr ices .  

T h e o r e  tri 22. [f systetti (A)  is st,tictusally stable in ti*. it  r)iut* huiv  
only a finite nurnber of orbitally tinstable paths and seuiipn!hs in Z;*. 

The validity of this theoretn follows directly f rom Theorem 10, 
Theorem 11 ( § 7 ) ,  and Theorem 2 1 ,  

R e m  a r k  . Theorems 2 1  and 22 clearly remain valid ..vhen the require-  
ment of s t ructural  stability of sys tem (-4) is replaced by a reouirement that 
system \.A] satisfies conditions I through 111 (these reuuirements  are  
actually equivalent, but this still  remains  to be provecl I .  

\\e xi11 

2. Regions with normal  boundary 

The proof of sufficiency of conditions I- I11 (see Introduction to this 
L*haptcr) for s t ructural  stability of a system in c* will be crirrieil out fo r  a 
particular case, assuming that G'* h a s  a so-called n o  r n i  a 1 b o  u n d a r y , 

Regions with a normal boundary w e r e  defined in QT, S16 .2 ,  ani1 '.IC ,vi11 
repeat here  the correspondinq definition i n  full. Note that the requirement 
o f  a normal boundary does not impose a significant restriction, but i t  helps 
u s  to avoid var ious complications i n  the proof of sufficiency. . 

The boiitdary of a cotnpact connected wgion is culled 
nortnal jos a gicen dyimtnic sjstern \ A  j if the jollozring cowlitions are 
sat is. f icd: 

D c j ' i  n i t  i o n  19. 

1)  The boundary i s  made i ip of a f inite number qf siiriplc closed ciit*<*es. 
2) Each of these cr'osed ciirc'es is either a crcle Lc,itlioiit contact os 

consists of a jinite nurnber of altetwiting arcs without confact arid a ) ~ s  qf 
paths. The cotntnon point of an arc of a path and an arc icitliorit conlact 
making the boundary rq?ill be called a corner point: a setuipath lying in ti* 
ana' tertninating at a cmner point will be called a corner settiipnth: an 
arc of. a path which is completely contained in G*, except for its end points 
which lie on boiindary arcs without contact so that at least one of therii is 
a corncr point, will bt? called a comer arc; the cm-esponding arc of c: 
path -for ichich neither end point is a comer point will be called a rt,hole 
non - s ingzclar arc. 

3 F o r  any corner arc, only one end point is a cornei- point. 
4) None of the corner setnipaths is a saddle-point sepamtris. 
5)  None o j  the boundary arcs oj  paths belong to a closed path cotti- 

Conditions 4 and 5 2learly indicate that the boundary a r c s  of parhs do  
pletely contained in 6*. 

not belong to orbitally unstable paths or semipaths lying completely in c*. 
Sz.!i;c-point separdtrices ma!: oe whole paths or stml:athr. !e:ending on whethi,; the, drc 

xxitdir!rd i i i  ?? or not. 

m w t h  <:uncs. i t  can be f i t t ed  by an arhi t rdr i l i  close no:mil boundary. 
* *  l i t h e  boundary of a rcipicn.@ consists of a f i n i t e  numbr: c ~ t  simple closed non-inr;:crc [ I ~ I S  p i t ,  - 

f .ioun,iar) arcs of paths w i l l  sometimes be calkt;l for bre i  i t )  hoiinrlar) arcs. 
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A boundary a r c  and a corner  a r c  of a path with a common end point, 
which thus form a single a r c  of a path of system (A), a r e  said to be a 
c o n  t i n u  a t i o n of e a c h o t h e r (in the direction of increasing o r  
decreasing t ) .  
common end point a r e  regarded as a c o n t i n u a t i o n  of e a c h  o t h e r .  

Figure 45 shows a triply connected region 6 with a normal boundary. 
The boundary consists of three simple closed curves,  one of which i s  a 
cycle without contact A, and each of the other two is made up of an even 
number of a r c s  of paths bi and a r c s  without contact I ,  (1 Si,< 5 for  the exterior 
boundary curve and 6 - S i <  7 for the interior boundary curve). The a r c s  with- 
out contact I t  a r e  marked in  the figure by straight segments.  

The corner  points a r e  A i  (1 <,cis 10)  and B, (1 ,<j,<4). 
shows the corner  a r c s  C3A4, C6A6,  A,C,, B,Cs;  a corner  semipath Ll with an end 
point A i  going to a stable focus 0,; a corner  semipath L: going to a stable 
l imit  cycle 2, which encloses an unstable node o r  focus 02; a saddle point O3 
with four separatr ices .  

Similarly, a boundary a r c  and a corner  path with a 

The figure a l so  

FIGURE 45 FIGURE 46 

The boundary a r c s  bz and b, have no continuation in 6*. Each of the other 
boundary a r c s  has  continuations in  two directions. The continuation of the 
boundary a r c  bs in  the direction of decreasing t is the corner  a r c  A&,, and 
the continuation in the direction of increasing t is the corner  semipath L i .  
Figure 46 shows a boundary a r c  h with a continuation in  one direction only 
(in the direction of increasing t ) .  

D e f i n i t i  o n  20. Orbitally unstable paths, saddle-point separatrices 
and corner semipaths, boundary and corner arcs of paths, boundary arcs 
without contact and boundary cycles without contact in e* will be re-  
spectively called singular paths, semipaths, arcs (of paths), arcs without 
contact, and cycles without contact. All  the other paths, semipaths, and 
arcs of paths will be called non-singular. 
etc., will also be referred to as singular elements. 

Singular paths, semipaths, 

140 



!16. SLNGULAR PATHS A N D  SEhlIPATHS 

LVe will now give a complete l is t  of the various paths, semipaths, and 
a r c s  of a structural ly  stable system (A) in a region c* with a normal  
boundary. 

A )  S i n g u l a r  o r b i t a l l y  u n s t a b l e  p a t h s  a n d  s e m i p a t h s :  
1 )  An equilibrium state  (a stable node or focus, an unstable node or 

2 )  A limit cycle (stable or unstable). 
3 )  A separatr ix  which goes to a saddle point for  t+  + m (- OJ) and to an  

focus, a saddle point). 

unstable (stable) focus, node, or limit cycle f o r t +  - 00 ( -  a), or which 
leaves c* through a boundary a r c  or through a cycle without contact a s  t 
decreases  ( increases) .  

B )  S i n g u l a r  o r b i t a l l y  s t a b l e  s e m i p a t h s .  
4) A corner  semipath going for t+  - 00 (" m) to a n  unstable (stable) 

C )  S i n g u l a r  a r c s  a n d  c y c l e s  w i t h o u t  c o n t a c t :  
5 )  A corner  arc. 
61 X boundary arc of a path. 
7 )  A boundary a r c  without contact. 
8 )  A boundary cycle without contact. 
D )  N o n - s i n g u l a r  w h o l e  p a t h s  a n d  s e m i p a t h s :  
9 )  Paths  going for I -+ - m to a n  unstable and for t + -i- m to a stable 

10) Semipaths goin,g for  t+ - 00 (+ m) to an  unstable (stable) node, 

node, focus, or limit cycle. 

node, focus, or limit cycle (9  different possibilities). 

focus, or limit cycle and emerging f rom c* through a boundary arc or cycle 
without contact as t increases  (decreases) .  

E )  N o n - s i n g u l a r  w h o l e  a r c s :  
1 1  j An a r c  of a path which is neither a corner  arc nor a boundary arc, 

whose end points lie on boundary a r c s  o r  cycles  without contact, and all 
the other points are in G*. 

in c*(or in  fact only in  G*) will be called a t t r a c t i o n  e l e m e n t s  or 
s i n k s ,  and unstable Lodes, foci, and limit cycles  w i l l  be called r e  pu  1 - 
s i o n  e l e m e n t s  or s o u r c e s .  Boundary arcs or cycles  without con- 
tact through which paths emerge  from c* as t increases  can a l so  be in te r -  
preted in a sense  as attraction elements  (sinks), whereas  boundary arcs 
and cycles  without contact through which paths enter  c* may be regarded 
a s  repulsion elements  ',sources). 

Since a s t ructural ly  stable sys tem in  c* has  only a finite number of 
singular elements, all the propositions regarding the partition of E* into 
cel ls ,  formulated in  QY, §16> remain  valid. In particular, the se t  E of all 
the points of c* which telong to  singular e lements  is a closed set .  
complement, i.e., the open se t  C * - E ,  consis ts  of a finite number of com-  
ponents, called c e 11 s . Each cell is filled with non-singular paths, s emi -  
paths, or arcs of paths which show "identical" behavior in  a cer ta in  sense  
(see QT, 516, Theorems 46-48, 5 3 ,  5 7 ) .  
connected o r  doubly connected. 
various types of cells of s t ructural ly  stable systems.  

In what follows, stable nodes, foci, and limit cycles  of system (A) lying 

Its 

The cells are ei ther  singly 
In the next chapter w e  w i l l  consider the 
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s17. A REGULAR SYSTEM OF NEIGHBORHOODS AND 
THE PARTITION OF -6* INTO CANONICAL NEIGHBOR- 
HOODS AND ELEMENTARY QUADRANGLES 

1. 
structurally stable systems 

A regular  system of canonical neighborhoods for  

A s  we know, a cycle without contact can be drawn around any node or 

focus  and no closed paths. The cycle can 
be drawn in any arbi t rar i ly  small  neighbor - 
hood of the node o r  the focus.':' We w i l l  say 
that t h i s  c y c l e  w i t h o u t  c o n t a c t  
b e l o n g s  t o  t h e  g i v e n  n o d e  o r  
f o c u  s , and conversely, that t h e  n o d  e o r  
t h e  f o c u s  b e l o n g s  t o  t h e  p a r t i c u -  
l a r  c y c l e  w i t h o u t  c o n t a c t .  

inside this cycle without contact and the 
points of the cycle itself w i l l  be called a 
c l o s e d  c a n o n i c a l  n e i g h b o r h o o d  of 
the node o r  the focus. All the paths passing 
through the points of a canonical neighbor- 
hood of a node o r  a focus 0, which do not 

leave that neighborhood, going to 0 for  
t +  -i- 00 (if 0 is a stable node or  focus) 

In QT, '324.3, it is 

focus, so that i t  encloses no equilibrium states  other than that node o r  

The closed region comprising the points 

FIGURE 41 coincide with the point 0, evidently do not 

o r  for t+  - 00 (in the unstable case) .  

shown that in any neighborhood of the cycle Lo we can pass  two cycles with- 
out contact C' and C", one lying inside L O .  and the other enclosing L o ,  so 
that the annular region T between the cycles C' and C" contains no equilibrium 
s ta tes  and no closed paths other than Lo (Figure 47j .  
region T is a union of two closed unilateral  canonical neighborhoods T' and 
T", limited by the closed curves Lo and C' and Lo and C", respectively. We 
wi l l  say that t h e  c y c l e s  w i t h o u t  c o n t a c t  C ' a n d  C* b e l o n g  t o  t h e  
l i m i t  c y c l e  Lo. T w i l l  be called a b i l a t e r a l  c l o s e d  c a n o n i c a l  
n e  i g h b o r h o  o d , or  simply a canonical neighborhood of the limit cycle Lo. 

Any path, other than L o ,  passing through a point of the canonical neigh- 
borhood T goes, without leaving T, to the l imit  cycle LO for  t + + 00 i f  Lo is 
stable and for t+ - 00 if  i t  is unstable. As t decreases  or increases ,  
respectively, this path leaves T through one of the cycles without contact C' 
or  C". Clearly, for  any E > 0, the cycles C' and C" can be always drawn so 
that T i s  entirely contained in U, (Lo) .  

hoods of nodes, foci, o r  l imit  cycles: we will speak invariably of the 
canonical neighborhoods of sinks or sources  (attraction or repulsion 
elements). 
sink or source,  and conversely, that a sink or a source belongs to a given 
cycle without contact. 

See OT. §18.1. Lemma 3 and the remark to this lemma. 

Let u s  consider a l imit  cycle Lo of system (A). 

The closed annular 

In what follows, we wi l l  not deal separately with the canonical neighbor- 

We wi l l  a lso say that a cycle without contact belongs to a given 
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$77. REGULAR SYSTEhl OF C;\NONICAL KFIGHRCXFrOODs 

Xpart f rom canonica; neighborhoods of nodes, foci, and limit cycles, 
we will a l so  consider cmonica l  neighborhoods of a saddle point. This  
neighborhood is delimited by four a r c s  without contact, each crossing one 
of the saddle-point separa t r ices ,  and by four arcs of paths (Figure 44; the 
canonical neighborhoods of a saddle point a r e  defined in  QT, 519.2). For 
any e > 0, we can choose a canonical neighborhood of the saddle poini 0 
i,vhich is entirely contained in c', (0). 

satisfy conditions I through I11 in  the Introduction to Chapter 1-1 and consider 
regions with a normal bmndar?;. 

canonical neighborhood gf a saddle point 0 are siifficientljj small, each of 
these avcs has onlv one coiti)tion point with the corresponding separatvix 
of the saddle point 0, atld has no corn))ian points with any of the othev 
singular paths or setnipaths (i .e. ,  limit cycles,  separatrices, a d  covneY 
soiiipatiis) OY zritli any of the corner arcs .  

number of singular path:; and semipaths in the relevant dynamic system 
(SlS, Theorems 21 and 32; r emark  to Theorem 22 and Definitions 19 and 
2 0 )  and f rom the fact tha.t, in  virtue of condition 111, the saddle-point 
separa t r ices  of these systenis  cannot be limit paths (i.e., they do not 
en ter  the limit a-  or o-continuum of any path). 

oj. each saddle Point 0: lies inside L', (Oc), none of the paths throicgh the 
poitzts oj. the canonical neighbarhood of one saddle point has points in the 
ranonical neighborhood of any other saddle point. 

P r o o f  . 
sources  (nodes, foci, and limit cyc les )  in  such a way that they have no 
common points. 
these neighborhoods. 
:vithout contact which en':er the boundaries of the canonical neighborhoods of 
the s inks and sources ,  all the boundary cycles  without contact, and all 
the open boundary arcs vcithout contact (i.e., the boundary arcs without 
t h e i r  end points). 
each saddle point in te rsec ts  with increasing (decreasing) t one and only one 
element of the se t  R a t  a single point. 

Let 0, t i  = 1,2, . . ., m )  be the saddle points of system (A) lying in G*, 
and Lik' ( k  = 1, 2, 3, 4) the separa t r ices  of the saddle point 0;. 
seniipath which is par t  of the separa t r ix  LIk), ending a t  the point of i t s  
intersection with the corresponding cycle or arc without contact of the 
se t  ! I .  
The se t  comprising the saddle point 0; and all the points of the semipaths 
L?' ( k  = 1, 2, 3,4) will be denoted Fi ( i = I, 2, .  . . a  m). Each of these Fi is 
evidently a closed set ,  and they have no common points as  there  are no 
saddle-to-saddle separa t r ices .  The dis tances  between any two s e t s  Fi are 
therefore  positive, and there  exist nonintersecting closed neighborhoods tTt 
o f  these se t s .  
the se t  Pi in  the se t  comprising the points of c* which lie outside or on the 
boundary of the canonical. neighborhoods of the sinks o r  sources .  
neighborhoods i?' are typically "cross-shaped' '  (Figure 48). 

In what follows, we invariably assume that all the dynamic sys tems 

L e tti tti a 1 .  If the arcs  without contact fmtriing the boiinclarj of a 

P r o o f .  The validit:{ of the lenima follows directly f rom the finite 

L e )ti tn a 2. There exists F,, > 0 such that if the canonical neighbodzod 

We firs t  cht.ose the canonical neighborhoods of s inks and 

All the saddle points of sys tem (A) evidently lie outside 
Let u s  consider the se t  0 comprising all the cycles  

By condition 111, every a -separa t r ix  (w-separatrix) of 

Consider a 

To avoid introducing new symbols, Lik' w i l l  denote this semipath. 

By ffi ( i  = 1 , 2 , .  . ., k ) we mean a closed neighborhood of 

The 

143 
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FIGURE 48 

Let u s  consider the canonical neighborhoods U, (0,) completely contained 

If these a r c s  a r e  sufficiently small ,  then for both decreasing 
in W, .  
= 1,2, 3 , 4 ) .  
and increasing t ,  every path passing through the points of these a r c s  w i l l  
e i ther  leave the region z* or enter  one of the canonical-neighborhoods of the 
sources  or sinks, remaining until that time in the set  W i .  
same property is characterist ic of every path through any point of the 
neighborhood U i .  

= 1, 2, . . ., m, U,, (0,) c U i .  This number clearly satisfies the proposition 
of the lemma, which completes o u r  proof. 

D e f i n i t i o n  21. Let (A )  be a dynamic system satisfying conditions I 
through 111 in the introduction of Chapter Vi. Consider a region with a 
normal boundarv. A svstem of canonical neighborhoods of the svstem (A)  

Let the boundary of U i  comprise the a r c s  without contact I?' ( k  = 

But then the 

Let eo be a sufficiently small  positive number, so that for any i = 
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disjoint and do not intersect with any of the canonical neighborhoods of the 
limit cycles; the canonical neighbmhoods of different limit cycles are 
also nonintersectinn; 
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of  

!ths of system (A)  passes 
I different saddle boints . thy the cano: nical 

2) Every a& without contact contained in the boundary of the canonical 
neighbmhood of a saddle point satisfies the conditions of Lemma 1,  Le., it 
has precisely one common point with the cmresponding sebaratrix and has 
no common points with any of the other singular paths and semipaths or 
cmner arcs. 

neighborhoods. 
canonical neighborhoods. 

Lemmas  1 and 2 establish the existence of regular systems of canonical 
In what follows, we will only deal with regular systems of 

* In QT, 427, the concept of a regular system of canonical neighborhoods was defined for dynamic systems 
of a more general type. The dynamic systems considered in this chapter satisfy conditions 1-111, and 
therefore their regular system of canonical neighborhoods meets the condition formulated below (these condi- 
rions are stronger than in the general case). 
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The following 0bviou:j propositions der ive f rom the above l i s t  of paths, 
semipaths, arcs of paths, etc., and f rom the propert ies  of canonical 
neighbor hoods : 

without contact which belongs to a source and one cycle without contact 
which belongs to a sink. 

belongs to a sourcc or a sink, and one boundary arc or boundary cycle 
without contact. 

contact which belongs tc a sink (source)  or leaves c* with increasing 
(decreasing) t through a boundary cycle or  a boundary arc without contact. 

U )  Any positive (negative) corner  semipath c r o s s e s  one cycle without 
contact which belongs tc a sink (source). 

We will now present the terminology and some facts  pertaining to cycles  
and a r c s  without contact comprising the set  0 and the division of these arcs 
and cycles  into par t s  by singular paths and semipaths (the set  0 is defined 
in the proof of Lemma 2).  

canonical neighborhood m in the boundary of the region c*. 
has  no common points with singular paths, semipaths, and corner  arcs of 
the system, i t  is said to be f r e e .  
cycle), i f  C belongs to a sink (source)  or i f  C is a boundary cycle through 
which the paths of the systeni  leave E* (enter  E * ) .  

coninion point with singular paths, semipaths, o r  co rne r  arcs (a corner  a r c  
niay have a common point with C only i f  C is a boundary cycle without 
contact). 
common with singular semipaths, paths, or corner  arcs, i t  is divided by 
these points into a finite number of simple arcs, wh.ich have no common 
points with the singular elements, except the end points. These  arcs are 
called s i m p l e  e l e m e n t a r y  a r c s .  If a non-free cycle L'has only one 
point JI in common with singular paths, semipaths, and corner  arcs, C is 
c a l l e d a  c y c l i c  e l e m e n t a r y  a r c ,  and JIis the e n d  p o i n t  o f  a 
c y  c 1 i c a r c  
a n  e l e m e n t a r y  w - a r z  ( a - a r c ) o r s i m p l y  a w - a r c  ( a - a r c ) i f  the 
cycle without contact C containing this arc belongs to a sink (a source)  or 
i f  C is a liniit cycle withfmt contact through which the paths of the system 
leave @(en te r  c"). 

Boundary a r c s  without contact are also divided by points which belong 
to singular e lements  - specifically to separa t r ices  or corner  arcs - into 
s i ni p I e e 1 e ni e n t a r y  a r c s , which have no common points with singular 
elements, except their end points. In particular, a simple elementary arc 
niay coihcide with a boundary arc without contact. These elementary a r c s  
are a l so  w -  or a-arcs according as the paths of the system leave or enter  the 
region C* through these z r c s .  

will be helpful in the following. 
more  general  class of dynamic sys tems (namely, sys tems which do not 
necessar i ly  satisfy conditions I- 111). 
etc., i n  S l S . 2  and from the definition of free cycles  without contact and 

A )  Any non-singular path completely contained i n  E* c r o s s e s  one cycle 

B j  Any non-singular semipath c r o s s e s  one cycle without contact which 

C )  Any a -separatr ix  (w-separatrix) e i ther  c r o s s e s  one cycle without 

Let C be a cycle withqxt contact contained in the boundary of some 
If this cycle 

We say  that C is a free --cycle (a- 

-4 cycle without contact C is said to be n o n  - f r e e  i f  i t  has  a t  least  one 

If a non-free cycle without contact C has  more than one point in 

An elementary arc - whether simple or cyclic - is called 

We will now formulate without proof some auxiliary proposition which 
The proof can be found in QT, $27.4 for  a 

F rom the l i s t  of paths, semipaths, 



Ch. VI. NECESSARY AND SUFFICIENT CONDITIONS OF STRUCTURAL STABILITY 

elementary a r c s ,  i t  follows directly that every non-singular path of a 
dynamic system (A) lying in c*, whether a whole path, a semipath, or a 
whole a r c ,  c ros ses  one a -a rc  or f ree  a -cycle and one a -a rc  or 
free  a-cycle. 

L e  m m a  3.  All the paths passing through the points of one f ree  a-cycle 
(a-cycle) cross the same f ree  a-cycle (a-cycle),  one of the two cycles lying 
inside the other. 

R e  m a r k  . 
of a f ree  cycle). 
whole a rcs .  F r e e  a- and a-cycles through which pass  the same paths a r e  
called c o n j u g a t e .  

L e m m a 4 .  All the paths passing through the (inner) points of one a -arc 
(w-arc) C Y O S S  the same a-arc (a-arc) .  

R e  m a r  k . 
elementary a r c s  without contact through which pass  the same paths a r e  
called conjugate elementary a rcs .  Two conjugate elementary a r c s  of a 
structurally stable system a r e  both simple elementary a rcs ;  alternatively 
one of them is simple and the other is cyclic. 

a r c s .  However, structurally unstable systems have no conjugate cyclic 
a rcs .  This wi l l  be Droved in ChaDter VII. 819.3. Lemma 3. 

The paths of this lemma a r e  non-singular (from the definition 
They a r e  either all  whole paths, or al l  semipaths, or all  

Here again we a;-e dealing with non-singular paths. Two 

If (A) is a structurally unstable system, i t  may have two conjugate cyclic 

FIGURE 49 

In Figure 49, the simple a - a r c s  AiBl and BzCl a r e  the conjugates of the 
simple a - a r c s  A B  and BC, and the simple a - a r c  B,B2 is the conjugate of the 
cyclic a - a r c  I' with M o  a s  i t s  end point. 
the boundary of the doubly connected region 6*. 

All these a r c s  a r e  contained in 

2. 
neighborhoods and elementary quadrangles 

The partition of the region c* into canonical 

We again regard (A) a s  a dynamic system which sat isf ies  conditions I- 
111 of the Introduction in region 6* with a normal boundary. 
regular system of canonical neighborhoods be defined in e*. 
se t  of all the interior points of all the canonical neighborhoods. 
of G* which do not belong to K constitute the closed set  G * - K .  

Let some 
Let K be the 

The points 
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L e ) n  ni a 5. The closed set C* - h' can be partitioned into a finite nuinber 
of closed elementary quadrangles, so  that ecery arc withoiit contact con- 
tained in the boundary cf any of these quadrangles is either a part of a 
boundary cycle without ,contact, w a part of a cycle without contact which 
belongs to some sink OY source, or a part of a boundary arc without contacl, 
or an arc without contact contained in the boundary of the canonical 
neighborhood of a saddle point. 

.\io reove r, 
a) any two qruzdrangdes oj  the partition either hace no coinmon points or 

their common points form an arc of a path which is part of the boundary 
of each quadrangle; 

b) an arc without colitact forming part of the boundary o j a  quadrangle 
of the partition either hirs one point, othe,' than the end point, in cornwon 
with the saddle-point separatrix and no other comtiion points icith singular 
elements; or one of its end points belongs to a comer semipath OY a 
corner arc or is a COYIZCY point of the boundary, and all the other points 
belong to non-singular paths; w it entirely consists of points which belong 
to non-singular paths. 

regular  system and into elementary quadrangles satisfying the conditions 
of Lemma 5 will be called a r e g u l a r  p a r t i t i o n  of  c*. 
saddle points of system (A). 

R e  m a r k . A partition of c* into canonical neighborhoods forming a 

P r o o f  . F i r s t  le t  u s  consider the canonical neighborhoods of the 
Let 0 be some saddle point, H i t s  canonical 

neighborhood, y an a r c  without contact 
entering the boundary of H ,  d and B the 
end points of this a rc ,  L a separatr ix  of 
the saddle point Ocrossing the a r c  y, 
D the intersection point of L and y 
(Figure 5 0 ) .  To fix our  ideas, le t  L be 

L, ff' a n  a-separatr ix .  Then, for  increasing 
t ,  L leaves the neighborhood H through 
the point D and c r o s s e s  e i ther  a cycle 
Without contact C (this is a boundary 
cycle or a cycle belonging to a sink) or 

Let the separatr ix  L c r o s s  the cycle with- 

FIGCRE 50 

a boundary arc without contact. 
out contact C a t  point D' (,if L c r o s s e s  a boundary arc without contact, the 
argument remains  the same).  
canonical neighborhoods we see that all the paths through points of the arc 'J 

will c r o s s  with increasir-g t a n  a r c  without contact y' which is part  of the 
cycle C. The end points of y' ( .4'and B')  l ie respectively on the paths L A  and 
L B  through the end points A and B of the arc y, and y' has  no points which 
belong to singular paths, except the point D'. 

The arcs y and y' will be called c o n j u g a t e a r c s . The quadrangle 1 
delimited by y and y' will be called an  elementary quadrangle. 

Thus, to each a r c  without contact y entering the boundary of a canonical 
neighborhood of a saddle point corresponds an  elementary quadrangle. Let 
A ,  ( i  = 1, 2, ..., .Ir) be all :such quadrangles, y ,  and y; the corresponding a r c s  
without contact. 
Definition 21, 2) .  

Let u s  now consider a corner  path f. which ends at a corner  point R of 
the boundary. Let be a negative semipath. Then h has a common point A 

F r o m  the definition of a regular system of 

The quadrangles A i  are evidently all disjoint (see 
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with a cycle without contact C which belPngs to a source (Figure 51). 
the cycle c we choose two points A and B on the two s ides  of R and sufficiently 

On 

close to i t  so that the a r c  AB of the cycle 
contains no points of the previously defined 
arcs y; and no other points of any corner  
paths, except the point R. Let u s  consider 
the a r c s  RA and RB separately,  denoting 
them i ,  and x2. 

As t increases ,  the paths through the 
points of one of t h e s e a r c s  (in Figure 51, 
through the points of x 2 )  wil l  c r o s s  the a r c  
x 2  which is part  of a boundary a r c  without 
contact and has  R as one of i t s  end points 
(all the other points of xz belong to non- 
singular paths). 
points of the second arc ,  xi ,  will c r o s s  with 
increasing t the a r c  xi, which is also par t  
of a boundary a r c  o r  cycle without contact, 

o r  (as in Figure 51) is part  of a cycle without contact which belongs to a sink. 
One of the end points of xi - w e  denote it by R, - belongs to a corner  a r c  o r  
semipath o r  is a corner  point of the boundary, and all the other points of the 
a r c  xi belong to non-singular paths. The quadrangle delimited by the a r c s  
without contact xi  and it (i = 1, 2) and the a r c s  of the paths through their  end 
points is the elementary quadrangle A,.  
conjugate, as before. 

construct the corresponding elementary quadrangles A, in the same way. 
Note that i f  there  a r e  two different semipaths, a positive and a negative one, 
which are a continuation of the same boundary a r c  of a path, the two co r re -  
sponding arcs x and x wil l  be chosen "compatibly." This is best  illustrated 
with an example: in Figure 51, the semipaths 2 and L1 with the end points R 
and R,, respectively, a r e  continuations of the same boundaryAarc R,k,. We 
may therefore choose a rb i t ra r i ly  one of the two arcs xi and xi, and the other 
a r c  is automatically determined by this choice. 
the same elementary quadrangle A,. 

in this way. 
have no common inner points between themselves and no common points 
(whether inner points o r  end points) with the previously defined a r c s  y, .  
Under these conditions no two elementary quadrangles A ,  ( i  = 1, 2, ...) and 
6,  ( j  = 1, 2, ...) have any inner points in  common (but 
common a r c s  of paths in  their boundaries or par t s  o,f boundary a rc s .  The 
second case  is observed, e.g., for the quadrangles A i  and A2in Figure 51). 

The elementary quadrangles A, adjoin corner  paths (and possibly their 
continuations also; for example, the quFdrangle A2 in  Figure 51 adjoins the 
semipath L ,  and 6, adjoins the semipath L ,  i t s  continuation - the boundary 
a r c  RR, - and the continuation of this a r c ,  the semipath Li). 

Following the same procedure as for  the quadrangles A j ,  we define the 
elementary quadrangles A i  (k = 1, 2, ..., N*)adjoining corner  a rc s .  
without contact forming the boundaries of the quadrangle A i  will be de- 
signated hk and h f ;  these a r c s  will a lso be called conjugate. 

I 
The paths through the 

FIGURE 51 

The a r c s  xi and x i  will be called 

W e  take all the corner  semipaths k i ,  whether positive or  negative, and 

Both these a r c s  define 

Let bj  ( j =  1, 2, ..., A) be all the fifferent elementary quadrangles constructed 
All the a r c s  xt (and x,) are taken sufficiently small ,  so that they 

and d, may have 

The a r c s  

Note that a 
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quadrangle adjoining a ,corner semipath may a t  the same  time adjoin a 
corner  arc a l so  (e.g., ;i2 in Figure 52). Therefore, A i  ( k  = 1, 2. ..., S*) are 
defined specifically as elementary quadrangles adjoining corner  arcs, but 
not adjoining co rne r  semipaths. We moreover take the arcs hR and i.: to be 
sufficiently small .  Under these conditions, the quadrangles A i ,  A j ,  and A: 
a r e  a l l  different and no two of these quadrangles have inter ior  points in common 
(but and A; may have common arcs of paths in their boundaries or par t s  
of boundary arcs; such are, e.g., the pa i r s  of quadrangles 1; and &, 3,  and 
A?, A; and A; in Figure 52). 

FIGLIRE 52 

Let u s  now consider  boundary arcs of paths. Those which are the 
continuations of co rne r  arcs O r  corner  semipaths form the boundary of the 
quadrangles A; and A, (such are, e.g., the arcs S,Tl and S?T,  in  Figure 52, 
which form the boundaries of & and A t a  respectively). 
a boundary arc of a path ST has  no continuation in  G*. 
that the co rne r  points of this arc belong to two different boundary arcs 
without contact. 
adjoining a co rne r  point (e.g., the section SB1 i n  Figure 52)  and draw 
through the points of p paths of the system until they emerge  through a 
section c( of the second boundary a r c  without contact. 
an  elementary quadrangle adjoining a boundary arc of a path ST (in 
Figure 52, this is the quadrangle XI) .  
quadrangles. 'Their  boundaries contain the conjugate arcs without contact 

&ow suppose that 
It is readily seen  

Take a sufficiently smal l  section p of one of these arcs, 

We have thus formed 

Let ( I  = 1, 2,  ..., .V) be all such 

p,,, and Fm. 
Let us  now consider all the elementary quadrangles A t ,  ij, A:, and 5, and 

all the arcs without contkct 91, x ,  and xi, >.A and Xt, p, and FL entering their  
boundaries (except the arcs yi. entering the boundaries of the canonical 
neighborhoods of saddle points). 
quadrangles by Ai (i = 1, 2 ,  ..., s, where s = -V f .  S 4- ,V* + .V) and the relevant 
arcs without contact by y'? (y(m0)) (m = 1, 2, ..., k) if they are pa r t s  of cycles  
without contact which belong to sources  (sinks) or i f  these arcs belong to 

For simplicity, w e  will designate all these 
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the boundary of e*, the paths of system (A) entering z* (leaving c*) through 
them." 

Let u s  further consider all the non-free cycles without contact &Or)  which 
belong to sources,  and al l  the boundary a r c s  without contact 
non-free cycles without contact Z(") through which paths of system (A) ente? 
G'*. All the a r c s  y$)  (m = 1, 2 ,  ..., r)belong to these cycles without contact and 
boundary a r c s  C(nJ, C ( a l ,  and Z(Or). Removing f rom each cycle CCa) and Z(Or) and 
f rom each boundary a r c  c(") the points of the a r c s  y e )  which belong to the 
corresponding elements, we obtain a finite number of open a r c s  without 
contact which have no common points, 
designated ai"), u p ) ,  ..., a?). 
belong to non-singular paths. 

to sinks and the boundary a r c s  without contact do) and the cycles Z(O), w e  
remove from them the points of the a r c s  yg) to obtain a r c s  without contact 
whose closures  a r e  designated aio), u p ) ,  ... . 
the a r c  aia) (i = 1, 2, ..., p ) .  

and the 

The closures  of these a r c s  a r e  
Note that the end points of each of these a r c s  

Similarly treating al l  the non-free cycles without contact C(") which belong 

Let u s  now consider a l l  the paths which a t  some t pass  through points of 

c r o s s  one of the a r c s  a(") (by an appropriate choice of our 
notation, we can ensure that this is the a r c  a$*)). Hence 
it follows directly that the number of a r c s  a$@) is exactly 
equal to the number of a r c s  aiR), Le., p in both cases .  
The a r c s  of paths extending between the a r c s  without 
contact a{") and a!") form an elementary quadrangle, which 
we designate A : ( i  = 1, 2, . . , , p ) .  All the quadrangles A;, 
like the quadrangles A i ,  a r e  elements of the se t  G* - K .  

Finally, le t  u s  consider the f ree  a-cycles of system (A) 
in G* (if any). A 
cycle BI") is conjugate, a s  we know (see 818.1, Lemma 3), 
with the free a-cycle EloJ, and both these cycles delimit 

It is readily seen that a s  t increases ,  they a l l  

&<@/ 

FIGURE 53 They a r e  designated Bia) (i = 1, 2, ..., q). 

(23 
an annular region filled with sections of non-singular paths (Figure 53). 
Drawing three path sections in each of these annuli, we partition them into 
elementary quadrangles A; ( i  = 1, 2, ..., 3q). 
of the se t  E* - K .  

of the quadrangles A; ( j  = 1, 2, ..., p ) ,  Ai (i = 1, 2, ..., s), and A i  (k= 1, 2, .... 3q), 
and that a l l  these quadrangles satisfy the conditions of Lemma 5.  
completes the proof of the lemma. 

Figure 52 shows a doubly connected region c* with a normal boundary. 
It compr ises  two canonical neighborhoods, that of an unstable node Oi and 
that of a saddle point 02. 
elementary quadrangles. 
the lemma. 

They a r e  all evidently elements 

It is readily seen that each point of the set  E* - K belongs at  least  to one 

This 

The complement c* - K is partitioned into 15  
This partition meets  a l l  the requirements of 

S18. 
STABILITY O F  A DYNAMIC SYSTEM 

THE FUNDAMENTAL THEOREM OF STRUCTURAL 

1. Lemmas  

We wi l l  give here  a number of lemmas  that will be needed in 
connection with the proof of the fundamental theorem of s t ructural  

* It is readily seen that the number of the arcs y!,? is equal to the number of ~ 2 )  (we designate this common 
number by r ) .  If there are no saddle points in @, then a = r .  If 6 has k saddle points, then r = - 2k. 
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stability of a dynamic system. Some of these l emmas  are presented 
u.ithout proof. 

i? t @  c G) be a region with a troriti:l borindar_v. For an?; F > 0, there exists 
a region with n normal borindary G'* such that e CG'*C@* c G ,  and all the 
points of e* which are not points of C* ure contained in an e-neighborhood 
OJ' tire boundary of@; r.uoreoL3es, the boiinclaries of C* and z** have 
identical sclrerties .* 
Region c** which satisfies the proposition of the lemma w i l l  be called an  
e s t e n s i o n  or an E -  e >: t e n s i o n  of e. Figure 54 shows a doubly con- 
nected region @ and i t s  extension. The region @-@ is cross-hatched.  

L e in  m a  1 .  Let (A! be a dgtuzitiic system defined in c, and let 

Lemma 1 is geometrically self -evident, and i t s  proof is omitted. 

R e  m a r k  . Lt' conditions I-  I11 formulated in the Introduction to this 
chapter are satisfied i n  @and i f  E > O  is sufficiently smal l  and z** is an  
?-extension of 0, systet-1 (A) has  no equilibrium states and no closed paths in 
c** other than those that i t  has  in c*, i.e., conditions I-  I11 are a l s o  sat isf ied 
i n  G**, 

t h e  fact that the equilibrium s ta tes  of a sys tem cannot lie a rb i t ra r i ly  close 
t o  the boundary of @, s i x e  there  are no equilibrium s ta tes  on the boundary. 
T h e  truth of the r emark  regarding closed paths is proved by the same  
argument that we have used in the proof of Theorem 21.'"; 

I.t' r) > 0 is sujficiently siiiall, and -It; and -!I; ase trco points of the arc 1 

The truth of the r emark  regarding the equilibrium s ta tes  follows f rom 

L e H I  tn a 2. Let 1 be a sitnple asc,  -11, and .It2 two points on this arc .  
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lying respectively in the q-neighborhoods of M ,  and M z ,  the direction of 
the arc 1 defined by the motion f rom M ,  to M z  coincides with the direction 
defined by  the motion from M ;  to M ;  (Figure 5a. 

Let C be a simple closed curve, Mi ( i  = 1, 2, ..., n; n>3) 
points lying on this curve. Let these points be ordered M, ,  M z ,  ..., M,, fm 
the motion in a certain direction (one of the two possible directions) along 
the curve C. 
points of the curve C so that M ;  E U, ( M i ) ,  the motion in the same direction 
along the curve C will find the points M ;  in the order M; ,  Mi ,  ... , M ;  (Figure56). 

L e m m a  3. 

Then i f  '1 > 0 is sufficiently smull, and MI ( i  = 1, 2, ..., n) are 

The proof of Lemmas 2 and 3 is omitted. 
Together with a given sys tem (A), we will consider modified systems (x) sufficiently close to (A). 

FIGURE 5 5  FIGURE 57 

L e  m mu 4.  Let L be a structurally stable limit cycle of system ( A ) ,  
i.e., a limit cycle with a son-zero characteristic index), and y a 
canonical neighborhood (ring, of the limit cycle bounded by  cycles without 
contact C ,  and C2. Then for any B > 0, there exists 6 > 0 such that i f  
system (a) is  6-close to (A),  then 

(a) C, and C z  are cycles without contact for the paths of system (A), and 
these paths cross each of the cycles C, and Cz in the same direction as the 
paths of the original system (A); 

(6) the ring y contains a single closed path t" of system (A),  and this Z is 
a stable structurally stable limit cycle i f  L is stable, and an unstable 
structurally stable limit cycle if L is unstable; 

P r o  o f .  To fix ideas, let  u s  consider a stable l imit  cycle L. W e  choose 
some point M o  on this cycle and draw a normal to the path L through this 
point. Let 1 be a segment of this normal, P,, Q, its end points, Li and Lz 
the paths of system (A) passing through P1 and 9,. respectively. 
that M o  is an interior point of the segment I .  Moreover, the segment I is taken 
to be so small  that 1 is an a r c  without contact for the paths of system (A) 

We assume 
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and the paths L, and L2 with increasing t w i l l  again c r o s s  the segment I a t  
points P 2  and Q2> the a r c s  P i p 2  and QIQz of these paths lying completely 
inside y (Figure 57; s ee  112.1). 

Let I', be a simple closed curve made up of the turn P I P I  of the path Lt and 
the segment P I P p  of the normal 1 ;  rZ is the analogous curve consisting of the 
turn Q,Qz of the path L2 and the segment QtQz of the normal 1 (Figure 57). We 
use Wto designate the region between the curves rl and rn. 
L c N' c y . 
not contain any closed paths of (A), except L. Therefore,  a s  t decreases ,  
the paths L ,  and L2 passing through the points P ,  and Q1 will emerge  from 7 
through the points Po and Qo lying on the cycles without contact C, and CzI 
respectively (Figure 57). 

on the segment Q1Q2. 

Clearly, 

F rom the definition of a canonical neighborhood, y and therefore Wdo 

Take some point S on the segment P I P 2  of the normal I and some point R 
The paths L; and L; of sys tem (A) through these 

points emerge  with decreasing t 
from the neighborhood y through the 
respective points So and R, of the 
cycles C ,  and C2 (Figure 57). 
a r c  POPt  of path L,  and the a r c  SoS of 
path L; partition the region between 
the closed curves C, and rr into two 
elementary quadrangles, which we 
denote A I  and A; (Figures 57, 58). 
Also the a r c  QoQl of path Laand the 
a r c  RoR of path Li partition the re-  
gion between the curves C2 and r2 
into two elementary quadrangles A, 
and A;. 

Let (6) be a dynamic sys tem 
sufficiently close to (A), and &, &., 
g, g, L;, E; ,  &, etc . ,  the elements 
of (A) corresponding to the elements 
P,, Q2, S, R. L,, L;, A,* etc . ,  of (A) 

The 

FIGURE 55 

(it is assumed that the points P , ,  Q,, the nor-mal I, and the closed curves C ,  
and C,  do not change on passing to sys tem (A)). 

In Chapter V,  §14, in our proof of Theorem 18 (on the s t ructural  
stability of a simple l imit  cycle) w e  established that_for any E ,  >O, there  
exis ts  drp>O with the following property: if sys tem (A) is a,-close to 
sys tem (A), then 

e1 - (E, A )  EE (P, Z) ,  

and the mapping Ti which real izes  this relation i s  defined in  
chosen so that 

and can be 

( P I )  = P I ,  Tt (QJ =Q, and Ti ( I )  = 1. ( 3 )  

We will now use Lemma 9 of J4 (Chapter 11, 54.2). By this lemma, for 
any e,>O, W e  can find two numbers d,>O, q > O  with the following property: 
i f  sys tem (A) is a,-close to sys tem (A) and a topological mapping 'p is given, 
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transforming the a r c s  P0P,P, SSo, Qo&Qz and R R o  of the paths of system (A) 
into the a r c s  PaP,Pz ,  ss0, QoQ,Qz and RR,of the paths of system (A), respec-  
tively, and the a r c s  without contact SP2 and RQ2 into the a r c s  gp, and I?&, 
and 'p is an q- translation, then the mapping 'p can be continued to a 
mapping T ,  which moves the quadrangles A; and A; into a; and a;, respec-  
tively, conserves paths, is an &,-translation, and coincides with the 
mapping 'p wherever the la t ter  is defined. 

By Lemma 8, $4 (ChapJer 11, §4.2), for  any ~ 3 > 0 ,  we can find such 6,>0 
and q * > O  that if  system (A) is 8,  -close to (A) and a topological mapping 'p* is 
given moving the a r c s  without contact S P ,  a%d RQ, of system (A) into the 
a r c s  without contact gPi and RQ, of system (A), respectively, and this 'p* is 
an q* -translation, the mapping 'p* can be continued to a mapping T3 which 
moves the elementary quadrangles A, and A, into &, and A,, respectively,  
conserves paths, is an  translation, and coincides with the mapping 'p* on 
the segments SP, and RQ,. 

the cycles without contact C ,  and C, and the a r c  without contact 1 of system 
(A) a r e  respectively cycle_s without contact and an a r c  without contact of 
system (A), the paths of (A) crossing each of the cycles C, and C, and the 
a r c  1 in  the same directions as the paths of (A). 

take & , < E ,  e 3 < q ,  and for this E~ we find the numbers q* and 6,. 

Finally, le t  8 , > O  be so  small  that i f  system (A) is a4-close to system (A), 

Let E > O .  

We take E ,  < E ,  E, < q, E, < q*, and fo r  this E ,  find 8 , .  
Finally, we take 

We take & , = E  and for this e, find the numbers 6, and q .  We 

6 < min {dl,  a,, 8,, h , } .  

The number 8>0 obtained in  this way meets  all the requirements  of the 

Indeed, le t  system (A) be 6 -close to system (A). 
lemma.  

the choice of 8 , ,  
conditions ( 2 )  and (3 ) .  

Further ,  since 6<6,  and E ,  (q', E, < E ,  w e  can construct a mapping T3 
which moves the elementary quadrangles A, and A2 into 3, and a,, respec-  
tively, and has  the required property ('p+ is identified with the mapping T, 
previously defined on the segments P,S and Q , H ) .  

Tz of the quadrangles A; and A; onto A; and a;, respectively, which has the 
required propert ies  ('p is identified with the mappings T3 and T, previously 
defined on the corresponding segments of the boundaries of A; and A i ) .  

It is readily seen that the mappings T , ,  T 2 ,  T 3  jointly define a mapping T 
of the canunical neighborhood y ozto itself which is path-conserving and is 
an &-translation. 

Xhen, according to 
which sat isf ies  there  exis ts  a mapping Ti of w onto 

Finally, since e z = e ,  e , < q .  e3<q2 and we can construct a mapping 

Therefore, if (A) is 6-close to (A), we have 

(y. A )  : ty, A",. 

i.e., proposition (c) of the lemma is satisfied. 
directly f rom ( c ) .  
choice of the number 8, and the relation 8 < 6,. 
of the lemma.': 
' 

Proposition (b) follows 
Proposition (a) is satisfied in virtue of the peculiar 

This completes the proof 

Figure 58 shows the numbers e, 8,  q corresponding to the  regions W ,  A,, A;,A,, A;. The fint  step in the 
construction of the mapping is the construction of T1 (in W), then the construction oi T3(in the quadrangles 
Aland Az), and finally t h e  construction of TZ (in the  quadrangles A; and Ai). 
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The following lemma is a s t ronger  version of Leninia 4. 
L E i n  ttia 5. 

y its canonical neighborhood limited by cycles withoilt contact 
Thcn, for an! F > 0 ~ there exist q > 0 am1 6 > 0 with the following property; 
ij' system (8) is 8 -close to systetn (A) ,  and 'p is  a topological ntapping 
tnoving each of the cycles C1 and C2 into itselj. which is an 11-translation, 
theti C ,  and C: are cycles nithoiit contact fo r  system ( K )  and there exists a 
riiapping T qf the neighborhood y into i t s e u  rc8hich is at1 e-tYWSldiOn, 
which conserces paths, and which coincides with the mapping 'p on the 
houmiary of the neighbovhood y ( i .e . ,  on the cycles C, and C,). 

in an  obvious modification of the argument. 

Let L be a structiwally stable liinit cycle of' systetri (ti), 
and C2. 

P r o (3 f of Lemma 5 is analogous to the proof of Lemma 4, differing only 
Specifically, w e  f i r s t  construct 

the mapping I'  of the elementary quadrangles 
AI, A ; ,  ~ , , ~ ; o n t o I ! .  3;. S2. 11, respectively, 
so  that i t  coincides with the mapping q on 
the boundary of *; . 
mapping of the segments  PIP2 and QlQ2 onto 
the segments  PIP2 2nd ol&, respectively 
(the points P ,  and P I  need not coincide in this 
case ,  whereas in Lemma 4 this was the same 
point. This  a l so  applies to the points Q, and 
0,). This  incluced mapping is continued f i r s t  
to a mapping of P,Q,pnto plgl, and then to a 
mapping of I f '  onto t i '  by the technique deve- 
loped in the proof of Theorem 18 (see 5i4). 

N e  will require  two fur ther  lemmas .  
f i r s t  deals  with the neighborhood of a saddle 
point. 

of system (A), y i t s  canonical neighborhood 
limited by arcs without contact i\%', ly' ,  l!?'. i?)'': and arcs of paths C,C,, C 2 B J ,  
HIC;, and B2E, (Figure 59).  The separa t r ices  of saddle point 0 cross ing  the 
arcs without contact will be designated L?', LL-). t!,'". L:"', respectively. 

Let j.':"' (i-3. 4 )  be th? "elongation" of the a r c  without contact IF) ,  i .e.,  
an  a r c  without contact incorporating liu' whose end points a r e  not the 
end points of li"'(in this way, all the points of 1:" are the inner points of L ! ~ ' ) .  
Let be a dynamic sys tem which is sufficiently c lose to (A). 
c reases ,  the paths of (11) passing through the end points Ci and B i  of the arcs 
without contact l?' ( i  = 1. 2 )  will c r o s s  the arcs >d')(t =3 ,  4 )  at four points 
designated Ea. &. c*, E., respectively. 
arcs ).:'"'and ?.\"'will be designated TLw) and Tia', respectively. 
the region limited by the arcs I , ,  I,. G ,  and lT and the sections C,E3. C2g3. B,C,, 
and H& of the paths of sys tem is). Finally, 'p is a topological mapping 
moving each of the arcs I ,  and I? onto itself, so that the end points of i, and 
l 2  remain fixed, and the intersect ion points of these a r c s  with the sepa ra -  
t r i ce s  L'?) and LY', resFectively, move into intersection points with the 
separa t r ices  27' and i'?"'. 

L e tn t n  a 6 .  F m  an,y E > 0, there exist 6 > 0 and q > 0 with the folloiring 
property: if systetn (A; is 6 -close to spsterri (A) and the mapping 'p is an 
q-translation, the arcs 1,. IP, , and ?., are arcs  without contact for the 

This  mapping induces a 

The 

'IC.r.PF ;; 

Let 0 be a s t ructural ly  stable saddle point 

As t de-  

The sections T,o, and ?,Ei of the 
Let denote 

. A'+ w i l l  swie t imes  use rhc snorter notatioi! I , ,  I?, I,. I,. 
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paths of (A) and there exists a mapping T of region y onto 
with cp on the arcs LY) and @', conserves paths, and is an e-translation. 

equilibrium state  0" of (A), a being a saddle point and 5 i t s  canonical neigh- 

which coincides 

R e m a r k . It evidectly follows f rom Lemma 6 that 7 contains a single 

borhood. Also I 
e , -  

( Y ?  A )  = (Y7 A ) .  

P r o o f  of Lemma 6 is analogous to the proof of Lemma 4, S9.2, f rom 

L e  m m a  7. Let 0 be a structurally stable state of equilibrium of 
which i t  is obtained by obvious modifications. 

system ( A ) ,  which i s  either a node or a focus, y is its canonical neighbm- 
hood limited by a cycle without contact C .  For any_ e > 0,  there exist q > o 
and 6 > 0 with the following property: if system ( A )  i s  6 -close to system (A)  
and cp is a topological mapping of cycle C into itself, which is an q - 
translatian, then C is a cycle without contact f w  system ( A )  and there exists 
a mapping T of v*into itself which is a path-conserving e-translation that 
coincides with the mapping cp on the boundary of y (Le., on C). 

P r o  of of Lemma 7 is analogous in a l l  respects  to the proof given in 
the r emark  to Theorem 1 2  (58.2). 

2. The fundamental theorem for  a plane region 

T h e o r  e m 23. F m  a dynamic system (A)  defined in a plane region to 
be structurally stable in a region C* with a normal boundary (C* c G ) ,  it is 
necessary and sufficient that Conditions I through III in the Introduction to 
Chapter VI be satisfied: 

are simple nodes, saddle points, m foci. 
I .  

II. The closed paths of system ( A )  in G* are simple limit cycles. 
III. System (A)  has no saddle-to-saddle separatrices in G*. 
P r o o f  . 

System (A)  has in G* only a finite number of equilibrium states, which 

The necessity of conditions I- 111 for s t ructural  stability of a 
system (A) in c* has  been proved in  previous chapters (S7, Theorems 10  and 
11; §lo,  Theorem 15; 815, Theorem 20; $11, Theorem 16). We thus have 
to prove the sufficiency of conditions I- I11 for the s t ructural  stability of a 
system. 

Suppose conditions 1-111 a r e  satisfied. By Lemma 1, 818.1, and the 
r emark  to that lemma, for a sufficiently small  (T > 0, any o-extension of 6 
contains no equilibzium states  and no closed paths of system (A) other than 
those contained in G*. Let be such an extension of G*. We will show that 

system (A) is 8 -close to system (A), then 
has the-following property: for  any e > 0, there exis ts  d > O  such that if 

( 4  1 8 = -  (e, A )  = (H, A ) ,  

where B is a region. 
sys tem (A) is structurally stable in  G*. 

I11 in this region. 

Since c**c H ,  this implies, by definition, that 

Clearly, B has a normal boundary and system (A) satisfies conditions I- 
Thus there  exist  regular  partitions of w into canonical 
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neighborhoods and elementary quadrangles (S17.2, Lemma 5). 
and fix one of these partitions, which w e  denote n .  

W e  choose 

We introduce the following notation: 
Ui ( i =  1,2, . . . , p )  are the canonical neighborhoods of the sources  and the 

V ,  ( j  = 1, 2, . . . , q) are the canonical neighborhoods of the saddle points 0,; 
l$), @, I n ) ,  I:?’ ( i= 1, 2, . . ., q) are arcs without contact making up the 

F g ) ,  F:?, Fi:), F i y )  (i = I, 2, . . ., q) are the elementary quadrangles of the 

sinks of the partition G; 

boundary of the canonical neighborhood of the saddle point Oi; 

partition ll whose boundaries incorporate the arcs l\y),l$y’, l$y), 
tively. 
and arcs: F1,  F2,  . . ., FLq; I t ,  I , ,  . . ., lAq;  

JJ; 

of quadrangle RR through which the paths of sys tem (A) enter  Rk (leave 
Rk 1; 

A i  (i = 1, 2, . . .. s) a r e  the ”vert ices” of the elementary quadrangles which 
belong to the boundaries of the canonical neighborhoods of the s o u r c e s or 
to the boundary arcs without contact through which the paths of (A)  e n t e r 
the region H ;  

Bi ( i  = I ,  2, . . ., s*) are the ver t ices  of the elementary quadrangles which 
belong to the boundaries of the canonical neighborhoods of the s i n k  s or to 
the boundary arcs with’mt contact through which the paths of (A) 1 e a v e 
the region H (all the corner  points of the boundary of H are evidently 
included-among the A i  and B i ) .  

define the region 

respec-  
W e  will use  the following abbreviated notation for  these quadrangles 

& ( k  = 1, 2, . . . , r )  are all the other  e lementary quadrangles of the partition 

(bk) (k  = 1, 2, . . ., r) are the a r c s  without contact makingup the boundary 

Let (A) be a dyn_ami,: sys tem sufficiently c lose to  (A). We wi l l  f i r s t  
in  which this system is considered. Let C be some 

closed boundary curve of g .  Lf C is a cycle without 
contact, i t  w i l l  be used as the boundary curve of a. 
Suppose C is made up of arcs without contact 
11, I2, . . ., ln and arcs of paths 21, z,, . . ., z, of 
sys tem (A), so that when the curve C is t raversed  in  
the positive direction the var ious arcs are encoun- 
tered in the o rde r  I t ,  zl, 1,. z2, . . ., I , .  z, (Figure 60), 
their  end points (corner  points) being respectively 
Xi. YI, X2, Y l r  . . .. X,, Y,.  Let Ai,  X,, . . ., l,, be some 
fixed elongations of the arcs I , ,  12, . . . , I,. ’; Through 
the points Y,, Yz.  ., Y n  we pass  the arcs ztr  z2, . . ., z,of 
paths of sys tem (A) to their intersection with the 
arcs k2, ha, ..., A,, a t  the points%:, X,, ..., F,, XI, 
respectively (in Figure 60 these arcs are marked by 

FIGURE 60 dashed curyes) .  The arcs without _contact - TI - YI,  x, YL. .. .. X ,  Yn will be designated I , ,  I,, . .., In, 
respectively. Lf (A) is sufficiently c lose to (A), the 

curve  c” made up of the arcs &, E.  &, &, ..., I , .  z, is a simple closed curve.  
Fo r  each boundary curve Ci of H we substitute a curve ci constructed in 
this  way. 

Let  u s  now construct  a partition I? of H I ,  analogous to the regular  
partition n of B ,  making each element Ui, i ’ j ,  F,, Rk of the partition 11 to  

G ,/-\ 
% x ,  * (-J /’ 

* -  I 

x3 5 r, 
y a x ”  
‘.-%. - /  

3: 

- -  
The region limited by all the curves  zi is 8. 

* I f  li is an arc without contact a id  I is the partofthis ~ r c  consisting entirely of inter’x points ofb. then 
li is called an e I o n  g a t i o n of the arc without ivntact 1 .  
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correspond to an element G I ,  v j ,  Py,,,-hh. 
coincides with Ut ( i =  1, 2, . . ., p ) .  

to correspond to a region v j ,  whose construction is described in  the s ta te-  
ment of Lemma 6 (see Figure 59; the regions V j  and vj in  Lemma 6 a r e  
designated y and $, respectively). Furthermore,  we w i l l  identify LE), 

tact entering the boundary of Tj. It is par t  of the a r c  i\$ (ic)) or of i t s  
elongation (we assume that all the elongations have been chosen and fixed 
beforehand). 

made up of a r c s  of paths of system (A) and is limited on one side by the 
a r c  l,, and on the other by an a r c  without contact which belongs either to a 
l imit  cycle r of the neighborhood of a source or  a sink, or  to a l imit  cycle 
(or an a r c  without contact) of the region @. The quadrangle F ,  is made t,o 
correspond to the quadrangle 3, made up from a r c s  of paths of system (A) 
and limited on one side by the a r c  I,, and on the other by an a r c  without 
contact belonging to the same limit  cycle 
without contact, or the same boundary a r c  without contact). 

boundary of H and the points ki described in the construction of 
(Figure 60). 
mined by the region itself and the system (A). 

Consider an elementary quadrangle Rk and the a r c  aL (k = 1, 2, . . ., r ;  
above) entering i t s  boundary. 
Let r(a) be the cycle without contact (a boundary cycle or a cycle belonging 
to a source)  o r  the boundary a r c  without contact incorporating air .  

The point Ak’) (or Aka’) may be a corner  point of the boundary of H ,  or a 
point of a corner  a r c  or of a corner  semipath of system (A), or i t  may be 
a vertex of one of the quadrangles F,. In each of these cases ,  the co r re -  
sponding point Ai1) (or zf’)  is naturally determined by the preceding con- 
struction. If Ak” (or AA”) is not a point of one of the above types, we may 
take 2 2 )  to coincide with Ai” ( &*’to coincide with AhPJ, respectively).  The 
points 
an a r c  without contact ah  which is part  of the cycle (or the arc without 
contact) r between the end points 22’ and 22’. Finally, the elementary 
quadrangle Rh consisting of the arcs of paths of system (A) and delimited 
(on one s ide)  by the a r c  ak is made to correspond to the elementary 
quadrangle a), consisting of the a r c s  of paths of system (A) and delimited 
by the a r c  without contact a,. 

The points g1 ( i  =2, 3, . . ., s*) corresponding to the points BI,  and the 
a r c s  without contact 8 k  corresponding to the a r c s  bk (k= 1, 2, . . ., r )  a r e  
determined in a natural  way using the previously constructed a r c s  a h  and 
points Xi. 

going around the cycle without contact I“=)which belongs to a source or to 
a boundary of H (or when traveling along a boundary a r c  without contact) 
in a cer ta in  direction, le t  the points At be encountered in  the order  
Ai,, Ai,, ..., Ai,. 
cycle F(a)in the same direction, the points lie on F(a)  in the order  
Ail, Ai,, . . . , Ai,. 
boundary a r c  without contact) and for the points Bj and B ” I .  

In particular,  we assume that U i  

Each canonical neighborhood V j  of a saddle point O j  ( j  = 1, 2, . . . , q) is made 

p, z j  , J ’ = 1.2, . . ., q, with Liy’, &7), respectively. 752’ @YJ) is an a r c  without con- 

Every elementary quadrangle F ,  (m = 1, 2, . . .. 4) of the partition I 1  is 

(or the same boundary cycle 

The corner  points of the boundary of H a r e  the corner  points Y1 of the 

Corner seniipaths and corner-arcs of paths in a a r e  de te r -  

see 
Let Ah’’ and A f ’  be the end points of the a r c  a*. 

and 22’ a r e  thus well defined. The a r c  ah is made to correspond to 

Let system (A) be sufficiently close to system (A). Moreover, when 

F r o m  Lemmas 2 and 3 it follows that when going around the 

- -  - A s imi la r  proposition is valid for  the cycle r(“)(or the 
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It is readily seen that if system (A) is sufficiently c lose to (A), then: 
a )  

sinks of system (A); i f  V i  is a canonical neighborhood of an equilibrium 
state  (a limit cycle) of system (A), di is a canonical neighborhood of an 
equilibriu_m state  (respectively,  a l imit  cycle) of the same stability of 
system (A). 

system (A) and t', ( j  = 1. 2, . . ., q) is a canonical neighborhood of Oj .  

= I ,  2, . . ., r )  are elemenl.ar-y quadrangles of system (A). 

ci and r?, coinciGes with the ent i re  region 8. 

except those which lie in  the canonical neighborhoods c; and f,. 

the fact that each elementary quadrangle Fm and i& adjoins e i ther  the 
boundary of E or the boundary of one of the canonical neighborhoods oi o r  r j .  

f )  The canonical neighborhoods di_and fj and the elementary quadrangles 
F,,, and m. form a regular  partition of H I ,  which wi l l  be designa_ted fi. 

g )  The canonical parti t ions ll and H of the regions B and 8, respectively,  
are isomorphic in the cbbvious sense." 

W e  w i l l  now show that for  any e > O  and a sufficiently smal l  6>0 ,  w e  have 

'4 '  (they coi_ncide with Ut) are canonical neighborhoods of sources  or 

b)  To-every _saddle point 01 of system (A) corresponds a sa_ddle point Gj of 

c )  The previously constructed regions p, (m- 1, 2. . . ., 4q) and f i k  (k = 

d )  The s e t  of all points of the quadrangles F,,, and E k  and the neighborhoods 

e)  System (A) has  no other equilibrium states  and closed paths in z, 
This  proposition foll.ows directly f rom the preceding statement and from 

(8, A)  2 (3, 2) 
for a system (3 which is &-close to (A). 

steps.  

system (A), R satisfies the above conditions (a) through (g). 

61 > 0 ( i  = 1, 2, . . ., p )  in  accordance with Lemmas 5 and 7 (i.e., such that i f  
system (A) is Gi-close to system (A) and 'pi is a topological mapping of the 
boundary of U, into itself, which is an q;-translation, there  exis ts  a mapping 
Ti of Ui into itself which i s  an e-translation, conserves paths, and coincides 
with 'pi on the boundary of U t ) .  

Choose a fixed e>O.  

1 )  W e  choose a number b n > 0  such that if  system (A) is an-close to 

2 )  For every canonical neighborhood Ui w e  select  two numbers qi  > 0 and 

The corresponding 6>0  w i l l  be selected in  severa l  

Let 

du=mir:{6i, d2, . . ., aP} ,  qu=min (q,, q2, . .', qP). 
3) Consider an elenientary quadrangle F j  and an a r c  without contact 

I, (; = 1, 2, . . ., 4q) entering i t s  boundary (note that l j en te rs  the boundary of 
a canonical neighborhood of a saddle point). Let c,and d j  be the a r c s  of 
paths of system (A) entering the boundary of the quadrangle F j .  
eF = m i n  ( e ,  qu}. 

aj-close to system (A), and q j  is a mapping of the a r c s  l j ,  c j ,  dl onto the 

Let 

By Lemma 9, 54.2, there  exis t  6,>0 and q j > O  such that i f  system (5) is 

* To be precise, if any two elen-ents El and E 2 0 f  the pamtion are incidental. i .e. ,  one of these elements 
enters the boundary of its cOUnl.erpart, the corresponding elements El and 
incidentdl. By e I e m  e n t s of t h e  p a r t  i t i o n  II we mean the neighborhoods Ui and V i ,  the elementary 
quadrangles F, and Rh,  the arcs without contact and the arcs of paths entering their boundaries, and the 
end points of these arcs. The previous construction established a natural one-to-one correspondence between 
the ekments  of paKitiCms ll and n. 

of partition Rare also 
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corresponding boundary a r c s  6, &, d; which is also an qj-translation, there 
exis ts  an eF -translation T j o f  the elementary quadrangle Fj onto zj which 
coincides with cpj on l j ,  c j ,  d j  and conserves paths. 

Let 

I b=min(8i ,8z7 ..., &}, qF=min{qt.q~, ..., qdP}. 

4 )  Consider a n  elementary quadrangle Rh and the a r c  without contact ah 
and a r c s  of paths CJ and d j  ( j  =l, 2, ..., r )  entering i t s  boundary. 
we take E R  = e F =  min {e, qv} and select  for each of the quadrangles Rh the two 
numbers d j  and q j  (along the same lines a s  before). 

As in case 3, 

Let 

8~ = min {ai, 6 2 ,  . - ., b}, q~ = min {s i ,  qzl . . . . qr}.  

5) Consider the a r c  without contact ah entering the boundary of the 
quadrangle R h .  Let AAi and be the end points of ah. Let chi and ch2 denote 
the a r c s  of paths of system (A) passing through A h ,  and A , , ,  respectively, 
and entering the boundary of the quadrangle Rh (k = 1, 2, . . ., r ) .  
either on a boundary cycle or a boundary a r c  without contact, or on a cycle 
without contact which belongs to a source. 

If (z) is sufficiently close to (A), the elements of the regular partition fi 
corresponding to the quadrangle Rhr i t s  sides ah. c k i ,  c u ,  and the ver t ices  Ah, 

The a r c  ah lies 

!fr 
IFIGURE 61 

and Ahz a r e  the quadrangle a),, its sides 
.“R. Gzr and the ver t ices  &,and 21,~. By 
Lemmas 7 and 8 ,  54.2, w e  can_select & > o  
and a k > O  such that if system (A) is ak-close 
to system (A), and p (Ahi t  & I )  < 6 k ,  

p (&, &) < 61. there exis ts  a mapping (PA 

defined on the a r c s  ah, chi and CkZ which maps 
these a r c s  into &,&, &, respectively, 
and the points Aki and Ah2 into &i and .&a, 

respectively, and which i s  also an qR-trans- 
lation ( V R  is defined in step 4 of the proce- 
dure; see Figure 61). Let 

6A = min Ki, 62, . , 6& 
bA = min {ai, a2, . . . , b}. 

6 )  Consider a canonical neighborhood 
VJ of the saddle point 01 and the a rc8  without 
contact i ~ ) , @ ,  ih), ig’ entering i t s  boundary. 
Let aV>O be a number with the following 
property: if  system (A) is aV-close to 
system (A), v j  is a canonical neighborhood 
of the partition n corresponding to the 
neighborhood V j ,  and ev = min { e ,  qp, V R } ,  then 

a )  there exists a mapping T, of ~j onto V j  

which conserves paths, is an ey-translation, and coincides with the 
mapping cp described before the statement of Lemma 6 on each of the a r c s  
@),-ij$);z 
* In other words, the mapping Tjtopologically maps each of the arcs ly, ,  

points of these arcs fixed and moving the intersection points of the arcs 
1% onto itself, leaving the end 

with the separatrices of system (A) 
into intersection points with the corresponding separatrices of system (x). 
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b)  every arc of a pa.th c (or d )  entering the boundary of the elementary 
quadrangles p$’ (or F;;), pc’, FiY’) can  be mapped onto the corresponding arc 
c ( d )  by an  q*-translatior., where q* = min {qF, qR}; 

corresponds a ver tex 2. of the partition li such that 

- -  
c )  to every ver tex A, of the quadrangle F:?) or Fj:) ( j  = 1, 2, . . ., q) there  

P (Am 2.1 < L4 
(LA is selected in s tep 6 of the procedure). 

The existence of 6v follows f rom Lemma 6 (§18.1), from Lemmas  7 and 8, 
$ 4 . 2 ,  and f rom the r emark  to Lemma 3, 59.2. 

7) Consider an  elementary quadrangle Rk and the arc without contact ( Ik  

(k = 1, 3 , . . ., r )  entering i t s  boundary. Let E , , E 2 ,  . . ., E,. be the end points 
of the arcs ah,  which are corner  points or belong to co rne r  arcs or corner  
seniipaths.::’ Let 8 ~ >  0 be so  sniall that i f  sys tem (A) is GE-close to system 
(A)  and 2, is a point corresponding to point E,  ( s  = 1,2, . . ., r*),  then 
p (ES, E,)  < S A .  

The existence of 8~ follows f rom the method of construction of R and 

Let 
from Lemma 5, 54.1. 

6=-min(8n3.  aU, AF3 8 R .  B y ,  B E } .  

LVe will prove that if sys tem (6) is 6 -close to system (A), then 

e = -  (R ,  A )  E ( H ,  A).  (4)  

To prove this  propos,ition, w e  assume system (B) to be 8-close to (A) 

C o n s t r u c t i o n  of  m a p p i n g  T. 
S t e p  I. 

and construct a mapping T which rea l izes  the relation (4). 

In each saddle-point neighborhood rj  ( j  = 1, 2, . . ., q)  w e  con- 
s t ruc t  a mapping Tj satisfying the conditions described in s tep  6 above, 
and assign the symbol ?’ to T j .  

Ue now ccnstruct  a mapping T of the arcs of paths c and d 
entering the boundaries of the quadrangles FY’,  F)”’ onto the arcs c and 2 so  
that this mapping is an  q*-translation (see s tep  6 above) and coincides with 
the previous mapping T at  the points of the neighborhood vj. 
the quadrangles F j  ( j  = 1, 2, . . ., 4q) is now continued to Fj so  that i t  is an 
e,-translation and conserves  paths. 

S t e p  Il‘. 
E , ,  taking T (E , )  = Es. 

S t e p V .  
of each arc without contact ab entering the boundary of the elementary 
quadrangle R h .  
onto &, so that T is an  TR-translation. This  is feasible because of 5. 

S t e p  VI.  
the boundary of the quadrangle Rk (see step 7), c, the arc of a path of 
system (A) passing through the point E, and entering the boundary of the 

S t e p  11. 

S t e p  111. The mapping T completed on the boundary arcs I ,  e, and of 

This  is feasible because of condition 3. 
Every point E ,  (s = 1, 2,  . . ., r* )  is made to correspond to a point 

Steps I11 a:id K have defined the mapping T a t  the end points 

W e  continue this mapping to a mapping T of the en t i re  arc air 

Let E,  be the end point of the arc without contact ahenter ing 

9 The end points of the arcs ah may also belong to the elementary quadrangles 4. 

161 



Ch. VI. NECESSARY AND SUFFICIENT CONDITIONS OF STRUCTURAL STABILITY 

quadrangle Rk, the corresponding a r c  of a path of system (A) entering the 
boundary of the quadrangle Rk. 
step N is now continued to a mapping T of c, onto Ls (s = 1, 2, . . ., r*) , so that 
T i s  an qR-translation. This is feasible because of 5. 

a r c  without contact ak and on the a r c s  of paths entering the boundary of each 
elementary quadrangle Rk (k = 1, 2, . . ., r )  ; this mapping-is an qR-translation. 
We continue i t  to a mapping T of the quadrangle Ek onto Rk, which conserves 
paths and is an ER-translation. This is feasible because of 4. 

boundary of each canonical neighborhood Ui (i = 1, 2, . . ., p )  and is an q v -  
translation. 
onto itself which conserves paths and is an e-translation. 
because of 2. 

which maps into and conserves the paths. We thus have the relation 

The mapping T defined a t  the points E,  by 

S t e p  VII. The mapping T has been defined by s teps  I through VI on the 

S t e p  VIII. The mapping T is defined by the previous s teps  on the 

We continue this mapping to a mapping T of the neighborhood D, 
This is feasible 

The mapping T defined by s teps  I through VI11 is evidently an  e-translation 

(4) 
e -  

( H ,  A )  Ez (E?, x). 
This completes the proof of the fundamental theorem. 

3. The fundamental theorem for  a sphere 

The definition of a structurally stable dynamic system on a sphere w a s  
given in  Chapter 111 (56.2, Definition 12) .  
dynamic system (A) defined on a sphere S is said to be struc_turally stable 
i f  for any e > 0 there  exis ts  6 > 0 such that for  any system (A) 6-close to (A), 

It amounts to the following: a 

(S, x) : (S, A ) .  

The necessary and sufficient conditions of s t ructural  stability of a 
system defined on a sphere precisely coincide with the corresponding con- 
ditions for a system on a plane. We wi l l  now prove the following theorem. 

structurally stable if and only if 

saddle point, m focus.  

T h e  o r  e m 24. A dynamic system (A) defined on a sphere s is  

I .  Each of the equilibrium states of system (A) is  a simple node, 

II .  The closed paths of system (A) are simple limit cycles. 
III. System (A) has no saddle-to-saddle separatrices. 
P r o o f .  To fix our ideas, l e t  (A) be an analytical system on a sphere,  

Structural  and we will prove s t ructural  stability relative to  the space Rh". 
stability relative to the space Rh"(r > 1) is  proved in the same way, and 
the proof relative to the space R g )  is even s impler .  

s t ructural  stability of system (A) on a sphere is proved along the same lines 
as Theorem 23, but on the whole the proof is somewhat s impler .  
simplification naturally der ives  f rom the fact that there  a r e  no boundary 
a r c s  of paths and boundary a r c s  and cycles without contact on a sphere.  

that every closed path of a structurally dynamic system on a sphere is a 

Su  f f i c i e n c y . The sufficiency of conditions I through 111 for  the 

The 

N e c e s s i t y  . We wi l l  only prove the necessity of condition II, namely 
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simple limit cycle. The absence of multiple equilibrium s ta tes  and saddle- 
to-saddle separa t r ices  for a s t ructural ly  stable system is proved along the 
same  lines, with some simplification. 

Without loss of generality, w e  may consider the sys tems on a sphere S 
in a three-dimensional space R3, defined by the equation 

z2-L y 2 + z B = i .  is) 

As the closed covering of the sphere (%see 5 3 . 2 )  we choose the covering 
which can be regarded as the s implest  in a cer ta in  sense:  i t  compr ises  
two regions zl and 4,  where 3, is the se t  of a l l  the points of the sphere  S for  
which z , , ( z < l ,  and c2 is the se t  of all the points of the sphere for which 
- 1 < z , < z 2 .  U e  fur ther  assume that - - I < t , = = z O  and z ,<z2<1 (Figure 6 2 ) .  
Let U,. J'i be the local coordinates in Gi ( i  = 1, 2); ci corresponds to a region 
kT in the plane (u i ,  v i ) .  which may be regarded as a c i rc le  centered at the 
origin. 

FIGr'RE 82 FIGLIRE 6 ' 

The intersection of 6; and 8, is the r ing E .  
Consider a s t ructural ly  stable analytical system (,A) defined by the se t  

of analytical equations 

where i = 1, 2 ,  and Pi, Qi are functions defined in Gi (or equivalently, in Hi); 
in  the intersection Bof these regions, system (AI) is t ransformed into 
system (Az) in  virtue of the transformation equations (also analytical) 
between the coordinates u,, u1 and u 2 ,  r2 (15.2). 

Indeed, suppose there  
is a closed path L of system (A) on the sphere  S which is not a s imple limit 
cycle (,i.e., a path with i t  ze ro  charac te r i s t ic  index). Again without l o s s  of 
generality, w e  may take the path L to lie in c,, outside the ring 8, and w e  may 
then t rea t  i t  as a closed path of the sys tem 

The proof will be done by reductio ad absurdum. 

' 

(AI) 
ClU -- J; - - P , ( U l .  - VI).  %=Q1(u,, ut) ,  
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defined in the plane region at. Since the characterist ic index of L is zero,  
the resu l t s  of Chapter V show that either 

(1) the path L is a multiple l imit  cycle of system (A), o r  
( 2 )  a l l  the paths passing in a sufficiently small  neighborhood of L a r e  

Let u s  f i r s t  consider case (1). 
closed paths. 

In virtue of Remark 2 to Theorem 19 
(§15.2)> for any 6, > 0 in this case there  exists a system (AT) bi-close to 
(AI) which has a t  least  two structurally stable l imit  cycles in any 
arbi t rar i ly  small  neighborhood of L .  
L: and L:. 

To simplify the presentation, we identify c, with H , ,  i.e., consider 
a c i rc le  of radius R with a center a t  the origin in the plane (ulr v i ) .  
ring B be made up of points of the circle  c, for which the radius-vector p 
satisfies the inequality R, ,<p , (R .  
circle  O<p<<Rz 
the form 

W e  will denote these limit cycles by 

a s  
Let the 

Further  let  the cycle L lie inside the 
where Hz< Rt (Figure 63), and le t  the system (A;) have 

Let u s  construct a system (AI) of c lass  1 which is sufficiently close to 
(AI) and coincides with (AT) in the circle  p<Rz and with the system (AI) in 
the r i n g z .  W e  wi l l  use  a function cp(p) with the following properties:  

a )  rp ( p )  is a function of c lass  1 defined for all  p, O,cp,< R ; 
b) ' P ( P ) = ~  for  0 4 p g R z ,  

(p(p)=O f o r  R , , < p < R ,  
O,<cp(p)<.l for  &<p<R1 

(Figure 64; there evidently exist  functions of any class  r > l  satisfying 
condition b). 

FIGURE 64 

The right-hand s ides  of system (AI) - the functions Pl(ui, vi) and Q1(ul, vi) - 
a r e  defined by the equalities 

pi = pi + ( ~ f  - pi) 'P (P), 6, = Q$ + (QT-QJ 'P (P), (5) 

where p = v m .  
System (AI) with right-hand s ides  defined by (5) is a system of class 1 

which coincides with system (AI) in the ring B and with the system (A;) in 
the circle  O,<p,<RI. Moreover, it  is readily seen that if 6, is sufficiently 
small ,  (AI) can be made arbi t rar i ly  close to (AI). 

Since (AI) and (Aa) coincide in the ring B a s  before, taken together they 
constitute a certain dynamic system on the sphere S, which w e  denote by (A). 
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In general, this is a sys tem of class 1. 
mated with any degree of accuracy by an  analytical system. 

a point of the sphere)  corresponding to the sys tem (A) in the space R 3 .  
The vector w ( M )  lies in a plane tangent to the sphere a t  the point MI 

Let &(x, y, z), i =  1, 2. 3, be the coordinates of the vector W(I, y, 2). Consider 
a cube E with i t s  center a t  the origin and with faces paral le l  to the coordinate 
planes, enclosing the sphere S .  Consider a spherical  layer  defined by 
the inequalities 

We will show that it can be approxi- 

To this end, consider the vector field w(M) = w (sr, y, z )  (where M (I, y, z )  is 

l - q < r < I + - q ,  

where r =  V z a + y y $ + z e ,  and q is a positive number sufficiently small  for  the 
layer  We define a function Ff (I, y ,  z )  a t  any point 
(I. y, z )  of the layer Z by the relation 

to lie inside the cube E .  

(i = 1, 2, 3; T = Vz2 -/- yz + 2 ) .  
it is readily seen that F i  (z, y. z )  a r e  functions of class 1 in the layer f . 
U'hitney's theorem (see /ll/, Vol .  I, Sec. 2601, the functions Fi (z,y,z) can be 
extended over the ent i re  cube E without changing their  c lass .  Let the 
functions Ft be components of the vector vi; this approach yields a vector 
field of c lass  1 defined :n the cube 2 which coincides with the field w on the 
sphere S. By the Weiers t rass  theorem, the field w can be approximated 
with any accuracy to rank 1 with an  analytical field w,. 
vectors  w, are in general  not tangent to the sphere.  
these vectors on the corresponding tangent planes to the sphere,  we obtain 
a field or vectors  tangent io the sphere which define some dyramic 
sys tem (A) on S. Clearly (A) is an  analytical sys tem which can be made a s  
close as desired to (A) cind thus to the initial system. 
cycles L: and L*, are structurally stable, sys tem (A) has  structurally stable 
cycles L, and E ,  in the neighborhood of each of these cycles. 

l imit  cycle L on the sphere S ,  there exis ts  an arbi t rar i ly  close analytical 
system (A) which has  a t  least  two closed paths in  any arbi t rar i ly  small  
neighborhood of the cycle L .  
structurally stable, as demonstrated in  the proof of Theorem 2 0  (S15 .3 ) .  

close to L are closed. In this case,  a s  in the proof of Theorem 20, w e  can 
construct an arbi t rar i ly  close sys tem of c lass  1 with L a s  i t s  simple limit 
cycle, and then proceed to approximate to i t ,  a s  before, with an analytical 
sys tem (A). System (A) will have a simple l imit  cycle 2 arbi t rar i ly  c lose 
to the cycle L .  If e is sufficiently small ,  the mapping which real izes  the 
E -identity of the partition of the sphere by the paths of (A) and (A) moves 
an isolated closed path E of (A) into anon-  isolated closed path of (A) lying 
near  L ,  which is impossible. 

The problem is thus proved for the s t ructural  stability relative to the 
space R!;'. In other cases ,  the proof is analogous with obvious modifica- 
tions. 

Since (A) is a dynamic system of c lass  1, 
By 

On the sphere S ,  the 
However, projecting 

Now, since the 

We have thus established that if an  analytical system (A) has a multiple 

This,  however, implies that (A) is not 

It now remains  to consider case  (2), when all the paths passing sufficiently 
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4. Remarks and supplements 

a )  R e m a r k  r e g a r d i n g  s t r u c t u r a l l y  s t a b l e  s y s t e m s  

As w e  have already noted (§6.1), structurally stable systems were 
i n s i d e  a c y c l e  w i t h o u t  c o n t a c t .  

originally considered in a region limited by a cycle without contact 141, and 
not in any general  region. The definition of a structurally stable system 
can be significantly simplified in this case (compared to Definition 10, 96.1). 

Indeed, let  (A) be a dynamic system defined in G, and c* a closed sub- 
region of G ,  limited by a cycle without contact r. 

F i r s t  le t  u s  assume that (A) is structurally stable in G*. 
evidently a region with a normal boundary, Theorem 23 applies and condi- 
tions I through I11 a r e  thus satisfied in 8*. Repeating the same arguments 
as in the proof of the sufficiency in Theorem 23, we readily see that the 
following lemma holds true.  

&close to system (A), we have 

Since c* is 

L e m  m a  8 .  For any e > 0 ,  there exists 6 > 0 such that if system (A) is 

(a, A”, (@*, A).  (6) 

Now suppose that Lemma 8 is satisfied for a system (A). Let f7 be a 
o-extension of G* (see Lemma 1, §18.1), where u > 0 is sufficiently small .  
CleaTly, 3 in this case is also a region limited by a cycle without contact, 
and G+ c H . Then by the previous lemma and by Lemmas 12 and 8 of 54.2 
w e  see (this conclusion is easy to demonstrate) that for  any e > 0 

( H ,  A”, : (R,  A ) ,  

provided that systems (a) and (A) a r e  sufficiently close,  and this implies 
that (A) is structurally stable in C*. 

We have thus shown that i f  (A) is structurally stable in G*, Lemma 8 
holds true, and vice versa .  Hence, the statement of Lemma 8 can be 
adopted a s  a definition of s t ructural  stability of a system (A) in a region 
limited by a cycle without contact. 

a region limited by several  nonintersecting cycles without contact. 
proof is entirely analbgous. 

statement of Lemma 8 no longer provides a definition of s t ructural  
stability. 
be a r c s  of paths of both (A) and (A). 

A similar  r emark  applies to the case when the system is considered in 
The 

In the general  case,  when @’ is a region with a normal boundary, the 

Indeed, if (6 )  is sa t i s fgd ,  the boundary arcs of paths of c* should 
This, however, is not generally true.  

b)  S t r u c t u r a l l y  s t a b l e  s y s t e m s  o n  c l o s e d  s u r f a c e s .  
The conditions of s t ructural  stability of dynamic systems (of c lass  1) on 

closed surfaces  of non-zero kind, both oriented and non-oriented, w e r e  
considered by M. Peixoto 171. 
a dynamic system (A) of class 1 defined on a surface of the kind p > O  is 
structurally stable i f  and only i f  

are structurally stable; 

These conditions amount to the following: 

1) i t  has  a finite number of equilibrium states ,  a l l  of which 

2 )  i t  has  no saddle-to-saddle separatr ices;  

166 



$18. I H E  FUSDAhlEh'TAL THEOREhl OF STRL'CTI'RiL STABILI ITY 

3 )  i t  has  a finite number of closed paths, all of which are 

4) the D -limit (w-limit) se t  of each path is ei ther  an equilibrium 

The only new condition added for  s t ruc tura l  stability on a closed surface 

simple limit cycles; 

s ta te  or a l imit  cycle. 

of a nonzero kind is thus condition 4. 
automatically follows f rom conditions 1 through 3 by the PoincarC - 
Bendixson theorem (QT, S4.6). 
dynamic sys tems may exist whose paths, say, a r e  everywhere dense. 
Condition 4 ru l e s  out the possibility of the existence of these paths. 

c )  S t r u c t u r a l l y  s t a b l e  s y s t e m s  i n  t h e  s p a c e  of  
d y n a m i c  s y s t e m s .  

We have already noted (S6.1) that sys tems which are s t ructural ly  stable 
in a cer ta in  region form an  open se t  in the space of dynamic systems.  Ke 
are now in a position to prove this statement. 
region, 
region with a normal  bcundary, c* c G .  

stYuctliYa~~y stable in G:r constitute an open set  in R,. 

belongs to the space R,.  

On a sphere (or on plane), condition1 

On a surface of a nonzero kind, however, 

Let  be a bounded plane 
the space of dynamic sys t ems  of class 1 defined i n z ,  and G* a 

T h e  o y e  rn 25. 

P r o o f  . 
The dynamic  systems of class 1 defined in G which are 

Let (A) be a dynamic sys tem structural ly  stable in c* which 
We w i l l  show that all the dynamic sys t ems  which 

a ' re  sufficiently c lose to (A) are a l so  s t ructural ly  
s a b l e .  

theorem, there  exis ts  a region If with a normal  
boundary such that 

This will prove the theorem. 
By Theorem 1, 5123.1, and the r emark  to this 

B* c H c ~ T c  G ,  

py/ 
/$ and sys tem (A) has  no equilibrium s ta tes  and no closed 

paths in p o t h e r  than those which are located in  c*. 
Let u be the distance from E* to the boundary of FT. 
Evidently, u>O (Figure 65). 

FiGCfHE 1-5 

Let e be a positive number, e < a / 2 .  In our  proof 
of Theorem 2 3  we have shown that i f  6,  > O  i s  sufficiently smal l  and sys tem 
( A )  is d,-close to system (A), then 

where 5 is some region. 
tion. 

W e  will take 6,>0 so that i t  sa t isf ies  this condi- 

From (4) and the inequality E (  u / 2 ,  we have 

@Cii  

(see footnote on p. 67). 

particular, i t  has  been established th2t if sys tem (A) is d,-close to sys tem 
(A), wher-e 6, is sufficiently small, (A) has  no equilibrium s ta tes  and no closed 
paths in  i? other  than those which fall i n  the canonical neighborhoods .Vi and 
I', . 

The region 3 was descr ibed in  detail in our  procf to Theorem 23.  In 
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Finally, if  (x) is B3-close to (A), where 5 is sufficiently small ,  the 
equilibrium states  and the closed paths of (A) which a r e  located in Ut and VJ 
a r e  structurally stable (by Remark 2 to Theorem 18, 58.2, Remark 2 to 
Theorzm 18, 59.2, and r emark  to Theorem 18, §-14). 
that (A) has no saddle-to-saddle separatr ices  in 2. 

From (4) it  follows 

We thus see f rom the above that i f  

8=min{dl,  a2, &}, 

and (A) is 6 -close_ to (A), conditions I through I11 of Theorem 23 a r e  sat is-  
fied for system_(A) in a region H” with a normal boundary and, in virtue of 
this theorem, (A) is structurally stable-in this region. 
and Lemma 1, 56.1, we conclude that (A) is structurally stable inF*. 
completes our proof. 

But then, by ( 6 )  
This 

An analogous theorem is evidently also t rue for  a sphere. 
T h e  o r  e m 25’. 

The validity of. Theorem 25’ follows almost immediately from Theorem 24. 
Peixoto /7/  has  shown that Theorem 25’  is applicable to dynamic sys tems 

W e  will now show that the structurally stable systems form an every-  

The structurally stable dynamic systems on a sphere 
f m m  an open se t  in the space of dynamic systems.* 

of class 1 on any closed surface, whether oriented o r  not. 

where dense se t  in the space of dynamic systems. 
systems of class 1 defined in  some region 8. 
region limited by a simple closed curve I’, such that I? c G. 
the proof will be given for  the space of dynamic systems defined in 
which the curve r is a cycle without contact. Let this space be R * .  
ness in this space is defined as closeness to rank 1 inG. 

We will consider dynamic 
Let H be a simply connected 

For  simplicity, 
for  

Close- 

T h e o r e m  26. Let 

& = P ( G  dt  Y), -$=Q(z, Y) (A 1 
be a dynamic system in R*. F m  any 6 > 0 ,  there exists a system (A) 8 -  
close to (A) which is structurally stable in H. 

Let 6 > 0 be fixed. W e  may take 6 so small  that any system 
which is 6-close to (A) belongs to R*, i.e., r is a cycle without contact of 
this system. 

with polynomials, there  exis ts  a system 

P r o o f .  

By the Weiers t rass  theorem on the approximation of continuous functions 

(A1 ) dz -=Pi@, df Y), $=Q(z, 6 1 1 9  

d /5-close to (A), whose right-hand s ides  a r e  polynomials. 

proof to Theorem 10, 57.2, we have shown that there  exist  irreducible 
polynomials arbi t rar i ly  close to P, and Q l r  respectively, which are moreover 
of the same degree as P1 and Q l .  

Let Pa and Q2 be such polynomials, and le t  the system 

Let Pl and Qi be polynomials of degree m and n ,  respectively. In our 

(A2 d t  -= dt Pa (z, Y), S= 92 ( ~ 7  Y) 

be a /5-close to (AI). 

Structural stability relative to one of the spaces @, is  naturally meant here. 
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By the BCzout theorem ( /12 / ,  Ch. 111, § 3 . 1 ) ,  system (Az) may only have 
a finite number of equilibrium states ,  which does not exceed m . n .  
0, (z,, y,), i = 1, 2, . . ., s, beal l  the equilibrium s ta tes  of (Az) located in  
H ( s , < m . n ) .  

Le.,  

Let 

Suppose that some of the equilibrium s ta tes  O;, e.g., Ol , is not simple,  

Consider the system 

For any choice of a and f3, the point Ol is an equilibrium state  of (A;), 
We take and P;  and QZ a r e  polynomials of degrees  m and n, respectively.  

a a n d  P sufficiently small ,  so that 

(this is evidently always possible). 
(Az), and O1 is a simple equilibrium state  of (AS). 

sufficiently close polynomials P ,  and Qz of the s a m e  degree (i-e., m and n ,  
respectively) which a r e  irreducible.  

System (At )  is then arb i t ra r i ly  c lose to 

If the polynomials Pf and Q: are not irreducible,  we replace them with 

W e  then obtain the sys tem 

which ?lso has  a t  most ni.n equilibrJum states .  

a sufficiently smal l  neighborhood of 0, (see J2.2, Remark 3 to Theorem 6). 
Suppose that this is indeed so. System ( A z )  is thus a rb i t ra r i ly  close to (Az) 
and has  a finite number of equilibrium s ta tes  ( less  than n . n > ,  a t  least one of 
which, dl ,  is simple. 

Suppose that one of the equilibrium s ta tes  of ( A z )  in H is multiple (we may 
take i t  as Oz). 
f rom ( A z )  to an  a rb i t ra r i ly  c lose system 

If (Az) is sufficiently c lose to (A;), i t  has  a simple equilibrium state  6, in  

Then, just as we have passed from (Az) to (Az), w e  wi l l  pass  

where the right-hand s ides  are irreducible polynomials of degrees  m and n 
and-which has  a simple equilibyium s_tate d2 in  the neighborhood of 4. 
If (Az) is sufficiently c lose to (Az), (Az) a l so  has  a simple equilibrium state  
O1 in the neighborhood of 0,. 
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Continuing along the same lines, we obtain af ter  a finite number of 
s teps  the system 

(A3 
dz -= dl  P ,  (2, Y), $= Q3 (2, Y), 

which is 6/5-close to (Az) and has  a finite number of equilibrium s ta tes  in 
H ,  a l l  of which are simple.  

If (As) has  multiple foci o r  saddle-to-saddle separa t r ices  in H ,  they can 
be eliminated by a suitable rotation of the vector field. 
the system 

Indeed, consider 

1.z d t  = P 3 - p Q 3 =  P, (I, v), = Q 3 +  pPz=Q( (I, Y), (A4) 

where p =+ 0. 
vector field of (As) through the angle tan-' p. 

nothing but the equilibrium states  of (As) (Lemma 3, 8 3 . 2 ) .  Since (As) only 
has  simple equilibrium states  in  H ,  (A4) will a lso have only simple equilib- 
r ium states  in H ,  provided p is sufficiently small .  Suppose that (A3) has a 
multiple focus (zo, yo). Without loss  of generality, we may take zo = yo = 0 .  
Let 

The vector field of this system is obtained by turning the 

The equilibrium s ta tes  of (A4) a r e  all the equilibrium states  of (A3) and 
I 

I 

Since 0 ( 0 , O )  is a multiple focus, we have for the equilibrium state  0 of (As) 

z l>0 ,  a = a + d - 0 .  

I 

For the same point considered as an equilibrium state  of (A4), we have 

u * = p ( I ) - c ) .  

If 0 (0, 0) is a multiple focus of (A4), then b = e .  Since also d = - a ,  we 
find A = -a2 - b 2 , < 0 ,  which contradicts the condition A > 0. 
0 (0, 0) cannot be a multiple focus of (A4). Clearly if  p p 0 is sufficiently 
small ,  we have A* > 0, and u* is small ,  Le., 0 (0, 0) is a simple focus of 
(A4). 
field of a dynamic system through a sufficiently small angle will reduce any 
multiple focus to a simple focus. 

We have shown in Chapter N that a saddle-to-saddle separatr ix  of a 
dynamic system disappears when the vector field of the system is turned 
through a sufficiently small  angle ( i t  "decomposes" into t w o  separatr ices;  see 
the lemma in 911.1 and the proof of Theorem 16 in  811 .2 ) .  
may only have a finite number of equilibrium s ta tes  and separatr ices ,  we 
conclude from the above that for  a sufficiently small  p f 0 the following 
conditions a r e  satisfied: 

Thus, the point 

Thus, we have incidentally established that a rotation of the vector 

Since system(A3) 

1) System (&) is a / 5  close to (As). 
2 )  System (A4) has  only a finite number of equilibrium states  in H, all 

of which a r e  simple and which do not include multiple foci (in other words, 
H includes a finite number of equilibrium states  all of which a r e  structurally 
stable ). 
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3 )  System (A4) has  no saddle-to-saddle separa t r ices  in H .  
Another condition fo:.lows f rom conditions 1 through 3 combined with the 

4) System (A4) may only have a finite number of closed paths in H .  
The validity of condition 4 is proved along the same  lines as in 

analyticity of (A4): 

Theorem 21 (S16.1). There  is only one distinctive feature in this proof 
which is worth considering separately. Using the notation introduced in 
the proof to Theorem 21 ,  w e  will. show that h', o r  K" cannot be a closed 
path (i.e., case  5 in  the proof to Theorem 2 1  is inapplicable to our  con- 
ditions). Indeed, le t  K,,, be a closed path. Then, by the definition of K , ,  
this path i s  a non-isolated closed path. 
closed path in an  analytical systeni leads  to the existence of a cell which 
is completely filled with closed paths (512.3). A s  
we known (see QT, 523,2), the boundary of the cell )I' should be made up of 
tbvo  zero- l imit  continua, each of which is ei ther  a )  a closed path, or 
b )  an equilibrium state  classified as a center ,  or c )  a continuum of 
saddle-to-saddle separa t r ices  and equilibrium states .  However, in our  
case, no such zero- l imit  continua exist, since system (A4) does not have 
any centers  o r  saddle-to-saddle separa t r ices  in H ,  and a closed path of 
an analytical system cannot be a zero- l imit  continuum (any closed path of 
an analytical system is ei ther  an  isolated o r  an inter ior  path in a cel l ) .  Thus, 
hL cannot be a closed path. 
does not differ f rom the proof of Theorem 21 .  

limit cyclesj. 
stable (by Theorem 23, 518.2) and our  theorem is proved. 
some of the cycles  Li ( i  = 1, 2. . . .. r )  of (-44) are multiple. 
rotate the vector field znd consider the system 

The presence of a non-isolated 

Let W' be such a cell.  

In all other  respects ,  the proof of proposition 4 

Let the closed paths of (Ad) lying in H be L , ,  L n ,  . . ., Z,, (they are al l  
If all these l imit  cycles  are simple, (A4) is s t ructural ly  

Suppose now that 
U'e may then 

In 512.3 w e  defined the m u l t i p l i c i t y  o f  a l i m i t  c y c l e  and es tab-  
lished that every limit cycle of an analytical system has  a definite multipli- 
city. W e  shal l  now use  some re su l t s  whose proof w i l l  only be given la te r  
on (Theorems 60 and 61, 532.4). 
niiltiplicity of an analytical system (Ah), there  exis t  e i  > 0 and p: > 0 with 
the following property: any sys tem (A,) for which I p I -== pr has  a t  most two 
closed paths in Ubi(Li ) ,  znd these paths are simple limit cycles. 

LVe  denote by iFi ( i  = 1, 2, . . ., r )  a canonical 
neighborhood of the close paths Li lying in U. (L , )  ~ and by y l  and y;  the 
cycles  without contact of (&) which form the boundary of Vi. 

al l  the V t  to be nonintersecting neighborhoods in H .  

the complement of the Lnion of the neighborhoods Vi in g )  will be designated 
F. 

Let p*, 0 < y* < min {p:, p:, . . ., p:}, be so smal l  that if 1 p 1 < p*, the 
following conditions are satisfied: 

a )  The system (A,) is 6 1 5  close to (A4). 
bj The sys tem (A,) has only a finite number of equilibrium s ta tes  in  I?, 

c )  The sys tem (A,) has  no saddle-to-saddle separa t r ices  in H .  

By these theorems, i f  Li is a cycle of finite 

Let E = min { e , ,  E*, . . ., E ? } .  

\ V e  may take 

The se t  E \ 6 Vi (i.e., 

which are a l l  s t ructural ly  stable. 
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d)  The cycles without contact y ;  and y; (i = 1, 2, . . ., r) of (A4) a r e  cycles 

e )  In every neighborhood V I ,  there a r e  a t  most two closed paths 

The validity of conditions a through d for small  p is self-evident. 

without contact of (A,,). 

of (A,,), and these paths a r e  structurally stable l imit  cycles. 

Condition e follows f rom the definition of the number e ,  the numbers pf , and 
the neighborhoods V I .  

conditions a through e a r e  supplemented by an additional condition: 

the neighborhoods V ,  . 
by a finite number of cycles without contact of (&), and that (A4) has only 
a finite number of equilibrium states  in F ,  all  of which a r e  structurally 
stable, and has no saddle-to-saddle separatr ices  and no closed paths in 
this region. Therefore (Ah) is structurally stable in F .  
sufficiently close to (A4) has  the same topological s t ructure  in F (see 
§ 18.4a). 

paths which a r e  completely contained in F. 
of (A,,) has a point which belongs to one of the VI, the ent i re  path belongs 
to that V i ,  since otherwise the path would intersect one of the cycles without 
contact ri or y ; ,  which is impossible. 

We have thus shown that i f  p is sufficiently small ,  the system (A,) 
satisfies conditions b, c, d, e. 
the fundamental theorem of s t ructural  stability (Theorem 23, 5 18.2). 
system (A,,) is 8 -close to (A), the proof of Theorem 26  is complete. 

the dynamic systems on any closed surface, whether oriented or not (see 

W e  will now show that i f  p is sufficiently small  in absolute magnitude, 

f )  Any closed path of (A,) lying in a is completely contained in one of 

To prove this proposition, note that the se t  F is a closed region limited 

But then any system 

Hence it follows that for a sufficiently small  p, (A,) cannot have closed 
Furthermore,  i f  a closed path 

This proves condition f .  

Then this system i s  structurally stable in H by 
Since 

Peixoto has  shown that Theorem 26  is also true when R* is the space of 

IW. 
It follows f rom Theorem 26 that structurally stable systems form an 

In our proof of Theorem 26, we have actually established that any 
everywhere dense set  in the space R* of systems of class 1. 

system in R* has an arbi t rar i ly  close a n a l  y t i c a 1 structurally stable 
system. Hence it follows that in the space of a n a l y t i c  a 1  systems, the 
structurally stable systems are also everywhere dense. 

so to say, the "bulk" of the space of dynamic systems. 
unstable systems, on the other hand, constitute "partitions" partitioning 
the space into regions, each filled with structurally stable systems of the 
same topological type. 

d )  R e m a r k  r e g a r d i n g  t h e  c o n d i t i o n s  of  s t r u c t u r a l  
s t a b i l i t y  o f  a d y n a m i c  s y s t e m  r e l a t i v e  t o  t h e  s p a c e s  
R$) a n d  Rg). 

In Theorem 23, which formulates the necessary and sufficient conditions 
of s t ructural  stability of a dynamic system, s t ructural  stability is naturally 
understood in the sense of Definition 10 ( S S . l ) ,  Le., relative to the space Ri 
(see 96.3). Let now (A) be a system of class N > i o r  an analytical system, 
which is considered a s  a point of the space R * ,  where R* is one of the spaces 
R!$ ( r 4 . N )  o r  RZI (see 55.1). 

Theorems 25 and 26  signify that structurally stable systems constitute, 
Structurally 

A s  before, we consider a region c* with a 
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normal boundary, c* c G . 
the space R*. Then: 

a r e  simple (in virtue of Theorems 10 and 11, 57.3); 

numbers (by virtue of Remark 1 to m e o r e m  15, 510.4); 

to Theorem 16, 511.2); 

of Theorem 20, §15.3). 

necessary conditions of s t ructural  stability of system (A) in z* relative 
to the space R*. 

Conversely, i f  these conditions a r e  satisfied, (A) is structurally stable 
relative to the space Ri, and therefore relative to the space R* (see S6.3). 

W e  have thus established that conditions I through I11 of Theorem 23 are 
the necessary and sufficient conditions of s t ructural  stability of a sys tem 
(A) in G* relative to any of the spaces  Rg), R;’ which contain (A) a s  a point. 
Hence, if w e  a r e  only dealing with the spaces R$’ and R;)* there is no need 
to indicate explicitly that (A) is structurally stable (or unstable) relative 
to one of these spaces.  

Let (A) be structurally stable in @‘ relative to 

(A) may only have a finite number of equilibrium states ,  al l  of which 

(A) does not have equilibrium states  with pure imaginary character is t ic  

(A) does not have saddle-to-saddle sepa ra t r i ce s  (by virtue of the r emark  

(A) may only have closed paths which are simple l imit  cycles (by virtue 

Al l  this means that conditions I through I11 of Theorem 23 a r e  the 
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C h a p t e r  VII 

C E L L S  OF S T R U C T U R A L L Y  S T A B L E  SYSTEICIS. 
ADDITION T O  T H E  THEORY OF S T R U C T U R A L L Y  
S T A B L E  SYSTEMS 

A N  

INTRODUCTION 

The present  chapter comprises  three sections. The f i rs t ,  $19, deals  
with cel ls  of s t ructural ly  stable systems.  The concept of a c e l l  of  a 
d y n a  ni i c s y  s t e m w a s  introduced in QT, Chapter VII,  $16. If a l l  the 
singular elements, i .e . ,  boundary a r c s ,  equilibrium states ,  limit cycles, 
and orbitally unstable paths and semipaths, a r e  removed from the region 
(or the sphere)  where the dynamic system is considered (assuming that 
there  is only a finite number of such elements), the remaining points of i? 
form an open se t  comprising a finite number of components. rhese com- 
ponents are the cells of the dynamic system. In every  cell,  the paths of 
the system show an  identical behavior in a cer ta in  sense .  
propert ies  of cells are investigated in QT, Chapter VII, and for  general 
dynamic systems,  there  are infinitely many different types of cel ls .  
ever ,  dynamic systems which are s t ructural ly  stable in c* and have a 
normal  boundary are character ized by relatively f e w  cell types. An 
investigation of these types is the subject of $19. It gives a complete 
listing of all the different types of simply connected inter ior  ce l l s  of 
s t ructural ly  stable sys tems (i.e., cells which do not touch the boundary 
of the region), and a l so  of all the different types of doubly connected cel ls  
(both inter ior  and adjoining the boundary). 

considered in 520. 

that we can do without the requirement of €-identity of close sys tems 
(see J18.4, a)  in the definition of a s t ructural ly  stable system within a 
cycle without contact (or on a sphere), i.e., the following definition can be 
advanced: 

System (A) is said to be s t ructural ly  stable in a region enclosed by a 
cycle without contact i f  any sufficiently close system has  the same 
topological s t ructure  like (A) in the relevant region. 

The equivalence of this definition and the original Definition 10  (Q6.1), 
incorporating the requirement of e-identity, is proved in 521, which thus 
constitutes an  addition to the theory of s t ructural ly  stable sys tems.  

Note that the definition incorporating the condition of e-identity is 
quite natural and is more  convenient for  the derivation of the necessary 
conditions of s t ructural  stability, since i t  permi ts  res t r ic t ing the analysis  

The general 

How- 

Some examples of s t ructural ly  stable sys tems with their ce l l s  are 

'The las t  section, S21, has  no relation to the subject of ce l l s .  It proves 
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to local considerations (e.g., in the neighborhood of a particular path), 
r a the r  than proceeding with global treatment.  On the other hand, the 
definition without e-identity i s  intrinsically s impler  and it directly shows 
that structurally stable sys t ems  constitute an open s e t  i n  the space of 
dynamic sys t ems .  

S l 9 .  CELLS G F  STRUCTURALLY STABLE 
DYNALIIC S Y S  rERIS 

1. 
dynamic sys t ems  

General considerations pertaining to cells of 

The concept of a cel'. of a dynamic system and the propert ies  of ce l l s  
are considered in detail in QT, Chapter VI I .  In this section, w e  will 
re i te ra te  withoui proof the essential  information about ce l l s  that w i l l  be 
needed in our  treatmen: of the ce l l s  of structurally stable systems.  

The analysis can be ca r r i ed  out e i ther  on a sphere or in a bounded 
plane region E .  In the case of a sphere,  we wi l l  assume that the dynamic 
system ( A )  has  a f ini temniber  of singular paths (see QT, 816.9). 
is defined in a plane region c, w e  will consider the system in a subregion 
G* with a n o r  m a 1 b o  11 n d a r y , assuming that (A)  has  a finite number 
of singular paths in c*. 
defined in a plane region. 

systeni inz*. '  
a closed se t .  
of disjoint components. 
system (A) .  

If (A) 

To fix ideas, let u s  consider the case  of a system 

Let E be the se t  of a i l  points which belong to the singular elements of the 

I t s  compiement, the se t  C*\E, is therefore open and consists 
Since W P  assume a finite number of singular elements,  E is 

These components are the cells of the dynamic 

The following general  propositions are proved in QT, Chapter VII ,  4 16: 
I. The number of ct:lls is finite. 

11. 
111. 

Any cell is either simply connected or doubly connected.;:'.: 
Paths  belonging 1.0 a single ce l l  are  either all whole paths, or all 

positive {negative) semrpaths, or all arcs of paths. 

a l l  loops, or a l l  nonclosed paths, i.e., a- and o-limit  continua without 
common points. 

s a m e  a- l imit  continuum and the s a m e  o-limit  continuum. 

one of i t s  boundary con.:inua is a n  a- l imit  continuum, and the other is a n  
o-limit continuum of the cell .  

If the ce l l  consis ts  of whole paths, i t s  paths a ree i thera l lc losedpaths ,  or  

IV. 

V. 

A l l  the nonclosed whole paths i t  hich belong t o  the s a m e  cell  have the 

If a cell  consisting of nonclosed whole paths is doubly connected, 

' The set E comprises the points of all orbitally unstable paths and semipathr. the points of corner semi-  
pdths ind corner arcs of paths, the points of bounJary arcs and cycles without contact and boundxy 
arcs of paths, and all the equilibrium states. See 516.2. 
We recall that a bounded region is said to be simply connected i i  its boundary consists of one connected 
set (the boundary continuum) ,md doubly connected if its boundxy consists of two n o n i t m w c t i n z  
connected sets. 
and the other is an interior botmdarv continuum. The interior boundary continuum, in  particular, may 
comprise a single point. 

' *  

In doubiy cornected regions, one of the two continua is an exterior boundary continuum. 
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VI. 

VII. 

If a point P is a boundary point of a cel l  consisting of whole paths, 
all the points of a path L p  through P a r e  boundary points of the cell.  

singular elements.  If some point P is par t  of the boundary of a cel l  2 and 
belongs to a singular path L completely contained in G*,  o r  to a singular 
semipath L ( )  (orbitally unstable or corner) ,  or to a corner  a rc ,  the ent i re  
path L (semipath LOor a r c  1 respectively) belongs to the boundary of the 
cel l  2. 

If the point P is par t  of the boundary of the cel l  2 and belongs to a 
boundary a r c  I of a path and P is not a corner  point of the boundary, the 
ent i re  a r c  1 a lso  belongs to the boundary of the cel l  2.’* 

the l imit  points of L also belong to the boundary of the cel l  2. 

boundary a r c  without contact where all the points, except the end points, 
belong to nonsinG1ar paths, and each end point is either a corner  point 
o r  belongs to a singular a r c  or a singular semipath (a singular a r c  may 
coincide, in particular,  with a boundary a r c  without contact). A singular 
a r c  is called a s i n  g u  1 a r a - o r  o -a r c depending on whether the paths 
of the system enter  into G* or  leave G* through this a r c .  Similarly, a 
l imit  cycle without contact with all i t s  points belonging to nonsingular 
paths is called a singular a-cycle  (or o -cycle) depending on whether the 
paths of the system enter  into E* (or leave G * )  through this cycle. 

w-arc ( a -a rc )  h,  all the semipaths ( a rc s  of paths) of the cell 2 c ross  the 
same a r c  h at  i t s  inside points and do not c r o s s  any other o -a rc  (a -arc)  
except A. 

If a semipath (or an a r c  of a path) of the cel l  2 c rosses  a singular 
w-cycle (a-cycle), all the semipaths (or a r c s  of paths) of the cel l  2 c r o s s  
this cycle. 

connected. 

connected . 

allowed for structurally stable systems.  
have only a finite number of equilibrium states  and closed paths and have 
no saddle -to-saddle separa t r ices  (the equilibrium states  being only simple 
nodes, saddle points, and foci), there  a r e  relatively few different types of 
cel ls  in structurally stable systems.  For example, structurally stable 
systems may not have cel ls  filled with closed paths or loops. 

The boundary of each cell consists of points which belong to 

VIII. 

We will use the te rm a s i n g u  1 a r a r c  to designate a par t  of a 

If a path o r  a semipath L is par t  of the boundary of the cel l  2, all 

IX. If a semipath (or an a r c  of a path) of cel l  2 c rosses  a singular 

X. 

XI. 

Our problem is to identify all the various types of cel ls  which are 

A cel l  whose boundary contains an o-arc  o r  an  a - a r c  is simply 

A cell whose boundary contains a singular o- or a-cycle is doubly 

Since structurally stable systems 

2. 
stable systems 

Doubly connected cells of structurally 

We will now proceed with a detailed analysis of the cel ls  of structurally 
stable systems.  
of doubly connected cells, which can be done very  easily. 
* If the point P belongs to the boundary of the cell  2 and is a corner point which belongs to  a boundary 

In this subsection, w e  shall identify all the different types 

arc of a path, this a rc  will either belong entirely to  the boundary of the cell 2 or not belong altogether. 
This can be verified by simple examples. 



:I?. CELLS OF S ITRL'CTCMLLY STABLE SYSTEhlS 

F i r s t  consider ce l l s  of s t ructural ly  stable sys t ems  filled with whole 
paths. 
s t ructural ly  stable sys tems w e  obtain the following theorem which is 
valid for  both simply and doubly connected cel ls .  

whole paths, all these paths f m  t -+ i 
node, focus, m limit rycle),  and for t -+ - 
(an unstable nmie, fociis, or limit cycle).  

st ructural ly  stable system filled with whole paths has  one source and one 
sink. 

D o u b l y  c o n n e c t e d  c e l l s  f i l l e d  w i t h  w h o l e  p a t h s .  
Theorem 27 and propositions IV and c' of S15.1 enable u s  to establish 
directly all the different types of doubly connected cells of a s t ructural ly  
stable system which are filled with whole paths. 

source,  i.e., e i ther  two limit cycle, or a l imit  cycle and an  equilibrium 
state ,  o r  e l se  two equilibrium s ta tes .  The las t  alternative, however, has  to 
to be rejected, since the boundary of a bounded cell cannot consist of two 
points. 
limit cycle or a limit cycle and an equilibrium state .  
case, the exter ior  boundary continuum is necessar i ly  a l imit  cycle, 
enclosing all the paths of the cel l .  
a limit cycle, a node, or a focus. 

Before w e  can  proceed withour classification of the different types of 
cells, w e  should decide on a cr i ter ion for inclusion of two cells in one type. 
Different c r i t e r i a  are zvailable, and w e  w i l l  u se  the following definition. 

belong to the same type) ** i f  there exists an mientation-conserving, path- 
conse,rving topological mapping T of 2, onto 3, ichich does not reverse the 
direction of the paths in t .  Otherrcise, ice shall say that the cells z, and z2 
are of different types. 

We are now in a position to  descr ibe all the different types of doubly 
connected ce l l s  of a s t ructural ly  stable system which are filled with whole 
paths. 

s t a t  e . 
cycle Lo and an  enclosed equilibrium s ta te  - a node or a focus. The 
cycle L o  may be e i ther  stable o r  unstable, and the increase  in t may 
correspond to motion in positive (counterclockwise) or negative sense  
along the cycle. 
this category, which are shown in Figure 66. 

F r o m  propositi.on IV of S15.1 and f rom the propert ies  of 

T h e  o r e  m 27. If 2 is a cell of a structurally stable system filled with 
go to the same sink (Le., a stable 

thgy all go to the same s o w c e  

Theorem 27 evidently can be restated as follows: any cell of a 

Indeed, the boundar,y of such a cell consis ts  of a single sink and a single 

The boundary of a doubly connected cell thus consis ts  e i ther  of two 
Evidently, in e i ther  

The inter ior  boundary continuum may be 

D e f i n i t i o n  22. Cells Z ,  and Zz are said to be of the same type ( m to 

I. C e l l s  b o u n d e d  b y  a l i m i t  c y c l e  a n d  a n  e q u i l i b r i u m  
The boundary of each cell in this category consis ts  of a limit 

Accordingly, there  may be four  different cell types in 

To structurally unstable systenu, this theorem in general is inapplicable. For example, in a cell  
filled with loops, all the path$ go to the same equilibrium state for t -+ - m and t -+ f m ,  i.e., the 
source of this cell  coincides with its sink. 
The condition stated in this definition could be replaced by a requirement of the existence of a mapping 
T with the relevant properties moving the cell  Z, into ZI (Le., without considering the ce l l  closures). 
Alternatively. we could omit the requirement that T should be an orientation-consentine mapping or 
conserve the direction of mot im in I along the paths. The choice of the particular criterion assigning 
two cells to the same type is largely arbitrary. Sometimes, the actual choice depends on the problem 
k i n g  considered. 

* *  
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It i s  readily seen th2.t all the four ce l l s  shown in Figure 67 belong to 
different types. On the other  hand, each cel l  in Figure 68 is of the same 

There i s  type as the corresponding cell in  Figure 67."  
therefore a total of four types of ce l l s  bounded by two 
limit cycles.  

111. D o u b l y  c o n n e c t e d  c e l l s  f i l l e d  w i t h  
s e m i p a t h s  o r  a r c s  o f  p a t h s .  The boundaryof 
a cell filled with semipaths or a r c s  of paths evidently w should comprise  l imit  a r c s  or cycles  without contact 
{see S19.1). By proposition X in §19.1, the boundary of 
a doubly connected cel l  cannot comprise  singular a r c s ,  
and i: therefore incorporates at least one singular cycle 
without contact. 
boundary of a doubly connected cel l  filled with semipaths 

Hence it follows directly that the 

consis ts  of a singular cycle without contact and a source 
or a sink (a l imit  cycle,  a node, or a focus). F r o m  these considerations, 
one can readily find the different types of these cel ls ,  and this assignment 
is left to the reader  as an exercise .  Doubly connected ce l l s  filled with 
a r c s  of paths are bounded by two singular cycles,  one inside the other.  
Only one type of such cel ls  is possible (Figure 69).  

3.  
Simply connected inter ior  cells 

Interior cells of s t ructural ly  stable sys tems.  

A cell 2 in region G*:s said to be inter ior  i f  zc G*, i .e . ,  the boundary 

L e P I  wi a 1 .  Euery interior cell consists of whole paths. 
P r o  o f . If cell 2 consis ts  of semipaths,  their end points evidently lie 

on the boundary of the cel l  and therefore belong to cer ta in  singular elements.  
The only suitable singular elements a r e  boundary a r c s  or cycles  without 
contact. 
the boundary of region GC, i .e . ,  this is not an inter ior  cel l .  It is s imilar ly  
proved that an interior cell cannot consist  of a r c s  of paths. 

belong to cmnev semipaths m cmner  aycs ojpaths. 

of the semipath which belongs to the boundary of an inter ior  cel l  Z. By 
proposition VII, 119.1, the end point MI of the semipath (or a r c  of path) 
L which is a point of the boundary of G* a lso  belongs to the boundary of 
cel l  Z, i.e., 2 is notand interiorcell.  

From the definition of an inter ior  cel l  and from Lemma 1, supported 
by proposition VI in Sl9.1, i t  follows that the boundary of an inter ior  cell 
of a s t ructural ly  stable system consis ts  of whole paths, which are limit  
cycles,  separa t r ices ,  or equilibrium s ta tes .  Doubly connected cells 
were considered in the previous subsection, where w e  s a w  that their 
boundaries contain neither saddle points nor separa t r ices .  
prove that the reverse  situation applies to inter ior  cel ls .  

of cel l  Z has no common points with the boundary of E*. 

The boundary of a cell consisting of semipaths thus intersects  

L e iii ni a 2. 

P r o o f  . 

The botindary of an interior cell has no points which 

Let L be  a corner  semipath o r  an  a r c  of a path, P a point 

This completes the proof. 

W e  w i l l  now 

The mapping T mavins cell  a in Figure 67 into cell  a in Figure 68, while conserving the orientation. the 
paths and the sense of motion, clearly maps the exterior l imit  cycle of the cell  into the interior l imit  
c i c l e ,  and vice vena.  This, however, does not contradict Definition 22. 
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T h e  o r  e m 28. The boundary of a simply connected interim cell of a 
structurally stable system comprises a saddle point and at least two 
separatrices. 

P r o  o f .  
boundary contains neither saddle points nor  separatr ices .  By Lemma 2, 
the boundary of cell  Z then consists of nodes, foci, and l imit  cycles only, 
i .e . ,  of sinks and sources.  
a t  least  two of these elements - namely the a- and o-limit  coninua of the 
paths of the cell  Z - a r e  included in the boundary of 2, Z cannot be a simply 
connected cell,  which contradicts the original assumption. The boundary 
of Z thus must contain a saddle point o r  a separatrix.  Now, i f  the boundary 
of a cell filled with whole paths contains the separatr ix  of some saddle 
point, it  also contains the saddle point (519.1, VIII). 
the boundary of a cel l  contains a saddle point, it contains a t  least  two 
separatr ices  of this saddle, which a r e  continuation of each other.  
completes the proof. 

structurally stable system (A) in e* ($17.1). 

Let Z be an interior cell  of a structurally stable system whose 

Since these elements a r e  disjoint in pairs  and 

On the other hand, if  

This 

Let u s  now consider a regular system of canonical neighborhoods of a 
Any a-separatr ix  (o-separa-  

triw) of a structurally stable system entirely contained in G* invariably 
c ros ses  a cycle without contact which belongs to a sink (a source).  

In Chapter VI, 917.1, we introduced the concept of f ree  and non-free 
cycles without contact, elementary a- and o-arcs ,  simple and cyclic 
elementary a r c s .  Let u s  re i terate  some of the propositions corresponding 
to these concepts. 

1) Any nonsingular path c ros ses  either precisely one a-cycle o r  
precisely one a -a rc  (simple or cyclic) a t  an interior point, or it c r o s s e s  
either one o-cycle o r  one a-arc .  

2 )  Nonsingular paths crossing an a-arc (o-arc)  cannot c r o s s  a f ree  
o-cycle (a-cycle), and al l  these paths c r o s s  the same o-arc (a-arc) .  If 
the a - a r c  and the o-arc  a r e  such that a nonsingular path crossing one of 
the a r c s  inevitably c ros ses  the other a rc ,  the two a r c s  a r e  said to be 
conjugate. 
paths a r e  called conjugate f ree  cycles.  

pas ses  either through the common end point of tqvo simple o -a rc s  ( a -a rc s )  
o r  through the end point of a cyclic o - a r c  (a-arc).  

o - a r c s  or a single pair of conjugate a-  and o-cycles (QT, Chapter XI, 
527, Lemma 5). 

system a r e  conjugate. 
structurally unstable systems. 

L e m m a 3. 
system, at least one is a simple (not cyclic) ayc. 

P r o o f  . Let a be a cyclic a rc ,  M o  i t s  end point. 
a cyclic a - a r c .  
contact C which either belongs to a source o r  is a boundary cycle. 
be a path through M o .  
a singular path, i .e . ,  it is either a separatrix,  or  a corner  semipath, or a 
corner  a r c  of a path. 

Similarly, f ree  a -  and o-cycles which a r e  crossed by the same 

3 )  Any a-separatrix (o-separatr ix)  of a saddle point of system (A) 

4) The paths of the same cell c r o s s  a single pair  of conjugate a- and 

We will now prove that no two cyclic a r c s  of a structurally stable 
Note that this proposition does not apply to 

Of two conjugate elementury urcs of u structurally stable 

To fix ideas, le t  a be 

Let Lo 

, 

The a r c  a and the point Moconstitute a cycle without 

According to the definition of a cyclic a r c ,  Lo is 
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F i r s t  assume that L o  is a separatr ix  of some saddle point 0. It i s  
c lear ly  an w-separatrix, i .e.,  it goes to O f o r  t - t  - UJ. 
a-separa t r ices  of the saddle O(Figure 70). 
with a .  
end point M<!, c r o s s  the a r c  b at i t s  inter ior  points as t increases .  

Let L ,  and L? be 

All the paths passing through points of the a r c  a ,  other than i t s  
Let b be the o-arc  conjugate 

FIGURE 79 FIGURE 71 

The separa t r ices  L ,  and L ,  should pass  through the end points of t. 
Indeed, i f  the separatr ix  L t  does not pass  through an end point of b ,  it 
passes  through the common end point of two a -a rc s  6, and br or through 
the end point of a cyclic w-arc b J .  
points of the a r c  a near  The point \I,, a lso  c r o s s  the a r c s  b,. bZ , or b3 as  t 
increases ,  i.e., they do not c r o s s  the a r c  b,  contrary to the assumption 
that a and b are conjugatc- a r c s .  

The separa t r ices  L ,  and L? thus must pass  through theendpoints of b. 
Since these separatr ices  have no common points, the end points of b do not 
coincide, i . e . ,  b is a simple a r c .  

Let now L o  be a corner  arc or a semipath. 
which is the commonenc point of the semipath {or a r c )  Lo  and the boundary 
a r c  without contact L (Figure 71). The paths through the points of the 
a r c  a sufficiently c lose t,3 the point M0, which l ie  on the s a m e  s ide from 
L n  as the a r c  X ,  wil l  evidentlycross the a r c  ;i. as t increases .  
readily seen  that 1. and Q are conjugate a r c s .  Since >. is a boundary a r c  
without contact, i t  is a simple o-arc .  
lemma.  

W e  wi l l  now consider the different types of simply connected inter ior  
cel ls  of structurally stable sys tems.  

Let Z be such a cell. 
a saddle point and i t s  separatr ix .  
intersect  the free cycle (- which belongs to a source or a sink. 
i f  the paths of Z c r o s s  this cycle, all the points of the cycle belong to 2. 
Therefore,  boundary points of the cell, and hence the boundary continua, 
l ie  both inside and outside the cycle L’. These boundary continua should 
not have any common points, i.e., the cel l  2 is not simply connected, 
contrary to the original assumption. 

But then paths passing through the 

Let P be a corner  point, 

It is thus 

This completes the proof of the 

By Theorem 28, the boundary of Zcompr ises  

Indeed, 
Paths  of the cel l  2 clear ly  do not 
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Since -%I; and J1.i are two different points, b is a simple a r c .  Let Ct, be a 
Cb belongs to the sink to which cycle without contact comprising the arc b. 

the separatr ices  L; and L; go for t + 7 0 0 .  

H e r e  again w e  shou;d consider two alternatives:  
-461) The cycles without contact C, and Cb do not enclose one another. 
X l 2 )  The cycle C,: l i es  inside the cycle Cb. 
Consider case -411 f i r s t .  
A l l )  T h e  c y c l e s  w i t h o u t  c o n t a c t  C, a n d  C b d o  n o t  e n c l o s e  

o n e  a n o t h e r .  Let y be a simple closed cur1.e consisting of the arcs a 
and b, the segments .%f2g2 and M,O,  of the separatr ices  L? and L , .  
respectively, the segments 02M; and O J I ;  of the sepa ra t r i ce s  L; and L ; ,  and 
the equilibrium s t a t e s  17, and 02. Let A be the simply connected region 
bounded by the curve y 
of the arcs a and b belong to the cell  2, and a l l  the other points of y are 
boundary points of 2. 
froni the cycle C, with increasing t .  
region 3 or leave i t .  

The points of the curve p which a re  the interior points 

All the paths of the cell cross the arc u and emerge  

M'e  w i l l  show that they necessarily enter  this region. 
rhese paths should ei ther  enter  the 

FIGURE 74. a i  S! unstable node, SI stable node: b) S unstable 
node; c )  S unstable node: d) S st jble  node; e) S stable node. 
In cases t.g, h , i .  L ,  is an unstable cycle. 

183 



Ch. VII. CELLS OF STRUCTURALLY STABLE SYSTEMS. ADD1 IYONS ‘TO I’HEOKY 

Indeed, let the paths of the cel l  2 which c r o s s  the a r c  a leave the region 
Then there a r e  points of the cell 2 which lie A as t increases  (Figure 7 3 ) .  

outside the curve y ,  and therefore a lso boundary points of Z with this 
property.  
The se t  E consists of the points of singular paths. 
the regions enclosed by the l imit  cycles C, and Cb lie inside the curve.  
Therefore,  the separatr ices  L t ,  L;,  Lz, and L; have no points which lie 
outside y ,  i .e.,  E is the se t  of points of singular paths, other than the 
separatr ices  L,, L; ,  Lz ,  L; and clear ly  other  than the equilibrium states Oi and 
02. 
outside belong to nonsingular paths. The se t  E is therefore a t  a positive 
distance outside the curve y .  ‘This means that E does not intersect  with 
the boundary continuum which contains the separa t r ices  L,, Lz ,  L;, L; and 
their  limit points, i .e . ,  the cel l  2 has at  least  two boundary continua. This 
evidently contradicts the assumption that Z is simply connected. 

We have thus established that in the case A L ~  all the paths of the cel l  Z 
crossing the a r c  a leave the cycle C, and enter into the region A as t 
increases  (Figure 72). 
according as the source or respectively the sink to which the paths of the 
cell go is an equilibrium state  or a limit  cycle, and in the la t ter  case,  
according as the direction of motion along the l imit  cycle is positive 
(clockwise) o r  negative. 
consists of the separa t r ices  L, ,  L;, L z .  and L; and their a- and o-limit 

Let E be the set  of these boundary points (which l ie  outside y ) .  
It is readily seen that 

But a l l  the points which a r e  sufficiently close to the curve y f rom the 

The cell wil l  be of one of the types shown in Figure 74 

In case A11 the boundary of the cell 2 evidently 

without contact Cb clear ly  belongs to some stable l imit  cycle L o ,  and Cb lies 
inside Lo (Figure 75). Considering, as before, a simple closed curve y and 
the region A enclosed by this curve,  we readily see  that A is par t  of the ring 
region enclosed between the cycles C .  and C b .  The paths of the cell Z c r o s s  
the a r c  a and with increasing t enter  into A .  
paths c ros s  the a r c  b,  enter  into a canonical neighborhood of the cycle Lo 
and go to Lo.  
The limit  cycle Lo is therefore par t  of the boundary of the cell 2.  
this boundary consists of the separa t r ices  L , ,  L 2 ,  L; ,  and L; and their a- 
and w-limit points. 
Figure 76. The exact type depends on the character  of the source to which 
C, belongs and on the direction of motion along this source (if i t  is a cycle) 
or along the cycle Lo.  

As t further increases ,  these 

The separatr ices  L; and L i ,  with increasing t ,  also go to L o .  
A s  before, 

The cell 2 belongs to one of the types depicted in 

FIGURE 75 
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FIGURE 76 

Let u s  now consider case Az. 
A?) r h e  s a d d l e  p o i n t  0, c o i n c i d e s  w i t h  0,  (Figures  77,75,80).  

In this case ,  the separatr ix  L ; ,  which is an w-continuation of the separa t r ix  
in the positive direction, is a l s o  a n  o-continuation of the 

separa t r ix  L ,  in the negative direction and en ters  the 
boundary of the cell  2.  Let b be a n  arc without contact 
conjugate with the a r c  a ,  and Ch a cycle without contact 
comprising the arc 6 .  f i e  separa t r ix  L ;  passes  through 
the end point -11; of the arc b. I? is readily seen  that paths 
crossin:? the arc a pass  through the points of the cycle Cb 
sufficiently near  ?he point -\I;, on ei ther  side of this point. 
Therefore  b is a cyclic a r c .  

Let m; be a simple closed curve consisting of the 
segmen1.s J f I O l  and .\I@, of the separa t r ices  L ,  and L ? ,  
respectively, of the a r c a ,  and the point 0,; let  1 be the 
region Enclosed by the curve y .  
possibil i t ies : 

8 
c, 

FIGL'KE '77 There are two 

A z l )  I 'he  p a t h s  of t h e  c e l l  Z c r o s s  t h e  a r c  a 
a n d  e n t e r  i n t o  _I a s  t i n c r e a s e s  (Figure 77). In this case, the 
separa t r ix  Ll ' ,  and a l so  the cycle without contact C+, lie inside the cycle y, 
and the sink to which CS 'Delongs l i e s  inside Cb. The cycles  C, and Cb do 
not enclose one another.  
separa t r ices  L , .  L ? .  L ;  and their  a -  and 6)-limit points. The cell Z belongs 
to one of the types shown in Figure 78. 
exact type of the cell  depends on the charac te r  of the sources  and s inks to 
*xhich the paths of the cel l  go and on the direction of motion along the 
source  (or the sink), aseuming that i t  is a limit  cycle.  

1 a s t i n  c r e  a s  e s (Figures  75 and 80). 
(.',? and Cb do not enclose one another (Figure 79) or cycle C, lies inside 
( ' o  (Figure 80). 

The boundary of the cell  Z consis ts  of the 

A s  in the previous cases, the 

A22) T h e  p a t h s  of t h e  c e l l  Z c r o s s  t h e  a r c  a a n d  l e a v e  
In this case, ei ther  the cycles 
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d 

h i g 

FIGURE 78 

FIGURE 79 FIGURE 80 

However, reasoning along the same l ines  as for  case  -~ Ail, we - can - .. show 
Thus, cycle c. l i es  

. _ .  .. that the case depicted in Figure 79 is inapplicable. 
inside cb. 

' 

Hence i t  follows that the source to which Cb belongs is a limit 
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cycle L o ,  and Cb lies inside L o .  The boundary of the cell Zconsis ts  of the 
separa t r ices  L l ,  L 2 .  L ;  and their  l imit  points. 
of t h e  types shown in Figure 81 

The cell Z may belong to one 

a 

C 

e 

FIGURE 81 

b 

d 

f 

We have fully covered case A, when the. source belonging to the cycle C, 

B) T h e  s o u r c e  w h i c h  b e l o n g s  t o  c y c l e  C, l i e s  o u t s i d e  C,. 
An unstable l imit  cycle L o ,  with C,J lying inside L o ,  is evidently a source 

of this kind. 
points MI and , I f J  of the arc Q may 

l i e s  inside C,. 

A s  i? case A, the separa t r ices  L1 and L n  through the end 

Bl)  go to  different sa.ddle points Ot and O,(Figure 82);  
B2) go to the same  saddle point O1 (Figure 83). 

FIGURE $ 2  FIG L'RE 8 3 
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It is readily seen that case B1 is analogous to case  Al2, differing from 
the la t ter  only in the direction of a r rows  along the paths, and case  E2 is 
analogous to case  Az2.'" 
these cases  in particular detail. 
case  Bz a r e  shown in Figure 84. 
shown in Figure 81. 

Correspondingly, there  is no need to analyze 
The types of cel ls  corresponding to 
These cel ls  a r e  analogous to those 

a b 

C d 

e f 

FIGURE 84 

We have so far assumed that the a r c  a is a simple a r c ,  and i ts  conjugate 
a r c  b is ei the-  simple or cyclic. 
conjugate a r c  a is cyclic a r e  obtained from A2 and B2 by reversing the 
direction of the a r rows  along the paths. 

Definition 22 - simply connected inter ior  cel ls  which may exist  in  
structurally stable systems.  We w i l l  not do this, however. It should 
only be s t ressed  that the above analysis does not show that each of the 
different cell types described actually exis ts  for  one of the structurally 
stable systems.  

The cases when b is a simple a r c  and i t s  

We can now count the total number of different - in the sense of 

We have only established that structurally stable systems 

* In case A**, the source lies inside the sink, and in  case B, the sink lies inside the source. 
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can have no other type; of simply connected inter ior  ce l l s  in addition to 
those described. 
described do exist, ho,,vever. This can be done, say,  by constructing a 
dynamic system corresponding to each cell type in ternis  of its vector 
field. 

Me have established all the different types of doubly connected cel ls  
I,F19.2), and all the types of i n t e r i o r  simply connected cel ls  which may 
occur in s t ructural ly  stable sys tems.  
connected cells which are not internal cells, i .e . ,  cel ls  whose boundaries 
have points in common with the boundary of the region. 
analyze these cells, as this  can be done along the same l ines  as before. 
Figure 85 depicts the different types of simply connected ce l l s  of a 
s t ructural ly  stable system which touch the boundary of c* fo r  the case  
when this boundary consis ts  of a single cycle without contact. 

I t  can be proved without difficulty that a l l  the cel l  types 

It remains  to consider simply 

W e  w i l l  not 

FIGURE 85 

The concept of the r e g i o n  o f  s t a b i l i t y  i n  t h e  l a r g e  of a given 
sink is of considerable importance in various applied problems. 
region is defined as the se t  of a l l  the cells for which the given singular 
element is the sink. 
found in the next section. 

This 

Examples of regions of stability in the large will be 
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assuming that 

and 

D = a'-413. = (a-d)' + 4bc > O  (U = a +d). 

Since for system (1) 

xr+ya=RS. 

The path 

of system (1) is tangent to the circle  ( 6 )  a t  a point (x, y) when 

. .  

From equations (1).  we have for sufficiently large R 
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$20. EXAMPLES OF STRUCTURALLY STABLE 
SYSTEMS 

In this section we wi l l  consider some examples of structurally stable 

E x  a m p  1 e 4. Consider the system 
systems.  

z = ax + b y - x  (39 + y2) = P (5, y), 

Y + ~ Y - U  (2' + Y') = Q (z, Y), 

then together with any solution x = cp ( t ) ,  y = $ ( t )  of ( l ) ,  x = - 'p ( t ) ,  y = - 9 ( t )  
is also a solution of (1). 
t i o n  of a n y  p a t h  of s y s t e m  ( 1 ) a t  t h e  o r i g i n  i s  a l s o  a p a t h  
or, alternatively, t h e  p h a s e  p o r t r a i t  of  t h e  d y n a m i c  s y s t e m  
(1) i s  s y m m e t r i c a l  a b o u t  t h e  o r i g i n .  

Geometrically this signifies that t h e  r e f 1 e c - 

Let u s  consider the system (1) inside the circle  

with the boundary 



S 20. E IALIPLES OF STRL'CTLrRALLY ST.48LE SYSTEhlS 

The las t  relation sh3ws that for  sufficiently large R, c i rc le  ( 6 )  is a 
cycle without contact for paths of system (1). Moreover, since 

* . l d  
2 d t  xx+yy=--(x*+f*), 

i t  follows from (8) that, as f increases ,  Z i y' diminishes, i.e., a l l  the 
paths crossing the circle  (6)  enter  into the cycle without contact (6)  a s  t 
increases .  

It  follows f rom (2) ,  as is readily seen, that the paths through the points 
of the axis x = 0 c r o s s  from one side of the axis to the other side (with the 
exception of the path which i s  the equilibrium state  0 ( O m ) .  

equation 

W e  will take R to be so l a rge  that the las t  condition is satisfied. 

Let P (2, y) # 0. W e  then change over from sys tem (1) to a single 

Let u s  determine for what k the straight line 

y=kX (10) 
or par t  of this line is an integral  curve of equation (9). 
w e  have 

F rom (9) and (10) 

= c+dk- -kr* ( i  + k * )  
u+bk -s* ( 1  + k * )  

or 

Hence 

From ( 2 )  and (4) it follows that there exist  precisely two values of k 
satisfying equality (12). 
sponds to the plus in  (12) and kz to the minus. 

point 0 (0, 0). There  a r e  obviously no other equilibrium s ta tes  on the 
vertical  axis. 
point 0 (0, 0)therefore have the form (xo, h0). Inserting these coordinates 
in the equations P (x, y) == 0, Q (x, y) = 0, w e  find that k sat isf ies  
equation ( l l ) ,  i.e., every equilibrium state  of system (l), other than the 
point 0, l ies  on one of the straight l ines y = kiz and y = k g ,  where k, and 
kz are defined by (12). 

Let these two roots be k, and k2, where k,  c o r r e -  

Let u s  now find the s ta tes  of equilibrium. One of these is the 

I'he coordinates of any equilibrium state  other than the 

From the equation P (xo, kxo) = 0 we now find that 

so that 

yo=kxo= i k m  
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The cbaracter is t ic  equation of the equilibrium state 0 (0, 0) is 

A2 - n;l + A = 0. (15) 

It  follows from ( 3 )  that 0 (0, 0) is a simple saddle point. Let A, and h2 be 
the roots  of equation (15). Direct calculations show that 

a +  bk, = A l ,  a + bk, = &, (16) 

From ( 1 3 )  and (16) i t  follows that the straight and, by (3), hi > 0 ,  hz ( 0 .  
line y = k2x has  no equilibrium states  (except the point 0) and therefore the 

r ays  y = k2x ( x  > 0) and y = k g  ( x  -= 0)are  
paths of the system, i.e.,  separa t r ices  of 
the saddle point 0. 
y = klxr on the other hand, contains p r e -  
cisely two equilibrium states  in addition to 
the origin, 0, ( x o ,  yo) and 0, (-xo, -yo), where 
xoand yo a r e  obtained from (13) and (14) for 
k = k,. The equilibrium states  0, 01, and O2 
partition the line y = k,x into four par ts ,  
each of which is a path of the system. The 
segments 001 and 002 of the line y = kix are 
separa t r ices  of the saddle point 0. 

Fairly simple calculations show that 

Therefore the points 0, and 0, a r e  simple 

The straight line 

A (XO. YO) = A  (-- ~ o y  -YO) = 2 L  1/B > 0. 
FIGURE 86 

nodes (these cannot be foci, since they are 
l imit  points of paths which a r e  segments of the line y = kls). 

at least  one of the equilibrium states  0, Oi, 0, and i t  should therefore c r o s s  
the line y = k,x. which is unfeasible, since this line is made up of a number 
of paths of the system. System (1) thus has  no closed paths and no saddle- 
to-saddle separatr ices;  it has  three equilibrium states  - a simple saddle 
and two simple nodes. Therefore by Theorem 23, system (1) is structurally 
stable in the circle  (5). The configuration of the paths is shown in 
Figure 86. 
all the paths enter  into the circle  (5) as t increases .  

The circle  (5) contains two cel ls  of system ( l ) ,  2, and 2,. 
a r e  filled with semipaths and are simply connected. 
cel l  2, (2,) is made up of the separa t r ices  OA, ,  O A 2 ,  and 00, (00,), 
equilibrium states  0 and 0, (02), and a simple a r c  without contact 
A l B , A 2  (A lB ,A2) .  
The cel l  2, (&)is the region of stability in the la rge  of the stable node 
01 ( 0 2 ) .  

System (1) has  no closed paths. Indeed, a closed path should enclose 

The direction of the a r rows  along the paths is chosen so that 

Both cel ls  
The boundary of the 

The conjugate a r c s  of A,B,A ,  and A,B2A, a r e  c lear ly  cyclic. 

E x  a m p  1 e 5. Consider the system ( 1 )  as before 

; = u x + ~ ~ - z ( z ' + ~ ' ) ,  6 / = c ~ + d y - - y ( x ' + y ' ) ,  
assuming that 

u = a  + d  >0 ,  

D = @ - 4 A  > 0. 
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A s  in the previous example, c i rc le  ( 6 )  of a sufficiently la rge  radius  R is 
a cycle without contact and all the paths of our  system enter  into it as t 
increases .  

Consider the syste  71 inside circle 15 J of sufficiently la rge  radius.  The 
l ines y = k , ~  and y = k : ~ ,  where k ,  and k 2  are the roots  of (11). are made up 
of paths of our system. 

positive and different in virtue of conditions (171, (181, (19j,  so that 0 is an  
The  character is t ic  roots 2., and 2.? of the equilibrium s ta te  0 (0. 0) are 

unstable node. F rom (131, (14j ,  
(16 )  and from the fact that both i., 
and i.? are positive we conclude that 
each of the straight l ines y = k , ~ ,  
y : k,r contains, besides the point 
0, two other equilibrium states. 
Let these equilibrium s ta tes  be 
-4,. B: and A ? .  B,, respectively 
\Figure 87J. Calculations show 
that for the equilibrium s ta tes  -4, 
and B, lying on the straight line 
y = k,x, the determinant 3 = 
= 2i., J T D >  0 ,  and for the equilib- 
r ium s ta tes  A: and LIZ,  A = 
- -%? 1 < 0 .  Thus, d, and B, are 
s imple nodes, and A ?  and B, are 
s imple saddle points. The sys tem 
has no closed paths for the same  
reasons  as before, and i t s  phase 
portrai t  is s y n i a e t r i c a l  relative 

- 

FIGrrRE t.7 

to the origin 0. 
direction of the a r rows  along the paths and the direction of the separa t r ices  
are determined so as  to ensure  that all the paths enter  into the boundary 
cycle without contact as t increases .  

This  circle consis ts  O F  four cells: Z,. Z2 and the two cel ls  Z;, 2; in 
synimetrical  position :elative to the origin.  Zi is an  inter ior  cell .  
consis ts  of whole path.; extending from the unstable node 0 to the stable 
node : I , ,  and belongs to  the same  type as cell a in Figure 74. 
s i s t s  of semipaths and belongs to the s a m e  type as cell  Q in Figure 85.  
stability region of the node -4, compr ises  the ce l l s  Z, and Z ? ,  and that of 
the node B, the cells Z ;  and 2;. 

any other combination of the coefficients a, 6 ,  c, d .  
Example 18. 

The configuration of the paths i s  shown in Figure 87. The 

By I’heorem 23 ,  the sys tem is structural ly  stable inside the circle (5).  

It 

Cell Z? con- 
The 

R e  m a r k  . System (1) may be investigated by analogous methods for 
See QT, J30, 

E x a m p l e  6 .  The sys tem 

has  two equilibrium states ,  A (0, - 1 
an  unstable focus and 13 is a saddle point. 

1”) and B(0,  - i-JrT). H e r e ,  -4 is 
It is readily verified that 
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Ch. VII. CELLS OF STRUCTURALLY STABLE SYSTEMS. ADDITIONS TO THEORY I 
the ci rc le  

xa+y*---l=O (21) 

is a path of the system (see QT, $30, Example 14). 
this c i rc le ,  and the saddle point B outside the circle .  

of system (20). 

The focus A lies inside 

W e  will now show that the circle  (21 )  is a structurally stable limit cycle 
To prove this, we have to evaluate the integral 

is a solution of the system corresponding to path (21), and 7 is the period 
ofthefunctionscp and $ (z>O). By (34), 813 

where Lo designates the circle  (21). 
by expressing the circle  Lo in parametr ic  form x = cos t ,  g = sin t and in-  

The las t  integral  is readily evaluated 

serting f o r  P and Q their  expressions from 
sin t + 2  cos t 

2-cost  d t=  ,Infinity (20). As a result ,  we f indJ=  ' 

4 =Tn: (3 -2v3) (0. Hence i t  fchows that 

c i rc le  (21 )  is a stable structurally stable 
l imit  cycle for our  system. 

in a plane was investigated in QT, 530, 
Example 14.': 
system (20)  has  no other closed paths, 
except the circle  (21), and has  no saddle-to- 
saddle separatr ices .  The configuration of 
the paths of system (20) is shown in 
Figure 88. 

bounded by the a r c s  without contact EF and 
RS and the a r c s  of paths F R  and E S  (Figure 88), 

The topological s t ructure  of system (20) 

It was established there that 

Let c* be a region with a normal boundary 
FIGURE 88 

which encloses the equilibrium states  A and B of the system and i t s  limit 
cycle (21). 
contains four cells.  2, is an internal doubly connected cel l  consisting of 
whole paths which unwind f rom the focus A and wind onto the l imit  cycle Lo.  
The other three cel ls  a r e  simply connected. 
semipaths and is bounded by an a r c  without contact E,F, ,  three separatr ices  

By Theorem 23, system (20) is structurally stable in G*. c* 

The cell  Zz consists of 

* This investigation analyzes the behavior of the paths of system (20) at infinity and considers the paths of an 
auxiliary system 

d+ 
d t  dt  
-=2y+sa+ys-i ,  *= --2r, 

which have a general integral (ze + ya - l )eY = C .  The closed paths of the auxiliary system form a 
topographic system of curves for system (20).  
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f 21. DEFI?.ITLCh' OF STRIICWIUL STABILITY WITHOL'T E -1DEKTTITY 

of the saddle point B, limit cycle L o ,  and saddle point B .  The other  
two ce l l s  z3 and 2; consist of arcs of paths. 
without contact E p ,  entering the boundary of the cel l  Z2 is clear ly  a 
cyclic arc without contact. 
the ce l l s  Z1 and 2,. 

The conjugate of the arc 

The stability region of the cycle Lo compr ises  

5 2 1 .  
FOREGOING THE REQUIREILIENT OF &-IDENTITY 

A DEFJBITION OF STRUCTURAL STABILITY 

b e  will consider in :his section dynamic sys tems s t ructural ly  stable 
in ITwhichare  b o u n d e d  b y  a c y c l e  w i t h o u t  c o n t a c t  F. We have 
seen  in Chapter VI  (S18.4,a) that s t ruc tura l  stability of system (A) in such 
a region can be defined as follows: 

without czntact r if for  any E > 0 there  exis ts  6 > 0 such that for  any 
system (A)  6-close to  (A) the following relation is satisfied: 

I. System (A)  is s t ructural ly  stable in  region ts'bounded by a cycle 

- , e  - 
(ti-, A) = (it-, A ) .  

Definition I not only requi res  that sys t ems  sufficiently c lose to the 
s t ructural ly  stable system (A) have the same topological s t ruc ture  as (A) 
in E, but a l so  imposes a fur ther  condition, namely that the paths of any 
such sys tem can be moved into the paths of sys tem (A) by a n  a rb i t ra r i ly  
small  translation. 
definition of s t ructural  instability of a system. And yet, according to the 
most natural and straightforward definition, a system is s t ructural ly  
unstable if i t s  topologica: s t ruc ture  can be al tered by infinitesimally smal l  
increments .  U e  thus a r r ive  a t  a bet ter  definition of a s t ructural ly  stable 
system: 

11. bounded by a cycle 
without contact r if  there  ex is t s  6 > 0 such that any dynamic sys tem (A) 
6-close to (A)  has  the same  topological s t ruc ture  as  (A) in  F?.' 

Definition I1 is s impler  than Definition I, s ince i t  imposes fewer 
rest r ic t ions on s t ruc tur i l ly  stable sys tems.  
is s t ructural ly  stable in the sense  of I i t  is a l so  s t ructural ly  stable in the 
sense  of 11. The r eve r se  is not immediately obvious: i t  would seem that 
there might be dynamic sys tems which would be s t ructural ly  s table  in the 
sense  of I1 and s t ruc tu rd ly  unstable in the sense  of I. In fact, however, 
this is not so, and the two definitions are equivalent. 
by Peixoto in /14/, and the present  section is devoted to Peixoto's proof. 

R 2'. i.e., the space of analytical €unctions with the distance defined in 
t e r m s  of the f i r s t  derivatives only. 

proof is completely analogous (or even s impler ) .  

All :hese factors  combine into a fair ly  complex 

System (A) is structural ly  stable in. region 

It is clear that if system (A)  

This  fact w a s  proved 

To fix ideas, we wi l l  consider s t ruc tura l  stability in  relation to the space 

In case of s t ructural  stability re la t ive to  the spaces RF), R'$, the  

W e  should specify in Definitions I and I1 in relation to  what space, RC) or R,;', the structural stability is 
being considered. 
ice  in what foilows that i t  i s  immaterial  for Definition II. either. 

However, by virtue of remark d in 918.4, this is immaterial  for Definition I. W e  will 
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Conditions I, 11, 111 of Theorem 23  (118.2) w i l l  be designated CSS 
(conditions of s t ructural  stability). 

1) existence of only a finite number of equilibrium states  of system (A) 
in region W ,  these equilibrium states  being simple nodes, saddle points, 
or foci; 

2 )  absence of saddle -to-saddle separatr ices;  
3 )  absence of closed paths with character is t ic  index equal to zero.  
To prove the equivalence of Definitions I and 11, we wi l l  establish that 

the CSS follow from Definition 11. 
in the process .  

r i g h t - h a n d  s i d e s  P ( x ,  y ) a n d  Q ( x ,  y ) i s  a n  a n a l y t i c a l  d y n a m i c  
s y s t e m  s t r u c t u r a l l y  s t a b l e  i n w i n  t h e  s e n s e  of  
De  f i n i t i  o n 11, and 6 is the number mentioned in this definition. 
Analytical dynamic systems 6-close to system (A) will be called 
f e a s i b  1 e s y s t e m  s . 
topologicai s t ructure  in 
paths of system (A) which c r o s s  the cycle without contact r enter  into W as 
t increases .  

L e  m m a  1 .  Structurally stable systems in the sense of Definition 11 
form an open set in the space of all (analytical) dynamic systems. 

The validity of Lemma 1 follows directly from Definition 11, since by 
this definition feasible systems a r e  structurally stable.” 

L e m  m a  2. System (A) has only a finite number of equilibrium states, 
which are all simple. 

P r o o f  . By Weie r s t r a s s ’ s  theorem, there exis ts  a feasible sys tem (A) 
whose right-hand sides a r e  irreducible polynomials (see proof ,Of 
Theorem 10, 17.2). 
a finite number of equilibrium states .  
finite number of equilibrium states .  
is thus proved. 

Let u s  now prove that a l l  the equilibrium states  a r e  simple.  
that one of the equilibrium states  of (A) is multiple. 
point 0 (0, 0), i.e., P (0, 0) = Q (0, 0) = 0 and A (0, 0) = 0. 

vanishes for  a l l  the other equilibrium states  of (A). 

These conditions postulate 

We will require a number of lemmas  

In Lemmas 1 throught 8 it is assumed that s y s t e m (A) w i t  h t h e  

By Definition 11, feasible sys tems have the same 
W e  wi l l  assume that all the as the system (A). 

F rom the Bgzout theorem i t  follows that (A) only has 
But then (A) may also have only a 

The f i r s t  proposition of the lemma 

Suppose 
Let this be the 

Let cp ( x ,  g) be a polynomial which is equal to 1 a t  the point 0 (0, 0) and 
Consider the system 

where a and b a r e  rea l  numbers smaller  than 1 in absolute value, and e > 0 is 
so small  that system (1) is feasible.  All the equilibrium states  of (A) a r e  
clearly a t  the same time equilibrium states  of system (1). 
feasible system, the number of i t s  equilibrium states  in @ is the same a s  
that of (A). 
equilibrium states  in w. 
equilibrium states  of system (A), except the point 0, fall outside this 

Since (1) is a 

This means that the two systems (A) and (1) have the same 

Let C be a circle centered at  0 (0, 0) which l ies  in W so that all  the 

Similar propositions for structurally stable systems in the sense of Definition I were advanced in 918.4.c, 
Theorems 25 and 26. Their proof, however, far from following directly from Definition I, conversely 
requires a preliminary derivation of the conditions of structural stability. 
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circle .  I 4  e choose E > 0 to be so small  that for  any two systems of the 
form \ l ) ,  the vectors  of the corresponding fields do not point in opposite 
directions at any point of the c i rc le  C. Then by QT, S10.2, Lemma 2, 
the rotations of the vector fields of all these sys tems on the c i rc le  C' a r e  
equal to one another.  
and hence of any system ( I ) ,  the Poincare index of the equilibrium state  o i s  
constant for all the sys tems (1). 

Since C encloses a single equilibrium state  0 of (A), 

On the other  hand, i t  follows from equations (1) that 

An appropriate choice o f  the numbers a and 6 will make 3 (0. (3) ei ther  
positive or negative. Ey QT, S11.4, Theorem 30, in the fo rmer  case  the 
Poincare index of the equilibrium state  0 is + 1, and in the la t te r  case  i t  is 
-1, This,  however, contradicts the previous resul t .  The proof is thus 
complete. 

L e )rz H I  a 3. None qf the equilibritrw states of system ( A )  i s  a centev. 
P r o o f  . f* is the divergence of the vector field ( P ,  Q ) ,  designated 

Let U i  (ai.  bi). i = 1, 2, j .  ., n ,  be a l l  the equilibrium states of system (A). 

T,W ~ ) = m ( z - - n , ) t ~ ( y - - b ~ )  

( j  = 1 . 2 , .  . ., n), where the numbers m and p are chosen so that 

d i v ( q j ,  q j ) = m + p j ; O  

'7 Y 

div ( P ,  0). 

Consider the l inear  functions 

W e  wil l  use  this notation in the following. 

and for  j # k ,  q j  ( a h .  bk) #(I.  Let (1. y) = T , Q . .  . q,,. 
Clearly,  q(5, y ) = O  a t  any of the points Oi.  Now from the equality 

and from the previous conditions i t  follows that div (cp, cp) does not vanish at .. . 
any of the equilibrium states of system (A). 

Consider the system 

d5. = P ( X ,  y) $. E? (I, y) = P*, 2- = Q (5, y) 4- E'P (I, y) = Q*, d r  

where ~ f - 0  is so smal l  that system (A*) is feasible. The set of the 
equilibrium s ta tes  of (R') evidently coincides with the se t  of the equ 
s ta tes  of (A), i.e., i t  corisists of the points U j .  Since 

div ( P * ,  Q*) = div ( P ,  Q) + e  div (9, (p), 

fo r  sufficiently smal l  E ,  'div (P* ,  Q*)#O a t  those of the points O j  where 
div ( P ,  Q) # 0 .  At those of the points 0, where div (P ,  Q) = 0, we have 

div (P ,  Q*) = E div (cp, (p) =#= 0. 

A"' ) 

libr iu m 
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Thus, div ( P * ,  Q*) # 0 for all 0,. i .e. ,  none of the equilibrium states  of 
system (A::-) is a center.  
and the proof of the lemma is complete. 

too. 
center-foci follows directly from the existence of feasible analytical 
systems. 

Therefore, system (A) has no centers  either,  

R e  m a r k .  The above proof remains  in force for systems of c lass  1, 
The fact that structurally stable systems of c lass  1 cannot have 

L e m  m a  4. 
P r o o f .  Le tq ,O(q(n ,besosmal l  t h a t f o r a n y h E 2 ,  where lis the 

System (A) has no saddle-to-saddle separatrices. 

segment O<h,<1, the system 

$ = P cos (A?) -Q sin (nq), 

-$ = Psin (ill) + Q cos (~zq) 
(A A )  

is feasible. 
vector f ie ld  of (A) by rotation through the angle bq in the 
The equilibrium states  of (A,) and (A) coincide. Finally, 

The vector field of the system (A,) is clearly obtained from the 

f 

(A,) and (A) are equal a t  every point, as is readily seen. Therefore the 
saddle points of (A,) and (A) coincide. 

=i, 2, . . ., m);  the separatr ices  of 
each saddle point 0, will be denoted 
Lit, L i z ,  Lis, Lib 

On each separatr ix  L i f  ( j  = 1, 2, 3, 4; 
i = i, 2, - . ., m) we choose a point CtJ  
which is sufficiently close to the c o r r e -  
sponding equilibrium state 0,, so that 

t r ices  intersect .  
neighborhoods of these segments 
satisfying the following conditions: 
each neighborhood Ui l  contains only one 
equilibrium state  of sys tem (A), 
namely Oi, and only one of the points C ,  
namely C i f  (Figure 89). 
Cit are sufficiently close to the 

Let these saddle points be 0, ( i  = I 

no two segments OiCiJof the separa-  
Let U i ,  be the 

If the points FIGURE 89 

respective o,, such neighborhoods clearly exist .  

segment of a normal to the path 1 , ~ )  which is entirely contained inUliand is 
so small  that the segments l i l  have no common points with one another and 
each segment l i j  has only one common point with al l  the segments Olei,  of 

Through each point Cii, w e  now pass  a segment without contact I i J  (e.g., a 

the separatr ices ,  namely the point CiJ.  
to (A), e.g., i f  q is sufficiently small ,  we conclude f rom S9.2, r emark  to 
Lemma 3, that to every segment OiCir of the separatr ix  L,, of the saddle 
point oi corresponds a segment OiC(,:)of the separatr ix  L$)of the saddle 
point 0, of system (A,) which is entirely contained in Ui ,  and is such that 
C$’ E Z i j .  
a single common point with all the segments 0,Cfj”) of the separatr ices  of the 
system (A,). 
satisfied for all (A,), I E I .  

E system (A,) is sufficiently close 

Furthermore, as in the case  of system (A), every segment ZiJ has  

We will assume that q is so small  that this condition is 
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In view of the above, every neighborhood U i j  thus neturally corresponds 
to a single separa t r ix  of any system (Ai), O.<b < i ,  namely the separatr ix  
L::! 
s p o n d i n g  t o  t h e  n e i g h b o r h o o d  Ui j .  

ideas, le t  y extend f rom saddle point 0, to O?. 
extending from some saddle point to the s a m e  saddle point, i.e., forming 
a loop, is treated analogously. 

into the paths of (A,) (this homomorphism exis ts ,  s ince (A)  is a s t ructural ly  
stable system and ( A , )  is a feasible system; 
T ,  ( y ) i s  a separa t r ix  exknding from the saddle point T I  (0,) to the saddle 
point T k  (/I2). Being a separa t r ix  of two saddle points, i t  c lear ly  c o r r e -  
sponds to two (different) neighborhoods U i i .  

the pa i r s  of neighborhoods U i i  form a countable set. Consequently, there  
exis ts  an  u n c o u  n t a b 1 e se t  I* c I of the values of A and a l so  two 
neighborhoods U i j ,  e.g., the neighborhoods ci33 and U16 of the saddle points 
O3 and Oh. such that i f  2. E I * ,  the separa t r ix  T I  ( y )  extends from saddle point 
O 3  to saddle point 0, and corresponds to  the neighborhoods CIJ3 and U6,. 

Since I* is a n  uncountable se t  of points of the segment I = [O, 11, P c a n -  
not consist entirely of isolated points. 

L V e  will refer to tl-,is separa t r ix  as t h e  s e p a r  a t r i x c o r  r e - 

Let now system (A)  have a saddle-to-saddle separatr ix  y .  To fix 
The case of a separa t r ix  

Let Tt be a homomorphism of G- into itself, which moves the paths of (A)  

see Definition n). Evidently, 

There are uncountably many separa t r ices  T k  (7) (since 1. E I ) ,  whereas  

Hence there  exis ts  a t  least  one 
E, E I*  and a sequence of X i .  i = 1, 2. 3, . . . *  
such that r Z i  E I* and lim X i  = A,. Without 

l o s s  of generality, we may take l i  to be 
a monotonically decreasing sequence. 

The separa t r ix  Tb (y)> and l i k e w i s e  
the separa t r ices  T A i  (y) ,  extend f rom 
saddle point O3 to saddle point O6 and 
correspond to the neighborhoods UJ3 and 

of the separa t r ix  Tb (y). 

t*.m 

&- :WYJ&L4 << 
FIGURE 30 U44 (Figure 90). Let 'c' be a neighborhood 

r emark  to Lemma 3, and f rom 84 .2 ,  Lemma 7 i t  follows that for  all 
sufficiently l a rge  n, T I ,  ty) c V .  
the vector field of (A) by rotation through a positive angle. 
of Theorem 16 (511.2) w e  established that if there  ex is t s  a saddle-to- 
saddle separa t r ix  of system (A)  and a sufficiently smal l  neighborhood of the 
separatr ix ,  the system generated f rom (A)  by a rotation of the vector field 
through a sufficiently sniall angle cannot have a saddle -to-saddle separa t r ix  
in that neighborhood.:'. We have thus reached a cor*tradiction, which 
proves the lemma.  

sys tem (A)  with a finite number of simple saddle points has  saddle-to- 
saddle separa t r ices ,  the system obtained by rotating the vector  field of (A) 
through a sufficiently smal l  angle no longer has  any such separa t r ices .  

F r o m  89.2, 

But the vector field of (Aio) is obtained f rom 
In our  proof 

R e  m a  r k . The pr0c.f of the las t  l emma actually shows that i f  a dynamic 

In our proof of Theorem 16 w e  did not consider systems (Ai), but systems of the form 

- 
To move from ( A )  to ( A ) ,  w e  tave  to rotate the vector field through an angle a. tan a = b, and 
stretch the field vectors by a factor v m .  
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Ch. VII. CELLS OF STRUCTURALLY STABLE SYSTEMS. ADDITIONS TO THEORY 

L e m  m a  5 .  Every closedpath L of system (A) is  isolated, Le., i t  i s  a 
limit cycle. 

P r o o f . 
l imit  cycle or is enclosed in an open ring E entirely consisting of closed 
paths (see Chapter V, J12.3). W e  wi l l  show that no such ring can exist .  

Indeed, suppose that ring E does exist .  By QT, 523.2, the interior 
boundary of this ring, which is a zero-limit  continuum, is either a closed 
path L o ,  o r  consists of a finite number of saddle-to-saddle separatr ices ,  
or finally is a center.  
Lemmas 3 and 4. 
paths which extend outside Lo and sufficiently close to it a r e  closed. 

Since (A) is an analytical system, a closed path L either i s  a 

The las t  two alternatives a r e  ruled out by 
The f i r s t  alternative is unacceptable because all the 

But 
all the paths inside Lo and sufficiently 
close to it a r e  a lso closed, i .e . ,  Lo con- 
s i s t s  of the inter ior  points of the ring E, 
which contradicts the original assumption. 
Lemma 5 is thus proved. 

lemma is clearly a lso valid for systems 
of c lass  1. 

L e m m a  6. 
a finite number of closed paths. 

P r o o f  of Lemma 6 is entirely 
analogous to the proof of Theorem 2 1  
($16.1). 

R e  m a r k  . The proposition of the 

System (A) may only have 

L e m  m a  7. System (A) has no multiple 

P r o o f . By Lemma 6,  system (A) may 
FIGURE 91 limit cycles. 

only have a finite number of l imit  cycles. Let Li, Lz, . . ., L, be al l  the 
cycles of the system. Suppose that one of these,  L1 say, is a multiple 
cycle. 

Let U be a sufficiently small  neighborhood of Ll which does not intersect 
with the paths Lz, . . ., L, (Figure 91). Using the theorem of the creation of 
a closed path from a multiple limit cycle (515.2, Theorem 19) and applying 
the same construction as in our proof of Lemma 2, 515.2, w e  obtain a 

system (AI) of class  1 which is 7-close to (A), coincides with (A) outside 

the neighborhood U (L),  and has  in this neighborhood a t  least  two closed 
paths. 

ti 

Let L; and L; be two such paths (in U). 
6 By Lemma 2, 515.2, there exis ts  a system (Az) of c lass  1,  g-close to 

system (AI), for which the curves L;, L;, Lz ,  Ll, . . ., Lp a r e  structurally 
stable l imit  cycles. 

approximation to (Az). 
(the theorem of the s t ructural  stability of a l imit  cycle, 514), system (&) 
has one l imit  cycle in the neighborhood of each of the curves L;, L;, 
L z ,  . . ., L,, i.e., i t  has  a t  least  p +  1 limit  cycles.  

to (Az), it is 6-close to (A), i.e., it  i s  a feasible system. 
because of the s t ructural  stability of (A), (As) should have the same number 
of l imit  cycles as (A) does, i.e., p .  

Finally, le t  (A3) be an analytical system providing an adequate 
By Theorem 18 and the r emark  to this theorem 

6 If (A3) is also 5-close 

But then, 

The assumption of a multiple cycle 
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among the l imit  cycles  of (A)  thus has  led to a contradiction. 
pletes the proof of the lemma.  

This com-  

L e t n  ) n  a 8. 
P r 0 0  f . Suppose that one of the equilibrium s ta tes  of (A),  0,  ( u t ,  b,) say, 

At the point 0, , 

Systetu (A)  has no multiple foci .  

is a multiple focus (we a s sume  that i t  is a s t a b  1 e focus). 
the .Jacobian A > 0, and div ( P .  Q) = 0 .  Let (x', ) be the system introduced 
in the proof to Lemma 3 .  U'e may take E = E'  to be so  smal l  and of such a 
sign that for the corresponding system (A- ) - w e  can denote i t  by A ( e ' )  - 
the point 0, is an  u n s t a b l e  focus. 
e .g . ,  the proof of Theorem 14 about the creat ion of a closed path f rom a 
multiple focus, §10.3) shows that in  this case ,  for  some E *  between 0 and E', 

the system A' ( E " )  w i l l  have a closed path contained ent i re ly  in a neighborhood 
of 0,. By Lemmas  6 and 7, system (A)  has  a finite number of closed 
paths, which are simple l imit  cycles .  
sufficiently close system produces only a slight translation of every simple 
limit cycle,: we conclude immediately that the system A ( E @ )  has  a t  least one 
closed path more  than system (A} does. This, howeirer, contradicts the 
condition that A:' (€")is a feasible system. 

The proof of this lemma is also greatly simplified i f  w e  
consider sys tems of c l a s s  1, and not analytical sys tems.  In this case ,  
ae can easily find a feasible system whose right-hand s ides  in the neighbor- 
hood of a multiple focu:; 0, are l inear  par t s  of Pand  Q. 
center  of this feasible .system, which is again impossible. 

sgsteiti in a regioti boiiilded b y  a cycle witJtoiit contact aye equivalent. 

i t  i s  s t ructural ly  stable in the sense  of Definition !I. This is obvious. Lf 
system (A) is structura.lly stable in  the sense  of Definition 11, Lemmas 2 
through 7 show that i t  sa t isf ies  the conditions of s t ruc tura l  stability (CSS). 
Finally, if system (A) sat isf ies  the CSS, i t  is s t ructural ly  stable in the 
sense  of Definition I by Theorem 23, $18.2. 
This means that Definit.ions I and I1 and CSS a r e  all equivalent. 

Theorem 29 is a l so  valid for dynamic sys tems on a sphere.  
in the case of a sphere,  we w i l l  consider only sys t ems  of class 1. Let the 
i i .  in Definitions I and I1 be identified with a sphere S2. 'CVe thus obtain two 
definitions of s t ruc tura l  stability on a sphere,  where Definition I coincides 
with Definition 12 (§6.2), and Definition I1 is free f rom the requirement 
of t' -identity . 

system of class 1 on a sphere S2 are eqiiivaleut. 

of Theorem 29.  
dynamic sys tems of c l a s s  1 on a sphere: the only difference i s  that some 
additional arguments, itnalogous to those adopted in the proof of 
t'heorem 24 (§18.3), have to be used when dealing with a sphere.  

r > 1. 
and i t  w i l l  not be considered he re .  

Theorem 30 is valid for dynamic sys tems of c l a s s  1 on any 
closed surface,  whether oriented or unoriented, and not only on a sphere  

Simple standard reasoning (see, 

Seeing that a transformation to a 

The lemma is thus proved. 
R e  m a r k  . 

0, is evidently a 

T h e o r e  tti 29. 

P r o o f  . 
De,Fitiitions I and 11 of stnickwal stability of a dynattiic 

Lf system (-4) is structural ly  stable in the sense  of Definition I, 

W e  thus see that I-tII+CSS+I. 
Q. E. D. 
However, 

T h e o  y e  )ti 30. Dejinitiors I atld II  of stnichwal stability of a dynamic 

P r o o f of Theorem 30 is conducted along the same  l ines  as the proof 
Our proofs of Lemmas  1 through 8 remain  in force fo r  

rheorem 30 can be generalized without difficulty to sys tems of class 
The case of analytical sys tems on a sphere  is more  complicated, 

R e  m a r k  . 

. -  
I (  ' .  

This  fdlloas from the structural stability of a simple limit cycle (see 4 14, Theorem 18). 
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C h a p t e r  VIIl 

BIFURCATIONS O F  DYNAMIC SYSTEMS.  
DECOMPOSITION OF A M U L T I P L E  
EQUILIBRIUM S T A T E  INTO STRUCTURALLY 
S T A B L E  EQUILIBRIUM S T A T E S  

INTRODUCTION 

The f i r s t  seven chapters  of the book dealt with the theory of s t ructural ly  
stable systems.  
to cer ta in  aspects  of the so-called t h e o r y  of b i f u r c a t i o n s  of 
dynamic systems.  The present  chapter contains two sections, 522 and 
$23. 
lated and a link is established between the f i r s t  and the second par t  of the 
volume. In particular, the concepts of b i f u r c a t i o n s and d e  g r e e of 
s t r u c t u r a l  i n s t a b i l i t y  of a dynamic system are defined. Since 522 
is "narrative" (without any lemmas ,  theorems,  and proofs), w e  will not 
summarize i t s  contents here .  It should be noted, however, that the theory 
of bifurcations is concerned with the changes which occur in the 
topological s t ructure  of a dynamic system in  a particular region when the 
system itself (i.e., i t s  right-hand s ides)  is al tered,  and the te rm 
b i f u r c a t  i o n generally refers to these changes in topological s t ructure .  

Bifurcations of a multiple isolated equilibrium state (i.e., bifurcations 
of the dynamic system in the neighborhood of such an equilibrium s ta te )  
a r e  the subject of 523. The discussion is confined to a n a l y t i c a l  
s y s t e m s , and only the s i m p 1 e s t multiple equilibrium state is con- 
sidered, i .e . ,  such that the series expansions of the functions P and Q in 
i t s  neighborhood contain a t  least  one l inear  te rm.  Furthermore,  the topic 
of bifurcations of these equilibrium s ta tes  does not receive a fully general 
treatment in 523, as we only investigate t h e  n u m b e r  and t h e  
c h a r a c t e r  of  t h e  s t r u c t u r a l l y  s t a b l e  e q u i l i b r i u m  s t a t e s  
into which the multiple state decomposes on passing to c lose systems:'. 

in QT, Chapter IX (521 and 122). 
equilibrium state 0 (0, 0) 

Chapter VI11 begins the second par t  of the book, devoted 

In 122, the main problems of the theory of bifurcations are formu- 

The topological s t ructure  of these equilibrium states  is treated in detail 
It is established in QT that if  for an 

(J = (0, 0) + Q; (0, 0) # 0, 

the point 0 is a topological node, o r  a topological saddle point, o r  a 
saddle-node. If, however, u = 0 ,  s ix  different possibilities a r i s e :  a 

The problem of bifurcations of a multiple equilibrium state in its general form is formulated as follows: 
establish the changes in the topological structure of a dynamic system in the neighborhood of an 
equilibrium state on passing to close systems. 
considered in 123. 

A relatively narrow segment of this general problem is 
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topological node, a topological saddle point, a focus o r  a center,  a n  
euuilibriutu state with an elliptical region, a degenerate equilibrium state,  
a saddle-node. In 523, a relationship is established between the 
topological s t ructure  of a multiple equilibrium state,  on the one hand, and 
the number and character  of the structurally stable equilibrium states into 
which the multiple s ta t?  decomposes when passing to c lose systems,  on 
the o ther .  For example, i f  u : P;  (0, 0) - (I,; (0. 0) F 0 and the multiple 
ecluilibriuni state 0 is a topological saddle point, it  may only decompose 
into an odd number of structurally stable nodes and saddle points, the 
number of structurally stable nodes being of necessity one l e s s  than the 
number of structurally stable saddle points. The other resul ts  of the 
chapter are contained in Theorems 35, 37 through 39. Note, however, 
that for  o = 0 ,  the type of the multiple sinqular point is entirely determined 
by the number of struc:urally stable equilibrium states into which it 
decomposes and by the;r topological s t ructure .  tf, on the other hand, 0 -= 0,  

the difference (other than topological) between nodes and foci has  to be 
taken into consideration in some cases ,  and in other cases it is altogether 
impossible to establish the character  of the multiple equilibrium s ta te  
using the component structurally stable equilibrium states. 

the proof of Theorems 37- 35, and familiarize himself with the statement 
of the theorems only. 

( rheorem 36) wttich stztes that i f  a dynamic system has  only simple 
equilibrium s ta tes  and the isocline P (5 ,  y) = 0 (or Q (z, y) = 0) h a s  no singular 
points (i.e., points a t  which P;  = P!, = 0 ) ,  then saddle points alternate with 
nodes and foci along th1.s isocline. 
rheorem 38,  but it is a l so  of considerable independent in te res t .  

A reader  wishing to speed up his p rogres s  through the book may omit 

in conclusion note that $23.3 contains a theorem by PoincarC 

This theorem i s  used in the proof of 

S 2 2 .  
BIFURCATIOPZS OF DYKARIIC SYSTERIS 

T H E  D E G R E E  OF S I‘RUC I‘URAL I N S  rABILI I‘Y AND 

The previous chapters dealt with s t r u c t u r a 11 y s t a b 1 e dynamic 
sys t ems  on a sphere or in a plane region. rhe definition of a structurally 
stable system in a plane region f f ’  w a s  formulated assuming that tt7 is a n  
a r b i t r a r y  b o u n d e d  region (S6.1, Definition IO). A certainadditional 
restriction ‘ w a s  imposed at a later stage on t i - ,  e.g. ,  in the derivation of 
the necessary and sufficient conditions of s t ructural  stability, and It’ w a s  
treated as  a region with a normal boundary (516.2, Definition 19).  This 
restriction i s  not fundamental, although it simplifies some proofs. 

(,including a region with a normal boundary) has  one distinct disadvantage: 
together with W ,  we ar,i forced to consider other regions close to it.. 
avoid the difficulties (again not of fundamental nature)  associated with this 
approach and to achieve a m o r e  plastic description of the concepts that 
follow, ‘we will assume in this section that the boundary r of ti’ is a c y c  l e  
‘ w i t h o u t  c o n t a c t  :” 

* 7‘h< simplert 3nd most complet? picture is obtair,ed for +namlc systems on a sphere. where the dcfinition 
of rtructural rtabillty is marked.y simpler. W e  again wish to emphasize that the restriction imposed on the 
relevant reeion is solely intendcd to simplif? the presentation. The concepts of bifurcition and degree of 
structural instability can b e  defined analoyously for dynamic systcms i n  any bounded plane region. 

rhe  definition of s t r i c t u r a l  stability in a n  a rb i t r a ry  plane region i t ’  

To 

203 



ch. VIII. BIFURCATIONS OF DYNAMIC S Y S T E M S  

rhus,  l e t  

(A) 
d z  d y  = P (2, Y), = Q (G Y) 

be a dynamic system defined in 
bounded by a cycle without contact J? (p c G). 
systems in which our analysis is car r ied  out should be indicated. 
be one of the spaces  R$) ( l < r < N )  or R?) ( r > 1 ) ,  defined for  the region E," 
which we will denote by R*. 
R*. 
system (A) in 
instability) relative to the space R*. 

the concept of e - i d e n t i t y  of  p a r t i t i o n s  (J6.1, Definition 10 and 
J18.4, r e m a r k  a). 
ever ,  that the e-identity can be dropped when dealing with a region bounded 
by a cycle without contact. Indeed, s y s t e m  (A) i s  s t r u c t u r a l l y  
s t a b l e  i n  ~ e g i o n  w i f  a l l  s u f f i c i e n t l y  c l o s e  d y n a m i c  
s y s t e m s  (A) h a v e  t h e  s a m e  t o p o l o g i c a l  s t r u c t u r e  a s  (A) 
i n  r. In other words, if  (A) is a structurally stable system in w, all the 
points of a cer ta in  neighborhood Ub ((A) I R*) of (A)in the space R* a r e  
systems with the same topological s t ructure  in a?. 
systems (A) a rb i t ra r i ly  close to (A) whose topological s t ructure  in W i s  
different f rom the topological s t ructure  of (A). 

systems form an open se t  in the space R* and that this s e t  is everywhere 
dense in R*. Structurally unstable systems form in R+ "partitions" 
separating between regions filled with structurally stable systems.  
of these regions consists of dynamic systems with the same topological 
s t ructure  in V. 

system in a particular region and the factors  determining this s t ructure .  
Our present  topic deals  with t h e  c h a n g e s  i n  t h e  t o p o l o g i c a l  
s t r u c t u r e  of  a s y s t e m  i n  E w h e n  t h e  d y n a m i c  s y s t e m  
(i.e., the right-hand sides, the functions P a n d  Q )  i s  a l t e r e d .  The 
remaining chapters  of the book are concerned with the applications of this 
topic to a number of important particular cases .  

always remains  in the space R*. 

part icular  form.  Indeed, given a cer ta in  se t  E ,  E c R*, one considers the 
changes in the topological s t ructure  in w as the dynamic system runs  
through the points of this se t .  
determined by the problem being considered. E is of tenchosenas a small  
neighborhood of a given dynamic system (Ao) or as some line, surface,  or 
hypersurface in  the space R*. Dynamic systems related to rea l  physical 
problems generally contain one or  several  parameters ,  i .e.,  they have 

and considered in a closed region 
The exact space of dynamic 

Let this 

System (A) clear ly  should belong to the space 
In the following, s t ructural  stability (or st ructural  instability) of 

w i l l  be understood as s t ructural  stability (or s t ructural  

The s t ructural  instability of a dynamic system may be considered using 

In Chapter VI1 ($21, Theorem 20)  we have seen, how- 

Conver_sely, if  (A) is structurally unstable in W> there  always exist  

In Chapter V I  (918.4) we established that the structurally stable 

Each 

In QT w e  investigated the different topological s t ructures  of a dynamic 

It is naturally assumed that, despite the changes, the dynamic system 

In applications, this question is sometimes considered in a restr ic ted,  

The particular choice of the se t  E is 

See 55.1.  is the space of dynamic systems of class N with a metric defined by  the distance ( in  G )  of 
the functions P and Q and their derivatives to r-th order inclusive. Rr) is the space of analytical functions 
with the same metric. 

I 
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the form 

In these problems w e  generally have to consider the changes in the 
topological s t ructure  of the dynamic system as the pa rame te r s  L i  vary in  
a certain region. 
hypersurface (or some region of this hypersurface).  If the system depends 
on a single parameter ,  the corresponding se t  E is a 1 i n  e in the space R*. 

into paths with changes in the dynamic system is of great  independent 
theoretical interest .  
The f i r s t  is that the study of the changes in the topological s t ructure  
associated with changes in a dynamic system, i .e. ,  t h e  t h e o r y  of  
b i f u r c a t i o n  s , provided the main tool in the investigation of particular 
dynamic systems.  A s  we have noted above, no general  regular  methods 
are available for  this investigation, and without exaggeration w e  can state 
that almost all the avai:.able resul ts  in this direction have been obtained 
using the theory of bifurcations. The theory of bifurcations therefore plays 
a leading role in the study of particular sys t ems .  

bifurcations in applied problems, in particular in physical and engineering 
applications. 
contain a cer ta in  number of pa rame te r s .  
s t ructure  following changes in these pa rame te r s  are of the utmost impor -  
tance in the analysis of the propert ies  of physical sys t ems  related to the 
topological s t ructure  of the corresponding dynamic system (e.g., when 
considering sustained oscillations in a given physical system j. 
of bifurcations in one form o r  another is therefore applied virtually to 
every dynamic system *corresponding to a physical problem. 

dynamic system. This is the key to the study of "large" changes, and i t  
a l so  has  numerous important applications, e.g., in problems of stability 
of physical systems.  Our problem is thus formulated in the following 
fo rm:  i n v e s t i g a t e  t h e  c h a n g e s  i n  t h e  t o p o l o g i c a l  s t r u c -  
t u r e  of t h e  p a r t i t i o n  o f  r e g i o n  w i n t o  p a t h s  f o l l o w i n g  
s m a l l  c h a n g e s  i n  t h e  c o r r e s p o n d i n g  d y n a m i c  s y s t e m .  

Only s t r u c t u r a l l y  u n s t a b l e  s y s t e m s  should be considered, 
since i f  (A)  is structurally stable in il', i t s  topological s t ructure  does not 
change as a resul t  of srnall changes in the system. If, however, (A)  is 
s t r u c t u r a 11 y u n s t $3. b 1 e , dynamic sys t ems  of different topological 
s t ruc tu res  always exist in any arbi t rar i ly  small  neighborhood of (A) (in 
the space R*i. 

W'e say in  this case that t h e  p o i n t  (A)  of t h e  s p a c e  R* i s  a 
b i f u r c a t i o n  p o i n t  of  a d y n a m i c  s y s t e m . "  B i f u r c a t i o n  is 
generally understood as the c h a n g e  i n  t h e  t o p o l o g i c a l  s t r u c t u r e  
of a dynamic system occurring when i t  pas ses  through a bifurcation point. 

bifurcation points in the space of dynamic systems,  and the problem 

The :;et E i n  this ca se  is clear lyan m-dimensional 

The question of the changes in the topological s t ructure  of a partition 

Two further factors greatly enhance i t s  importance.  

The second factor is associated with the importance of the theory of 

Dynamic sys t ems  corresponding to these problems always 
The changes in topological 

The theory 

Lye will consider in #hat follows the case of s m a  11 c h a n g e  s of a 

Structurally unstable systems,  and only these systems,  are 

A mor? precise statement would be the following: !A) is a bifurcation point of tho topological structure 
oi  d ,l)riamic system in F. W c  will nevertheless use the more concise form given in the main text. 
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reduces to the following: i n v e s t i g a t e  t h e  c h a n g e s  i n  t h e  
t o p o l o g i c a l  s t r u c t u r e  of a s t r u c t u r a l l y  u n s t a b l e  s y s t e m  
o n  p a s s i n g  t o  s u f f i c i e n t l y  c l o s e  s y s t e m s .  

systems.  
unstable" or "less s t ructural ly  unstable.' ' 
imbued with prec ise  mathematical meaning by introducing the concept 
of t h e  d e g r e e  of  s t r u c t u r a l  i n s t a b i l i t y  of a system. Originally 
this concept was introduced in /S/. For the sake of simplicity, w e  will- 
only give a definition of the degree of s t ructural  instability in a region W 
bounded by a cycle without contact. I'he corresponding definition for  a 
general bounded region will be given a t  a la te r  stage (S31, Definition 30). 

W e  shall assume that the relevant sys tems are ei ther  analytical in G o r  
of c l a s s  N ,  where N is a natural number whose magnitude, as wi l l  be seen  
f rom the definition, depends on the degree of s t ructural  instability of the 
system. is a subregion of G bounded by a cycle without contact. 
Structurally stable sys tems in w w i l l  be called s y s t e m s of  z e r o 
d e g r e e  of  s t r u c t u r a l  i n s t a b i l i t y .  A s  we know (§18.4,a), 
system (A)  is s t ructural ly  stable in 
any e > 0, there  exis ts  6 > 0 such that if  (A) is I -c lose  to  (A),  then 

The next topic to consider is the classification of s t ructural ly  unstable 

rhese  imprec ise  t e rms  can be 
A s t ructural ly  unstable system may be "more s t ructural ly  

if  it has  the following property: for 

, e -  (W, A )  =(W, A ) .  

W e  will define the degrees  of s t ructural  instability by induction. 
D e f i n i t i o n  23. A dynamic system (A) of class N , 3  is said to be a 

system of 1st degree of structural instability (or to have a degree of 
structural instability 1)  in @ i f  it is not structurally stable in this region 
and satisfies the following conditim for any e > 0, there exists 6 > 0 such 
that for any structurally unstable system (A) 6-close to (A) to rank 3 we 
have - - e  - 

(W, A )  (W, A ) .  

System ( A )  of class N , 5  is  said to be a system of 2nd degree of 
structural instability in @ i f  it is not a system of zero or first degree of 
structural instability and the following condition is satisfied: f o r  any e > 0, 
there exists 6 > 0 such that any system (A) 6-close to (A) to rank 5 i? 
either a system of zero or first degree of structural instability in W or 
satisfies the relation 

- - e  - 
(W,  A )  E (W, A ) -  

System (A) of class N > 2 k  f 1 is said to be a system of k-th degree of 
structural instability in W g  i t  is not a system of lower degree of 
structural instability (i.e., zero, lst ,  2nd, . , . (k - 1) -th) and the following 
condition i s  satisfied: fm any e > 0, there exists 6 > 0 such that any 
system (A) which is 6-close to rank 2k + 1 to (A) either has a degree of 
structural instability of at most k -  1 in w or satisfies the relation 

A few remarks  concerning degrees  of s t ruc tura l  instability. W e  see 

This  is not 
f rom Definition 23 that for  a system to have a definite degree of s t ructural  
instability, i t  must be a system of a sufficiently high class. 
an unexpected conclusion: we have encountered a s imi la r  situation in 
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Chapter I. Indeed, in defining the multiplicity of a root of a function, say 
( 9 1 . 3 ,  Definition 21, w e  could speak of a root of multiplicity r of a function 
F @)only i f  F (z) w a s  a function of c l a s s  . V > r .  
in our definition of degrees  of s t ructural  instability is the fact that only 
sys tems of c l a s s  S > 2 k  + 1 can  be of a k-th degree of s t ructural  instability. 
\\'e will not discuss  here  the factors  responsible for this restriction. 
however, that this fact  is related to the propert ies  of a multiple focus d i s -  
cussed i n  Chapter IX ($25.1, Theorem 40). 

A siqnificant shortconiing of Definition 2 3  is that i t  does not ass ign a 
definite degree of struc:tural instability to each and every dynamic system. 
For sys tems of a finite class this is obvious. Indeed, let ?; = 3k L 1. k>I. 
\[e can easily construct a system ( A J  of class -V, which is not a sys tem of 
class .V + 1, with k + 1 equilibrium s ta tes ,  each of niultiplicity 2,  i n  some 
region E. I t  follows from Definition 23 and from the definition of the 
multiplicity of a n  equilibrium s ta te  (S7.3) that this ( A )  cannot have a degree 
of s t ructural  instability less than o r  equal to k. 
Definition 2 3  s ta tes  that ( A )  cannot have a degree of s t ructural  instability 
g rea t e r  than k. 
a definite degree of s t ructural  instability. 

analytical sys tems of any finite degree of s t ructural  instability exist .  
Furthermore,  there exist  analytical sys tems with other analytical sys tems 
of a l l  finite degrees  of instability contained in any of their  neighborhoods. 
rhese  sys tems a r e  naturally assigned a n  infinite degree of s t ructural  
instability. 
analytical system may have a definite finite or infinite degree of s t ructural  
instability .*. 

structurally stable in  the set of all s t ructural ly  unstable sys tems.  ..'. 
Similarly, sys tems of k-th degree of s t ruc tu ra l  instability are relatively 
structurally stable in  the se t  of all s t ructural ly  unstable sys tems of degree 
of s t ructural  instability > k. 

b'e have seen before that dynamic sys tems associated , w i t h  physical 
problems generally contain one or  several parameters .  
sys tems dependent on parameters  are of par t icular  in te res t .  Let, for 
simplicity, the right-hand s ides  contain a single parameter ,  i . e . ,  H e  are 
considering a system of the form 

A somewhat puzzling point 

Note, 

On the other hand, 

The system ( A )  that w e  have constructed thus does not have 

Let u s  now consider the analytical case. It is readily seen  that 

However, it does  not follow from Definition 2 3  that each 

Systems of the 1s t  degree of s t ructural  instability are r e  1 a t  i v e  l y  

Therefore,  

(A I )  
do 
-= dt  FJ (1. Y, ).). $=Q((., Y, 1.). 

The parameter  1. may vary over  a cer ta in  se t  of r e a l  numbers  o r  run 
?hisough the ent i re  real ax is .  

values of the paramete:- 1, w e  should specifically consider  the concept of 
s t ructural  stability and degrees  of s t ructural  instability i n  relation to 
sys tems (A),). _The following definition of s t ructural  stability can be given 
(for a region W bounded by a cycle without contact): system (A %) is 
structurally stable in T? relative to s y s t e m s  (A ,,) i f  there  ex i s t s  6 > 0 such 

If w e  are interested only in sys tems which are obtained for  various 

.* This can he rhown without much trouble. 
In the following sense: if we consider the set of structurally unstable systems and closeness fo rank 1 ,  

!:items of the 1st degree of structural instdbility are  stable relative to this set. 

See Gudkov / 8L  p.425. 
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that every dynamic system ( A h )  for  which I h - ho I < 6 has the same topological 
s t ructure  as (Ak,,) in z. 
defined. 

s t ructural ly  stable relative to system (Ah). 
always true: a system may be s t ructural ly  stable relative to the 
sys tems (Ah) ,  without being s t ructural ly  stable in the usual sense.  

(A 
v a l u e  of t h e  p a r a m e t e r :  

bifurcation value of the parameter if there exist values of the parameter E. 
arbitrarily close to ho for which the topological structure of the dynamic 
system in the relevant region is different f rom the topological structure 
of ( A ~ ~ ) .  Values of the parameter which are not bifurcation values are 
called ordinary values. 

The situation is entirely analogous for a system dependent on several  
parameters .  rhus,  for instance, for  a system 

The degrees  of s t ructural  instability a r e  s imilar ly  

If system (AAo)  is structurally stable in the usual sense,  i t  is also 
The converse, naturally, is not 

The concept of bifurcation may also be redefined relative to sys tems 
W e  thus a r r ive  a t  the following definition of the b i f u r c a t i  o n 

D e f i n i t i  o n  24 .  The value ho of the parameter h i s  called a 

d x  
x = P ( x ,  Y, A, p), $ = Q ( G  V, A, p), (Ah+) 

depending on two parameters  h and p ,  w e  can speak of s t ructural  stability 
or  degrees  of s t ructural  instability r e l a t i v e  to the sys tems (Ah,=) .  W e  
can s imilar ly  speak of the b i f u r c a t i o n  p a i r  o f  v a l u e s  o f  t h e  
p a r a m e t e r s  h ,  p and of the b i f u r c a t i o n  p o i n t  i n  t h e  p l a n e  of  
t h e  p a r a m e t e r s . If the par t icular  region in the plane of the para-  
me te r s  contains no bifurcation points, all the dynamic sys tems c o r r e -  
sponding to this  region have the same topological s t ructure .  A change in 
topological s t ructure  may occur  (as a resu l t  of a continuous change in the 
parameters )  only when the system c rosses  through a bifurcation point. 

It is readily seen that the investigation of all the bifurcations of a 
dynamic system in a given region 
which occur following small  changes of the system in  the neighborhood of 
the elements determining the topological s t ruc ture .  In other words, i t  
suffices to investigate the changes in  the topological s t ructure  in the 
neighborhood of the equilibrium states ,  closed paths, and l imit  continua 
in 1 7 .  
this and next chapters. 

reduces to an inspection of the changes 

Some of the pertinent topics wi l l  be treated fully o r  partially in 

In conclusion of this section, le t  u s  consider two examples. 
E x  a m p 1 e 7 .  Consider a system 

dx 

(A ,I = P ( x ,  -y, a) = x cosa  + y sin a- ( x  cosa-y sin a) (5' + u*), 

-$ = Q (5, y, a) = ssin a--y cos a- (xs in  a + y cos a) (x* + -y*), 

depending on a single parameter  a. 
of the vector field of the system. 

This system is generated by a rotation 

b o )  d z  d y  -= d t  x-x(x2+61?, ~ = - Y - u ( s s + Y ' )  

through the angle a .  
shall consider the system (A,) over  the ent i re  plane ( x ,  y). 

W e  may therefore take a to vary  from 0 to 2n. W e  . 
Since(A,+,) is 
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obtained from (A,! by reversing the direction of the field vectors  a t  every 
point of the plane, w e  need only consider the sys tem {A,) for Oga < x .  

From the relations 

P ( - t ,  - y . a ) ; = - - P ( z ,  y,a), 

it folloivs that the phase-plane representation of the dynamic system ( A % )  
for any (t is symmetr iczl  about the origin (S20, Example 4 ) .  

Me will f i r s t  apply the Bendixson cr i te r ion .  Since 

Q(-z ,  -y , a )= -Q(x ,  y , a )  

-- w(i, Y, a) + @(i, Y, a) = -4( t2+yt)COSa,  

w e  see that for  a#%, Cl,ta<n, thesumx+$does  not reverse  i t s  sign 

anyxhere  in the plane. 

system (A, )  with a#% has neither closed paths (in par t icular ,  limit 

cyc les )  nor closed curves  consisting of paths in the phase plane. 

system equations, 

d r  UY 

dP 

Therefore, by the Bendixson cr i ter ion (QT, §12.3), 

Let t = z ( t ) .  y=y( t )be  paths of ( A a ) .  Then, as i t  follows from the 

* i d  
z ( t )  z ( t )  + y ( t )  y ( t )  =T [t ( t )2  + y (t)'] = t z c o s a  + 2zy sina--y2 cos a- (S  f y2)* cos a. 

rhe last relation shows that for  Oga<-$, the infinity is absolutely unstable, 

2nd for  $ <a,tn the inf-nity is absolutely stable (see §20, Example 4,  and 

ais0 Q r, 513 .1  1. 
Me can now easily establish the configuration of the paths of system (Aa) 

for var ious values of the parameter  a,  O g a < x .  

separately the four cases a = O ,  O<a<$ ,  a = T ,  $ < a < x .  

and the negative coordinate semiaxes are paths of the sys tem.  
show that (&) has  three equilibrium states ,  the saddle point 0 (0, 0) and two 
stable dicritical nodes A (-i, 0) and B ( 1 , O ) .  Hence i t  follows that, in the 
absence of closed curves  consisting of path segments, the partition of the 
phase plane into paths has  the form schematically shown in Figure 9 2 .  

W e  w i l l  consider 
1 I 7  

1 )  a = 0. From the equations of (Ao) w e  readily see that the positive 
Calculations 

FIGURE #9'i 
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2)  0 < a  (5. System (A,) again has  the same three equilibrium s ta tes  

0 (0, 0) ,  A ( - 1 ,  0), B ( 1 . 0 )  as in the previous case.': 0 (0, 0) is a simple saddle 
point for any a. 
There are no closed curves consiting of system paths, in particular, no 
limit cycles and saddle -to-saddle separa t r ices .  
separa t r ices  of the saddle point 0 reach from infinity and the a -separa t r ices  
wind onto the two foci A and B. 
paths ( sp i ra l s )  around the foci, we have to establish the field of directions 

on the x axis .  Since for  the 

values of a being considered s in  a > 0, w e  have 

The points A and B a r e  stable structurally stable foci. 

Therefore the a- 

To define the direction of winding of the 

For y = 0 ,  * = x  sin a - 2 sin a = ( x  - 2) sin a .  d l  

dY T > O  for 

s<O for - l < x < O  and for  l < x <  + 00. 
O<x< 1 and for - m < x <  -1. 

a2 Moreover, on the x axis, ; i l = ( x - x 3 ) ~ ~ ~ a ,  so  that $= tan a .  

of the separa t r ices  of the saddle point 0 is determined f rom the equation 

The direction 

sin a. k2 + 2 cos a. k-sin a = 0 

(see QT, $9.2,  corol lary of Lemma 1). Its solutions are 

k, = tan?, kz =tan( ++ +) . 
W e  now readily see that the partition of the phase plane into paths should 
have the form shown schematically in Figure 93. 

3 )  a = $ - .  The system takes the form 

A direct  substitution shows that (Ax,2) has  the common integral 

(x2 + y2)Z- 2 (x% - y') = c (1 1 
(see QT, S1.13). 

Since 
(XS + y y - 2  (xZ--y2) 3 (XZ- l ) 2 +  292 (1 + S P )  + y4- 1, 

w e  conclude that C > - I .  
Equation (1) thus takes the form 

W e  may therefore take C = a 4 - l ,  where a > O .  

( ~ Z + y * ) ~ - 2  (x*-yz) = a 4 - I .  (2) 

The curves  ( 2 )  constitute a family of Cassini ovals with the foci A (-1, 0) and 
B (1, 0). 
convex ovals, for  1 ( a (  fl these are "pinched" ovals, and for a = 2 the 
curve is alemniscate .  For O < a < l  the curves  break into two separate  ovals, 

* When a vector field is rotated, the number and the position of the equilibrium states do not change. Only 
their character may change (see QT,  51.14,  remark preceding Example 7 ) .  

Elementary analysis  shows that for  a > n  the curves  ( 2 )  are 
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and finally for  a = 0 they degenerate into two points d and B (Figure 94) .  
Each of the ovals  is a path of system ( A n  ?), the lemniscate consis ts  of 
three paths (the saddle point 0 and the two separa t r ices  forming loops), 
and the points .+l and B a r e  centers .  

readily defined by considerinq the sign of $ for  y = 0. 

configuration shown in Figure 94. 

I'he direction along the paths is 

\Ve thus obtain the 

4) $ < a < x .  This case is analyzed along the s a m e  lines as case 2. 

The configuration of pat.hs in the phase plane is schematically shown in 
Figure 95. 

FIGLIRE 94 FIGLIRE 35 

3 3 3  
2 1 1  For a = z ,  IC < a < - x ,  a =F-CI,T- ;I. < a < 2% , the configuration of the 

paths is the s a m e  as in F-igures 92,93,54,  and 95, respectively, but the 
direction of motion along the paths is reversed .  
to the original system (Ao). 

F o r  a = 2.7, w e  r e tu rn  

Let be the inter ior  of the circle 
22 + y* = R*, 

Lvhere the radius  R i s  so l a rge  that the lemniscate  

(5~fy"*-2( t*- -ya)=O 

is contained entirely insi3e W. 
st ructural  stability (Theorem 23, 118 .2)  i t  follows that for  a between the 

l imits  Oxcr < 2rr.a # 2 ,  a # % x ,  (Az )  is s t ructural ly  stable in T,'' 
for  a = 

v a l u e s  of t h e  p a r a m e t e r  are thus $and $n. 

Theorem 2'3 was proved for a regicn with a normal boundary. whereas R need not be such a region for 
( A m ) ,  
therefore inside this circle (A,) is structuralty stable by Theorem 23, and then i t  is also structurally 
stable in  w f 9 6 . 1 .  Lemma 1). 

From the fundamental theorem of 

3 

and a = y z c  i t  is s t ructural ly  unstable. 

and 
3 The b i f u r c a t i  o n 2 

However, a circle of a sufficiently large radius R ,  > R is a cycle without contact for ( A s ) ,  and 
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If in the determination of the topological s t ructure  w e  consider not only 
the configuration of the paths but a l so  the direction of motion along the 
paths, bifurcation occurs  when the parameter  passes  through the value 

-$, say, since the s t a b l e  foci Aand Bchange into u n s t a b l e  foci, 

i .e.,  the topological s t ructure  changes. Note, hoflever, that if  the d i rec-  
tions along the paths a r e  ignored, the transit ion of the parameter  through 
the bifurcation value does not lead to a bifurcation in our example. 

of the paths of (Ao) during the rotation of the vector field. Originally, the 
points A and B a r e  nodes, and the separa t r ices  of the saddle point O a r e  the 
coordinate semiaxes.  As the vector field is rotated in the positive d i rec-  
tion, the nodes change into foci, the paths wind onto the foci in  the clock- 
wise sense,  and the tangents to the separa t r ices  a t  the point 0 a lso  rotate 
in the positive direction with half the rotation velocity of the field vectors .  * 
For a = :, all the paths a r e  closed, except the foci (which a r e  now 

centers )  and the saddle point 0 with i t s  separa t r ices .  
join in pa i r s  forming loops. 
again become foci, but the paths unwind in this case.  
of the saddle point 0 separate ,  the a-separatr ices  extending to infinity for 
I+ f 00 and the w-separatrices going to the foci for t - c  - 00. 
of configuration with further rotation of the field is obvious. 

of the topological s t ructure  as a resu l t  of field rotation. 

I 

F igures  92 through 9 5  enable u s  to t race the changes in the configuration 

The separa t r ices  
A s  the field is further rotated,  the centers  

rhe separa t r ices  

The change 

Let u s  consider s t i l l  another example which i l lustrates  the variation 

E x a m p l e  8. Consider the system 

2 = --tsin a--y cos a + (sa+ya-  1)s (5 cos a- y sin a), dt 

3 = scosa-y  sin a + (9 + g ~ -  1)s (=sin a + y  casa). d f  

This system is obtained by rotating the vector field of the system 

(E,) 

(BO) 
I 

dx -= 

through the angle a .  
However, (B,) and (Ba+x)  have identical paths, which only differ in the 
direction of motion, and w e  may therefore consider only the system (B,) 

for  --+<a<-% 2 

The character is t ic  equation of this equilibrium state  

We may therefore take a as varying between -x and x. 

System (Bo). and therefore (B,), has  a single equilibrium state  O(0,O). 

0 * - I  

] cos a +sin a cos'a-sin a-A I = 

has  the roots 

hi, =cosa-sina zk 1/ -sin %- 1. 

* This follows from the relat ions k, = tafl 2, kz = tan (++$) (p. 210). 
2 
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Therefore  f o r  a betweenthe l imits  -$<a<-$-, ., the equilibrium s ta te  O(0,O) 

of (B,) is 

an unstable focus for  -?<a< --+ 't and for - - ~ - = = z < ~ ;  

an  unstable dicritical node for  a= -5- 6' 
a multiple focus or center  for  a=:; 

a stable  focus for  nlh<a<+., 

f i e  paths s = s ( t ) ,  y=y(t)of (B,) are tangent to the c i rc le  

2 4 4 

ga j y* = Ra 
Nhen 

From the equations of (E.=), 

. .  
=;yy= -W+!P), ( 7 )  

i f a = ? .  2 
Finally note that, in polar coordinates, (B,) can be written in the form 

9 dt - p [(ps- cos a - s in  a], (8 I 
-= 2 (p* - i )as in  a +cos a. (9 1 

Equality (8) is clear ly  equivalent to (6)  for  a # 

The above relat ions enable us  to investigate the configuration of the 

I )  a = $. The equilibrium state  0 (0, 0) is a stable focus. 

and to (7) for  a=;. 

paths of (B,) for  var ious values of the parameter  a. 

It follows 

f rom (5) and (7 )  that all c i r c l e s  ( 4 )  are cycles  without contact. 
system therefore has  no closed paths. 
equilibrium state ,  the system has  no l imit  continua consisting of 
continued paths. 
en te r  into the cycle as f increases .  
wind onto the focus 0 (0, (1) as t increases ,  and go to infinity as t 
decreases  (Figure 96).  
along the paths is counterclockwise. 

The 
Since the focus 0 is the only 

By ( 7 ) ,  the paths c ross ing  the cycle without contact (4) 
Thus all the paths of the system 

Equation (9)  shows that as t increases ,  the motion 

2 )  4 > a>:. In this case, the equation 

(p' - 2)* casa-s in  a = 0 (10) 
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has a single r ea l  root po = 1/i + m. By (8), the c i rc le  

p=po ,  i .e . ,  za+y2=p:, (11) 

is a path of (B=). All the other c i rc les  (4), in virtue of (6), a r e  cycles 
without contact; i f  R > po (I? < p0)> the paths crossing the circle  (4)  leave 
the circle  (enter into the c i rc le )  a s  t increases .  
fo re  an unstable l imit  cycle of the system. 
structurally stable focus. 
the paths a r e  therefore sp i ra l s  unwinding from the l imit  cycle. 
from (9) that the motion along these paths in the direction of increasing t is 
counterclockwise. 

The circle  (11) is there-  
The point 0 (0. 0 ) i s  a stable 

The system has no other l imit  continua, and all 
It follows 

The configuration of the paths is shown in Figure 97. 
The analysis of the other cases  proceeds along the same lines. 

3 )  a = $. The system has a single unstable l imit  cycle, the ci rcle  

5 2  t y2 = 2. (12)  

The equilibrium state  0 (0, 0) is a multiple (structurally unstable) stable 
focus. 
clockwise sense (Figure 98). 

The motion along the sp i ra l s  with increasing t is in the counter- 

FIGURE 96. $. Stable focus. 

FIGURE 97.  $->a>?, r>m 

Unstable cycle; stable focus. 
4 FIGURE 98. a 

Unstable cycle; multiple 
stable focus. 

$ , r = 4. 

4 )  $->a>0. The system hastwolimitcycles ,  an unstable l imit  cycle 

za + yz= 1 + 1/GTG, (13)  
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which is a c i r c l e  of radius g rea t e r  than 1, and a stable l imit  cycle 

$ + l J Z = i -  I / t a n ,  (14) 

shich is a c i r c l e  of radius sma l l e r  than 1. 
a n  unstable focus. 
sense (Figure 59) .  

$12.3), l imit  cycle, the c i r c l e  

The equilibrium state O(0,O) is 
Tho motion along the sp i ra l  is in the counter,clockwise 

The system has  one semistable,  and therefore multiple (see 5)  '1 = 0 .  

2 2  +- y* = 1, (15) 

and a n  unstable focus 0 (0. 0). 
clockwise direction (Fizure 100). 

The motion along the paths is in the counter- 

6 )  0 > a  > - +. All ,circles ( 4 )  are cycles without contact. The system 

therefore has  no closed paths and no closed curves consistingof paths. All 
the paths go to infinity as t increases ,  and for t+- - 00 they aind onto the 
unstable focus 0 (0. 0 ) .  

\ \ e  see from (9)  that 

and 

l'herefore inside the c i rc le  

the motion along the paths is counterclockwise, and outside this circle the 
motion is clockwise (Fig-ire 101). 
to each crossing path. 

The c i r c l e  (16) is evidently orthogonal 
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FIGURE 101. 0 > a >  - . No 
cycles. R >fi unstable focus. 

FIGURE 102. u = -$. NO cycles. 

R =fi unstable dicritical node. 

7 )  a = --. The configuration of the paths is the same as in the I 
previous case,  but the point 0 (0, 0) i s  an unstable dicritical node, and not a 
focus (Figure 102) .  Circle (16) is replaced by circle  (12) .  

8 )  -$>a>-$. The equilibrium state  O(0,  0) is an unstable focus. 

Al l  c i rc les  ( 4 )  a r e  cycles without contact. The derivative = (p2 - I)'sin a i  

+ c o s a  vanishes on the c i rc les  

and 

p a = i -  /-. 
dB In the r ing between these circles ,  > 0, and elsewhere in the plane $ 

Therefore the motion along the paths with increasing t is in the counter- 
clockwise direction inside the ring and in the clockwise direction outside 
the circle  (17)  and inside the circle  (18 )  (Figure 103) .  

0. 

For  a= -%, the system has  the same paths as for  a=;, but the 

direction of motion is reversed.  As a fur ther  diminishes f rom -$to 

- pn, we successively obtain the same configurations as in Figures  97 

through 103, but with the direction of the a r rows  reversed .  Finally, for 

a = - T n ,  w e  re turn  to the original system (B,,z) (Figure 96). 3 

The bifurcation values of the parameter  a (for :>a> --%) a r e  c lear ly  

4 
n n  y, -, 0, and -;. 
of the system evolve as the parameter  a decreases  (i.e.> as the field 
vectors  rotate c1ockwise)and what bifurcations the system experiences.  

On passing through the bifurcation value of the parameter  $, an u n s t a b  1 e 

Our analysis and the figures clear ly  show how the paths 
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2'1. DEGREE OF STRCCTIIRIL INST 46 tL ITY  AXiJ 6IFC'RC.ITIOKS 

1 i m i  t c y  c 1 e appears  - a circle of a l a rge  radius  centered at O(this cycle, 
as w e  say,  is c r e  a t e (1 f r o m i nf  i n i t y ). As a dec reases  further,  the 

cycle contracts (the radius of the c i r c l e  
monotonically diminishes ). 

tion value a = 5, the topological s t ructure  

F o r  the bifurca - 

of the system is the s a m e  as before, but the 
stable structurally stable focus 0 changes 
into a multiple (structurally unstable) focus. 
When the system passes  through the bifurca- 

tionvalue;, a s t a b l e  l i m i t  c y c l e  is 

created f rom this multiple focus, and the 
multiple stable focus changes into a n  un- 
stable structurally unstable focus, while the 
existing unstable limit cycle continues con- 
tracting. After that, the stable l imit  cycle 

- expands, and the unstable l imit  cycle con- 
t rac ts ,  and for  the bifurcation value a = 0 
both cycles merge  into a single multiple 

F I G ~ w E  1 0 % .  -$>a>- $ ,  NO 

, ) .der .  R ,  < y  2 ,  Rz < 1 unstabl? 
io<. u 3,  

s e m i s t a b  1 e cycle. When the system c r o s s e s  the value a = 0 ,  this 
multiple cycle disappears,  and further decrease of a between the l imits  

0 > a > - 2 does not produce any additional change in the topological 

s t ructure .  
along the paths is reversed.  

a = 6, a c i r c l e  p 2 = l + p  -'? appears  from infinity on which th i s  change 

occurs .  This circle contracts as a diminishes. Fo r  a - 1?. the focus 

0 (0, 0) changes into a dicri t ical  node (of the s a m e  stability). 
decrease of a produces a second circle near  0 on which the direction of 
rotation is again reversed,  and the dicri t ical  node changes back to a 

focus. Both circles move one toward the other.  

and the motion along the two circles is in the s a m e  direction, i.e., clock- 
w i s e  (Figure 96 with the direction of the a r r o w s  reversed) .  

in a r eve r se  o rde r .  h Farticular,  for sma l l  negative a, the system h a s  no 
l imit  cycles (Figure 101:'. 
(multiple) l imit  cycle zz 4- y* = 1 appears  (Figure 100). In this case we say 
that the l imit  cycle is c r e a t e d  f r o m  p a t h  c o n d e n s a t i o n  (or p a t h  
c 1 u s t e r i n g  ). In this 
case, w e  s ay  that a m u l t i p l e  l i m i t  c y c l e  d e c o m p o s e s  i n t o  t w o  
c y c l e s  or a n  a d d i t i o n a l  c y c l e  i s  c r e a t e d  f r o m  a m u l t i p l e  
c y  c 1 e . 
infinity, f rom a multiple focus, f rom a multiple l imi t  cycle, and from 
path condensation. 
cases of l imit  cycle creation. 

2 
We see from Figures  101 - 103 how the direction of motion 

Indeed, when the system passes  through 
/- 

a 

4 '  

Further  

F o r  a =  -$ they merge 

Note that as a i n  c r e a s e s , the changes of topological s t ructure  occur  

When a reaches the value 0, a semistable 

Further  increase in a produces two iimit  cycles.  

In our  example w e  thus observed creation of cycles f rom 

In C tap te r s  XI through XI11 w e  shall  encounter additional 
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Ch. VIII.  RIFIIRCATIONS OF DYNAMIC SYSTLMS 

$ 2 3 .  DECOMPOSITION OF A MULTIPLE 
EQUILIBRIUM STATE INTO STRUCTURALLY 
STABLE EQUILIBRIUM STATES 

1. 
s ta tes  obtained from a multiple equilibrium state  

The number of structurally stable equilibrium 

In the present  section we w i l l  only consider analytical dynamic systems.  
Some propositions regarding multiple equilibrium states ,  however, w i l l  
remain valid for  systems of class N also.  
proofs given for the analytical case ei ther  remain without change for  
systems of c lass  N or a r e  actually simplified, we wi l l  concentrate on 
analytical systems.  

However, since the various 

be a dynamic system and 0 (0, 0) i t s  equilibrium state .  
0 (0, 0) i s  a multiple equilibrium state  of multiplicity r ,  where r is a 
natural  number, r > 2 .  By Definition 15 (57.3) and Definition 5 (§2.1), an 
equilibrium state 0 of system ( A )  is of multiplicity r i f  the following con- 
ditions are satisfied: 

(a) there  exist  numbers E~ > 0 and 6, > 0 such that any system (A) 60-  

close to rank r to system (A) has  at most r equilibriu? s ta tes  in Uro(0 ) ;  
(b) for  any e < E, and 6 > 0,  there  exis ts  a system (A) 6-close to rank r to 

(A) which has  a t  least  r equilibrium states  in U, (0). 
From the definition of r-multiplicity of the equilibrium state 0 and from 

the condition r>Z and Theorem 6 (52 .2 )  i t  follows that 0 (0, 0) is an isolated 
equilibrium state in our case  and that 

We assume that 

In the following, eo > 0 and 6o > 0 are fixed numbers defined by condi- 
tion (a). 
equilibrium state of (A) in U0(0). If necessary,  other conditions wi l l  a l so  
be imposed on e,, and 60, provided they do not c lash with the basic require-  
ment of smallness  of these numbers.  

called f e a s i b 1 e systems.  
U, (0). 
equilibrium states  on the circle  C, and the vectors  defined by systems (A) 
and (A) do not point in opposite directions at  any point of this c i rc le .  

Moreover, we take e ,  to be so small  that 0 (0, 0) is the only 

Analytical dynamic systems 6,-close to rank r to system (A) wil l  be 

We take 6, to be so small  that no feasible system (A) has 
Let C be the boundary of the n_eighborhood 

Then 

w,C (c) = w A  (c). 
We will t ry  to elucidat_e maximum information about the equilibrium s ta tes  
of a feasible system (A) which lie in V.,(O), i f  i t  is known that they all a r e  
structurally stable. W e  wi l l  f i r s t  present  some propositions which a r e .  
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applicable to any r-tuple equilibrium state  (Lemmas  1 and 2 and 
Theorems 31 and 32) ,  and then r e s t r i c t  the range of equilibrium s ta tes  by 
imposing one fur ther  condition. 

01, 02, . . ., Ok in the neighborhood Ue,,(0), and they are al l  s t ructural ly  
stable, w e  shall say  that the multiple equilibrium state  O(or  the multiple 
singular point 0 )  decomposes into str_ucturally stable equilibrium s ta tes  
O,, 02, . . ., O,+ on passing to system (AL 

L e m  m a  1 .  If a feasible systetn (A) has r equilibrium states in a 
neighborhood u,, (0) of a,u r-tuple equilibrium state 0, all these equilibviutn 
states are simple. 

Let the feasible sys tem (A) have r equilibrium s ta tes  
O,, 02, . . ., 0, in U,,(O), and a t  least one of them, Ol say, is a multiple 
equilibrium state .  
U t  c U,, (0) and no two Ui intersect .  
simple equilibrium state  of system (A), we can  replace this  system in ,a 
sufficiently smal l  neghborhood Vt of the point Oi (Vi  c C r i )  by a system (A;) a5 
close as desired to (A) for  which Oi is a s imple equilibrium state.:' 
thermore,  in a s2fficiently smal l  neighkorhood I.', of the point O1,Vf c, UI. 
we can replace (A)  by another system (Ai), as close as desired to (A), 
which has  in  VI a t  least  two equilibrium s ta tes  0; and 0;; this can be done 
since by Theorem 6 ( S 2 . Z )  a multiple equilibrium state  has  a multiplicity 
higher than 1. By the first footnote to this page, 0; and 0; may 
be regard_ed as simple equilibrium s ta tes .  
sys tem (A') of class r ,  which would be as close to rank r as desire>< to 
sys tem (A) and would cohc ide  outside the neighborhoods Vi with (A) and 
inside each of the neighborhoods Fi with (Ai).**. 
system whose right -hand s ides  are polynomials-providing a suffLciently 
good approximation to th,? right-hand s ides  of (A'). 
a feasible system with at  least  r + lequi l ibr ium s ta tes  in U,,(O). 
contradicts the assumption that 0 is an  r-tuple equilibrium s ta te .  
proof of the lemma is complete. 

L e wi >n a 2. If 0 i s  an r-tuple equilibviurn state of system (a), there 
exist systems as  close to rank r to system (A)  as  desired, which have r 
structurally stable equilibrium states in tre, (0). 

'The validity of Lemma 2 follows directly f rom the definition of 
multiplicity of an equilibrium state  and from the f i r s t  footnote to this 
Page. 

equilibrium state o of systetn (A), then 

If the feasible system (A) has  precisely IC equilibrium s ta tes  

P r o o f  . 

Let Ui be a neighborhood of O i ,  i = 1, 2, . . ., r ,  such that 
the point Oi, i = 2, 3, . . ., r ,  is not a 

F u r -  

We can fur ther  construct a 

Let now (A") be a dynamic 

Evidently, (A") is then 
This 
The 

T h e o r e m  31. If I A @ )  = l i s  the Poincare index of an r-tuple 

Z s r  (mod2). (3) 
P r o o f  . Let C be the boundary of the neighborhood U.,(O). By 

definition, the Poincard index lis equal to the rotation W;t  (C) of the vector  field 

Let the system have the f o r m * = o ( s - q )  j b ( y - y l ) +  ..., dy=c(+-- l i )+d(y- -yr)+ . . .  i n  the 

n?tehborhood of the pointOi(ri, vi). I f . = ( , "  : l = O ,  adding sufficiently small increments to u and d 
dt d t  

we obtain a close system withA =i; 0, 1.e.. a system whercOi i s  a simple equilibrium state.  Similarly, a 
jtructurally unstable point can be convened into a nruccurally stable point by an arbitrarily small change 
of the system. 
[he Fosstbtlity of constructing such a systcm of class r is established in Chapter V I  (518.3) i n  ow proof 
to r'heorem 21. 

* 
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Ch.VIII. BIFUXCATIONS OF DYNAMIC SYSTEMS 

of system (A) along the curve C divided by 2n(QT, 911 .2 ,  Definition XI11 
and 510.2, Definitio? XI). 
a feasible system (A) which has in U.,(O) precisely r equilibrium states ,  
al l  of which a r e  structurally stable. 

According to the preceding lemma, there exists 

Furthermore,  from equation (2 )  

wx (C) = w, (C) = 2nI. 

(0,) + I ,  (0,) + . . . f Ix (6). 
On the other hand, by QT, §11.2, Lemma 1, 

I = ( 4  1 
But every equilibrium state Ot of (A)  is structurally stable, i .e . ,  i t s  index 
is either + 1 or  -1, so that it follows f rom the las t  equality that 

I z r ( m o d 2 ) .  
The Droof is comde te .  

all of which are structurally stable, then- I 
k = r (mod 2). 

k=l(mod2).  ( 6 )  

Relation (5) follows from ( 3 )  and (6) .  Q. E. D. 
The previous lemmas  and theorems a r e  valid, a s  we have observed, 

We will now consider in some detail 

(5 )  

P r o o f  . A s  in the previous theorem, we prove that 

for any r-tuple equilibrium state .  
a relatively narrow, but extremely important c lass  of equilibrium states .  
T h r o u g h o u t  t h e  r e m a i n i n g  p a r t  of  t h i s  s e c t i o n ,  w e  w i l l  
a s s u m e  t h a t  t h e  s e r i e s  e x p a n s i o n s  of  t h e  r i g h t - h a n d  
s i d e s  - t h e  f u n c t i o n s  p a n d  Q -  i n  t h e  n e i g h b o r h o o d  of t h e  
r e l e v a n t  e q u i l i b r i u m  s t a t e  O(0 ,  0) c o n t a i n  a t  l e a s t  o n e  
l i n e a r  t e r m ,  i . e . ,  

I pk (0, 0) I +I J'; (0, 0) I + I  Q; (0, 0) I + I Q; (0, 0) I + 0. (7 1 
To fix ideas,  le t  I 

If Q; (0, 0) = 0, but P; (0, 0) does not vanish, say, nothing changes 
significantly. 

We w i l l  f i r s t  derive the necessary and sufficient condition for the 
equilibrium state of the particular type to be of multiplicity r .  
for r = 1 and r = 2 ,  condition (7)  is fulfilled automatically (Theorems 6 
and 7, 52.2 and 92.3) .  

Note that 

T h e o r  e m 33. Let 0 (0, 0) be an equilibrium state of a system 

of class r (in particular, analytical system) and let at least one of the f i r s t  
derivatives of the functions Pand Q ,  say Q; (0, O), not vanish at the p d n t  
0 (0,  0) . Let further I/ = 'p ( x )  be the solution of the equation 



f o r  y in some sufficieiitly small neighborhood of o,* ami 

a (2) = P (2, 'F (3)). (10) 

Then the point 0 is an r-tuple equilibrium state of system (A)  if and 

PI' o o f of Theorem 33 is analogous to the proof of the corresponding 
only if the nriutber 0 is  an r-tuple root of the function 0 (I).** 

proposition in Theorem 7 ( $ 2 . 3 ) .  Using Lemma 1 ,  $ 1 . 3  in our  proof, 'we 
take for  P (t, y) the function 

atz+&+ ... + a , - d - l + P ( z ,  y) 

with appropriately chosen coefficients ai. 
rheorem 7 are represented by conditions ( 1 )  and (8 ) ,  respectively, and 

are fulfilled in our  case  by assumption. 
We now proceed to the next theorem. 

brium state  of (A)  for  which condition (8) is fulfilled, and e, > Oand 6o > 0 
the numbers  introduced in the preceding. W e  moreover  assume that e,  is 
sufficiently small  so  that 91 # 0 in the neighborhood U,,(O), and the curve 
Q (z, y) = 0 may be defined in this neighborhood by an explicit equation 
Y = 'P (4, where El < z < E.2, Et < 0, 5 2  > 0. 

0 4  k +'r, k = r (mod 2 ) ,  and fm any positive 6 < 6, and e <&,.there exists an 
analytical system (xi) Ic,hich is &close to rank r to system (A)  and has in 
c;, (0) precisely k ,  and at that structurally stable, equilibrium states, all 
of which nimeouer lie in L:, (0). 

P r o o f .  Let, as before, 

Conditions (a) and (b)  of 

Let 0 (0, 0)  be a n  r-tuple equili- 

T h e o r e  m 34. For any whole number k satisfying the inequalities 

P (2, 'P (I)) = e  (I). (10)  

By rheorem 33,  z = O  i s  a root of multiplicity rof function e@). 
fore ,  

There- 

( 1 1 )  e ( z ) = A z ' +  ... = A ~ ~ ( l f f ( t ) ) ,  

where A Z O ,  and f ( z )  is an  analytical function, f ( 0 )  = O .  
Consider the system 

g = P ( x ,  . Y ) = ~ ( Z ,  Y ) + P ( ~ ,  Y), g = Q ( z ,  y ) = Q ( z ,  Y). (12) 

where 

P(Z, Y) = A  (z--x1) (5-s2) . . . ( X - Q )  (ek +a) (1 +f (1)) -e (21, ( 1 3 )  

and k is an integer, O < k < r ,  k = r ( m o d 2 ) ,  a>O, g , ( x i < E z .  and all q a r e  
different ( p ( z ,  y) is independent of y). 

in the neighborhood U,, [O) i t  may be expressed by a n  explicit equation 
Since o= Q, the curve q(z, y)=Ocoincides with the curve Q(z. y)=O, i.e., 

l'he equation Q (z. y) = 0 has ,I single-valued solution y = cp (z) in a sufficiently small  neighborhood of 0 
in virtue of condition (8) and the theorem of implicit functions; here, 'p is a function of class r a n d  
cp (0) = 0. 

I f  QI (0, 0) = 0, but Pi (0, 0). say,  does not vanish, I3 (z)should be replaced by a function €I* (y) = 
= Q (q* (y), y), where z = 'p* (y) is the solution of the equation P (I, y) = 0 for r. 

* I  
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y='p(x), E.,<x<E2. rherefore  
c 

0 (5) = p" (5.6 (5)) = p" (5, 'p (5)) = P (x ,  B) + P (G 'p (4) = 

= A (2- xi) (z-z~) . . a (z-x~) (Z-k + a) (1 + f (5)). ( 14 ) 

By assumption, O(0,O) is the only equilibrium state  of (A) in V , ( O ) .  It 
thus follows f rom (10) and (11) that l+ f (x )+Ofor  E.,<x(Ez. 
Z ' - ~ + ~ # O ,  since a>O, and r - k  is even. 
system (12)  has  in U,(O) precisely k equilibrium states  Oi(x i ,  tp(zi)). 

i = l ,  2, ..., k. 

Moreover, 
But then we see from (14) that 

By (11) and (13), 

P ( X ~  ~ ) = A ( f + f  (x)){xr~[(5-x*)(x-5~) @-4-zr1+ 
+ a ( x - x * )  (x-xz)  . . . (2-5*)}. 

If the numbers X i ,  i = 1 ,  2, ..., k ,  and a a r e  sufficiently small ,  the function 
p ( z ,  y) in a finite interval is arbi t rar i ly  close to zero with i t s  derivatives, 
and system (12)  is therefore arbi t rar i ly  close to rank r to system (A). 
Moreover, for  small  xi, all  the points 0, lie in U ,  (0). 

We will now show that the equilibrium states  Oi (21, cp (x i ) )  of system (12)  
a r e  all  simple. 'Indeed, from the relations P"(q 'p(s) )=g(x) ,  Q ( x ,  ' p ( x ) )  = O  it  
follows that ,, 

Therefore 

c 

~(0 , )  =x (x i ,  'P (zi)) = -e' (xt) QI(W, 'P ( X I ) )  ( i  = 1, 2 , ..., k).  

But QI ( x l ,  rp (q)) # 0 by assuppt ion,  and ~ ( x J  does not vanish, since ZL is 
I 

a simple root of the function 9(x)(see (14)). 
points O1 ( i = i ,  2, .. ., k) a r e  simple equilibrium states  of system (12). 

If the points OI a r e  structurally stable equilibrium states ,  the proof is 
completed. If some of these are structurally unstable equilibrium states  
(i .e. ,  multiple foci or centers)  we can adopt the same technique a s  in 
Lemma 1 and change over to an arbi t rar i ly  close analytical system which 
has  in U,,(O) precisely k equilibrium states,  al l  of which a r e  structurally 
stable and lie in U . ( O ) .  

and completely determine the number of equilibrium states  of a 
sufficiently close system which may lie in U, (0) if they a r e  a l l  structurally 
stable. Theorem 32, however, has been proved for a general case,  
whereas in m e o r e m  34 we assumed condition ( 8 )  (or (7)).  It is therefore 
interesting to t ry  to establish whether or not Theorem 34 is applicable to 
the general  case,  i.e., when condition (7) is not satisfied. 

Hence, h(O1)#0, i.e., the 

This completes the proof of the theorem. 
R e  m a r k . Theorems 32 and 34 naturally complement one another 

2. The character  of the structurally stable equilibrium 
states  obtained f rom a multiple equilibrium state with a # 0 

singular points to which an r-tuple equilibrium state 0 of a dynamic 
In the previous section w e  determined the number of structurally stable 

* W e  have previously encountered this formula in the proof of Theorem 7 (02.3). 
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system (A) may decompose on passing to c lose sys tems.  
w e  will t r y  to  elicit some information about the charac te r  of these 
s t ructural ly  stable singular points. 
s ta te  0 is isolated and sat isf ies  the condition 

In this subsection 

W e  assume that the multiple equilibrium 

I P;  (0, 0) I+ I P; (0, 0) I + I Q; (0,O) I C I Q; (0, 0) I # 0. (7) 

The topological s t ructure  of the dynamic system in the neighborhood of 
such a n  equilibrium state  has  been studied in detail in  QT, 521 and S22. 
W e  will require  the principal resu l t s  f rom QT, which a r e  re i terated 
below. W e  distinguish Detween two cases, u = 0 and u # 0. 

(a) Let 

(15) u=P;(o ,  O)+Q;(O, O)#O. 

In this case, system (A) is t ransformed by a non-singular linear 
transformation to  the form 

where Pt and Qz are anal-ytical functions whose series expansions in the 
neighborhood of the point O(0,O) consist of t e r m s  of not lower than second 
o rde r .  

Let  

be the solution of the equation 

Y + Q z ( z , Y ) = O  (18) 

in the neighborhood of O(0,O) and le t  the expansion of the function 

where m>2,  and 

(the existence of these numbers  m and Am follows f rom the fact that the 
equilibrium state  is isolated). 

The following proposrtion applies: 
I (QT, 521.2, Theorem 65) 
1. If m is odd, and Am > 0, the equilibrium state  0 of system (16) is a 

topological node (Figure 104). 
2 .  If m is odd, and A m < O ,  0 is a topological saddle point (Figure 105). 
3 .  If miseven,  the equilibrium state  O(0,  0) is a saddle-node, i.e,, i t s  

canonical neighborhood consis ts  of a parabolic and two hyperbolic s ec to r s  
(F igures  106 and 107). 

(b)  Let 

(22 1 o=P;(O,  O ) + Q ; ( O , O ) = O .  
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FIGURE 104. Oddm, A,,, > 0.  FIGURE 105. Odd m, A,,, C O .  

FIGURE 106. Even m, A,,, > 0.  FIGURE 107. Even m, Am < 0.  

In this case,  system (A) can be transformed by a non-singular l inear 

-;ii-=~+&.(~ Y), $=QS@. Y). 

transformation to the form 

(23) 
dz  

System (23) in i t s  turn can be reduced to an even simpler form 

3= dt q* g=qz(E* q) 
by the transformation 

E = x ,  q=y+Pz(z ,  Y)7 

which is one-to-one in the neighborhood of O(0,O). 
original notation, we may thus consider a system of the form 

Reverting to the 

(24 )  
d x  -= d t  Yt $=Q2& Yh 

where the s e r i e s  expansion of Qz (z, y) contains no l inear t e rms .  
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Since O ( 0 ,  0) is by assumption an  isolated equilibrium state  of 
system (24 ) ,  this system can be writ ten in the form 

where h (z), g (z), f (3, y) are analytical functions; h (0) = g (0) = 0; r > 2 ;  
a f 0: b may be equal to zero; i f  b + 0,  we have n > 1. 

in this case, the following proposition applies : 
I1 (QT, S22.2, Theorems 66 and 6 7 )  
1.  Lf r is odd, the equilibrium s ta te  O i s  e i ther  a topological saddle 

point, or a topological node, o r  a focus (a center) ,  or finally a n  equilibrium 
state  with an  elliptical region (whose neighborhood contains one hyperbolic 
and one elliptical sector ,  Figure 108 J. 

FIGURE 108 FIGURE 109 

2.  Jf r is even, 0 i s  e i ther  a degenerate equilibrium state  (two hyper- 
bolic sec tors ,  Figure 109), or a saddle-node (Figure 110). 

FIGURE 110 

Note that by Theorem 3 3  and the condition a # 0, the number r is the 
multiplicity of the equilibrium state  0. 
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We can now consider the character  of the structurally stable equilibrium 
states  obtained from a multiple singular point. 
when 

F i r s t  w e  consider the case 

CI = p;  (0, 0)  + 9" (0, 0) # 0. 

The solution of the problem is very simple, since the character  of the 
component structurally stable s ta tes  is entirely determined by the Poincare' 
index of the singular point 0. 
that the system has the form (16) .  

a canonical neighborhood of the equilibrium state  0. 
Bendixson's formula, the Poincard index of the point 0 is 

W e  may assume without loss  of generality 

Let H be the number of hyperbolic, and E the number of elliptical sec tors  of 
According to 

E-€I  I=-+1 2 

( see  QT, Amendix, § lo) .  - . .. 
In our case,  as we see from (16), u = 1 and A = 0 .  Let (A) be a dynamic 

system 8,-close to (A) to the required rank, and 01, Op, . . ., 01, the equili- 
brium states  of this system lying in U,, (O), all of which a r e  structurally 
stable. 
i s  close to 1 for  each of the equilibrium states  O i ,  i = I ,  2, . . ., k, and 
Ai = A (Oi) is close to zero.  
node, and i f  A i  (Oi) -= 0, Oi is a structurally stable saddle point. Thus,  in 
our case,  all the structurally stable equilibrium states  into which a 
multiple equilibrium state  0 decomposes a r e  structurally stable nodes and 
saddle points. 

equilibrium state 0 (0, 0) of system (16)  is m .  
I = IA (0) of the point 0 from (26), we obtain the following resul ts :  

If the numbers 6, and e, a r e  sufficiently small ,  the number q = u(O1) 

Then, i f  A (01) > 0, Oi is a structurally stable 

By Theorem 3 3  and relations (20) and (211, the multiplicity of the 
Evaluating the Poincard index 

1 )  If 0 is a topological node, I = 1 ( E  = H = 0). 
2 )  If 0 is a topological saddle point, I = - 1 ( E  = 0, H = 4 ) .  
3 )  If 0 is a saddle-node, I = 0 ( E  = 0, H = 2).*' 
On the other hand, we know (see the proqf of Theorem 31) that 

IA (o)=I=I;T (01) +IT ( 0 2 )  f . . . +IZ (01,)- ( 2 7 )  

Since the Poincar; indices of a structurally stable node and a structurally 
stable saddle point are +1 and -1, respectively, equation ( 2 7 )  directly gives 
the number of structurally stable nodes and structurally stable saddle points 
among the points O,, Oz, . . ., Oh in each of the cases  1, 2 ,  3 above. 
of the number k is completely fixed by Theorems 32 and 34 .  

The value 

All  the various resul ts  can now be summarized in the following 
theorem. 

T h e o r e m  35. Let 

* Note that the Poincar6 index of the equilibrium state 0 (0, 0 ) o f  system (16) can be readily computed 
without using Bendixson's formula (26). 
of the dynamic system crosses the direction of the y axis while moving along a circle of small radius 
centered at 0. See Kranosel'skii et a l .  /19/, 67. 

T o  this end, we should count the number o f  times the field vector 
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be a dynamic systeni, 0 (0, 0) an equilibrium state of this system far which 
A = 0 and o = P; (a, 0) + Q; (0, 0) f a ,  and let m > 2 be the multiplicity of the 
equilibrium state 0. Titen the number k of struchwally stable equilibrium 
states Of, 02? . . .. Oh into which the tnultiple equilibrium state o decomposes 
on passing to arbitrarily close systems* satisfies the conditions 

O 4 k g m  and k = m ( m o d 2 )  

and may be eqtml to any number satisfying these conditions. 
points Oi ( i  = i ,  2, . . ., k )  is either a structurally stable node or a structurally 
stable saddle point. Moreover, 

stable nodes among the points O i , 0 2 , .  . ., ok is 1 more than the number of 
structurally stable saddle points; 

2) i f  0 is a topological saddle point, k i s  odd and the number of 
structurally stable nodes among the points oi, 02, . . ., oh is 1 less than the 
number of structurally stable saddle points; 

3) if  0 is  a saddle-node, k is even ami the number of structurally 
stable nodes among the ,boints Oi, 02. . . ., Or is  equal to the number of 
structurally stable saddle points. 

Theorem 35 fully determines the types of the s t ructural ly  
stable equilibrium state!; which are obtained f rom a multiple equilibrium 
state  0 (0, 0) in the case IJ = P; (0, 0) + QI (0, 0) + 0 .  
theorem, in particular, that the topological s t ructure  of the equilibrium 
state  0 in this case is uniquely determined by i t s  Poincarg index, which is 
equal to the difference between the number of s t ructural ly  stable nodes 
and the number of s t ructural ly  stable saddle points obtained f rom the 
multiple equilibrium state .  

Each of the 

1) i f  0 is a topological node, k is odd and the number of structurally 

R e  m a r k  . 

It follows f rom this  

3. 
s ta tes  obtained from a multiple equilibrium s ta te  with 
o = o  

The charac te r  of the structurally stable  equilibrium 

In our proof of the basic theorems of this subsection, w e  will make use  
of one proposition which belongs to Poincare' ( / 1 5 / ,  p.  43, Theorem V )  and 
is a l so  of independent interest .  

T h e o r e  m 36 (Poincare themem).  I f  a dynamic systein 

has only simple equilibrium states and if the isocline P (3, y) = o(m 
Q (2, y) = 0) has no singular points (Le., points at which both partial 
derivatives P; and PI vaxish simultaneously), the equilibrium states with 
A < 0, Le., saddle points, altemzate on this isocline with equilibrium 
states with 6 > 0, Le., ntnies and foci. 

Let O1 (q, y,) and O2 (z2, yz) be two simple equilibrium s ta tes  of 
(A)  and I a simple a r c  of the curve P (2, y) = 0 between these points, which 
contains no other equilibrium s ta tes  except the end points. 
show that A (0,) and A (02) are of different signs. Suppose that this is not 
so and le t  A (01) > 0 and A (0,) =- 0, say. 

P r o  o f . 

We have to 

This number is defined before Lemma 1 
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Consider the vectors n ( M ) = n  ( x ,  y) with the coordinates Pk(z ,  y), PI (s,~) , 
where M (z, y) is a point of the curve P (z, y) = 0. 
continuous field of normals  on the a r c  I ,  and no vector of this field is ze ro  
(i.e.,  the field has  no singularit ies on the a r c  I ) .  
Q (2. y) = Q ( M )  and i t s  gradient grad Q ( M ) .  Since 01 and O2 a r e  equilibrium 
states  of (A), we have Q (0,) = Q (0,) = 0.  Furthermore,  the conditions 
A, > 0 and A 2  > 0 clear ly  indicate that the vector n (Oi) makes a positive angle 
with the vector gradQ(Oi), i = l ,  2 (Figure 111). 

These vectors  form a 

Consider the function 

FIGURE 111 I 

To fix ideas,  suppose that the tangent OITl a t  the point Oi of the curve I ,  
corresponding to i t s  direction from Ol to 02, makes a p o s i t  i v  e angle 
with the normal n (0,). Then the tangent 0 2 T 2  at the point O2 of the curve 1 ,  
corresponding to the direction from O2 to O,, evidently makes a n e g a t i v e  
angle with the normal n (02). Computing the derivative of the function 
Q (5, y) along the curve I in the direction 0102 10201) a t  the point O1 (0,) and 
remembering that this derivative is equal to the projection of the gradient 
of Q (5, y) on the corresponding tangent, we find that this derivative is 
negative at  the point0,and positive at  the point 02. This resul t ,  combined 
with the relations 

Q (01) =Q ( 0 2 )  =O 

and with the definition of a derivative along an arc shows that the function 
Q ( x ,  y) is negative on the a r c  I near the point Ol and positive on this a r c  
near  the point 0,. 
i .e . ,  this point is an equilibrium state  of (A), contrary to the original 
assumption. Q. E. D. 

Let u s  now consider the equilibrium state  0 (0, 0) assuming that 

But then Q ( x ,  y)=O a t  some interior point of the a r c  1, 

I P; (0, 0)  I + I P;  (0, 0) I tlQ; (0, 0) I +I Q;(o, 0) If 0 (7) 

The problem is much more difficult now than in  the previous case,  and 
i t  entails a number of special  algebraic propositions. 
l i s t  a number of relevant resu l t s  without proof. 
found in 1161. 

point 0 decomposes into structurally stable equilibrium states  O1 ( i  = 
= 1, 2, . . ., k), A (0,)and u (Oi) may take any arb i t ra r i ly  small  values.  
particular,  the difference u (0,)’ - 4 A  (0,) may be either positive o r  negative. 

We will therefore 
Detailed proof wi l l  be 

The complications a r e  associated with two factors .  First, if a singular 

In 
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rhis  means that the paints 0, may in  general include s t ructural ly  stable foc 
and not only s t ructural ly  stable saddle points of nodes. 
Poincare' index of the equilibrium state  0 no longer determines the topologi 
cal s t ruc ture  of this equilibrium state  (as it  w a s  in the previous case) .  
Indeed, by proposition I1 of the previous subsection, if the multiplicity r of 
O i s  odd, this point may be 

a )  a topological saddle point ( E  = 0. H = 4) ;  
b j  a topological node ( E  = 0, II = 0); 
c )  an  equilibrium state  with an elliptical region ( E  = 1, H = 1); 
d )  a focus or a center  ( E  = 0. H = 0). 
If the miltiplicity r of 0 is even, the equilibrium state  0 niay be 
e )  a degenerate equilibrium state  ( H  = 2,  E = 0 ) ;  
f )  a saddle -node (II : 3, E = 0) . 
By Bendixson's formula, the Poincard index of the point 0 has  the 

Second, the 

following values: 

I -  --I in case a; 
I = + I in cases b, c, d; 

I = u in cases e, f .  _ii 

The topological s t ruc ture  of the equilibrium state  is therefore completely 
determined by the Poincarg index only i f  i t  is equal to -1, i.e., 0 is 
a saddle point. 
s t ructural ly  stable equilibrium s ta tes  for  ca se  a is the s a m e  as  in  
Theorem 35, provided we do not distinguish between s t ructural ly  stable 
nodes and s t ructural ly  stable foci, i.e., between s t ructural ly  stable 
equilibrium s ta tes  w i t h  A > O . *  :'' Using Theorems 32 and 34, w e  obtain 
the following resul t .  

T h e  o r  e m 37. A tnultiple equilibriurn state 0 (0.0)  of system (A) fm 
which condition (7) i s  satisfied but u = P; (0,  0) 
topological saddle point if and only if the number of stmchtrally stable 
nodes and foci into which i t  decomposes i s  1 l ess  than the number of 
structurally stable saddle point. 
stable equilibrium states into which o decomposes may be atzy positive 
odd number not exceeding r ,  where r i s  the multiplicity of 0. 

been aimed a t  determining whether cer ta in  relations exis t  between the 
number of s t ructural ly  stable nodes and the number of s t ructural ly  stable 

foci or each number niay take any value between 0 3nd 9. 
consider this problem, however. 

In cases b, c ,  d, as  i t  follows f rom (28)  and from the previous resu l t s ,  
the number of nodes and foci among the s t ructural ly  stable equilibrium 
s ta tes  O,, Oz, . . ., OR is I grea ter  than the number of saddle points, and in 
cases e and f the number of nodes and foci is equal to the number of 
saddle points .+ In t e r m s  of decomposition into s t ructural ly  stable 

The character is t ic  of the point 0 in t e r m s  of the component 

Q& (0. 0) = 0 is a 

The total number It of stmcturally 

For the sake of com?leteness, the next s tep in our  analysis  should have 

W e  w i l l  not 

As for system (16). the Poincars index of the equilibrium state 0 oi  system (24) can be readily computed 
without resorting to Bendixson's formula. 

focus have an identical topological structure. 

equilibrium state 0 decompose;. 

See footnote on p.226. 
* *  Note thatfromapure topological point of view, no such distinction is possible, since the node and the 

* We recall that O,, 02, . . ., 0, are the structurally stable equilibrium states into which the muItiple 
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equilibrium states ,  we can thus distinguish between points b, c ,  d, on the 
one hand, and points e , f ,  on the other.  In s imilar  t e rms ,  we can 
distinguish between points of type e and points of type f ,  and also fully 
characterize each of the types b, c ,  d. 
is not pure topological, since we wish to differentiate between structurally 
stable nodes and structurally stable foci obtained f rom the multiple point 0. 
Moreover, we a r e  forced to consider in this case the decomposition into 
the m a  x i m u  m number of structurally stable equilibrium states  (equal to 
the multiplicity of the original equilibrium state),  and not into a n y  
p o s s i  b l  e n u m b  e r , as-before. To emphasize the las t  factor, we w i l l  
refer  to feasible system (A) as a s p 1 i t  s y  s t e m if on passing f rom (A) 
to (A) the singular point 0 of multiplicity r decomposes into r structurally 
stable equilibrium states .  

Let u s  f i rs t  formulate a resul t  relating to a quadruple equilibrium state 
( I  = 0, ca ses  e and f ) .  

T h  e o r e  m 38. Let (A)  be a dynamic system, 0 (0, 0) a multiple 
equilibrium state of the system of multiplicity r = 2m, m > 1 ,  for which 
condition ( 7 )  is satisfied and 0 = P; (0, 0) + Q; (0.0) = 0 (Le., a degenerate 
equilibrium state m a saddle-node) . 

1) If the equilibrium state 0 decomposes into k scrUcttmally stable 
equilibrium states Oi, i = 1, 2, . . ., k,on passing to a feasible system, k is 
even and the number of shc tura l l y  stable saddle paints among 0,is equal to 
the number of shc tura l l y  stable nodes and foci. 

arbitrarily close to (A) for which Odecomposes only into structurally foci  
and saddle points. 

3) If 0 is a saddle-node, the structurally stable equilibrium states into 
which 0 decomposes on passing to any suff.:ciently close split system 
include at least one stnrcturally stable node. 

and equation (28) and has  in fact been established before. 

may assume (see S3.2, Lemma 2 )  that system (A) has the form (25): 

However, the resulting classification 

Then 

2) If 0 is  a degenerate equilibrium state, there exist split systems 

P r o o f  . 
Let u s  prove the second proposition. 

The validity of the f i r s t  proposition follows from I'heorem 32 

Without loss  of generality, we 

dz = Y  = P (2. Y), $=aza"' 11 + h  (31 + bxn:^a,tl+g(41 +Y'f (5, Y) = Q (z, Y), 

where h ( z ) ,  g ( r ) ,  f ( x ,  y) a r e  analytical functions, h ( O ) = g ( O ) = O .  m > l ; a > O ;  
n > l  if  b # O .  Let O(0, 0) be a degenerate equilibrium state.  
Theorem 67)  i t  is proved that in this case 

In QT (522.2, 

(29)  

We take some positive number q>Oand a sequence 

either b = 0, 
or b # 0 and n > m .  

Let, f i rs t ,  b+O. 
of a rb i t r a ry  numbers xt, i = i .  2, .... n-I, such that 

0 < X i  < 2, < . . . € Xn-i< '1. (30) 

W e  draw up a polynomial 
b ( s )  = b x ( z - - z 1 ) ( x - z 2 ) .  . . (s-zn-J = b ~ ~ + b , s " - ~ + .  . . +bn-15, (31) 

whose roots a r e  the numbers 0, xl, r2, .... xn-!. 
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- 
By (291, m - I  . : n - l .  Let y, ,  &. . . ., x ,  be any numbers satisfying the 

inequalities 
- - - 

0 < s1 < 2, -: 2-2 < x* < . . . <x!n-t < zm-1< Z,-l< gm <q. ( 3 2 )  

W e  now construct a polynomial 

a ( T ) = U Z ( Z - - I J .  . . (r-zm.  l)(z-z,) . . . (r-rm)= ~ ~ 2 ~ t ~ t 2 z ~ - ~  -1- . . . +uzm-lz, 
- - 

(33 )  

whose roots are the numbers 0, si. rj. 

the coefficients bi and aj may be made as small  as desired.  
Clearly, if q is sufficiently small ,  

Consider a system 

We take q > O  to be so small  that the following conditions a r e  satisfied: 
(a )  r l s e o ;  
(b)  (A) is a feasible system; 
(c) if Izl<q, then i+h(z )>O.  
All the equilibrium states  of system (A) lie on the azis Ox. 

( 3 4 )  

From ( 3 3 )  
and (34 .  c) it  follows that a l l  the equilibrium states  of (A) lying in U,, (0) are 

- _  
O(O,O), O i ( x i , O ) ,  i : = L  2 .  .., m - f ,  and Oj(z j ,O) ,  j = l . 2 , .  . ., m. ( 3 5 )  

System ( K )  thus has  2 m  equilibrium states in But Uq (0) c Ue, (0) 
by (34 ,  a). 
equilibrium states  ( 3 5 )  a r e  simple. To 
this end, w e  wi l l  compute the values of A and (5 for  each of these states.- 

then 

Therefore ( A )  is a split system, and by Lemma 1 al l  the u, (0) 
Let us  identify their  character .  

Direct computations show that if O* (z*, 0) is an  equilibrium state of (A), 

and 

u (0') = gb (T', 0) L b (z*) [f  + g  (z')]. ( 3 7 )  

If 0' is one of the points in (35) ,  w e  have a ( x * ) = O  and 

A (O*) = - O' (i) [ 1 + h (z')]. ( 3 8 )  

Computing a' (z), we inser t  for z* the abscissas  of the points in (35) ,  
and using the inequalities (32) ,  (34 ,  c) and the condition a > 0, w e  obtain 
f rom the las t  expression 

A ( 0 ) > 0 ;  A(Oi)>O, i = i , 2 ,  ..., m-- l ;  
( 3 9 )  A(Dj)<:O, j = l , 2 .  ..., m. 
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Furthermore,  since z=O and z 5 x i r  i = 1 ,  2, ..., m - I ,  a r e  roots of the 
polynomial b ( Z ) ,  we see from (37)  that 

u(O)=O, o(z i )=0,  i = l ,  2, ..., m-I. (40) 

Relations (39)  and(40)showthat the points a,, j = 1, 2, . . ., m ,  a r e  
structurally stable saddle points, and the points 0 a n d o t ,  i = 2 ,  2, . . ., 
. . ., m - 1, a r e  m u 1  t i p l e  foci of (A). In accordance with the standard 

points, whereas Oand Oi a r e  struc&rally stakle foci. 
split system and, i f  q is sufficiently small ,  (A) is a s  close a s  desired to 
(A). 

Clearly,  (8) is a 

This proves the second proposition of the theorem for  the case b + 0. 

z,, x 2 ,  . . ., z,,-~ can be taken as any positive numbers smaller  than 7 .  
Let the 

equilibrium state 0 (0, 0) of system (A) be a saddle-node. 
Theorem 67, we have in this case 

We now proceed to the third proposition of the theorem. 
By Qr, 522.2, 

b#O and I g n c m .  (41) 

We wi l l  divide the proof into two par ts .  
a )  Consider a system 

dt 
Z ' Y ,  

%-=O(Z, y)=Q(.Z, Y ) f 4 ( Z ,  Y)== (A 1 
=a~'"' + h  ( ~ ) l +  bx"Y ti +g(41 + y s f  (xt Y) +q (I, u), 

where b =# 0 and l < n  < m. 
to rank 2 
states ,  which a r e  a l l  structurally stable, then a t  least  one of these 
equilibrium states  is a node. 

Evidently, closeness to rank 2 m - 1 of (A) and (A) indicates that the 
function q (5, I/) is close to rank 2m - 1 to zero.  

Let Ot (z i ,  0), i = 1, 2 ,  . . ., 2m, be theequilibrium states  of (A) in U,, (0). 
Consider the values of A, u, and IC = us-4Acorresponding to each of these 
equilibrium states .  Clearly, 

We will f i r s t  prove that if (A) is sufficiently close 
- 1 to system (A)  and has in Up, (0) precisely 2m equilibrium 

A ( x ,  0)= -@%(z, O)=--q;(x,  0 ) - 2 m a ~ ~ ~ - ' [ 1 + h ( r ) ] - - ~ ~ h ' ( s ) ,  (42)  

u (Z, 0) = 6; (I, 0)  = q ;  (Z, 0) + bz" I1 +gWI. (43) 

It follows from these relations that 

IC (z) = u'- 4 A  = b'xZn + 'pi (Z) + 'pz (Z) = bax2" + CP (2). (44) 

where 
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and 

From n < m  i t  follo.Ns that Z n < 2 m - - l .  Since, moreover,  g ( O ) = O ,  the 
function 'pl (z) may be written in the form 

'p, (t) = z2n+Gj1 (3). 

,where 'pl (s) is a n  analytical function. 
e t  satisfying the following conditions: 

Consequently, there ex is t s  a number 

(47) 1 iaj O < e t  <eo; 
(b/  6 2 s ~ " + ~ 1 ( z ) > 0  for z - e i  and for  z =  - E ~ ;  

(c ) I ~ ; z n )  (2) 1 < 
K'e now choose a number ai .  U < A ,  < d o ,  satisfying the following condition: 

(h)! b a  fo r  -eI  < J < e 2 .  

i f  the function q ( z ,  y) is &-close to rank 2m--1 to zero,  then 

(481 I 1 )  ? . ( -€ , )>O,  i * ( E , ) : ' 0 ;  
2 )  p<?nn, (Sn)! bz 

, (2) <- for - - E ~ < Z - - I E ~ ;  

3 )  all the equilibrium s t a t e s  Oi, i = I,?, . . ., 2m, lie in L T e , ( 0 ) .  
Condition (48,l) can be satisfied in virtue of (44) and (47, b). 

(48,2) holds true for  a sufficiently small  6 ,  in virtue of (46) and the 
inequality 2n + 1 .<2m -- 1. 
sufficiently small  ~ 5 ~ .  

&-close to ze ro  to rack 2 m  - 1. 

Condition 

Finally, (48, 3) is automatically satisfied for  a 

Let now (A) be 6,-close to (A) to rank 2 m  - 1, i.e., the function q (J, y) is 
Consider the function 

X (t) = b2X2" 4- 'p (t) (45) 

on the segment [--si. ei]. 
From the equality 

'F (4 = 'FI  (4 f 'F? (4 ( 5 0 )  

and from (47,~) and (48, 2) it follows that on this segment 

I 'p'*"' (I) I < (Zn)! ba. (51) 

The function h (z)thorefore has  a t  most 2 n  roots  on the segment[-  ~ ~ 1 . .  
Let E l ,  S t ,  . . ., E k  be a l l  the different roots of L (z) on this segment (some of 
them may be multiple roots). 
roots  Ejdivide the segment I-  E , ,  E , ) .  

function ?. (z) re ta ins  a constant sign. 
the las t  of these intervals.  
negative intervals and designated JI. J 2 ,  . . ., Jl (Figure 112) .  
prove that L < n .  
the function X (2). 

Consider the k + 1 intervals  into which the 
In each of these intervals,  the 
By (48,1), h (2) > 0 in  the f i r s t  and 

The intervals where I (I) < 0 w i l l  be called 
We .will now 

Indeed, both ends of ea'ch negative interval are roots  of 
Lf the intervals J, and J,, ,  have a common end point 5, 

' If the function has N root: on some segment (counting their multiplicities), i tc  derivatire has at least 
,J -1 roots. This iollor*.s irom the Eolle theorem and from the fact that each multipie root of a function 
IS a rOat of the derivative of inultiplicity smaller than 1.  
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(e.g., the intervals  Jz and J 3  in Figure 112) ,  &* is a root of even multiplicityof 
h(z) ,  i .e.,  i t  has  a multiplicity of a t  least  2.  Therefore, the total number of 
roots of the function h (2) on I- e , ,  ell is a t  least  21. Since, on the other hand, 
the number of roots  is at  most 2n, we see  that l ~ n .  Then by (41) 

l<m. (52) 

All the equilibrium states  O,, i = 1, 2, . . ., 2m,lie in  U,, (O)(see (48)) and 
a r e  structurally stable and therefore simple.  
negative intervals,  A (0,) = A, > 0 ,  since otherwise I (q) = hi = 03 - 4 A ,  > 0. 
But then by Theorem 36 (PoincarB theorem), each negative interval J ,  con- 
tains a t  most one point Oi.  This signifies, as we see  from inequality (52).  
that the number of equilibrium states  Oi with I < 0, i .e ., the number of 
foci, is less than m. On the other hand, the f i r s t  proposition of the theorem 
indicates that the total number of nodes and foci among the points 0, is 
equal to the number of saddle points m. 
among the points O,, which proves the third proposition for  system (A). 

If Oi (si .  0)l ies  in one of the 

Hence, there  is at  least oneAnode 

FIGURE 112 

b)  Let u s  now consider the general  case.  Let 

be a dynamic system 6-close to rank 2 m  to system (A) which has  in U,, (0) 
precisely 2 m  equilibrium states ,  all of which a r e  structurally stable. We 
have to prove that if 8 i s  sufficiently small ,  these equilibrium states  
contain a t  least  one node. Let the equilibrium states  be Oi, 02, . . ., Ozm. 

Consider the transformation 

We assume that the region 3 in which all the systems a r e  treated is convex 
in y'* and that 6 < 1. Then, as is readily seen, the mapping ( 5 3 )  is one- 
to-one and regular,  moving into some region in the plane (X, Y). 
Indeed, if two different pcints (sl, y,) and ( x 2 ,  gz) are mapped by (53) onto the 
same point, then rl = s 2 ,  yl  # g2 and y1 + p (z,. 11~) = ya + p (ti, g Z ) .  But then gz - y, = 
= p (xi, yl) - p (5,. YZ) = (YI - VZ) PI (51, y*), where 11,c y* < y2 (or y, > y* > yz). 
Therefore . /  p; (2, y*) I = I ,  which czntradicts the condition 6 < 1. 

Transformation (53) changes (A) into the system 

-_ dX --Y, % = Q ( X ,  Y). 
d t  

* Convexity in y indicates that if the end points of a segment parallel to the axis Oy l i e  in G ,  the entire 
segment lies in G. 
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Let u s  consider X and Y as coordinates in the plane (t, y). i .  e . ,  w e  
replace A‘, Y with 2, y, respectively. This gives a system 

dz  (A ) 
; iT=y. $=O(t ,  y), 

defined in E .  

.V L t, Y = y (see $3.2). 
If 6 is sufficiently small ,  w e  see by Lemma 1, §2.2 that sys tem (A) is 
defined in F ,  and is arb i t ra r i ly  c lose to system (A),  and hence to 
system (A), t o  r a n k  2 m, - 1 .  To every  equilibrium state  O,,- i = 
= 1, 3,  . . .. 2m,of systern (A)  corresponds a n  equilibrium state  0, of 
system (A). 
equilibrium s ta tes  by Lemma 2, $6.1, and the corresponding pa i r s  0, and 
0, are e i ther  both nodes, or both foci, o r  both saddle points. 
a sufficiently sma l l  6, all the equilibrium s ta tes  0, Of sys tem (A) lie in 
Cre, (0) and there  are 30 other equilibrium s ta tes  of (A) in this neighborhood. 

But then system (A) sat isf ies  all the conditions of proposition a (see 
p. 232) ,  i .  e., among that points O,, and therefore among Or,  there  is a t  
least  one s t ructural ly  stable node. 
theorem. 

the original equilibrium state  0 (0. 0) is -1 o r  0. 
l a s t  case ,  when the Po-ncark index is f 1. 
system (A), as w e  have noted before (see (28)), is then one of the following: 

Transformation ( 5 3 )  is 6-close to rank 2m to the identity transformation 
Let E ,  be a closed region, such that G 13, 3 Cco (0). 

Since ( 5 3 )  is a regular  mapping, 0, are s t ructural ly  s table  

Finally, for  

This completes the proof of the 

In Theorems 37 and 38 w e  considered cases when the Poincare  index of 
Let  u s  now proceed to the 

The equilibrium state  0 (0, 0) of 

b)  a topological node; 
c )  an  equilibrium state  with an  elliptical region; 
d )  a focus or a center  (see p. 229).  
In $23.2 w e  s a w  that the relevant sys tem can  be reduced to the form (25): 

I t  is established in  QT, Chapter IX, 522.2,  Theorems 6 6  and 67, that 
ca ses  b, c, d obtain if  a < 0 and r is a n  odd number. 
system (A) in the form 

W e  may thus take 

(54)  
dt 
-= d t  y, 2 = u32m*1 11 f h (41 T b2”Y 11 + g ( t j l  f Y*/ (J, !A, 

where a < 0, m > 1, h ,  g ,  and f are analytical functions, and h (0) = f (0) = 0 .  
Then (see QT, Theorem 6 6 )  

b)  0 (0. 0) is a topological node if 

b # 0 ,  n is even, and n < m  (55) 

o r  i f  

b+O, n i s  even, n = = m .  and D = b 2 + 4 ( m + l ) a > O ;  

c )  O ( 0 ,  0) is an  equilibrium state  with an  elliptical region i f  

b + O ,  n is odd, n < m  
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or if 

b f O ,  n is odd, n = m ,  and D=b2+4(m+1)a>0; 

d )  O(0,  0) is a focus or a center if 

b = O ,  

or i f  

bgOand n>m, 

or if  

The next theorem character izes  - in t e rms  of decomposition into 
structurally stable equilibrium states  - the difference between cases  b 
and c ,  on the one hand, and case d, on the other .  This classification, 
however, is formulated for the case  when system (A) is given in the 
form (54) and i f  n = m ,  then D = ba + 4 (m + 1) a # 0.  
what la te r  (see remark  to Theorem 3 9 )  that the las t  condition is 
fundamentally not res t r ic t ive.  

the equilibrium state 0 (0,O) decomposes into k structurally stable equili- 
brium states Oi, i = 1, 2, . . ., k ,  k i s  odd and the number of structurally 
stable saddle points among 0,is 1 less than the number of structurally 
stable nodes and foci. 

elliptical region and if for n = m, D = ba + 4 (m f 1) a # 0 ,  the structurally 
stable equilibrium states into which 0 decomposes on passing to a 
sufficiently close split systerri include at least one structurally stable node. 

arbitrarily close to (54) on passing to which 0 decomposes into structurally 
stable foci and saddle points only. 

fact that the Poincare' index is $. 1 in cases  b, c, d (see (28)).  The second 
and the third proposition for  m f n a r e  proved precisely in  the same way 
a s  the corresponding propositions of Theorem 38 .  If, however, m = n ,  the 
proof is more complicated, and is omitted here.:. 

E n  = m ,  and D = ba + 4 ( m  + 1 ) a  = 0 ,  there exist systems 
of the same type, a rb i t ra r i ly  c lose to (54), for  which D > Oand D < 0. There - 
fore, no cr i ter ion is applicable in this case which would differentiate - 
in t e r m s  of decomposition into structurally stable equilibrium states  - 
between a node o r  an equilibrium state  with an elliptical region, on the 
one hand, and a focus or center,  on the other.  

would differentiate - in t e r m s  of decomposition into structurally stable 
equilibrium states  - between case  b and case  c, i .e.,  between a node and 
an equilibrium state  with an  elliptical region. One such cr i ter ion has  been 

We will show some-  

T h e o r e m  39. 1) If on passing from system (54) to a feasible system 

2) If 0 (0, 0 )  i s  a topological node or an equilibrium state with an 

3} If 0 (0, 0) is a multiple focus or center, there exist split systems 

P r o o f  . The f i r s t  proposition of the theorem follows directly f rom the 

R e m a r k .  

For the sake of completeness, we require  s t i l l  another cri terion, which 

* A number of special algebraic lemmas have to be used in this case. See /16/, Theorem 5. 
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established in  /16/ (p. 55, Theorem 6).  It makes use, in par t icular ,  of the 
cha rac t e r  of the stability of the s t ructural ly  stable nodes and foci into 
which the multiple equilibrium state  0 decomposes. 

and i t  is therefore inadequate f rom the topological point of view adopted in 
our  t reatment .  
kind thus remains  open. 

of a multiple equilibrium state  0 (0, 0) of system (A) satisfying conditions ( 7 )  
and ( 2 2 )  {i.e., when u = P;  + Q; = 0)  is not determined in general  by the 
topological s t ructure  and the number of s t ructcral ly  stable points into which 
the multiple point decomposes. 
types b, c, d, e, f (p. 229), w e  have to consider the (non-topological) difference 
between nodes and foci. If in (54), n = m and D = b2 f 4 (m + f ) u = 0, 
cases b and c cannot be distinguished f rom case d by considering the 
s t ructural ly  stable points obtained f rom the multiple point. 

This cr i ter ion,  howtwer, employs essentially nontopological concepts, 

The question of a satisfactory (topological) c r i te r ion  of this 

In conclusion of this section, note that ou r  r e su l t s  indicate that the type 

To obtain a full character is t ic  of points of 
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C h a p t e r  IX  

CREATION OF LIMIT  C Y C L E S  FROM A 
M U L  T I P L E  FOCUS 

I IN TRODUCTION 

In the previous chapter w e  considered bifurcations of a multiple 
equilibrium state, concentrating only on the number and the charac te r  of 
the s t ructural ly  stable equilibrium s ta tes  into which a multiple state may 
decompose. In Chapter IX we w i l l  consider a simple equilibrium state, namely 
a s t ructural ly  unstable focus (A # 0, pure imaginary character is t ic  numbers)  
and determine the number of limit cycles which may be created in i t s  
neighborhood on passing to close sys tems.  Once this problem is solved, w e  
w i l l  be able to descr ibe the possible bifurcations of a dynamic system in the 
neighborhood of a s t ructural ly  unstable focus. 

The chapter is divided into two sections. 
propositions are considered. 
s u c c e s s i o n  f u n c t i o n ,  and also defines the leading concepts of f o c a l  
v a l u e s  and m u l t i p l i c i t y  of  a m u l t i p l e  f o c u s .  The succession 
function w a s  originally defined in § l o :  l e t  0 be a focus, 1 a ray  issuing 
from the focus, M o  a point on the ray,  sufficiently close to 0, L a path 
( sp i ra l )  through M o r  M i  the next (after M 0 .  in t e r m s  of increasing t )  in te r -  
section point of the path L and r ay  1 .  Let O M o  = po, OM, = pi (Figure 2 6 ,  
p. 91). 
The f o c a 1 v a 1 u e s a r e  defined a s  the values of the derivative of the 
function 

In 124, various auxiliary 
It studies in  more  detail the propert ies  of the 

The function pi = f (po) is called the succession function on the r ay  1 .  

d (Po) = f (Po) -Po 

a t  the point po = 0. 
In J24 we prove that if n exis ts  such that 

d’ (0) = d” (0) = . . . = d‘n-1’ (0) = 0, d‘”’ (0) .f 0, 

then n i s  an odd number (Lemma 5 ) .  In this case 

k,!?l! 
2 

is called the m u  1 t i p 1 i c i t  y of the focus 0. A simple focus has multipli- 
city zero ( n  = I), whereas a multiple focus either has no definite multipli- 
city, o r  its multiplicity is k > i .  
which can be applied to compute the focal values. All these formulas lean 

A number of formulas  a r e  derived in $24.3 
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on the proof of the fundamental theorem of Chapter IX. 
focal values of an  analytical sys tem are derived in 5 2 4 . 4 .  
are useful in  treatment of par t icular  sys tems.  

of the creation of l imit  cycles  from a multiple focus (Theorem 4 0 ) .  Its 
formulation is very  simple: i f  0 (0,O) is a multiple focus of multiplicity 
k ;>i  of a dynamic system (A), sys tems (A)  sufficiently c lose to (A)  to rank 
2k + 1 can have a t  most k closed paths in a sufficiently _small neighborhood 
of the focus. 
to (A) \to rank 2k f 1)  which have precisely k closed paths i n a n a r b i t r a r i l y  
small  neighborhood of :he focus. 
no more  than k, l imit  c:ycles. 

ivhich precisely s l imit  cycles  are created from a k-tuple focus. 

number of different bifurcations in the neighborhood of a focus of finite 
multiplicity. 

encountered in applications, namely a sys tem dependent on a single pa ra -  
meter  and i t s  bifurcations in the neighborhood of a multiple focus of 
multiplicity 1 when the parameter  is varied.  
bifurcation value of the parameter ,  the stability of the focus changes and 
a l imit  cycle is created,  o r  alternatively a n  existing l imit  cycle "contracts" 
into the focus. 

Expressions for the 
These expressions 

The fundamental theorem of this chapter is proved in 525 - the theorem 

On the other hand, there  exist  sys tems (A) as  close as  desired 

Thus a k-tuple focus may crea te  k, but 

Theorem 41  establishes that for any s. 1 , < s < k ,  there  exist  bifurcations in  

Theorems 4 0  and 41 show that a dynamic sys tem may only have a finite 

In 525 .2  a classification of these bifurcations is given. 
At the end of the cha.pter ( 1 2 5 . 3 )  we consider one particular case often 

\Vhen the system crosses the 

S24 .  FOCAL 1'ALUES 

1. Some propert ies  of the succession function 

The contents of the Fresent chapter is directly related to § l o ,  
S t r u c t u r a l  I n s t a b i l i t y  of a n  E q u i l i b r i u m  S t a t e  w i t h  P u r e  
I m a g i n a r y  C h a r a c t e r i s t i c  R o o t s .  W . e  will therefore  use the 
notation and the concepts introduced in  510, and some of the previous 
resu l t s .  
canonical form in the neighborhood of a n  equilibrium s ta te  0 (0, 0) with 
pure imaginary character is t ic  roots: 

\ V e  will consider a sys tem of class N which has  the following 

where p > O .  This system is a par t icular  case of the system 

The functions 'p and 9 are discussed i n  $10.1. 
Changing over  to the polar coordinates p, 0, 'we f i r s t  obtain the system 
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and then the eauation 

It is assumed here  that 0 (0, e) = Ofor all e, which ensures  the continuity of 
the function 0. Taking 

P =f  (0: 007 Po) (5 )  

to be the solution of equation (4)  satisfying the initial condition 

f (00; 00, P) = Po7 ( 6 )  

w e  define the s u c c e s s i o n  f u n c t i o n  

P = feo (Po) = f (eo + 2% 00, Po) (7) 

on the r a y  O = e o ,  and also the function 

de0 (Po) = f eo  (Po) -Po. ( 8 )  

For eo = 0, we designate these functions f (po) and d bo), respectively. 
Thus, 

In $10 w e  considered the functions feo (po)  anddeo(po) for  p o > O .  In the 
W e  w i l l  assume,  present  section, we w i l l  allow negative values of poalso. 

however, that 

I Po I < 87 (11) 

where 6 is a sufficiently small  positive number. 

of - p  for p and of 0 f n  for  8.  

equation (4)  and if  p* = - p and e* = 0 -+- rc, then $$ = R (p*, e*). 

F i r s t  note that equation (4)  is not affected by a simultaneous substitution 
More precisely, if p = p (e) is a solution of 

Indeed, 

(the las t  equality follows directly f rom ( 3 )  and (4)). 
solution of equation (4), then 

Thus  i f  p = p (e) is a 

L e  m m a  1. The following equality ho2ds true: 

deo (-p) = -deo+, (p) = - f (0, + 3n; 00 + fi, PI + P. 
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P r o o f  . By definition 

where r , = f ( O ;  Go, -pO) is the solution of equation (4 J for the initial conditions 
tt-ttyo. p =  -Po. 

Consider the solution of equation ( 1 2 )  for the initial conditions p* = 
.-= - - t ~ - p ~ ,  o * = 6 + z = O 0 + x .  This solution evidently has  the form 

Thus for the particular initial conditions chosen 

But the condition p*=po f o r  6 * = € I o j x  is equivalent to the condition p 
O = He. Therefore,  in virtue of the uniqueness theorem, 

-po for 

By ( I d ) ,  ( l S j ,  (7), and (8), w e  have 

Substituting p for po, w e  obtain (13). .This completes the proof of the 

Geometrically, Lemtna 1 is self -evident. Indeed, let  M o  be a point with 
lemma.  

polar coordinates (00, - ( t o ) ,  where p > 0 ,  and let  L be a path through this 
point which again c r o s s e s  the r a y  UJT, (as the polar angle 6 is increased by 
2;t) at a point .Ill with the polar coordinates (0, + 2;t. - p , ) ,  pl>O (Figure 113). 
By definition deo(- po) = .- p, - (- po) = ( i o  - pl . 
.lll can be considered as points with the polar coordinates (0, -a, po) and 

On the other hand, Mo and 

(0, f n, p i ) ,  respectively. 

> 0 (4, (p) ( 0 1 ,  there also exists r2 > 0 such that for all p. 0 < p .; r?, 
do, (- p) < 0 (deo (- p )) > 0, respectively). 

But then deo+n (PO) = PI  - PO = - deo (-- PO). 
L e wt m a  2. If there exists r, > 0 such that fm- all p. 0 < ,o i r l .  do, (p) > 

Therefare, for all p,  0 1 p l ~ r  = 
= min { r , ,  r 2 } ,  

$24. FOC.AL L.AL[ 'ES 
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riiith the initial covuiitiows 

P r 0 0  f . The validit,v of (20) follows f rom QT, Appendix, 58.3, 
rheorem B". Q. E. D. 

In Lvhat follows w e  assume for simplicity that O p  = 0 (this,  evidently, 
does not Lead to a loss in  generali tyj .  
and d o  ( ,oo)  = fo (po) - po we will use  the respect ive notation f (po) and d (po) (see 
(9) and (10)). Kote that the function f entering (20) and (21) is a function of 
three variables,  f (e; O,, po), whereas f (po) is a function of a single variable.  
The relation between these two functions is f i red by (9). 

order .V inclusive, the functions f (po) and d (p0) are continuously differentiable 
.V t imes.  

Tke ualue of the i-th derivatioe of the function d (pa) 
at the point 0, i.e., dcij (u), is called the i - th  focal ualue of the focus 0. 

exist .  

Relations (21) follow directly f rom identity (6) .  

For  the €unctions f o  (po) = f (2x; 0.  po) 

Since f (0; eo. p,,) has  continuous partial  derivatives with respect  to po to 

De f i IZ i t i o n  25. 

If (2) is a sys tem of c l a s s  .V, the focal values 

L e H I  ) ) I  a 5 .  i f  there exists k such that 

d (0) = 0, Cr (0) = 0, . . . . d'k-" (0) = 0, d'" (0) # 0, 

(0). 1 -: i i -V> a pr ior i  

(22) 

k is  an odd izuwibeu. 
P r o o f .  By ( 3 )  and (4), p E 0 is a solution of equation ( 4 ) .  

f (0) = d(0 )  = 0. 

Therefore 

(23) 

Applying Maclaurin 's  formula to the function d (p,) and using relat ions 
( 2 2 )  and (23), we find 

where 0 < q < 1. 
sufficiently smal l  po, both negative and positive ( i ts  sign coincides with the 
sign of the k-th focal value 
Thus k must be odd. Q. E. D. 

ice shall say that the focus 0 (0, 0)  is a focus of multiplicity m. 

Therefore, i f  k is even, d (p,) has  the s a m e  sign for all 

(0)). This  contradicts Lemma 2, however. 

D e f i n i t i o n  26. If conditions (22) are satisfied, andk = 2m i 1, m s 0 ,  

In Chapter W (§10.2) i t  is proved that the f i r s t  focal value is 

Lf m = 0, then k = 1, d (0) # 0,  a # 0. 
complex, though not pure imaginary,  character is t ic  numbers, i.e., i t  is 
a s imple focus. Conversely, i f  m > 0,  then k > 3 ,  d' (0) = 0, a = 0, and the 
character is t ic  numbers  are pure imaginary,  i .e. ,  the focus is multiple 
($10.3, Definition 16). Thus for m>1 we are dealing with a m u l t i p l e  
f o c u s of m u  1 t i p  1 i c i t y m .  
have a definite multiplicity. 
of c l a s s  N f 1, and i f  d' (0) = d" (0) = . . . =dW) (0) = 0, Definition 26 is inapplica - 
ble. 

But then the focus 0 (0, 0) has  

Note that a multiple focus does not always 
Indeed, if (1) is a sys tem of class -V, but not 
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In what follows we wi l l  deal with multiple foci only, since a simple 
focus is structurally stable and the topological s t ructure  of the partition 
into paths in a sufficiently small  neighborhood of a simple focus does not 
change on passing to close systems.  

d (pa) < 0, and u n s t a b 1 e if  d (po) > 0.': 

( 2 2 )  and p > 0, the focus 0 is 

When p > 0, the focus is s t a b l e  if f o r  a l l  sufficiently small  positive po, 

Hence and from (24) i t  follows that if  k = 2m + 1 > 1 satisfies conditions 

I 
stable when d(")  (0) < 0, (26) 

and 

unstable when d'") (0) > 0. (27)  

D e  f i n  i t i o n  27, 

In other words, the Lyapunov value is the number d(*) (0) provided that 

The first (counted in the proper order) nonzero focal 
value of a multiple focus is culled the LyaPunou value. 

relations ( 2 2 )  hold t rue and k > 3 .  
be called the m-th L y a p u n o v  v a l u e  ( m > l ) . * f 6  

(unstable) i f  i t s  Lyapunovvalue is negative (positive). 

If k = 2m f 1, the Lyapunov value wi l l  a l so  

F r o m  (26)  and (27) i t  follows that for p > 0, a multiple focus is stable 

3. Calculation of the focal values of a multiple focus 

Since we will be dealing with multiple foci only, we take in what follows 
a = 0, i .e . ,  we will consider system (1). 
Chapter N (910.1, (9), and 910.2,  (23)) that in this case  

It follows from the resul ts  of 

To compute the focal values,  we use  Lemma 4. 

(the functions E ,  a r e  defined by (20)). 
F r o m  (28), (29), and (30) i t  follows that Ui (e) = 1, Ri (e) E 0 and that 

(31) 
1 

[ E l  (e; 0, po)]pozo = (e) = Rk (e) 4- . . . , k= 2, 3, . . . , N. 
I 

The t r iple  dots in (31) correspond to a polynomial in  the functions 
R~ (e), R~ (e), . . ., Rh+ (e)and the functions Uz (e), . . ., uh-'  (e). 
* 

** 
See 5 10.1. For 0 < 0, d (po) > 0 in the stable case and d (po) < 0 in rhe unstable case. 
Logically, this term is not quite adequate, since every multiple focus has a single Lyapunov value. It is 
convenient, however, in that it directly identifies the running number of the focal value which is the 
Lyapunov value. 
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Let now po = 0 in  ( 2 0 ) .  We will successively integrate these equations as 
f i r s t  -order  l inear equations, using initial conditions ( 2  l ) ,  the relations 

j (0; 0, 0) = 0 and R (0, e) = 0 

and the notation (29 ) ,  (30), (31 ) .  
considered before ( S 1 0 . 2 ) .  Its  solution is given by (28). 

The first of these equations has  been 

I 
hrultiplying the k - t h  equation in (20)  (k = 2. 3. . . .. iV) by p and integrating, 

we find 
e 

By definition, the foc:al values are equal to the derivatives of the function 

d (Po) = f (2n; 0, Po) -Po 

at the point po = 0. 
values 

Therefore,  using ( 2 8 )  and ( 3 3 ) ,  we obtain for  the focal 

2% 

d ' ( O ) = O ,  d ' k j ( 0 ) = k !  N ~ ( 0 ) d d ,  k = 2 ,  3, . . . .  N. (34) 
0 

Let u s  now express  the focal values in t e r m s  of the right-hand s ides  P and 
Q of system (2). 
Rk (e). 

To this end, w e  f i r s t  have to derive an  expression for 
System (1) has  the form 

where the functions 'p anti tp a r e  continuously differentiable to o r d e r  AV in -  
clusive, and these functions together with their  f i r s t  derivatives vanish 
at the point 0 (0, 0). 
functions 'p and 9 can be xr i t ten in the form 

As is known (see Appendix, 2 ) ,  for  any k, 2 < k <A', the 

I ( 3 5 )  
'p (I, Y) = Pz(.& Y) fP3 (z, Y) . . . +PR (I. Y) +P* (I, Y), 
O (I, y) = Qz 0, Y) + QJ (2, Y) - . . . f QA (r, y) i Q* (I, Y), 

where Pi (I, y) and Qi (5, y) are homogeneous polynomials of degree i ( i  = 
= 2, 3. . . .. k), and 

where Pz (3, y) and QZ (I, y) are continuous functions which vanish a t  x =  g = 0. 
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Consider the fuqction R ( p ,  8). By definition (see (3) and (4)) 

p ( p c o s 8 ,  ps in8)cosB+$(pcos8 ,  ps in8)s inO 
pc -b(pcose,  p s i n o )  case- ~ @ c o s e . p s i n e )  . sin e 

P P 

R (P, e) = . ( 3 7 )  

By Lemma 3, the function R(p, 8)  has  continuous par t ia l  derivatives to o rde r  

N inclusive with respect  to p.  Moreover, R(0, 8 )  = 0, [ f ] , - , = O .  Theref o re  

we obtain the following relation, analogous to relations (35): 

R (p, e) = Rt (8 )  p2 -1- . . . -+ Rk ( 8 )  ph + R* (p, e) pk, (38) 

where R i ( 8 ) ,  i = 2 ,  ..., k ,  are computed from ( 3 0 )  (i.e., they are equal to 

and R * ( p ,  8)  is a continuous function of p and 8 which ~ R ( P  e) 4- I 5+]p=0 )> 
vanishes a t  p = 0. 

Inserting the functions and $ f rom (35) in (37), we obtain 

k 

2 pm [pn1 COS e i - ~ ,  sin 01 + P* cos e + p  s i n  t) 

fJ+ p " ' - l [ Q ~ ~ ~ ~ e - P , s i n e ~ + ~ ~ ~ - ~  P P 

R(p,  0) = m=; 

m=2 

where 
P ,  == P ,  (cos 8, sin e), Qm = Qm (cos e, sin e), 
P% = P& (p cos 8, p sin e), Qz = Q& (p cos 8,  p sin 8). (39) 

W e  write u, (cos 8, s in  e) and u, (cos 8 ,  sin O), respectively, for  the factor 
af ter  pm in the numerator  and the factor af ter  pm-' in the denominator. 
Moreover, by (36), 

P* (p cos 0, p sin e) cos 0 +- Q" (p cos 8,  p sin 0) sin e = phu* (p, cos 0, s in  e), 
Q* (p cos 8, p sin 8 )  cos 8--P* (p cos 0, p sin 0) sin 8 = p*u* (p. cos e, s in  e), 

where U* (p, cos 0,  sin e) and u* (p, cos 0,  sin e )  are continuous functions of p and 
e which vanish a t  p = 0. 

(40 )  

From ( 3 8 )  through ( 4 0 )  we find 

Rz (e) pa+ . . . f Hk (e) p"+ f?* ( p ,  8)  pk' 

$ p u m  (cos e, s in  e ) + p k U *  (p, cos e, sin 8 )  

p+ 5 p m - l v ,  (cos B, sin O)+pk-lu* (p, cos e, s in  e) 
. (41) m=? - - 

, r , = ?  

Multiplying both s ides  of (41) by the denominator of the right-hand side, 

All the coefficients in this identity are continuous functions of p, 
w e  obtain a n  equality which is valid for  all (sufficiently small)  p, i .e. ,  an  
identity. 
and u* (0, cos 8 ,  sin 8) = R* (0,  8) = 0. 
of the corresponding powers of p and using the usual arguments  of 

Therefore, equating the coefficients 

246 



934. FOC.AL \'ALCES 

continuity, w e  obtain the following relations : 

I U Z  z= pR,, 
~3 e fi R, f v ~ R ? .  

l l k = p ~ ~ h - V : R ~ - 1 i  . . . -kt 'a-1R2.  

I t  now follows that 

where 

- (44) - R ~ n t - t  i R ~ m - z + .  . . - i -Rm-~v~  
B 

Evidently, iV,,4 is exFressible in t e r m s  of the functions ui(cos8.  sine) and 

inserting for u ,  and ui in (43) and (44) their  expressions in t e r m s  of Pt and 
J . , ( c o s ~ .  s ine)  with the indices i not exceeding n2-I. 

f j , ,  we obtain 

J- wm (43) - P,, (cos@. sin01cosf3 +Qnl (cos 0, sin @ ) s i n 8  
P m--  

( i n  - 2.  3. . . . , k), where W,,, is expressed in t e r m s  of p and in t e r m s  of the 
functions P, (cos 0. sin e), (ji (cos e, sin e) with indices i not exceeding ni- I. 

In o u r  case of a multiple focus (i.e.,  for a = O ) ,  the f i r s t  focal value is 
zero.  If .V>2, the second focal value d" (0) = 0 by Lemma 5. 
focal values d k )  (0) are computed from (34) using expressions (45) fo r  R ,  (0). 
X comparison of the various expressions derived above w i l l  enable u s  to 
formulate a useful lemma.  

The remaining 

(a )  From (28), (291, (30), and (31) it  follows that 

HZ (e) = RZ (e). 

(b )  From (31) i t  follcws that, fQr m = 3 ,  4 ,  . .., S ,  

H, (0)  = R, (e) + a,, ( R ,  (e), . . ., R,-, (e). U~ (e). . . ., u,-~ (e)), 

a h e r e  'b, is a polynomial in the corresponding functions. 
(c )  From (33) and (b) it fo l lows  that u z  (e) is expressible in t e r m s  of 

R? (e), u 3  (e) is expressible in t e r m s  of R z  (e) and R3 (e), . . ., u, (0) is 
expressible in t e r m s  of Rs (e). R,  (e), . . .. R ,  (8). 

\dl  From (b) and (c) it follows that 

where @Ei is expressible in t e r m s  of the functions Rz (e), . . ., Rm-* (e) using 
algebraic operations and integration. 
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(e )  From (45) and (d) it follows that 

B + Pm(cos8, sin8)cos8+Q,(cos8, sin8)sin8 
H ,  (e) = 

(m = 2, 3 , .  . ., k), where @&* is expressible, using algebraic operations and 
integration, in t e r m s  of the number 
Q, (COS 8, sin e) with indices i not exceeding m - 1. 

and the functions P, (cos 8, sin e), 

Finally, from (34)  and (d) we have the following useful resul t :  
L e m m a  6. Consider a dynamic system of class N 

(A ) dz  -= & --PBy+Cp(& Y)=P(r* Y), $=Pz+Wx, y )=Q(s ,  Y) 

where the functions 
equal to one of the numbers 2 ,  3, . . . , N. 
= 2, 3, . . . , k ,  may be computed f rom the formula 

and I$ are expressed by equations ( 3 5 )  and (361, with k 
Then the focaZ value dim) (0), m = 

2n 2% 

d,m' (o) = m! P, (cos 8,  sin 8 )  cos 8 + Q ,  (cos 0, sin 0) sin 8 I 
Before proceeding with the fundamental theorem of this chapter, we will 

apply the above results,  and in particular equation (46), to compute the 
Lyapunov value of the focus 0 (0, 0) of a modified system of one particular 
form. 

Let (A) be a dynamic system of c lass  N (see %bow), and s an integer 
satisfying the inequalities I g s ,  2s + I 6 N .  Let (A,) be the dynamic system 

where 
0 (0, 0) is evidently a multiple focus of (As) and d (0) = d (0) = 0. 

up to (2s + 1) -th inclusive, are zero, i.e., if 

is a parameter .  Let 2 (Po) be th_e analog of d (Po) for (x8). The point I 
L e m  m a 7. If all the focal values of the focus 0 (0,O) of system (A) ,  

d' (0) = d (0) = . . . = d'as+l' (0) = 0, ( 4 7 )  

the focal values of the focus O(0,  0) of system (A,) up to (2s) - th  inclusive 
are also zero, i.e., 

(48) I 2 (0) = d" (0) = . . . = &*) (0) = 0, 

and the ( 2 ~ +  1) -th focal value is 

Zza+1)(0)=(2s+ I)[ $-.2n. 

P r o  o f . We express  the right-hand s ides  of (6,) using formulas 
analogous to (35) in the form 

(49) 
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Evidently, 

From ( 5 1 )  and ( 4 6 )  vie conclude that for 2 < i < 2 s ,  El)  (0) = d(')(O), i . e . ,  
&c)(u) = 0 _by ( 4 7 ) .  
focus of {Asj. 

and (52) .  

The first focal value is 2 (0) = 0,  since 0 is a multiple 

To compute the ( ? s i ? )  -th focal value, we w i l l  use equations (46), (51) ,  
Equalities ( 4 8 )  a r e  thus proved. 

They directly lead to the resul t  

Hence and using the equality d ' z 3 7 * ~ ( 0 )  = 0 ,  we find that 

3 L > L l I  ( U ) = ( ' s ? - f ) ! h . 2 ; ( .  B 
This completes the proof of the lemma.  

4 .  The case  of an analytical sys tem 

In this subsection we will consider the computation of the focal values of 
an analytical system (A;l. 
coincides with the origin and that the system has the canonical form 

We assume,  a s  before, that the multiple focus 

(A 1 dz 
x=a--BY-kcp (f, Y), $=-BzLCty+*(z, Y) ,  

where p > 0, and 'p and 1: a r e  analytical functions. 

clearly an  analytical function of 6 and p in this c a s e  in the s t r ip  
The function R (p, 0) in the right-hand side of equation ( 4 )  (see 524.1) is 

--ca<e<+=, l p [ < r o ,  ( 5 3 )  

where ro is some positive number. 
in powers of p .  
the form 

Therefore,  i t  can be series-expanded 
Since by ( 3 )  and (4),  R (0, 6) =- 0, the s e r i e s  expansion has  

Note that the function R (p. 0 )  and hence the functions Ri (e), i = 1, 2, . . ., 
a r e  periodic functions of 6 with period of 2n .  It  follows f rom the standard 
properties of analytical functions that there ex i s t s  ri > 0 such that the 
s e r i e s  ( 5 4 )  converges for all  8. O < B 4 2 n ,  and for  all p.  1 p I d r , .  

By QT, Appendix, 58.3, Theorem C, the solution 

P = f (0; 0, Po) ( 5 5 )  

249 



Ch.lX. CREATION OF LIMIT CYCLES FROM A tvIULTIPLE FOCUS I 
of the equation 

-- 2 - R (P? e) (4 )  

I satisfying the initial condition 

f (0; 0, Po) 3 Po (56) 

is an analytical function of the arguments.  
powers of the "initial value" po. Since H (0, e) 
solution of equation (4), so that f (0; 0, 0) E 0. 
powers of po therefore has  the form 

Let u s  expand this solution in 
0, we see that p E 0 is a 

The expansion of f (e; 0, po) in 

There clearly exists a number r z < r l  such that the series (57) converges 

By (56) and (57), 
for  all 0, 0<:8g2n,  a n d f o r a l l  p, I p  l s r z .  

Inserting for p and R in equation (4 )  their  expressions from (57) and (54) 
and equating the coefficients of the corresponding powers of p o i n  the right-  
and the left-hand sides,  w e  obtain the following recursive differential 
equations for the coefficients ui (e) (i = 1, 2, 3, . . .):  

U; (0) = Ri (e) us (e), I 
I 1 (59) u (e) =: R~ (e )  u2 (6) + f i 2  (e)  U: (e), 

U; (e)  == R, (0) u 8 w  + 2 4  (6) u1 (e) u2 ( e )  -I- 1 3 ~  (e) u: (e), 
, . .  . . . ,  . . . . . . . . . . .  

Relations ( 5 8 )  may be considered as the initial conditions for  the 
functions (8) satisfying differential equations (59).* Using these initial 
conditions and successively integrating equations (59) as l inear  differential 
equations for the corresponding functions, we obtain 

J 

By definition, the succession function is f (po) = f (2n; 0, po) (see S24.1, (9)). 
Therefore, taking 0 = 2n in (57), w e  obtain a series expressing the 
succession function 

P = f  (Po) =u1 (2n) Po+u2(24 Pi+. . . 
It is readily seen that equations (59) are obtained from equations (20) if we set pa = 0 and introduce an 
appropriate notation. 
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Let 

ui (23) =ai, i = 1, 2, . . . 

Then 

P = i (Poj = alp, t n*p: - . . . (62) 

From the last expression and the equality d ( p , ) - f ( p o ) - p o ,  we obtain for 
the focal values 

d ' ( G ) = a l - i = u l ( 2 z ) -  1, d A ) ( 0 ) = k !  ak=k !  ua(2rc) ( k = 3 ,  3, ...). (63) 

Let u s  now derive expressions for the coefficients ai in  t e r m s  of the 
right-hand s ides  of (A).  The expression for  the f i r s t  focal value 

. ' z  

d' ( I ) )  = e-'' 8- 1 

has  been derived before (see J 2 4 . 2 ,  (25)). 
of any interest  only when 0 (0, I?) is a multiple focus, i.e., when CL = 0. 
System (A)  in this case has  the form 

The successive focal values are 

d i  5c = -k3Yf(F(z, !I), $= i3r+q(z, u). 

Let 

'p (2, Y) = P,(z, Y) i P J ( 3 ,  Y) 7- . . . . $((I, Y) ==Q~(z, Y)"w, Y) . . ., (64 i 

where P ,  (5. Y) and Qi (z, y : ~  are homogeneous polynomials of i-th degree 
(i=2, 3, . .-). By (3), (4:, and (64), 

where 

um (cos e, sin e) = P,* (cos 0, s i n  e) cos i Qm (cos Q ,  sin e) sin e 

and (661 

rm (COP 0,  sin e )  = Qm (cos 8, s in  0) cos O-P,  (cos 8, s i n  e) sin 0 

(compare with (39);  the present  t reatment  is in fact  a repetition of the 
treatment of the previous subsection f o r  sys tems of class -\). 

In virtue of the f i r s t  relation in (28 ) ,  we have for CL = 0 

( 6 7 )  
o R ( o  H) 

P, (e) = [A Of, 3 p=o  -0. 

The series expansion o2 the function R(p.  e) is therefore  given by 

1: (P, 6 )  = R? ( 8 )  p2 +- RJ (e) p3 + . . . (68) 
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Equalities (65), (66),  (68) yield, as in the previous subsection, the 
relations 

uz == BRz, 
~3 = B R3 + Rzvz, 
u4 BE4 + H 3 ~ 2  + R2~3,  . . . . . . . . . . . .  

Hence 

Inserting these expressions in (60), setting 8 = 2x,  and using (67) and 
For a multiple focus, the f i r s t  focal value 

The second focal value is a l so  zero,  d" (0) = 2a2 = 0, 
Note that this fact a l so  emerges  directly f rom the relation 

(63), we obtain the focal values. 
is zero,  d' (0) = 0.  
by Lemma 5. 

d" (0) = 2az = 2 R, (e) d e .  7 
The integrand, as is readily seen, is an odd periodic function of period 2n .  
The integral  therefore vanishes. 

For the third focal value of a multiple focus we have 

d" (0)  = 31 aJ= 6 12R2 (e) u2 (e) +- R~ (e)] de .  I 
Using the expressions for  RZ (e) and R 3  (e) in t e rms  of the polynomials 

P z ,  Q2,  P 3 .  Q3 and writing these polynomials (of second and third degree,  
respectively) in the form 

we obtain af ter  elementary,  but fairly lengthy, computations the following 
expressions for  a3: 

[3(a30+bo3)-t (aiz-tbzdl- 

-- G2 1 2 ~ ~ 2 0 ~ 2 0 - ~ 0 2 ~ 0 2 ~ - ~ 1 1 ~ ~ 0 2 $ ~ 2 0 ~ + ~ ~ 1 ~ ~ 0 2 T ~ 2 0 ~ 1 .  (71) 

If as # 0, d" (0) = 6a3 is the Lyapunov value. From the resu l t s  of 224.2 
(see (24), (26), (27)) i t  follows that i f  f3 > 0 ,  0 is a stable focus for all < 0 
and an unstable focus for  a3 > 0. 

If a3.= 0, the character  of the equilibrium state  (with pure imaginary 
character is t ic  numbers) can be determined by considering as (if a3 = 0, then 
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by Lemma 5, a, = 0 to'>); i f  as = 0 ,  we have to consider u7, etc .  
the computational diff i ,xl t ies  rapidly multiply as  the index increases.: 

form (1). 
coefficients of a system expressed in the general  fo rm 

However, 

Expression (71) for  a3 has  been derived assuming a system of canonical 
W e  w i l l  a l so  give an expression for  a3 in t e r m s  of the 

The character is t ic  numbers  of the focus 0 are i pi, where 

$=n= +v-z=Ti. (74) 

The expression for  a3 in t e r m s  of the coefficients of system (72) has  
been derived in / l a / .  To der ive this expression, the substitution 

is applied to reduce (72)  to the canonical form 

*= dt  -&+pZ %? q)+F3(& q)+ * f . t  

s = a E + q 2 ( 5 +  q ) + Q 3 ( 3 9  q)+ .. (75) 

Expressing a3 f rom (71) in  t e r m s  of the coefficients of system (75) and 
revert ing to the coefficients of the original system (72), we find 

a a =  - -%i { [a t  ( 4 1  + attboz + aonbti) t a b  (bi, f azobti + atibzo) + 468 

+ c2 (aliao2 + 2aG2b02) - 2ac (bX - a w d  - 2ab (a:-- bzoboz) - 
- b2 (2ad20 + btlbZd + (bc-2a9 (bttbo2-- aItapo)l - 
- (a2 f be) 13 (~bo3- bum) + 2a (a21 + biz) -i (can- bbzdl} (76 ) 

(see /18/, p.29) .  

l a t te r  for  a = d = 0,  b = - p, c = i3. 

of system (75) - for  the focal value of sys tem (75) and not the original 
system (72). 

Equation (71) is a par t icular  case of (76), and can  be obtained f rom the 

Note that (76) actually gives a n  expression - in t e r m s  of the coefficients 

This is immater ia l ,  however, for  the investigation of the 

* For dynamic systems with quad.atic polynomials in the right-hand sides, i.e., systems of the form 

P (+, Y) = ar-8y + a& + q t w  + . o ~ Y ?  
Q(z7 Y ) = B I i o y i b ~ + 2 + b t i l y + b c z y a t  

the expressions for as, as, a, in terms of the coefficients ai, and b,, have been derived in / l B / .  
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topological s t ructure ,  since sys tems (72)  and (75)  are the images of each 
other by a non-singular l inear  transformation.':' 

considerations. 

c a l  s y s t e m .  
system of c lass  N >/ 1 which has  pure imaginary character is t ic  numbers 
may be ei ther  a m u l t i p l e  f o c u s ,  or a c e n t e r ,  o r  a c e n t e r  - f o c u s .  
For analytical systems,  the case  of a center-focus is ruled out. 
i f  system (A) is analytical, the corresponding function d (po) is also 
analytical. 
d (po) re tains  a constant sign and the point 0 (0, 0) is a multiple focus, or 
alternatively d (po) zz 0 and 0 is a center .  
of the focal values does not vanish. 
values vanish, i.e., 

Note that the Lyapunov values were derived by Lyapunov from different 

R e m a r k  c o n c e r n i n g  t h e  c a s e  of a c e n t e r  i n  a n  a n a l y t i -  
A s  we know (QT, §8.6), an equilibrium state  of a dynamic 

Indeed, 

Therefore, for  positive po which are sufficiently close to zero,  

In the former  case ,  a t  least  one 
In the case of a center ,  all the focal 

a,=l,  az=a,= ... =0. (77)  
Conditions (72) are clear ly  necessary and sufficient for  point 0 (0, 0) to be 

a center .  
are satisfied.':'': 

A center  is thus observed when an  infinite number of conditions 

S25. 
A MULTIPLE FOCUS 

1. The fundamental theorem 

CREATION O F  LIMIT CYCLES FROM 

T h e  o r  e m  40 (theorem of the creation of limit cycles from a multiple 

1) there exist 

2) f m  any e < 

focus) .  If 0 (0, 0) is  a multiple focus of multiplicity k (k>1) of a dynamic 
system (A) of class N > 2k f 1 m of analytical class, then_ 

> 0 and 6o > 0 such that any system (A) go -close to rank 
2k + 1 to system (A) has at  most k closed paths in u,, (0,; 

and 6 < 6or there exists a system (A) of class N oy 
(respectively) of analytical class which as 6-close to rank 2k + 1 to ( A )  and 
has k closed paths in U, (0). 

P r o o f .  1) Let u s  prove the f i r s t  proposition of the theorem. Without 
loss of generality, w e  shall assume that system (A) (of c lass  N or analytical) 
has  the canonical form 

d r  (A 1 -- dl  - - ~ y + ~ ( 3 , y ) 7  g = h & $ ( ( x , y ) $  

where 'p and II, are functions which vanish together with their first der iva-  
tives a t  the point 0 (0, 0). 

(see 924.1). 
some positive number. 

Consider the function d (po) = f (2x ,  0, PO) - po corresponding to system (A) 

A s  we know (see 124.2, corol lary f rom Lemma 3), 
Let  this function be defined for  all po. I po I < ro ,  where ro is 

' 
**  

The transformation E = = ,  q =  -a=--!. y is non-singular, since by (73) b # 0. 

W e  mean here conditions each of  which requires computation of one number. All these conditions are 
of course equivalent to the single condition d (po) = 0, but the latter requires computation of a 
function, and not of numbers. 

B B  
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d (p,) is a function of c l a s s  N or (respectively) an  analytical function. By 
assumption, the point 33 is a root of multiplicity 2k 4- 1 of the function d (po)  
(see 524.2, Definition 2 6 ) .  Consequently, there  exis t  numbers E ,  > Oand 
uo > 0 such that any function a (p,) defined for  p o ,  I P O  I < r o ,  which iso,-close 
to rank 2k + 1 to the function d (p,) has a t  most  2k + 1 roots  in the interval 
(- Ea. eo). 

for  which the point 0 (0, 0) is a focus. 
By Theorem 3 in Appendix, 1, there  ex is t s  tio > 0 suclh that if system (A) 
is &,-close to rank 2k $- 1 to system (A), the function d (po) is defined for  
a l l  p 9 ,  I po I -= roI and fo- these po the functions d (p,)  and d" (po)  are u,-close to 
each other to rank 2k $. 1. W e  w i l l  now prove that the numbers  aG and E ,  

satisfy the f i r s t  proposition of the theorem. Suppose that this is not so, 
i.e., suppose that there  ex is t s  a modified system (A)  of canonical form which 
is Cio-close to rank 2% + 1 to system (A) and yet has  more than k closed paths 
in U,, (0). c r o s s e s  every ray issuing f rom 0 precisely 
at one point (see QT, J8.4, Lemma 1). Let  p ,  and p z  be the absc i s sas  of the 
intersection points of a. path with the r a y s  0 = 0 and 0 = xI respectively. 
Then pt and p2 a r e  respectively roots  of the functions a ( p )  = 2, (p)  and & (p), 
i.e., d ( p l ) = O , & ( p Z )  = O .  By (13) in  524.1, 6 ( - p 2 )  = -an@2) .  Therefore 
a (- p2)  = 0, i.e., - p z  is a l so  a root of the function 3. 
- p2 aredi f fe ren t  n_umbr?rs, smal le r  than &,inabsolute value. Thus, to every  
closed path of (A) lying in U,, (0) correspond t,"o roots  of the function 2 ( p )  
f rom the interval (- E , ,  E , ) .  Hence, i f  sys tem (A)  has  in Us, (0) more  than k 
closed paths, the tunction B ( p )  has  a t  l eas t  2k + 3 different roots  '.- in (- E O ,  E O ) .  

This c lear ly  contradict,s the choice of the numbers  6 ,  and E* W e  hzve thus 
proved the f i r s t  proposition of the theorem for  modified sys tems (A) given 
in canonical form.  

Let u s  now consider a general  modified sys tem (A)  (not necessar i ly  
canonical). 
Then, for any el > 0 and a1 > 0, there  ex is t s  a sys tem (A$:) 6,-close to rank 
2k + 1 to (A) which has  more  than k closed paths in Ue1 (0). If el and 61 are 
sufficiently small ,  there  ex is t s  a l inear  transformation, as close as 
desired to the identity t_ransformation, which t ransforms the s p t e m  ( A )  
to the canonical form ( A ) . x  ik For sufficiently smal l  el and 6,, (A) is a lso  
6,-close to (A) and has  more  than k closed paths in U,, (0), which are obtained 
from the closed paths of (A:; ) in Uel (0 )  by the s a m e  l inear  transformation. 
This, however, contra'dicts the previous resu l t .  The f i r s t  proposition of 
the theorem is thus completely proved. 

2)  W e  can now proceed with the proof of the second proposition. 
Consider a modified sys tem of a special  fo rm 

Consider modified sys tems (A), which are given in canonical form and-, 
Let 2 (p,) be the analog of d ( P O )  for-(A). 

Each of these paths 

,- 

Evidently pI and 

Suppose that the f i r s t  proposition of the theorem is not satisfied. 

d z  - 
x = p ( x ,  y, xo, AI? . - a ,  h h - 1 ) =  

= P ( Z ,  Y ) + @ f k f ( Z l i Y ' ) z i . . .  +.kh-$(3"$.y')k-1Z,  

dy - (A 1 = Q (3, Y, A,, . . . , ak-l) = 

= Q (h Y) + 'by + h.1 (z ' f  !/'I Y + . . . + h - I  (z' -? Y')'-'Y. 

* 
**  

Since zero is also a r o o t  of this function. 
This can be proved along the iame lines as Lemma 1, 19.1. In this lemma, a similar proposition is 
proved for a saddle point. In the case of a focus, we should further make use of the fact that the 

a pL ) is transformed to the matrix a -6 by a linear transformation with the matrix ' -' ( b ' u - p i  ( 6  a) (-' 1).  
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For sufficiently small  Ai> (A) is evidently a rb i t ra r i ly  close to (A) to any 
(possible) rank and belongs to the same c lass  as (A). The point 0 is an 
equilibrium state  of (A). 
0 a r e  respectively Lox - j3y and f ix + Ahoyt the equilibrium state  0 (0,O) is a 
focus of system (A) for h, # 0 and a focus, a center ,  o r  a center-focus for  
ho = 0.  Let 

Now, since the l inear par t s  of the functions P and 

'(PO? LO, i t ,  . . . 7 Ak-1) 

be the analog of d (p,) for system (A). 
of po and of the parameters  ho, A l ,  . . . , h k - l .  
for A,  = ;Il = . . . = hk-, = 0, w e  have 

Clearly, 2 i,s a continuous function 
Since (A) is obtained from (A) 

Z(P0, 0, 0, . . . , 0) = d (Po). (1) 

For  any e > 0 and 8 > 0, there exist h* > 0 and r* > 0, r* < ro,* such that 
for 

l A t l < A * ,  i=O, 1, 2. ..., k-1, (2)  

1 )  system (A) is 8-close to rank 2k + 1 to (A); 
2)  the function a ( p o ,  A,, h l ,  . . ., Ak-l) is defined for  all po, I po I < ro, and 

every root satisfying the inequality I po I < r* corresponds to a closed path 
of (A)  entirely contained in U,, (0). 

condition (2).  

Lo,  Al,  L2, . . ., A k - ,  system (A) has  k closed paths in U. (0). 

It is henceforth assumed that the numbers A i ,  i = 0, 1, 2, . . ., k - 1, satisfy 

We wi l l  show that for  a: appropriate choice of the parameters  

From Maclaurin's formula,  for all sufficiently small  po, 

where h (po) is a continuous function and h (0) = 0 (see proof of Theorem 5, 
51.3). 

By assumption, d(2k++') (0) # 0. To fix ideas,  l e t  d ( 2 k + l )  (0) > 0. Then for  
all sufficiently small  positive po, d (p,) > 0. 
smal le r  than r*; designating i t  rlr we have 

We choose one of these numbers, 

O<ri<r*, d ( r l ) = 2 ' ( r l , O ,  0, ..., o)>o. (4 ) 

Let now 

... = r ~ ~ - ~ = o ,  A ~ - ~ + o ,  

and consider the modified system corresponding to these parameters  

* By definition, r, > 0 is a number such that the  function d (po) is defined for I po I < ro. 
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and the corresponding function d; (po) = a(p,,, 0, 0, . . . , 0, ;?,?-I). 

the previous section, 
By Lemma 7 of 

-(?k-2) c & (O)=d; (0) = . . . = d I  (0) = O ,  6(2k- ' ) (0)  = ( 2 k - l j ! k 2 ~ ,  ( 5 )  B 
and by hIaclaurin's formula, for  all sufficiently smal l  po, 

where E, (pa) is a contir-uous function and Xl(0) = 0.  
T O  fix ideas, let p:,O, and we choose h k - 1  so that 

The las t  of these conditions is satisfied for  any sufficiently smal l  r?k-$ in  
virtue of (4 )  and the continuity of d-(p,, Lo, I . , ,  . .., Xk-l ) .  

small  positive po, dl (po) (0. 
designate it r 2 .  Thus, 

From p>O, X k - i s O  and equation ( 6 )  i t  follows that for  all sufficiently 
W e  choose one such value, smal le r  than r l ,  and 

0 < r2 < rI  < r+ ( 8 )  
and 

d", ( r l )  > 0, 21 (rz) < 0. (9 1 
Further  constructicm is completely analogous.9 Indeed, w e  consider a 

system 

* A l s o  see the proof of Lemma 1 .  9 1 . 3 .  
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By (l l) ,  &(po)>O for  all sufficiently small  positive po, and there exis ts  
r3 such that 

O < r 3 < r z  

and 

d", (ra) > 0. 

Continuing as before, we eventually obtain a system 
d +  - = P (x ,  Y, 0, ai, . . , , ak-l) = 

x- = Q (I, Y, 0, h,, . . . , hk-i) = 

= P (I, y) + h, (sa + ye) z + . . . + a b l  (2 + yZ)k-12 ,  

== Q (I, Y) + a, (I2 +ye) Y + . . . + L, (s* + 
d y  - 

and 

Continuing to the system 

we choose L, so small  that 

and 

I (0 i f  k is odd, 
1 0  if  k is even. 

By (25), S24.2, we have fo r  the f i r s t  focal value 

2x "0 
& ( O ) = e  B -i. 

Therefore, to satisfy (18), a negative I o  should be taken if  k is odd and a 
positive one i f  k is even. 
r k + l  > 0 is sufficiently small ,  we have 

Clearly,  i f  fo r  this choice of Lo, the number 

(0 i f  k i s  odd, 
'k(rk+d )>O if k is even. 

258 



$95.  CREATIOS OF LI:,IIT CYCLES FROhf A X'bLTIPLE FOCLS 

I re  moreover  assume that ?-hi( < rk. All the A,, i = 0,  1. 2, . . .. k - 1, that 
w e  have chosen are l e s s  than_ >.* in absolute value. 
imposed on E . * ,  the system (Ah) is 6 -close to rank 2k + i to system (A). 
Furthermore,  in virtue of (17)  and (19) and the continuity of dk,  there  is a t  
least  one root of the function Jk (pa) between each pa i r  rl and r2 .  r? and 
r3 ,  . . .. rA and rk+l. 
roots, each smal le r  than r*. By condition 2 for  r* ,  each of these roots  
corresponds to a closed path entirely contained in C, (0). 
C', (0) c Uc0 (0) and by the f i r s t  proposition of the theorem, (xk) has  a t  most 
k different closed paths in U,, (0). This  completes the proof of the theorem. 

60 should be chosen so smal l  that any system (A) 6,-close to (A) has  a single 
equilibrium state  in U,, (0)) which i s  moreover  a focus. Then w e  can speak 
of the existence of the succession function and the function d for  the system 
(3) .  In what follows, the numbers E,, and 60 are always assumed to meet this 
requirement. hIoreover, i f  6o is sufficiently small ,  the points move along 
the paths of (A)  in Ue, (0) in the same  direction with increasing t (clockwise). 
Indeed, reducing (A) to a canonical form by a transformation close to 
identity. i.e ., by an  orientation-conserving transformation, w e  obtain a 
system 

Therefore, by condition I 

I'herefore. this function has  at least  k different positive 

If E < and 6 6 0 .  

R e  m a  r k . In our  proof of the first proposition of Theorem 40, eo and 

The number 
identical directions of motion. 
condition i s  a l so  satisfied. 

is close to fi and therefore has  the s a m e  sign. This ensures  
U'e w i l l  a ssume in the following that this 

2. 
of a multiple focus 

Bifurcations of a dynamic sys tem in the neighborhood 

The following theorem strengthens the second proposition of Theorem 40. 
Together with Theorem 40, i t  plays a leading role  regarding the bifurcations 
of a dynamic system in  the neighborhood of a multiple focus. 

dynamic system (A) of class .V 2% -- i m of analytical class, and let E, and 
6n be positive numbers defined by the f i r s t  proposition of Theorem 40 and 
the above remark following the themem. 

a system (B) of class -V ( m respectively, analytical) which is  6-close to 
rank xk -I t to system (A) and has in 

cycles in i-eo (O), all these cycles, and liketoise the focus of system (B) 
lyipg in L.eo (O), are structurally stable (simple). 

P r o o f  . 
(for s = k, this proposition coincides with the second proposition of 
Theorem 40): 
of sys tems (AI). (Az), . . ., (xk..,), (Ak). 
be assumed to be 6-close to rank 2k + 1 to system (A). 

T h e D r e m 41 .  Let 0 Kt. 0) be a multiple focus of multiplicity k of a 

Then 
1) f o r  any P and 6 . 0  .: E 4 el). 0 < 6 ..: 6,,, and f o r  any S ,  1 -IS i k ,  there exists 

(0) precisely s closed paths; 
2) if system (E) is  6,,-close to rank 2k A 1 to system (A) and has k limit 

Let u s  prove the f i r s t  proposition of the theorem. Let 1 cs < k 

In $e proof of Theorem 40, we constructed a succession 
All these sys tems evidently can 

Consider the system (A;). According to our  construction, 
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and 

> U  i f  s is even, I ( 0  if s is odd. 
- 

d", (r ,)  > 0, & ( rz )  < 0, . . . , d,  (ra+l) (21) 

(see proof of Theorem 40). 
Suppose that i t  has  s + 1 closed paths L 1 ,  Lz ,  . . ., Le+, in U ,  (0). 

By (21), (A,) has  a t  l eas t  s closed paths in U, (0). 

condition (201, the point 0 (0, 0) is a 
m-ultiple focus of multiplicity k - s for 
(A8).  
of 0, such that W c V c U, (O), and Y l i es  
inside all the closed paths L i  (i = 
= 1, 2, . . ., s + 1). 
"concentric" (Figure 115). By 
Theorem 40 there  exis ts  a system (A:')' 
of c lass  N ,  arb i t ra r i ly  close to (A,) to 
rank 2k + 1, which has  k - s closed paths 

the same construction as in the proof of 
Lemma 2, 515.2, we can construct a 
system (A) of c lass  N ,  ark i t ra r i ly  close 
to rank 2k + 1 to system (As), which 
coincides with (A,) outside V and with 
(A'$) inside W .  
can be regarded as 8,-close to rank 
2k + 1 to (A), and it  has a t  least  k -f- 1 

By 

Let V and Wbe two neighborhoods 

These paths a r e  

L,,,, . . ., Lk+l in W. But then, using 

The system (A) evidently 
FIGURE 115 

closed paths Li (i = 1, 2, . . k + 1) in U,, (0). 
Theorem 40. 
f i r s t  proposition of the theorem is proved.':' 

Let now (B) be &,-close to rank 2k + 1 to (A) and suppose that it has  k 
l imit  cycles in U,, (O), a t  least  one of which is structurally unstable. Then 
modifying the system only in the neighborhood of this cycle (again using the 
construction of Lemma 2, %15.2), we obtain a system which is close to (A) 
and has  in U,, (0) more than k closed cycles, which is impossible. 
contradiction is obtained if we assume that the focus of system (B) in  U, (0) 
is a multiple focus. The proof of the theorem is complete. 

Theorems 40 and 41 lead to important conclusions regarding the possible 
bifurcations of a dynamic system in the neighborhood of i t s  multiple focus 
of finite multiplicity. indeed, consider a k-tuple focus 0 (0, 0) of system (A) 
(k2,2). Let E,, and 6o be sufficiently small  numbers (defined by Theorem 40 
and the r e m a r k  following the theorem), and V a neighborhood of 0 bounded by 
a cycle without contact F, V c U,, (0). 
small  that the following condition is sa t i s f ied i  i f  (A) is 8-close to (A), the 
curve r remains a cycle without contact for  (A) and (A) has  in V a single 
equilibrium state  a, which is a focus. By Theorems 40 and 41, system (A)  
6 -close to rank 2k + 1 to (A) may have in Vat most k l imit  cycles, and there 
exist  systems (A) which have in V precisely s l imit  cycles,  where s is any 
number, 1 G s d k .  
enclose the focus 0" inside them. 
suppose that Li l i es  inside Li+,  ( i  = 1, 2, . . ., s - 1). 

This c lear ly  contradicts 
Therefore,  ik,) has precisely s l imit  cycles in U t  (O), i .e.,  the 

A s imilar  

We choose 6L0 < 8 < 6os to be so 

These l imit  cycles a r e  arranged "concentrically" and 
Let L,, Lz ,  . . ., La be these cycles, and 

The topological s t ructure  

If (A) is analytical, (A;) is also analytical 
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of system (A} in J' i s  completely determined by the stability charac te r  of the 
focas 8, the number s cbf limit cycles  in I-, and their respective stabilities. 
If the stability character. of the focus Ois known, i t  suffices to know whether 
each of the cycles  L , i s  semistable  or not." 
m u l t i p l i c i t y  o f  a l i m i t  c y c l e  *':: and established that an  even- 
multiplicity cycle is semistable and an  odd-multiplicity cycle is ei ther  stable 
or  unstable (this follows from J12.3, ( S ) ,  and S12.4, (11)). Hence, the 
topological s t ructure  of the dynamic systeni (A)  in the neighborhood I. is 
completely determined if w e  know 

In §12, we introduced the 

( a )  the stability charac te r  of the f o c p  8 ;  
jbj  the nuniber s of liniit cycles  of (A) in  J'; 
\c)  the parity of the multiplicity of each of these cycles  (whether odd or 

even). 
Since s < k ,  system (6) clear ly  may have only a finite number of different 

topological s t ruc tures  in I-. 
a finite number of different bifurcations in a neighborhood of a focus of 
finite multiplicity. + 

cycle of even (odd) multiplicity, w e  obtain the following classification, 
corresponding to i tems  \a), (b), (c) above: 

In other  words, system (A) may undergo only 

Assigning + (-) to a stable (unstable) focus, and the numbers  O ( 1 )  to a 

f ,  1, 1, 0, 1, 0, o . . . o ,  1, 0 ,  

where the nuniber of ones and ze ros  is s .  Each system (A) 6-close to 
rank 2k 
will not consider the inverse question, namely whether or not every scheme 
of this kind fully charac te r izes  a dynamic system arb i t ra r i ly  close to (A). 
Note, however, that by I 'heorems 40 and 41, there  exis t  sys tems 
arb i t ra r i ly  c lose to (A) whose schemes  contain k ones. 

I to (A) is character ized by a definite scheme of this kind. W e  

3.  
of multiplicity 1 

Bifurcations in the neighborhood of a multiple focus 

\ re  will consider a sFecial case which is often encountered in applications 
Let 

be a dynamic system which depends on the parameter  X. 
the bifurcations of this system associated with the variation of the parameter  
1. in the neighborhood of an equilibrium s ta te  0 (0, O ) ,  when 0 is a multiple 
focus of multiplicity 1. 

We will consider  

For simplicity, w e  assume that the bifurcation 

' I f ,  say. the focus 8 is unstable, the cycle L, is either unstable or semistable (unstable from inside and 
strble from outside). In the former case. L 2 i s  either stable or semistable. and in the latter case i t  is either 
unstable or semistable, etc,  
In 912.3, the multiplicity of a limit cycle is defined for analytical systems. 
for rystcms of class .V w i l l  be foind in Chapter X (526.2. Definition 28). 
Wt Chould stress that in the case of a k-tuple focus, the closeness of systems is considered to rank 2 k+ 1 .  

**  An analogous definition 

t 
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value of the parameter  is h = 0. Let 

Then 

To establish the stability character  of the multiple focus 0 (0, 0) of the 
system (Ao), w e  wi l l  proceed along the same lines a s  in the end of S24, 
when dealing with system (72). We apply the transformation 

which reduces (&) to the canonical form 

Since (26)  is a non-singular transformation, 0 remains a multiple focus of 
multiplicity 1 for system (27)  also, and i t s  stability does not change ei ther .  
The third focal value of the focus 0 of (27)  therefore does not vanish, and 
i s  the L y a p u n o v  or t h e  f i r s t  L y a p u n o v  v a l u e  of the focus O(see  

Equation (76) in $24 provides anexpressionfor  u3 in t e rms  of the coefficients 
of the original system (Ao), and therefore transformation (26) need not be 
actually applied in practice.  
u3 < 0, 0 is a stable focus (of system (27), and therefore of (Ao)), and if 
ug > 0,  it  is an unstable focus. 

Let V be a sufficiently small  neighborhood of the point 0 bounded by a 
cycle without contact I? of system (Ao) which contains no closed paths of (&) 
o r  equilibrium states  other than 0. 

Let 6 ,  > 0 be so  small  that any system (A,) for which I h I < 6,, has the 
following proper t ies  : 

(a)  the curve r is a cycle without contact for this system; 
(b)  (A,) has no equilibrium states,  other than 0, in V ;  
(c)  the point 0 is a focus of system (A,); 
(d) (A,) has at  most one closed path in V. 
The validity of the f i r s t  three conditions for sufficiently small  6 ,  is self-  

evident. 
system (&) and because close systems have a t  most one closed path in a 
small  neighborhood of this focus (by Theorem 40). 

By condition (a), the paths of a l l  systems (A,) ( I  I I < 6,,) simultaneously 
c r o s s  the curve I? with increasing t ,  either from outside to inside o r  from 
inside to outside. 

bifurcation value of the parameter h = 0, i.e., the focus 0 changes i t s  
stability. 

124.4, Definition 27). We used the symbol 6u3 for  this value in S24.4, (63). I 

W e  have seen (S24.2, (26), (27)) that i f  

Condition (d) is satisfied because 0 is a focus of multiplicity 1 of 

Suppose that u (A) r eve r ses  i t s  sign a s  the system passes  through the 

This condition is clearly satisfied i f  d’ (0) f 0. 
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Let u s  now consider the different possible cases. 
1 )  cz3 < 0. K-e assume that on passing through the bifurcation value of 

the parameter  h = 0, u (A) changes i t s  sign from minus to plus. 
this condition is satisfied 

when h increases ,  for  IS' (0) > 0 ; 
when >. decreases ,  for  u' (0) < 0. 
Since o3 < 0, the focus 0 is a stable focus of (Ao) for  A = 0.  

JX G' (0) # 0, 

Therefore  a l l  
the paths of (A,) en te r  into the cycle without contact r as t increases .  
IS (i.) < O ,  Oisastablefocusof(A,) .  ByTheorems40and31,  ( A , ) h a s a t m o s t  
one limit cycle in I', and if this cycle exis ts ,  i t  is a simple cycle, i.e., 
either stable or unstable. Clearly, for  CJ (i) < 0 no such cycle exis ts .  In- 
deed, i f  this cycle existed, i t  would be stable f rom outside and unstable f rom 
inside, i.e., i t  could not he simple. We have thus established that i f a 3  < Oand 
(I (>.) < 0,  (A,) has  no l imit  cycles in V .  

Then, reasoning 
as before, we conclude that there  is a single limit cycle LA of (AA) inside V ,  
and this is a simple sta'5le cycle. It is readily seen  that if X is sufficiently 
small ,  the cycle LA is arb i t ra r i ly  c lose to 0. 

If a3 < 0 and (I' (0) > 0, system (A,) 
has  no l imit  cycles  in 1'for smal l  negative X and h = 0, and 0 is a stable 
focus. 
for h>O). the focus becomes unstable, and a stable l imit  cycle develops 
inside the neighborhood Y (Figure 11 6). 

For 

Conversely, if u (k) ;. 0, 0 is an unstable focus of (Al). 

W e  thus obtain the following resu l t s .  

A s  the system c r o s s e s  the bifurcation value of the parameter  X (i.e., 

a b 

FIGURE 116. 
focus: h = 0. stable multiple focus; b) X > 0 ,  un- 
stable tocus, stable cycle.  

ax < 0, 0' (0) > 0. a) X <O. stable 

If T. is varied in the opposite direction, i.e.. we move f rom positive to 
negative 1, the stable l imit  cycle which originally existed in V would 
contract to the focus 0 and vanish for  h = 0, and the focus w i l l  change i t s  
stability accordingly. 

A s  X is fur ther  decreased,  the focus remains  stable and the topological 
s t ruc ture  of V does not change. 

For a3 < 0, u' (0) < 0, the stable l imit  cycle is created on passing f rom 
positive to negative h ,  a i d  conversely i t  d isappears  when I increases  and 
reaches zero.  

The investigation proceeds along the s a m e  l ines  as before. 2)  a3 > 0. 
If a3>0 and u' (O)>O, the point 0 for  smal l  negative h is a stable focus of 

(Ab) and the system has  one unstable l imit  cycle in F'. 
cycle contracts  to the point 0, and a t  the bifurcation point A = 0 i t  
d isappears  and the focus 0 becomes unstable. 

A s  b increases ,  this 

Fur ther  increase  of b leaves 
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Ch.IX. CREATION OF LIMIT CYCLES FROM A MULTIPLE FOCUS 

the focus 0 unstable and the topological s t ructure  of the system in 1' does 
not change (Figure 117). 

a b 

FIGURE 117. U S  32 0,  u' (0) > 0. a) h -= 0,stable 
focus, unstable cycle;  b) h = 0,multiple unstable 
focus: h > 0, unstable focus. 

If a3 > 0 and u' (0) < 0, the unstable l imit  cycle is created as h changes 
from negative to positive values,  and conversely disappears when h de-  
c reases  to zero.  

The above resul ts  can be summarized in the following table: 

Unstable focus, 
no cycle 

Unstable focus, 
stable cycle 

Stable focus, 
unstable cycle 

Unstable focus 
no cycle 

Stable focus, 
no cycle 

Stable focus, 
no cycle 

Unstable focus, 
no cycle 

Unstable focus, 
no cycle 

Unstable focus, 
stable cycle 

Stable focus, 
no cycle 

Unstable focus, 
no cycle 

Stable focus, 
unstable cycle 

The above analysis shows that the change in I brings about a change in 
the stability of the focus if a l imit  cycle is created from the focus or disappears 
contracting into the focus. A stable focus c rea tes  a stable cycle, and an 
unstable focus, an unstable cycle. Thus, a focus c rea tes  a l imit  cycle of 
the same stability, and the stability of the focus changes in the process .  
Conversely, when the cycle disappears (when it  is "absorbed" by the focus), 
the focus acquires  the same stability as that of the cycle before "absorp- 
tion." This s ta te  of things is not limited to the case of a focus of 
multiplicity 1: i t  is observed whenever a focus c rea tes  or absorbs a cycle 
of definite stability (i.e.,  not a semistable cycle). 

E x a m p 1 e 9.  Consider the system 

for small  values of the parameter  h.*. 
states, and we will consider the state 0 (0, 0) only. 

This system has two equilibrium 

* System (28) is of importance in the theory of sustained oscillations. It was investigated by Bautin /20/. 
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1 A.2 The character is t ic  equation k a - - h k + I = O  has  two roots k=?+- 117. 
Therefore, for small  ?,, the point 0 (0, 0) is a focus, which is stable for  
t < 0 and unstable for t > 0.  

For this system, u ( 2 , )  = A ,  and therefore 0' ( i Z )  = 1. 
use equation ( 7 6 )  in S24.4, taking 

To compute a3, we 

u = O ,  b = 1 .  ~ = - - l ,  d=O. b 20- -6, b i * -  -i3, b 0 : ! = y , 1 . T = i 1 .  

rhis  gives a3 = n/4 @ (y -L6). 
above w e  conclude that if fi ( y  + 6) < 0. the focus 0 (0, 0) is stable for  ?.GO and 
there  are no limit cycles in i t s  neighborhood. 
the focus c rea t e s  a stable l imit  cycle, and itself becomes unstable. 

limit cycle in i t s  neighborhood. 
point and disappears  for  2. = 0 .  
The topological s t ruc ture  in the neighborhood of 0 for 2. > 0 is the same as 
for 1. = 0. 

F rom the inequality u' (0) > 0 and the table 

A s  we move to positive i . ,  

If @ ( y  -+ 6) > 0, the focus 0 (0, 0) is stable for  1. < 0 and there  is an unstable 
A s  ). increases ,  the cycle contracts  to a 

At this instant, the focus 0 becomes unstable. 
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C h a p t e r  X 

CREATION OF CLOSED P A T H S  FROM A M U L T I P L E  
LIMIT  C Y C L  E 

INTRODUCTION 

The present  chapter is entirely analogous to Chapter IX, C r e  a t  i o n  
of L i m i t  C y c l e s  f r o m  a M u l t i p l e  F o c u s  b o t h i n r e g a r d  to 
methods used and the resu l t s  obtained. 
C 1 o s  e d P a t h s  , and may be regarded as i t s  continuation. A s  in 
Chapter V, the main emphasis is on the succession function f (n) on a normal  
to the limit cycle Lo and the function d (n) = f (n) - n. In Chapter V we have 
seen that i f  d' (0) # 0, the l imit  cycle Lo of system (A) is structurally stable, 
and if  d' (0) = 0, the l imit  cycle is unstable and there  exist sys tems 
arbi t rar i ly  close to (A) which have a t  least  two closed paths in any smal l  
neighborhood of L o .  

In the present  chapter we consider not only the f i r s t  derivative d' (0), but 
a lso the value of the higher derivatives of the functions d (n) a t  the point 0, 
and this  leads to more  refined resu l t s  regarding the creation of closed paths 
from a multiple l imit  cycle. 

Chapter X is divided into two sections. The f i rs t ,  S26, although highly 
significant for  what follows, presents  auxiliary background information. It 
is mainly devoted to the derivation of expressions for  the derivatives of the 
succession functions in t e r m s  of the right-hand s ides  P and Q of the dynamic 
system. Moreover, the m u l t i p l i c i t y  of  a l i m i t  c y c l e  isdef ined 
in $26  (Definition 28, $26.2). 
(or to be an r-tuple limit cycle) i f  

It is directly related to Chapter V, 

A limit cycle Lo is said to have multiplicityr 

d' (0) = d" (0) = . . . dcr-l) (0) = 0, d(') (0) # 0. 

The fundamental theorems concerning the creation of closed paths f rom 
a multiple l imit  cycle a r e  presented in $27 (Theorems 42 and 43). 
Theorem 42 is analogous to Theorem 40 on the creation of closed paths f rom 
a multiple focus. 
of multiplicity k of a dynamic system (A), sys tems sufficiently c lose to (A)  
can have a t  most k closed paths in a sufficiently smal l  neighborhood of L o .  
On the other hand, there  exist sys tems as close as desired to (A)  with 
precisely k closed paths in any smal l  neighborhood of L o .  
f rom the case  of a k-tuple focus, when closeness  to rank 2k + I is postulated, 
here  we are dealing with closeness  to rank k. 
Lo is a k -tuple l imit  cycle, and s is an  integer, 1<s,<k, there  exist systems 
arb i t ra r i ly  close to (A) which have precisely s limit cycles  in any small  

It amounts to the following: i f  Lo is a multiple limit cycle 

In distinction 

Theorem 43 shows that if  
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neighborhood of L o .  It follows f rom Theorems 42 and 43 that a dynamic 
system may undergo only a finite number of different bifurcations in the 
neighborhood of a l imit  cycle of finite multiplicity. 
bifurcations can be readily classified.  

These different 

5 2 6 .  EXPRESSIOKS FOR T H E  DERIVATIL-ES OF THE 
SUCCESSIO?: FUKCTICN. hIULTIPLICITY OF A 
L1hrI-r CYCLE 

1. Expressions for the derivatives of succession functions 

Let 

be a dynamic sys tem of class i V g i  or  a n  analytical system, Lo a closed 
path of (A), 

2 = ‘F (0 ,  Y = * ( t )  (1) 

the motion corresponding to this path, T > O  the period of the functions ‘p and 
$- 

Consider the neighborhood Q of the path Lo described in  Chapter V (B13.1) 
with the curvil inear coordinates s and n ,  defined by the relations 

- 
z=cp(s, n).  y = 3 ( s ,  n) ,  (21 

where 

The functions (p and $ are considered in  the s t r ip  

where 6 is a sufficiently smal l  positive number. 

Chapter V, S13.1. 

w e  obtain the sys tem 

The propert ies  of mapping ( 2 )  and of functions ( 3 J  are described in  

Changing over  to the var iables  s and n in system (A), using relations (21, 

- - -  - _  - 
ds  p(?. $).$,-Q(’?t\P).CP, -= dn Q($*$).6;-p(P,\P).lp; (5)  
dt A h  ni ’ dt A h  n )  
-= 

where 
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a x .  CREATION OF CLOSED PATHS FROM A MULTIPLE LIMIT'CYCLE 

(see 513.2, ( 8 ) ) .  As in 913, we will reduce system (5) to a single differential 
equation 

which is obtained when the second equation in (5) is divided through by the 
f i r s t  equation. 
re i terate  here  the propert ies  of the function R (s, n) and of equation (7). 

periodic in s with a period of T. If (A) is a dynamic system of c lass  N 
(analytical system), R (s, n) is also a function of c lass  N (analytical function). 
Moreover, 

This division is permissible by $13.2, (11). We wi l l  

R (s, n) is defined in the s t r ip  (4), where i t  is a continuous function, 

R ( s ,  0)  = 0. ( 8 )  

Therefore, n = 0 is a solution of equation (7).  

Let 

This solution evidently 
corresponds to the closed path Lo of (A). 

be a solution of ( 7 )  satisfying the initial condition 

f (so; so, no) ==no. 

i s  a succession function on the a r c  without contact s = so which is a normal 
to the path L o .  In what follows, we shall take for  simplicity so = 0 (this 
evidently does not res t r ic t  the generality of our  analysis);  the co r re -  
sponding succession function wi l l  be designated f (no) and the normal s = 0 w i l l  
be designated I .  Thus, 

f (no) = f (7; 0, no) (11) 

is the succession function on the a r c  without contact 1 .  
Together with the succession function f (no), we consider the function 

d (no) = f (no) --no, (12) 

In Chapter V we computed the f i r s t  derivative of this function at  no = 0 ,  

s [P;(rp(s). Ip(*))+Q~to(*). W))W 
I 

d' (0) = 20 -1. (13) 

Our immediate aim is to derive expressions for the higher derivatives,  i.e., 

d"(O), d" (O) ,  ..., 
or, equivalently, for  the derivatives of the succession function 

f " (0) .  f " (O) ,  .e. 
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The derivation of these expressions is analogous to the derivation of the 
expressions for the focal values in S24.3. 

Since the right-hand s ide R (s. n) of the differential equation (7) is a 
function of c lass  -V, the solution 

n - f ( s ;  0. no) 

of this equation has  cortinuous partial  derivatives with respect  to no to 
o rde r  .I' inclusive. 

As in 524.2, Lemma 4, we can show that these par t ia l  derivatives,  
treated as functions of F (i.e., for constant no), satisfy the following sys tem 
of differential equations: * 

BY (lo), f (0; 0, no) = i t , .  Therefore,  

Equalities (15) provide the initial conditions f o r  equations (14). 
Proceeding as in 924.3, we introduce the notation 

( k = 2 ,  ..., 'V, the functions Ek are defined by equations (14)). 
Since n = 0 is a solution of equation ( 7 ) ,  we have f (s; 0, 0) 0 ,  

Therefore,  

(k = 2, 3, . . ., N ;  the missing t e r m s  in  (20)  correspond to a polynomial i n  
the functions R2 (s), R 3  (s), . . ., Rk-l (s) and the functions ul (s), u2 (s), . . ., uk-, (s)). 

The expressions for Ef .  E,, . . ., EN are not given in  explicit form; see 924.2, footnote to Lemma 4 
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Let n = 0 in (14). W e  will integrate them successively using initial 
conditions (15) and the relations 

f (s; 0, 0) = 0 and R (s, 0) 0 

together with (16)-(20). 
in Chapter V (513.3). 

The f i r s t  of these equations has  been considered 
Its solution is 

(see 513.3, (25)). 
1 Multiplying the k-th equation in (14) by and integrating, w e  find 

F rom ( l l ) ,  (21 ) ,  and (22) we obtain the following expressions for the 
derivatives of the succession function a t  the point no = 0: 

Rl(* )d& 

f ’ ( O ) = e O  , (23) 

(24) &k) (0) = f ( k )  (0) = k!ed R1(‘)dr Hk (S) e ‘ 

Let u s  now express  the functions Rk  (s) and Hk (s) in t e r m s  of the right-hand 
s ides  P (2, y) and Q ( x ,  y) of system (A). The expression 

w a s  computed in Chapter V .  
fined by ( 7 )  with respect ton ,  

Indeed, differentiating the function R (s, n) de -  

w e  obtained after some manipulations 

write out in explicit form only those t e r m s  which contain k-th order  
derivatives of P and Q .  Differentiating ( 7 )  k t imes with respect  to n and 
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using the symbolic power notation,:'. we obtain, as is readily verified, 

;vhere the tr iple dots correspond to t e r m s  which contain no k -th order  
derivatives of P and Q (these t e rms  confzili the functions P and Q and their  
derivatives to o rde r  ,<k - 1 I .  L et n = 0 in  (261. By ( 3 ) ,  

'p(s. O)=Cp(s), S(s ,  O ) = * ( s ) ,  

2 (s, 0)  = q' (s), 3; (s. 0) = $' (s), 

6 ,  (s, n) = t' (4, tnl (s, n) = -Cp' (s). 
- 

hioreover, since 'p and 9 are solutions of system (A), we have 

9' (SI P ((P (SI 7 $ ( s ) )  $' (s )  = Q (F (SI t t (SI) 

rherefore ,  for n = 0 ,  the numerator  of the fraction before the braces  in (26) 
L-Linishes, and w e  find 

and the tr iple dots represent  t e rms  containing the functions P and Q and 
their  derivatives to o rde r  k - 1. 

By \16)-(22) and (28)--(27), 

,where cbk (s) i s  expressed - with the aid of algebraic operations and inte- 
gration - in t e r m s  of the functions P and Q and their  derivatives to o rde r  
(12 - 1) and in t e r m s  of the functions (s), 9 (s), q' (s), 9' (s). 

If f ( x ,  y) is a function of two variables, the symbolic binomial power 

ahheviared nofarLon for the operator defined by the cquallty 

u I u  d is used as I n  ( x' J y )  
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We can now compute the derivatives of the succession function f (no) at  
the point no = 0 .  
therefore their derivatives, a r e  periodic functions) that 

From (23) and (25) it follows (seeing that rp and rl,> and 

T s [&-?(a), Ws))+Q&W, $(.))la* 
f' (0) = e a  (30) 

I 
(This expression was originally derived in Chapter V, 513.3, (30).) 

From (21), (23), (24), and ( 2 9 )  we have 
d(k) (0) = f W  (0) = 

where k = 2. 3. . . .. N. I 

role in the proof of the fundamental theorem of this section. 
Wh (s) a r e  expressed by (30), (25), and (28), respectively. We should again 
emphasize that the second t e rm in the right-hand side of (31) does not con- 
tain derivatives of P and Q of higher than (k - i)-th order ,  and the values of 
these derivatives a r e  taken a t  points of the curve z=rp ( x ) ,  y = rl, (s). 

, and 

2. Multiplicity of a l imit  cycle 

In Chapter V we defined the m u l t i p l i c i t y  of  a l i m i t  c y c l e  for  
the case of analytical systems (see 812.3). 
for svstems of c lass  N. Let 

We wi l l  now define this concept 

be a dynamic system of c lass  N,i, Lo a closed path of this system, 
x = rp ( t ) ,  y = rl, ( t )  the motion corresponding to this path, T > 0 the period of 
the functions rp and 9 .  

A limit cycle Lo is said to be m u l t i p l e  (see 513.3, Definition 18) i f  
We recall  that the path Lo is a limit cycle i f  it is an isolated closed path. 

otherwise the limit cycle is s i m p  1 e . 
As we have repeatedly mentioned, if  (A) is a dynamic system of c lass  N ,  

the function f (no) and hence the function d (no). for sufficiently small  nor have 
derivatives to o rde r  N inclusive; in particular,  the numbers d' (0). d" (0), . . . 
does not vanish, the closed path Lo is isolated, i.e., it  is a l imit  cycle 
(stable, unstable, or semistable). 

is  said to be a limit cycle of multiplicity r (m an r-tuple limit cycle) if 

( r  is a natural number, r , < N ) .  

. . ., d'"(0) exist .  We have seen in 812.4 that if  a t  least  one of these numbers 

D e f i n i t i o n  28. A closed path Lo of a dynamic system (A) of class N 

d' (0) =d" (0) = . . . = d"-" (0) = 0, d'r" (0) # 0 (33 1 
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.This concept of mult..plicity c lear ly  coincides for  analytical sys tems with 
the definition introduced in S12.3. As in 512.3, i t  involves a cer ta in  arc 
without contact 1 ,  and w e  have to prove that the definition is independent of 
the par t icular  choice of this arc .*  However, w e  will not give this proof 
here ,  since i t  will emerge  as a direct  consequence of the fundamental 
theorem of this section. 

I t  follows from Definition 1 8  (913.3) and Definition 28 that any s i m p l e  
limit cycle is a limit cycle of m u  1 t i p  1 i c i t y 1 and vice versa .  With 
regard to multiple cycles, the situation is as follows: if  (A) is an  analytical 
system and L o  is a mult:Lple limit cycle of (A), i t  has  a definite multiplicity r ,  
where r may be any natural number g rea t e r  than 1.' ,' If (A) is a system of 
c l a s s  :Y?.2  and L o  is a multiple limit cycle of (A), i t  generally has  a definite 
multiplicity r ,  2 , < r , < S .  In some cases, however, i t  may turn out that for  
the cycle Lo 

d' (0)  =d" (0)  i . . . = d'x-" (0)  = d"" (0) = 0. (34) 

If \ A )  is not a system of class .Y -- 1, Definition 2 8  becomes meaningless 
and the multiple limit cycle L o  has  no definite multiplicity. 

are satisfied, Maclaurin's formula gives 
Lf a closed path L o  is a l imit  cycle of multiplicity r ,  i.e., if  relations (33)  

Hence, using the resu l t s  of S12.2, we conclude that a l i m i t  c y c l e  of  
e v e n  m u l t i p l i c i t y  i s  s e m i s t a b l e ,  a n d  a l i m i t  c y c l e  of  o d d  
m u l t i p l i c i t y  i s  s t a b l e  o r  u n s t a b l e .  For o d d r ,  ifd'"(O)<O, the 
cycle is stable, and if  d"' (0) > 0 ,  the cycle is unstable. 

Let u s  consider a spccial modified system, for  which a lemma analogous 
to Lemma 7 of 524.3 w i l l  be proved. 

Let (A) be a dynamic system of class ,V. Lo a closed path of (A), 
I = 'p ( t ) .  y = 10 ( t )  the motion corresponding to this path ('p and $ a r e  periodic 
functions of period T > O ) .  
there  ex is t s  a function 1' (t, y) of class .V L 1 in region G where system (A) 
i s  defined, such that for  all s ,  - 00 < s < L m , we have 

By Lemma 1, S15.1 and Remark 1 to that lemma,  

and 

i 3 5 )  

(36) 

Qe footnote on p. 108. 
If ( A I  is a n  analytical  system, L p  is  a closed path of ( A ) ,  and a l l  the derivatives vanish, d ' k )  (0) = 
:= 0 tk = i .  2. . . .), we have (I ( n o )  
longer a limit cyc le .  See §12.:3. 

'I 

0 and a l l  the paths clcse t o  Lo are closed paths. i .e.,  Lo is no 
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On the other hand, differentiating identity (35) and inserting s=so ,  we get 

F; ((P (SO),  9 (SO) )  9' (SO) + F; ((P (SO).  9 ( S O ) )  9' (SO) = 0 

Consider the las t  two relations as l inear  homogeneous equations for  
F; (cp (so), 9 (so)) and F; (cp (so), 9 (so)). 
have a nonzero solution. 
[cp' 
9 (so)) = 0. 
path Lo and is therefore not an  equilibrium state .  
proved, 

form 

It follows f rom (36) that these equations 
But then the determinant of the system vanishes, + 19' (so)]' = 0 ,  i .e.,  cp' (so) = P (cp (so), 9 (so)) = 0 and 9' (so) = Q (cp (SO), 

Relation (37) is thus 

Together with system (A), consider a modified system of particular 

This is impossible, since the point (cp (so) 9 (sp)) l i es  on a closed 

ds 
-= dt  P" ( x ,  Y) = P (5, Y) + L F ~ F ; ,  $ = Q(G Y) = Q (2, Y) + ~F*FI, (Xi,) 

where h is a parameter ,  and m is a natural  number. 
a system of c lass  N ,  and i f  h is sufficiently small ,  (A,) is as close as 
desired to system (A). 

a 1  s o  a p a t h  of s y  s t e m  (A,). Indeed, since Lo is a path of (A), we 
have 

Clearly, (A,) is a l so  

It follows from (35) that a c _ l o s e d  p a t h  Lo of s y s t e m  ( A )  i s  

T' ( t )  = P (T (t)t 9 ( t ) ) ,  $' ( t )  = Q (9 ( t ) ,  9 ( t ) ) .  

From these equalities and from (35) it follows that 

T' ( t )  = p"(T ( t )?  $ ( t ) ) ,  9' (4 = Q ( c p  (th 9 ( t ) )  1 

which implies that Lo is a path of system ( x A ) .  
Let - 

f = 7(no, a) (38) 

be the succession function constructed for  system (6,) on the same a r c  
without contact I and for  the same choice of the parameter  as the succesEion 
function f o  for system (A) (for sufficiently small  A, the function 7 is defined; 
see  54, Lemmas 1,2, and 11). 

Clearly, - 
f (no, 0) = f (no). 

f (0) =7(0, 1) =o. 

(39) 

Moreover, since Lo is also a path of system (A,), we have 

(40) 
c 

Together with the function f"(no), we also introduce d"(no) =a(no,  h ) ,  analogous 
to the function d(no) of (A), 

(41)  
- d I 

d (no) = d  (no, h) = f  (no, h ) - n ~ = f  (no)-no* 

In topics related to the creation of l imit  cycles from- a closed path L o ,  the 
system (A,) plays precisely the same role  as system (A,) (024.3) in 
connection with the creation of l imit  cycles f rom a focus. 

N > 1  
L e  m m a  1 .  Let fm a closed path Lo of a dymmic  system (A) of class 

(42)  
d' (0) = d"(0)  = . . . = d'" (0) =o, 
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where 1 e r < S ,  and let m be an integer, 

i < m : : r ,  ( 4 3 )  

and 3. a nonzeYo veal nvtnbev. 
cycle of mdtiplicity m .for the system (x i , ) ,  Le., 

Then the closed path Lo is  a tntiltiple littiit 

2 (0) =d""(O)  = . . . =a(m-') (0) =o. (44 1 
and 

Also 

a ( " ' ) ( o ) = ~ . m !  [q'(0)2+~'(O)21"-1~ 

X 
IF ;  (q (s), * (4) 9' (4 -F; ('0 (s). %- ( J ) )  B' (S)l"+' q he' ( S P T 9 '  Wlm 

' 
(m-1)  [p.&(s), t ( s ) ) f Q ( w ) ,  W S ) ) ~  dr 

r e  O ds. (46) 

P r o o f .  Since L o  is a path of system (Kk), the derivatives gi) (O), 
i = 1, 2 ,  . . .. m, may be found using (30) and ( 3 1 )  (for the derivatives d(i )  (0)). 
In these equations, P (2, ! I )  and Q (I, y) and their  derivatives should be replaced 
with (3, y) and Q ( x ,  y) and their  derivatives (the functions v, 9, q', rt;' clear ly  
remain as  before). 

functions P" and p and their  derivatives should be taken for x = (p (s), y = $ (s). 
& e  recall that in  computations using (30) and (31), the values of the 

o , < S , < T .  

From the relations 

i t  follows, as will be seen  from elementary calculations, that at the points 
(cp (s), tp (s)) the values of tke functions 
to o rde r  m - 1 inclusive a r e  respectively equal to the values of the functions 
Pand Q and their  derivatives to o rde r  m - 2 ,  i.e., 

and 0 and their  par t ia l  derivatives 

- 
P(cp N7 9 ( s ) )  = P ((P (s), 4 (41, Q('F (4 9 (SI) = Q ('P (4, 9 (4)t 

( l = i ,  2, ... ) m-i ;  O < i < Z ) .  v=pc*) J 
Let u s  now compute the m -th o rde r  partial  derivatives of the function P" 

and Q a t  the points (cp (s), 9 (s)). In virtue of the relation F ((p (s), 9 (s)) 0, i t  
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suffices to consider only those t e r m s  which resul t  f rom the differentiation 
of the functions P, Q, and F" (all the other t e r m s  produced by differentiation 
contain the function F (2, y) as a multiplicative factor and therefore vanish 
for  z = 'p (s), y = I# (s)). Simple manipulations thus lead t o  the relations 

+ 
u=*(s) u = W )  1 

Y'W.) } 

( i = O ,  1, 2, ..., m). J I 
Let fii (s), pi (s), etc., be the functions of (x,) which are analogous to the 

functions Ri(s ) ,  H i @ ) ,  etc., of (A). 
for R, (s), and equations (48) lead to the equality 

Relation (25), the analogous relation 

(s) = R* (s). (50) 

Thus, using (231, we see that 

P (0) = f' (01, 

d' (0) =a' (0). 

and therefore - 
Furthermore,  using (21), (28), (29), (31), the analogous relations for (xA), 
and also equations (48), (50), and (51), we conclude that 

@k (s) = Wa (s) 

&k (s) = @h (s) 

fi, (S) = H k  (s) 

.(53) 

(54 1 

(55) 

for k 6 m - I ;  

for  k x m ;  

for k g m - 1 ,  and finally, 

"(k) d (  0)  = d'k' (0) (56) 

for  l i - 2 .  3, ..., m - I .  
From (42), (43), (52), and (56) i t  follows that 

I 
- 

d' (0) = d (0)  = . . . - - P-i) (0) = 0. 

W e  have thus proved relation (44). 
Let u s  now compute a(" (0) .  

replacing f ,  W ,  R ,  etc. ,  wi thx w, E ,  e tc .  
To this end, we will use equation (31), 

By ( 5 0 ) ,  (51), and (54), 

I 
I 8 

5 ( k - i )  s R i ( a ) d 8  T - s R~( . )dr  
(0) = f' (0) 1 R,,, (s) e 0 ds+m!f' (0) \ @ k ( s ) e  O ds. (57)  

0 0 

'The_ expression f o r  6f"(s)  can be found using (28). Replacing P and Q with 1 pand Q and using (49), we obtain 
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From (31 )  and (58) w e  obtain 

By the conditions of the lemma,  d i m f ( 0 ) - 0 .  Fur thermore ,  d ' ( 0 ) -  f ' ( O ) - I  
Inserting these numerical values and expression (25) in the i .e . ,  i'(0j = 1 .  

l as t  relation, w e  finally obtain 

2"' (0) = ). . m !  [a' ((I)? $' (0)%]"'-1 ,. 
\' 

IF; w ( 9 ) .  $ tS ) )  $' W-FFy (V (S)? 9 W)p* (311q'-1 

:. 1 -  [ f f ' ( s ) ~ - $ ' ( s ) q m  

im- ib  5 jF;qs~s). *(*)I e Q L f ~ ! s ) ,  + i s l i ] d ~  

,. e u ds. 

i .e.,  eaualitv (46) holds true. 

-- 0 

. .  
Inequalit; (45) follows directly f rom (46) and inequality ( 3 7 ) .  

R e m a r k .  

This com-  
pletes the proof of the lemma.  

M'e have assumed in the lemma that r>.)(an_d thus ,V>2) and, 
imposing conditions (212:', considered the modified sysiem (A,) with m >  2 .  
Cinder these conditions, the closed path Lo of system (A,) is a multiple lim2t 
cycle of multiplicity m .  
has the form 

The case m = 1, i .e . ,  when the modified system (A,) 

has  been considered in connection with the proof of Theorem 19 ($15.2). 
if e have seen there  that if (A) is a dynamic system of c l a s s  S > 1 ,  Lo a 
closed path of (A)  for wkich d' (0) = O ( d "  (0)  need not be equal to zeroL or even 
need not exist altogether), and i+0,  L o  is a simple limit cycle of (A),,) and 
the  corresponding derivative is expressed in the form 

$27. CREATION O F  LIhlIT CYCLES FROM -4 
h lULTIPLE LIRIIT CYCLE 

1. The fundamental theorem 

In Chapter V we considered a multiple l imit  cycle and showed that i t  
may "create" closed paths (515.2, Theorem 19). 
elucidate the number of paths that may be "created" in the neighborhood of 
a multiple limit cycle on passing to sufficiently close sys tems.  
in fact prove the following theorem, analogous to Theorem 40 of 825.1. 

litnit cycle) .  If (A) is a ,dynaniic system of class  .V > i or an atmlytical 
system, and L o  i s  a multiple liniit cycle of mrcltzpllcitj k (2<k<.V), therz 

In this section we w i l l  

W e  will 

T h e  o r e  In 4 2  (theort?ni of the creation of littiit cycles from a multiple 
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1)  there exist E ,  > 0 and 6, > 0 such that any system (A) 6,-close to 

2) f o r  any positive e < e ,  and 6 < 6,, there exists a system (A) of class N 
rank k to (A) has at most k closed paths inUQ (Lo);  

(of analytical class, respectively) which is 6 -close to rank k to (A) and 
has k closed paths in U,, (Lo).* 

As in the 
previous section, consider an a r c  without contact I ,  which is a normal to the 
path Lo (see §26.1), and the succession function f (no) of system (A) on the 
a r c  1 ,  together with the function d (no) = f (no)  - n o .  Let these functions be 
defined for all  no,  I no I<.*, where n* is some positive number. 
noted in 526, d (no)  is a function of c lass  N. 

I 
P r  0 0  f . 1) Let u s  prove the f i r s t  proposition of the theorem. 

As  we have 

Since Lo is a limit cycle of multiplicity k of system (A), we see  that I 
d' (0) = d" (0) = . . . = d'"" (0) = 0, d(h)  (0) # 0, (1) I i.e., the number 0 is a root of multiplicity k of the function d ( n o ) .  

(see Chapter I, S1.3) there exist positive numbers q < n *  and u such that any 
function 2 (no)  defined for  all no ,  I no I4n*,  and 0-close to d (no) to rank k may 
have at  most k roots on the segment L- q, 9). 

rherefore  

FIGURE 118 

A sufficiently small  positive number is taken for E,, ,  so that a l l  the points 
of the normal 1 lying in U, (Lo) correspond to the values of the parameter no 
l e s s  than q in magnitude (Figure 118). 
following condition is satisfied: if  system (A) is 8,-close to rank k to (A), 
the succession function f"(no),  and hence the function a(,,), a r e  defined for 
(A) on the a r c  1 for a l l  no, no I<n*,  and for  Ino 14n* the function 2 (no)  is u- 
close to d ( n , )  to rank k. This 6,  exists by Theorem 3 ,  Appendix, 1. The 
numbers e ,  and 6, chosen in this way evidently satisfy the f i r s t  proposition 
of the theorem. 

of c lass  N .  

80 is-also taken so small  that the 

The first proposition is thus proved. 
2 )  The second proposition will f i r s t  be proved for a dynamic system (A) 

Consider a modified system of a particular form 

* The closed paths of Theorem 42 are clearly isolated, i .e. ,  they are l imit  cycles. 
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where i ;  a r e  parameters ,  and F (I, y) is a function of c l a s s  h + 1,defined in 
7; and satist'.ving conditions ( 3 5 )  and ( ~ 3 6 )  of the previous section j S 2 6 . 2 ) .  
fiy \ 3 3 / ,  the function F (2. y) \ranishes at the points of tlie l imit  cycle L o  ,Of 
s y s t e m  (XJ and therefore L o  is also a path of sys tem (Xi .  Evidently, !A) 
i s  also a system of c l a s s  .V. 

rank, and by S4, Leninias 1,2, and 11, the function 
For sufficiently smal l  A,, t-q) is arbi t rar i ly  c lose to ( A )  to any (possible) 

I 

d ( ~ , , .  i.!. >.?, . . .. A+!). 

analogous to the function d (n,,) for (A) ,  is defined for (-x) on the arc without 
contact I for. a l l  R,,,  I no I < R * .  .:< 
o f  the parameters  >.i .  >.?. . . .. 
i., - i.: E .  . . . 2 ; .R.l  = (?, .ve see that 

Clearly, 2 is a continuous function of r i Y  and 
Since (A)  is obtained from (-5) for 

- 
d ( r z , , .  0. U, . . . , V I  5 d ( R , , ) .  (2 i 

f'or any E > 0 and 6 > 0 ,  there exist  I* > 0 anit i&~+ such that i f  

lA t [<k* ,  i = l ,  2, .... k - - l ,  ( 3  J 

then 
!a) systcni (x) is 6 -close to rank k to system ( A ) ;  
',b) the function d(n,,.  i.!. i,:, . . ., I .*- , )  is defined for  a l l  R ~ ,  1 no 1<n*, and any 

root of this function satisfying the inequality I no 1 < k corresponds to a 
closed path of tLXJ completely contained in 1 I E  ( L o ) .  

t i  be the numbers  corresponding to e and 6 ( i .e . ,  such that i f  (3) is satisfied, 
conditions t a )  and (b)  hol-t t rue) .  
of the parameters  iI, i.-, . . ., kS-,, sys tem (A)  can be made 6-close to rank k 
tu {A)  and ,will have k closed paths in C', (Lo). 

Let F and h be fixed positive numbers,  e < e g .  6<:6,. Let further,  i.* and 

i V e  Ixill show that by a n  appropriate choice 

Lf'e :vi11 assume that the nunibers ).; henceforth satisfy condition (3) .  
From Maclaurin 's  fo.rmula we conclude that, in virtue of relations (1 ), 

t'ur a l l  sufficiently smal l  no, 

where h (nnl  is a continuous function and h (0) = 0 (see proof of Theorem 5, 
3 1 . 3 ) .  

By sssuniption, d ~ k ~ ( 0 ) = L O .  To fix ideas,  let d(!+)(0)>0. Then for all 
sufficiently small  positive R ~ ,  d(n,)  > 0 .  
smaller  than k,  and denore it by n,. 

i V e  choose one of these nunibei s ,  
Thus, 

o<n,.<n. d(n,)=d"(ni.  0, ... ) 0)>0.  (5 )  

h o w  suppose that 
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and consider the nodified system corresponding to these values of the 
parameters ,  

dz - 
;i7- = P (5, y, 0, 0, . . s, 0, hk-1) = P (5, Y) + hk-lFk--'F;, 

Q ( 2 3  Y, 0, 0, . . . t 0, hk-1) = Q (5, Sr) + hi-iP-'FL, 
dy= - (A,) 
d t  

and the corresponding function 2, (no) = z ( n o ,  0, 0, . . ., 0, hk-1). 

Lemma 1 of the previous section, 
By (1) and 

(6) I 

I 

I 

?.. - 
d;  (0) = d; (0) = . . . = Z i k - 2 )  (0) = 0, 

and &kL1) (0)  is expressed by equality (46 )  of the previous section, which 
gives 

- 
d lk - ' )  (0) = Clhk-1, 

where Cl is a nonzero constant (C, is the factor before h in (46)  for 
m = k - 1. 

A s  before, Maclaurin's formula and relations (6 )  give for all  suf- 
ficiently small  no 

Its  explicit expression will not be needed here ,  however). 

(7) I c l i k - 1  dl (no) = nt-' + h", (no) nt-1, 

where ch, (no) is a continuous function and x, (0) = O .  
Let cl>o and choose ha-1 so that 

1 hk-11 <A*, hk-i < 0, d", (ni) = a(ni, 0, 0, . - 9  0, Lk-1) > 0. 

The las t  of these conditions is satisfied for any sufficiently small  hk-1 in 

The inequalities Cl > 0, hk-1 < 0 and equality (7)  show that for sufficiently 
Choose one ofthese numbers, smaller  than ni, 

( 8 )  

virtue of equality (5) and the continuity of the function 2(no, icl, a2, . .., h k - 1 ) .  

small  positive no, & (no) < 0. 
and denote i t  by nz. Thus, 

O< n2<n1 < G (9 1 
and - 

di (ni) > 0, gi (nz) < 0- (10) 

Further construction proceeds along the same lines a s  above (compare 
with proof of the second proposition of Theorem 40, 5 25.1). 
(k- 1)-th step, * 

After the 
we end up with the system - 

*=P(%, d t  y, hi, hz, . ., hk-1) = 

= P (5, y) + &FF; + hzF'F; + . - + bk-iFk-'F;, 

(A) dy=a(& dt Y, hi, hz, h k - i )  = 

= Q (5, y) f k,F& f- h,ppu + . + hk-,F'-'FI, 

- -  - * In our construction of the systems (Al), (A2) ,  . . ., (Ah+) and the numberr n,, na, . . ., n k - i ,  we always 
use Lemma 1 of the previous section. However, in the last, (k- I)-th step, the lemma itself is replaced 
by the remark to Lemma 1 and formula (59) of the last section is used instead of formula (46). 
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and the numbers n,, n2. . . ., nR a r e  such that 1 I < I . * ,  

and 

From inequalities ( 1 2 )  and the continuity of the function 2 (no) i t  follows 
that a t  least  one root of the function 8 (no) falls between each pa i r  of numbers 
R, and n2, n2_and n3 ,  . . ., i t k - ,  and nk. These roots  correspond to closed paths 
of system (A). Ill_oreover, 
the path Lo of (A) is itself a path of (3).  
inside the neighborhcod U, ( L , ) .  Since E < E, and 8 < &, the f i r s t  proposition 
of the theorem indicates that C; ( L a )  may contain at  most k paths of (A), 
i.e., it contains preciseLy k paths. This proves the second proposition of 
the theorem for  systems of class N .  

Our proof is inapplicable 
to this case,  since, in general, no analytical function F (I, y) exis ts  in the 
ent i re  6 which satisfies conditions ( 3 5 )  and ( 3 6 )  of the previous section.* 
W'e will therefore proceed along the same l ines  as in the proof of 
Theorem 19 (S15.2). 

multiplicity k of (A), E,, and 6o the numbers introduced in the f i r s t  proposi-  
tion of the theorem. Take any pzsitive numbers E < eo and 6 <60.  
before, we construct a system (A) of c l a s s  S g k  and numbers nl, n2, . . ., nk 
such that the following conditions are satisfied: 

By ( 3 )  and (ll), these closed paths lie in C', ( L o ) .  
Thus, a t  least  k paths of (A) exist  

3)  Let u s  now consider the analytical case .  

Let (A) be an analytical system, and L o  a multiple l imit  cycle of 

As 

(a) System (A) is 6 / 2  close to rank k to system (A). 
(b)  Relaticns (11) and (12) are satisfied, and h i s  a number with the 

following propert ies :  any path E of system (A) crossing the a r c  without 
contact I a t  point .Ql corresponding to a value no, I no I 
c_ro_sses the arc I with increasing t at another point 
M i M 2  of the path 

and hence s t ructural ly  stable, l imit  cycle of (A). 

h, of the parameter  
so that the arc 

is entirely contained in  Ur,* ( L o ) .  
By equation (59) of the preceding section, z-(O) =#= 0 ,  i.e., L o  is a simple,  

b Let q be a number, 0 .= q < T ,  and ( A  ) an analytical system q -close 

to rank k to system (A)  (e.g., a system whose right-hand s ides  ar_e 
polynomials adequately approximating to the right-hand s ides  of (A)). 
Clearly,  if q is sufficiently small ,  the following conditions are satisfied: 

(a' ) ?e function d* (no) corresponding to {A* ) is defined for all 
no, I no I < n, and 

> O  i f  k is odd, I < O  if k is even. d' (ni) > 0, d* (nz) < 0, . . . , d' (.A) 

(b;:<) Any path L* of system (A':) crossing the a r c  without contact 2 at  
point .Tf; corresponding to the value no ,  1 no I <h, of the parameter  c ros ses  

W e  have seen in Chapter V (915.21 that such a function may be connructed in the neighborhood of the 
path Lo This is not sufficient, h,wever, since ig should be defined in the entire d. 

28 i 



Ch.X. CKEATION OF CLOSED PATHS FROM A MULTIPLE LIMIT CYCLE 

the a r c  1 again with increasing t a t  point M:, so that the arc M:M: of the 
path L* is entirely contained in U ,  (Lo).‘:. 

and c rosses  the arc without contact 1 a t  point M :  corresponding to the 
value n: of the parameter ,  where n: < n, (condition (e’:) is satisfied for 
sufficiently small  1 because Lo is a s t ructural ly  stable limit cycle of (A)).  

From (a’.), (b‘), and (c”.) i t  c lear ly  follows that (A*) is an analytical 
system, 6 -close to rank k to system (A), which has  a t  least  k closed paths 
in U ,  (Lo), i.e., i t  sa t isf ies  the second proposition of the theorem. This 
completes the proof of the theorem. 

proposition of rheorem 42 - that system (A) is 6 -close to rank k to (A) 
may be replaced by requirement of 6 -closeness of rank N .  If (A) is an  
analytical system, we can find an analytical system (A) satisfying the 
second proposition of the theorem and yet close to (A) to rank m ,  where m 
is an a rb i t ra ry  natural number. 
from the proof of Theorem 42.  

(c*) There exis ts  a closed path L: of (A: ) which lies entirely in U ,  ( L o )  

R e  m a r k  . If (A) is a system of c lass  E ,  the condition - in the second 

The validity of this r emark  follows directly 

2. Supplements 

O n  t h e  c r e a t i o n  of  l i m i t  c y c l e s  f r o m  a f o c u s  of f i n i t e  
m u 1 t i p 1 i c i t y . 
us  to strengthen the second proposition of Theorem 41. 
following theorem obtains : 

Let 0 (0, 0 )  be a multiple focus of multiplicity k of a 
dynamic system (A) of class N > 2k + 1 (or analytical), and let e, and 6o be 
sufficiently small positive numbers (introduced in the f i r s t  proposition of 
Theorem 40 and the remark to that theorem). If  system (B) is  6,-close 
to yank 2k f 1 to system (A) ,  the sum of the multiplicities of the focus 
and the limit cycles of (B) lying in U,, (0) is at most k .  

cycles of (B) lying in U,, (0) be k* > k. 
Lemma 2, 815.2, and Theorems 4 0  and 42, together with the remark  to 
Theorem 42, w e  can modify (B) in the neighborhood of each of these l imit  
cycles  and the focus, to obtain a system (B‘.) which is arb i t ra r i ly  close 
to rank 2k + 1 to system (B) and has  k* > k closed paths in U ,  (0). The 
existence of this system (B’ ), however, contradicts the condition that 
0 (0, 0 ) i s  a focus of multiplicity k . 
the limit cycles of (B;:) lying in U,, (0) should fur ther  be made s t ructural ly  
stable (see $15.2, Lemma 2 )  and (B‘;:) should be approximated with an 
analytical system. It is clear that the second 
proposition of Theorem 4 1  follows f rom Theorem 41’. 

B i f u r c a t i o n s  of a d y n a m i c  s y s t e m  i n  t h e  n e i g h b o r h o o d  
of a l i m i t  c y c l e  of  f i n i t e  m u l t i p l i c i t y .  W e  will f i r s t  consider 
a proposition which is analogous to Theorem 4 1  and strengthens the second 
proposition of Theorem 42. This proposition, together with Theorem 42, 
plays a fundamental role in the ent i re  topic of bifurcations of dynamic 
sys tems in the neighborhood of a limit cycle of finite multiplicity. 

Theorem 42 and the r emark  following the theorem enable 
Indeed, the 

T h e  o ye  m 41 ’. 

P r o o f  . Let the sum of the multiplicities of the focus and the limit 
Then, using the construction of 

If only analytical sys tems are considered, 

The theorem is thus proved. 

* For a s m a l l q ,  condition (b*) is satisfied because of condition (b) and Lemma 11, 04.2. 
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T h e o r  e m 4 3 .  Let (A) be a dyimrnic system of class S > 1 or an 
analytical system, Lo  a uiultiple lirnit cycle of niitltiplicity k ( 2 g k 4 . Y )  of (A) ,  
ard eo and h0 sufficiently small positir*e niirribers (introduced in the f i r s t  
psoposition of Theorerii 42) .* Theti 

I) f o r a n y ~ a r ~ 6 . O . : E , < e ~ , O ( 6 ~ 6 ~ ,  andfovany s , I - s s < k ,  there 
exists a system (B) of class s (or an analytical system) which is 6 -close 
to rank k to (A)  and has precisely s closed paths in L-e ( L J :  

the l imit  cycles o f ( B )  lying in 

sponding proposition of Theorem 41. 

2) if (B) is 8,-close to rank k to (A), the sum of the mdtiplicities of all 

The proof of the first. proposition is analogous to the proof of the c o r r e -  

The 

( L o )  is at wost k .  

The proof of the second proposition 
is analogous to the proof of Theorem 41'. 
reader  w i l l  be able to reconstruct  the detailed 
proof without difficulty. 

The investigation of the bifurcations of a 
dynamic system in the neighborhood of a limit 
cycle of finite multiplicity is analogous to the 
investigation performed a t  the end of 525.2 for  
a multiple focus. Theorems 4 2  and 43 play a 
leading role  in the ent i re  treatment. Let Lo be 
a /c -tuple l imit  cycle of system (A) (k '>3) ,  )'a 
sufficiently smal l  neighborhood of this cycle 
bounded by cycles  without contact and r2. 
6 a sufficiently smal l  positive y m b e r .  By 
Theorems 1 2  and 43, system (A)G-close to 
rank 12 to (A) may have a t  most k closed-paths 
in  V .  
which have precisely s closed paths in V ,  where 
s is any number, l , < s , < k .  

rz 

hIoreover, there  exist sys tems (A)  
F l G l i R E  119 

These closed paths, 
naturally, are l imit  cyc12s and are arranged "concentrically" (Figure 119). 
As in the case of a multi?le focus (§25.2), the topological s t ruc ture  of (A)  
in I' is entirely determined by the number s of the limit cycles  lying in T7 and 
their  stability character is t ics .  Let these cycles  be L 1 ,  L 2 ,  . . ., L , ,  and w e  
assume that Li l i es  inside L L - l ( i  = i ,  3 ,  . . .. s - 1) .  
of the paths of (A)  in relation to the c p l e s  without contact rl and is 
known.' 
relation to rl and r2 just like the paths of (A).  
s t ructure  of 

Suppose that the behavior 

The paths of any system (A)  sufficiently c lose to (A) behave in 
Therefore  the topological 

in 1- is completely detezmined if  we know: 
( a )  the number s of l imit  cycles  of (A) in J7 ; 
(bj whether each of these cycles  is of even or  odd multiplicity. 
Hence i t  follows, as f o r  a multiple focus, that in the neighborhood of 

a limit cycle of finite mu:tiplicity a dynamic system (A)  may only have a 
finite number of different bifurcations. W e  w i l l  not t ry  to descr ibe these 
bifurcations, since the situation is precisely the same  as for a focus (525.2). 

E: x a m p 1 e 10. Consider the system . 
where k is a natural number. 

* 
' 9  

I t  is further assumcd that a l l  systcms ao-close to  ( A I  have no equilibrium states in  U,., ( L O )  
In other words, i t  is  known whct t r r  thc pathi ~ r ~ s s i n ~  thc cycle ri (i = 1, 2) enter into V d r  leave Vas 
t m - r r a w s .  
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Direct computations show that this system has a single equilibrium 
state  O(O,O), which is an unstable focus for  even k and a stable focus for  
odd k. It is readily verified that the c i rc les  

x' + y' = ca (14)  

for  C # 1 a r e  cycles without contact of system [Bk)> and the circle  

x2 + y' = 1 (15) 

is a path of the system. 
path of the system, i .e . ,  i t  is a l imit  cycle. 
designate the circle  (15). 
l imit  cycle L o ,  a r e  spirals .  Since 

Hence i t  follows that this c i rc le  is the only closed 
W e  w i l l  use  the symbol Lo to 

All the paths of (Bk), except the focus 0 and the 

- - i apa x x +  yy = - --=pa (pS- 1)k, 2 df 

the infinity is absolutely stable. 
topological s t ructure  of the dynamic system (Bk) .  
cycle Lo is semistable,  and for  an  odd k i t  is unstable. The path configura- 
tion is shown schematically in Figure 120  (even k )  and in Figure 121 (odd k). 

These data uniquely determine the 
For  an even k, the l imit  

FIGURE 120. For even k, 
the focus is unstable and the 
l imit  cycle IS semistable. 

FIGURE 121. For odd k ,  
the focus is stable and 
the l imit  cycle is un- 
stable. 

We will now show that the path Lo is a cycle of multiplicity k for (Bk). 
This follows directly f rom Lemma 1, 526.2.  
of the lemma we take the system 

For the start ing system (A) 

dz -= 

and se t  

F (x ,  y) = ;c2 + ya- 1. 

The numbers m and h are assigned the values k and '/2. Then system (A,) 
introduced in Lemma 1, S26.2, coincides with (Bk) .  The paths of 
system (16) a r e  the equilibrium state  0 (0,O) (a center)  and the concentric 
c i rc les  x = C c o s t , y = C s i n t ,  including the c i rc le  L o .  Therefore, for  
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system (16), the succession function is f (po) 
conditions (42), S26.2, a r e  satisfied for any r .  
are additionally satisfied on the path L o :  

po.  and d (po) =_ 0 .  But then 
The following conditions 

F (5, y) E 0, (Ti)' + (F")C # 0 

(conditions (35)  and (36), §26). I'hus all the conditions of Lemma 1, 826.2 
are satisfied, i.e.,  c i rz le  Lo is a l imit  cycle of multiplicity k of (Bk). 

The case  k = 2 w a s  :onsidered in detail in Chapter VI11 (S22,  Example 8). 
In that example we established the exact changes in  the topological s t ructure  
of the system as i t s  field rotated and elucidated the fate of the l imit  cycle L o .  
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C h a p t e r  XI 

CREATION OF LZMZT CYCLES FROM THE 
LOOP OF A SADDLE-POINT SEPARATRIX 

INTRODUCTION 

Consider a dynamic system (D) with a simple (s t ructural ly  stable) saddle 
point 0 (xo.  yo) and.a path Lo which goes to the saddle point 0 both for t+ - 00 

and for t +  + 00. 

the saddle point 0, and we say  that it fo rms  a loop. 
(Theorem 16, 
st ructural ly  unstable path and there  exist modified sys tems arb i t ra r i ly  
close to  (D) and such that the separatr ix  loop disappears  on moving to 
these  systems.  

a separatr ix  loop upon moving t o  c lose systems.  

mater ia l .  The succession function on an a r c  without contact crossing 
the separatr ix  loop is considered in S28.1, and some propert ies  of this  
function a r e  established. A l l  t h e  p r i n c i p a l  r e s u l t s  of  t h i s  
c h a p t e r  a r e  d e r i v e d  i n  w h a t  f o l l o w s  u s i n g  t h i s  s u c c e s -  
s i o n  f u n c t i o n  . 
on moving to  c lose sys tems constitutes the subject of S28.2. 

The principal resu l t s  of the chapter are contained in $29. 
To  fix ideas, suppose that two separa t r ices  of the saddle point 0 which 

This  path is both an a -separa t r ix  and an o-separa t r ix  of 
In Chapter IV 

11.2) i t  is shown that a separatr ix  forming a loop is a 

In the present chapter we consider the creation of closed paths from 

The f i r s t  of the two sections, 28, presents  auxiliary background 

The behavior of the saddle point and i t s  separa t r ices  

do not belong t o  Lo lie inside the loop formed by the separatr ix  Lo.  
first prove (Theorem 44, 129.1) that i f  the parameter  

W e  

0 0  (zo. Yo) = Pz (% Yo) + Qk (% Yo) 

is positive (negative), the loop Lo is unstable (stable) from inside, i .e.,  
all the paths passing through points inter ior  to the loop which a r e  sufficiently 
c lose to  the loop go to  this  loop for  t +  - 00 ( t +  + 00). 

We further  consider the creation of a closed path from a separatr ix  loop 
(Theorems 45 and 46, f29.2) .  
is stable or unstable (in particular, if uo # 0), there  exist modified sys tems 
arb i t ra r i ly  close to  the original system such that the loop disappears  on 
passing to  any of these  close systems,  and yet a t  l eas t  one closed path is 
created in any arbi t rar i ly  smal l  neighborhood of the loop (Figure 122). 

In S 29.3 it is proved that i f  uo # 0, a separatr ix  loop w i l l  c rea te  a t  
most  one closed path in a sufficiently smal l  neighborhood of itself. 
the creation of the closed path it is necessary  (but not sufficient) that the 

It is established that i f  the separatr ix  loop 

For 
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separatr ix  loop disappear. 
system, this  closed path is a limit cycle of the s a m e  stability a s  the stability 
of the disappearing separatr ix  loop (Theorems 47  and 48). 

If a closed path i s  created on moving to  a close 

FIGURE 122 

The case  IT,, = 0 is considered in 529.4. In th i s  case ,  the uniqueness 
theorem does not apply, i.e.,  there  exist modified sys tems as close a s  
w e  des i r e  t o  (D) with at least  two closed paths in any arb i t ra r i ly  smal l  
neighborhood of the loop (Theorem 50). 

the disappearance of a loop of necessity leads,  or conversely does not lead, 
to the creation of a clo.;ed path in i t s  neighborhood. 
provide a comprehensi.re a n s w e r  to th i s  question for the case  oo # 0 .  

However, all the resu l t s  remain valid for sys tems of c lass  n (n>l), and 
the proof is completely analogous to  that for analytical sys tems.  

Also note that the closeness  of dynamic sys tems in Chapter S I  is 
to be  understood, as always, in the sense  of c loseness  in some fixed 
closed region 8. 

In addition to  the above topics, § 2 9  also d iscusses  the conditions when 

Theorems 45 and 4 9  

In Chapter XI we a r e  dealing with analytical dynamic sys tems only. 

‘;I 28.  AUXILIARY MATERIAL 

W e  will present a number of l emmas  which l a t e r  on a r e  actively used 
in the proof of the principal proposition of this  chapter .  
l emmas  are contained in QT, but they are nevertheless reproduced here ,  
sometimes without proof. 

Some of these 

1. Correspondence function and succession function 

be a dynamic system, I ,  and l2  two arcs without contact of the sys tem which 
have no common points, and 

s=g,(u) ,  Y = ~ , ( u ) ,  a S ~ , < 6  
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- and 
z=gz(i) ,  y=h , (G) ,  a < i i g 6  

are the parametr ic  equations of the a r c s  1, and 1 2 ,  respectively. 
g,, h, ,  g , ,  h ,  be functions of c l a s s  2 .  
t o  the value u F) of the parameter  wi l l  be designated M (u) (or @ (z)). 

Suppose that every path L of system (D) which for  t = to passes  through 
the point M (u) of the a r c  1, (a,<u,(b) will pass  through the point @(u> of the 
a r c  l2  for  some other ?>to. Moreover, suppose that for  to < t < f  the path 
L has  no common points either with I ,  or with 1 2 .  The parameters  i and u 
a r e  functions of u .  We will designate them as x (u) and o (u) respectively: 

Let 
A point on the a r c  I ,  (I2) corresponding 

- 
?==X(U), u=o(u) .  

The functions x and o are defined for all u, a g u g b ,  and, as is shown in QT, 
s 3 . 6 ,  Remark  2 t o  Lemma 9, they a r e  functions of c l a s s  1. The function 
w ( u ) i s  called the c o r r e s p o n d e n c e  f u n c t i o n  between a r c s  I ,  and 1 2 .  
It is readily seen that o (u)  is a monotonic function. 

Let, as always, 

2 = 'p ( t ;  t o t  Xoor Yo), Y = 9 (C t o ,  2 0 ,  Y o )  (1) 

be  the solution of (D) which passes  through the point (zo, yo) for t = t o .  Let 

'P (t;  t o ,  gi (u), hi (u)) = Q, (C u), 9 (t i to,  gi (u), hi (u)) = 'f' (1, u)- ( 2 )  
Then 

@ ( t o ,  U) E gi (u), 'y (to, U) hi (u). (3) 

On the other hand, in  view of the above assumptions, 

Q, ( x  (4, u) = gz (0 (@I), 'y ( x  (u). u)  = hz (0 (u ) ) .  (4 )  

Since 1, and I ,  a r e  a r c s  without contact, each of the determinants 

re ta ins  the s a m e  sign for  a l l  u, a,(u<b. 
may assume that both these determinants are positive. 
monotonically increasing function (Figure 123). 

Without l o s s  of generality, we 
Then o (u) is a 

FIGURE 123 
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A l s o  n o t e  t h a t  

@i ( t ,  u) = P (@ (t ,  u) ,  Y (t ,  u) ) ,  Y; ( t ,  u )  = Q (a v. u), Y ( t ,  4). ( 5 )  

T h i s  fo l lows  f r o m  ( 2 )  and f r o m  t h e  fac t  t h a t  (1) is a s o l u t i o n  of s y s t e m ( D ) .  
L e in rn a 1 .  The junctions 

= cp (t;  t o ,  20, Yo), Y = 9 ( t ;  t o ,  zo. Yo) (1) 

satisfy the partial dijjerential eqtiations 

2 - :To P (20. YO) i- a Q b o .  YO), = $$ P (zol YO) + SQ (20, YO). (6) 

P r o o  f . From the  def ini t ion of and  y, if 

E q u a t i o n s  (6 )  follow from t h e  l a s t  r e l a t i o n s  and  f i  
L e m m a  2. Let 

where 'p = 'p ( t ;  to, x0, yo), 9 =\I, ( t ;  to. xO, yo). Then 

aJ 
P r o o  f . L e t  u s  e v a l u a t e  x. 
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nifferentiating the determinant, 

aJ 
at 
-= 

we obtain after simple manipulations 

-= at 

We choose fixed to, x0, yo, i .e . ,  the las t  relation is considered a s  an ordinary 
differential equation. Since 

[Pi (9, 9 + Q; ('p. 4 1  J .  (12)  

'p ( t o ;  t o ,  r o ,  Yo) = Z O ,  Ip ( t o ;  t o ,  Zo9 Yo) = Yo, 
we have 

Therefore  

Integration of equation ( 1 2 )  with the initial condition (13) gives (1 1). 

Let A (t ,  u )  denote the Jacobian 
Q. E .  D.  

L e m m a  3.  

where ~ ( t ;  to, g ,  (u), h, @))is defined by (10). 
P r o o f .  By ( 2 )  and (6), 

where the values of the derivatives 2, dp s, * are taken at  the 

point ( t ;  to, g, (u),  hi ( u ) ) .  

determinants J ( t ;  to, g, (u),  hl (u))  and P(gl' ") Q(gi' '"1, which proves the lemma.  

ax, ago azo avo 
The determinant (15) is equal t o  the product of the 
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T h e  a b o v e  lemmas e n a b l e  u s  to d e r i v e  a n  e x p r e s s i o n  for t h e  d e r i v a t i v e  
of t h e  c o r r e s p o n d e n c e  func t ion .  
s i d e r a b l e  i m p o r t a n c e  i n  what  fo l lows ,  and i v e  wi l l  now p r o c e e d  tvith i t s  
d e r i v a t i o n .  

T h i s  e x p r e s s i o n  wil l  p r o v e  t o  b e  of con-  

We h a v e  a l r e a d v  in t roduced  t h e  d e t e r m i n a n t s  

As w e  h a v e  s e e n ,  t h e  two d e t e r m i n a n t s  c a n  be t a k e n  pos i t ive  without  loss 
of g e n e r a l i t y .  From (21, (4), and ( 5 )  w e  h a v e  

AI (3) = 

A, (3) = 

L e m ma 4 .  The deriu, 
expressible in the forin 

T h e  l a s t  r e l a t i o n s  c a n  b e  c o n s i d e r e d  as a l i n e a r  s y s t e m  i n  ~ ' ( u ) ,  ~ ' ( u ) .  
I t s  d e t e r m i n a n t  i s  ev ident ly  e q u a l  to A z ( u ) ,  so tha t  w e  are d e a l i n g  with a 
C r a m e r s  s y s t e m .  Its so lu t ion  is 

The  d e t e r m i n a n t  i n  t h e  l a s t  f r a c t i o n  is A ( ( x ( u ) ,  u ) .  B y  (14) 

A ( X  ( 1 ~ ) .  u )  = J  ( X  ( u ) ;  to .  gt (U), h~ ( u ) )  Ai (.)- 

Hence ,  u s i n g  (11) and ( I < > ) ,  we obta in  (18). Q . E . D .  

of motion  (2 )  a long  t h e  path L p a s s i n g  t h r o u g h  t h e  point (g (u). h (u)) (i. e . ,  i t  
is independent  of t h e  i n i t i a l  t i m e  t o ) .  

R e m a r k . The d e r i v a t i v e  0' (u) evident ly  d o e s  not depend o n  t h e  c h o i c e  
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Let us  now consider the succession function. Let the succession 
function 

be  defined in some interval of the arc without contact 1 described by the 
parametr ic  equations 

z=g(u ) ,  Y = h W  

( g  and h are functions of c lass  2 ) .  

Lo the path through Mo, and 
Let M, be the point of I corresponding to the value uo of the parameter  u ,  

s=cP(t), Y=S(t) 

the motion along this  path in which the point M o  corresponds to  the t ime Io 
Let the succession function f (u) be defined at uo and let 

According to  the definition of the succession function, this  means that 
the path Lo c r o s s e s  the a r c  without contact 1 again for  some T > to at the 
point Bo (Lo) and that for to < t < T i t  has  no common points with I (Figure 124) .  
B y  (ZI), M o  and 
closed. 

a r e  two different points and the path Lo is therefore not 

I. 

FIGURE 124 
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Ch.XI. CREATION OF LIMIT CYCLES FROM THE LOOP OF A SADDLE-POINT SEPARATRIX I 
- so that 
v = f’ (v) = f* (0 (u)) = 0 (f (u)) =o (C). 

I Differentiation of (27 )  with respect to v gives 

- du “(Ti) - 
du= f*‘ (v) =o‘ (u) f’ (u) -= -r (4. 

du 61 (u) du 

Equation (28)  establishes a relation between the derivatives of the succes- 
sion function on different a r c s  without contact. 
used in what follows. Note that i f  Lo is a closed path, then Go = uo, vo = vo 
and by (28)  

This  expression will be - 

f*’ (vo) = f’ (4- 
This indicates that the value of the derivative of the succession function in 
this case i s  independent of the particular choice of the a r c  without contact 
and is also evidently independent of the particular choice of the parameter 
on the a r c  without contact. 

Let U = f (u) be the succession function on the arc without 
contact 1 defined for all U, a , < u < b ,  and let fm all these values of the 
parameter 

L e m m a  6. 

1‘ (4 < (f‘ (4 > i). (29) 

Then there exists at most one closed path crossing the segment of 1 cm- 
responding to the above vabes of U, and i f  such a closed path does exist, 
it will be a stable (cmrespondingly unstable) structurally stable limit 
cycle. 

Suppose that there a r e  two points on the a r c  I ,  MI (u,) and M Z  (uz), 
through which pass closed paths, where u, and uz belong to the segment [a ,  b ] .  
Then f (4 = UI,  f (uz) = ~ 2 ,  

P r o o f  . 

f (UJ -f (4 = ui-u2. I 
From Lagrange‘s formula, f (u,) - f (uz) = f’ (u) (u, - u 2 ) ,  where is a value 

of the parameter from the interval (ut, u2 )  and hence from the segment la,  b ] .  
But then f’ (j) (u, - uz) = u, - U Z ,  i.e., f’ (i) = 1, at variance with (29). 
f i rs t  proposition of the lemma is thus proved. 
for  whichf’ (u) < 1 (f’ (u)  > 1) i s  a stable (unstable) structurally stable limit 
cycle was established in Chapter V (s 12.4, and also 9; 14, Theorem 18). 
This completes the proof of the lemma. 

W e  wi l l  give without proof two further lemmas  which deal with (D) and 
other close systems.  

Let I ,  and 1, be two a r c s  without contact of system (D) without common 
points, and let a correspondence function 
be defined on the a r c  I ,  for all  values of the parameter u ,  a , < u , ( b ,  so that 
the values = o (a) and %=a ( b )  of the correspondence function represent 
inter ior  points of the a r c  I , .  

L e m m a  7. F m  any e > 0 there exists 6 > 0 such that fm every (6) 
6 -close to (D) , I ,  and I2 are arcs without contact and there exists a COT- 
resbondence function between these arcs 

The 
The fact that a closed path 

= o (u) between the a r c s  I ,  and l2  

- -  
u=o (u),  
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ichich is defined on the segtnent [ a .  bl and is e-close to the function w (u) on 
this segment.* 

s u c c e s s i o n  funct ion u = f (u) b e  def ined  for s y s t e m  (D) o n  t h e  arc I for all 
v a l u e s  of t h e  p a r a m e t e r  u o n  t h i s  arc, a s u s b ,  s u c h  t h a t  t h e  v a l u e s  a = f (a) 
and 3 = f (b)  r e p r e s e n t  i i t e r i o r  p o i n t s  of 1. 

I e wi tn a 8 .  For  any E > 0 there exists 6 > 0 such that for every system 
(61 6-c lose to (D) ,  I is aflarcu'ithoutcontactandonthisarcexists thesucces- 

' t  = f (u). 

.I s i m i l a r  p r o p o s i t i o n  a p p l i e s  to t h e  s u c c e s s i o n  func t ion .  Indeed,  l e t  a 

c sion firnction - 

which is defined on the segment [a, bl and is e-close to the function f ( u )  on 
this segment. 

T h e o r e m  4, 5 1.1, i f  w e  r e m e m b e r  t h a t  t h e  c o r r e s p o n d e n c e  func t ion  
t o g e t h e r  with s o m e  funct ion (u), s a t i s f y  t h e  e q u a t i o n s  

Lemma 7 fo l lows  a l n i o s t  d i r e c t l y  from L e m m a  2, s4.1, and From 
( u ) ,  

which are a n a l o g o u s  to e q u a t i o n s  (4). 
p a r t i c u l a r  case of Lemma 7 .  

L e m m a  8 m a y  be c o n s i d e r e d  as a 

2 .  
its s e p a r a t r i c e s  

S o m e  p r o p e r t i e s  of a s a d d l e  point and 

S i m p l e  e q u i l i b r i u m  s t a t e s  c l a s s i f i e d  as s a d d l e  poin ts  are  c o n s i d e r e d  i n  
d e t a i l  i n  QT, C h a p t e r  I V ,  8 7 . 3 ,  and also i n  C h a p t e r  IV of t h e  p r e s e n t  book 
( 5  9) .  
which wi l l  be needed  i n  what fo l lows .  

L e t  0 (E,,, yo) b e  a s a d d l e  point  of t h e  d y n a m i c  s y s t e m  (D), which is a n  
i n t e r i o r  point  of %. 

L e in ni a 9 .  (a) There exist E~ > 0 and a0 > 0 such that any system (5) 
S,,-close in C to (D)  has single equilibrium state 6 in U e e ( 0 ) ,  uihich is 
moreover a saddle poini. 

(b) F m  euery E ,  0 < E < E ~ ,  there exists 6 .  0 < 6 == 6,, such that if (6) 
is 8-close to (D),  it has a saddle point 0" lying in U ,  (0). 

P r o o f .  T h e  va l id i ty  of L e m m a  9 fo l lows  d i r e c t l y  from t h e  def in i t ion  
of a s i m p l e  e q u i l i b r i u m  s t a t e  (see $ 7 . 3 ,  Defini t ion 15, and also 32.1, 
nef in i t ion  5) and  from t h e  f a c t  t h a t  A < O  f o r  a s a d d l e  point .  

func t ions  of t h e  p a r a m e t e r  p, i .  e., a s y s t e m  

W e  wi l l  now g i v e  those p r o p e r t i e s  of s a d d l e  p o i n t s  and  s e p a r a t r i c e s  

R e m a r k . C o n s i d e r  a d y n a m i c  s y s t e m  w h o s e  r i g h t -  hand  s i d e s  are 

w h e r e  (E,,,,) is ident i f ied  with the o r i g i n a l  s y s t e m  (D) .  
T h e n  t h e r e  e x i s t  e,, > 0 and a > 0 s u c h  that if1 p-po I<a, (8,) h a s  i n  U, (0) 

a s i n g l e  e q u i l i b r i u m  state, which  i s  a s a d d l e  point ,  and its c o o r d i n a t e s  
zo (p) and yo (p) are cont inuous  func t ions  of p; i n  p a r t i c u l a r  

lim yo (p) =yo. lim zo (p) = z,,, 
P+BO @-&lo 

W e  recall that c l o s e n e s s  i s  to te understood Always as closeness at lext  to rank 1. See 53.1, 
Definition 6 ,  and 51.1. Definition 1. 
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The validity of the las t  relations, i .  e., the continuity of the functions 
zo (p) and yo (p) at  the point po, follows directly f rom Lemma 9 .  Continuity 
for  a l l  the other values of p, close to po, follows f rom the fact that each 

of these p may be identified with po. 

remark  to Lemma 3,  59.2, and i t  is given here  
without proof. 
L+ i t s  a- separatr ix ,  I an arc without contact 
crossing the separatr ix  L+ a t  a single point M o .  
which does not coincide with either end point 
of the a r c  I ,  without crossing the second 
o-separa t r ix  of the saddle point (Figure 126) .  
Let, fur thermore,  x = g(u), y = h (u) be the 
parametr ic  equations of the a r c  1, the point 

The next proposition is contained in the 
MO(UO) 

Let 0 be a saddle point of (D), 

" I  

FIGURE 126 

+-=l 
M ,  corresuondina to  the value un of the uarameter  u. - 

-By Lemma 9, any modified system (%) sufficiently close to (D) has  a 
single saddle point 0" sufficiently c lose to  0 in some fixed neighborhood 

I u e ,  (0). 
L e m m a  10. Forany E > O ,  there exists s > o s u c h  that v ( 5 )  is  8 - C l O S e  

to (D), then: 
(a) One of the o-separatrices of the saddle point 0" (which we denote %+) 

crosses  the arc 1 at a single point Mor c o r v e s p d i n g  to the value Zo of the 
parameter, such that R, E U. (M,,), and the second a-separatrix of the saddle 
point 0" does not cross the arc 1. 

Mo and ~2~ correspond to the same time t = to ,  then for any t > to ,  the point 
i@ ( t )  of the separatrix 3 cmresponding to the time t lies in an e-neighbm- 
hood of the point M ( t )  of the separatrix L + c o r r e s p d i n g  to the same time. 

A s imi la r  proposition is t rue  for the a -separa t r ices  of the saddle point 0. 
R e m a  r k . A s  in the remark  to Lemma 9, let (DP) be a system whose 

(b) If motion is  defined on the separatrices L* and E+ so that the points 

right-hand s ides  a r e  continuous functions of p and which coincides with 
the original system (D) for-p=po. Then by Lemma 10, there  exis ts  a > O  
such that i f  I p - po I < a, (D,,) has  a single saddle point 0 (p) in U ,  (0) one 
of whose o-separatr ices  z: c rosses  the a r c  I at a single point a0 (p), and 
the other  separatr ix  has  no common point with 1. Moreover, the value 
Go(p) of the parameter  u corresponding to  the point G0(p) is a continuous 
function of p. A similar  proposition applies to  the case when the right- 
hand s ides  of the system are continuous functions of severa l  parameters .  

Still another useful proposition can  be derived from an analysis of 
the behavior of paths in the neighborhood of a saddle point (QT, 37.3) .  
This  proposition is formulated in the form of a lemma,  without proof. 

there  a r e  
no equilibrium s ta tes  of system (D),  except 0, either inside the a r e a  
enclosed by the circle  o r  on the circle .  Let L: and L; be o- and a- 
separa t r ices  of the saddle point 0. Suppose that each of these separa-  
t r i ce s  has  points lying outside C ,  and let Mi and M z  be the las t  common 
points of these separa t r ices  with C (so that the segments OMi and OMz 
of the semipaths 15: and L; contain no points of C ;  The 
segments  O M ,  and OMz of the separa t r ices  L: and L; divide the c i rcu lar  
a r e a  enclosed by the circle  C into two (curvilinear) sectors ,  one of 

Consider a c i rc le  C centered at  the saddle point 0; 

Figure 127) .  
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528. AUXILIARY LIATEWAL 

which c o n t a i n s  t h e  o t h e r  t w o  s e p a r a -  
t r i c e s  of t h e  s a d d l e  point 0. L e t  t h e  
o t h e r  s e c t o r  b e  d e s i g n a t e d  K. L e t  d 
and B b e  t w o  poin ts  o n  t h e  s e g m e n t s  
OM, and OM,of t h e  s e p a r a t r i c e s  L: 
and L; which d o  not c o i n c i d e  with .If1 
and.MM., and L l ,  h2 arcs without c o n t a c t  
p a s s i n g  t h r o u g h  A a n d  B which h a v e  
n o  c o m m o n  poin ts .  

There exist seg- 
ments A.-ii and RBI of the arcs iaithotit 
contact I., and I., which are entirely 
contained (with the exception of the 
end points A and B )  in the sector K and 
haue the follouiing property: every 

L e n i  tn a 11. 

FIGCRE 121 

path L of ( D )  which fm t = tI passes through a point M of the arc .-id1 other 
than A ,  will cross f m  t 2 )  ti the arc X 2  at some point .V other than R; 
moreover, 

(a) all the points of' the path comespanding to t ,  ti < t (  t2 ,  lie iaside 
the sector K ;  

(b) a path passing through the point A i  of the arc .-idlcrosses the arc 
BB, at the point B,: 

(c) the point -V goes to B when -If goes to .i; 
(6, for any T > 0, there exists a point -If* of the arc Aril  such that f o r  any 

path which fm t = ti crosses the segment -\f*.-i of the arc . lAI  we have the 
inequality t2 - tl > T. 

R e t a i n i n g  t h e  nota t i?n  of t h e  p r e v i o u s  l e m m a ,  let u s  c o n s i d e r  a modi f ied  
s y s t e m  (6). 

From t h e  t h e o r e m s  of t h e  cont inuous  d e p e n d e n c e  of t h e  s o l u t i o n  o n  t h e  
i n i t i a l  condi t ions  and  o n  t h e  r igh t -hand s i d e  and f r o m  the p r e v i o u s  l e m m a s ,  
i t  fo l lows  tha t  t h e r e  e x i s t  e , >  0 and 8,>0 with t h e  fol lowing p r o p e r t i e s :  i f  
( A )  i s  &,-close t o  (D), :hen 

1 )  U,,(O) c o n t a i n s  o n e  and o n l y  o n e  equili_brium s t a t e ,  t h e  s a d d l e  point 6: 
2 )  hi and & are arcs without  c o n t a c t  of (D) ;  
3) t h e r e  e x i s t  s e p a r a t r i c e s  x:and z; of t h e  s a d d l e  point 6 of (6) which  

cross t h e  arcs Ai and L! a t  t h e  poin ts  and  E ,  r e s p e c t i v e l y ,  t h e  point 
ly ing  o n  hl i n  t h e  same d i r e c t i o n  f r o m  Al as t h e  point  A ,  and t h e  point 
ly ing  o n  in t h e  same d i r e c t i o n  f r o m  B1 as t h e  point B ;  

which lies on 4 i n  t h e  same d i r e c t i o n  from B a s  t h e  point Bl. 
4 )  t h e  p a t h  of (b) p a s s i n g  t h r o u g h  A,  crosses  t h e  arc  hz a t  s o m e  point E,  

T h e  fol lowing two l e m m a s  are now s e l f - e v i d e n t .  
L e m m a  12. Far any e >  0 ( E <  E,) there exists 6 =. 0 (6 <ao) such that 

if (E)  is 6-close to ( D ) ,  then 

arc XA, icill cross the arc 12, at the point -v f o r t = & > t , ;  

(a) ZEL'~(A), B E U ~ ( B ) ,  BIG L', ( B J ;  
(b) the path of ( 6 )  which fm t = ti passes through some point .If of the 

(c) the point R goes to E when ,M goes to x. 
L e  m m a  13. For ( I  fixed T>O, let M* be a point of the arc 1, satisfying 

Then there exists a>o such that if ( 6 )  is 
lies on the arc XI in the same direction f r o m  

condition (d) of Lemma 11. 
6 -close to ( D )  , the point 
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M b a s  the point A ,  and fm every path of (fi) crossing 
the arc h, we have the inequality z 2 - t , > T .  

I In what follows, we w i l l  often require  the parameter  

(J ( 2 0 9  YO) = P ;  (zo? YO) + QI ( 5 0 3  YO), (30) 

where xo, yo a r e  the coordinates of the saddle point 0 of ( D ) .  
that it is invariant under a transformation of coordinates. 

We wi l l  show 

We perform in G a transformation of coordinates defined by the equalities 

I E = f ( x ,  Y). q=g(z,  Y) (31) 

o r  the equivalent equalities 

x=(P(E, ‘l)? Y = 9 ( E v  ’l), 

I where f, g,  (P, and 9 a r e  functions of c lass  2 .  
In the new coordinates, (D) takes the form 

L e m m a 14. 
mation of coordinates, i .  e., 

u (4, yo) = P; (x0, yo) +Q; (x0,  yo) is invariant tinder a transfm- 

u* (EO? ’lo) =Pi’ (Eo ,  rlo) + Q: ( E o ,  Yo) = @o, Yo). ( 3 4 )  

P r o o f  . Differentiating the f i r s t  equality in ( 3 3 )  with respect  t o  E and 
the second with respect  to  tl, adding them and inser t ingfor  5 ar.d q their  values 
Eo and ‘lo, respectively, we obtain, using the relation P ( x o ,  yo) = Q ( x o ,  YO) = 0 ,  

u* (Eo. t l o )  = {G (9. 9) [ P i  ((P? 9) (Pi +PI ( ( P 7  N $1 + 
+ fI (CP, 9) IQ; ((P, 9) ( ~ i  + QI ((P, 9) %I + g; (CP, 9) [P;  ((P, 9) ( ~ 6  + PI (CP, 9) %I + 

+g& ( ( P 9  9) [Q; (cpl 9) (P6 

Equality (34)  follows direct ly  f rom the las t  relation in virtue of the identities 

2 = ‘p (f (2, Y h  g (5, Y = 9 (f  (2, Y). g (2, Y)) 

which aive. when differentiated with resDect t o  x and u.  
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S 2 a .  CREATION O F  LIMIT CYCLES F R O M  THE 
SEPARATRIS LOOP OF A SIhIPLE S-ADDLE POINT 

1. Some propert ies  of the separatr ix  loop 

be a dynamic system, 0 (x,, yo) a s imple equilibrium s ta te  of this system, 
ivhich is a saddle point. Suppose that one of the a - sepa ra t r i ce s  Loof the 
saddle point 0 i s  also an w s e p a r a t r i s ,  i . e . ,  it fo rms  a whole path which 
goes to 0 both for t - t  -- 03 and for t +  + 03. In this case  we s a y  that the 

sepa ra t r i s  L o  f o r m s a 1 o o p Let C ,  denote 
the s imple closed curve comprising the path Lo 
and the point 0. The  curve Cowill be  called a 
l o o p  of  t h e  s e p a r a t r i s  Lo o r  simply a 
l o o p .  

has  two other  s epa ra t r i ce s  L;  and L; (either dif- 
ferent o r  coincident) which both lie ei ther  inside 
the curve C o  o r  outside th i s  curve.  
henceforth assume,  without loss of generality, 
that the sepa ra t r i ce s  L; and L; lies outside the 
curve Co(Figure 128) .  The c a s e  when they 

Ees ides  the path L o ,  the saddle point 0 also 

\Ve will 

/$7 
"3 Lr 

FIGC'RE 128 

l i e  inside the curve  Co is entirely analogous. 

point with an arc without contact. 

points A and B with some  arc without contact 1 (Figure 129) .  
saddle point 0 should evidently lie both inside the closed curve  formed 
by the segments  AB of :he path Lo and the arc without contact 1 and outside 
this curve,  which i s  cll2arly impossible.  This  proves the lemma.  

( t )  be a solution corresponding to the separatr ix  
I.,,. Moancl .Vi the points of the separatr ix  corresponding to the times 1, 
and t ,  . We may  take to < ti. A r c s  without contact 1, and I , ,  without 
common points, are drawn through the points No and MI (Figure 130). 

L e ni ni a 1 .  A septzvatrix forming a loop may have ot most one cowiition 

P r o o  f , Suppose a separatr ix  Lo forming a loop h a s  two common 
Then the 

Let z = 'pa ( t ) ,  y = 

FICL'RE 1 2 3  FIGLRE 130 

* 6y Theorem 23 ($18.2). 3 separ,iaix forming d loop may exist only in ri ,tructurally unstable system. 
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Let  MOBo be a segment of the a r c  1, which is entirely enclosed by the curve 
C,,, with the exception of i t s  end point M , ;  le t  MOAo be a segment of the arc 
lowhich lies entirely outside the curve CO, with the exception of the point M , .  
Fur thermore ,  le t  M I B ,  and M I A I  be the analogous segments of the a r c  1, 
(Figure 130). 

L e m m a  2. For  any e > 0, there exists 6 > 0 with the fol lming pro- 
perty: every path L which for  t = to passes through a point M ,  of the arc 
M O B ,  which lies in Ub (M, )  and does not coincide with M will again cross 
the segment MOBo of the arc 1, at some point s f o r  T > to, without leaving 
the e-neighborhood of the loop C, during the time t,<t< T (h7may dzjcfer 
f rom M ,  as in Figure 130, or coincide with M ) .  

The proof of Lemma 2 follows directly f rom Lemma 11 of the previous 
section, i f  w e  take into consideration the properties of paths crossing two 
arcs without contact (QT, 83.4, Lemma 5). 

R e m  a r k  . Let A > 0 be some number. The number 6 introduced in 
Lemma 2 can be  made sufficiently small, so that for  some ti, to < ti < T, 
I ti - t, I < A, the path L will c r o s s  the segment M I B i  of the a r c  I l .  

the a r c  lo lying outside the loop C,. 

i f  the path L passes through the point M of the arc M O A ,  which lies in 
ubo (Mo)and does not coincide with M , ,  the path L will leave the &,-neighbor- 
hood of the path Co both with increasing and with decreasing t. 

P r o  o f .  Consider the w- and a-separa t r ices  L: and L; of the saddle 
point 0 which lie outside the 'curve C,. 
separa t r ices ,  and I C ,  and IC2 a r c s  without contact passing through these 
respective points (Figure 130). 
there  exis ts  6, > 0 with the following property: i f  the path L passes  through 
the point M of the a r c  MOAo which lies in  ubo(M0)  and does not coincide with 
Mo,  this  path will c r o s s  the a r c  A2 with increasing t and the a r c  ?., with 
decreasing t .  
U ,  (C,) does not intersect  with the a r c s  without contact I C ,  and A*. 
numbers, 6, and e ,  evidently satisfy the proposition of the lemma.  

C,.  By Lemma 2, every path which for  t = to c rosses  this  arc at a point M 
sufficiently c lose to  M , ,  will again c r o s s  this a r c  a t  a point % ( t rsuccessor"  
of M )  fo r  T >  to; when M goes to M , ,  ii? also goes to  M , .  
MOBo and M I B ,  may be identified with the arcs BB,  and A A I ,  respectively, 
of Lemma 11 of the previous section, this  lemma together with Lemma 2 
direct ly  lead to  the following useful proposition. 

point M ,  on a separatrix, the time T corresponding to the point I@ goes 
to+ 53.  

In the next lemma,  we consider paths which c r o s s  the segment MoA,of 

L e m m a  3. There exist e, > 0 and 6 ,  > 0 with the following property: 

Let Ni and Nz be two points on these 

By Lemma 11 of the previous section, 

As e,> 0 we choose a number such that the neighborhood 
The 

Let u s  now re turn  to  the case of the arc MOBo lying i n s i d e  the curve 

Since the a r c s  

L e m  m a 4. When the point M an the arc MOBo (Figure 130) goes to the 

We will say  that the path L goes to  the loop C,  for  t -e + 00 ( t  -t - m) i f  
i t s  w - l imit  (correspondingly, a- l imit)  se t  coincides with the loop C,. 

The proof of the following lemma,  which uses  Lemma 2, is self- 
evident and is thus omitted. 

L e m m a  5. If  among the paths crossing the arc MOBo at points suf- 
ficiently close to M ,  there are no closed paths, then either all these paths 
go to a loop f o r  t+ i- m o r  they all go to a loop f o r t +  - 53. 
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De f i n i t i  on  29. A loop C ,  is said to be stable (unstable) if all the 
paths crossing the arc ,MOB, at points sufficiently close to M o  (and yet 
different from -$Io) go to the loop c0 for t + + co (correspondingly, f o r  
t -+ - m). 

of t h e  a r c  .MOBo ( t h e  p o i i t  M 0  e x c e p t e d ) .  
Pv L e m m a  2 ,  a s u c c e s s i o n  funct ion i s  def ined  o n  s o m e  s e g m e n t  M O B  

L e t  
z = go (4, Y = ho ( u )  (1) 

h e  t h e  p a r a m e t r i c  equa- ions  of t h e  arc I , .  
a s s u m e  tha t  g, and hO are funct ions  of class 2 .  : 

of t h e  p a r a m e t e r ,  w h e r e  a, < uo < h < bo. 

zf = f ( u )  

A s  in t h e  p r e v i o u s  s e c t i o n ,  we  

Suppose  t h a t  t h e  p o i n t s  .!Io, A,,  Bo, B c o r r e s p o n d  t o  t h e  v a l u e s  uo, a,, bo, b 

L e t  
(2 )  - 

b e  t h e  s u c c e s s i o n  funct ion o n  t h e  a r c  M O B .  
t ion ,  f (u) is def ined  for  all u ,  uo < u < b  ( w e  should  s t r e s s  t h a t  we  are d e a l i n g  
with a s u c c e s s i o n  funct ion i n  t h e  d i r e c t i o n  of i n c r e a s i n g  t ,  i . e . ,  
e a c h  "succeeding"  point  c o r r e s p o n d s  t o  a l a t e r  t i m e  t h a n  the  t i m e  of t h e  
"preceding"  point) .  

In \+hat  fo l lows ,  w e  w i l l  also c o n s i d e r  t h e  funct ion 

In v i r t u e  of t h e  a b o v e  a s s u m p -  

d (u) = f (u) - u. 

By L e m m a  2, 

lim d (u)  = 0. 
u-uo 

( 3 )  

If a c l o s e d  pa th  L* p a s s e s  t h r o u g h  t h e  point hf* (u*)  of t h e  a rc  M O B ,  we 
h a v e  d (u*)  = 0 .  

I f  t h e r e  e x i s t s  u t ,  u, ( u , , < b ,  s u c h  t h a t  for all u,  u , (  u < u l ,  d ( u )  #O, i.e., 
if t h e r e  a r e  no c l o s e d  p a t h s  c r o s s i n g  the arc  M O B ,  a t  t h e  poin ts  u ,  u ,  < ZGU,, 
t h e n  

t h e  l o o p  i s  s t a b l e  i fd (u)<O,  
(5)  t h e  l o o p  i s  u n s t a b l e  i fd(u)>O 

( for  u o < u g u l ) .  

s u c c e s s i o n  func t ion  f' ( ( 1 )  for u -+ u,. 
In what  fol lows w e  wi l l  c o n s i d e r  t h e  l i m i t  of t h e  d e r i v a t i v e  of t h e  

Let 
2 = (P.H (% Y = *.\a ( t )  ( 6 )  

b e  t h e  so lu t ion  c o r r e s p o n d i n g  t o  t h e  pa th  L p a s s i n g  t h r o u g h  t h e  point M (u) 
of t h e  arc M O B .  
t h e  point X for t = to and t h r o u g h  t h e  s u c c e s s o r  IG (i) of M for t = T > to .  

T h e  c o o r d i n a t e s  of t i e  po in ts  M0, M, # and t h e  s a d d l e  point 0 are 
( E o .  qo), ( E ,  tl), (E, 6) ,  and (z0, yo) ,  r e s p e c t i v e l y .  Let, as b e f o r e ,  

A s  bef '3re ,  we  a s s u m e  t h a t  t h e  so lu t ion  ( 6 )  p a s s e s  t h r o u g h  

00 = CJ (zov YO) K (20, YO) + QC ( 2 0 7  YO). (7)  

[I, in particular. I o  is a segment of the normdl to the pdth L,at the point Ma, rhe functions go and  hacan  
be t&cn in the form 

go (u:. = To ( te ) -% ( t o )  U? ho (u) = $0 ( to )  4-Ti 0 0 )  u. 
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L e m  m a  6 .  Let the point M on the arc MOB go to the point M , ,  i .  e . ,  
U +  u0.  Then 

f’ (u) + + 03 for  (J (zoo1 Yo) = p; (x07 Yo) +QI b o 7  Yo) > 0, (8) 
f ‘ ( U ) - + O  f C W  (J(zo, Y o ) < o .  (9)  

P r o o f .  F i r s t  note that l imf ’  ( u ) i s  independent of the par t icular  choice 

In virtue of this  equation, i f  I,* is an a r c  without con- 

u-UO 
of the a r c  without contact I o .  
the previous section. 
tact analogous to 1 ,  u and f* (0)are the parameter  and the succession function 
on this  a r c ,  so that the separatr ix  Lo c r o s s e s  I* at  the point vo, and i f  w (u) 
is the correspondence function between a r c s  without contact 1 and I*, we have 

This follows directly f rom equation (28) of 

I f u - + u o ,  t h e n v - + u o , ~ - u o ,  and since w ’ ( u o ) # O  i n v i r t u e  ofS28.1, (18), 
we have 

l im f*‘ (v) = lim f‘ (u).  
u-co u-uo 

Firs t  consider the case  when 
I 

I (Jo = (J (xo, Yo) > 0. 
Let C be a c i rc le  centered at 0 with a sufficiently small  radius so that 

a t  any point (x, y) inside C we have 

The points M o  and Mi and the a r c s  I ,  and 1% are chosen so that these a r c s  
a s  w e l l  as the segments of the separatr ix  Lo corresponding to t,( to and 
t > t i  lie inside the circle C (Figure 131). 

I FIGURE 131 

By Lemma 5 of the previous section, we have 
T 
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where 

and 

929. CRMTION OF LIh f fT  CYCLES FROhl A SEPARATRIX LOOP 

- _ _  
When U - + U O ,  both determinants A ( &  q, u )  and A(E, q, u )  go to  the s a m e  non- 
z e r o  l imit  4(E0, qo, uo) ,  so that 

lim -= 1. 
u-uo A(:. q. u) 

We should therefore  find only the l imit  

Clearly,  
T :; T 

10 1. 1 ;  

5 ( J ( c p ~ ( t l ,  1S~( ( t ) )d t=  1 (J(T.M, $ . \ ~ ) d f f  1 (J(T.M~ $.w)dt, (13) 

where t; is the value of t corresponding to the intersection point 32; of the 
path L with the a:c without contact 2, (F igu re  131 : 
L passes  through the point ,If for  t = t o ) .  

we recal l  that t he  path 

t i  

When M + . t i o ,  we have \ o(cp,, t@'2.1)dt-+ \ a(qo(t) ,  q 0 ( t ) ) d t ,  where r = q o ( t ) ,  

T h e  f i r s t  integral  on the right in (13) thus 

i. t,, 

y = q 0 ( t )  is the solution corresponding t o  the separatr ix  Lo which passes  
through the point Mo for  t = t o .  
goes to  a finite limit. 

Let u s  consider  the second integral, i . e . ,  

5 (J (TM (0, $M ( t ) )  dt .  
1;  

If the  point -kf is sufficiently c lose to Mo, then M; is a rb i t r a r i l y  c lose 
to Mi and the segment .l.f;.U of the path L is entirely enclosed inside the 
c i r c l e  C (see S28.2, Lemma 11). But then, in virtue of inequality ( I O ) ,  

the integrand in the las t  integral  is g r e a t e r  than 9 for any t E [ t ; ,  TI, i .  e., 
T 

\ (J (TJa ( t ) ,  $24 ( t ) )  d t  > 9 (T- u. 
;; 

For .ti-+ Mo , t; -+ ti and T d  + w (by Lemma 4). The last integral ,  

and hence ru(cpM, q X ) d t ,  go to +a fo r  M--+M,,. This  result  and equalities 

(1  1) and (12) show that lim f ' ( u )  = + w .  We have thus proved (8). It can  be 
to  

U - U O  
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s imilar ly  shown that i f  uo< 0, then 

l im i u (9.M ( t ) ,  +Ar ( t ) )  d t  = - oo, T. e. f’ (u) 4 0. 
M + M o  

This  completes the proof of the lemma.  
R e m  a r k  . W e  have assumed s o  f a r  that the separa t r ices  L; and L; of 

the saddle point 0 which do not coincide with Lo lie outside the loop C, and 
that the segment M O B  of the a r c  without contact 1, on which the succession 
function f (u) is defined corresponds to  u>uo.  If the separa t r ices  L: and 
L; lie i n s i  d e the loop Co, the loop may only be an a- o r  w-limit continuum 
for the paths of the system from o u t  s i d  e ,  whereas in a l l  other respec ts  
the situation does not change. In particular, all the previous lemmas  of 
this  section remain valid. The assumption that the separa t r ices  LT and L; 
l ie  outside the loop is thus of no consequence and has  been introduced for  
convenience only. 

( e .  g., by defining a new parameter  u* = - u ) .  
function f (u) on the a r c  lo (or, more  precisely, on the segment of the a r c  
adjoining the point M o ,  where i t  is defined) is a monotonically increasing 
function and i t s  derivative f’ (u) is positive regard less  of the particular 
direction on the a r c  l o  which is chosen a s  the positive direction. This  
follows immediately from geometrical considerations (or, alternatively, 
f rom Lemma 5 of the previous section and the r emark  to  this lemma).  
Our Lemma 6 thus remains  in  force for  any choice of the parameter  on 
the a r c  without contact l o .  

the succession function f (u)  is defined for u>u,. If, on the other hand, 
it is defined for  u smal le r  than u,(e.g., for uo > u > u , )  and the re  a r e  no 
closed paths crossing the a r c  I ,  at points u ,  uo < u,<u,, we clear ly  s e e  that 

Let us  now see what happens i f  the direction along the a r c  1, is reversed 
First note that the succession 

Conversely, conditions (5)  derived in the preceding a r e  t rue  only when 

(14) 
t h e  l o o p  i s  s t a b l e  f o r d ( u ) > O ,  

t h e  l o o p  i s  u n s t a b I e  ford(u)<O 

( fo r  uo =- u > u i ) .  
W e  a r e  now in a position to der ive a sufficient condition of stability 

(instability) of a separatr ix  loop. 
T h e o r e  m 44.  Let 0 ( x 0  , yo) be a saddle point of the dynumic system 

(D) x = P ( z ,  d r  v), $-=QQz, Y), 

and L, its separatrix which together with the saddle point 0 f o m s  the 
loop C , .  Then, if u, = P; ( x o ,  yo) + Q; (x, ,  yo) > 0, the loop is unstable, and if 
u0 < 0, the loop is  stable. 

Let us  f i r s t  consider the case  when the succession function is P r o o f  . 
defined for u close to u,, but grea te r  than u,. Let uo> 0. In virtue of (4), 

lim d (u) = 0. 
U’UO 

On the other hand, in  virtue of Lemma 6, i f  a,> 0, we have 

lim f ‘ ( u ) =  + 03. 
U - t U O  
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T h e r e f o r e ,  t h e r e  e x i s t s  ut  s u c h  t h a t  for all u ,  u a < u < u l ,  

f' (u )  > 1 and d' ( u )  = 1' ( u )  - 1 > 0. (15) 

It  fo l lqws  from ( 4 )  and (15) t h a t  for all u ,  u c < u < u l .  d ( u ) >  0, i .  e., t h e  loop  
i s  u n s t a b l e  i n  v i r t u e  of ( 5 ) .  

L e t  now uo< 0.  T h e n ,  b y  L e m m a  6 

l im j '  ( u )  = 0, 
u-u* 

i . e . ,  t h e r e  e x i s t s  ul s u c h  t h a t  for all u ,  u , , < u < u I ,  

f ' ( u ) < I  and d ' ( u ) C 0 .  (16) 

Ey ( 4 )  and ( 1 6 )  bye s e e  tha t  for all u .  u,, < u < u l .  d ( u ) <  0, i .  e., t h e  l o o p  
is s t a b l e  i n  v i r t u e  of (5 ) .  

If t h e  s u c c e s s i o n  funzt ion is def ined  €or u < u o ,  t h e  proof  p r o c e e d s  a long  
t h e  s a m e  l i n e s .  
d ( u ) ~  0, and t h e n  b y  ( 1 4 )  t h e  1OGp is u n s t a b l e .  
d ( u ) i  0, i . e . ,  t h e  loop i s  s t a b l e  b y  (14). 
t h e o r e m .  

o f  t h e  s a d d l e  point  0 f o r m  two loops (which  l i e  o n e  o u t s i d e  t h e  o t h e r  o r  
o n e  i n s i d e  t h e  o t h e r ,  F i g u r e s  132 and  1331, t h e n  for n,:,O both  l o o p s  are 
u n s t a b l e ,  and for oo < 0 both  l o o p s  are s t a b l e .  

In t h i s  case, r e l a t i o n s  ( 4 )  and (15) show t h a t  for ua>u > u I ,  
B y  ( 4 )  and (16) w e  see tha t  

T h i s  c o m p l e t e s  t h e  proof  of t h e  

R e m  a r k  1. It fo l lows  from T h e o r e m  44 that  i f  t h e  f o u r  s e p a r a t r i c e s  

/- a 
F G C R E  13" FIGURE 133 

R e m a r k 2 .  T h e o r e m  44 is c o n c e r n e d  with t h e  case uo = Pi (zo. go) + 
A Q& (ro. yo)# 0 .  We w i l l  now show t h a t  if oo = 0, t h e r e  m a y  b e  cases when 
a n  a r b i t r a r i l y  small  neighborhood of t h e  loop c o n t a i n s  c l o s e d  p a t h s ,  as 
wel l  as cases when t h e  loop  is s t a b l e  or  u n s t a b l e .  

E x  a m  p 1 e 11. C o n s i d e r  t h e  s y s t e m  

(D1) - - 2 g = P , ( z ,  d i  g), $=i123-39=Q1(*, Y), 
d t  

which is i n v e s t i g a t e d  i n  QT, 5 1.14, E x a m p l e  L'III. 
t h i s  s y s t e m  h a s  a g e n e r a l  i n t e g r a l  

It can b e  c h e c k e d  t h a t  

9 - 6.9 + I J ~  = C .  ( 1 7 )  
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The shape of the curves ( 1 7 )  is readily established f rom the i r  explicit 
equation 

considered together with the auxiliary curves 

2 = 6sz -2 + C, 

which can be  constructed without difficulty. 
Figure 134. 

Curves ( 1 7 )  a r e  shown in  
C =  0 corresponds to  the curve with a loop. For C >  0, 

curve (17)  comprises  a single branch 
located outside the loop. 
the curve consis ts  of two branches. 
One of these branches lies to the left 
of the y axis, and the other branch is 
an oval enclosed inside the loop. For 
C = - 3 2 ,  the curve comprises  a branch 
lying in the left half-plane and the 
point O1 (4,  0). Finally for  C <  - 3 2 ,  
the curve has  a single branch in the 
left half-plane. Each of the curves  
( 1 7 )  is either a path of system (D1) 
(for C; 0 and C <  -32). o r  consis ts  
of two (for O >  C>-32) o r  f o u r  (for 
C = 0) paths. System (D1) has  two 
equilibrium states: 0 ( 0 , O )  and 
Oi(4,O). 
librium s ta tes  is a saddle point, with 
two of i t s  separa t r ices  forming the 

For O>C>-32, 

The f i r s t  of these equi- 
I (I !  I - 

FIGURE 134 

loop L , ,  and the second is a center .  
Here uo (0, 0) = Pi= (0, 0) + Qiu (0, 0) = 0, i. e., we a r e  dealing with the 

case  u,, = 0, and any neighborhood of the loop contains closed paths. 
Together with system (Dl), let u s  now consider the system 

d t  = 2 ~ - p  (x3-  6.79 + y2) (i2.z- 328) = P ,  (3, y). 
(D2) 

-= !: 12r-3s2-t~(2?-6s*+y2)2y=Qz(s, y), 

where p is a smal l  (in absolute magnitude) number. 
Clearly, 

It is directly verified that the four paths of the system (D1) making the 
curve 

2?-6s* + ya= 0 (20) 

I a r e  a lso paths of system (Dz). Moreover, (Dz) has  the same  equilibrium 
s ta tes  as (Dl), i. e., the points 0 (0, 0)  and 01(4, 0). and the point 0 is a 
saddle point of (D2), whereas  0, for  small  p # O  is a s t ructural ly  stable 
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focus, which i s  s table  for p?O and unstable fo r  p<O. 
o f  (D2) forming a loop. 
vector field of (D1) through an angle tan-' p j  (3. y ) ( t h i s  is found by direct  
computation; see also QT, 1.14, r e m a r k  preceding Example VII) .  But 
than all closed paths of ( D l )  are cyc les  without contact for  (l32). Hence i t  
c lear ly  follows that inside the loop Lo (D2) h a s  no closed paths, i .  e.,  all 
the paths of (D2) lying inside the  separa t r ix  loop e i ther  wind onto the loop 
for  t -+ - co and onto the focus 0, for t + + -, or ,  conversely,  wind onto 
the focus 0% for k-+ - 00 and onto the separa t r ix  loop for  t - -,- 00. Since 
for p > 0 (p < O ) ,  the focus 0, is s table  (unstable), the separa t r ix  loop L ,  
i s  

Thus Lo i s  a sepa ra t r i s  
The vector field of (D2) is obtained b y  rotating the 

stable for p C 0, 
unstable for p > 0 .  

Now a. = PbX (0, 0)  C C)iy (0, 0) vanishes for any p. Our  example thus proves 
that for o,, = 0 ,  any of the th ree  alternatives mentioned in  Example 2 may 
b e  observed. 

2. 
a sepa ra t r ix  loop 

Theorems of the creation of a closed path from 

Assuming, as before,  that sys tem (D)  has  a saddle point 0 whose 
separa t r ix  L o  forms a loop, we will consider,  alongside with (D) ,  a modified 
svstem - 

(6) dt - 
x = P ( z ,  Y), % = a x ,  Y). 

Retaining the same notation as in  the  previous subsection, we write +IIo 
and Xi for points of the separa t r ix  L o  corresponding to t = to and t = t , ,  to < t , ,  
In and 1,  for the  arcs without contact passing through these  points, and u f o r  
the parameter  on the arc: I ,  (F igure  130). 
path Lo containing the  pomt .%Io (and hence also the point MI; 
sepa ra t r i s  of 0, and its points correspond to t>tz,  where t: < t,), and L; 
the  negative half of the path Lo containing Mo and Mi (the points of L; cor- 
respond to t < t ; ,  where t ;  > t , ) .  

modified sys tem (6) is S,,-close t o  (D), then 

Le t  L; h e  the positive half of the 
L; is an  a- 

E?y Lemmas 9 and 10, %28, t he re  e s i s t  e, > O  and S o > O  such that if the 

(a)  U,, (0)contains a single equilibrium s ta te  of (b) ,  the  saddle point 6 ;  
(b) there  exis t  an  io-separatrix 2;; and an  a - sepa ra t r ix  EA- of the  saddle 

point d crossing the arc Io at the points -9, and .G;, respectively, which l i e  
inside the  arc I , ;  

(c,  the o- and the  a - sepa ra t r i ce s  4 and c- cross the arc I ,  a t  points 
and .)Ti, respectively, which lie inside the  arc I ,  (F igure  135). 

Moreover,  by Lemmas 9 and 10, P 28, for any positive e < e,, t he re  ex is t s  
6 < So such that for eve ry  sys tem (8) which is S-close to (D),  the  saddle 
point 6 i s  contained in  U,.  (O), and each point of the  semipath (I;-) lies in  
the €-neighborhood of the point of the  semipath L; (L;) corresponding to the 
s a m e  time. The points 5j0  and -@; lie i n  L', (M,), and the  points .c, and .I?: in 
U ,  w,). 
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FIGURE 135 

Let Go and 2; be the values of the parameter  u corresponding to the points 
fi, and I& (a <Go < b ,  a < 2 < b ) .  
different modified systems:  

The following cases  a r e  possible for 

- -  
1) 
2)  M a  and 2; a r e  the same  point, i. e., u; = u,. 
In case 1, Lemma 1 shows that (6) has  no separa t r ices  which form a 

and MA a r e  two different points, i .e.,  u; + uo. - 

loop whose semipaths a r e  E; and E;- .  We will say  in this  case  that on 
moving f rom (D) to  (E), the 1 o o p i s b r o k e n . 
exist modified sys tems as close a s  desired to  (D) and such that the loop 
is broken when moving to  these systems.  
system 

There evidently always 

An appropriate example is the 

d z  
x = P - p Q ,  $=Q+pP,  ( D 9  

where p # O  is a sufficiently smal l  (in absolute magnitude) number. 
the lemma of § 11.1, i f  p>O, we have u; > uo,  Lo < uo for system (D*), con- 
sidered a s  (D), i.e., 

By 

LO <E;, 

and if p <  0, then ;;<u,, uo>u0, i .e . ,  

In case  2, when the points i@, and &: coincide, (6) has  a separatr ix  Eo 
which forms a loop, z; and E;- are i ts  semipaths, and in this  ca se  the semi-  
path E;- may be simply designated xi. 

Let, a s  before, the succession function be defined for (D) everywhere 
along the arc MOB,  with the exception of the point M o .  

L e  m m a  7 .  There exists 6o ==. 0 such that i;f (a) i s  &,-close to (D), 
2, i s  an arc without c a t a c t  fm (6) , and every path of (b) which for t = to 
crosses the segment G O B  of the arc I ,  will cross fm some T > to the 
segment KBo of this arc.  

9- 12,  l28, and it  is therefore omitted. Note, however, that the cases 
u;>uo, u; = uo, and E; <Lo should be treated separately (F igures  135, 136, 
and 137, respectively). The proof proceeds along the same lines in a l l  
the three  cases .  

The proof of this  lemma follows almost immediately f rom Lemmas  7 and 

- - c  
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FIGLRE 136 FIGURE 137 

L ern m a  8. There exist eo > (3 and a,, > 0 which satisfy the following 
conditions: i f (6)  is&-close to(D),  and;; < 5, (L; >E,) ,  all the paths of (8) 
crossing the segment .+i& of the arc I ,  w i l l  leave the e,-neighbmhood of 
the loop L o  as t increases (decreases). 

The validitv of Lemma 8 follows direct ly  f rom the propert ies  
of the paths of system (fi) which c r o s s  the segment -@,.qi of the a r c  without 
contact &(see Figures  135 and 137), if w e  use  Lemma 3 of this  section and 
also Lemmas 9 and 10 of 5 2 8 . 2 .  

t h e o r e m  of  c r e a t i o n  o f  a c l o s e d  p a t h  f r o m  a s e p a r a t r i x  
Zoo p . 
path when a separa t r ix  loop disappears  (breaks) .  

fo rms  a loop. Here,  1,. 2;. L;-,u,,&, A , .  B o .  a,, bo, b ,  etc., have the same  
meaning a s  before; moreover ,  a ,  -== bo and the point Bo lies i n s i d  e the 
loop (Figure 135 o r  137).  

T h e o r e m  45. Let the loop fmtned by the separatrix L o  of the saddle 
point 0 be stable (unstable). Then, f o r  any F > 0 ,  there exists 8 > 0 such 
that i f (8 )  is 8-close to ( D )  and if 5, < Z ;  (Z0 > L;), then in the e-neighbm- 
hood of the loop there exists at least m e  closed path E* of (8) uhich crosses 
the arc without contact L,, at the point .\f* (u*), where 

P r o o f . 

We can  now prove one of the fundamental theorems,  the so-called 

It es tabl ishes  sufficient conditions for  the appearance of a closed 

Let 0 be a saddle point of a dynamic sys tem (D),  L o  i t s  separa t r ix  which 

- 
u g  <u'< b (ii < u* < b). 

A similar proposition applies if the separatrices of the saddle point o 
other than Lo lie inside the loop. 

P r o o f  . Consider the case  of a stable separatr ix  loop. 
given. 
c lose to  .%fa, so that the following conditions are satisfied: 

Let e >  0 be  
On rhe segment .lloB of the a r c  1, we select  a point .Vi (n,) sufficiently 

( a )  the path LN of ( D )  passing through Nj goes to the loop for  t -+ + cm; 
(b) the segment of the path LN between the point Ni and the "succeeding" 

intersection point N2 (uz) of the path Ls with the a r c  Lo, together with the 
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segment NiN,of the a r c  l o ,  fo rm a 
simple closed curve CN which i s  
entirely contained in Ue,3 (Lo). The 
region limited by the loop of the 
separatr ix  Lo and the curve CN 
enclosed inside th i s  loop is also 
contained in (Figure 138). 

Since the separatr ix  loop is 
stable, i t  is c lear  that i f  point N1 
is sufficiently close to  Mo, both 
conditions are satisfied. It is 
also c lear  that nz < n,. 

that the following conditions a r e  
satisfied : 

(a)  8i < a o ,  where is the 
FIGURE 138 number defined by Lemma 7; 

(b) i f  (6) is 6,-close to (D), 
the path ZN of (6 )  which passes  through the point Nl c r o s s e s  again the 
a r c  l o  at the point fi2 (&), so that n”, < ni,  and the simple closed curve 
EN, analogous to  the curve CN, is entirely enclosed inside the loop of 
the separatr ix  L o ,  delimiting together with the loop a region which is 
entirely contained in U./l  (L) .  

fied. 

translation. Let u s  further choose 6, > 0 which satisfied the following 
condition: i f  (6) is8,-close to  (D), the simple closed curve 
s i s t s  of the segment G@, of the separatr ix  e, the segment GI@: of the 
separatr ix  g-,  and the segment Eo#: of the a r c  l o ,  is entirely contained 
in U J a  (Lo) and encloses the curve CN; the region delimited by the curves 
c and FN is also contained in ULI3 (Lo).  

follows f rom Lemmas  9 and 10 of 928 .2 ,  and 
a l so  f rom the fact that, for  sufficiently small  &, the curve may be 
obtained f rom the loop of the separatr ix  Lo by an a rb i t ra r i ly  small  
translation. 

We will now show that the number 6 = min {6,, 62} sat isf ies  the proposi- 
tion of the lemma.  Let, further, 
K l  (k,) be a point on the segment k o B  of the a r c  lo ,  sufficiently c lose to the 
point Ma. 
a point K z  (k”,), such that the following conditions a r e  satisfied: 

Let u s  now take 0 so smal l  

It is c lear  that i f  8, is sufficiently small ,  both conditions a r e  sat is-  
In particular, condition (b) is satisfied since for  sufficiently smal l  

the curve c“, may be obtained from the curve CN by an arbi t rar i ly  smal l  

which con- 

The existence of such 

Let (5)  be 6-close to (D) and let Go< .’,. 

Then the path zhthrough this  point c ros ses  again the a r c  lo at 

(a)  4 > k,: 
(b) the closed curve zk consisting of the segment K I K z  of the path z h  and 

the segment K 2 K l  of the path lo encloses the curve FA and together with fN 
delimits a region which is entirely contained in U. (Lo) .  

Let 7 ( u )  be the succession function on the a r c  without contact l o  cor-  
responding to  (6). By Lemma 7, this function is defined on the segment 
KIN,.  Also  

f”(k i )  = & > ki 

- 
T(n, )  = nz < n,. 
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Hence i t  follows that there  exis ts  a number u*. k i < u * < n t ,  such that 

(22) 
- 
f (U’) = u*. 

The point .%I* corresFonding to this-value of the parameter  lies between 
K, and 
(in virtue of ( 2 2 ) ) .  
s imple closed curves  CT, and cx, and it  is therefore  contained in c‘, (Lo) .  
The theorem is thus proved for  the case  of a loop which is s table  f r o m  
inside. An analogous proof can be given for the other cases .  

the system 

and the path L* of system (D) passing through this  point is closed 
hZor?over, L* l i es  inside the region delimited by the 

!\‘e have seen before that i f  the separatr ix  Loof the saddle point 0 of 

*=E‘(=, d t  y), $y=Q(r, y) (D)  

forms  a loop, the numbers Lo and L; exist for  the system 

dt 
- -=P-pQ,  d t  $ = Q + p p ,  (D“:) 

where p i s  sufficiently smal l  in absolute magnitude, and 

(see (20) and (21)). Th i s  together with Theorem 44 lead to  the following 
theorem on the creation of a closed path from a separa t r ix  loop: 

T h  e o  Y e m 46.  if the separatrix Lo  of system (D)  forms a stable or an 
unstable loop, then f o r  any e > 0 and 6 > o thes-e exists a modified system 
(h )  6 -close to (D) which has at least one closed path L: in the e-neighbor- 
hood of the loop Lo. 

path L:.  whose existence is postulated by the theorem, c r o s s e s  the arc lo 
at a point M* which lies in C ,  (Mo) .  
segment J ioB  of the a r c  I ,  i f  ii; < Lo, and on the segment ;@;B if Lo < E; (the 
point .\I* may not lie between the points Ayoand JY;, i f  these are two dif- 
f e r e n t  points, in virtue of Lemma 8).  

i s  c r e a t e d  f r o m  t h e  l o o p  f o r m e d  b y  t h e  s e p a r a t r i x  Loof 
s.ystem ( D )  (F igure  122). 

R e m a r k . It is readily seen that if 6 > O  i s  sufficiently smal l ,  the closed 

The point M* moreover  lies on the 

We will say  that the closed path L: of sys tem (6) introduced in Theorem 46 

Theorems 44 and 46 show that i f  

GO (10, YO) = P; (=a. YO) f Q I  (20. YO) # 0 (23 )  

for t h e  saddle point 0 (zo, yo) of system (D) ,  there  always exist modified 
systems, a rb i t ra r i ly  c lose to (D), in which the loop formed by the 
separatr ix  Lo crea tes  at least  one closed path. 

3. 
a separa t r ix  loop 

loop and condition (23) is satisfied, the separatr ix  loop maycrea te  at most one 
closed path. 

The uniqueness of the closed path created from 

We will now show that if t h e  separatr ix  Lo of the saddle point 0 (zo, yo) forms  a 
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Let u s  first prove one lemma.  
L e m m a  9. F o r  any C >  o there exist E > oand 6 > 0 such that zy 

system (E) is  &close to system (D) and has a closed path L: contained 
in the e-neighbmhood of the loop L o ,  the period T of the path L: is gveater 
than C .  

before, an a r c  1, (Figure 139). 
P r o o  f . Alongside with the a r c  without contact l o ,  we consider, a s  

I ,  a t  points M Q  and Mi corresponding 
to  the t ime to and t ,  > to.  

closed path L: of system (D) intro- 
duced in the lemma c r o s s e s  the 
a r c  lo at  a point M*. 

to t = to .  
a r e  sufficiently small ,  L: also inter-  
s ec t s  the a r c  l ,  for some t: > tQ a; 
a point M: lying on the segment MtB, 
of the a r c  I , ,  and t: is arb i t ra r i ly  
close to ti (Figure 139). 
more,  for  some T* > t:, the path 
L: again c ros ses  the a r c  1, at  the 
point M*. 

The separatr ix  Lo c r o s s e s  the a r c s  l o  and 

By the r emark  to  TheoEem 46, the 

I 
this  intersection point corresponds I 

Suppose that 

Clearly, i f  E >  0 and 6>  0 

Further-  

FIGURE 139 Evidently, 

T* = t o  -+ 7, 
where z is the period of the closed path L:. 

If E > 0 and 6 > 0 a r e  sufficiently small ,  the point M *  is arb i t ra r i ly  
c lose to  the point M o  (and therefore  to n;i, and @;), and the point M: is 
arb i t ra r i ly  close to  M,, i .e.,  by Lemma 13, s28.2, T* is a s  la rge  a s  
desired.  This means, in i t s  turn, that for  sufficiently smal l  e and 6 ,  
w e  have 

Q . E . D .  

any system (6) 6,-close to (D) may have at most one closed path in the 
e,-neighbmhood of the loop L o .  if such a path exists,  i t  i s  a limit cycle 
of the same stability as the loop of the original system, L e . ,  it i s  stable 
f o r  uo (x0,  yo )  < 0 and unstable for uo (xo,  yo) > 0. 

0 0  = 8 0  (XO, Yo) > 0. 

T = T*-lo > c. 

T h e o r e m  47. I f o o ( x o , ~ o ) # O ,  thereexis t  eo>Oand 6,>Osuchthat 

P r o o f  . To fix ideas, let 

By Theorem 44, the loop of system (D) is unstable in this  case .  
Let ei > 0 be so smal l  that at every point M (x ,  y) of U,,(O) we have 

Let fur ther  x = q0 ( t ) ,  y = va (4 be the solution corresponding to the 
separatr ix  L o .  The points M o  and M ,  corresponding to  the t ime to  and t l  

and the a r c s  without contact 1, and I ,  are chosen so that these a r c s  and 
the semipaths O M Q  and MIO of the separatr ix  Lo a r e  entirely contained 
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i n  C:,, (0). 
I ,  and 1, which are e n t i r e l y  e n c l o s e d  i n s i d e  t h e  loop Lo, e x c e p t  for t h e i r  
end poin ts  J I o  and S I 1  ( F i p r e  139). 

L e t ,  as b e f o r e ,  M O B ,  and MlB1 b e  t h e  s e g m e n t s  of t h e  arcs 

C o n s i d e r  t h e  i n t e g r a l  
I, 

J =  I, o(cfo(t),  *to(t))dt. 
10 

L e t  x > 0 b e  s u c h  t h a t  

T o g e t h e r  with t h e  s y s t e m  (D) ,  w e  wil l  now c o n s i d e r  modi f ied  s y s t e n i s  (6 ) .  
L e t  6 ,  > 0 b e  a n u m b e r  s a t i s f y i n g  the fol lowing condi t ion:  if (6) is 

6 , - c l o s e  t o  ( D ) ,  t h e n  at e v e r y  point  .\I@, y) of r , , ( O )  we h a v e  

cr (x. Y) = Px (T, Y) t Q; (T, y) > 4 . 
For  a n y  C > 0, t h e r e  e x i s t  6?> 0 and  e ? >  0 s u c h  t h a t  i f  (E) is 6 2 - c l o s e  t o  

(ni and h a s  a c l o s e d  path L; conta ined  in C-?(L0) which  c o r r e s p o n d s  t o  a 
s o l u t i o n  

t = F* ( t ) ,  Y = ** (0  ( L:) 

with p e r i o d  T ,  and if this path crosses the arc lo a t  point .TI* for t = t o  and 
t h e  arc I ,  a t  point -%I: for t = t:. c) < t: - to < T, t h e n  t h e  fol lowing condi t ions  
a r e  s a t i s f i e d :  

( a )  T > C ;  

b) 1 s  6(4;*(t). $*(t))dll<:2x; 

(cl t h e  p o i n t s  of the  path L,: c o r r e s p o n d i n g  t o  t t <  t<to - T are e n t i r e l y  

For suf f ic ien t ly  s m a l l  6? and e?,  condi t ion  ( a )  is s a t i s f i e d  i n  v i r t u e  of 

1:  

t o  

conta ined  i n  C',, (0). 

L e m m a  9, condi t ion  (b) in  v i r t u e  of t h e  t h e o r e m  on  the  cont inuous  d e p e n d e n c e  
of s o l u t i o n s  on t h e  r igh t -hand s i d e s  and  i n  v i r t u e  of t h e  cont inui ty  of o (I, y). 
Condi t ion  ( c )  is s a t i s f i e d  b e c a u s e  t h e  d y n a m i c  s y s t e m  (D)  is s t r u c t u r a l l y  
stable i n  a r e g u l a r  saddle-poin t  r e g i o n  ( t h i s  s t r u c t u r a l  s t a b i l i t y  fo l lows ,  
e . g . ,  f r o m  L e m m a  -1, 8 9 . 2 ) .  

Now l e t  6, = min (&, 6!} .  eo =.min {e,. e 2 }  . 
defined i n  t h i s  w a y  m e e t  t h e  condi t ions  of t h e  t h e o r e m .  
l e t  L; b e  a c l o s e d  p a t h  of ( 6 )  which  is 6,-close t o  (D) .  
t h i s  path lies i n  V, (L , )  ar,d p r o c e e d  t o  e v a l u a t e  t h e  i n t e g r a l  

R'e wi l l  show that 6, and e, 
To t h i s  end ,  

We a s s u m e  t h a t  

l o  T I C  

J * =  \ o ( ( ~ * ( f ) .  $ * ( t ) ) d t .  
;0 

We h a v e  

t :  toLr 
J * =  G ( t p * ( t ) ,  $ * ( f ) ) d t f  j o ( & * ( t ) ,  $ * ( t ) ) d f .  

:0 1: 
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By condition (b), the first integral on the right is grea te r  than -22. 

second integral is g rea t e r  than 9 (to+z--t:) by inequality (26 ) .  

The 

Therefore  
I 

or, by condition (a )  I 

Since for smal l  6,  t: is close to the constant number t l ,  we conclude 
that for sufficiently la rge  C (i. e., for  sufficiently smal l  tio and E ~ ) ,  J*> 0. 
R u t  thenby Theorem 17 ( 5  13 .3 ) ,  the closed path L: of system (6) is an 
unstable limit cycle. 

We have thus proved that i f  E,, > 0 and bo > 0 are sufficiently small, all 
the closed paths of a system (6) 6,-close to (D) which l ie  in U % ( L o )  a r e  
unstable limit cycles. Suppose that more  than one such path exis ts .  We 
can then evidently find two closed paths L: and L: contained in Lreo(Lo),  such 
that one is enclosed by the other and the region delimited by the two paths 
contains no other closed paths. 
since both paths t: and L: a r e  unstable limit cycles  (we naturally assume 
that Ueo(L0)  contains no other equilibrium s ta tes  of (B), except the saddle 

point 6) .  

This  is an obvious contradiction, however, 

1 
This  proves the theorem. 

A s imi la r  proof can be given fo r  u0 (zo, yo) < 0. 
R e m  a r k  . Theorem 47 can be generalized. 

have a closed contour y consisting of the separa t r ices  of the saddle points 
0, (x ' ,  yz), i = 1, 2, . . ., n, n 2 2 ,  and the saddle points themselves. 
along the same  lines a s  before, w e  can show that i f  u (z', y,) < 0 ( i  = 
= 1, 2, . . . , n), the contour y is stable, and if u (x' ,  y,)> n, i t  is unstable, 

case  and unstable in the la t te r .  

Indeed, let system (D) 

Reasoning 

and that y may crea te  a single limit cycle, which is stable in the former  

The following theorem follows almost immediately from Theorem 47. 
T h e  o r  e m  48.  Let the separatrix Lo of saddle point 0 (xO, go) of system 

(D) form a loop and let condition ( 2 3 )  be satisfied, i. e . ,  u0 (x0, go) + 0. 
Then there exist E > Oand 6 > osuch that V system (6) i s  &close to (D) 

and in the &-neighborhood of the loop Lo i t  has a separatrix Lo of a saddle 
point 6 which forms  a loop, (6) can have no closed paths in the &-neighbor- 

I 

1 * r . .  * . - 
P r b o f .  F o r $ a n d 8  we may take  

where eo and h0 a r e  numbers defined by Theorem 46. 
6-close to (D) and suppose that in the &-neighborhood of the loop Lo (6) has 
a separatr ix  Lo which forms a loop and a closed pathz,. 
E ,  i s  not a simple limit cycle of (6). By Theorem 19 ( 5  15.2), there  exis ts  
a system (D) 8-close to (D) which ha: a t  least  two closed paths e, and t, in 
the s-neighborhood of the path &. (D) is evidently &-close to (D), and the 
paths t1 and & lie in thee,-neighborhood of the loop Lo. Now, this  contra- 
dicts  Theorem 47. 
Now let zl be a simple, i .e. ,  structurally stable, limit cycle. By 

Indeed, let (5) be 

We assume that 

Thus, E, may not be a multiple limit cycle of (E) .  
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T h e o r e m  46, t h e r e  e x i s t s  a s y s t e m  ( D )  a r b i t r a r i l y  c l o s e  t o  ( E )  which h a s  
a . c l o s e d  path io i n  a n y  a r b i t r a r i l y  small ne ighborhood of t h e  l o o p  &,. 

i s  s u f f i c i e n t l y . c l o s e  to ( E ) ,  t h e n  i n  v i r t u e  of t h e  s t r u c t u r a l  s t a b i l i t y  
ol t h e  c y c l e  E l ,  ( D )  may' h a v e  a l i m i t  cycle e,. which is a r b i t r a r i l y  close t o  
t h e  c,ycle El, whi le  t h e  two c y c l e s  e, and il do not c o i n c i d e  and  are both  
conta ined  i n  t h e  e -ne igh?orhood of t h e  loop  L o .  But t h i s  a g a i n  c o n t r a d i c t s  
T h e o r e m  45. 

T h e o r e m  15, 

systein (0 )  forms a looi? and U, (I,, yo) > 0 (4), there exist e > oand 6 > 0 
with the folloiringpropc~rty: any system ( 6 )  which is 6-close to (Di  and 
f o r  which iTo < G; (cowespondingly, Lo > Lo) has no closed paths in r J e  (Lo). 

P r o n  f . To fix i d e a s ,  l e t  u s  c o n s i d e r  t h e  case uo (to, yo) < 0.  In t h i s  
c a s e ,  the  l o o p  f o r m e d  by  t h e  s e p a r a t r i x  L,, i s  s t a b l e  (s29.1,  T h e o r e m  44).  
Let e ,  > 0 and 6, > 0 b e  t h e  n u m b e r s  def ined  b y  T h e o r e m  4 7 .  

C o n s i d e r  a point .!I1 (u,)of t h e  arc lo ,  w h e r e  u t  > uo. If t h e  point MI 
is suf f ic ien t ly  close t o  .lIo, t h e  pa th  L 1  p a s s i n g  t h r o u g h  t h i s  point  for 1 = to 
will  cross t h e  arc  l o a g a i n  a t  point .Yl as t i n c r e a s e s .  Let Cl b e  a s i m p l e  
c l o s e d  c u r v e  f o r m e d  by  t h e  s e g m e n t  JI,.Y, of t h e  path L1 and t h e  s e g m e n t  
.\.IJfI of t h e  arc  I , .  U'e c h o o s e  u, i n  s u c h  a way t h a t  t h e  fol lowing c o n d i t i o n s  
are s a t i s f i e d :  

(a )  t h e  c u r v e  C1, and t h e  r i n g  r e g i o n  e n c l o s e d  b e t w e e n  t h e  l o o p  of t h e  
s e p a r a t r i x  L o  and t h e  c u r v e  CI are conta ined  i n  C.?,(L0);  

!bJ d ( u , ) < o .  
Rnth  condi t ions  are c l e a r l y  s a t i s f i e d  i f  u I  is s u f f i c i e n t l y  close to u,(the 

If 

We wi l l  p r o v e  a n o t h e r  p r o p o s i t i o n  Lvhich, i n  a s e n s e ,  s u p p l e m e n t s  

T h e o  r e m 49. If the separatrix L ,  of the saddle point 9 (x , ,  yo) of 

I .  

s e c o n d  condi t ion  h o l d s  t r u e  i n  v i r t u e  of o u r  a s s u m p t i o n  tha t  t h e  loop  is 
s t a b l e ) .  

11. 
fol lowing condi t ions  are s a t i s f i e d :  

We c h o o s e  61 > 0 so  small t h a t  if s y s t e m  (6) is 6 , - c l o s e  t o  (D) ,  t h e  

i c )  d" (u , )<O;  
( d )  t h e  c u r v e  El and t h e  r e g i o n  b e t w e e n  t h i s  c u r v e  and t h e  l o o p  of 

s e p a r a t r i x  Lo are conta ined  i n  
and C?, i s  t h e  c u r v e  p a s s i n g  t h r o u g h  M i  which i s  a n a l o g o u s  t o  Cl; F i g u r e  140). 

( L o )  ( t h e  funct ion d" is a n a l o g o u s  t o  d ,  

FLCCQE 140 

111. 

(e ,  E,<?: 
We c h o o s e  E? > 0 a n d  6,> 0 so t h a t  t h e y  s a t i s f y  t h e  fol lowing condi t ions ,  
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( f )  i f  (a) is &-close to (D), the curve i?, and the region enclosed by 
this  curve do not intersect  with U s 2 ( L o ) .  

IV.  We choose e3 > 0 and 63 > 0 so  that the following conditions a r e  
satisfied : 

(g) e3<%; 

(h) i f  (0) is 6,-close to  (D), and xis a closed path of (b) contained in 

corresponding to  the point Ma). 
U e 3  (Lo) ,  the path z c rosses  the a r c  without contact lo at  point M ( L ) ,  where 
<> La (&is the valce of the parameter  

The existence of the numbers e3 and 8,follows f rom the fact that i f  (b) 
is sufficiently c lose to (D) and moreover u ” <  Loo, the closed path should 
enclose the saddle point 6 and, with it, all of i t s  separa t r ices .  But then 
i t  cannot be  contained in a sufficiently small  neighborhood of the loop. 

We will prove that the numbers  

e =min{EZ, Ea) ,  b = m i n  {+, d,, 62, 6,) (29)  

satisfy the proposition of the theorem. 

(D) for  which 
Suppose that this is not so. Then there  exis ts  a system (b) 6-close to 

u, >E; ( 3 0 )  

and which has  a closed path 
contact I ,  at point h?(ii). 

in U.(L,).  Let this path cross  the a r c  without 

From ( 2 9 )  and conditions ( f )  and (h) it follows, a s  is readily seen, that 

Lo < L < u,. ( 3 1 )  

Consider the function d”(u) of system (5). Since L” is a closed path, we 
have 

d (L) = 0. ( 3 2 )  

Moreover, by condition (c) 

h(u,) < 0. (33)  

Finally, i f  u2 is sufficiently close to io and ~ o < u 2 ( ~ ,  we have 

;l”(u2) < 0 ( 3 4 )  
in virtue of inequality (30).  

It follows f rom ( 3 2 ) ,  (33), and ( 3 4 )  that e i ther  the function d” (u) has  at 
l eas t  one more  root ;*, up < ;* < u,, besides  the root E, or  z(ii) = 0.  If 
the first alternative is t rue,  a closed path z* of (b) will pass  through the 
point a* (;*); in virtue of condition (d), this  path is contained in U, (La), 
i. e.,  this  neighborhood contains a t  l eas t  two closed paths. This  c lear ly  
contradicts the choice of eo > 0 and 6o > 0 .  

If the second alternative is true, the closed path z is not a s imple 
liAmit cycle. But then, by Theorem 19, 5 15.2, there  exis ts  a system 
(D) arbi t rar i ly  c lose to  (E), and in par t icular  &-close to  (D),  which has  
a t  least  two closed paths in U, (La) ,  and this  again contradicts the choice 
of 8o and eo. Q. E. D. 
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R e m a  r k . Let 0 (q,, yo) be  a saddle point of the sys tem 

whose separatr ix  Lo forms  a loop, and let 

0 0  ( I o .  Yo) = P; (zo, Yo) + QI ( 2 0 .  Yo) f 0. 

X rotation of the vector field of (D) through the angle tan-' p produces 
a sys tem of the form 

- = P - p Q ,  & * = Q + p P .  
d t  dt 

Depending on the s i g i  of p, we obtain ei ther  inequality (20)  o r  (211, i.e., 
- r  e -  

u , t u ;  or uo > u;. 
It follows from these inequalities that when the vector field of ( D )  is rotated 
through a sufficiently smal l  angle, the separatr ix  loop is broken. 
Theorems 45, 47, and 49 show that when the field is rotated in one of 
the two possible directions, the broken separatr ix  loop is replaced by a 
limit cycle of the s a m e  stability, which appears  in  the neighborhood of 
the loop: when the field is rotated in the opposite direction, no closed 
paths a r e  observed in a sufficiently smal l  neighborhood of the broken 
loop. 

4. The case P;  (5. yo) + (ZO. YO) = 0 

Let us  now consider  :he case  when the saddle point 0 (IO, yo) of sys tem 

We will show that in this  case there  exist dynamic sys tems arb i t ra r i ly  
(n) has  a separa t r ix  Lo forming a loop, but a. (xo, yo) = 0. 

c lose to  (D)  which have at  least  two closed paths in any arb i t ra r i ly  smal l  
neighborhood of the  loop L o .  

of the system, L~ the se9aratrix of this saddle point forming a loop, and let 

a. (20, yo) = P; (rot yo) + Q; (x0. yo) = 0. 

Then for any e =- o and 6 > 0,  there exists a system (6)  which satisfies 

(a) ( 6 )  is  a-close to ( D ) .  
(b) 0 (z~, yo) is a saddle point of (6) ,  and 

L e  m m a  10. Let ( E )  be a dynamic system, 0 (x0, yo) a saddle point 

(35 )  

the following conditions: 

G J  (5, Yo) = E  (zo, Yo) + 0; (zo, Yo) > 0 (m < 0 )  . 
(c) The saddle point ,9 of (b) has a separatrix z,, which f m r n s  a loop and 

P r o o f  . Without l o s s  of generality, w e  take the saddle point 0 at  the 
is  entirely contained in the &-neighborhood of the loop Lo of system (D). 

origin and assume that the system is ,given in canonical form.  
xo = yo = 0 and, by ( 3 5 ) ,  the system has  the form u > uo. 

Then 
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where v + 0, and the functions P z  and Q2 together with their  f i r s t  derivatives 
vanish at the origin. 

Let, as before, I ,  be an arc without contact through some point Moof 
the separatr ix  L o ,  and u a parameter  on this  arc. 
to  u = u,,, and the points of the a r c  I ,  lying inside the loop correspond to 
> Go. 

The point h2, corresponds 

Consider a modified system of the form 

d r  
x = V z + P z ( z 7  i / ) = P a ( z ,  u), $= - ( ~ - a ) y + Q z ( ~ ,  Y ) = Q ~ ( z ,  y). ( D a )  

If a is sufficiently smal l  in absolute magnitude, 0 ( 0 ,  0) is a saddle point 
of this  system, and 

P L  (0, 0)  + Qh” (0, 0)  =a. ( 3 6 )  

Together with ( D o ) ,  we consider another system 

d x  x = P a - p Q a  = v x + P ~  (I, Y)- u r - (Y -a) Y+ Qz (z, Y)I =Paw ( ~ 9  v), 

$ = Qa + p p a =  - ( v - a )  Y + ~z (I, Y) + P ~ ~ z + p z  (2, Y)I =Vow ( ~ 7  Y)* 

whose vector field is obtained by rotating the vector field of (Do)  through 
the angle tan-lp. 
0 is a saddle point of ( D a w )  and 

( D a b )  

For  any sufficiently smal l  (in absolute magnitude) p, 

K p x  (0, 0) + Qbpy (0, 
Let a> 0. 
Let, a s  before, L: and Lb be  the semipaths comprising the separatr ix  Lo 

which contain the point M o .  
pa > 0 such that i f  I a I < a, and I p I < po, ( D a w )  is &close  to (D) and has 
two separa t r ices  LtDp and L&,of the saddle point 0 in the e-neighborhoods 
of the separa t r ices  L: and L6, respectively. 
the a r c  lo at points M o  (a,  p) and M ;  (a, p), which correspond to the values 
u,, (a, p) and u; (a, p)of the parameter  u. 

Fi r s t  let p =  0, i.e., consider the system ( D a ) .  
a priori: 

1) There  exist arbi t rar i ly  small  positive numbers a* such that 

For any e > 0 and 6 > 0, there  exist a,> 0 and 

Let these separa t r ices  c r o s s  

Two cases  a r e  possible 

ug (a*, 0) = u; (a*, O), (37) 

i .  e., the separa t r ices  Lf.0 and L&.o merge into a single separatr ix  of (Do*)  
which fo rms  a loop. 
smal l  a*, (D,,) is &close to ( D ) ,  and th is  loop is contained in U,(L,), which 
proves the lemma.  

Clearly, for  any e > 0 and 6 > 0 and for  a sufficiently 

2 )  There exis ts  f3> 0, such that for  all a, 0 < a  < p,  ei ther  

uo (a, 0 )  > u; (a. 0). (38) 
or 

( i f  there  exist a rb i t ra r i ly  smal l  a for  which inequality (38) is satisfied and 
also a rb i t ra r i ly  smal l  a for  which (39) is satisfied. there  a lso exist 
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at*bitrarily small  a* for  which ( 3 7 )  is satisfied, and we re turn  to  
case  1). 

To fix ideas, suppose that inequality { 38)  is satisfied for a l l  a, 0 < a < p .  
Now consider the system (DGp) with a = 0 (it i s  obtained from (D) by 

rotating i t s  vector field through the angle tan-lp). 
if p >  0 and is sufficiently small ,  we have 

By the lemma of 3 11.1, 

uo (0. p) < u; (0 ,  p) (40) 
(see (20)). 

introduced above, corresponding to  these 6 and E .  

Let i?~> 0 and E > 0 be  fixed and let a. and po be  the positive numbers  

Let a, be a fixed positive number, al<a,,  a,<p. Then 

From the las t  inequality and remark  to Lemma 10, s 2 8 . 2 ,  i t  follows 
that i f  p* is sufficiently smal l  in absolute magnitude, w e  have 

uo (a1, P*) > u; (at, p*). ( 4 2 )  

Let 0 < p* < po. By inequality (40). for  a smal l  positive p*, 

ua (0, P*) < u; (0, p*). ( 4 3 )  

From inequalities ( 4 2 )  and ( 4 3 )  and continuity of the functions u, and u; it 
follows that for  some a*. O(a*<a,, 

uo (a*, p*) = u; (a*. p'). 

This  means that the system 

d l  -= dt V Z + - ~ Z ( Z ,  Y ) - p * I - ( v - a a * ) y r 4 2 ( J ,  Y ) I ,  

- ( v - a * )  y+Qa (I, Y) + P* I v z f  P ,  (1, Y)I  
(Dr;t&A*) 

-= 2 
has a separa t r ix  Eo which fo rms  a loop. 
sys tem (D,*,.) i s  &c lose  to (D) ,  and the loop Eo lies in Ueo(t0). 

Since then O<a*<aO, 0 <p* <pa,  
Moreover, 

(0, 0) i Qn+p+u (0, 0)  =a*. 

This  completes the proc>f of the lemma.  

and L ,  i ts  separatyix fomiing a loop. if oo ( x 0 ,  yo) = 0, then for any e =- oand 
6 > 0 there exists a modified system (6 )  which is 6-close to (D)  and which 
has at least two closed paths in the e-neighbmhocd of the loop Lo.  

loop Lo contains closed paths, (D)  itself may be chosen as (6). 
suffices to  consider the case  when some neighborhood of the loop Locon- 
ta ins  no closed paths, i.e., the loop Lo is ei ther  stable or  unstable. Let 
lo be  an a r c  without contact passing through the point M o  of the loop Lo,  u 
a parameter  defined on I , ,  ~0 the value of th i s  parameter  corresponding 
to  hio. W e  assume,  a s  before, that the points of the a r c  lo which lie 
inside the loop correspond to u, u0 < u g b o ,  and the succession function 

T h e o r e m  50. Let o(to. yo) be a saddle point of dynamic system (D),  

P r o o f  . For simplicity, le t  I, = yo = 0 .  If any neighborhood of the 
It thus 

319 



Ch-XI. CREATION OF LIMIT CYCLES FROM T H E  LOOP OF A SADDLE-POIhT SEPARATRIX 

- 
u = f (u) of (D)  on the a r c  lo is defined for all u ,u,, < u Q  6, where b < b o .  
Since by assumption the loop Lo of (D) is unstable, w e  see  that for u grea te r  
than u,, and sufficiently close to  u0 the following inequality is satisfied: 

d (u) = f (u)-u >o. 
Let e > 0, 6> 0 be  given. 

Choose 
a r e  satisfied: 

I. ut >uo sufficiently close t o  uo so that the following conditions I 
(a) d ( u d > O .  
(b) The path LI which for t = to passes  through the point M I  (u,) of the 

a r c  without contact lo will again c r o s s  the arc lo at point N ,  as t increases ,  
so  that the curve C ,  consisting of the segment M , N ,  of the path L, and the 
segment NiMs of the arc lo,  together with the region enclosed between the 
curve C, and the loop of the separatr ix  Lo,  are contained in the e14-neighbor- 
hood of the loop L,(Figure 141).  

FIGURE 141. 

11. Let q be the distance between the curve C, and the separatr ix  loop Lo. 
We choose 6 , >  0 so small  that the following conditions are satisfied: 

tl (a) 
(b) If (B)  is 6,-close to (D), then 

and curve 

corresponding separatr ix  z, with the arc without contact io, we have 
and_the succession function F ( u )  of (b) on the a r c  lo is defined for  all 
ur ~ o < U < u f .  

- the  analog of C, - is contained in U,,,' (C) and also in UE,' (0. 
(c )  If (6)  is 6,-close to  (D) and fi, (Lo) is the intersection point of the 

< ut 

111. 
(a) The system (D&,,,,) considered in Lemma 10 is 6-close to (D). 
(b) The separatr ix  Eo of the saddle point 0 of (De,,,*) fo rms  a s t  a b l e  

The existence of the numbers p* and a+ satisfying conditions (a) and (b) 

We choose p* and a* so  that the following conditions are satisfied: 

loop, which is entirely contained both in U t / ,  (Lo)and in  UnlC (Lo). 

has  been established in  the proof to  Lemma 10, 
loop z, to  be stable, we should have a*< 0.  

In particular,  for the 
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On the a r c  I,, choose a point M,(u , )  sufficiently c lose to  A~, (u2>&) .  
Let Z ( U ) = ~ - ( U ) - - U ,  w'qere F(u)  is the succession function of (Doc,,+). Since 

the loop Eo of (D,*,,,) i s  stable by assumption, we have 

iT(ut) < 0. (45) 

On the other hand, inequality (44) is satisfied. 
follows that, for some u*, u 2 < u * < u i r  

From these relations it 

d (u*) = 0, 

i . e . ,  a closed path I?* o f  (Do*,,:) passes  through the point 11.1' (u*). 
From I I ( a )  and III(a)  it follows that (6:s) 

is b'2-close to ( D ) .  Furthermore,  as we have seen, (D)  has  a separatr ix  
zo which forms a stable loop and a closed path E*. Both the loop Eo and the 
closed path .E* a r e  contained in U, 2 (Lo)  - the loop in virtue of I11 (b) and the 
path i* in virtue of I (bi ,  II(b), and III(b) .  

If the closed path E* of (D';) is not a simple limit cycle of this  system, 
Theorem 19, $15.2, indicates that there  ex is t s  a system (8) d/2-close 
to (E,':) which has  in U,. ,(E*)at least two closed paths Et and z,. 
then ( 6 )  sat isf ies  the proposition of the theorem. 
s t ructural ly  stakle, limit cycle of (E::), then Theorem 4 6  shows that there  
exis ts  system (DI a rb i t ra r i ly  c lose to (E.;:) which has  a closed path 
any arbi t rar i ly  smal l  neighborhood of the loop E , .  When (6) is sufficiently 
close to (E*), system tb), in virtue of the s t ructural  stability of the cycle 
E*, has a limit cycle which lies a rb i t ra r i ly  close to 2*, and the paths 
L, and L2 a r e  different and are both contained in U, ( L o ) .  Thus, system ( D )  
sa t i s f ies  the propositicm of the theorem. 

R e m a r k  . Theorem 50 proves that i f  u, (30, yo) = 0, the separatr ix  
loop of the saddle point 0 (so, yo) may c rea t e  a t  least  two closed paths. 
The question of the largest  number of closed paths which may be created 
from a separatr ix  loop in the case  uo (z,, yo) = 0 and the conditions deter-  
mining this number requi res  a much more  complex analysis. 
$was considered by E. A .  Leontovich in his  thesis  and the resul ts  a r e  pre-  
sented i n  !21/. 

Let (D1.$.) be designated (0 ; : ) .  

But 
If t* i s  a simple, i .  e., 

in 

This  completes the proof. 

The  problem 
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C h a p t e r  XII  

CREATION OF A LIMIT CYCLE FROM THE 
LOOP OF A SADDLE-NODE SEPARATRIX. 
SYSTEMS OF FIRST DEGREE OF STRUCTURAL 
INSTABILITY AND THEIR BIFURCATIONS 

INTRODUCTION 

The f i rs t  of the two sections in this  chapter, $30, deals  with the creation 
of a limit cycle f rom the loop of a saddle-node separatr ix .  
dynamic system, Mo ( I O ,  yo) an equilibrium state  of this  system, which is a 
saddle-node of multiplicity 2.  
comprises  a parabolic sec tor  and two hyperbolic sec tors ,  separated f rom 
one another by three  separa t r ices .  
node Mo has  one a- separatr ix  L; and two w - separa t r ices  L; and 1;:. 

loop, whereas  none of the separa t r ices  L; and L: is a continuation of L; 
(Figure 142) .  

Since M o  is a double equilibrium state  of (A),  there  exist a rb i t ra r i ly  
c lose sys tems which have no equilibrium s ta tes  in the neighborhood of Mo. 
The main result of §3O s ta tes  that i f  t h e  e q u i l i b r i u m  s t a t e M o ,  a n d  
c o n s e q u e n t l y  t h e  s e p a r a t r i x  l o o p ,  d i s a p p e a r  f o l l o w i n g  a 
s u f f i c i e n t l y  s m a l l  c h a n g e  i n  s y s t e m  (A), o n e  a n d  o n l y  o n e  
l i m i t  c y c l e  i s  c r e a t e d  i n  t h e  n e i g h b o r h o o d  of t h e  l o o p  
(Theorems 51 and 52, see Figure 143). 

Let (A) be a 

A canonical neighborhood of a saddle-node 

To fix ideas, suppose that the saddle- 

Suppose that the a -separa t r ix  L; goes to M o  for t - t .  + 00, i. e., i t  f o rms  a 

FIGURE 142 FIGURE 143 

The second section, § 31, deals  with the s implest  s t ructural ly  unstable 
A sys tems,  namely sys tems of the f i r s t  degree of s t ructural  instability. 

sys tem of the f i rs t  degree of s t ruc tura l  instability inside a cycle without 
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cnnrac t  w a s  def ined  i n  C h a p t e r  VI11 ( s 2 2 ) .  
s y s t e m s  is g i v e n  for a n y  bounded reg ion ,  and t h e  n e c e s s a r y  and  suf f ic ien t  
c o n d i t i o n s  are e s t a b l i s n e d  f o r  t h e  s y s t e m  t o  be of t h e  first d e g r e e  of s t r u c -  
t u r a l  i n s t a b i l i t y  i n  tha t  r e g i o n  ( T h e o r e m  67) .  
appl ied  t o  i n v e s t i g a t e  t i e  b i f u r c a t i o n s  of s y s t e m s  of t h e  f i r s t  d e g r e e  of 
s t r u c t u r a l  ins tab i l i ty .  
of t h e  b i f u r c a t i o n s  c o n s i d e r e d  i n  t h e  p r e v i o u s  c h a p t e r s  and  i n  5 30. 

In $31, a def in i t ion  of t h e s e  

T h e s e  c o n d i t i o n s  are t h e n  

A11 t h e s e  b i f u r c a t i o n s  t u r n  out  t o  b e  p a r t i c u l a r  cases 

930. CREATION O F  A LIMIT C Y C L E  FROM THE 
LOOP OF A SADDLE-NODE S E P A R A T R I X  

1. The existence theorem 

We c o n s i d e r  a n  a n a l y t i c a l  d y n a m i c  s y s t e m  

Lvhich h a s  a n  e q u i l i b r i u m  s t a t e  
type ,  with o n e  of t h e  c h a r a c t e r i s t i c  n u m b e r s  d i f fe ren t  f r o m  z e r o .  
l n a s  nf g e n e r a l i t y ,  w e  m a y  a s s u m e  tha t  t h i s  e q u i l i b r i u m  s t a t e  is at t h e  
o r i g i n ,  i . e . ,  JO = y o  = 0 .  T h u s ,  

yo) of m u l t i p l i c i t y  2 of t h e  s a d d l e - n o d e  
Without 

and  
Is (0, 0) = P; (0, 0)  i- Q; (0,  0)  # 0. 

E q u i l i b r i u m  s t a t e s  of t h i s  t y p e  w e r e  c o n s i d e r e d  i n  C h a p t e r  1.111 ($23,  
1 and 2 ) .  
sector and two hypet+bol.ic s e c t o r s .  
s e c t o r  go  t o  0 for t -r f 00. 
L; and t w o  a - s e p a r a t r i c e s  L ;  and L ; .  

c u t  o u t ,  g o e s  t o  t h e  e q u i l i b r i u m  s t a t e  0 for t - + - ~ ,  
a s w e 1 1  a s  f o r t -+ -- m , i .  e ,, i t  forms a loop. We m o r e o v e r  a s s u m e  
t h a t  none  of t h e  s e p a r a t r i c e s  L ;  and L;  forms p a r t  of t h i s  l o o p  ( i .  e ., t h e  
s e p a r a t r i x  L; d o e s  not merge i n t o  a single p a t h  e i t h e r  with L:  or  with L f ,  
see F i g u r e  142) .  

S i n c e  0 i s  a n  e q u i l i b r i u m  state of m u l t i p l i c i t y  2, t h e r e  e x i s t  6*>0 and 
cd= 0 s u c h  t h a t  i f  s y s t e m  (6) is &,-close t o  (D) t o  r a n k  2,  i t  h a s  a t  m o s t  t w o  
e q u i l i b r i u m  s t a t e s  i n  U,,(O) (see Defini t ion 15, $ 7 . 3  and  Defini t ion 5, $ 2 . 1 ) .  
T h u s ,  t h r e e  cases are p o s s i b l e  a p r i o r i :  

X c a n o n i c a l  neighborhood of s u c h  a s t a t e  c o n s i s t s  of o n e  p a r a b o l i c  
Suppose  t h a t  t h e  p a t h s  of t h e  p a r a b o l i c  

T h e n  t h e  e q u i l i b r i u m  state 0 h a s  o n e  a - s e p a r a t r i u  

S u p p o s e r h a t  t h e  p a t h  L o ,  f r o m  w h i c h  t h e  s e p a r a t r i x  L; i s  

1) S y s t e m  (6) h a s  o n e  e q u i l i b r i u m  s t a t e  d i n  U,, (0). 
2)  S y s t e m  (A)  h a s  two e q u i l i b r i u m  s t a t e s  G, and G2 i n  U., (0). 
3 )  S y s t e m  ( 6 )  h a s  no e q u i l i b r i u m  s t a t e s  i n  U,, (0). 
A11 t h e  t h r e e  cases are a c t u a l l y  o b s e r v e d  in pr_actice: cases 2 and  3 i n  

v i r t u e  of T h e o r e m  34,  $23 .1 ;  case 1 o b t a i n s  i f  (D) is ident i f ied  with (D)  
i t s e l f ,  s a y .  
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It iz readily seen  that if (E) is sufficiently close to  (D), the equilibrium 
state  0 in case  1 is also of multiplicity 2 and is a saddle-node (this follows 
from the remark  to Theorem 35, $23.2). 

and G2 into which the saddle- 
node 0 decomposes is a s t ructural ly  stable node, and the other is a s t ruc-  
tural ly  s table  saddle-point ($23 .1 ,  Lemma 1 and 9?3.2, Theorem 35). 

We will now consider in more  detail case  3, i .e. ,  the case  when 
t h e  e q u i l i b r i u m  s t a t e  d i s a p p e a r s  o n  p a s s i n g  t o  a c l o s e  
s y s t e m . 
neighborhood of the loop Lo in this  ca se .  
can be stated: 

&close to (D) and has no equilibrium states in U, (O), (6) has at least one 
c2osed path contained in the  neighborhood of the loop L o .  

the equilibrium state  0 of system (D) delimited by the following path 
segments: 

which meets  the separa t r ices  L;, L:, and L; at the points N o ,  Ni, and NI, 
respectively (Figure 144); 

separatr ix  L; at the point M o ;  

In case  2 ,  one of the equilibrium s ta tes  

W e  will show that a closed path necessar i ly  fo rms  in the 
In fact, the following theorem 

T h e o r e m  51. F m a n y  E > O  thereexis ts  6 > O s u c h t h a t i f ( 6 )  i s  

P r 0 0  f . Let E >  0 be given. Consider a canonical neighborhood V of 

1) the segment K i K z  of the a r c  without contact 1 withendpoints R ,  and R1 

2 )  the a r c  without contact lo  with end points Mi and M z  which meets  the 

3) the a r c s  of paths K , M i  and K 2 M z .  

FIGURE 144 

The concept of a c a n o n i c a l  n e i g h b o r h o o d  has  been introduced in 
19.2), where i t  is also shown that a canonical neighbor- 

We may thus assume that the canonical neighborhood 

QT (Chapter VIII, 
hood can always be  constructed for  any arbi t rar i ly  smal l  neighborhood of 
an equilibrium state .  
V and the a r c  without contact 1 lie in Uc12 (0) and that the following condition 
is satisfied: the paths Lot and Lo2 which for t = to p a s s  through the respec-  
tive end points Mi and M z  of the a r c  lo c ross ,  with increasing t ,  the arc 
without contact 1 at points M ;  and M ; ,  so that the quadrangle A limited by 
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t h e  arc  without  c o n t a c t  I , ,  t h e  s e g m e n t  JItAI; of t h e  arc without  c o n t a c t  1 ,  
and t h e  a r c s  Ml+%I; and JIlc-1I.~ of rhe  p a t h s  Lol and Lo? is a n  e l e m e n t a r y  
q u a d r a n g l e  conta ined  in  t h e  e /2-ne ighborhood of t h e  loop  Lo. S i n c e  t h e  
path L o  crosses t h e  a rcs  without c o n t a c t  lo and 1 a t  t h e i r  i n t e r i o r  po in ts  
.\To and So, t h i s  condi t ion  is s a t i s f i e d  w h e n e v e r  the arc  lo is suf f ic ien t ly  
s m a l l .  

Le t  6: 0 b e  so s m a l l  tha t  i f  (6) is 6 - c l o s e  to (D),  t h e n  
(a) t h e a r c s  lo and 2 are a r c s  without  c o n t a c t  for (6); 
( b )  t h e  p a t h s  zol and of (b) which for t = fo p a s s  t h r o u g h  t h e  poin ts  11.11 

and r e s p e c t i v e l y ,  cross, with i n c r e a s i n g  t ,  t h e  a rc  t a t  t h e  poin ts  JY; 
and .%?;, and t h e  r e s u l t i n g  q u a d r a n g l e  a ( the  ana log  of A ) i s  a n  e l e m e n t a r y  
q u a d r a n g l e  of (fi) conta ined  i n  U, (&)(Figure  145);  

( c ,  as t d e c r e a s e s ,  t h e  p a t h s  zol and Eo* cross t h e  arc 1 a t  po in ts  g ,  and 
Et, and t h e  neighborhood of t h e  point 0, d e l i m i t e d  by t h e  arc without 
c o n t a c t  lor t h e  s e g m e n t  Elk2 of t h e  arc I ,  and t h e  a rcs  of p a t h s  WIMl and 
i?J12> i s  conta ined  i n  U, (Lo) .  

FICLiRE 145 

Condi t ions  ( a ) ,  (b) ,  and (c) are s a t i s f i e d  for a suf f ic ien t ly  small  6 in 
v i r t u e  of L e m m a s  1 and 5 of 3 4 . 1  and L e m m a  7 of 34 .2 .  

W e  wil l  s h o w  that  t h e  n u m b e r  6 s e l e c t e d  in t h i s  way fu l f i l l s  t h e  p r o -  
pos i t ion  of t h e  t h e o r e m .  

L e t  (6) b e  a s v s t e m  6 - c l o s e  to (D) which  h a s  no e q u i l i b r i u m  states i n  
U, (0). 
b e  c l o s e d ) .  Evident ly ,  i s  a c l o s e d  neighborhood of the l o o p  L o ,  and i n  
v i r t u e  of (b)  and ( c )  rv c U, ( L o ) .  
so t h a t  t h e  e n d  poin ts  Mr a n d  MI of t h e  arc c o r r e s p o n d  to t h e  v a l u e s  ul a n d  
u: o f  t h e  p a r a m e t e r ,  u1 < L:~. 
and t h e  pa th  
crosses t h e  arc without  c o n t a c t  1 a t  some point $of t h e  a rc  I and e n t e r s  
i n t o  t h e  ne ighborhood v .  S i n c e  t h e r e  are n o  e q u i l i b r i u m  s t a t e s ,  and  t h u s  
n o  l i m i t  c o n t i n u a  of (E) ,  in P, t h e  pa th  

L e t  6' b e  t h e  union of t h e  s e t s  and  ( t h e s e  s e t s  are a s s u m e d  t o  

W e  d e f i n e  a p a r a m e t e r  u o n  t h e  arc lo, 

C o n s i d e r  a n y  point hi fu) of t h e  arc lo (ul 4 u g u - )  
of s y s t e m  (8) t h r o u g h  t h a t  point .  As t i n c r e a s e s ,  t h i s  p a t h  

should  l e a v e  v a s  f f u r t h e r  i n c r e a s e s .  
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It may evidently leave P only through the a r c  without contact l o ,  i. e., it 
again c ros ses  the arc Lo at some point M* ( u * ) .  
u, u i f u , < u 2 ,  a succession function 

This  means that for  all 

u* = r’(u) 

is defined on the a r c  without contact l o ,  such that f (u l )>uI ,  f ( u Z ) < u 2 .  

such that f (u) =&. 
It follows f rom the las t  inequalities that there  exis ts  a number ii, u , < ~ c u 2 ,  

The path L through the point fi(t) of the a r c  Io  is a closed path. Clear ly ,  

e c iii c u, (Lo). 

This  proves the theorem. 
W e  shal l  s ay tha t  t h e  c l o s e d  p a t h  i i s  c r e a t e d  f r o m  t h e  

R e m  a r k . 
l o o p  o f  t h e  s e p a r a t r i x  Lo o f  t h e  s a d d l e - n o d e O .  

is a n y  e q u i l i b r i u m  s t a t e  of  m u l t i p l i c i t y  4 (and not only 2 )  
f o r  w h i c h  c o n d i t i o n s  1 a n d  2 a r e  s a t i s f i e d  ( th i sequi l ibr ium 
state  is also a saddle-node, see $23.2,  a). 

Theorem 5 1 and the above proof remain valid i f  the point 0 

2 .  The uniqueness theorem 

W e  will  prove the uniqueness of the closed path created f rom the loop of 
a saddle-node separatr ix .  As in the previous subsection, w e  consider an 
equilibrium state  0 (0, 0) of multiplicity 4 which satisfies conditions 1 and 2, 
i .  e . ,  a saddle-node, and the path Lo f rom which the a -separa t r ix  L; is cut 
out f o r m s  a loop, without merging with either of the o - separa t r ices  L: and L:. 

through M o  for which Mois not an end point. There exist E, > 0 and bo > 0 
such that if(b) is 8,-close to (D),  and L is a closed path of (6) contained in 
u., (to), t mosses the arc I ,  at one and only one point. 

It is readily seen  that i f  the proposition of the lemma is t rue  
for any sufficiently smal l  a r c  I ,  cut out f rom some fixed arc without contact 
which c r o s s e s  the path Lo, it is also t rue  for  any fixed a r c  without contact 
I,(see Lemma 7, 8 4.2). 

L e  m m a .  Let Mo be a point of the path Lor and lo an arc without contact 

P r o o f  . 

By assumption, u (0.0) = P; (0,O) + Q; (0,O) # O .  
To fix ideas, let 

u(O,O)=uO>O. 

Let e > 0 b e  so  smal l  that for any point ( x ,  y), (2, y) c U, (0), u (z, I/) > 0. 
Consider the canonical neighborhood V and the elementary quadrangle A of 
(P) described in the previous subsection (in our  proof of Theorem 51), and 
also the canonica1 neighborhood f and the quadrangle of the close system 
(fi), alongside with their  union i?. As Io  we choose the a r c  
without contact M i M z  entering the boundary of V (Figures  144 and 145). 

conditions are satisfied: 

Let V c U, (0). 

Choose b o >  0  and^,> 0 so that i f  (6) is bo-close to  (D),  the following 

(a) I o i s  an a r c  without contact for (b); 
(b) for  any point ( x ,  Y)EW) , 

Z(z, Y) = R (x ,  Y) + G (z, Y) > 0; 
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( c )  rcc',(0!( 
I d )  r e 0 ( L o ) c l i ' .  
T h e s e  condi t ions  are evident ly  s a t i s f i e d  for  s i i f f ic ient ly  small e, and 60. 
L e t  E b e  a c l o s e d  pE.th of s y s t e m  (D)  which i s  60-cIose  t o  (D) ,  and l e t  

If t h e  path is e n t i r e l y  conta ined  i n  r?, it is conta ined  i n  U ,  (0). Ey 
i c C'&* (Lo) .  

condi t ion  ( b )  and Fendi . ssan ' s  c r i t e r i o n  (QT, 5 12.3, T h e o r e m  31, c o r o l l a r y ) ,  
s v v t c r n  (PI h a s  no closed pat& which are e n t i r e l y  conta ined  i n  U, (0). 
T h e r e f o r e ,  t h e  c l o s e d  [path L h a s  poin ts  which l i e  i n  t h e  q u a d r a n g l e  3 .  
T h e n ,  b y  t h e  p r o p e r t i e ;  of e l e m e n t a r y  q u a d r a n g l e s ,  t h e  path crosses 
t h e  a rc  lo (at o n e  and only  one  point, by  condi t ion ( a ) ) .  T h e  a rc  without 
c o n t a c t  In clearly c a n  b e  c h o s e n  as small as d e s i r e d  i n  t h i s  case. 

T h e n ,  b y  (c), L c lT'. 

T h p  proof  of t h e  1er.ma is c o m p l e t e .  
T h e o r e  vi 52. Let 0 (0. 0 )  be a saddle-node of a dynamic system ( D )  

for which cl0 = o (0. 0) + 0 ,  and Lo a separutrix of this saddle-node foviriing 
a loop. 

it may have at most ont? closed path in U e  ( L ~ ) .  If this closed path exists, it 
is a stable strrtctiirally stable limit cycle for 0, < 0 and an unstable struc- 
turally stable limit cycle f o r  (J, > 0. 

C o n s i d e r  t h e  case o o > O .  

Tnere exist ttco nuwbers e > Oand 6 > 0 such that i f ( f i i ,  is 6-close to ( D ) ,  

P r o o f  . 
L e t  E" > 0 b e  so s m a l l  t h a t  f o r  e v e r y  point (I, y) E Uq (0) we h a v e  

0 (I, y) = P;  (I. Y) i Q; (I. 9) > 4 . ( 3 )  

Let  I ,  I o .  i - ,  A ,  it', F, e c  ., h e  t h e  arcs without  c o n t a c t ,  t h e  c a n o n i c a l  
ne ighborhoods ,  the e l e m e n t a r y  q u a d r a n g l e s ,  e t c  ., c o n s i d e r e d  i n  t h e  p r e -  
v i o u s  s u b s e c t i o n  ( F i g u r t t s  114 and 145) .  
h e  SO s m a l l  t h a t  

Let t h e  c a n o n i c a l  ne ighborhood 1' 

and l e t  A b e  t h e  c o r r e s F o n d i n g  e l e m e n t a r y  q u a d r a n g l e  of (D) ( F i g u r e  146) .  
C h o o s e  6,> 0 so s m a l l  that  if (b) i s  &-close to (D),  t h e  fol lowing condi -  

t i o n s  are s a t i s f i e d :  
(a) The arcs L and 1, ,ire a r c s  without c o n t a c t  for the p a t h s  of s y s t e m  (6). 
( b )  T h e  c a n o n i c a l  neighborhood F c o r r e s p o n d i n g  t o  (6) l i e s  i n  U4 (LO) 

(c) T h e  p a t h s  of (fi) p a s s i n g  t h r o u g h  t h e  poin ts  of t h e  a rc  I ,  cross t h e  
t o g e t h e r  with i t s  c l o s u r e .  

a rc  1 wi th  t h e  i n c r e a s e  i n  t , and t h e  s e g m e n t s  of_these p a t h s  confined b e t w e e n  
t h e  arcs I ,  and 1 form a n  e l e m e n t a r y  q u a d r a n g l e  A 

(d)  For all (3, Y) E U,(O). z(z, Y) > 3 . 
Let  iP be t h e  union of t h e  s e t s  and  5 .  W e  c h o o s e  e l ,  0 < el < so  

small  tha t  for a n y  set FF c o r r e s p o n d i n g  t o  a s y s t e m  (B) 8,-close to (D),  
we  h a v e  

T h e  e x i s t e n c e  of t h e  a p p r o p r i a t e  8 ,  and el i s  s e l f - e v i d e n t .  
L e t  k h e  a c l o s e d  path of s y s t e m  (E) which  i s  6 , - c l o s e  to (D!: and l e t  
c U,, ( L o ) .  Then, b y  (5), E c iv = FU 5 .  We wi l l  show t h a t  the p a t h  
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cannot be entirely contained in 8. Indeed, if  Lc v", then by (4),  
This  is impossible, since relation (5) and B_endixson's cr i ter ion (QT, S 12.3, 
Theorem 31, corollary) show that system (D) cannot have closed p%hs 
which a r e  entirely contained in U, (0). Thus, any closed path z of (D) con- 
tained in U,, (Lo) has points which l ie  in the quadr_angle x. Then, from the 
propert ies  of elementary quadrangles, the path L c ros ses  the arcs_ 1 and lo ,  
and al l  the points of the path which lie outside h' a r e  contained in V and 
hence in U 5  (0). 

c U , ( O ) .  

FIGURE 146 

Let 

x =  Po ( t ) ,  Y = $0 (4 (6) 

be a solution corresponding to  the path Lo of (D), Mo and No the intersection 
points of Lo with the a r c s  without contact lo and I ,  respectively, t t  and t,, 
t t < t 2 ,  the values of t corresponding to  points Mo and No for motion (6 )  
(Figure 146). Let, fur ther ,  

J = $' (cpo ( t ) ,  $0 ( t ) )  + Q; (To ( t ) ,  $0 (tNl dt .  (7) 
11 

Let x be  any number such that 

IIl<X? ( 8 )  

and let C be any number such that 

(9)  
C > z .  8X 

Let So be a point of the path Lo corresponding to t = t , + C  for  motion ( 6 ) .  
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Let 8 and E b e  pos i t ive  n u m b e r s  s u c h  that  6 < 6 , ,  : < E , ;  l e t  (Fi) b e  a 
r lvnamic s y s t e m  6 - c l o . j e  t o  ( D ) ,  L a c l o s e d  pa th  of (D)  e n t i r e l y  conta ined  
i n  G e ( L a ) ,  .B and .q t h e  i n t e r s e c t i o n  p o i n t s  of 
( F i g u r e  116). Let 

with t h e  arcs lo and 1 

b e  t h e  m o t i o n  a long  t h e  path for which r h e  point .Q c o r r e s p o n d s  to i =ti. 
L e t  
m o t i o n  ( I O )  to t = t , a n d  t = f , + C ,  and l e t  ? b e  t h e  per iod  of t h e  so lu t ion  
of (10) .  
d e s i r e d  t o  Ma. 
of the  so lu t ion  o n  t h e  i i i t i a l  v a l u e s  and t h e  r igh t -hand s i d e s  i t  fo l lows  
that  if 6 and E are suf f ic ien t lv  small, t h e  fol lowing condi t ions  are s a t i s f i e d :  

1) T h e  point 
Contained i n  U&). 

21 T h e  arc .\IS,) of t h e  path t c o r r e s p o n d i n g  t o  t h e  v a l u e s  of t , t , < t < t 2 - t C ,  
i s  so  close t o  t h e  arc ill,&'a of t h e  path Lo c o r r e s p o n d i n g  to t h e  s a m e  v a l u e s  
o f  1 that  

and & b e  t h e  p c i n t s  of t h e  c l o s e d  pa th  which c o r r e s p o n d  for 

If E is suf f ic ien t ly  s m a l l ,  t h e  point. .I2 w i l l  be as  close as 
H e n c e  and from t h e  t h e o r e m  cf t h e  cont inuous  d e p e n d e n c e  

and all t h e  poin ts  of t h e  path 2 b e t w e e n  & and so, are 

I 

t t  +c< ti  A T  ( 1 1 )  

(we recall tha t  7 is t h e  p e r i o d  of t h e  p a t h  E ) .  
3 )  

t r  

T h e  l a s t  e q u a l i t y  is s a t i s f i e d  for suf f ic ien t ly  small 6 and E i n  v i r t u e  of (8) .  
L e t  

u s  e s t i m a t e  t h e  n u m b e r  
Let  8 and e b e  c h o s e n  so  tha t  condi t ions  1 t h r o u g h  3 are s a t i s f i e d .  

'? - 
i, 

By (12) ,  \ o d t > - 2 ~ .  

path  2 c o r r e s p o n d i n g  t o  t 2 < t < t , + ?  are conta ined  i n  CeO(O). 
(5 )  and (11). 

Tt fo l lows  from condi t ion 1 t h a t  all t h e  poin ts  of t h e  

T h e r e f o r e ,  b y  

H e n c e  and from inequal i ty  (9)  it fo l lows  tha t  h ;  0, i .  e., t h e  c l o s e d  path 
of (6) i s  a n  u n s t a b l e  s t r u c t u r a l l y  s t a b l e  l i m i t  c y c l e  (913.3, Theorem 17,  
214, T h e o r e m  18). 

W e  h a v e  t h u s  e s t a b l i s h e d  tha t  a n y  c l o s e d  p a t h  of s y s t e m  (6) 6 - c l o s e  
to ( D )  which  lies i n  U, (Lo) is an u n s t a b l e  limit c y c l e .  
h a v e  a t  m o s t  o n e  c l o s e d  p a t h  i n  U, (L,)(see t h e  end of t h e  proof  t o  
T h e o r e m  47, 9 2 9 . 3 ) .  

i s  p r o v e d .  

B u t  t h e n ,  (6) c a n  

T h e  case oo< O i s  c o n s i d e r e d  a long  t h e  same l i n e s .  T h e  t h e o r e m  
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931. DYNAMIC SYSTEMS OF THE FIRST DEGREE 
O F  STRUCTURAL INSTABILITY AND 
THEIR FIFURCATIONS 

1 .  
s t ruc tura l  instability 

The definition of a system of the first degree of 

In the previous chapters  and in s 30 we considered bifurcations of the 

1 )  The decomposition of multiple equilibrium states  into s t ructural ly  

2 )  The creation of l imit  cycles  f rom a multiple focus. 
3) The creation of limit cycles f rom a multiple limit cycle. 
4) The creationof a l imi t  cycle f romthe  loop of a saddle-point separatr ix .  
5 )  The creation of a limit cycle f rom the loop of a saddle-node separatr ix .  
In this  section w e  will consider dynamic sys tems of the f i r s t  degree of 

s t ructural  instability and elucidate the conditions satisfied by these sys tems 
and the bifurcations that they may undergo. 
degree of s t ructural  instability a re ,  in a sense,  the simplest s t ructural ly  
unstable systems,  their bifurcations may naturally be considered a s  the 
simplest bifurcations. 
l imit  cycle proves to be a bifurcation of one of the types 2 through 4 .  

and in particular of the f i rs t  degree of s t ructural  instability, will be found 
in Chapter VI11 (s22, Definition 23). It is assumed in this  definition, how- 
ever ,  that the system i s  considered in a region bounded by a cycle without 
contact. 
tural  instability in such a way that the definition will apply to  any bounded 
closed region. The requirement of c losure is not essential: a s imilar  
definition can be stated for  any bounded region. 

Like the concept of a s t ructural ly  stable system (see 96.3), the concept 
of a s y s t e m  of t h e  f i r s t  d e g r e e  o f  s t r u c t u r a l  i n s t a b i l i t y  
is associated with a cer ta in  space R* of dynamic sys tems.  
stable sys tems,  R*can be identified with any of the spaces  R:’ o r  R f ) ,  
k > r > l .  W e  have noted in 9 2 2  that the concept of a d y n a m i c  s y s t e m  
o f  t h e  f i r s t  d e g r e e  of  s t r u c t u r a l  i n s t a b i l i t y  is meaningful 
only in relation to the spaces  R$) or R f ) ,  where r > 3 .  Therefore ,  in what 
follows i t  is invariably assumed, without any explicit indication, that we 
a r e  dealing with s t ructural  instability in relation to  one of the spaces  R:) 
o r  Rt’, where r >  3. Let this space be Re. 

$6.3, Definition 13), in defining a system of the f i rs t  degree of s t ructural  
instability in  some W ,  we have to consider, alongside with W ,  some wider 
region, 
Dynamic sys tems a r e  henceforth understood a s  systems which belong to  
the space R*, and closeness  is interpreted a s  c loseness  in R*. 
considering some subregion of c ,  we will always assume that i t s  c losure 
is contained entirely in G I  i .  e ., i t s  distance f rom the boundary of G is finite. 

- = P k  dr u). %=Qk Y) 

following types: 

stable equilibrium states .  

Since sys tems of the f i r s t  

Any one of the simplest bifurcations creating a 

The  definition of the degrees  of s t ructural  instability of dynamic systems,  

W e  therefore have to  define a system of the f i r s t  degree of s t ruc-  

For s t ructural ly  

A s  in the case  of a structurally stable system (96.1, Definition 10 o r  

Let G be the region u s e d  to define the met r ic  in the space R*. 

When 

(A) 
dx 

Let 

be a dynamic system, and W a closed subregion of G .  
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De f i n i t  i o n 30. .4 dymzinic systein ( A )  is  called a system of the first 
degree of structural instability in \t. if it is not striictirvally stable in It' 
and i f  there exists an open region Jr, 

K' c ff c B c G .  

satisjying the folloicin,: condition: f o r  any e > 1 1 ,  there exists 6 > 0 such that 
for any systeni (A) 6-close to ( A ) ,  which is stnictirrally unstable in K, there 
exists a subregion B for  ichich 

- - e  
( H ,  .A) 3 (H,  -4). 

T h e  m e a n i n g  of thiz s o m e w h a t  c l u m s y  def in i t ion  c a n  b e  e l u c i d a t e d  as 
fol lows:  
i t  i s  s t r u c t u r a l l y  u n s t z b l e  i n  W ,  w h e r e a s  a n y  suf f ic ien t lv  close s y s t e m  (XI 
i s  e i t h e r  s t r i t c t u r a l l y  s t a b l e  i n  W ,  o r  (41 and ( A ,  h a v e  path p a r t i t i o n s  of 
t h e  s a m e  ?opologica l  s t r u c t u r e  i n  c e r t a i n  ne ighborhoods  of Ii', and t h e  
t r a n s f o r m a t i o n  f r o m  o n e  p a r t i t i o n  to  a n o t h e r  c a n  b e  i m p l e m e n t e d  b y  a n  
at,bir r a r i l v  small t r a n s l a t i o n .  

W e  n-ill now deriL-e the  n e c e s s a r y  condi r ions  s a t i s f i e d  b y  a n y  s y s t e m  
of chc f i r s t  d e g r e e  of s t r u c t u r a l  i n s t a b i l i t y .  
a n a l o g o u s  to  t h e  d e r i v a t i o n  of t h e  n e c e s s a r y  condi t ions  of s t r u c t u r a l  
s t a b i l i t y  of  a s y s t e m :  t h i s  is a n a t u r a l  and r e l a t i v e l y  s i m p l e  d e r i v a t i o n ,  
but it r e q u i r e s  a n  e x a m i n a t i o n  of n u m e r o u s  a l t e r n a t i v e s .  

t h e  f i r a t  d e g r e e  o f  s t r u c t u r a l  i n s t a b i l i t y  i n  i t -  i n  t h e  
3 f ? n s e  of P e f i n i t i o n  30. 

(.A) i s  a s v s t e m  of t h e  f i r s t  d e g r e e  of s t r u c t u r a l  i n s t a b i l i t v  in  f i .  if 

T h e i r  d e r i v a t i o n  i s  b a s i c a l l y  

Throughout  t h e  r e m a i n i n g  p a r t  of t h i s  s e c t i o n ,  ( A )  i s a s y s t e m  o f  

2 .  
of s t r u c t u r a l  i n s t a b i l i t y  

E q u i l i b r i u m  states of systems of the first degree 

\$'e vcill f i r s t  p r o v e  a n u m b e r  of t h e o r e m s  which e s t a b l i s h  t h e  kind of 
e q u i l i b r i u m  s t a t e s  tha t  s y s t e m s  of t h e  f i r s t  d e g r e e  of s t r u c t u r a l  i n s t a b i l i t y  
m a v  h a v e .  

L e in a 1. Let P fx. y) ana' Q ( x .  y)  be functions of class .V, defined in a 
closed bounded region t7, arui .IIo (x0. yo) any point in that region. F o r  any 

> ( 1  and ti i .Y (ti are nztiiral numbers), there exist polynoviials P ( x ,  y) and 
B (I, y )  with the jolloiring properties: 

respectively. 
a) 

b) B ana' Q a.re irretlticible, i. e., (F,Q) = i .  
c) The ualties of the polynomial P (I. y) ((7 (x .  y))anrl all its deriuatives to 

and Q are 6-close to rank .V in 5 to the functions P and Q ,  

order n inclusive at thti point M, (xo.  yo) coincide with the corresponding ualries 
of the function P (2. y) (0 (x, y)) and its derivatives at the same point. 

L e t  x o  = y, = 0; t h i s  m a y  b e  a s s u m e d  without  loss of g e n e r a l i t y .  
Le t  6; 0 b e  g i v e n .  F y  t h e  W e i e r s t r a s s  t h e o r e m  ( T h e o r e m  2,  5 1.11, t h e r e  
e x i s t  p o l y n o m i a l s  P* (z, y) and Q* ( x .  y)  which are & / 2 - c l o s e  to r a n k  N to  t h e  
func t ions  P and Q,  r e s p e c t i v e l y ,  and  which s a t i s f y  condi t ion  (c ) .  If t h e  
p o l y n o m i a l s  P *  and Q* are i r r e d u c i b l e ,  t h e y  c a n  b e  adopted  as P and 0, 
and t h e  l e m m a  is p r o v e d .  

P r o o f .  

Suppose  t h a t  P* and Q* are r e d u c i b l e  polynomia ls .  
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Ch.X[I. CREATION OF LIMIT CYCLE FROM LOOP OF SADDLE-NODE SEPARATRIX I 
Then they can be written in the form 

P*=Pi(%, ~ ) . R ( I ,  Y), Q * = Q i ( s t  Y).R(I, g), 

where (Pi, Qi) = 1, and R is a polynomial of higher than zero  degree.  

a r e  reducible. Let 
I f  ( R ,  Q1) = 1, we may take P"(x, y ) = P *  (I, y). Now suppose that R and Qi 

Qi (5, Y) = 'pi (I, Y)*Tz (z, Y) . . . T& (G Y). $1 (2, Y) * $ z  (2, Y) . . . $I (I, Y) ( 1) 

b e  the factorization of Ql into irreducible factors .  
following conditions a r e  satisfied: 

It is assumed that the 

R ( x ,  y) is divisible by q j ,  j = l ,  2, . .., I ;  (2)  

(the number k may be  zero,  i .  e., the polynomials 'pi need not occur  in 
the factorization (1 ) ) .  Let fur ther  a;c+py, a#O, p # O  be  a polynomial of 
the f i rs t  degree which is irreducible with any of the polynomials 91 ( i  
= 1,2, . . . , L), and r is a natural number. 

Suppose that 

Ri(5, Y) = R (19 Y) + (a+ BY)' ' P ~ ' P Z  . . * 'P&, 

and 
p(G Y) = PiRi = P* (2, Y) 4- Pi (2, Y) (w + (Pi% . . . (Pk. 

From ( l ) ,  (2), (3) it follows that ( R l ,  Qi )  = 1. Since ( P i ,  Ql) = 1, we have 
(F,Ql) = 1. It is further evident that i f  the numbers a and f~ a r e  sufficiently 
small, and r is sufficiently large, the polynomials and P* a r e  6/2-close 
to  rank N and coincide at the point (0 ,  0) ,  together with their  derivatives to  
order  n , inclusive. 
irreducible with Qi. 

If (P", R)  = 1, then 
( P "  Q * )  = 1 and we may take Q ( I ,  y) = Q* (5, y) .  If, however, a and R a r e  
reducible, using the same  construction a s  for  R1 (I, y), we can construct 
a polynomial R z  (x, y) which will be i r reducible  with P" ( E ,  y) and such that 
the polynomial 

We have thug constructed a polynomial P" which is 

Now consider the polynomials and Q* = Q,R. 

Q (5, Y) = Q i  ( ~ 3  Y) R2 (I, V) 

is 6/2-close to  Q * ( I ,  y) t o  rank N ,  and 
together with their derivatives to o rde rn ,  inclusive. 
and 
This  completes the proof of the lemma.  

W may have only  a finite number of equilibrium states in this region, each 
of which is furthermore isolated. 

equilibrium state  of system (A) in W is isolated. 
and that M ,  (I". vn)  is an unisolated eauilibrium state  in  W .  Then. bv 

and Q* coincide at  the point (O,O), 
The polynomials P 

constructed in this  way fulfill conditions (a),  (b), and (c) of the lemma.  

T h e  o r e  m 53. A system of the f i r s t  degree of structural instability in 

P r o o f . Since W is a closed region, i t  suffices to  prove that every 
Suppose this  is not so, 
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Remark3  to Theorem 5 (52.2), 

Since ( A )  is a system of the f i rs t  degree of s t ruc tura l  instability in W, 
there  exis ts  a region R, T t ' c  H ,  described in Definition 30. 
be an a rb i t r a ry  number. By Definition 30, there  exis ts  6 > 0 such that 
if system (x) is 8-close to ( A ) ,  then 

Let e > 0 

ei ther  (a )  ( A )  is s t ructural ly  stable in W ,  
or (b) (3,  is s t ructural ly  unstable, and 

where is some region. 
Consider a dynamic system 

8-close to  ( A ) ,  where the right-hand s ides  a r e  i r reducible  polynomials 
which coincide, together with their  f i r s t  derivatives, with the functions 
P and Q and their  f i rs t  derivatives a t  the point M0 (TO, YO) (such a _system 
exis ts  by Lemma 1).  AT, (zo, yo) is then an equilibrium s ta te  of ( A ) ,  and 

Zi (ZO. YO) = A (z, Y) = 0. (6) 

Since (A) is 6-c lose  to (A) ,  one of the conditions (a) or (b) should_apply to 
this  system. However, condition (a) is ruled out, s ince by (6), (A) has a 
s t ructural ly  unstable equilibrium stateMo in W .  
unacceptable, since (A) has  in tt' an infinite number of equilibrium states ,  
whereas (A) has a finite number of equilibrium s ta tes  in the plane (since 
(F, Q', = 1) and relation (5) is therefore  inapplicable. This  contradiction 
proves the theorem. 

L e wt ni a 2. Let O,, 02, . . ., 0, be all the equilibriicrn states of (A) in 
W'. There exist c0 > 0 and 8o > o with the foilacing property: if (A)  i s  

6,-close to (A)  and is st,ructurally unstable in W ,  the ~,-neighbmhoOd of 
each point Oi, i = 1, 2, . . .? S ,  contains precisely one equilibrium state 
Ci of (A1an.d the equilibrium states Oi and haue the same topological 

The number eo > 0 may 

Condition (b) is also 

structure. 
be taken as small as desired. 

fying the condition of Definition 30, 
', H 3 W (Figure 1 4 7 ) .  Without l o s s  

of generality, w e  may assume that 
Hcontains no other  equilibrium s ta tes  
of (A) ,  except O,, Ox, . . ., 0, ( this  is 
so if H is a sufficiently smal l  neighbor- 
hood of the closed region Wj. e ,  > 0 
is chosen a s  a number satisfying the 
following conditions: 

(a) The neighborhoods U,, ioi), i = 
= 1,2, . . . , s, a r e  contained in H and no 
two of these neighborhoods intersect .  

P r o o  f . Let H be a region sa t i s -  

1 
I 
\ 

FIGifRE 147 
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(b) The distance of each neighborhood U q , ( O i )  f rom the boundary of H is 

By Definition 30, to  this  E ,  corresponds a,,> 0 such that if  (A) is &,-close 
g rea t e r  than 2 eo (Figure 1 4 7 ) .  

to  (A) and is s t ructural ly  unstable, we have 

(8, z) 2 ( H ,  A ) ,  (7)  

whet-e f7 is some region. 

which we designate 6,, 62, . .  ., 0,. 

f is an eo-translation moving d into H and conserving the paths, see 84.1, 
Definitions 8 and 9).  

It follows f rom ( 7 )  that 

Let f be the mapping of 

contains precisely s equilibrium s ta tes  of (A) ,  

onto H implementing the relation (7), (i. e., 

- 

Let, further, f (ai) = O t ,  i = 1, 2,  . . . , s. Then 

6i c u,, (Oi). ( 8 )  

By condition (b),  each of the neighborhoods U , , ( O j )  is contained i n H ,  i .e . ,  

u,, (Oi) c J7 (9 )  

(see footnote to p. 67): It follows from (8) and (9) that ai is the only 
equilibrium state  of (A) contained in Ueo (Oi ) .  
path- conserving topological mapping, the equilibrium s ta tes  Oi and Gi have 
identical topological s t ruc tures .  

There 
exists 6, > 0 such that if (A) is  structurally unstable, &,-close to (A), 
and has an equilibrium state at the point 0 ,  the topological structure 
of the equilibrium state 0 of (A) coincides with the topological struc- 
ture of the equilibrium state 0 of (A). 

Lemma 3 follows directly from Lemma 2 .  6, can be chosen a s  the 
6, of Lemma 2 .  

T h e  o r e m  5 4 .  A system of the f i rs t  degree of structural instability 
in IZ' has no equilibrium states with A = 0, u = 0 in this region. 

P r o o f .  
Suppose that i t  has  an equilibrium state  0 (0, 0)  in W for which A = 0, u -= 0 .  

Let 6,>0 be  the number defined by Lemma 3 .  Ey the Weiers t rass  
theorem, there  exis ts  a system 

Since f (5') = Ot and f is a 

The proof of the lemma is complete. 
L e m m a  3 .  Let 0 be an equilibrium state of (A), 0 c W. 

Let (A) be a system of the f i rs t  degree of s t ructural  instability. 

(A)  
I 

e = P  d t  (z, y), %=- Q(z, y) 

6,/2-close to (A) ,  where P and 0" a r e  polynomials, and the values of 
and their  f i rs t  derivatives at the point O ( 0 , O )  coincide with the values of 
the functions P and Q and thzir  f i rs t  derivatives at the same  point. 0 ( 0 , O )  
is an equilibrium state  of (A) for  which 

and 0 

(10) 
- I 

A ( 0 ,  O ) = A ( O ,  O ) = O ,  ~ ( 0 ,  O)=U(O, O)=O. 

At least  one of the polynomials P ,  0 has l inear  t e r m s  (otherwise, we 
replace with h y  +- 3 ,  where h is a sufficiently smal l  number; the point 
0 remains  an equilibrium state with A = u = 0) .  
the f i rs t  degree of s t ructural  instability, and (A) is a0/2-close to  (A) and 

Since (A) is a system of 
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has  an equilibrium state  at point 0 ,  (A)  i s  a s t ructural ly  unstable system 
with an isolated equilibrium state  at 0 .  

be arrittcn in the form 
Let u s  now apply the resu l t s  of 123. In virtue of these resul ts ,  (x) may 

where h ,  g, f a r e  analrt ical  functions, h ( 0 ) - g ( 0 ) - 0 ,  r > 2 .  a#O, and n > l  
if 6 2 0  ( see  923.2, ( 2 5 ) ) .  

Consider the system 

where 2°C 0 and i s  so smal l  in absolute magnitude that (A,) and (A) a r e  a0/2-  
close.  

The point 0 i s  then an equilibrium state  
of (-XI)  for wkich A 
for svstem ( A )  (for system (A,)) i s  e i ther  a saddle-point, or a node, or a 
focus, o r  a center ,  or an equilibrium state  with an elliptical region, and 
for svstem (3,)  ( for  s,ystem-(.x)) it is ei ther  a degenerate equilibrium state 
o r  a saddle-node. 
5,cIose to (A ) ,  and the topological s t ructure  of the equilibrium state  0 of 
t.4) is different from the topological s t ructure  of the equilibrium state  0 of 
( - X I ) .  This  contradicts Lemma 3 .  

Firs t  consider t h e  case  r >  2 .  
0 .  By 523.2, 11, p. 226, i f  r is odd (even), the point 0 

Thus, ( A )  and (A, )  are s t ructural ly  unstable systems 

Let now r = 2.  In this case  (XI) has the form 

d r  
d t  y. * = >x 2. ax2 11 Th(.r)l  + . . . d t  
- -- 

The point O ( 0 , O )  is an equilibrium state  of this  svstem with A = - h > 0 
and u 1 0,  i . e . ,  a multil>le focus o r  a center .  This  equilibrium state  
is s t ructural ly  unstable, and (Al,) i s  therefore a s t ructural ly  unstable 
system. With regard to (x), the point 0 i s  a degenerate equilibrium 
state  for r = 2 ( see  QT, $ 2 2 . 2 ,  Theorem 6 i ) .  This leads to the same 
contradiction with Lemma 3 a s  for r > 2. This  completes the proof of 
the theorem. 

I t  follows from Theorem 54 that every equilibrium state  of system 
( A )  in W is ei ther  a simple equilibrium state  or an isolated equilibrium 
sTate with A = 0 and u + 0. 

-4s we know, a simple equilibrium state  has  a multiplicity of 1 (s7.3, 
Definition 15, S2.2, The3rem 6 ) .  Let u s  find the multiplicity of a 
multiple equilibrium staye of system ( A ) .  

in It ' ,  any multiple equilibriririi s ta t e  in FV has a Pnultiplicity of 2. 

the previous theorem A ( 0 , O )  = 0, o ( 0 , O )  #O. 
M'B may take ( A )  in the form 

T h  e o r e  in 55. If (A) is a s y s t e m  of the first degree of instabili ty 

P r o o f . Let O ( 0 , O )  be a multiple equilibrium state  of (A) ,  0 E W .  By 
Without loss  of generali ty 

where 
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(system (A) can be reduced to  this  form by a non-singular l inear  t rans-  
formation, s e e  QT, $ 2 1 . 2 ) .  

According to the theorem of implicit functions, the equation I 
has  a unique solution for  y in the neighborhood of O(0,  0). 
be cp(r). Then 

P (4 + Q (I, 'p (4) = 0, 

and 

cp(O)=O. 

It follows f rom (IZ), (14), and (15) that 

93' (0) = 0. 

9 (4 = P (I, cp (4). 
Consider the function 

(13) 

Let this  solution 

Direct computations show that 

9 ( 0 ) = 0 ,  V ( O ) = O ,  $"(O)=p:,(O, 0). I 
F r o m  Definition 15 ($ 7.3) and Theorem 7 ($2.3) it follows that the 

equilibrium state  U ( 0 ,  0) of system (11) has  a multiplicity of 2 i f  and only 
i f  pkX (0, 0) # 0. 
that 

We will now show that this  condition is satisfied. Suppose 

P i x  (0, 0) =o. (19) 

Let e,, and a,, be the positive numbers introduced in Lemma 2.  A s  in  
our  proof to  Theorem 54, we use  the Weiers t rass  theorem and construct 
a system 

6,/2-cIose to  ( I l ) ,  where 5 and 5 a r e  polynomials which together with 
their  derivatives to  second order  inclusive coincide at the point O(0,O) 
with the functions p and q and their  derivatives. Then 

(20) 

gx(o, 0) =o. ( 2  1) 

- 
pc(0, O)=&(O,  O ) = Z ( O ,  O)=?(O,  O ) = q ; ( O ,  0) =&(0, O ) = O  

and 

Since h" ( 0 , O )  = 0, (A) is s t ructural ly  unstable in W .  Therefore, by 
Lemma 2, the equilibrium state  U ( 0 . 0 )  of (A) is isolated. 

Let G(z) and $(z) be  the analogs of the functions 93 and$,  i.e., these 
a r e  functions defined by the relations 
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and 

(231 

and 5 are a n a l y t i c a l  func t ions  ( p o l y n o m i a l s ) ,  @ and 5 are also 

c 

$(I) =;(I, Cp(4). 

S i n c e  
a n a l v t i c a l  func t ions .  B:J (20)  and (211, 

(0) =T (0) = o  (24)  

and 
,.. * (0) = 5' (0) = i j " (0 )  = u. 

ILIoreover, $ ( x )  cannot  b e  i d e n t i c a l l y  z e r o ,  
suf f ic ien t ly  s m a l l x ,  t h e  point (5. k ( x ) )  i s  a n  e q u i l i b r i u m  s t a t e  of ( A ) ,  so 
tha t  0 is n o  l o n g e r  a n  i s o l a t e d  e q u i l i b r i u m  s t a t e .  T h u s ,  n e a r  t h e  point 
x = 0, t h e  funct ion $(z) is e x p r e s s i b l e  in t h e  lorm 

Indeed,  i f  $(x) = 0, t h e n  for a l l  

- 
' p ( x ) - ~ ~ + & * z " - ' i  ..., (26)  

,&here  a d t o  and n\,3. 
C o n s i d e r  t h e  dynamic: s y s t e m  

\<;here pf.0 is so small that  the s y s t e m s  (A,\ and (-3) are d0/2-c lose .  
S i n c e  0 , 0 ,  0) is a m u l t i p l e  e q u i l i b r i u m  s t a t e  of (&), t h i s  s y s t e m  is 
s t r u c t u r a l l y  u n s t a b l e  i n  W .  

R y  (221, y = + ( x ) i s  t h e  s o l u t i o n  of t h e  equat ion  Q ( x ,  y) = 0 for y .  
(F (x) for y i n  t h e  equat ion  p,, (x. y) = 0, w e  o b t a i n  a n  equat ion  f o r  2, i .  e., 
F p ( x ,  $(.I) = 0 ,  or  e x p l i c i t l y  

L e t  u s  t r y  to find m m e  e q u i l i b r i u m  s t a t e s  of (A,) n e a r  t h e  point 0 .  
I n s e r t i n g  

or 

w h e r e  h (p, x) = p -,-cuc+a,z'+ . . . . 

s h o w s  tha t  t h e  equat ion  ,h (p, 3) = 0 h a s  a s o l u t i o n  x = x, n e a r  t h e  point 
O!O, 0 )  which goes t o  z e r o  for p -+ 0. 
T h e  point 0, (I,,. ' p ( x , ) )  is a n  e q u i l i b r i u m  s t a t e  of t h e  s y s t e m  (x,) which 
i s  d i f fe ren t  f r o m  0 2nd lies as close as d e s i r e d  to 0 ,  w h e n p  is suf f ic ien t ly  
s m a l l .  

We h a v e  t h u s  e s t a b l i s h e d  t h a t  i f  p:. ( 0 , O )  = 0, t h e r e  e x i s t s  a svstem (A,) 
&-close t o  ( A )  which  is s t r u c t u r a l l y  u n s t a b l e  in W' and ye t  h a s  tWG e q u i l i b r i u m  
s t a t e s  i n  a n y  a r b i t r a r i l y  small  neighborhood of 0 ,  n a m e l y  0 and 0,. 
c o n t r a d i c t s  L e m m a  2. 
a mul t ip l ic i ty  of 2.  Q. E .  D. 

T h e  o r e  r)t  56. I f ( A )  is a system of the fi .rst  degree of structural 
iristability in i t ' ,  any ntriltiple equilibrium state of this system in itr is 
a saddle-nede. 

S i n c e  h (0, 0)= 0, h; (0, 0) = a + O., the t h e o r e m  of i m p l i c i t  func t ions  

C l e a r l y ,  if p P O ,  t h e n  I,, # O .  

T h i s  
'Thus, p:x (0, 0) # 0, i .  e . ,  t h e  e q u i l i b r i u m  s t a t e  0 h a s  
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P r o o f  . Theorem 56 follows directly f rom Theorems 54 and 55 because 
of the following general  proposition: a m u l t i p l e  e q u i l i b r i u m  s t a t e  
of  m u l t i p l i c i t y  2 f o r  w h i c h  u # O  i s  a s a d d l e - n o d e .  I f (A)  
is an analytical system, this  proposition is contained in I, $23.2 (or,  
equivalently, in QT, $ 2 1 . 2 ,  Theorem 65). For a non-analytical system, 
the proof can be obtained by the same method a s  the proof of Theorem 65 
in QT.  

Theorems 54, 55, and 56 show that a n y  m u l t i p l e  e q u i l i b r i u m  
s t a t e  o f  a s y s t e m  o f  t h e  f i r s t  d e g r e e  o f  s t r u c t u r a l  
i n s t a b i l i t y  i s  a s a d d l e - n o d e  w i t h  u # O  a n d  a m u l t i p l i c i t y  
o f  2 .  

We have seen (Chapter IV) that a simple equilibrium state  is stable, except 
i f  i t s  character is t ic  numbers a r e  pure imaginary. It is readily seen 
that a system of the f i r s t  degree of s t ruc tura l  instability may have a 
s t ructural ly  stable equilibrium state of any type. We w i l l  therefore  con- 
centrate  on equilibrium states  with pure imaginary character is t ic  numbers .  
Each of these equilibrium states ,  a s  w e  know, is ei ther  a multiple focus, 
o r  a center, or a center-focus ( a  center-focus i s  possible only for a non- 
analytical system, r emark  at the end of $24.4). 

Without l o s s  of generality, we assume that the equilibrium state  is the 
point O ( 0 ,  0) and that (A) is given in the canonical form 

Let u s  now consider simple equilibrium states ,  i .  e., those with A # 0. 

(28) 
d x  x= --BY+cp(Z, Y), ~ = B 2 + W t  Y)? 

where @ >0,  and cp and 21, a r e  functions of c lass  3, which vanisp together 
with their  f i r s t  o rde r  derivatives a t  the point 0. 

extending from the point 0, and the function d (p) = f (p) - p .  
functions are of the same c lass  a s  cp and$.  
of d (p) at the point 0 a r e  known a s  the focal values. 
Lemma 5 and (25)) that 

In Chapter IX we examined the succession function f (p) defined on a ray  
Both these 

The values of the derivatives 
We have seen ($24 .2 ,  

d (0) = d' (0) = d" (0) = 0. (25) 

If d" (0) # 0, O ( 0 , O )  is a multiple focus of multiplicity 1 (see 5 2 4 . 2 ,  
Definition 2 6 ) .  
m >  1, or a multiple focus of indefinite multiplicity, o r  a center, o r  a 
center-  focus. 

in W has equilibrium states with pure imaginary characteristic numbers 
in this region, i t  is  a multiple focus of multiplicity 1 ,  i .  e . ,  
this point. 

O ( 0 , O )  of system (28) we have 

If d " ( 0 )  = 0, O i s  e i ther  a multiple focus of multiplicity 

T h e  o r  e m 57. If a system of the f i r s t  degree of structural instability 

P r o o f  . Suppose that the theorem is not true, i .  e., for  the point 

d" (0) = 0. (30) 

A s  we know ($24.3, (35), (36)), system (28) may be written in the form 
3 

d x  
= p ( 2 9  Y) = - BY + p ,  (2. Y) +pt (2, Y) + 3 53-allapz (x ,  

a=O 
3 (31) 2 = Q (2, Y) = BS + Qz (2, Y) + 0 s  (2, Y) + 3 S ~ - ~ Y O L Q Z  (2, Y) 

a=O 
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where P2 and Qz ( P a  and Q3)  a r e  homogeneous polynomials of degree 2 (of 
degree 3),  and P:(z, y) and Q: (z, Y) a r e  continuous functions which vanish 
for z = y = O .  

polynomials which provide an adequate fit of the functions P; and QI: and 
vanish at the point O ( 0 ,  0) .  Then the sys tem 

Let do> 0 be the number defined by Lemma 3 .  Let further Fz and 0; be 

3 
dz 

= -BY + P2 (G Y) f P3 (z, Y) 4- +3-a?/@ (I, Y) = P(z ,  ?A, 
3 (A) G O  

dY z=P+ Qz (17 Y) + 0 3  (5, Y) + 2 z3-aPQz (z, Y) =Q(zf Y) 

is 6,/2-close to (A) and the point 0 i s  i t s  equilibrium s ta te  with p u r e  
imaginary character is t ic  numbers. Let J(p) be the analog of d ( p )  for 
the system (A) .  

a=o 

It follows from equality (30 )  and from Lemma 6, 9 2 4 . 3  that 

2 ( 0 )  =o. ( 3 2 )  

Since (A)  is an analytical system, the las t  equality shows that O ( 0 , O )  is 
e i ther  a center  or a multiple focus of multiplicity p > 1 for this  system. 
W e  will now show that i t  cannot be a cente_r. 

Indeed, suppose that 0 is a center  of ( A ) .  Consider the sys tem 

(A, )  d z  -_ dt -F(z, Y ) i P P + Y 9 $ / ,  %=W, Y ) + p ( ~ - F i ~ ) G  
where p f O ,  with the corresponding function d;(p). For a sufficiently 
s m a l l p ,  system (A,) is 80-close to sys tem ( A )  (i.e., to  system (28)) .  
By Lemma 7,  9 2 4 . 3 ,  we see that 

2; (I)) = d"; (0) = 0, 2;,* (0) = i2x # 0, P 

i.e., 0 is a multiple focus of system (XI). Thus, (A) and (-TI) a r e  s t ruc-  
turally unstable systems 8,-close to ( A ) ,  and the equilibrium s ta te  0 is a 
focus for  (A,) and a cen t i r  for ( A ) .  This  c lear ly  contradicts Lemma 3.  

W e  have thus established that 0 is a multiple focus of ( A ) .  
Then, by Lemma 3, 0 is also a multiple focus of the original sys tem 

(A).  We will show that this  conclusion involves a contradiction. 
Indeed, le t  0 be a multiple focus of ( A ) .  Then, if q >  0 i s  sufficiently 

small ,  all the paths of sys tem (A) contained in U ,  (0) (with the exception 
of the point 0 )  are sp i ra l s  which wind onto 0 for i +  - 00 or for  t +  f 00. 
Choose q >  0 which sat isf ies  this  condition. 

Let e be  a positive nurnber, E < 2,  8 ,  0<8<&,  a number corresponding 

to  e in virtue of Definition 30 .  
unstable in it' and is 8 - c b s e  to  (A),  we have 

(H, A ) & ( a , ,  E),  

Then, i f  some system (8) is s t ructural ly  

where 8, is some  region, and €I is the region introduced in  Definition 3 0 .  
We may take q >  0 so sma l l  that U , ( O ) c R .  Then, f rom the above relation 

(U,(0), A) 2 (7% B), (33)  

where is some  region. 
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Fur ther  suppose that 0 is an equilibrium state  of (6): W e  will now 

By (33 ) ,  all the paths of (e) contained in 7 a r e  sp i ra l s  winding onto 
It follows f rom the inequality 

Thus, i f  (B) is a s t ructural ly  ucstable system 

t r y  to  extract some information about the neighborhood V .  

the point 0 (the point 0 itself excepted). 

E -= $that U,,, (0) c 7 .  

Let the system (A) constructed above be  6/2-clos_e to ( A ) .  

Let (8) be the system 

Since 
6<6,,, 0is a multiple focus of multiplicity m >  1 of ( A ) ,  a s  we have seen.  

where p # O  is so smal l  that (3,) is 6/2-close to  (A). 
Theorem 40 we have seen that if q is taken sufficiently smal l  and of an 
appropriate sign, (xi,) will have at least  one closed path in U,,,, @)(see 
$25.1 ,  proof of Theorem 40, in  par t icular  equations (3)- (9);  
purposes k = 2 ) .  
paths of (A,) in U,jZ (0) are sp i ra l s .  

equilibrium states  of a system of the f i r s t  degree of s t ructural  instability. 
They show, in  particular, that if (A)  is a dynamic system of the f i rs t  
degree of s t ructural  instability in W ,  i t  may have only a finite number 
of equilibrium states  in this  region, and each of these equilibrium states  
is ei ther  a s t ructural ly  stable equilibrium state ,  o r  a multiple focus of 
multiplicity 1, or,  finally, a saddle-node with u # O  and a multiplicityof 2 .  

In our  proof of 

for  our 
This  contradicts the previous proposition that a l l  the 

Q. E. D. 
Theorems 5 3 -  57  provide a complete solution to the problem of 

3.  Closed paths of sys tems of the first degree 
of s t ructural  instability 

Closed paths of dynamic sys tems were considered in Chapters V and X. 
In the present subsection, w e  will u s e  the ea r l i e r  notation and some of 
the previous resul ts .  

F i r s t ,  w e  will prove a number of lemmas  relating to  the succession 
function on a normal  to  a closed path. I 

be a dynamic sys tem of c l a s s  N or  an analytical system, Lo a closed 
path of this  system, 

x=TJ(t), !4=9(4 (LO) 

the motion correspondingtothis  path, T> 0 the period of the functions cp and 9 .  

of the path Lo,  defined by the relations 
In 13.1, we introduced curvilinear coordinates s, n in the neighborhood 

- - 
5 ='p (s, n),  Y=+ (s, n) ,  
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( 3 4 )  
- w h e  re 
~ ( s ,  n ) = = q  (s)+-n.*' (s), $(s. n)=$(s)-nncp'(s). 

S y s t e m  ( A )  is d e s c r i b e d  i n  t h e s e  c o o r d i n a t e s  by t h e  d i f f e r e n t i a l  equat ion  

d n  
d S  
-& R (s, n) ,  ( 3 5 )  

w h e r e  R ( s .  n)  i s  a funct ion of class S ( o r  an analbytical funct ion)  *hich  is 
p e r i o d i c  i n  s with t h e  per iod  T and s a t i s f i e s  t h e  i n i t i a l  condi t ion  

R ( s ,  0)  = 11. 

Let. n = f (5, no) b e  t h e  so lu t ion  of equat ion  (35) s a t i s f y i n g  the i n i t i a l  

T h e n  
condi t ion f (0, n,)) = no .  

(nJ  = f (T. no) 

i s  a s u c c e s s i o n  funct ion on  t h e  arc without contac t  I def ined  by  t h e  e q u a t i o n s  

I = :  q (0)  +n$' (0). y = $ (O)-nq' ((I), 

which  is n o r m a l  to t h e  path L, at t h e  point s =  0 .  
s u c c e s s i o n  funct ion,  w e  c o n s i d e r e d  t h e  funct ion 

Alongside x i t h  t h e  

d (no)  = f ( n o )  - no. 

f (no)  and d (no)  are defined for all suf f ic ien t ly  small ( in  a b s o l u t e  magni tude)  
v a l u e s  of no, s a y  for I no 1 < n,f, and t h e y  a r e  func t ions  of t h e  same class  as 
t h e  o r i g i n a l  s y s t e m  ( A )  (see 9 12.2 ,  e q u a t i o n  (5)  and  the  t e x t  t h a t  fo l lows) .  

Let  u s  s t a t e  t h r e e  l e m m a s  ( L e m m a s  4,5, 6)  r e g a r d i n g  t h e  s u c c e s s i o n  
func t ions  of close s y s t e m s .  T h e s e  l e m m a s  follow d i r e c t l y  from g e n e r a l  
c o n s i d e r a t i o n s  ( t h e  cont inuous  d e p e n d e n c e  of t h e  s o l u t i o n s  of d i f f e r e n t i a l  
e q u a t i o n s  o n  t h e  r igh t -hand s i d e s  and t h e  d i f fe ren t iab i l i ry  of s o l u t i o n s  
with r e s p e c t  to  p a r a m e t e r s  and i n i t i a l  v a l u e s ) ,  and we swill o m i t  t h e  
r c s p e c t i v e  p r o o f s .  It is a s s u m e d  t h a t  t h e  modif ied s y s t e m s  

d g  O(Z. y) T = P ( x .  Y). === d r  - 
belong to t h e  s a m e  class as s y s t e m  (-A), and \ye  c o n s i d e r  c l o s e n e s s  t o  
r a n k  k ,  w h e r e  1 .:k<..V ( i f  (A1 i s  a n  a n a l y t i c a l  s y s t e m ,  k m a y  b e  a n y  
n a t u r a l  n u m b e r ) .  

L e ~i m a  4.  For any e > 0 , there exists 6 > 0 rcilh the follotcirzg 
property: i f  (A) is 6-close to ( A )  to rank k ,  thepi 

(a, the nortrial I is an arc ivitfzoiit contact of (A) also, and 
a siiccession ficnction T(rt,) of systein (A) and th is  also the function 2 (no) = 
- f (nolave defined on this arc fm all no. I no I < n,l ; 

d (no)  aye 6 -close to rank X. . 

,-. 

(b) the functions f (no)  and f (n , )  and thus also the functions d (no)  and 

In \$.hat fol lows,  we  wil l  u s e  modif ied d y n a m i c  s y s t e m s  of a s p e c i a l  f o r m ,  
n a m e l y  
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where pi a r e  parameters ,  and p t  (I, y) and qt (x ,  y) are functions of one c lass  
with P and Q .  

the normal 1 is an 
arc without contact for &,,) and a succession function fc(no, pt, pa, . . ., pn) of 
the same class as P and Q is defined m this arc fav all no, Inol<n:. 
Moreover, 

L e m m a  5. There exists p* > 0 such that if Ipl I < p* 

- 
f ( n o ,  0, 0,  ..., O ) = f ( n o ) .  

where P*, Q*, p: ,  q: a r e  functions of the same c l a s s  a s  P and Q. Let p* be 
a number satisfying the conditions of Lemma 5. 

i f  [ p, (<p*  
functions P, Q ,  p i ,  qi , respectively, the normal I is an arc without contact 
for the system (A;, ,,) and a succession function f* (no, pi, p a ,  . . . , pn) is defined 
on this arc for all no, I no 1 < n:. 
and Q in all its variables and it is e -close to rank k to 7 .  

L e m m a 6 .  For any e > 0, there exists 6 > 0 with the following property: 
and the functions P*, Q*, p t ,  qf are 6-close to rank k to the 

The function f* is of the same class as P 

The next lemma is more  restr ic ted.  It deals  with the system 

Z = ~ ( G  Y ) + ~ P ( Z ,  Y ) = F ( ~ ,  Y, p), $ = Q ( G  Y ) + P P ( ~ ,  Y)=Q"@,  Y). I dz (A) 

Let 7(no ,  p) be the succession function for this  system on the normal  1 .  

normal I ,  we have the equality 
L e m m a  7. For the succession function ?(no, p) of system (A) on the 

i W'L+Q;)& 5 -6: (P;tQ;)& 
ds, ( 3 6 )  

1 - 
f ;  (O,O)= (#@ (()))a+($' (0))s tP+'(s)-F+-J'(s)l e e 

0 

where the values of the functionsp;, Q;,  p ,  and q are evaluated at the 
Point (cp (s), + (s)). 

P r o o f . In Chapter V we rewrote the differential equation (35) cor-  
responding to  system (A) in  the form 

where (p and $ a r e  defined by (34)  (see s 13.2, (12)) .  
equation for (A) is 

The corresponding 

where the functions P, Q, p ,  q a r e  evaluated at the point (G(s, n), $(s, n)). 
Let n=F(s ;  no, p) be the solution of equation (37) satisfying the initial 

condition 7 (0, no, p) s no. Then identically 
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and t h e  s u c c e s s i o n  func t ion  of (3 )  on t he  n o r m a l  1 is def ined  bv the  r e l a t ion  

( the  a s s i g n m e n t  of rhe sixme svnibol 7 to TLVO d i f f e ren t  func t ions  should  not 
l-arl to confus ion ,  s i n c e  o n e  of t h e m  is a fr3nction oi twn a t y J m e n t s ,  and 
rhe n t h e r  is a func t ion  of' t h r e e  a r g l l m e n t s i ,  

r.pt 

tJ (s) - 7; (s. 0 .  0). (401 

r l i i fe ren t ia t ing  ( 3 8 )  with r e s p e c t  to p, changing  t h e  o r d e r  or' cl ifferentiation 
i n  t he  le f t -hand  s i d e ,  sett ing n,,=p= 0 and [using ( 4 0 \ ,  we ob ta in  
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i . e . ,  if t h e  v e c t o r  f ie ld  of t h e  s y s t e m  is a r o t a t e d  f ie ld  of ( A ) ,  t h e n  - 
f; (0, 0)  f 0 .  

P r o o  f . T h e  va l id i ty  of t h e  l a s t  inequal i ty  fol lows d i r e c t l y  f r o m  (36) 
s i n c e  i n  t h e  p r e s e n t  case 

satisfies the eqiiuiities 

Z(0) = 0, 3 ( O ) = e ~ r - f ,  

where 
T 

I -= s [ (F;( (P  (s), rl, (s)))* + (F1 ('P (s), $ (s)))'l ds, 

i. e., f o o v p # ~ ,  L~ is (i sirrrple limit cycle 0;. the system (A;). 
P r o o f . 'l'hc firs! propos i t ion  of t h e  l e m m a  i s  contained in  926.2,  

L e m m a  1, and t h e  s e c o n d  propos i t ion  w a s  e s t a b l i s h e d  incidvnral ly  i n  
o u r  proof  of T h e o r e m  19 ( 3  15.2 (18)).  
i n  (45)  is a c o n s t a n t  depending on t h e  f u n c t i o n s P ,  Q, F ,  rp,  and 9 

0 

T h e  n u m b e r  I3 i n  the l a s t  q u a l i t y  

F e m a r k .  If (-4) i s  a s y s t e m  of c l a s s  N and for i t s  c l o s e d  path La 

d'(0) = d (0) = . . . = d'"'-l'(o) = 0, 

w h e r e  l < m < N ,  then  f o r  all suf f ic ien t ly  s m a l l p f 0 ,  the  path Lo is an 
m- tuple  l i m i t  c y c l e  of (A;). 
f r o m  L e m m a  8. 
t h e  d e r i v a t i v e  & ) ( O )  does not v a n i s h  e i t h e r ,  and t h e  v a l u e s  of z(O!, 
&O), . . .( Zm-l)(o) are  r e s p e c t i v e l y  e q u a l  to ~T(o ) ,  ~ Y ( o ) ,  . . .. ~ - 1 )  ( o ) ,  i . c . ,  
they all v a n i s h  (see 526 .2 ,  proof  of L e m m a  1) .  

Indeed,  i f  d'""(0) = 0, oui' p ropos i t ion  fol lows 
If, however ,  d("(O)+ 0,  t h e n  f o r *  suf f ic ien t ly  small  p, 
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' T i i f ,  nr \,i l e m m a  i s  o f  fundamenta l  i m p o r t a n c e  for what fo l lows .  
L <: / : I  t i !  t i  : I .  Lct (A) be n dynamic systen: qf class N 2 2, and m and K 

..Li,/:L,wl ,M!; I&C)* .< ,  2<m& k < N .  If (A) has a lit)iit cycle L o  of rmiEtip[icity 
m , Itiex , for a ; i y  e > 0 niid 6 > 0 ,  there exists ail arinlytical system (A) 
6 .  ciosc lo rc:r;k k to (A) which has n limit cycle of iniiltiplicity m in U, ( L o ) .  

T h c  proof ?%ill b e  g i v e n  for t h e  case m = 3. 
m 7 9 nt' m ? 3 i s  c o m p l e t e l v  ana logous .  
~ j f  s v s r e m s  of t h e  f i r s t  d e g r e e  of s t r u c t u r a l  ins tab i l i ty ,  we wi l l  o n l y  r e q u i r e  t h e  
c ;1 ii m 7 .: , 

T!ius, IC,: Lo be a l ini-t  c y c l e  of mul t ip l ic i ty  3 of t h e  s y s t e m  ( A ) .  

P r o v L ' .  T h e  proof  for 
F u r t h e r m o r e ,  i n  o.ur t r e a t m e n t  

T h e n  

d (11) = I ) .  d' (0) = 0, d" (0) = 0,  d" (0)  # 0. (-17) 

:\.c, fix rhv n u m b e r s  E .' 0 and 6 > 0 and c h o o s e  F ( r ,  y) to b e  t h e  funct ion 
( b ! '  class iV A 1 defined akLove ( s a t i s f v i n g  condi t ions  ( a )  and ( b ) ) .  
:he  i?ioclificcl s v s r e n i  

C o n s i d e r  

and : l i e +  co r responding .  funct ion 6=a(n,,  po, pl). 
-ha t  I .:+I i s  h ? - c l o s e  to i.ank k ?o ( A ) ,  and t h e  funct ion d is defined for 
:.k! no, 1 no [< is:, for :vhich .i (no) i s  def ined .  

L e t  p,, an: p, b e  so s m a l l  

C l e a r l y ,  

(48 j  I 

d (no, 0, 0 )  d (no). 

' . ' t*c i : i :  A i i  and (481 i t  6% see that  t h e  e q u a t i o n s  

- 
d(n,,. {to.  pl)  i; 0, dC,(n,, ito, pl)  -0. %;(no, [IO. pl)  = 0  (49 )  

i it7v+, ; i  s;it::u!raneous sc~!ution no=O, p o = O ,  pi = O .  
r h i s  s\-s:etii c ) f  equations. 

C o n s i d e r  t h e  J a c o b i a n  of 
\[.e h a v e  

~ I Y ~ ~  1-18' and ' 4 7 )  it F o ! i c ~ u i  ihar d;,(O, 0. O ) = O ,  dz;(O, 0 ,  0 )=  0, aAi(0, 0, 0 ) f O .  
Le: u s  conipute  t i l e  v i c m c n t s  dLt ,  dLo, anci 

c-t+i:ipuT;ttion ~f t i i t ?  nui1ibi5rs 

r a k e  f t ~ ) : : :  rht: s ta r !  po = 0 ,  i . e . ,  we  m a v  c o n s i d e r  t h e  func t ion  d cor- 

- -  
at t h e  point  (0, 0, 0 ) .  In t h e  

(0, 0, (J) and dto,,, (0, I). 0)  vce m a y  evident ly  

rcs l~~~t ic i in . ;  to ? h e  s v s t e t r  -=PpplFF;. d r  $=Q+plFFI.  Lemma 8 i s  t h u s  d t  

applicable. By r h e  f i r s t  equa t ion  i n  (46), a(0 ,  0, pI)=O.  T h e r e f o r e ,  

2 
whtLrc. 1 2 0 .  Therefore, d~o,,l(O, 0, O ) = i # O .  

1 1 .  ( I ,  ij) = O f  Now, b; t h e  s e c o n d  equat ion  in  (461, d:J0,0,pl)= e"!'- 1, 
u J  - 
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For  the computation of &o(O, 0, 0) we may assume f rom the s ta r t  pl = 0, 

i .  e., we may consider the function d corresponding to the sys tem 

Then, by the corol lary from Lemma 7, d; (0, 0, 0) # 0.  
Thus, for  no = po = p, = 0, none of the elements of the Jacobian 

A (no, po, pl) along the second diagonal vanish, whereas all the elements 
left of this  diagonal a r e  zero ,  i. e., A (0, 0, 0) # 0. Therefore ,  by the 
theorem of implicit functions, no = po = pl = 0 is the only solution of system 
(49) in a sufficiently smal l  neighborhood of the point (0, 0 . 0 ) .  

Consider the analytical system 

dz 
d t  
-= 

where P ,  Q are polynomials which are 6,-close to  rank k to  the functions 
P and Q ,  respectively, and F is a polynomial 6,-close to rank k + 1 to  the 
function F .  Let 2 (no, po, pl) be the function corresponding to  this  system, 
and 

d^(no. PO, p1) = 0, k, (no,  PO, PJ =o, 4;; (no, po, CL,) = o (50) 

the equations corresponding to  system (49) .  
of a smal l  increment of implicit functions, § 1.2), system (50) has  a unique 
solution in a sufficiently smal l  neighborhood of the point (0, 0, 0) i f  a is 
sufficiently c lose to rank 2 to  a .  On the other hand, by Lemma 6, i f  6, is 
sufficiently small ,  d is a s  c lose as desired to  rank k to  2, where k > m  = 3 .  
Therefore ,  we can choose 6 , >  0 so smal l  that the following conditions are 
satisfied: 

a 

By Theorem 4 (the theorem 

1 ) 6 , < T ;  
2 )  system (50) has  a unique solution (no, Go, bi) in a cer ta in  neighborhood 

Fur thermore ,  if 6,, io, a r e  sufficiently small ,  an additional condition 
of the point (0, 0,O) which is as close as desired to  zero .  

is satisfied: 

3) 2;; ( i o ,  i o ,  i l l  # 0. (51) 
This  follows from (47) .  
Suppose that all these conditions a r e  satisfied. Then 

$ = P -boQ + ilPF;, g = Q + ji4 + Q P ;  (a 1 

is an analytical system 6-close to (A) which by (50) and (51) has  a t r iple  
limit cycle io corresponding to  the value A. of the parameter  no and contained 
in (I, (L,). This  completes the proof of the lemma for the case  m = 3 .  

For m = 2, the system (A,) should be taken in  the form 

dz 
= P-poQ, -$ = Q + pop, 

and in the general  case,  we should take the system 
dz 

3 = Q +pop + pIFFI + pzFzF; + . . . + pm-zF'"-24,.. 

~ i i - = P - ~ o Q + p j F F ; + p z P F ; f .  * + P ~ - z F ' " - ~ F ; ~  
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In all other  respects ,  the proof for  m # 3 is the same  as for  m = 3 .  
T h e  o r  e r?i 58. If the dynamic system (A) is a system of the f irs t  

degree of structural insr'ability in It.,  it may only hace isolated closed 
paths in this region. 

before, the normal  I to  the path Lo at one of i t s  points and the function 
d (no) .  
Lo correspond to  no = 0. H is the region introduced in the definition of 

a system of the f i rs t  degree 
of s t ruc tura l  instability, H 3 IV. 

P r o o  f . Let Lo be a closed path of ( A )  in W .  We w i l l  consider, a s  

Let this function be  defined for  all no, I no I < n : ,  and let the path 

H Let Q ,  Q c H ,  be a neighbor- 
hood of the path Lo  with the 
following property: any path 
of ( A )  passing through a point 
of Q c r o s s e s  the normal  1 both 
for increasing and decreasing t 
in the segment I no I < n:.  A 
sufficiently smal l  canonical 
neighborhood of Lo may be 
chosen a s  Q (F igure  148) .  

Consider a neighborhood U 
of the path L contained inside 
Q at a positive distance from 
i ts  boundary (in Figure 148, 
Q is the en t i re  diagonally 
hatched region and U is the 

densely hatched region). Let e > 0 be so sma l l  than an E -  translation 
leaves the neighborhood U inside Q . Let fur ther  6 > 0 be the number 
corresponding to  e according t: the t e r m s  of Definition 30.  Let 6 1 ,  
0 < 6, < 6 ,  be so smal l  that if  (A) is 6,-close to ( A ) ,  each path of (A)  
passing through points of the region Q c r o s s e s  the a r c  without contact 
I in the segment I co I < n: both for increasing and decreasing t ,  and the  
function a (no) of ( A )  is defined for  the  corresponding values  of the 
parameter  no. By assurnption d (O)=O.  Since ( A )  is a sys tem of 
c l a s s  3, the numbers d' (0) ,  d" (O), d"' (0) exist. If a t  least  one of these  
numbers  does not vanish, L o  is a limit cycle ( a  simple, a double, or  
a t r iple  one), i.e., i t  is an isolated closed path, and the theorem is 
proved. 

F[GL'RE 148 

Now suppose that 
(3 (0) = d' (0) = d" (0) = d'(0) = 0. 

Consider the sys tem 

For p # 0 and a sufficiently sma l l  6 , ,  (-4) is aj /2-close to  (A), and by 

By Lemma 9, there  exis ts  an analytical sys tem ( A )  6,/2-close to (A) 
Lemma 8, Lo is a limit c,ycle of multiplicity 3 of this. sys tem.  

which has  a limit cycle eo of multiplicity 3 in  any arb i t ra r i ly  sma l l  neighbor- 
hood of the path L o .  
stable. Therefore ,  ( H ,  A )  ( H ,  A ) ,  and consequently 

Syst ,?F (A) is &,-close to  (A) and is s t ructural ly  un- 

(U, A )  :,u, A) ,  
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where i? is some region. 
w e  have U c  P . 
defined for  all no, I no I < n:, and is analytical. Let io be the value of the 
parameter  no corresponding to  the cycle 2,. 
Since eo is a limit cycle of multiplicity 3, 2’ (no) f 0 and therefore  (z (no) 9 0. 
But then, because of analyticity, the function 2 (no) may have only a finite 
number of roots  for  I no I < n:, i. e., (A) may only have a finite number of 
closed paths in  Q ,  and therefore in U. These paths are isolated, i.e., 
they are limit cycles. The mapping of fi onto U which implements the 
relation (52) moves one of these cycles into the path L o .  
also a limit cycle, i .e.,  an isolated closed path. This  completes the 
proof of the theorem. 

T h e o r e m  59. I f ( A )  is a system of the f i r s t  degree of structural 
instability in W ,  every closed path L~ of the system contained in W i s  
either a simple ( i .  e . ,  structurally stable) m a double (of multiplicity 2) 
limit cycle. 

P r o o f  . 
path Lo in W which is neither a simple nor  a double limit cycle of the system. 
Let Lo correspond to  the value no = 0 c 
the path. Let f (no) be the succession function on 1 ,  which is a pr ior i  defined 
for  a l l  no, 1 no I < n:, and d (no) = f (no) - no. 

Since 0 is obtained by e-translation from U, 

Consider the function d (no) corresponding to  the system (A) .  It is I 
W e  may take I io I < n: . 

Therefore, Lo is 

Suppose that the theorem is not t rue,  i. e., (A) has  a closed 

Then 

d (0) =d’  (0) = d”(0) = 0. (53) 

According to  the previous theorem, .Lo is a limit cycle of (A) .  Therefore, 
i f  q > O  is sufficiently small ,  Lo is the only closed path in U, (Lo), and al l  the 
other  paths passing through this  neighborhood wind onto L o .  
tion be satisfied. Moreover, let U, (Lo) c H, where H is the region intro- 
duced in  Definition 30 .  

Let V be  a neighborhood of the path Lo such that vc U, ( L o ) :  let e > 0 be 
so smal l  that i f  
Let fur ther  8 >  0 be the number corresponding to  this  e in viztue of 
Definition 30.  

to  (A) we have ( H ,  A )  4 (fi, A”, and therefore  

Let this  condi- 

is generated from U, by an e-translation, then 3 =I V .  

Then for  any s t ructural ly  unstable system (A) 8-close 

where 6 is some region containing V .  
Since Lo is a limit cycle of (A), d (no) re tains  a constant sign for all 

sufficiently smal l  no > 0. Suppose that d (no) > 0 and nr’ is a sufficiently 
smal l  number. 

Consider the system 
Then d (nil))> 0.  

where F ( I ,  y) is the function of c l a s s  4 repeatedly encountered in the 
preceding. d” (no) is the function corresponding to (A).  

Let p # O  be so smal l  that the following conditions a r e  satisfied: 
1 )  (A) is 13-close to  (A). 
2)  2’(n:”,> 0 .  
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9 31. SYSTEXIE OF THE FIRST DEGREE OF STRLrCTUR4L INSTABILITY 

B y  ( 5 3 )  and Lemma :3 we see t h a t  t h e  pa th  L o  of (A) is a d o u b l e  l i m i t  
c y c l e  of (A) and  t h a t  2 (0 )  = >'(0) = 0, d" (0) = pfi, w h e r e  fi * 0 is a c o n s t a n t  in-  
dependent  ofy. 
t i o n a l  condi t ion  i s  s a t i s f i e d :  

? 

If t h e  s i g n  of y is c h o s e n  as m i n u s  t h e  s i g n  of 0, a n  addi-  , 

3)  k (0) = yfi < 0 .  
By LIac laur in ' s  f o r m u l a  d (no).=d+ n2 +- o (ni), and for suf f ic ien t ly  s m a l l  

L e t  nk') > 0, < n;'' b e  suf f ic ien t ly  small. T h e n  

F r o m  condi t ions  2 arid 4 it  fol lows tha t  t h e r e  e x i s t s  nf), n:) < nap < n i l ) ,  

no, d (4 < 0 .  

4) a (nb") < 0 .  

s u c h  t h a t  2 ( n p )  = 0. 
s y s t e m  ( A )  which  d o e s  riot c o i n c i d e  with L o .  
s m a l l ,  w e  have  E c i - .  
s i g n ,  (A) h a s  a t  l e a s t  two c l o s e d  p a t h s  Lo an: L i n  tr  and h e n c e  i n  0 .  
S i n c e  Lo i s  a l i m i t  c y c l e  of mul t ip l ic i ty  2, ( A )  is s t r u c t u r a l l y  u n s t a b l e .  
T h i s  c o n t r a d i c t s  r e l a t i o n  (54), which  i n d i c a t e s  t h a t  d c o n t a i n s  o n l y  one 
c l o s e d  p a t h  of ( A ) .  

R e m a r k  . We c o n s i d e r e d  s y s t e m s  of class 3, i. e . ,  s t r u c t u r a l  
i n s t a b i l i t y  of t h e  f i r s t  d e g r e e  w a s  t r e a t e d  i n  r e l a t i o n  t o  t h e  s p a c e  R:Jp(see 
:5.1). 
t h e  a n a l y t i c a l  funct ion F (z, y) with t h e  d e s i r e d  p r o p e r t i e s  in  g e n e r a l  c a n  
b e  c o n s t r u c t e d  o n l y  i n  a ne ighborhood of t h e  pa th  L o .  and not i n  t h e  e n t i r e  
r e g i o n  6. To p r o v e  t h e  t h e o r e m  i n  t h e  a n a l y t i c a l  case, w e  m a y  p r o c e e d  
as follows: c o n s t r u c t ,  as b e f o r e ,  a s y s t e m  (.?) of class 3 which  has a 
riGuble c y c l e  Lo and a c l o s e d  pa th  i n  V .  E y  Lemma 2, S 15 .2 ,  t h e r e  
e x i s t s  a n  a r b i t r a r i l y  clclse s y s t e m  of class 3 ,  (A l ) ,  which  c o i n c i d e s  with 
(A) e v e r y w h e r e  e x c e p t  E. small  ne ighborhood of t h e  path 
i n  tha t  neighborhood,  arid t h e r e f o r e  i n  V also, a s t r u c t u r a l l y  s t a b l e  l i m i t  
c y c l e  E,. B y  Lemma 9, o n  t h e  o t h e r  hand ,  t h e r e  e x i s t s  a n  a n a l y t i c a l  
s v s t e m  (A2) a r b i t r a r i l y  close to (A,)  which  h a s  a d o u b l e  l i m i t  c y c l e  i n  
a neighborhood of t h e  pa th  L o .  
a s t r u c t u r a l l y  s t a b l e  l i m i t  c y c l e  E2 i n  t h e  ne ighborhood of t h e  c y c l e  z,. 
T h u s ,  t h e  a n a l y t i c a l  s y s t e m  (Az) h a s  t w o  c l o s e d  p a t h s  i n  V ,  and w e  a g a i n  
end  up  with a c o n t r a d i c t i o n  t o  ident i ty  ( 5 4 ) .  

T h e  n u m b e r  n:" c o r r e s p o n d s  t o  a c l o s e d  pa th  of 
If n:' and p are  suf f ic ien t ly  

T h u s ,  for a Suff ic ient ly  s m a l l  p of a n  a p p r o p r i a t e  

T h e  t h e o r e m  is p r o v e d .  

T h i s  proof  is inappl icable  t o  t h e  class of a n a l y t i c a l  func t ions ,  s i n c e  

and which  h a s  

If (A*) is suf f ic ien t ly  close to (A1), i t  h a s  

4. A s a d d l e - p o i n t  s e p a r a t r i x  f o r m i n g  a l o o p  

A s a d d l e - t o - s a d d l e  s e p a r a t r i x  w a s  c o n s i d e r e d  i n  d e t a i l  i n  C h a p t e r s  IV 
a n d  XI. 
s y s t e m  c a n  h a v e  n o  s u c h  s e p a r a t r i c e s .  In C h a p t e r  XI we c o n s i d e r e d  a 
s e p a r a t r i x  f o r m i n g  a locip and  d e r i v e d  some of i t s  p r o p e r t i e s .  

In t h i s  s u b s e c t i o n  we wi l l  d e a l  with a s a d d l e - t o - s a d d l e  s e p a r a t r i x  of 
a s v s t e m  of t h e  f i r s t  d e g r e e  of s t r u c t u r a l  ins tab i l i ty .  
s e p a r a t r i x  b e t w e e n  t w o  d i f f e r e n t  s a d d l e  p o i n t s  is of no i n t e r e s t  for o u r  
p u r p o s e s ,  since these s e p a r a t r i c e s  are not c h a r a c t e r i z e d  by a n y  addi -  
t iona l  new p r o p e r t i e s  i n  systems of t h e  f i r s t  d e g r e e  of s t r u c t u r a l  ins tab i l i ty .  
W e  wil l  t h e r e f o r e  c o n s i d e r  t h e  case when a saddle-poin t  s e p a r a t r i x  goes 
to t h e  same s a d d l e  point for both  t + - 00 and t -+  + 00, i. e., i t  forms a 
loop .  

In C h a p t e r  IV (!I 11) w e  e s t a b l i s h e d  t h a t  a s t r u c t u r a l l y  s t a b l e  

The case of a 

T h e  r e s u l t s  follow almost d i r e c t l y  f r o m  t h e  f ind ings  of C h a p t e r  XI.  

349 



Ch.XI1. CREATION OF LIMIT CYCLE FROM LOOP OF SADDLE-NODE SEPARATRIX 

Let (A) be a system of the f i r s t  degree of s t ructural  instability in 
W ,  0 (zo, yo) a saddle point of (A), Lo a separatr ix  of the saddle point 0 which 
is contained in W and forms a loop there .  
that the other two separa t r ices  of the saddle point 0 lie outside the loop 
formed by the separatr ix  Lo.  

the loop Lo does not contain any closed paths of (A). 

of the loop Lo contains closed paths of (A) .  

A s  in Chapter XI, we assume 

L e  m m a  10. 

P r o o f .  Suppose that the lemma is not t rue ,  i .e . ,  any neighborhood 

There exists eo > 0 such that the eo-neighbmhood of 

Then by Theorem 44,  3 29  

(Jo = R ( 5 0 ,  Yo) + QI  ( 5 0 ,  Yo) = 0. (55) 

Closed paths passing sufficiently c lose to Lo clear ly  may only lie 

Let H be the region introduced in Definition 30, H x W .  
i n s i d e  the loop. 

q > 0 be  so smal l  that the neighborhood U ,  (Lo)  C H does not contain any 
equilibrium states  of (A) ,  except the point 0,  nor any closed paths which 

lie inside the loop Lo (Figure 149) .  

ass igns a cer ta in  number 6 > 0 to this  e such that i f  (8) is 6-close to  (A) 

and is s t ructural ly  unstable, we have ( H ,  A )  

Let fur ther  

Take some e, O < e < + .  Definition 30 

(B, 2). Then 
e - -  (ut, (Lo), -4) (V,  A),  (56) 

where F is some region. 

* 

FIGURE 149 

From identity (56) and the inequality a<+ we have 

We moreover  see from (56) that contains oreciselv one saddle Doint 6 . ,  
of system (8) and precisely one loop Eo formed by the path of (A) cor-  
responding to  the path Lo.  
neighborhood of the loop z0 should contain closed paths of (A).  
however, contradicts the resul ts  of Chapter XI. Indeed, by Lemma 10, 
1 2 9 . 4 ,  there  exis ts  a system (A) &-close to (A) for which 0 is a saddle 
point; this  saddle point has  a separatr ix  zo entirely contained in u~ (Lo) 
and moreover  

Finally, by the same  relation (5_6), any 
This, 
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5 31. SYSTEMS CY THE FIRST DEGREE OF STRUCTC'RAL iNST.4BILITY 

P y  Theorem 44, s29.1, on the other hand, the loop Lo i s  unstable, i . e . ,  
a sufficiently smal l  neighborhood of the loop can contain no closed paths. 
This  proves the 1emm.i. 

Lemma 10 evident1:y implies that if ( A )  has i n  W a separatr ix  which 
fo rms  a loop, this  loop is ei ther  stable or  unstable. 

T h e o r e  m 60. If a system of the f i r s t  degvee of structitral instability 
in W has a saddle-poi8r2t 0 (z0, yo) whose separatrix forrns a loop contained 
in rr', then oo (z0. yo) + 0. 

P r o o f .  Suppose that the theorem is not t rue,  i .e.,  system (A) has  a 
saddle point 0 (zo, yo) u hose separatr ix  Lo i s  entirely contained in W. and 
f o r m s  a loop, and yet o0 (zo, YO) = O .  

s table  (or unstable), and oo (zo, yo) = 0 ,  then for any q: 0 and 6 > 0 there  
exis ts  a system ( A )  6-close to  (A) which has  in U,(Lo) a separatr ix  that 

forms  a loop and at least  one closed path. 
(A)  i s  a s t ructural ly  unstable system, and therefore for  appropriate 

e and 6, relation (56) should be  satisfied for  this  system. On the other  
hand, this relation carnot be t rue s ince for  sufficiently sma l l  and e ,  
U ,  ( L O )  does not contair. closed paths of (A)  and V contains a t  l eas t  one 
closed path of ( A ) .  
theorem. 

instability in W has a saddle point 0 (.to, yo) for which uo (zo, yo) = 0, no 
separatr ix  e x i s t s  for  t : i is  saddle point which fo rms  a loop and is contained 
entirely in W .  

In  our  proof to Theorem 50 (529.4) we showed that if  the loop Lo is 

2 

The contradiction establ ishes  the validity of the 

Theorem 60 signifies that i f  a system of the f i rs t  degree of s t ruc tura l  

5. The  s implest  dtructurally unstable paths 

A s  we know, singular paths of a dynamic system, i .e . ,  equilibrium 
s ta tes ,  limit cycles, and separa t r ices ,  are the most important e lements  
for  the analysis of the topological s t ruc ture  of a dynamic system on a 
plane. By Theorem 23, 9 18.2, s t ructural ly  stable sys tems may only 
have singular paths of the following types: 

simple foci; 
(a) s t ructural ly  stable equilibrium s ta tes  - nodes, saddle points, and 

(b) s t ructural ly  s table  limit cycles; 
(c) saddle-point separa t r ices  going to a simple node, a s imple focus, 

Any s t ructural ly  unstable system, in par t icular  a sys tem of the f i r s t  

Consider the following addi- 

o r  a s imple limit cycle o r  leaving the region of definition. 

degree of s t ructural  instability, should have at  least  one singular path 
which does not fit the a.bove classification. 
tional types of paths: 

1. A multiple focus of multiplicity 1. 
2.  A saddle-node of multiplicity 2 with o = P;  + Q; # O .  
3. A limit cycle of multiplicity 2 .  
4 .  A separatr ix  f rom one saddle point to  another saddle point. 
5. A separatr ix  of saddle point M (zo, yo) which fo rms  a loop when 

0 b o ,  Yo) # 0. 
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Ch.Xl1. CREATION OF LIMIT CYCLE FROM LOOP OF SADDLE-NODE SEPARA'I'KIX 

T h e  p a t h s  of t h e s e  f ive t y p e s  wi l l  b e  c a l l e d  t h e  s i m p  1 e s t s t r u c - 
t u r a l l y  u n s t a b l e  p a t h s .  T h e  e x i s t e n c e  of t h e s e  p a t h s  i n  s y s t e m s  
of t h e  f i r s t  d e g r e e  of s t r u c t u r a l  i n s t a b i l i t y  d o e s  not c o n t r a d i c t  T h e o r e m s  53 
t h r o u g h  60. @n t h e  o t h e r  hand,  a d y n a m i c  s y s t e m  ( A )  of t h e  f i r s t  d e g r e e  
of s t r u c t u r a l  i n s t a b i l i t y  i n  W should h a v e  i n  t h i s  r e g i o n  a t  l e a s t  o n e  s i m p l e s t  
s t r u c t u r a l l y  uns tab le  pa th  ( o t h e r w i s e ,  it would b e  s t r u c t u r a l l y  s t a b l e  i n  W ) .  

We wil l  show i n  t h i s  s u b s e c t i o n  t h a t  a d y n a m i c  s y s t e m  of t h e  f i r s t  
d e g r e e  of s t r u c t u r a l  ins tab i l i ty  i n  W cannot  have  m o r e  t h a n  one  s i m p l e s t  
s t ~ ~ u c t u r a l l y  uns tab le  p a t h  i n  t h i s  r e g i o n .  

F i r s t  we  s h a l l  p rove  a n u m b e r  of l e m m a s .  
L e m  m a  11.  Let Lo be a separatrix of the saddle point 0 of a dynamic 

There 
exists a simple closed curve of class k ( k  being a 
given number<N + 1) which passes through the 
points 0 and 01, encloses L ~ ,  and does not enclose 
any other separatrix or  any equilibrium state of 
system (A). 

P r o o  f . We s h a l l  f i r s t  show t h a t  a n  a r c  1 of 
a p a r a b o l a  c a n  b e  p a s s e d  t h r o u g h  t h e  point  0 ,  which 
h a s  no c o n t a c t s  with t h e  p a t h s  of s y s t e m  (A) e x c e p t  
at t h e  point 0 ( F i g u r e  150). 
w e  m a y  p lace  t h e  point 0 a t  the o r i g i n  and r e p r e s e n t  
t h e  s y s t e m  (A) i n  t h e  c a n o n i c a l  form 

system (A) of class N which extends to another saddle point O1. 

, ;. 2: 4" \, 5; 

Without loss of g e n e r a l i t y ,  

P" 

(57 )  
dz  -= dt X,z+Cp(z, Y), $=-2y+wz, Y). 

w h e r e  'p and $ a re  func t ions  which v a n i s h  at t h e  
point O ( 0 ,  0 )  t o g e t h e r  with t h e i r  f i r s t  o r d e r  d e r i v a t i v e s  

8 p.' f lXl A p ,' 

FIGLIKE 15U 

(see s8.1,  ( l ) ,  ( 2 ) ) ,  and I l l z  < O .  

class 3.  
Appendix,  s u b s e c t i o n  2), m a y  t h e r e f o r e  be w r i t t e n  in  the f o r m  

B y  a s s u m p t i o n ,  all o u r  s y s t e m s ,  s y s t e m  (A) included,  are s y s t e m s  of 
T h e  func t ions  'p and +, b y  T h e o r e m  5 of t h e  Appendix (see 

w h e r e  P: and Qg are  cont inuous  funct ions,  which v a n i s h  at t h e  point O ( 0 ,  0) .  

b e  c h o s e n  a t  a l a t e r  stage. 
tangent  to a pa th  of s y s t e m  (57)  c a n  b e  w r i t t e n  at t h e  point  of c o n t a c t  i n  
t h e  form 

C o n s i d e r  t h e  p a r a b o l a  y = Cx2 ,  w h e r e  t h e  va lue  of the coef f ic ien t  C wil l  
T h e  condi t ion t h a t  t h e  p a r a b o l a  I/ = Cxp is 

2cx [hlx + 'p (I, !/)I - I1zY + 9 (G Y)I = 0. 

I n s e r t i n g  for 'p and 0 t h e i r  e x p r e s s i o n s  f rom (58) and  subs t i tu t ing  Cx* 
for y. we obta in  

X Z I ( ~ ~ ~ - - ~ ~ ) C - - ~ ~ J + O ( ~ Z ~ ~ )  =o. (59) 

S i n c e  hlh2<0, we h a v e  21, - hz P O .  T h e r e f o r e ,  f o r  a n y  C #A and for 2al - i2 

all I, I x I -== zo, w h e r e  x,, is a suf f ic ien t ly  small p o s i t i v e  n u m b e r ,  t h e  arc 
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4 .I. 5YSTEh S OF THE FIRST DEGREE OF STRUCTCRjL IhST4BILIT'i 

o f  t h e  p a r a b o l a  y = L'Z' is without c o n t a c t  with t h e  p a t h s  of s y s t e m  (57) ,  
except  a t  t h e  point 0 .  if'e d e s i g n a t e  t h i s  a rc  1. 

T h e  a r c  1 c l c a r l v  c a n  b e  dra \vn  so tha t  t h e  s e p a r t r i x  L o  of the  s a d d l e  
point 0 lies on  o n e  s i d e  of t h e  a r c  1 (on t h e  c o n c a v e  s i d e  of t h e  parabola} ,  
and t h e  p t h e r  t h r e e  s e p a r a t r i c e s  l i e  on the  o t h e r  s i d e  of t h e  a r c .  
a n a l o q o u s  arc  I t  of t h e  p a r a b o l a  c a n  b e  d r a w n  through t h e  s a d d l e  point 0, 
i F'iqu re 1501.  

[.et 0 b e  a n  a - l i m i t  point of t h e  path Lo, and 0, i t s  a - l i m i t  point .  T h e  
pnin ts  0 and 0, r e s p e c t i v e l y  d i v i d e  e a c h  of t h e  a rcs  1 and 11 into t w o  p a r t s :  
1' and l ' ,  i, and 1 ; .  It i s  r e a d i l y  s e e n  t h a t  a n y  path c r o s s i n g  t h e  arc 1 suf-  
f ic ienr lv  close t o  t h e  [point 0 will  also cross t h e  a r c  1;.  and a n y  path 
c r f l s s i y  t h e  arc 1" u - i d  c ross  1 ; .  
i Y e  ob ta in  a s i m p l e  pieccLr-ise-smooth c l o s e d  c u r v e  m a d e  up of t h e  s e g -  
m e n t s  P ' P "  and Q'Q" of t h e  arcs 1 and it and t h e  a r c s  P'Q' and P"Q'of p a ? h s .  
T h i s  c l o s e d  c u r v e  ev ident ly  e n c l o s e s  t h e  s e p a r a t r i s  L o .  

O n  t h e  a rc  OP' we '2hoose a point d which d o e s  not c o i n c i d e  e i t h e r  with 
0 0 1 '  with P ' ,  and o n  t h e  arc  P'Q' of a pa th  w.e c h o o s e  a point  B .  Since  1 i s  
at? a r c  without cnnracc,  we c a n  a l w a y s  j o i n  t h e  point d to t h e  point B b y  a n  
arc (without  c o n t a c t ) ,  which at t h e  point .1 and a t  t h e  point B h a s  a point  of 
r w ~ f a c r  c.f a n v  d e s i r e d  o r d e r  k < N L  1 with t h e  arc 1 and r e s p e c t i v e l y  with 
t h e  a rc  nt' t h e  path ( t h i s  i s  r e a d i l y  proved  us ing  QT, 5 3 . 5 ,  L e m m a  8). 
P r a u i n q  t h r e e  o t h e r  ana logous  a rcs  ( F i g u r e  150)  we obta in  a s i m p l e  
c l o s e d  curve of c lass  k which c o m p l e t e l y  e n c l o s e s  the  s e p a r a t r i s  Lo and 
clfies not e n c l o s e  o t h e r  s e p a r a r r i c e s  o r  a n y  e q u i l i b r i u m  s t a t e s  of t h e  
system. Q. E .  D. 

p a t h s  of s y s t e m s  of c l a s s  :V are c u r v e s  of class A'+ 1, and acelording t o  
the. c o n s t r u c t i o n  u s e d  i n  t h e  proof  of the  l e m m a ,  s e g m e n t s  of t h e s e  c u r v e s  
are included i n  t h e  c l o s e d  c u r v e .  

Let L o  be a separatrh of system (A) of class N which 
originates atul ends in the saddle point 0 Cfmtning a loop L ) ,  and let there 
be a neighborhood of L which does not contain any closed paths (so that 
the loop is stable os unstable). 
C' and C" of class k ,  iohere k is any fixed integer, k -: N + 1 ,  ane of which 
encloses the loop L a d  the other is enclosed by  the loop L, such that the 
annular region bcticem C' and C" contains no equilibrium states, no closed 
citrues, and no separatrices (except L ) of systetn (A). 

P r o o f .  Suppose  t h a t  t h e  o t h e r  two s e p a r a t r i c e s  of t h e  saddle-poin t  0 
(d i f fe ren t  from L o )  l i e  o u t s i d e  t h e  loop  f o r m e d  b y  t h e  path L. 

!I'e c a n  a I w a v s  p a s s  t h r o u g h  t h e  s a d d I e  point 0 a s e g m e n t  of a s t r a i g h t  
l ine  which wil l  b e  without contac t  at all poin ts  suf f ic ien t ly  close t o  0 ( o t h e r  
Than 0 i t se l f l  (see QT, 37.3,  p.  155j .  L e t  I be s u c h  a s e g m e n t  which c c n -  
r a i n s  0 and i s  withou- c o n t a c t  with t h e  p a t h s  of ( A )  a t  all poin ts  o t h e r  t h a n  
0 ( C i g u r e  1 5 1 ) .  

L e t  1' and I" b e  t h e  t w o  s e g m e n t s  i n t o  which 1 is divided b y  t h e  s a d d l e  
p(kinr 0 .  It i s  r e a d i l s  s e e n  tha t  a n y  path c r o s s i n g  t h e  s e g m e n t  I' a t  a 
point P' sufficient1.y close t o  0 wi l l  c r o s s  1" a t  s o m e  point P " .  

\Ye t h u s  obta in  a s i m p l e  c l o s e d  p i e c e w i s e -  s m o o t h  c u r v e  e n c l o s i n g  
t h e  loop L ,  s u c h  t h a t  t h e  r e g i o n  be tween t h i s  c u r v e  and L c o n t a i n s  no 
e q u i l i b r i u m  s t a t e s ,  no c l o s e d  p a t h s ,  and no s e p a r a t r i c e s  ( t h i s  i s  r e a d i l y  

An 

C h o o s e  o n e  arc of e a c h  of t h e s e  p a i r s .  

R F m a r k . T h e  n u m b e r  k ,  i n  g e n e r a l ,  should  b e  GLV + 1, s i n c e  t h e  

L e t n  tti a 12. 

Then there exist two sittiple closed curces 
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verified, since a r c s  of paths crossing the 
segments I' and 1" of the a r c  1 pass  through 
al l  the points of this  annular region). 
"Smoothing" this  piecewise- smooth curve 
by the same technique as in the previous 
lemma,  w e  obtain one of the two simple 
closed curves,  C'say, postulated by 
the lemma.  

The second curve C" can be chosen a s  

;tence 
- -  a cycle without contact, sufficiently close 

to  the "loop" (Figure 15 l) ,  
of this  cycle is established in QT, 124.3, 
Lemma 2. 

The exis 
FIGURE 151 

The same  proof can be used in the case  when the two other separa t r ices  

This  completes the proof of the lemma.  
L e m m a  13. 

of the saddle point 0 lie inside the loop formed by the separatr ix  L . 
Let y be a simple closed curve of class k in some region c .  

There exists a function z = Q, ( x ,  y) of class k - 1, defined in B ,  which vanishes 
at the points of the curve y ,  takes 072 positive values inside y and negative 
values outside y ,  and at the points of the curve y satisfies the relation 

o;* + 0;* z 0. 

P r o o f  . Choose the arc length s reckoned f rom some fixed point of 
the curve as  the parameter  of y .  Then, a s  is readily seen, y can be 
written in parametr ic  form x = ' p  (s), y =$ (s), where 'p and q a r e  functions 
of c lass  k + 1, s varies  f rom 0 to  some T ,  and 'p (T) = 'p ( O ) , q  (T) =I@ (0). Since 
y is smooth, 'p' (s) and 0' (s) do not vanish simultaneously for any 8 ,  O<s< T. 

(s, n) by the equalities 
In the neighborhood of y we define a curvilinear system of coordinates 

I = 'p (s) + nq' (4, y = 9 ($1 -nq' (SI, (60) 

where the right-hand s ides  a r e  evidently functions of class k. According to  
Chapter V (see § 15.1, Lemma 1 and Remark  I to  the lemma),  equations (60) 
define n as  a single-valued function of the coordinates x and y in some 
neighborhood of the curve y : 

n=p(s ,  y), 

where F is a function of class k - 1 which vanishes on y ,  is positive on one 
side of y and negative on the other side of y ,  and on y sat isf ies  the relation 
F;'+F;+O. 
F ( x ,  v) is positive inside the curve y and negative outside this curve.  Con- 
s ider  any two closed curves y ,  and y2  defined by the equations n = n, and 
n = nL, respectively, i. e ., F (2, y) = n, and F ( x ,  g) = n2, where the numbers 
n, and n2 are sufficiently small  and 0 < n, < n2 (Figure 152). 

Let f = f (n)be a function of class k- 1 defined for O<n < 00, which 
sat isf ies  the following conditions: 

1) f (n) 3 n for  O<n<n,; 
2 )  f (n) E n2 forn>n2;  
3) n , < f  (n)<n2 for  ni < n < n2 (a specimen graph of the function f (n) is 

We can choose the direction of the normals so that the function 

shown in Figure 153; a s imi la r  function was constructed in 4 15.2 
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i n  t h e  proof  of L e m m a  2 ) .  
c u r v e  y b y  t h e  fol lowing condi t ions :  

T h e  ?unct ion a (2, y) will  b e  def ined  i n s i d e  t h e  

1) in  t h e  r i n g  b e t w e e n  y a n d y ? ,  

(r,  y) = f (n) = f (F (f, y)); 

2) i n s i d e y ~ ,  
Q, (3, y) = n*. 

F[GL'RE 152 FIGL'RE 153 

Q, (I, y) i s  s i m i l a r l y  def ined  o u t s i d e  t h e  c u r v e  y .  T h e  funct ion 0 con-  
s t r u c t e d  i n  t h i s  way ev ident ly  m e e t s  a11 the condi t ions  of t h e  lemma. Q.  E. D.  

L e m m a  14. Let 

be a dynaiitic system of class ,v, L its separatrix extenclingfrotn saddle 
point 0' to saddle point 0" (o'and 0" may be the same point). 
6 > 0 and r s L V  ( r  is a natural number), there exists an analytical systein 
(A)  &-close to rank r to (A) which has a saddle-to-saddle separatrix. 

T h r o u g h  some point M of t h e  s e p a r a t r i x  L ,  we d r a w  a n  a rc  
without  c o n t a c t  I and def ine  a p a r a m e t e r  u on t h i s  a r c ,  so t h a t  t h e  point 31 
c o r r e s p o n d s  t o  u = 0.  
a n g l e  with t h e  arc I ( F i g c r e  151).  

s y s t e m s  ( T h e o r e m  23, 3 18.2), t h e  d y n a m i c  s y s t e m  (X) i s  s t r u c t u r a l l y  

F m  any 

P r 0 0  f , 

To fix i d e a s ,  l e t  t h e  s e p a r a t r i x  L m a k e  a p o s i t i v e  

F y  t h e  f u n d a m e n t a l  t h e o r e m  of t h e  s t r u c t u r a l  s t a b i l i t y  of d y n a m i c  

s t a b l e  in suf f ic ien t ly  s m a l l  ne ighbor-  
h o o d s  of t h e  s e g m e n t s  O'M a n d  0"M 
of t h e  s e p a r a t r i x  L. 

R7zy p l o w s ,  as is r e a d i l y  s e e n ,  t h a t  a 
n u m b e r  q > 0 e x i s t s  with t h e  fol lowing 
p r o p e r t y :  i f  (A) is q - c l o s e  to (A), 
t h e n  in  a suf f ic ien t ly  small ne ighbor-  
hood of t h e  s a d d l e  point  0' (0") t h e r e  
e x i s t s  a s i n g l e  s a d d l e  point  @ (8') of 
t h e  s y s t e m  (x) and t h e  s e p a r a t r i x  
j? (E') of the s a d d l e  point  6' (6.") crosses 
t h e  arc without  c o n t a c t  1 at t h e  point  
.%' (1G") c o r r e s p o n d i n g  to t h e  va lue  

H e n c e  i t  fol- 

0' L' 
+-+% 
FIGURE 154 

- 
u' (L") of t h e  p a r a m e t e r  u ,  so that  t h e  s e g m e n t  ail?* of t h e  s e p a r a t r i x  
2' Gw) i s  conta ined  i n s i d e  a n  a r b i t r a r i l y  small ne ighborhood of t h e  s e g m e n t  
O'M (0"M) of t h e  s e p a r a t r i x  L ( F i g u r e  154) .  
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6 Let 8 ,  be a positive number, 8 ,  <%, a1CT.  
Consider the system 

dz  -= dt P-hQ, s = Q + W .  

Let Xo: 0 be so smal l  that for  a l l  h ,  1 h I < I , ,  (A&) is &-close to rank r to 
( A ) .  Let hl > 0, At < A,, hz < 0 ,  I h2 I < Lo.  On passing from (A) to (Ah,) 
( i  : 1, 2) ,  the separatr ix  L branches into two separa t r ices  L; and L; which 
c r o s s  the a r c  I at the points N i  and N:, respectively. Let these points 
correspond to  the values u’ (A,) and uv (A,) of the parameter  u. 
lemma of 311.1, we have 

By the 

u‘ (L) > 0, 
u‘ (b) < 0 

u” (2,) < 0,  
u” ( A Z )  > 0, 

(Figure 155). 

the functions P and Q so  that the following conditions be satisfied: 
Let P* and Q* be polynomials which provide a sufficiently c lose fit of 

1) For al l  1, lhl<A,,, the system 

is 6,-close to  rank r to  ( A ) .  
2 )  The separa t r ices  

at the points &(A,) and N ” ( h , )  corresponding t o  the values ;‘(hi) and C”(hl) of 
the parameter  which a r e  so close to  the points N ;  and N ;  that 

(h,) and c(Xt) of (Ah,) c r o s s  the a r c  without contact 2 

I 

3 (A,) >o, u” (A,) < 0. 

3) The separatrices_Z’ (A2) and E (h2) of system (AA*)  cross  the ar_c without 
contac I at the points N’ (b) and (b) corresponding to  the values u’ (h,) and 

the parameter  which are so close to  the points N; and N ;  that 

u: (h2) < 0, 2 (5) > 0. (63 )  

62) and (63), we have 
- 
24’ (hi)--? (h,) > 0, 
2 ($) -2 (&) < 0. 

I’ 

FIGURE 155 
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S i n c e  3 and t? are  cont inuous  func t ions  of t h e  p a r a m e r e r  h , t h e r e  e x i s t s  
a nuniberX,  h 2 < ~ < h l ,  s u c h  tha t  

T h i s  i m p l i e s  that  t h e  s e p a r a r r i s  of t h e  s y s t e m  ( 3 1 )  e x t e n d s  f r o m  s a d d l e  
point a' to s a d d l e  point 6". Since  (-xi) i s  6 - c l o s e  to rank r t o  (-4) and is a n  
a n a l v t i c a l  s y s t e m ,  i t  s a t i s f i e s  all t h e  p r o p o s i t i o n s  of t h e  l e m m a .  Q. E .  n. 

T h e  o r e  m 61. If (A) is a dyiminic systerti of the f i r s t  degree of 
structural itstability in W ,  it may hace at most one simplest stnicttrrally 
unstable path in this region. 

Suppose  tha t  (A) h a s  two s i m p l e s t  s t r u c t u r a l l y  i lnstable  p a t h s  
i n  i i ' .  In o u r  proof ,  we  d o  not d i s t i n g u i s h  be tween p a t h s  of t y p e  4 and t y p e  5 
I see p. 351), i .  e ., a s a d d l e -  to- s a d d l e  s e p a r a t r i s  m a y  b e  a s e p a r a t r i x  be tween 
t w o  d i f f e r e n t  s a d d l e  poin ts  o r  a s e p a r a t r i x  f o r m i n g  a loop  for a s a d d l e  point 
with o Z 0 .  We m o r e o v e r  a s s u m e  tha t  all t h e  s y s t e m s  are a n a l y t i c a l ,  i . e . ,  
s-e a re  dea l ing  with s t r u c t u r a l  ins tab i l i tv  of t h e  f i r s t  d e g r e e  u-ith r e s p e c t  to  
t h e  s p a c e  Rb", w h e r e  r >  3.  Out -  proof  r e m a i n s  in  f o r c e ,  as i s  r e a d i l y  s e e n ,  
in  ihe  nonanaly t ica l  cast? as w e l l  ( i .  e . ,  for t h e  s p a c e  R$), 3 g r g . V ) ,  and 
s o m e  a r g u m e n t s  c a n  a c t u a l l y  b e  s i m p l i f i e d  i n  t h e  nonanalq.tica1 case. 

s t r u c t u r a l l v  u n s t a b l e  p a t h s  i n  t i - .  

P r c) o f . 

L F ~  C ~ S  c o n s i d e r  s u c c e s s i v e l y  all t h e  p o s s i b l e  cases of two s i m p l e s t  

1 )  S y s t e m  ( A ,  h a s  tu.,? s a d d l e - n o d e s  i n  15.. 
Let o n e  of t h e s e  s a d d l e - n o d e s  b e  t h e  point  O ( O , O ) ,  and t h e  o t h e r  O, (a ,  b ) ,  

and le t  t h e  s y s t e m  (A\  h.ave the form 

(A) 
d r  ; i T . = p ( z , y ) .  -= 2: Y-r4(2?  Y), 

w h p w  p ( 0 ,  O ) = p ; ( O ,  O ) = & ( O ,  O ) = q ( O .  0)=q;(0.  0)=q;(O. O ) = O  ( s e e  531.1, (11) 
and ( 1 2 ) ) .  

S ince  Ol(a, b) is a s a d d l e - n o d e ,  w e  have  

C o n s i d e r  t h e  modif ied s v s t e m  

d x  -= d l  p @ .  Y) + p I V -  ( ~ ~ - b * ) ~ l  = P ( 1 ,  Y), = Y; Q (t, Y) =Qtz, Y). ( 6 )  

u h e r e  p3-0. 
s t a t e  of ( A t ,  since x ( a ,  t ) = A ( a ,  b)= 0. 
u n s t a b l e .  

Let y = q ( z )  b e  a so lu t ion  of t h e  equat ion  y + q ( z ,  y)= 0 i n  t h e  ne ighbor-  
hoo-l of t h e  point O ( 0 ,  0),  and  l e t  $ ( I )  = P (2, q (3)) = p (I, 9: (2)) . 
a n  e q u i l i b r i u m  s t a t e  of mul t ip l ic i ty  2 for s y s t e m  (A), t h e  func t ion  9(2) h a s  
t h e  f o r m  

For a n y p ,  t h e  point O,(a,  b) is a mul t ip le  e q u i l i b r i u m  
( A )  is t h e r e f o r e  s t r u c t u r a l l y  

S i n c e  0 is 

9 (1) =a&+ap3+. . . , (65) 

w h e r e  a,+O ( T h e o r e m  3.3, s 2 3 . 1 ) .  
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We will now search  for  the equilibrium states  of (8) in the neighborhood 
of 0 ( 0 ,  0) .  To  this  end, we have to  solve the simultaneous equations 

p" (2, Y) = 0, Q"@. u)  = 0 

Y = cp ( 4 7  0 ( x ,  'p (4) = 0. 
or, equivalently, 

Since 'p(z)='p'(z)=O (see (15), (16)), the series expansion of the function 
cp (2) does not contain any t e r m s  below second order .  Therefore, 

O ( X ,  ' p ( z ) ) = p ( s ,  'p(z))+p I(zS--a*)*+('p'(")-b*)'l = 
=azz* + aazs + . . . + p [a4+ bd] -2pa'z' + . . - = p (a4 + b.') +a& + . . . , 

where az J. 0, and the missing t e r m s  a r e  of third o r  higher o rde r  in all 
the var iables  p and x jointly. 

We thus have to  find the roots of the equation 

p (a4+b4)+a&+. . . = O  (66)  

which a r e  c lose to  zero; in  this  equation p # 0, at # 0. 
tion of the roots of this  equation will be  given in the next chapter, in E 32 .  
In particular, i t  follows from Lemma 2 of this section that if  p i s  sufficiently 
smal l  and i t s  sign is minus the sign of a 2 ,  equation (66) has precisely two 
real roots, which both go to  ze ro  for p -+ 0.  
sufficiently smal l  p of an appropriate sign, system (A) has  at least  two 
equilibrium s ta tes  in any neighborhood of the point O ( 0 , O ) .  Since (A) is 
s t ructural ly  unstable, this contradicts Lemma 2 of the present section. 

2 )  System (A) has  a multiple focus (of multiplicity 1) and a saddle-node 
in W .  

Without loss of generality, we may place the focus at the origin O ( 0 , O )  
and write (A) in the form 

A detailed investiga- 

This  signifies that for  a 

(A) 
d z  
-= dt --Y+'p(x, y ) = P ( s ,  Y), $ = z + * ( x ,  Y)=Q@,  Yh 

where 'p and * are analytical functions whose series expansions s t a r t  with 
quadratic t e rms .  Let 0 , ( a ,  6)cW be the saddle-node of (A) .  

The modified sys tem is taken in the form 

= P -  pQ =p, df dll = Q+ pP = @, (A) dt 

which is obtained from system (A) by rotating i t s  vector field through 
the angle tan-' p. 

F r o m  these relations and f rom the obvious equality 8 ( x ,  g) = A  (3, g) (i +p*) we 
conclude that P ( a ,  b ) = g  (a ,  b ) =  A ( a , b ) = O ,  i.e., the point 0, is a s t ructural ly  
unstable equilibrium state  of (A) .  

Reasoning as in the proof 
to  Theorem 57 ($31.2, (33 )  and (34)), we can show that i f  p i s  sufficiently 
small ,  (A) can have no closed paths in some neighborhood V of 0 .  
Remark  3 to  Theorem 14, 9 10.3, for  a sufficiently smal l  p of an appropriate 

Since 0, (a,  b)  is a saddle- point of ( A ) ,  we have P (a,  b) = Q(a ,  b)  = A  (a,  b) = 0. 

- 
(8) is thus a s t ructural ly  unstable system. 

By 
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sign, ( A )  has at least  one closed path in any arb i t ra r i ly  smal l  neighborhood 
of 0. We have established a contradiction, which proves the theorem for  
this  ca se .  

3 )  System ( A )  has  two multiple foci in W .  
Let one of t h e  foci be O ( 0 ,  0 )  and the other O1 (a, 6 ) .  We write the sys tem 

in the form 

The modified sys tem is 

Since the point O1 ( a ,  b)  i s  a multiple focus of (A) ,  we have A (a,  b)> 0, 
0 (a, 6 )  = 0. A direct  check wi l l  show that a (a, 6 )  = A (u, b)  and 
Therefore ,  0, (a .  6) is a i  equilibrium s ta te  of (A) with pure imaginary 
character is t ic  numbers, i .  e., ( A )  is s t ructural ly  unstable. 

(a ,  6 )  = u (a ,  b) 

( A )  can be written in the form 

-= d r  dt  - y Y - p ' a 2 + b * ) z +  ... , d y =  d t  z-p(a*ib*))y+ ... , 

where the missing t e r n s  are of second or higher order .  
is therefore  a s t ructural ly  s table  focus of ( A ) ,  stable or unstable 
depending on the sign of p. Then, a s  in Remark  3 to  Theorem 14, we 
can show that for  a sufficiently smal l  p of an appropriate sign, (A) has  
at  least one closed path in any arb i t ra r i ly  sma l l  neighborhood of 0. 
again reach a contradiction as in case 2 .  

The point O ( 0 , O )  

W e  

4) System (A) has  a saddle-node and a limit cycle of multiplicity 2 in W .  
Let O ( O . 0 )  be the saddle-node and L the limit cycle. The modified 

system is again taken in the form 

which is obtained by an appropriate rotation of the vector field of ( A ) .  
( A )  is s t ructural ly  unstable, since 0 ( 0 ,  0) i s  i t s  equilibrium s ta te  and A ( 0 , O )  = 0 .  

Theorem 71 (S32.4). 
appropriate sign, (A)  has  two closed paths in any neighborhood of the 
limit cycle L of multiplicity 2.  On the other hand, L i s  a limit cycle 
of (A) ,  and ( A )  is a structural ly  unstable sys tem.  Therefore ,  reasoning 
a s  w e  have done often before, w e  can show that f o r  a sufficiently smal l  
p, (3 )  may have only one closed path in a sufficiently smal l  neighborhood 
of L. 

separatr ix  L in W. 

We shal l  again u s e  oiie of the resu l t s  of the next chapter, namely 
By this  theorem, for a sufficiently smal l  pof an 

W e  have again established a contradiction. 
5) System (A)  has  a saddle-node O ( 0 , O )  and a saddle-to-saddle 

A s  in the previous case ,  (A)  is chosen as the modified system. 
The point O ( 0 ,  0)  is a multiple equilibrium state  of (A) ,  and therefore  

Therefore ,  fo r  every  E >  0, there  exis ts  p,,, (A)  is s t ructural ly  unstable. 

such that for I p I < p,, WE have the relation (H ,  A )  ( E ,  2) and hence the 
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e 
relation (U (L), A )  ZE (v, A) ,  where U (t) is a neighborhood of the separatr ix  L .  
F r o m  the las t  relation i t  follows that contains a saddle-to-saddle 
separa t r ix  of (A). On the other hand, in o u r  proof to  Theorem 16, 9 11.2, 
w e  have seen that i f  the neighborhood U (L) of the path L and the numbers e 
and p a r e  sufficiently small ,  
separa t r ices  of ( A ) .  

6 )  System (A) has  a multiple focus and a limit cycle of multiplicity 2 
in W ,  and 

7 )  System (A)  has  a multiple focus and a saddle-to-saddle separatr ix  
in W .  

The proof which rules  out ca ses  6 and 7 is the same.  
the multiple focus. 

may riot contain any saddle-to- saddle 
We have established a contradiction. 

Let O ( O . 0 )  be 
The modified system is taken in the form 

The point O ( 0 , O )  is a multiple focus of (A)  also, and (A) is therefore  
s t ructural ly  unstable. Furthermore,  everywhere (with the exception of 
the point O), the vector field of (A) is obtained f rom the vector field of 
(A) by a rotation in the s a m e  sense  (through an angle equal to  tan-'p (.'+y')). 
Therefore ,  case  6 leads to  the same contradiction a s  case 4, using 
Theorem 71 and Remark 2 t o  Theorem 72. 
is established as in case  5, using Remark  2 t o  Theorem 16 (5 11.2). 

In case  7, the contradiction 

8)  System (A) has  two cycles of multiplicity 2 in W .  
Let L, and Lz be the two cycles, U = U (Lz) an arbi t rar i ly  smal l  neighbor- 

hood of &. Using the theorem of the creation of a closed path f rom a 
multiple limit cycle ($27.1, Theorem 42) and employing the same  con- 
struction a s  in the proof of Lemma 2, s 15.2, we obtain a system (AI) 
of c lass  N > r  a s  close as desired to (A) to  rank r > 3 ,  which coincides 
with (A) outside the neighborhood U and has  two closed paths, which 
a r e  s t ructural ly  stable limit cycles, inside U .  Furthermore,  using 
Lemma 9 of th i s  section, we conclude that t he re  exists an analytical 
system (A) a s  c lose a s  desired to  (AI) t o  rank r ,  which has  a limit cycle 
of multiplicity 2 in any arbi t rar i ly  smal l  neighborhood of the cycle L, 
and is th_erefore s t ructural ly  unstable. 
close, (A) willhave at least  two closed paths in U (L2). 
is established a s  in case  4. 

saddle separatr ix  Lz in W(Figure 156a). 

We choose a sufficiently smal l  neighborhood U = U (Lz) of the separatr ix  
LZ which contains no equilibrium s ta tes  except 0, and 02. Modifying the 
system (A)  by a rotation of the vector field through a smal l  constant 
angle and employing the same construction as for the proof of Lemma 2, 

r > 3  t o  (A) which 

If (AI)  and (A) a r e  sufficiently 
The contradiction 

9) System (A) has a limit cycle Lt of multiplicity 2 and a saddle-to- 

Let the separatr ix  Lz extend f rom saddle point 0, t o  saddle point 02. 

15.2, we obtain a system (A,) of c lass  N , r  arbi t rar i ly  c lose to  rank 

(a) coincides with (A) outside U ;  
(b) has  no equilibrium s ta tes  in U, except the saddle points 0, and 0,; 
(c) has  no saddle-to-saddle separa t r ices  in U (Figure 156b). 
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b 

FIGL'RE 156 

F v  Lemma 9 of t h e  p r e s e n t  s e c t i o n ,  t h e r e  e x i s t s  an a n a l y t i c a l  s y s t e m  
( A )  as close as d e s i r e d  to (AI)  t o  r a n k  r which h a s  a limit c y c l e  of mul t ip l ic i ty  
2 i n  a n y  a r b i t r a r i l y  s r n a l i  neighborhood of t h e  c y c l e  L I ,  and is t h e r e f o r e  
s x r u c t u r a l l y  u n s t a b l e .  But  ( A l )  is s t r u c t u r a l l y  s t a b l e  i n  U .  Therefore, 
i f  (x) is suf f ic ien t ly  ci.ose t o  ( A l ) ,  condi t ions  ( b j  and (c) are s a t i s f i e d  for 
( . x i .  
s y s t e m  (AI a r b i t r a r i l y  close t o  ( A )  without  a n y  s a d d l e - t o -  s a d d l e  s e p a r a t r i c e s  
i n  U .  T h i s  l e a d s  t o  t h e  same c o n t r a d i c t i o n  as i n  case 5. 

We h a v e  t h u s  e s t a b l i s h e d  t h e  e x i s t e n c e  of a s t r u c t u r a l l y  u n s t a b l e  

IO) S y s t e m  ( A )  h a s  t w o  s a d d l e - t o - s a d d l e  s e p a r a t r i c e s  L1 and L2 i n  W .  
T w o  d i f f e r e n t  case:; are poss ib le :  
( a )  a t  l e a s t  o n e  of t h e  a e p a r a t r i c e s  Ll and LZ e x t e n d s  b e t w e e n  two 

(b}  each s e p a r a t r i r  f o r m s  a loop  for i t s  s a d d l e  point .  
L e t  us f i r s t  c o n s i d e r  case (a ) .  

s a d d l e  point 0 t o  a n o t h e r  s a d d l e  point  01, which d o e s  not  c o i n c i d e  with 0 .  
T h e  s e p a r a t r i x  LZ e i t h e r  p a s s e s  a t  a f in i te  d i s t a n c e  f r o m  L l  o r  at l e a s t  

o n e  of t h e  t w o  e q u i l i b r i u m  s t a t e s  of t h i s  s e p a r a t r i x  c o i n c i d e s  with 0 or O1. 
S i n c e  none  of t h e  poin ts  of the s e p a r a t r i x  Li i s  a l i m i t  point  for L 2 ,  t h e  
s i m p l e  c l o s e d  c u r v e  of class k ( w h e r e  k is a p r i o r i  known to b e  e q u a l  to 4) 
w h o s e  e x i s t e n c e  is e s t a b l i s h e d  i n  L e m m a  11 m a y  b e  c h o s e n  so  t h a t  i t  
e n c l o s e s  Ll without e n c l o s i n g  L z .  

In case (b), s e v e r a l  s u b c a s e s  should  b e  c o n s i d e r e d .  Spec i f ica l ly ,  
t h e  d i s t a n c e  b e t w e e n  t h e  l o o p s  f o r m e d  b y  t h e  s e p a r a t r i c e s  L, and L z  m a y  
b e  e i t h e r  p o s i t i v e  or zero,  one  of t h e  t w o  l o o p s  m a y  e n c l o s e  t h e  o t h e r  
l o o p  or t h e y  m a y  lie o n e  o u t s i d e  t h e  o t h e r  ( F i g u r e s  157 a n d  158). 

d i f f e r e n t  s a d d l e  poin ts ;  

Le t  Ll b e  a s e p a r a t r i x  ex tending  f r o m  

FIGURE 157 FIGURE 15s 
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S '?I. S Y S T E L  5 C F  THE FIRST DEGREE OF STRL'CTI RAL ISST.IBIL[TY 

To fix i d e a s ,  s u p p o s e  tha t  t h e  s e p a r a t r i s  Lz f o r m s  a p o s i t i v e  a n g l e  
T h e n ,  b y  (67)  and  t h e  lemma of B 11.1, with t h e  arc  without c o n t a c t  1 2 .  

ci<c; if E, = 0, p > O ;  
r+;>ro" i f  h > O ,  p - 0 .  

( T h e  d a s h e d  c u r v e s  i n  F i g u r e  150 are t h e  s e p a r a t r i c e s  L;. L; ,  L; ,  L; for X =O,p'O.) 
r ; m d  ri are f u n c t i o n s  o f  t h e  p a r a m e t e r s  l. and p: r; = T: O., p), r; = r; (),+ p), 
and by r e m a r k  t o  Lemma 3, S9.2, t h e s e  func t ions  are cont inuous .  
c h o o s e  a suf f ic ien t ly  s m a l l  f ixed A I :  0 .  
h v  t h e  cont inui ty  of ri m d  ri ,  we have  f o r  a suf f ic ien t ly  s m a l l  p > 0 

We 
By ( 6 8 ) ,  1; O.,. 0)  > r; (iI, 0), and 

F v  ( 6 8 ) ,  ui (0 ,  b)<z(O, p) when F>O is suf f ic ien t ly  small. 
suf f ic ien t ly  s m a l l  h: > 0 ,  

But  then ,  f o r  a 

1; (X2. ji, < r; 0.2, p). (701 

F y  (60 )  and (70)  t h e r e  e x i s t s  x>O,  suchthat^.^(^, that^.^(^, ;)=I.;@. E). 
T h e  s e p a r a t r i c e s  L; ar.d Li of (-41;) t h e r e f o r e  co inc ide ,  f o r m i n g  a s i n g l e  
s a d d l e - t o - s a d d l e  s e p a r a t r i s .  T h e  s y s t e m  ( A  ~ p )  is t h u s  s t r u c t u r a l l y  
uns tab le .  T h e  n u m b e r s  x and F c a n  b e  t a k e n  as small as we d e s i r e ,  i n  
p a r t i c u l a r ,  t h e y  c a n  be m a d e  suf f ic ien t ly  small for (Ax;) to have no 
s a d d l e -  to- s a d d l e  s e p a l - a t r i c e s  i n  a suf f ic ien t ly  small  ne ighborhood of 
t h e  s e p a r a t r i s  LI . 

F u r t h e r m o r e ,  i f  ( A )  i s  a s y s t e m  of class .V2,3,  Lemmas 11 and  1 2  
ind ica te  tha t  y c a n  b e  c h o s e n  as a c u r v e  of class .V + 1 and  L e m m a  13 
s h o w s  That UJ (2.'~) c a n  ' D e  c h o s e n  as a funct ion of class A'. T h e n  (Ax;;) 
i s  also a s y s t e m  of c l a s s  :V. 

We h a v e  t h u s  e s t a b l i s h e d  t h a t  i f  (A)  i s  a s y s t e m  of t h e  f i r s t  d e g r e e  
of s t r u c t u r a l  i n s t a b i l i t y  of class :V>3 with t w o  s a d d l e - t o - s a d d l e  s e p a r a t r i c e s ,  
t h e r e  e s i s t s  a s t r u c t u r a l l y  u n s t a b l e  s y s t e m  ( A X E )  of t h e  same class, as 
c l o s e  as  d e s i r e d  t o  (A).  which h a s  n o  s a d d l e - t o - s a d d l e  s e p a r a t r i c e s  i n  a 
suf f ic ien t ly  small  neig'nborhood of t h e  s e p a r a t r i s  L , .  T h i s ,  h o w e v e r ,  
c o n t r a d i c t s  t h e  def ini t ion of a s y s t e m  of t h e  f i r s t  d e g r e e  of s t r u c t u r a l  
i n s t a b i l i t y .  T h e r e f o r e ,  case 10 i s  r u l e d  out for  a s y s t e m  of t h e  first 
d e g r e e  of s t r u c t u r a l  ins tab i l i ty  i n  r e l a t i o n  to t h e  s p a c e  R$), 3 < r g N .  

For s y s t e m s  of t h e  f i r s t  d e g r e e  of s t r u c t u r a l  i n s t a b i l i t y  i n  r e l a t i o n  
to t h e  s p a c e  Rg' ( t h e  s p a c e  of a n a l y t i c a l  s y s t e m  with c l o s e n e s s  to r a n k  r ) ,  
L e m m a  11 also m u s t  b e  appl ied  t o  p r o v e  inappl icabi l i ty  of case 10. L e t  
(-4) b e  a n  anal-y-tical s y s t e m  of t h e  first d e g r e e  of s t r u c t u r a l  i n s t a b i l i t y  
which h a s  t w o  s a d d l e -  to- s a d d l e  s e p a r a t r i c e s  Li and Lz . 
r>, 3 b e  a n a t u r a l  n u m b e r ,  and 6 and  E p o s i t i v e  n u m b e r s ,  E being  s u f -  
f ic ien t ly  s m a l l .  
A'>r which is 6 / 2 - c l o s e  t o  r a n k  r t o  (A) and  which  h a s  a s a d d l e - t o -  
s a d d l e  s e p a r a t r i x  i n  U ,  ( L z )  and n o  s u c h  s e p a r a t r i x  i n  U, ( L , ) .  

L e t  6,> 0 b e  a n  a r b i t r a r y  n u m b e r  (612.  B y  L e m m a  14, t h e r e  
e x i s t s  a n  a n a l y t i c a l  s y s t e m  ( A )  b,-close to r a n k  r to (Ax;;) _which h a s  a 
s a d d l e -  t o - s a d d l e  s e p a r a t r i s .  If 61 is suf f ic ien t ly  small, (A)  evident ly  
h a s  n o  s a d d l e - t o - s a d d l e  s e p a r a t r i c e s  i n  U, (LI)  and w e  a r r i v e ,  as b e f o r e ,  

L e t  f u r t h e r  

A s  b e f o r e ,  w e  c a n  c o n s t r u c t  a s y s t e m  ( A x )  of class 
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Ch.XI1. CREATION OF LIMIT CYCLE FROM LOOP OF SADDLE-NODE SEPARATRIX 

at a contradiction with the definition of a system of the f i r s t  degree of 
s t ruc tura l  instability. 
degree of instability in relation to  the space I?:). 
proof of Theorem 61. 

Case  10 is thus ruled out f o r  sys tems of the f i r s t  
This  completes the 

3 

6 .  
in sys tems of the f i r s t  degree of s t ruc tura l  instability 

The  propert ies  of the separa t r ices  of a saddle-node 

Let (A) be  a system of the first degree of s t ruc tura l  instability in W 
which has  a saddle-node 0 (0,O) in this  region. Consider some separatr ix  
L of this  saddle-node. To  fix ideas, let this  be an a-separatr ix ,  i. e., a 
separatr ix  which goes to  0 for  t+--03. 

0 is the only s t ructural ly  unstable path of (A) in W ,  and therefore  a s  t 
i n  c r e a s  e s , one of the following cases  is a pr ior i  possible for the 
separatr ix  L: 

By Theorem 61, the saddle-node 

1) L will leave W .  
2 )  L will go to  a s t ructural ly  s table  node o r  focus, o r  t o  a s t ructural ly  

3)  L will go to  the equilibrium state 0 without being i t s  o - separatr ix  
stable limit cycle. 

(i. e., the positive semipath making up L is one of the inter ior  semipaths 
of the parabolic sec tor  of the saddle-node 0). 

4) L will be the o-separa t r ix  of the equilibrium state  0 .  
5) L will go to  a s t ructural ly  stable saddle point. 
W e  will prove that cases 4 and 5 a r e  unfeasible. 
F i r s t  we w i l l  formulate, without proof, two lemmas  that will be useful 

L e  m m a  15. Let the separatrix L of the saddle-node 0 of system (A) 
l a te r  on. 

cross an arc without contact 1 at the interim point M o  of the arc.  For  
every e > 0 ,  there exists 6 > 0 such that i f ( A )  i s  8-close to (A) and 0 is  
a saddle-node of (A), then 

crosses  the arc 1 at the point a. contained in u, (M& 

the same time t = tor the points of the segments MOO and L O O  of the 
separatrices L and corresponding to the same times t are distant 
less  than e f rom each other. 

The proof of Lemma 15 is analogous to  the proof of Lemma 3, S9.2 
and the remark  following the lemma.  

Let again L be an a -separa t r ix  of the saddle-node 0 of (A) ,  M o  any 
point of the separatr ix ,  1 an arc without contact through Mo which has  
no common points, except M o ,  with the separatr ix  L and with the other 

The a r c  1 is defined by 

(a) there exists a single separatrix 

(bj if the points M o  and 8, on the separatrices L and E correspond to 

of the saddle-node 0 of (A) which 

separa t r ices  of 0 .  
the parametr ic  equations 

x = f ( u ) ,  Y=g(u) 

and the point M corresponds to  the value uo 
of the parameter .  

Moreover, let the positive direction on 1 
correspond to  the increasing parameter  and 

FIGURE 160 

le t  the paths of (A) make positive angles with the arc 1 (Figure 160). 

364 



5 31. SYSTEhlS OF THE F[RST DEGREE OF STRLrCTL'RAL INSTABILITY 

We w i l l  consider modified sys tems (A)  of the form 

which are obtained from ( A )  by an appropriate rotation of the vector fie_ld. 

and the arc without cm:tact 1 has precisely one point M o  in common with 
one of the separatrices 
points with other separatrices of 0. If the point .ITo on the arc 1 c m -  
responds to the value ;io = u0 (p) of the parameter U, then lo (p) -+ uO for 
p -+ 0. If p > 0 ( p  < O), then Lo (p) =- u o  (Zo (p) < u,,). A similar proposition, 
ivith suitably modified wording, applies tchen L is an w-separatrix of 
the saddle-node 0, 

lemma for the separatl-ix of a saddle point ( $ l l . l ) ,  and it is therefore 
omitted. 

T h e  o r e  m 62. If ( A )  is a system of the f i r s t  degree of structural 
instability in i f ' ,  it camot have in this region a separatyix which goes 
froni a saddle-node to a saddle point. 

in IL' a separatr ix  L of the saddle-node 0 which at the same  t ime i s  a 

L e wt m a  16. I f  p + 0 is sufficiently small, 0 i s  a-sale-point  of (A,) 

of the saddle-node 0 of (A,) and has no common 

The proof of Lemma 16 is analogous to  the proof of the corresponding 

P r o o f .  Suppose that the theorem is not t rue,  i.e., system ( A )  has 

separatr ix  of the saddle point 0, 
(F igure  161). Let 1 be an a r c  without 
contact passing through the point .Wo 
of the separatr ix  L .  Consider a 
sys tem (A,,). Since 0 i s  a saddle- 
node of (A,),  (A,) is s t ructural ly  
unstable. Lemma 16 and the cor -  
responding proposition for  a saddle 
point (9 11.1) then show that for  a 
sufficiently smal l  p # 0 (Ad  does 
not have in a sufficiently sma l l  neigh- 
borhood of the path L a separatr ix  

The contradiction is now established by the 

$++l,L 
4 f 

FIGURE 161 

which goes f rom 0 to 0,. 

usual argument using t i e  relation ( U ( L ) , A )  ;(?,A,,). 
theorem. 

T h e  o y e  ni 63. I f  ( A )  is a dynamic system of the f i r s t  degree of 
structural instability in i f - ,  it cannot have in this r e g i a  a path L which 
is at the same time an a-separatrix and an a-separatrix of a saddle 
point of (A) .  

theorem. It is conducted by reductio ad absurdum, using a sys tem ( A J ,  
Lemma 16, and the fact that a path forming a loop may c r o s s  a segment 
without contact a t  most in one point. 

Theorems 62 and 63 show that ca ses  4 and 5 listed at the beginning 
of this  subsection are unfeasible. 

Let u s  now re turn  tcb closed paths of a system of the f i r s t  degree of 
s t ruc tura l  instability and der ive a fur ther  property of these paths on the 
bas i s  of the above theol-ems. 

This  proves the 

P r o o f  of Theorem 6 3  is analogous to  the proof of the previous 
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T h e  o r  e m  64.  System (A) of the f i rs t  degree of structural instability 
in W may have only a finite number of closed paths in this region.* 

P r o o f  of Theorem 64 is analogous to the proof of the corresponding 
proposition for s t ructural ly  stable sys tems (Theorem 21, 9 16.1). Suppose 
that ( A )  has an infinity of closed paths in W . 
Lz, Ls, . . . of these paths and choose a single point on each. 
M 2 ,  M B ,  . . . be  the sequence of these points, Mi E Li . Since W i s  a compact 
region, we may assume without l o s s  of generality that the sequence M i  is 
convergent. 
show that no such point may exist. 

Consider a sequence Ll, 
Let M1, 

Let this  sequence converge to  some point M*. We w i l l  now 

Two cases  a r e  possible a priori: 
1) M* is an equilibrium state .  
2 )  M* is not an equilibrium state. 
In case  1, M *  is neither a node nor a focus (whether simple o r  multiple), 

since a sufficiently smal l  neighborhood of a node or  a focus may not contain 
points of closed paths. 
But then an infinity of points Mi belong to  one of the hyperbolic s ec to r s  of 
the equilibrium state  0,  and w e  can show that there  exis ts  a sequence of 
points which belong to  the closed paths Li and which have a condensation 
point which is not an equilibrium state (see 9; 16.1, proof of Theorem 21, 
case  2 ) .  Thus, case  1 is reduced to case  2 .  Let u s  consider the second 
case .  

W ,  nor' can it be a path which goes to  a node, a focus (whether. simple o r  
multiple), o r  a limit cycle (otherwise, closed paths Ll would pass  arbi t rar i ly  
c lose to the node, the focus, o r  the limit cycle, which is impossible). 
Similarly, L* may not be an inter ior  path of the parabolic sec tor  of a saddle- 
node. Finally, by Theorems 62  and 63, L* may not be a separatr ix  of a 
saddle-node, and by Theorem 58, L*may not be a closed path. We are 
thus lef t  with one las t  possibility, namely that L* is a path which for 
t+ - 00 goes to  the saddle point O1 and for  t+ + 00 goes to  the saddle 
point 0,. 

saddle-point separatr ix  which f o r m s  a loop. 

this  case  u (zo, yo) = P;  (q, yo) + Qb (q. yo) # 0. 

Hence, M*is  either a saddle point o r  a saddle-node. 

Let L* be the path of (A) through M*.  L* clear ly  cannot leave the region 

Let us  f i rs t  assume that the points 0, and 0 2  coincide, i. e., L* is a 

Let (zO. yo) be the coordinates of the saddle point Oj. By Theorem 60, in 
But then by Theorem 44, 

s29.1, the loop L* is either stable o r  unstable, 
i .  e., a sufficiently smal l  neighborhood of the 
loop may not contain points of closed paths. 
We have thus established a contradiction. 

Let now Ol and 0, be two different saddle 
points, L* going to  Ol for t -+ - 00 and to 0, for 
t+ + m(Figure 162). 
sector  of the saddle point 0, which contains an 
infinity of points MI. 

Consider that hyperbolic 

+&f 
FIGURE 162 

Let L** be the o -continuation 
of the separatr ix  L* on the side of this  hyperbolic sector .  
is analogous to the path L* in all respects ,  i. e., i t  is a saddle-to-saddle 
separatr ix .  But then (A) has  two s t ructural ly  unstable paths L* and L**, 
and this  contradicts Theorem 61. 
theorem. 

Clearly, L** 

This  completes the proof of the 

' Theorem 64 is not a direct consequence of Theorem 58 (which states that the closed paths of a system of 
the first degree of structural instability are isolated. 
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7. 
of systems of the f i r s t  d e g r e e  of 
s t r u c t u r a l  i n s t a b i l i t y  

P r o p e r t i e s  of s e p a r a t r i c e s  of s a d d l e  p o i n t s  

We h a v e  a l r e a d y  der :ved  some p r o p e r t i e s  of s e p a r a t r i c e s  of s a d d l e  
p o i n t s  of s y s t e m s  of t h e  first d e g r e e  of s t r u c t u r a l  i n s t a b i l i t y .  Indeed,  
we  h a v e  s e e n  tha t ,  first, t h e  s e p a r a t r i x  of a s a d d l e  point  0 (xo,  yo) m a y  
not form a loop  if u (zo,y3) = 0 (Theorem 60) and ,  s e c o n d ,  a n  w - s e p a r a t r i x  
( a - s e p a r a t r i x )  of a s a d d l e  point  m a y  not  be a t  t h e  same time an a - s e p a r a t r i x  
( o - s e p a r a t r i x )  of a s a d c l e - n o d e  (Theorem 62) .  In t h i s  s u b s e c t i o n ,  we  wi l l  
e s t a b l i s h  t w o  f u r t h e r  p r o p e r t i e s  of saddle-poin t  s e p a r a t r i c e s  of s y s t e m s  of 
t h e  f i r s t  d e g r e e  of s t r u c t u r a l  ins tab i l i ty .  

T h e o r e  m 65. A system of the f i r s t  degree of structural instabi2ity 
in IV may not have in this region two saddle-point separatrices tchich go 
to a limit cycle of multiplicity 2, me fm t -+ - 00 and the other fm 
f +  t 03. 

i n  W' and t w o  s a d d l e - p o i n t  s e p a r a t r i c e s  L ,  a n d  L I ,  of which  Ll goes t o  L o  
f o r  t -+ +- co a n d  L2 goes t o  t h e  same l i m i t  c y c l e  for t -+-a. 
s e p a r a t r i c e s  ev ident ly  lies o u t s i d e  Lo and t h e  o t h e r  lies i n s i d e  L o .  

(A) a n d  a n y  c l o s e d  pa ths ,  e x c e p t  L o .  

L e t  s b e  t h e  p a r h m e t e r  o n  t h e  arc 1 ,  c h o s e n  so  t h a t  t h e  point 31 c o r r e s p o n d s  
t o  s = 0.  L e t  f u r t h e r  

P r 0 0  f . Suppose  t h a t  s y s t e m  (A)  h a s  a l i m i t  c y c l e  L o  of m u l t i p l i c i t y  2 

O n e  of t h e s e  

L e t  e o > O  b e  s u c h  t h a t  U,,(Lo) d o e s  not c o n t a i n  a n y  e q u i l i b r i u m  s t a t e s  of 

An arc without  c o n t a c t  1 i s  p a s s e d  t h r o u g h  some point 31 of t h e  c y c l e  L o .  

;= f (s) 

be t h e  s u c c e s s i o n  funct ion o n  t h e  arc 1 def ined  f o r  all s, I s I < q, w h e r e  q 
is some pos i t ive  n u m b e r .  S i n c e  t h e  s e p a r a t r i c e s  L, and L z  b y  a s s u m p -  

t ion  g o  to LO ( f o r t - +  +- 00 and t - +  - 00 ,  

r e s p e c t i v e l y ) ,  t h e  arc 1 c o n t a i n s  a n  
inf in i te  n u m b e r  of p o i n t s  which  be long  
to L2 and a n  inf in i te  n u m b e r  of poin ts  
which be long  to L l .  
-11; (si) b e  two s u c c e s s i v e  ( i n  t e r m s  oft) 
p o i n t s  a t  which  t h e  p a t h  L 1  crosses the 
arc 1 ,  and -11; (si) and -ri; (s;)two s u c c e s -  
s i v e  ( in  t e r m s  o f t )  p o i n t s  at which  L2 
crosses 1 .  We a s s u m e  t h a t  M; and M i  
are so close t o  111 tha t  t h e  coils Jl&W; 
and IMeM; of t h e  p a t h s  Ll and L z r  r e s p e c -  
t ive ly ,  are conta ined  e n t i r e l y  i n  U,, ( L o )  
a n d I s ; I < t l , l s ; I < ? ,  i =  1 , 2 .  

Z 
%' 

Let .Vi (s:) and 

To fix i d e a s ,  l e t  t h e  p a r a m e t e r s  
o n  t h e  arc I b e  c h o s e n  so t h a t  SA < 0, si > 0 
( F i g u r e  163). T h e n  

FIGURE 163 s; < s; < 0 < s: < s;. 
A l s o  n o t e  t h a t  s; = f (si), s; = f (s;) . 

Alongs ide  with (A) ,  c o n s i d e r  the s y s t e m  
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Ch.XI1. CREATION OF LIMIT CYCLE FROM LOOP OF SADDLE-NODE SEPARATRIX 

and let po> 0 be s o  small  that for all p, lpl<po,  the following conditions 
a r e  satisfied: 

1) 1 is an a r c  without contact of (A,), and fo ra l l  s , / s l < q ,  the succession 
function ;=f,,(s) of this  system is defined on the a rc .  

2 )  U,(Lo) contains no equilibrium states  of (A,) and - either for  all 
p >  0 or for  a l l  p < 0 - it contains no closed paths of (A,) (the la t ter  proposi- 
tion is t rue  by Theorem 71, § 32.4). 

3) There  exist separa t r ices  L,, and L,  of (A,) which c r o s s  the a r c  1 at 
the points M;,, Mi, ,  M;, ,  M i ,  corresponding to  the values si,, si,, s&,, s;, of 
the pa rame te r s ,  such that 

sb,<si, <s;,< s;, 

and 
si, = f, (sb,), s;, = f, (sip). 

4)  The coils Afb,MiF and Mz,M;, of the paths Li, and L2, a r e  contained 
in (Lo) (Figure 164). 

FIGURE 164 

Consider successive iterations of the function f, , i. e., the functions 

and let 

( k =  2,3,  ... 1. 
In virtue of our  assumptions, i f  p = 0, then for any k , 2 ,  

Let Ci, and CZ,, be the simple closed curves formed respectively by the 
coi ls  Mb,Mi, and M;,rMi, of the paths L, ,  and LZp and the segments Mi,Mb, and 
M;,M;,of the a r c  1 .  

i f  po is sufficiently small ,  the region r,, between these two curves is 
It is readily seen that in our  case  the curve C,,  is enclosed by C,,,  and 
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conta ined  i n  L ' e o ( 0 ) .  
l i m i t  cycle L o  i s  clearly e n c l o s e d  be tween t h e  c u r v e s  C I O  and ( ' 2 0 .  

no c losed  p a t h s  of (-A,,j. 
r:;hcr.e o < p < p 8 , .  
be tween  t h e  c u r v e s  
S i n c e  CEO ( L , , )  c o n t a i n s  n e i t h e r  e q u i l i b r i u m  s t a t e s  n o r  c l o s e d  p a t h s  of (Ap), 
t h e  path L , ,  w i l l  l e a v e  L.e,,(L.o), and t h u s  t h e  r e g i o n  ru,  as t i n c r e a s e s  f u r t h e r .  
Thi ;  may occur  only  i f  L.,, crosses  the  s e g m e n t  JI,JIi , .  o f  :he arc without 
r m t a c r  1 .  Conseql ient ly ,  t h e r e  es isrs  a natiAral n u m b e r  A\ 

We a s s u m e  tha t  t h i s  condi t ion i s  indeed  s a t i s f i e d .  T h e  

P v  condi t ion 2 ,  for all ci of a c e r t a i n  s i g n  (it' O < I ~  1 -=c p0), C;,(L,)contains 
L e t  t h i s  b e  so  Sur pos i t ive  p . C n n s i d e r  a path L I P ,  

and C'?, (r, ,cl:eo(f .o)) ,  c r o s s i n g  through the  point N i b .  
As t i n c r e a s e s ,  t h e  path Lrll  e n t e r s  i n t o  t h e  r e g i o n  r,, 

fS, (sip) 3 s;p. ( 7 2 )  

/ S & ( S l , )  < s;p. ( 7 3 )  

On t h e  o t h e r  hand,  b>, ( ' i l t ,  w e  have  for p = 0 

3 i n e e  si,, s:,, , an.! f.~, are cont inuous  func t ions  of p (bj- r e m a r k  to Lenin ia  3 ,  
29,? ' ! ,  i n e q u a l i t i e s  (721 and ( 7 3 )  p r o v e  t h e  e x i s t e n c e o f a n u m b e r  p*, U (  p* < p, 
.iu<-ii that  

/S,* (s1),*) = s;,,, 

SS&* = siw*. 

i .  e., s u c h  That 

*l'he l a s t  c q u a l i t v  shoir-s that  t h e  s e p a r a t r i s  L I P *  O S  (-A,,*) c o i n c i d e s  \Kith 
t h e  s e p a r a t r i s  Le,,*, i .  e . ,  (Ap.) h a s  a s a d d l e - t o - s a d d l e  s e p a r a t r i x .  T h e  
n u m b e r  p* m a y  b e  t a k e n  as sma l l  as d e s i r e d .  
rhat i f  (.A) h a s  a l i m i t  c y z l e  of m u l t i p l i c i t y  2 i n  11. to which o n e  s e p a r a t r i s  
g o e s  for t +  - ~3 and t h e  o t h e r  s e p a r a t r i s  f o r t  + +- 00, t h e r e  e x i s t s  a s y s t e m  

A,,") as  c l o s e  as d e s i r e d  to ( A )  %which h a s  a s a d d l e - t o - s a d d l e  s e p a r a t r i s  
in  W . (-1,') i s  a s t r u c t u r a l l y  u n s t a b l e  s y s t e m .  T h e r e f o r e ,  s i n c e  ( A )  i s  a 
s y s t e m  of t h e  f i r s t  d e g r e e  of s t r u c t u r a l  ins tab i l i ty ,  we sho:ild h a v e  

We have  t h u s  e s t a b l i s h e d  

(H,  A ) & @ ,  A&*). 

T h i s  r e l a t i o n  i s  c l e a r l v  unfeas ib le ,  s i n c e  (Afi.) h a s  a s a d d l e - t o - s a d d l e  
s e p a t - a t r i x  and (-4) h a s  n'3 s u c h  s e p a r a t r i c e s  i n  t h e  neighborhood of W .  
LVe h a v e  t h u s  e s t a b l i s h e d  a cont rad ic t ion ,  which  p r o v e s  t h e  t h e o r e t n .  

T h e  o v e  m 66. A system of the f i r s t  degree of strrictiiral instability 
in If' cannot have in this region a saddle-point separatrix which goes (for 
t 4 - 00 or f o r t  -+ +- 00) lo a saddle-point separatrix forming a loop. 

Again s u p p o s e  that  t h e  t h e o r e m  i s  not t r u e ,  i .  e . ,  s y s t e m  ( A )  
n f  t h e  f i r s t  d e g r e e  of s t r u c t u r a l  ins tab i l i ty  h a s  i n  Lf? a s e p a r a t r i s  Lo of t h e  

P r nn f . 

s a d d l e - p o i n t  0 (q, yo) which forms a l o o p  and a 
s e p a r a t r i x  Li of t h e  s a d d l e  point 0, (z,. yl) which 
goes t o  t h e  loop  Lo  for t +  C 00 ( t h e  s a d d l e  poin ts  
(3 and 0, are c l e a r l y  d i f f e r e n t ) .  By T h e o r e m  60, 
[J (zo, yo) # 0 f o r  t h e  s a d d l e  point 0, and by  
'Theorem 44, s29.1,  

(J ( Z O ?  Yo) < 0. (74 )  

To fix i d e a s ,  s u p p o s e  t h a t  two s e p a r a t r i c e s  of 
t h e  s a d d l e  point  0 which are d i f f e r e n t  f r o m  Lo l i e  FIGURE 165 
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outside the loop formed by the separatr ix  L o ,  so that the separatr ix  Ll goes 
to  the loop Lo f rom the inside (Figure 165). 

Let eo > 0 be such that U,, (Lo) contains no equilibrium states ,  except 0, 
and no closed paths of (A) .  

Through a point P of the path Lo draw an a r c  without contact I ,  and let s 
be  the parameter  on the a r c  1 chosen so that the point P corresponds to 
s = 0 and the points of the a r c  1 lying outside the loop correspond to 
positive values of s (Figure 166) .  
w e  can always find a point A of the a r c  1 which lies inside the loop such 
that a l l  the paths crossing the segment A P  of the a r c  1 go to  the loop Lo 
and therefore  c r o s s  the segment A P  at infinitely many points. 
the separatr ix  Ll of the saddle point Ol c rosses  the segment A P  of the a r c  1 
at infinitely many points. 

Since by assumption the loop IS stable, 

In particular, 

FIGURE 166 

Let the value of s corresponding to  the point A be a .  The succession 
function 

;= f (s) 

is thus defined on the segment APof the a r c  I ,  i .  e., for a < s < O .  

every point of the a r c  A P ,  
Moreover, for  every integer N, there  is an N-th successive point for 

~ L V  = fN (s). 

Consider two successive points M o  and M 1  among the intersection points of 
the separatr ix  Li with the a r c  A P .  Let so and s, be the values of the para-  
meter  s corresponding t 3  these points, and to  and ti the corresponding t imes  
on the path L,. Clearly to t l ,  and so <si. Moreover, l e t  the point M o  be 
so close to the loop Lo that the segment M a l  of the path Lo is contained in 
U,, (Lo) (Figure 166) .  

Consider the modified system 

(Ad 
d x  
-= dt P (2, Y) - PQ (ZV A’), -$ = Q (I, Y) + PP (Z, V) t 

which is obtained from (A) by a rotation of the vector field. 
ficiently small  p # 0, (A,,) has no separa t r ices  forming loops in U., (Lo) ,  

For all suf- 
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S 31. SYSTELIS OF THE FIRST DEGREE OF STRUCTUR.4L INSTABILITY 

bur i t  h a s  two d i f f e r e n t  s e p a r a t r i c e s  L; (p )  and Li (p) c r o s s i n g  t h e  arc 1 i n  
t h i s  ne ighborhood.  

point  0 .  

L,  (p) and Li (p), r e s p e c t i v e l y ,  with t h e  arc  I ,  so t h a t  t h e  s e g m e n t  OP' (p) of 
t h e  path L; (p) and t h e  s e g m e n t  OP"(p) of the  pa th  L i ( p )  c o n t a i n s  no p o i n t s  of 
t h e  a rc  1 ,  e x c e p t  P' (p) and P" (p). 
p a r a m e t e r  s c o r r e s p o n d i n g  t o  t h e  poin ts  P' (p) and P" (p). 

Let  Li (p) b e  a n  a - s e p a r a t r i x  and  Li (p) a n  a - s e p a r a t r i x  of t h e  s a d d l e  

L e t  P' (p) and P" (p) b e  t h e  " f i r s t "  i n t e r s e c t i o n  p o i n t s  of t h e  s e p a r a t r i c e s  

L e t  s ' ( p )  and S* (p) be t h e  v a l u e s  of t h e  
C l e a r l y ,  

lims' (p) = lim s* (p) = 0. 
k-0 P-tO 

( 7 5 )  

L e t  po > O  b e  s u f f i c i e n l y  s m a l l .  Then ,  if I p I < po, we h a v e  s' (p) > O ,  
S' ( p )  > a ,  and t h e  segme:? ts  OP' (p) and OP" (p) of t h e  s e p a r a t r i c e s  L; (p) and 
1,; (p) l i e  i n  Uco (Lo). If, n i o r e o v e r ,  p > 0, and  eo i s  suf f ic ien t ly  small ,  we  
h a v e  bv t h e l e m m a o f  S11.1 s" (p)> 0 and s' (p) < 0. 
r e m a r k  t o  t h e  t h e o r e m  ( 5  29.3), (.A& h a s  n o  c l o s e d  p a t h s  i n  UE0 ( L o ) .  We 
-+vi11 a s s u m e  i n  what  fol lows tha t  t h e s e  v a r i o u s  condi t ions  are s a t i s f i e d .  

F v  L e m m a  7, $29 .2 ,  a s u c c e s s i o n  funct ion s-  f (s. p) i s  def ined  for  
all I p I < p o ,  w h e r e  po > CI is a n  a p p r o p r i a t e l y  c h o s e n  n u m b e r ,  o n  t h e  
s e g m e n t  .4P' (p) of t h e  arc without  contac t  I ,  i .  e., for all s, Q.::s < S' (p). 

Ey T h e o r e m  1 9  and  t h e  

S i n c e  Cc0 ( L o )  c o n t a i n s  no c l o s e d  p a t h s ,  w e  r e a d i l y  c o n c l u d e  t h a t  f (s, p) > s . 
It  i s  m o r e o v e r  obvious  t h a t  

lim f (s, p) = sD (p) 
S'S (PI  

and tha t  for p = 0 t h e  futiction s = f (s, p) r e d u c e s  t o  t h e  s u c c e s s i o n  funct ion 
of t h e  o r i g i n a l  s y s t e m  ( f  (s, 0) f (s)) def ined  o n  t h e  s e g m e n t  d P  of t h e  arc  I .  

S i n c e  for t h e  o r i g i n a l  s y s t e m ,  e v e r y  point  of t h e  s e g m e n t  -4P of t h e  arc  I 
h a s  a n  iV-th s u c c e s s o r  f o r  e v e r y  i n t e g e r  .V, t h e n  for a n y  g i v e n  .V e v e r y  
f i x e d  p o i n t  of t h e  s e g m e n t  A P  of t h e  arc  I w i l l  have  a n  N - t h  s u c c e s s o r  
for t h e  s y s t e m  A,, p rovided  p is s u f f i c i e n t l y  small. W e  wil l  d e s i g n a t e  t h i s  
s u c c e s s o r  b y  

- 
s.\- = f.r (s, p). 

C l e a r l y ,  f X ( s ,  p) i s  a coni inuous  funct ion of p ( f o r  t h o s e  v a l u e s  of p f o r  which  
it i s  d e f i n e d ) .  

p # O  is suf f ic ien t ly  s m a l l ,  (-43 has a s e p a r a t r i x  51 (p) of t h e  s a d d l e  point  O1 
which  crosses t h e  arc without  c o n t a c t  1 a t  t h e  p o i n t s  i%lo (p) and M ,  (p), w h e r e  
-%Io (p) -+ :Ifo and MI (p) -+ MI for p --t 0.  
t h e  p a r a m e t e r  s c o r r e s p o n d i n g  t o  M 0  ( p )  and Mi (p). 
if p 

path  LI (p) between t h e  po:.nts -%Io (p) and Mi (p) is e n t i r e l y  conta ined  i n  U,, (La) .  

t inuous  func t ions  of p. 
coinc ide ,  and  t h e r e f o r e  (A,) h a s  no e q u i l i b r i u m  s t a t e s ,  e x c e p t  t h e  s a d d l e  
point 0 ,  i n  o', (Lo). 

and Oe p Q po, t h e  fol lowing i n e q u a l i t i e s  a re  s a t i s f i e d  

R v  L e m m a  3, 39.2 ,  and t h e  r e m a r k  to t h i s  lemma, w e  c o n c l u d e  t h a t  if 

Let so (p) and si (p) b e  t h e  v a l u e s  of 
B y  t h e  l e m m a  of § 11 .I, 

We m o r e o v e r  a s s u m e  t h a t  po is so s m a l l  t h a t  if I p 1 < po, t h e  coil of t h e  

B y  t h e  r e m a r k  t o  Lemma 3 ,  

0, w e  h a v e  so (p)  > s,, and s1 (p) > sI. 

9.2, so (p), sl (p), s' (p), and s" (p) are c o n -  
-41~0 n o t e  t h a t  t h e  e q u i l i b r i u m  s t a t e s  of (A) and (AJ 

It fo l lows  f r o m  the a b o v e  tha t  if eo > O  and pa >O are suf f ic ien t ly  s m a l l ,  

so @'I< si (p) < s' (I*) 0, s" (PI > 0 
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and U,, (Lo) contains no closed paths of (A,,) and no equilibrium states ,  except 
the saddle point 0 .  

Since Mi (p) is the successor  of M o  (p), we have 

$1 (p) = f (so (p), P). 

Moreover, it is readily seen f rom the above that for  a given integer N and 
for  a l l  sufficiently smal l  p ,  there  exis ts  an N-th successor  of the point M o  (p), 
i .  e ., the function - 

S N  (p) = fN (SO (p), p) 

exis ts ,  and i t  is a continuous function of p (naturally for  a l l  p for  which 
it exis ts) .  

the above assumptions. 
Let u s  now consider the behavior of the separatr ix  L1 (p) prescr ibed by 

Two c a s e s  a r e  possible: 
1) there  exist a rb i t ra r i ly  smal l  p, I p I < po, such that for  some N 

f N ( S O ( p ) v  p)Es’(p), 

i .  e . ,  there  exist a rb i t ra r i ly  smal l  p such that L1 (p) coincides with the 
separatr ix  L; (p) (Figure 167);  

2 )  there  exis ts  pl > 0 ,  p i < p 0 ,  such that fo r  all I p [<pi, the separatr ix  
Li (p) does not coincide with L; (p). 

FIGURE 167 

Let u s  f i r s t  establish the behavior of the separatr ix  in case  2 .  
We will consider 
(a )  a simple closed curve C’ consisting of the coil of the path Li (p) between 

the points M o  (p) and M i  (p) and the segment of the a r c  I between the points 
M o  (p) and Mi (14: 

separatr ix  L; (p), the point 0 ,  the segment OP” (p) of the separatr ix  L; (p), 
and the segment of the a r c  t bet*rreen the points P’ (p) and P“ (p). 

(b) a simple closed curve c“ consisting of the segment P ’ ( p ) O  of the 
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L e t  r b e  t h e  r i n g  e n c l o s e d  b e t w e e n  t h e  c u r v e s  C' and C" ( F i g u r e  168). 
It is r e a d i l y  s e e n  tha t  I' i s  e n t i r e l y  conta ined  i n  Lye, ( L o )  ( s i n c e  e a c h  point of 
t h i s  r e g i o n  b e l o n g s  to a coil of a path of s y s t e m  (A+) e n t i r e l y  conta ined  i n  
I - , , ,  ( L o ) )  and t h e r e f o r e  c o n t a i n s  no c l o s e d  p a t h s  and  no e q u i l i b r i u m  s t a t e s ,  
e x c e p t  t h e  s a d d l e  point ( 3 .  
t h r o u g h  t h e  point -If l (u)  its t i n c r e a s e s .  
c o i n c i d e  with t h e  s e p a r z t r i s  L; ([I) of t h e  s a d d l e  point  0 ,  f u r t h e r  i n c r e a s e  
of t w i l l  inevi tab ly  c a u s e  i t  t o  l e a v e  I'. 
t h e  s e g m e n t  P' (p) P " ( p )  c- f  t h e  arc  1 .  

T h e  s e p a r a t r i x  L , ( p )  evident ly  e n t e r s  in to  r 
S i n c e  b y  a s s u m p t i o n  it d o e s  not 

It m a v  l e a v e  r o n l y  by  c r o s s i n g  

FIGURE 168 

L e t  Q ([I) b e  t h e  i n t e r s e c t i o n  point of t h e  s e p a r a t r i s  L l  (p) with t h e  s e g m e n t  
P' (11) P" (p) of t h e  arc 1 .  
.Ifo (p), w h e r e  .V i s  some n a t u r a l  n u m b e r  d e p e n d e n t  on  p . 

then  for a n y  p* > 0, p* < p I  we h a v e  

'The point  Q (p )  is c l e a r l y  t h e  S - t h  s u c c e s s o r  of 

T h u s ,  if we  w r i t e  so (11) f o r  t h e  c o o r d i n a t e  of t h e  point Q (p) o n  t h e  a rc  I ,  

sq (P') = f w  (so @'), p*)* 

w h e r e  iV* d e p e n d s  o n  p*. T h e  fol lowing inequal i ty  is also s a t i s f i e d :  

fs* (so (p*), p*) > s' W). ( 7 6 )  

C h o o s e  a f ixed p* and t h e  c o r r e s p o n d i n g  X*. 
For p = 0, f o r  every.V,  and i n  p a r t i c u l a r  f o r  N = N * ,  t h e r e  e x i s t s  a 

negat ive  n u m b e r  / X I  (so (0), 0). 
func t ions  of p .  T h e r e f o r e ,  if p*+, 0 <p** < p*, is suf f ic ien t ly  small ,  t h e  
n u m b e r  f.v* (so (p**), p*)  is close t o  f,v. (so (p*), p * ) ,  and t h e  n u m b e r  s' (p**) is 
c l o s e  t o  z e r o ,  so  t h a t  

P u t  so (p), s' (p), s" (p), fw (sa (p), p) are cont inuous  

f s .  ($0 (I***). p*) < s' (P**). ( 7 7 )  
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From (76)  and (77) ,  using the continuity of a l l  the relevant functions, w e  
conclude that there  exis ts  a number p, p**<;<p*, such that 

i ,  e ., the separatr ix  L ,  (F) of the saddle point Oi coincides with the separatr ix  
L; (F) of the saddle point 0 .  

stability (A) contains in W a separatr ix  L o  of the saddle point 0 which forms a 
loop and a separatr ix  I,, of the saddle point 0, which goes to  this  loop, there  
exis ts  a system (A,) a s  close a s  desired to (A) which 

This, however, contradicts assumption 2 .  
We have thus established that i f  a system of the f i r s t  degree of s t ructural  in- 

( a )  has a separatr ix  extending from saddle point 0 to  saddle point 0,; 
(b) does not have separa t r ices  forming a loop and contained in U,, (Lo), 

F y  (a) ,  (A,) is a structurally unstable system, and by (b),  the relation 
where E,, i s  a sufficiently smal l  positive number. 

(17, A,) 2 (11, A )  is impossible for the sys tems (A) and (A,). 
Definition 30 (§31.1), (A)  may not be a system of the f i r s t  degree of 
s tsuctural  instability. 

But then, by 

This contradiction proves the theorem. 

8 .  
conditions for  systems of the first degree of 
s t ruc tura l  instability) 

The fundamental theorem (the necessary and sufficient 

Cnllecting all the previous resul ts ,  w e  see  that a dynamic system (A) 
o f  the f i rs t  degree of s t ructural  instability in a closed region W sat isf ies  
the following conditions: 

I .  ( A )  has in W one and only one s implest  structurally unstable path, 
i .  e ., a path of one of the following types: 

1) a multiple focus of multiplicity 1; 
2 )  a saddle-node of multiplicity 2 with uo = P i  + Qu # 0; 
3) a limit cycle of niultiplicity 2; 
4) a separatr ix  from one saddle point to  another; 
5) a separatr ix  forming a loop for  a saddle point with CY,, # 0. 
TI. ( A )  does not have in W any s t ructural ly  unstable limit cycles, 

saddle- point separatr ices  forming a loop, or equilibrium states  other 
than those listed in I. 

If (A)  has a saddle-node in W ,  none of the separa t r ices  of this 
saddle-node may go to  a saddle point and no two separa t r ices  of the saddle- 
node a r e  a continuation of each other. 

for t -f - 00 or for  t -+ + 00 to  a separatr ix  forming a loop. W may not 
contain two saddle-point separa t r ices  going to  the same  limit cycle of 
multiplicity 2,  one for t - c  - 00 and the other for t+- + 00. 

Conditions I through IV prove to  be not only necessary but a lso s u f -  
ficient for (A) to  be a system of the f i r s t  degree of s t ructural  instability 
in W ,  i .e . ,  w e  have the following theorem: 

For a dynamic system (A) to be a system of the f i rs t  
degree of structural instability in a closed region W ,  i t  i s  necessary and 
sufficient that the above conditions I through IV be satisfied. 

111. 

I P .  The separatr ix  of a saddle point of (A) contained in W may not go 

T h e  oYe?n 67. 
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P r o n  f . The necessity of conditions I through 11- follows directly from 
Theorems 54-  57, 59- 63, 65, and 66. The proof of sufficiency is omitted 
here .  Note, however, that although the proof of sufficiency is fairly lengthy, 
t h p  underlving idea i s  simple and it follows the proof of Theorem 2 3  (the 
nccessarv and sufficient conditions of s t ructural  stability of sys tems,  9 18.2)  :': 

9. 
of s t ruc tura l  instability 

Bifurcations of sys tems of the first degree 

The above properties enable u s  to identify without any further difficulties 
all the possible bifclrcat.ioiis of a dvnaniic system (A)  in  a region Pi7 where 
(.At is of rhe first degree of s t ructural  instability. 
evidentlv depend on the particular simplest s t ructural ly  unstable path that 
thc svstem has.  

These bifurcations 

Let u s  consider the different cases .  
1 1  ( A )  h a s  a m u l t i p l e  f o c u s  of m u l t i p l i c i t y  1 i n  W .  Only 

one bifurcation is possi'2le in this case ,  namely the creation of a limit cycle 
from the multiple focus. 
into a s imple (s t ructural ly  stable) focus and changes i t s  stability, while the 
created cvcle is s t ructural ly  stable and i t s  stability i s  identical t o  the 
stabilitv of the original focus. 

2 )  ( A )  h a s  a l i m i t  c y c l e  of  m u l t i p l i c i t y  2 i n  T i ' .  Bilurca- 
tions of two types are possible in this case: the disappearance of the limit 
cycle and decompositior. of the limit cycle into two limit cycles .  
l a t te r  ca se ,  the two neu cycles a r e  s t ructural ly  stable, one being stable 
and t h e  other unstable. 

3) ( A )  h a s  a s e p a r a t r i s  f r o m  o n e  s a d d l e  p o i n t  t o  a n o t h e r  
s a d  d 1 e p o i n  t i n W. . In this  case ,  the saddle-to-saddle separatr ix  may 
decompose into two separa t r ices  which a r e  not a continuation of one another. 
This is the only possible bifurcation of such sys tems.  

i n it' . 
to close sys tems.  Two different bifurcations a r e  possible: e i ther  a 
s t ructhral ly  stable limit cycle i s  created in the neighborhood of the dis- 
appearing separa t r i s  loop (of the same  stability a s  the loop), or  the loop 
disappears  without creat ing a limit cycle. 

should be considered here: 

This  bifurcation t ransforms the multiple focus 

In the 

4 )  I A )  h a s  a s a d d l e - p o i n t  s e p a r a t r i x  f o r m i n g  a l o o p  
Fifurcations occur only i f  the sepa ra t r i s  loop disappears  on moving 

5 )  ( A )  h a s  a s a d d l e - n o d e  Jfo w i t h  c r o + O  i n  W .  Twosubcases  

5a) T h e  s a d d l e - n o d e  -Ilo h a s  n o  s e p a r a t r i x  f o r m i n g  a 

Two bifurcations a r e  possible: disappearance of the equilibrium state  
l o o p .  

Jl,or i t s  decomposition into two s t ructural ly  stable equilibrium s ta tes  - 
a saddle point and a node. 

5b) T h e  s a d d l e - n o d e  No h a s  a s e p a r a t r i x  f o r m i n g  a 
l o n p .  

.Again birfu rcations of' two types a r e  possible: 
1) Decomposition of the equilibrium state  M o  into a s t ructural ly  stable 

In e i ther  case,  no limit cycles  a r e  created.  

saddle point and a s t ructural ly  stable node. No limit cycle is created.  

' Dynamic syrcems of the first degree q f  srructurdl initabrlicyon torus wereconsidered by Aranson (see /38/). 
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Ch.XI1. CREATION OF LIMIT CYCLE FROM LOOP OF SADDLE-NODE SEPAPATRIX 

2 )  Disappearance of the equilibrium state M o .  The separatrix loop 
naturally disappears,  and a limit cycle is created in its neighborhood. 

The above bifurcations cover all the possible simplest bifurcations, 
i .  e., bifurcations which may occur in systems of the f i r s t  degree of 
s t ructural  instability. This conclusion follows from the resul ts  of the 
previous chapters and from s 30. 

The above l ist  shows that all the simplest bifurcations involving 
creation o r  disappearance of a limit cycle a r e  particular ca ses  of bifur- 
cations considered in Chapters IX, X, XI and in 9 30 of the present 
chapter. Note, however, that these chapters,  and Chapter VIII, a r e  
by no means restricted to  the analysis of the simplest bifurcations. 
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C h a p t e r  XIII 

LIJI IT  C Y C L E S  OF SOIlIE DYNAJIIC SYSTE,VS 
DEPENDING ON A PARA\IETER 

IXTRODUCTIO?S 

The subject of this  chapter are analytical dynamic sys tems depending 
on a parameter ,  i.e., sys tems of the form 

where H and 0 are analytical functions. 
limit cycles created from zi closed path Lo of the "original" system (Ad) 
on passing from p = 0 tci c lose values of the parameter  p. 

subsections of 5 32 are of auxiliary charac te r .  
the succession function on an a r c  without contact crossing a closed path L o  
and der ive a number of I'ormulas for  the coefficients in the series expansion 
of this function. In $ 3 2 . 2  a more  detailed statement of the problem is given. 
$ 3 2 . 3  is devoted to  one classical  problem of the theory of analytical func- 
tions, and i t  is thus of independent in te res t .  
F (u,. z )  = 0, where F i s  an analytical function satisfying the condition 
F ( O , O )  = 0, and the so-called N e w t o n ' s  p o l y g o n  is applied to  
investigate the number and the behavior of the solutions of this equation 
i n  the neighborhood of the point ui = 0, J = 0 .  

of Theorems 71 and 7 2 .  
form 

Ke w i l l  investigate the topic of 

The chapter  is divided into two sections, $ 3 2  and 3 3 .  The f i r s t  three 
In S 32 .1 ,  w e  investigate 

It considers  the equation 

The  main resu l t s  of this section a r e  presented in  9 3 2 . 1 ,  in the form 
In these theorems,  system (A,) is taken in the 

- = P - p ' Q ,  d z  - $ = Q + p P ,  
d t  

whose vector field is obtained f rom the vector field of (XO) by a rotation 
through a constant angle. It is proved that if  Lo is a limit cycle of even 
multiplicity of (Ao), rotation of the vector field in one direction decomposes 
this  cycle into two strucyurally stable cycles, and rotation in the opposite 
direction makes the cycle disappear (Theorem 7 1 ) .  
limit cycle of odd multiplicity of (Ao), any system obtained by a smal l  
rotation of the vector field of (Ao) in any direction has  a single limit cycle 
in a smal l  neighborhood of L o ,  which i s  moreover s t ructural ly  stable 
(Theorem 7 2 ) .  

The creation of a limit cycle f rom a closed path of a conservative 
system is considered in s 3 3 .  
A conservative sys tem is defined as a system which has  a n  i n  t e g r a 1 

If, however, Lo is a 

The  main definitions a r e  given in I 3 3 . 1 .  
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i n v a r i a n t  w i t h  p o s i t i v e  d e n s i t y  in the relevant region (see 
833.1, Definitions 31 and 32). 

33 deals  only with one par t icular  ca se  of conservative 
systems,  namely sys tems defined in a doubly connected ("ring") region 
where all the paths a r e  closed paths enclosing one another. In $33.1 
it is proved that such a system is indeed conservative (Theorem 74). 

However, 

Dvnamic sys tems of the form 

I a r e  known as H a m  i 1 t o n  i a n  s y s t e m s , and they constitute a particular 
ca se  of conservative systems.  

system 

i .  e ., sys tems of the form 

In s33.2, we consider sys tems which a r e  c lose to  the l inear  conservative 

(Bo) x =  - y  9 y=x, 

(Bu) ;= -Y +PPI ( x ,  Y) + P P Z  (G Y) + . . . 
i = x +  PPI (G Y) + p'242 (I, Y) f . . . , 

and we establish under what coriditions the path x2  + yg = p: of the original 
system (e,) crea tes  a single limit cycle on passing to  a sufficiently c lose 
system (B,) (Theorem 75). 

which a r e  c lose to  conservative sys tems (see Theorem 77).  
(s 33.4) shows that these conditions a r e  particularly simple for  sys tems 
close to  Hamiltonian. 

in  Chapter XI11 is not essential: 
analytical sys tems also.  

In 833.3, s imi la r  conditions are derived for  the general  case  of sys tems 
Theorem 78 

Note that the condition of analyticity of the dynamic sys tems introduced 
s imi la r  resul ts  can be derived for non- 

$32. THE BEHAVIOR O F  LIMIT CYCLES OF SOME 
DYNAMIC SYSTEMS FOLLOWING SMALL 
CHANGES IN THE PARAMETER 

1. 
of a closed path 

The succession function in  the neighborhood 

Consider a dynamic system depending on a parameter  p 

where 
meter  p, defined for I ,  y f rom some region G in the plane ( I ,  I/) and for  p 
from some interval containing the point po. Clearly (A,,) may be treated 
as a one-parametr ic  family of analytical dynamic systems defined in  G. 

generality, we may take po = 0, i.e., Lo is a closed path of the system 

( x ,  y, p) and p ( x ,  y, p) are analytical functions of x ,  y and of the para-  

Suppose that for p = po, (A,,) has  a closed path Lo.  Without loss of 
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5 2 %  EFFECT OF S l I A L L  CH.4NGES LK P.IR-Ih!ETOI 

w h e r e  q ( t )  and + ( t )  are p e r i o d i c  func t ions  of per iod  T which c o n s t i t u t e  t h e  
so lu t ion  c o r r e s p o n d i n g  t o  t h e  pa th  Lo. 

As i n  
of t h i s  path,  

13,  we define c u r v i l i n e a r  c o o r d i n a t e s  s, n i n  t h e  ne ighborhood 

- 
z=(P(s.  n). y = i ( s ,  n), ( 2 )  

w.here t h e  func t ions  6 and 3 h a v e  t h e  following p r o p e r t i e s :  
I )  @ and 5 a r e  defined i n  t h e  s t r i p  

- 00 < s <  00, -n* < It < R*, ( 3 )  

w h e r e  n* i s  some pos i t ive  n u m b e r ,  and  t h e y  a re  a n a l y t i c a l  func t ions  i n  
t h i s  s t r i p .  

2 )  (p and $ are  p e r i o d i c  func t ions  of s with p e r i o d  T. 

4) T h e  func t iona l  d e t e r m i n a n t  

- 
3 )  'p (s, 0)  = (p (s). .1. (s. 0) E (s) . (4) 

d o e s  not v a n i s h  everbywhere  i n  t h e  s t r i p  ( 3 ) ,  i . e . ,  it  r e t a i n s  a c o n s t a n t  
s i g n  i n  t h i s  s t r i p .  

f o r m  as i n  § 13 
T h e  funct ion 'p(s. n) and q ( s +  n) m a y  b e  t a k e n ,  i n  p a r t i c u l a r ,  i n  t h e  s a m e  

G = 'p (s) +R$' ( s i ,  s= 9 (s) -R'p' (s), ( 6 )  

a s  for suf f ic ien t lv  s m a l l  n* > 0 t h e s e  func t ions  e v i d e n t l y  s a t i s f y  all t h e  condi -  
t i o n s  above .  We s h a l l  see i n  t h e  following, h o w e v e r ,  t h a t  in some cases 
funct ions  of a d i f f e r e n t  f o r m  are more convenient  f o r  and 5 (see 333.3 ,  
(561).  F r o m  r e l a t i o n  (4)  we evident ly  h a v e  

cp; (s. 0 )  = 'p' (s). 5.; (s. 0) = I#' (s). (7 )  

L e t  u s  c h a n g e  o v e r  t o  t h e  v a r i a b l e s  s, n i n  all t h e  s y s t e m s  (A,,) with 
Dif fe ren t ia t ing  ( 2 )  with r e s p e c t  t o  t and us ing  t h e  s u f f i c i e n t l v  s m a l l p .  

e q u a t i o n s  of (-Ip), we fiqd 

Solving t h e s e  e q u a t i o n s  for $, $ and e l i m i n a t i n g  t ,  we o b t a i n  t h e  
d i f fe ren t ia l  equat ion  
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F o r  n = 0, p = 0, the denominator in the right-hand s ide of (R,) is evidently 
equal to  

(4. (I, (SI. 0)  4% (s, 0) -C(Cp (4, (I, (4. 0) cp;l (s, 0) = 

= 7 (s) $, (s, 0) - (I,' (s) CP; ( 8 ,  0) = A  (s, 0) 

By condition 4, A (s, 0) # 0 for  all s, in particular, for  all 0 B: s< T. 
i f  n* > O  and p*> 0 a r e  sufficiently small ,  the denominator in the right-hand 
side of equation (R,) does not vanish for a l l  s, n, p satisfying the respective 
inequalities 

Therefore, 

O < s < r ,  Inl<n*, lpl<p*. 

i. e ., because of the periodicity in s of the functions $ and 
In I < n*, 1 pl <p* . 
- -oo<s<+w,  [ n ( < n * ,  lpl<p*. Therefore, i t  can be expanded in a series 
in  powers of n, p in the neighborhood of any point in this  region, and the 
coefficients of this series wi l l  be analytical functions of s. It is readily 
seen that 

for - 00 < s <  + oc, 
Hence it follows that R (s, n, p) is an analytical function for  

R (s, 0, 0) 3 0. 

Therefore ,  the expansion of R ( s ,  n, p) in the neighborhood of the point (so, 0,O) 
(where so is any fixed number) has  the form 

(8) 

R (s, n, = Aio (s) n + AM (8) P + 40 (4 n2 -t 41 (S) nP + AJZ (S) Pa + . . (9) 

Since R (s, n, p) is periodic in s, i t  is readily seen that the coefficients 

It follows from (8) that the function n = 0 solves the equation (Ro). In 

We will consider the succession function on the a r c  without contact I ,  

Ai, (s) a r e  a lso periodic functions of period T. 

general, however, it does not solve the equation (RL) for p + 0.  

defined by the equation s = 0 (for functions % and 3 of the form (6),  this  
a r c  is the normal  to the path (1) at the point s = 0) .  
function is constructed as in Chapter V ($13.3). 

The succession 
Let 

n = f ( s ;  0, no. p) (10) 

be the solution of equation (R,) satisfying the initial condition 

(11) f (0; 0, no, p.) = no. 
According to general  theorems,  this  solution is defined in  the region 

-T l<s<7+Tl ,  lnol<A, Ip l< i .  (12) 

where q > 0, and i<n* and b&p*  a r e  sufficiently smal l  positive numbers: 
in this  region, the solution is an analytical function of its arguments. 
Since ne= 0 is a solution of (Ro), we have 

f (s; 0, 0, 0) = 0 

and the expansion of the function f in powers of no and p has the form 

f (s; 0,  no, ~ ~ = a l o ~ ~ + a o , ~ + a ~ o n ~ + a l , n d r + ~ ~ B + .  . . (13) 

Here the coefficients a i j = a , j ( s )  are analytical functions of I in the interval 
- q <  s < 7 t q .  
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I n s e r t i n g  ( 9 )  and (13)  for R(s ,  n, p) and n i n  equat ion  (R,) and  equat ing  t h e  
c o r r e s p o n d i n g  c o e f f i c i e n t s  in t h e  r igh t -  and  t h e  le f t -hand  s i d e s ,  w e  obta in  
t h e  fo l lowing  r e c u r s i v e  d i f f e r e n t i a l  e q u a t i o n s  for t h e  funct ion a,, (s): 

. . . . .  . . . . . . . .  
F y  (11) and (13) ,  f o r  i := 1, j = 0, w e  h a v e  aij (0) = 1, and  o t h e r w i s e ,  
aij ( 0 )  = 0 .  

T h e  e q u a l i t i e s  
a10 (U, = 1. ai j (U) =-  u (15 )  

c n n s t i t u t e  t h e  i n i t i a l  condi t ions  for e q u a t i o n s  (14 ) .  
t h e r e f o r e  c a n  b e  found I l y  s u c c e s s i v e l y  s o l v i n g  e q u a t i o n s  (14) with b o u n d a r y  
condi t ions  ( 15). 

c o e f f i c i e n t s  of t h e  t e r m s  free f r o m  11 in e x p a n s i o n  (13), are t h e  same 
e x p r e s s i o n s  as i n  C h a p t e r  S (s26.1). 
b y  s e t t i n g  p =  0. 
s i d e r e d  i n  C h a p t e r  S. 

B y  def in i t ion ,  it i s  ob ta ined  f r o m  t h e  funct ion (IO) f o r  S = T ,  i . e . ,  

T h e  func t ions  a i j  (s) 

Note that  t h e  f i n a l  e l  p r e s s i o n s  for t h e  func t ions  ai,, (s), which a re  t h e  

Indeed ,  t h e s e  func t ions  m a y  b e  found 
But  t h i s  l e a d s  u s  t o  s y s t e m  (Ao) and equat ion  (Ro) con-  

L e t  t h e  s u c c e s s i o n  funct ion of (A,,) o n  t h e  arc without c o n t a c t  I b e  f (no, p). 

n = f (no. p) = f (T; 0, n d ,  P). (16) 

T h i s  and (13) s h o w  tha t  t h e  s e r i e s  e x p a n s i o n  of t h e  s u c c e s s i o n  func t ion  h a s  
t h e  f o r m  

f (no, ~ ) = " ~ O ( T ) ~ O T ~ O I ( . T ) ~ ~ ~ ~ O ( T ) ~ : I I X I ~ ( T ) ~ ~ ~ ~ .  . - (17)  

Set t ing  
ai, (T) = U i j ,  

we o b t a i n  

n = f (no, p) = 40no f uo1p + u*on: iu11nop f . . . (19)  

St" wi l l  now find e x p r e s s i o n s  f o r  t h e  c o e f f i c i e n t s  u io  and  up,  and i n d i c a t e  
i n  g e n e r a l  ou t l ine  the s t r u c t u r e  of t h e  coef f ic ien t  u l l t  w h o s e  expl ic i t  
e x p r e s s i o n  is h ighly  c o m p l e x .  
fo l lows .  

T h e s e  c o e f f i c i e n t s  wil l  b e  needed  i n  what  

We h a v e  
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Expanding the functions g(s ,  n, p) and h ( s ,  n, p) in  powers of n and p and 
seeing that g(s ,  0, 0) = 0 and h ( s ,  0, 0)# 0, we obtain 

(21)  
g (s, n, p) = g10n + g01p + &on* + . . . 1  

h (s, n, P) = hoo + hlon + ho1p + h20n8 + . . . I 

where gij==gij(s) and h i j = h i j ( s )  are analytical functions of S, and h o o ( s ) # O .  

gion + go+ + gzon' + . . . E (Aion + Aoip + &on' + - 4 1 1 ~  + . . .) (hoo + big + h o i ~  + . . .) 
Equating the coefficients on the right- and left-hand s ides  of th i s  identity 

and solving for A i r ,  we obtain 

Let u s  determine the functions gij(s) and h i j ( s )  entering (22). To this  
$nd, we expand the functions is and 0 in powers of p, and the functions 
9 in  powers of n. 

and 
This gives 

(23) 
H ( x ,  Y, p) = p  (I? Y) +PPl (G I/) + P*P2 (5, Y) + . . ., 
B ( x , Y , c ~ ) = Q ( x , Y ) + c ~ Q ~ ( ~ , Y ) + ~ * Q ~ ( z , ~ ) +  ..., 

and 



:ye c a n  v e r i f v  d i r e c t l y  that  

( c o m p a r e  e q u a t i o n s  (26:-  (28). S 13.3). 
IJsing (221, (29) ,  ( 3 0 ) .  (31), we find 

d -40 ($1 = P; (v (4. 1: (SI) + Q I  (q (4, $ (s)) - In hoo (s) = 
d = P ; ( ( P .  ~ ) + Q ; ( ‘ F .  $ ) - X l n A ( s , O ) ,  (32)  

(33)  QI I r p  (J). $! Wrp‘ (S)--P1 (9 (SI. rp (s)) $’ (4 . 
0) 4 1  (4 = 

T h e  l a s t  e q u a t i o n s ,  t o g e t h e r  with e q u a t i o n s  (14), in i t ia l  condi t ions  (15j, and 
r e l a t i o n s  (18 i ,  e n a b l e  u s  t o  find t h e  c o e f f i c i e n t s  ul0 and uoi of e x p a n s i o n  (IO). 
T h e  e x p r e s s i o n  for t h e  Zoefficient ul0 i s  i d e n t i c a l  t o  t h e  e x p r e s s i o n  for t h e  
d e r i v a t i v e  of t h e  s u c c e s s i o n  funct ion obta ined  i n  C h a p t e r  V ( s  13.3, ( 3 0 ) ) ,  
indeed:  

% 

lU‘;(cpW. @ ( 9 1 W ? & ( ~ ) ~  +@))Ids 

(34) ulo == alo ( 7 )  = eo 

I n t e g r a t i n g  t h e  s e c o n d  equat ion  i n  ( I ? )  with in i t ia l  condi t ions  (15) and 
u s i n g  (32)  and ( 3 3 ) ,  w e  iind 

J[P;(T(:L *ls\l--Q;(T<s~. *(:iiI?. 
a,, (s) -e‘’ 



Ch.XII1. LIMIT CYCLES OF SYSTEMS DEPENDING ON A PARAMETER I 
Since A (z, 0) = A  ( 0 ,  0) ,  w e  obtain 

uo1 =a01 (4 = 
T 

(P;tVp, V)+U;te. W)da - 1 (P;4&s 
! e  11 (Pi (939 cp' (4 ---Pi (cp? $1 = - e0 

0 )  

Let us  now proceed with the determination of u,, .  The corresponding 
expression is much more  complex than either (34) or  (36). 
the fourth equation in ( 1 4 )  with the initial condition a l , ( 0 )  = 0, w e  obtain 

Integrating 

ti I 

SAio(s)dr - jAlo(s )dr  

a,, ( s ) = e 0  e (2A10a,oaol + A,,alo) ds. 

Inserting the expression for  A,, f rom ( 2 2 ) ,  we obtain 

u,, .~ uio 5 ( g t ~ - 4 t h o - ~ i o h o ~  + 2A 20 a oi ds. 
0 

hoo (39) 

By (29), the expression for  gll has the form 

g1, = (&Bl+ d " Y J  cp' (4 - (P;,P, + P;,Yl) 9' (4 -I- Pip; - piy;, (40) 

where the functions p ,  and q1 and their  derivatives a r e  evaluated at  the 
point ( c p  (s), J, (s)) . Using the obvious relations 

p ; ,  (cp (s), $ (s)) $1 (s) = 
d p i y ) ,  * ( ' ) ) - p  ;= ( 'p ( s ) 7  rl, (4) cp' (4 

and 
d9l(T> 9) dx (9% 49 9' = - d r P ; "  (cp? $) 9' (4 

we rewri te  the expression for  gli in the form 
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w h e r e  

Expressions (33)  fo l~dO, ,  (30) f o r  hoi ,  and ( 3 5 )  for a,,, show that if 

PI (cp (s). $ (4) = Ql (cp ($1, t (-9) = 1 ' .  (14) 

i ,  e. ,  if the functions p 1  (I. y) and qI (2, y )  vanish on a closed path Lo,  we have 
f,, = 0.  However, the integral  

'' [Pix ((P (s), 3 (s)) - qiV  ('F ($1. 3' (s))J A- (-151 .! 

need not vanish in this case. 
satisfving the following conditions: 

F (cp (s). $ (s)) = v. 
F; (cp (s). t (s))' P& ('F (4. $ (s))* f U 

Indeed, let F( I .  y) be  an anal-ytical function 

(a) 
(b)  

(the proof of the existence of this function in s o  m e  
the path Lo is conducted precisely in the s a m e  way as the proof of Lemma 1, 
915.1) .  Then, i f  

n e  i g h b  o r h o  o d of 

PI (2. Y) - F (I. Y) F; (I. Y). Y1 12. Y) - F (I* Y) F ;  (2, !I), (46) 

the integral in ( 4 5 )  doe:$ not vanish. 

2.  Statement of the problem 

We are  interested i r  the number of l imit  cycles  of (A,,) located in a 
sufficiently smal l  neigtborhood of the path Lo for sufficiently small p # 0 ,  
i .e. ,  the number of limit cycles  created f rom a closed path L o  on passing 
f rom p = 0 to  c lose values of p. 

We define the function 

d (no, P) f (-no. P) --no. ( 47 )  

Our  problem is clear ly  equivalent to the determination of the number of 
sufficiently smal l  real roots of the function d ( r t o ,  p) for sufficiently small 
p F  0 .  

The creation of limi.: cycles  f rom a closed path of (A") on passing to  
modified svs tems was  considered in Chapter S. However, i n  Chapter X 
w e  dealt with all the possible modified sys tems sufficiently close to  (Ao), 
i .  e . ,  the treatment w a s  ca r r i ed  out in a sufficiently smal l  neighborhood 
of the point (-4,) in the space of all dynamic sys tems R. 
whentheclosedpath L o  i s  a closed k-tuple l imit  cycle of (Ao) ,  we estab- 
lished that the maximum number of limit cycles  created f rom Lo on 
passing to other systerrls of th i s  neighborhood is k (Theorem 1 2 ,  s27.1) .  

In the present section we will consider the creat ion of l imit  cycles  
f rom a closed path Lo of (Ao) in  a more  restr ic ted sense .  The modified 
svs tems are confined t o  the sys tems (A,,) corresponding t o  sufficiently 

* 

For the  case 
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Ch.XIII. LIMIT CYCLES OF SYSTEMS DEPENDING ON A PARAMETER 

smal l  values of the parameter  p, and we no longer consider any possible 
sys tem sufficiently c lose to  (Ao). In geometrical t e rms ,  this  means that 
we a r e  no longer dealing with the ent i re  neighborhood of the point (Ao) in 
the space R, but only with some curve & i n  this  neighborhood which passes  
through the point (Ao). We will consider the creation (or  disappearance) 
of limit cycles in the neighborhood of the path LO of (Ao) for  motion along 
the curve 1,in the space R. 

of limit cycles  in a number of simplest cases .  
coincide with the sufficient conditions of appearance or  disappearance of 
sufficiently smal l  real roots  of the equation 

We will der ive the s u f f i c i e n t conditions f o r  creation (or  disappearance) 
These conditions evidently 

on passing from p = 0 to  sufficiently smal l  finite p .  
Fi r s t  note that i f  the closed path Lo is a simple limit cycle, i .  e., when 

(see (34)), there  exis ts  n* > 0 and p*>O which satisfy the following condition: 
if  I p I < p*, equation (48) has  one and only one solution no = no (p), such that 
I no id I < I".*. 

This  follows f rom the theorem of s t ructural  stability of a simple limit 
This  also follows directly f rom cycle (see § 14, r emark  to  Theorem 18). 

the theorem of implicit functions (s 1.2, Theorem 3 and remark  to  
Theorem 4) .  Indeed, we see  from (47), (19), and (49) that i f  L o i s  a 
simple limit cycle of (Ao), then 

d (0, 0) = 0, dbo (0, 0)  # 0, 

so that the theorem of implicit functions is applicable. 
However, i f  ujo = 1, we have 

d (0, 0 )  = 0, dho (0, 0) = 0 

and the conditions of the theorem of implicit functions a r e  not met. 
Suppose that in this  case  there  exis ts  k, 2 such that 

0 (50)  
d (0, 0)  = dko (0, 0) = . . . = d$l') (0, 0), d($ (0, 0) # 0. 

It is readily seen that we then can find n*>O and p*>O with the following 
property: for  all p, I pI <p* the equation 

d (no, P) = 0 

has  at most k r ea l  roots which a r e  smal le r  than n* in absolute magnitude. 
Indeed, let n* and p* be  such that if InoI<n*, lpl<p*,  we have 

Then, if  I p I < p* and the function d (no, p)  has  k + 1 roots  in the interval 
(- n*, + n*), its first derivative with respect  to  no has at  least  k roots  
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i n  t h i s  i n t e r v a l ,  t h e  s e c o n d  d e r i v a t i v e  h a s  a t  l e a s t  X. - 1 r o o t s ,  e t c  ., and 
t h e  k - t h  d e r i v a t i v e  h a s  a t  l e a s t  o n e  root ,  which c o n t r a d i c t s  ( 5 1 ) .  T h u s ,  
for s m a l l  n o a n d  p, equat ion  (18) cannot  have  more than  k real roots. 
q u e s t i o n  of e x i s t e n c e  r*f t h e s e  r o o t s ,  if a n y ,  r e q u i r e s  s p e c i a l  a n a l y s i s ,  
h o w e v e r .  
Y e w t o n ’ s  d i a g r a m  or  p o l y g o n ,  which i s  d e s c r i b e d  i n  t h e  next  
s e c t i o n .  

T h e  

The a n a l y s i s  is convenient ly  c a r r i e d  out  wi th  t h e  a id  of 

3. Newton’s  polygon and s o l u t i o n  of t h e  equat ion  F (u,. z )  = 0 

A s igni f icant  point i n  o u r  a n a l y s i s  of t h e  roots of a funct ion is t h e  

k5’e wil l  t h e r e f o r e  c o n s i d e r  a n  a n a l y t i c a l  func t ion  F (w, z ) ,  w h e r e  u7 
T h e  r e s u l t s  wi l l  t h e n  b e  appl ied  to t h e  

a s s u m p t i o n  that  t h e  v a - i a b l e s  a re  c o m p l e x - v a l u e d .  

and. z are c o m p l e x  v a r i a b l e s .  
case of real u- and 2. 

t h e  point ( 0 , O )  h a s  t h e  form 
L e t  F j O ,  0 )  0 .  The e x p a n s i o n  of F (m, z )  in p o w e r s  of u’ a n d  J a r o u n d  

We i n t r o d u c e  o n e  fur-ther a s s u m p t i o n  r e g a r d i n g  t h e  funct ion F (u-, z ) ,  
n a m e l v  tha t  a t  l e a s t  one of t h e  c o e f f i c i e n t s  uil) and a t  l e a s t  o n e  of t h e  
c o e f f i c i e n t s  u O j  d o  not vanish ,  i . e . ,  t h e  e x p a n s i o n  (52)  c o n t a i n s  a t  l e a s t  
o n e  t e r m  without  z and a t  l e a s t  o n e  t e r m  without IC. 
does not c o n s t i t u t e  a f u n d a m e n t a l  r e s t r i c t i o n  of o u r  p r o b l e m  ( the  p r o b l e m  
of so lu t ion  of t h e  equat ion  F (u,, z )  = 0 for u,). 
( i - 1,2, . . . ), t h e  funct ion F (a*. z )  m a y  be w r i t t e n  in  the form 

T h i s  a s s u m p t i o n  

Indeed,  for all u , ~  = 0 

F (w, 3) = zF, (w ,  3) 

and r h e  p r o b l e m  r e d u c e s  t o  t h e  a n a l y s i s  of t h e  equat ion  F ,  (u-. z )  = 0.  
s i t u a t i o n  is s i m i l a r  when all uo,  = 0 ( j  > 0). 

T h e  fol lowing a n a l v s i s  i s  b a s e d  on a n u m b e r  of t h e o r e m s  from t h e  t h e o r y  
of ana1,ytical func t ions ,  which are p a r t l y  g i v e n  h e r e  without  p r o o f .  

T h e o r e  tn 68 (the theorem of implicit functions). Let F (u,. z )  be an 
analytical junction in the neighborhood of (0. 0 )  and let 

The 

F (0. 0 )  = 0, F& (0,  0 )  + 0. 

There exist 6 > 0 am! E > 0 such that f o r  every 3, I z I < 6, the eqiuztim 

The junction f ( z )  can be expanded in positive integral powers 
f iu..  z )  11 has one and only one root U’ = f ( 5 )  satisfying the inequality 
I f ( z )  I < E .  

of z ,  and the series tcili be convergent for 1 z 1 < 6 ,  i .  e . ,  it will be a 
single- valued analytical function of z which vanishes at 3 = 0.  

v a r i a b l e s .  I t s  p roof  c a n  b e  found i n  /22/ ,  C h .  IV, p.  354. T h e  proof  
u s e s  a m a j o r a n t  series. Theorem 68 is also a d i r e c t  c o n s e q u e n c e  of 
t h e  fol lowing t h e o r e m .  

T h e o r e m  68 is the t h e o r e m  of i m p l i c i t  func t ions  i n  t h e  case of c o m p l e x  
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T h e o r  e m 69 (Weierstrass ' s  preparatory theorem). Let F (w, Z) be 
an analytical function in the neighborhood of (0, 0) satisfying the conditions 

I Then in some neighborhood 1 W I  c E, I z I < 6 of (0, O), F (w, Z) may be represented 
in the form 

F (w, Z) = [wk + A ,  (2) W h - l  + . . . + A h  (Z)] 0 (W, Z). (54) 

where @(w, z )  is an analytical function which does not vanish in this 
neighborhood, and A,  (z). A2 (z), . . . , Ah (z) are analytical functions for I z I e 6. 

follows f rom Theorem 69 that in a sufficiently smal l  neighborhood of 
the point ( 0 ,  0) ,  the equation 

The proof of Theorem 69 can be found in 1 2 2 1 ,  Ch.IV, p. 352. It 

F (w, Z) = 0 (55) 

is equivalent t o  the equation 

W k - t A ,  (Z) W"-'+ . . . +Ah-, (Z) W + d h ( Z )  = 0, (56) 

whose left-hand side is a polynomial in w .  Weie r s t r a s s ' s  preparatory 
theorem thus reduces the local investigation of the general  case  of an 
implicit function w (2 )  defined by equation (55) to the case  of an implicit 
function defined by an algebraic equation in w (which, in general, is not 
an equation in 2). 

directly t o  the equalities 
Note that relations (53) and (54) and the condition @ (w, z)  + 0 lead 

At (0) = 0, A2 (0) = 0,  . . ., dk (0)  - 0. (57)  

T h e  o r  e m 70. Let F (w,  z) be an analytical function in the neighborhood 
of W , O )  which satisfies conditions (53). There exist E > 0 and 6 > 0 such 
that f o r  every z ,  1 ~ 1 ~ 6 ,  the equation 

F(w. z ) = O  

has precisely k roots (either different m coinciding) wit w 2 ,  . . ., wh, which 
are smaller than E in absolute magnitude. Moreover, i f  Z+O, each of the 
roots wi also goes to zero .  

The validity of Theorem 70 follows directly f rom the previous 
theorem and f rom the theorem of the continuous dependence of the roots of 
a polynomial on i t s  coefficients ( see  1291, 
that the roots of the equation F (w, z) = 0 coincide with the roots  of equation 
(56). 
fore, the roots of equation (56) go to  ze ro  for  z - t  0. 

Suppose that for  some z = zo all these roots  are different. 
seen that in this  case  the roots w,, w2, . . ., wIcan be defined in the neighbor- 
hood of the point zo so that they a r e  analytical functions of z in thisneighbor- 
hood (to ensure  all this, it suffices to  require  that the roots  wt (z) vary 
continuously with the variation of z). 

P r o o f  . 

73).  Indeed, Theorem 69 shows 

By (57), equation (56) has  k roots  a t  z = 0, which a r e  a l l  zero .  There-  

R e m a r k . The roots wl,  w 2 ,  . . ., wh of equation (55) depend on z. 
It is readily 
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In what follows, we will only consider the case when the roots wt,  w2. . . ., ( c ~  

are different for e v e  r y z # 0 i n  some neighborhood U of the point 0 (this 
will b e  so  i f  the  discrirninant D ( z )  of equation (56), being an  analytical func- 
tion of z ,  does not vanish identically). Then equation (55) naturally de te r -  
mines n e  a r e v e r p p o i n t J + 0 of th i s  neighborhood k anal-ytical functions 

which are the single-valued branches of the implicit function w .  
in  t h e  n e i g h b o r h o o d  C ' o f  t h e  p o i n t  0,  these  functions, i ngene ra l ,  
are  not single-valued analytical functions, Indeed, it can b e  shown that if 
the point z moves along some  Jordan cu rve  around the point 0, the value of 
the function wz (2) in general  will have changed when we r e tu rn  t o  the init ial  
point z .  The function (58)  (see /35/, Ch.XIII, 1) forms one or  seve ra l  non- 
intersecting sys tems with the following property: if the point z t rave ls  once 
along the curve r around the point 0, the functions of each of these  s y s t e m s  
undergo a cyclic permu-ation. 
s v s t e m s  of s o l u t i o n s  of equation (55), and the point O i s  the  b r a n c h -  
i n g  p o i n t  of the function u' (J). Clearly,  fo r  z -+ 0, all the functions 
U" (J) +o. 

case ,  however, will not be  required in  the following, and it is not con- 
s idered  he re .  

We now have to consider the form of the solutions u', ( z ) o f  (55 )  i n  the 
neighborhood of 0. 

If k = 1, Theorem 68 shows that t he re  ex is t s  a unique solution, which 
may  b e  written as a ser:es in  integral  powers of z ,  i .  e., as a series 

However, 

These  sys tems are known as the c y c  1 i c 

If the discriminant D (J) = O ,  the situation is m o r e  complicated. This 

rr=yI:+yL.ze+y3z3+ . . . .  
which converges for sufficiently small  z .  

For k >  1, each of the k solutions which exis t  by Theorem 70 and the 
r e m a r k  t o  the theorem can no longer be  represented as a series in  integral  
powers of i. To establish the natural  form of the solutions i n  th i s  ca se ,  
let u s  f i r s t  consider some s imple examples.  Take  equation (55) in  the  f o r m  

UoI i UZOU" f ~ 0 3 ~ '  = I). 

where none of the coefficients vanish. Then 

7 where 

of these  roots .  
integral  powers of z .  

-3% and f q . 9  are to  be  regarded as one (fixed) value of each 
u20 

For small  z, the second root can be series-expanded i n  
T h e  solution w therefore  h a s  the form 

w=T*,za''~+5Lzz3t+ ..., 

where a, # 0. 
two-valued function of z .  

T h e  last series gives both solutions for  w, s ince  zl'a is a 

If equation (55) has  the form 

uo1z + u& + Ug& = 0, 
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i t s  solutions can be expressed by the series 

w = &'/a f $zz4/s + . . . , 
where p i  # 0, and this  notation gives all the three  solutions of the equation, 
since Z1/3 is a three-valued function of z. 

series in fractional (rational) positive powers of z. 
same  representation w i l l  obtain in the general  case  also. 
s e e k  solutions of (55) in the form 

In the above examples, the solutions of equation (55) a r e  expressed by 
This suggests that the 

W e  will therefore 

W = y z a + y ~ z a l + y , z - +  ..., (59) 

where y # 0, and a and a,  are positive rational numbers, a < a, < az < ... 
Let u s  f i r s t  establish what power exponent a will ensure convergence of 
the power s e r i e s  (59) to a solution of equation (55) for  smal l  z .  

Let uko be the f i r s t  nonzero coefficient of the form uio in expansion (52), 
and uo( the f i r s t  nonzero coefficient of the form uoI (these coefficients exist 
by assumption). 

If (59) i s  a solution of equation (55), we have 

F(yza+y , z"+  ..., Z ) E O ,  (60) 

i . e . ,  inserting for  w in the series (52)  i t s  expansion f rom (59), we obtain 
identically zero.  This  enables us  to  determine the numbers a and Y .  A s  

I 

t e r m s  in s e r i e s  (52) obtained after substitution f rom (59). We can neverthe- 
less isolate a finite number of t e r m s  which definitely include the lowest- 
o rde r  t e r m s .  

These a r e  pr imari ly  t e r m s  of the form 

uolz' and UkoykZak (61) 

and also the t e r m s  

ui j ,y ' zR i+ j i ,  

where 1 < i < k -  1, and the index ji sat isf ies  the inequalities l<j i  < 1 -  1 
and is moreover  the smallest  index j for  which the coefficient ut, with 
fixed 1 does not vanish. 

It is readily seen that the t e r m s  of lowest order  in z must be contained 
among the t e r m s  (61) and (62) .  

If identity (60) is satisfied, t e r m s  of the lowest order  in E mutually 
cancel. 
clude that a t  least  two such t e r m s  should be  of the same  order ,  which, 
however, should not exceed the order  of the remaining t e rms .  Thus, 
the numbers 

Since none of the coefficients U ~ J  in (61) and (62) is zero,  we con- 

ka,  ( k - i ) a + j k - i r  (k--)a+jR-21 . - . $  a+iiT 1 (63) 

include at  least  two equal numbers which a r e  not grea te r  than all the other 
numbers. Suppose that j k  = 0 and io= [ ,  i .  e., the numbers in (63) have the 
form iz+ j , ,  i = O ,  1, 2, . . . , k. 
equations 

Then a should satisfy at  least  one of the l inear  
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,,vhere i , & i ? ,  and for a n v  i=O, 1, 2. . . .. Is we should  h a v e  

ia + i ;  2. ita f j,, ( = i2.* j i ? ) .  ( 6 5 )  

T h e s e  v a l u e s  of a will  tte c a l l e d  f e a s i b 1 e . 
f e a s i b l e  v a l u e s .  
method known as t h e  method of N e w t o n  ' s 

e v e r y  t e r m  in ( 6 1 1  and ( 6 2 )  a point -4; o n  t h e  p l a n e  Lvith t h e  c o o r d i n a t e s  (i. ji) 
( i  -- I). 1. 2. . . ., k). T h e t e r m s i n ( 6 1 )  ev ident ly  c o r r e s p o n d  t o  poin ts  of t h e  
f o r m  ito (0, I )  and -4h (k. 0) which  lie o n  t h e  c o o r d i n a t e  axes: the o t h e r  p o i n t s  
A i  fall i n  t h e  f i r s t  q u a d r a n t ,  and  t h e i r  a b s c i s s a s  and o r d i n a t e s  d o  not  
e x c e e d  k - 1 and 1 - 1, r e s p e c t i v e l y .  

T h e r e  m a y  b e  s e v e r a l  
To find all t h e  f e a s i b l e  v a l u e s ,  w e  wi l l  u s e  a g e o m e t r i c a l  

p o 1 y g  o n . 
Lye i n t r o d u c e  r e c t a n # u l a r  c o o r d i n a t e s  i. j i n  t h e  p l a n e  and a s s i g n  t o  

Suppose  tha t  for s o m e  r e l a t i o n  (64)  is s a t i s f i e d ,  and i l  # i2. T h e n  

11% - i i ,  
i2--l1 ' 

i . e . ,  a i s  t h e  s l o p e  f a c t o r  of t h e  s t r a i g h t  l i n e  t h r o u g h  t h e  p o i n t s  A , , ( i , .  ji,) and 
- L 2 t L  i i J .  

T h e  equat ion  of t h i s  . s t ra ight  l i n e  is 

j - j i ,  = --a ( i  - i l )  or  j -  j i ,  - a  ( i - i I )  =O. (66)  

C l e a r l v ,  for  t h e  p o i n t s  fi. j )  which  lie n o t  1 o w e r t h a  n t h e  l i n e  (66) ,  we  
h a v e  j -  j , ,  +a ( i  - iI)  2. 0 ,  i .  e., 

i +-ai 3 i t ,  + ai,, (67)  

and for t h e  p o i n t s  b e 1 o w  t h i s  l i n e ,  w e  h a v e  

Condi t ion  (65)  s i g n i f i e s  that  e a c h  of t h e  p o i n t s  -4, (i, j , ) ,  i = 0 ,  1, 2, . . . , A - ,  
H e n c e  i t  follorvs tha t  e v e r y  l i e s  e i t h e r  o n  t h e  l i n e  (E6) or  a b o v e  this l i n e .  

f e a s i b l e  a i s  i n  a o n e - t o - o n e  c o r r e s p o n d e n c e  to a s t r a i g h t  l i n e  p a s s i n g  a t  
l e a s t  th rough t w o  poin ts  A;,  which  h a s  a n e g a t i v e  s l o p e  f a c t o r  and  is so  
l o c a t e d  t h a t  n o n e  of t h -  po in ts  .A, lies be low t h i s  l i n e .  We wil l  r e f e r  t o  
t h e s e  l i n e s  as f e a s i b  1 e 1 i n e  s . a is e q u a l  t o  m i n u s  t h e  s l o p e  f a c t o r  
of t h e  c o r r e s p o n d i n g  l i n e .  

T h u s ,  i n  o r d e r  t o  find all t h e  f e a s i b l e  v a l u e s  of a, we should  find all 
t h e  f e a s i b l e  l i n e s .  L e t  
s b e  a m o v i n g  l i n e  which  i n i t i a l l y  c o i n c i d e s  wi th  t h e  axis i. 
l i n e  c l o c k w i s e  a r o u n d  the point A h  (k, 0) unt i l  it p a s s e s  t h r o u g h  o n e  of t h e  
p o i n t s  A i ,  t h e  point A*, (hI, j k , )  say. 
b e  d e s i g n a t e d  sl. T h e  l i n e  s1 m a y  p a s s  
t h r o u g h  m o r e  t h a n  two p o i n t s  A t .  
p o i n t s  (i .e.,  t h e  o n e  with t h e  l e a s t  a b s c i s s a ) .  

f u r t h e r  r o t a t e d  i n  t h e  c l o c k w i s e  d i r e c t i o n  a r o u n d  t h e  point  AR, unt i l  i t  
p a s s e s  through s o m e  point Aka (k,, j k t )  (if t h e r e  are s e v e r a l  s u c h  poin ts ,  
.Ah,  is chosen as the l e f t m o s t ) .  The r e s u l t i n g  c u r v e  is d e s i g n a t e d  SZ, 
and t h e  p r o c e s s  is cont inued  unt i l  t h e  m o v i n g  l i n e  p a s s e s  t h r o u g h  t h e  

T h i s  c a n  b e  a c c o m p l i s h e d  i n  t h e  fol lowing way.  
W e  t u r n  t h i s  

T h e  l i n e  -A!,;ik, obta ined  i n  t h i s  way wi l l  
This is evident ly  a f e a s i b l e  l i n e .  

T h e n ,  l e t  An, b e  t h e  l e f t m o s t  of t h e s e  

If . 4k l  d o e s  not c o i n c i d e  with t h e  point .-to (0, I ) ,  t h e  moving  l i n e  wi l l  b e  
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point A ,  (0, 1 ) .  
line designated s, (Figure 169). 
ular cases ,  m may be  equal t o  1. 

The convex polygonal line AkAa,Ak,. . . 
. . . Ak,-iAo obtained in th i s  construction 
i s  known as N e w t o n ' s  p o l y g o n  (or 
N e w t o n ' s  d i a g r a m ) .  It is c l ea r  
f rom the construction that each s ide of 
Newton's polygon is a segment of a 
feasible line. It is readily seen, however, 
that the converse is also true: every 
feasible line contains a segment which 
is one of the s ides  of Newton's polygon. 
We have thus established that all the 
feasible values of a are equal t o  minus 
the slope factors  of the s ides  of Newton's 
polygon. 

The resul t  is a straight 
In partic- 

A*no' D 

FIGURE 169 

Now let the a i n  expansion (59) be  one 
of the feasible values of the index. 
value of the coefficient y .  
that the lowest t e r m s  in the left-hand side of the identity (60) should mutually 
cancel. 
polygon and let .411,A,2, .  . ., A +  
the points A i  which lie on this side. 
expression will cancel out i f  the coefficient of the lowest degree of 3; (equal 
to  k,a + j k l  = Ita + j l l  =. . ..= k2a + j h z )  is zero,  i. e., if 

We will determine the corresponding 
To th is  end, we shall  make use of the condition 

To  fix ideas, let a be the slope factor of the side Ak,Attz of Newton's 

The lowest t e r m s  of the corresponding 
k, > lI  > l 2  > . . . > l a  > k2, be those among 

g ( Y ) = U k i j ~ I Y k l + f l i j l I Y t l ~  . * f U . l i j l , y " + U k z j 1 2 Y k ' = 0 .  (69)  

Since by assumption y + 0, we a r e  only interested in the nonzero roots 
of equation (69). i .  e., the roots of the polynomial 

h ( y )  = U b l j h , ~ k l - k n +  U l , j l i ~ l l - k ' f  - . f U k 2 j k Z .  
(70) 

The number of these roots  (counting each root according t o  its multiplicity) 
is k, - k2. 
t o  each side of Newton's polygon is equal t o  the number of units accommo- 
dated by the projection of th i s  side onto the abscissa  axis.  
the coefficient may be real o r  complex, and some of them may be  equal to  
one another. Since the length of the projection of the entire Newton's 
polygon is kunits,  we conclude that t h e  f i r s t  c o e f f i c i e n t  y o f  t h e  
s e r i e s (59) h a s  k v a 1 u e s (not all of which are necessarily different). 

We have established the n e  c e s s a r y conditions to  be  satisfied by a 
and y when w = yza + ylzal + . . . is a solution of the equation F (w. z )  = 0.  
These conditions can be stated as follows: a s h o u I d  b e e q u a 1 t o  t h e  
a b s o l u t e  v a l u e  o f  t h e  s l o p e  f a c t o r  of a n y  o f  t h e  s i d e s  o f  
N e w t o n ' s  p o l y g o n ,  a n d  v- f o r  a f i x e d  a- s h o u l d  b e  e q u a l  
t o  o n e  of  t h e  n o n z e r o  r o o t s  of  e q u a t i o n  (69). 

Let u s  consider the case when y f 0 is a simple root of (69). W e  
will show that the above conditions are also s u f f i c i e n t for the equation 
F (w, z )  = 0 t o  have a solution of the form (59) with the given a and y .  

Therefore,  the number of values of the coefficient y corresponding 

The values of 
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L e t  a - .L w h e r e  p and q are i r r e d u c i b l e  n u m b e r s ,  b e  a f e a s i b l e  va lue  
v '  

of t h e  i n d e s  c o r r e s p o n d i n g ,  as b e f o r e ,  to t h e  s i d e  A-l,,,.4tt: of Newton ' s  polygon, 
and y = =  0 o n e  of t h e  ro '3ts  of equat ion  (69) .  T h e  e q u a l i t i e s  

k,z+ j k ,  = ip.-r i l l = .  . . 7 l,a-..,ir. = k ~ +  j k .  

c l e a r l y  s h o w  tha t  e a c h  of t h e  n u m b e r s  k ,  - k,. I ,  - k2. . . . . I ,  - k? is a m u l t i p l e  

of q ,  i .  e ., h (y) is a p o l p o m i a l  i n  yq of d e g r e e  7. 

T h e n  

k , - k 2  

Now l e t  y F 0 b e  a s i m p l e  r o o t  of t h e  polynomia l  g (y)  (and h e n c e  of h (y)).  

g ( y ) = V .  g'(y) #I!. ( 7 1 )  

To i n v e s t i g a t e  t h e  equat ion  F (w, I) = 0 for : .i 0, we  s u b s t i t u t e  

u' = I':" = L ' p ,  ,r, ( 7 2 )  

w h e r e  ;I 1 is o n e  of t h e  '7 p o s s i b l e  v a l u e s  of t h i s  q-valued funct ion.  
( 5 2 )  and ( 6 0 ) ,  we r e a d i l y  see t h a t  

Us ing  

( 7 3 )  h l ?  i ' b l  F (u, 3) = F ( l . 9  q ,  3) = 2 [ g ( L . ) - z * ' , l T ( Y *  ;*q1. 

w h e r e  i. is a p o s i t i v e  i n t e g e r ,  and q ( 2 . .  zi"') is a p o w e r  series i n  L' and :' ' z ,  
which is a p r i o r i  known t o  c o n v e r g e  for  all z and t.3' q =  u of suf f ic ien t ly  
s m a l l  m a g n i t u d e  a n d ,  t h e r e f o r e ,  c o n v e r g e s  f o r  all suf f ic ien t ly  s m a l l  I z [ ,  
if 1: t a k e s  i t s  v a l u e s  froin a bounded r e g i o n .  T h e  equat ion  F ( r .  2) = 0 is 
equiva len t  for z rf 0 t o  t h e  equat ion  

g ( L ' )  - Z * " I  ( 1 ' .  ;' q = 0. 
S u b s  t i t  u t  ing 

- -1 7 - '  5' ( 7 4 )  

(75 )  
Lve o b t a i n  t h e  equat ion  

I r )  ( t . ,  ;) = g ( r )  + ;*q (c, 5) = 0. 

T h e  c o e f f i c i e n t s  of t h e  pori-er series r e p r e s e n t i n g  t h e  func t ion  q- ( 1 . .  5 )  and 
t h e r e f o r e  t h e  funct ion i t se l f  are independent  of t h e  p a r t i c u l a r  v a l u e  of t h e  
q-valued funct ion q u s e d  in  t h e  s u b s t i t u t i o n  ( 7 2 ) .  

F v  (71) ,  
C b ( y , O ) = O ,  (P;(y. O ) # O .  

T h e r e f o r e ,  b y  T h e o r e m  68 ( t h e  t h e o r e m  of i m p l i c i t  func t ions) ,  equa t ion  (75)  
h a s  a unique so lu t ion  in  a suf f ic ien t ly  small neighborhood of t h e  point 5 = 0, 
which r e d u c e s  t o  y f o r  : = 0. T h i s  so lu t ion  h a s  t h e  f o r m  

c = y - y,; - yL.;z - . . , 
T h e  c o r r e s p o n d i n g  s o l u t i o n  is 

(76) 
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We have thus established that i f  a = p / q  is a feasible value of the index, 
and y is a simple root of equation (69)  corresponding to  this  a ,  the equation 
F ( w ,  z) = 0 has  a solution of the form (59). 

F (w ,  z )  = 0, and let ai = p i / q i ,  where pi and qj are irreducible numbers .  
s ider  the case  when for  any at ( i  = i ,  2, . . ., m), all the non-zero roots  of the 
corresponding equation (69) a r e  s imple.  Let the number of these simple 

Let a,, a2, . . ., a,,, be  all the feasible values of the index a for the equation 
Con- 

I I r , + r z +  ...+ r,  =k. 

A s  we have just established, to every pair of numbers ai, y t j  ( i =  1,2, ..., m ;  
j =  1, 2, . . ., si) corresponds to a solution 

Suppose that for  a fixed i ,  the same value of the root Y;=z ’ ’~~  is taken 
in (79) for  all j ,  j = i ,  2, . . . , r l .  
precisely k solutions of the form (79). We will show that i f  z f O  is suf- 
ficiently smal l  in  absolute magnitude, the values of the solution (79) are 
all different. Indeed, i f  th is  is not so, there  exist two solutions of the 
fo rm (79), w, and w,, say, which take on identical values on a sequence 
of points z i - + O .  If these solutions correspond to  different a, they have 

different o rde r s  of smallness  relative to  z; therefore  l im  is either 

0 o r  m, and the equality wi ( 2 1 )  = w z  (21) breaks down for la rge  1 .  If the 
solutions w, and w2 correspond to  the same  a, they differ in the f i rs t  

coefficients y .  

breaks  down. It follows that a l l  the k 
solutions (79) of the equation F ( w ,  z) = 0 which go  t o  zero for  z-+ 0 are 
different. But then by Theorem 70, the functions (79) exhaust all the 
solutions of the equation F ( w ,  z )  = 0 which go to zero for  z-+ 0. 

We will now show how to find the cyclic sys tems of solutions men- 
tioned in the r emark  to  Theorem 70. In the process  we will der ive a 
different form of solutions (79), which w i l l  be useful a t  a la te r  stage. 
A s  before, we assume that for  every ai ,  i = 1, 2, . . ., m ,  all the non- 
zero  roots of equation (69) are s imple.  It suffices to  consider one of 
the feasible values at. 

It follows f rom (78) that there  exist 

W 2  (Id I 

I Therefore  l im m=+l and the equality w 1 ( z I )  = w z ( z i )  again 
W z ( b 1 )  

O u r  proposition is thus proved. 

W e  will designate i t  a, and le t  

a=plq, , (P, 9) =I. 

Let 

h (Y) = W l j h ; Y k l - - A a t  U ~ ~ j ~ , y ’ ~ - ~ ~ - f -  . . . -f- 6&hsj** (70) 

be  the polynomial h corresponding to  the given a. 
We have seen before that h ( y )  is a polynomial of degree d = k k 2  in y f .  
Let 

r = y g  (80) 

q 

and 
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Let rl, r.. . , . , r, be the roots of the polynomial H (r). Since 

h ( y ) = r i ( y 4 )  (821 

and all the roots  of the polynomial h ( y )  a r e  simple, the numbers  rl, I'z. ..., r, 
a r e  all different. 

Let 
I ~ Z I -  Si?. . . .) Y i y  (83) 

h e  all the q-th degree roots  of I'i. 

roots of the polynomial h (y).  Thus, every root Ti of the polynomial Hi,T)  
corresponds to a sequence (83)  of roots of the polynomial h ( y ) .  W e  know 
from algebra that the numbers (83)  can be expressed in the form 

By (80) and (82j,  these numbers  a r e  

YLI, Yil", Tile2, - . . v  Y~ I " ' - ' ,  (8-1) 

w h e r e  y i l  is one of the q-th degree roots  of Ti (any of the q roots can be  
chosen, as long a s  i t  is. kept fixed), and e is the fundamental q-th degree 
root of 1. 

fixed). 
responds to the sequence 

Let io be one of the ITalues of {?; (a lso quite arbi t rar ,y ,  provided i t  i s  
A s  we have seen above, the sequence (83) of the numbers  yi, cor-  

VL, ,  Ui?. . . . . U i q  (85) 

of solutions of the equation F(@, z ) -  0,  where 

( 8 6 )  (L.. ', . - - 5: (yijf yij,5, i- y& . . .) ( j  = I ,  2, . . . . q ) .  

If the c9 in the right-hand s ide of (86)  is replaced with some other  value 
of the q-th degree root ,2f 3, we also obtain a solution of the equation 
F ( w ,  3) = 0. Therefore ,  i f  w e  k e e p  j fixed, setting for convenience j = 1, 
and let the c0 in (86)  run over  a 1  1 the values of the q-th degree  root of z ,  
i .  e ., over  the numbers  

( 8 7 )  
L C  

CII, = o E .  :*E2, . . . . :(,Eq-'. 

w e  obtain a se t  of Q solutions 
- -  
UZl.  LC >. . . . , Vi*+ (88) 

w h e r e  

(2.,,=( 5gE')P[YiifYIlI;OE1-Yil~(50E') . ' l . . . . l  ( I - 2 0 ,  1, 2. . . . ,  q - 1 )  (89) 
or 

zZc[ = 5: [yil"'p-t. y I I 1 ~ p  (t+l);, -2 . . . I  (1 = 0,  i ,  ? +  . . . , q - 1). (90) 

Since e is the fundamental q-th degree root of 1, and ( p .  9) = 1, the 
numbers  E'P ( I  = 0. 1, 2, . . ., q -  1) constitute the se t  of a l l  the roots  of 

9-th degree of 1. 
coincide with the numbers  (8-1) and hence with the numbers  (83). Since 
every solution of the fovm (79)  is determined by i t s  f i r s t  coefficient, it 
thus follows that solutions (88) coincide with solutions ( 8 5 ) .  

Therefore ,  the numbers  y i l ~ ' p  ( 1  = 0, 1. . . ., q - 1) 
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The s t ructure  of the solutions (88), determined by (89), readily shows 
that the functions (88) constitute a cyclic system of solutions. Indeed, as 
the point z moves around the origin tracing a simple closed curve,  the 
numbers  go&, which a r e  the q-th degree roots of z,  undergo a cyclic per-  
mutation. 

Let a = p i g  be a feasible value of the 
index (obtained by construction of Newton's polygon). 
of the equation F ( w ,  z) = 0 corresponding to  this  a, we have to  find the roots  
rl, r2. . . ., I', of the equation H ( P )  = 0. 
of rr (i = 1. 2, . . ., d). 

Let u s  summarize o u r  resul ts .  
To obtain the solutions 

Let y i i  be one of the q-th degree roots  
The corresponding solution is 

wit = Lf (Yii + YIIISO+ . . . ) $  (86) 

where Lo is any fixed value of 7 ; .  
root, we obtain q solutions 

Making to run over  all the values of this  

W i t ,  W i z ,  . . . t Wiqr 

which constitute a cyclic system. Since i = 1, 2 ,  . . . , d,  we obtain a total 
of d cyclic sys tems of solutions, corresponding to  the feasible value a=piq .  

W e  recal l  that d=k,- -kz,  where k I - k z  is the degree of the polynomial (70). 

In our  analysis of the creation of limit cycles f rom a multiple limit 
cycle, the function F (w, z) will be identified with d (no, p) (see (47)) ,  i. e., 
with a real-valued function of real variables, and we will be concerned 
with the existence or  absence of r ea l  roots  of this  function. 

The following lemma w i l l  be of considerable importance in this 
connection. 

L e m  m a  1 .  If all the coefficients of the series expansion of the function 
F (w,  z) are real, and y i s  a real simple non-zero root of the equation g ( y )  = 0 
(see (69)) or,  equivalently, of the function h (y) ,  all the coefficients y,. y z .  ... of 
the cmvesponding solution (77) 

9 

w = Y Z P / ' I +  Y,Z(P+" + yzztP+z)/r + . . . 
of the equation F (w, Z) = o are real. 

power-ser ies  expansion of the function u ( see  ( 7 6 ) )  satisfying equation (75). 
'Since the series of the function F (w, z )  has real coefficients, the se r i e s  of 
the function Q, (u, Z) also has  r ea l  coefficients. When solving the equation 
Q (27, z )  = 0 by the method of indeterminate coefficients, each successive 
coefficient y i + l  is a polynomial in the coefficients of the function Q and the 
coefficients y ,  yl, y 2 ,  . . ., y i  (see / l l / ,  Vol. 11, Sec. 450). 
coefficients yt  a r e  real. 

P r o o f  . The numbers y and yt  ( i  = 1, 2, . . . ) are the coefficients of the 

But then all the 
Q. E. D. 

4. 
following smal l  changes in the parameter  

The behavior of limit cycles  of some dynamic systems 

In this  subsection we will apply the previous resul ts  in o rde r  to 
establish what happens to a limit cycle of a dynamic system depending 
on a parameter  following a small  change in  the parameter .  W e  will 
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o n l y  c o n s i d e r  s y s t e m s  2f t w o  p a r t i c u l a r  t y p e s ,  o n e  of which i n c l u d e s  
s y s t e m s  obta ined  from some fixed s y s t e m  b y  a r o t a t i o n  of t h e  v e c t o r  
f ie ld .  T h e  m e t h o d s  u s e d ,  h o w e v e r ,  c a n  b e  appl ied  t o  o t h e r  t y p e s  of 
s v s t e m s  depending  o n  a p a r a m e t e r .  A s  throughout  t h i s  c h a p t e r ,  we  
wil l  a g a i n  c o n s i d e r  o n l y  a n a l y t i c a l  d y n a m i c  s y s t e m s .  

i n  t h e  m a i n  p r o p o s i t i o n s .  
of t h e  p r e v i o u s  s u b s e c t i o n .  

C o n s i d e r  t h e  e q u a t i c n  

We wil l  f i r s t  p r o v e  ;I n u m b e r  of l e m m a s ,  which are e x t e n s i v e l y  u s e d  
T h e s e  lemmas fol low d i r e c t l y  f r o m  t h e  r e s u l t s  

F (u; 3) = U ~ ~ Z C  + Uoi2 + u?~u’* 1- . . . = 0 .  (55 )  

L e t  all t h e  c o e f f i c i e n t s  uil  of t h i s  equat ion  b e  real and l e t  uqa b e  t h e  f i r s t  
of t h e  c o e f f i c i e n t s  u i a  wqich d o e s  not v a n i s h .  
or r o o t s  of e q u a t i o n  (55),  w e  wi l l  i n v a r i a b l y  m e a n  roots of suf f ic ien t ly  
small  m a g n i t u d e  which c o r r e s p o n d  to suf f ic ien t ly  small non- z e r o  real 
v a l u e s  of 3. 

( $ > 0)’ the equation I‘ (10, 3) = 0 has two different real roots far 3 > 0 (: < O ) ,  

which are simple roots, and has no real roots fm 3 < 0 ( 3  > 0). 
P r o o f  . L e t  k = 21. l >  1. S i n c e  uo, # 0, Newton’s  polygon c o n s i s t s  of 

a s i n g l e  s e g m e n t  t h r o u g h  t h e  p o i n t s  .A l i  (21. 0) and .-io (0, 1) ( F i g u r e  170), i .  e., 

t h e  i n d e x n  m a y  t a k e  o n  o n e  v a l u e  only,  

ob ta ined  from equat ion  (69) ,  which t a k e s  o n  t h e  f o r m  

When s p e a k i n g  of s o l u t i o n s  

L e  v i  m a  2. Let k be an euen number, and u0 ,  # 0 .  Then, if E<o 

= &. T h e  v a l u e s  of t h e  c o e f f i c i e n t s  are 

u2/,y*t + u,)i = 0. ( 9 1 )  

T h e r e f o r e ,  t h e  equat ion  F ( w ,  2 )  = 0 h a s  21 s o l u t i o n s .  
b e f o r e ,  all t h e s e  s o l u t i o n s  m a y  b e  w r i t t e n  i n  t h e  form 

A s  we h a v e  s e e n  

(y+ y*z”=+ y,z*/?‘+ . . .). (923 &? = 21/21 

w h e r e  t h e  c o e f f i c i e n t s  y and  yi are  t h e  same, and  z1 
all t h e  21- th  d e g r e e  r o c t s  of z. 

s u c c e s s i v e l y  r u n s  o v e r  

If %< 0, equat ion  (!31) h a s  two real r o o t s .  L e t  o n e  of these roots 
UZIO 

b e  t h e  y i n  (92) .  
b v  L e m m a  1. 

If z > O ,  t h e r e  e x i s t  two real v a l u e s  of t h e  funct ion z * / z l .  
c o r r e s p o n d ,  b y  (92) ,  t o  real v a l u e s  of w .  

T h e n  a l l  t h e  c o e f f i c i e n t s  y i ,  i = 1, 2,  . . . , are also real 

T h e s e  v a l u e s  
T h e  c o m p l e x  v a l u e s  of z ~ / * ~  cor- 

r e s p o n d  for s u f f i c i e n t l y  small z to v a l u e s  
of w which are close to t h e  c o m p l e x  n u m b e r  
zt  +, i .  e . ,  are also c o m p l e x .  If z c  0 ,  all 
t h e  v a l u e s  of t h e  funct ion ~ 1 ’ 2 1  are c o m p l e x ,  
and t h e  func t ion  w m a y  not have real v a l u e s  
for suf f ic ien t ly  small  z .  

U L==- &,kUI S i n c e  all t h e  r o o t s  of equat ion  (91) are 
d i f f e r e n t ,  all t h e  k = 21 r o o t s  of t h e  equat ion  

47/41) 

FIGURE 170 



Ch.XII1. LIMIT CYCLES OF SYSTEMS DEPENDING ON A PARAMETER 

F (w, z )  = 0 a r e  a lso different for  sufficiently small  z ,  and a r e  thus simple. 

W e  have thus proved the lemma for  z k <  0.  

to the previous case  by substituting - z for  z. 
of the lemma.  

one real root f o r  both z > 0 and z < 0, and this root i s  simple. 
Let k = 21 + 1. Z >  1. Equation ( 6 9 )  has the form 

The case  > 0 is reduced 

This  completes the proof 

L e m m a  3.  If k i s  odd and uO1 + 0, the equation F ( w ,  Z )  = 0 has precisely 

P r o o f . 

uzl+l,oYsl+l +uot = 0, 

and the corresponding solution of the equation P(w, z) = 0 is 

The validity of the lemma is established along the same  lines a s  in the 
previous proof. 

C o r o 11 a r y . If k is odd, the equation F (w,  a) = 0 may have more  than 
one r ea l  solution only i f  uol = 0. 

L e m m a  4 .  If k i s  oddand 

uo1= 0, Utt # 0, ( 9 3 )  

the equation F (w ,  Z )  = 0 has either three real roots for z > 0 and one real 
root f o r  z < 0, or  three veal roots f o r  z -== 0 and one real root f o r  =- 0. 
All the roots of the equation, and in particular i ts real roots,  are simple. 

P r o o f  . 
uoI which does not vanish. Since uol = 0, w e  have m> 2.  

It is readily seen that in this  par t icular  case  Newton's polygon i s  
made up of two segments, one through the points A. (0, m) and A,  (1 , l )  

Con- 

Let k = 21 + 1 , 1 >  1 and let uOm be the f i r s t  of the coefficients 

and the other through the points A ,  (1, I )  
and A21+,(21+1, 0) (Figure 1 7 1 ) .  

A sequently, a may have two values, 

namely a,=m- 1 and %=x. 
tion for y corresponding to a i = m -  l 
is u, ,y+ uom = 0; this  equation has  a 

1 The equa- 

is an analytical function of z .  
all the yr ( i  = 1,2, . . . )  are real and, there-  

fore ,  for any r e a l a ,  the solution 10 is rea l .  

By Lemma 1, 

The equation for  y corresponding to  a2=f is 

UZl+l o y ~ ~ + 1 +  u,,y = 0 

(see ( 6 9 ) ) ,  and there  a r e  22  solutions of the form 

(95 )  
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Consider the case  * < 0.  Equation (96) has  a real root and, as i.n 

our  proof of Lemma 2 ,  we can show that t he re  are two real solutions of 

the form (96) fo rz>O and no such solutions fo r  z < 0 .  

equation F ( w ,  z) = 0 h a s  three real solutions for z >  0 (one of the fo rm ( 9 4 )  
and two of the form(96:) ,  and only one real solution (of the form ( 0 4 ) )  for  
z4.0. 

The  case co >O i s  reduced to the previous case by  substituting - z 

%+r 0 

Thus, if *o< 0, the 

for z .  
and th ree  real solutions for z < 0 .  
different, all the roots  of the equation F ( w .  s) = 0 (and in  particular,  i t s  
real roots) are also different and hence s imple.  
of the lemma.  

We can now proceed ui th  the main propositions of this subsection. 
will f i r s t  establish what happens to a l imit  cycle of a dynamic sys tem 
when the vector field is rotated. 
to this question. 

In this ca se ,  the equation F ( w ,  z )  = 0 h a s  one real solution for z > O ,  
Since all the roots  of equation (95) are 

This  completes the proof 

We 

Theorems 71 and 72 provide the answers  

Let 

b e  the s tar t ing analvtical system. 
The svs tem (A,) dep3nding o n  a parameter  i s  chosen in the form 

dz __ it = P (I, Y) - pQ (5. Y) = p(z. Y. P). 

'$=Q(z. Y) tpP(5,  y ) = b ( z 7  Y, P), 

and the vector field of this sys tem is obtained f rom the vector field of ( A )  
hv  rotating through an angle equal to tan-'p (see end of $ 3 ) .  

pt and q' corresponding to (XJ have the form 
We w i l l  use the samenotat ion as in  5 3 2 . 2 .  Then, by (231, rhe functions 

(97)  
pt (t. Y) = - 0 (z, Y), 
pt (2, y) = q i  (z. y) = 0 f o r  1 9  2. 

Suppose that system ( A ) ,  or equivalently (Ao) ,  h a s  a l imit  cycle L o .  
T h e  o r e rvi 71. If Lo is a limit cycle of even multiplicity of system 

(Ao) ,  there exist E > 0 and p,,> 0 uith the follozcing property: either for 
ecery p>O, ~ p I < p ~ ,  (Awlhas precisely two limit cycles in Lr,(Lc),  which 
are vnmeouey structirmlly stable, and has no limit cycles whatsoever 
in Ue(Lo) for euery p<O, IpI<po, m conversely, for euery p>O, (pI<po ,  
(A,) has no limit cycles in U e ( L o ) ,  whereas for p<O, Ipl<por (AJ  has 
precisely two limit cycles in Ue(Lo), uViich are structurally stable. The 
number E may be chosen as  small a s  desired. 

on some  normal  to the l imit  cycle Lo (see (16)), and d ( n o ,  p) = f (no, p ) - n 0  
(see (47)) .  

responds t o  no = 0. 
point (0, O ) ,  by (19) and (47),  h a s  the fo rm 

(2, Y) = P (2. y). 

P r o o  f . Let n =  f (no, p) be  the succession function constructed for (AJ 

A s  ins32.1, we assume that the l imit  cycle Lo of the  sys tem (Ao) cor-  
The  series expansion of t he  function d (no, p) near  the 

d (nth p) = ( 4 0  - 1) no i uo1p + U z d t g l f  . . . (98) 
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In particular, 
d (no, 0) = (ul0 - 1) no + um:+ %n: + . . . (99) 

F y  assumption, Lo is a limit cycle of even multiplicity of (AQ).  This  
and Definition 28 ($26.2) show that ui0-  1 = 0 and that the f i rs t  non-zero 
coefficient in expansion (99)  is a coefficient before an even power of no. 
Let this coefficient be uz l ,  o, where La 1. Thus, 

d (no, P) = uzt, on;' + uoip + . . (100) 

The coefficient u0, may be computed from (36), 532.1. Let 

X = = ( P ( O ?  Y = 1 1 , ( 4 ,  

where 'p and 11, a r e  periodic functions of period T, be  the solution of (Ao) 
corresponding to  the limit cycle Lo. Then 

p ('p (4, l# (4) 3 9' (4, Q ((P (4, 11, (d) E 11,' (4. 
By these relations and (97), we have 

41 ('p (4, l# (4) E v' ( 4 7  PI (9 (4, l# (SI) = -11,' (4. 
Inserting the las t  expressions in (36). we obtain 

r * s (P;+O;) ds r - $ (P;+QL)d. 

tcp' ( s ) ~  + V (s)*l ds .  
i 

O 
UOI = eo 

Hence i t  follows that uol # O .  But then, in virtue of ( l o o ) ,  the conditions of 
Lemma 2 are satisfied for  the function d (no, p) i f  i t  is considered a s  F (w, 2). 

F y  this  lemma,  (Au), for  sufficiently smal l  p, has  precisely two limit 
cycles  in a sufficiently small  neighborhood of the path Lo.  Since by the 
same  Lemma 2 the r ea l  roots of the equation d (no, p) = 0 to which these 
cycles  correspond a r e  simple roots, the corresponding limit cycles a r e  
s t ructural ly  stable ( see  § 13.3, (31), and also § 13.3, Definition 18, and 
§ 14, Theorem 18). Q.E.D.  

The proposition of Theorem 71 may be formulated in the following 
graphic form: 

When the v e c t m  field of a dynamic system is rotated in one direction, 
a limit cycle of even multiplicity decomposes into two structurally stable 
cycles, and when the field i s  rotated in the opposite direction, the limit 
cycle disappears. 

Let us  now consider the case  when the dynamic system (A) has  a limit 
cycle Lo of odd multiplicity. 

T h e o r  e m 72. If Lo i s  a limit cycle of odd multiplicity of dynamic 
system (Ao),  there exist e > 0 ,  po > 0 such that jw all p # 0, I p I < po, 
(A,) has a single limit cycle in U, (Lo) ,  which i s  moreover structurally 
stable. The number e may be taken as  small as desired. 

P r o o f  . The first non-zero coefficient of n,k (k = 1, 2, . . . ) in expansion 
(98) is a coefficient before an o d d  power of no, e .g . ,  the coefficient before 
n:l+f, where L > O .  The coefficient uol has the same form a s  in the previous 
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t h e o r e m ,  i . e . ,  i t  d o e s  not v a n i s h .  T h e  p r o p o s i t i o n  of T h e o r e m  7 2  t h e n  
fo l lows  d i r e c t l y  from L,emma 3 .  Q. E . D .  

R e m  a r k 1. If Lo is of m u l t i p l i c i t y  1. i .  e., a s i m p l e  l i m i t  c y c l e  of 
( - A ) ,  t h e n  it is a s t r u c t u r a l l y  s t a b l e  pa th  ( T h e o r e m  18, s 14). T h e r e f o r e ,  
not on ly  t h e  s y s t e m  (A,) ob ta ined  b y  r o t a t i o n  of t h e  v e c t o r  f i e l d ,  but  a n v  
s v s t e m  suf f ic ien t ly  close t o  ( A )  wil l  h a v e  p r e c i s e l y  o n e  l i m i t  c y c l e  i n  a 
Suff ic ient ly  s m a l l  neighborhood of L o .  
t h e  c y c l e  Lo,  t h e r e  a l w a y s  e x i s t  s y s t e m s  a s  close as d e s i r e d  to (A) ,  which 
have  m o r e  than  o n e  l i m i t  c y c l e  n e a r  L o .  
s m a l l  r o t a t i o n  of t h e  v e c t o r  f ie ld ,  a m u l t i p l e  c y c l e  of odd m u l t i p l i c i t y  
b e h a v e s  l i k e  a s i m p l e  c y c l e ,  i . e . ,  t h e  modi f ied  s y s t e m  h a s  o n e  and o n l y  
o n e  l i m i t  c y c l e  i n  a suf f ic ien t ly  small  ne ighborhood of t h e  o r i g i n a l  c y c l e ,  
which i s  m o r e o v e r  s t r u c t u r a l l y  s t a b l e .  

r e m a i n  va l id  i f  ( -Ad  is t a k e n  i n  t h e  form 

In case of h i g h e r  m u l t i p l i c i t i e s  of 

T h e o r e m  72 s h o w s  tha t  i n  a 

R e m  a r k 2 .  T h e o r e m s  7 1 and 72 and o u r  proof  of t h e s e  t h e o r e m s  

d r  d y  
-= d i  J' (f, 5') --Pf (2, Y) Q (I, Y). 7 = Q (2, Y) + pf (I, Y) P (2, Y). 

w h e r e  f (I. y) i s  a funct ion which r e t a i n s  a c o n s t a n t  s i g n  a t  all p o i n t s  of t h e  
l i m i t  c y c l e  L o .  

In c o n c l u s i o n  of t h i s  s e c t i o n ,  we  wil l  p r o v e  a n o t h e r  t h e o r e m ,  which  i s  
no l o n g e r  r e l a t e d  to r o t a t i o n s  of t h e  v e c t o r  f i e l d s .  

L e t  I,, b e  a limit c y c l e  of ( A ) ,  I = 'p ( t ) .  y = 9 ( I )  t h e  s o l u t i o n  c o r r e s p o n d i n g  
to t h e  path L o .  T >  0 t h e  p e r i o d  of t h i s  s o l u t i o n .  
ana1,ytical funct ion def ined i n  t h e  same r e g i o n  as s y s t e m  (A) ,  which  s a t i s f i e s  
t h e  fol lowing condi t ions :  

(ai F ( c p ( s ) .  ~ ( ( s ) )  = 0. 
lb)  I F ; ( v ( s ) .  $ ( S ) ) ~ ~ + [ I ' ; ( ( F ( S ) .  ~ ( s ) ) I * . i  0 (see end  of 933.1). 
T h e o r e m  73. Let 

L e t  f u r t h e r  F (I, y) b e  a n  

- d r  
d t  - = P (I y) -i- ppl (I, y) 4- p*p2 (". y) I . . f = P (I, y, p), 

p% (2 ,  Y) t ' . . = Q (I, Y7 p) 
(A,) 

$ = Q (2, y) t p41 (I, Y) 

be a dynuiiiic system, und let the fiinctions PI (3, Y) ana' q1 (I, y) have the forni 

PI (I, Y) = -r (17 Y) F; (2, Y), QI (I. Y) = F (5,  y) F ;  (I, y). (101) 

where F is a fimction satisfying conditions (a) ana' (b) .  
cycle of mid intiltiplicity of system ( A ) ,  there exist po > 0 and E > 0 which 
satisfy the follaoing cad i t iow  for all p. p 1 < pot hatting the same sign, 
(A,) has precisely three limit cycles in L', ( L o ) ,  and these cycles are struc- 
turally stable; fm all p.. I p I < pot of the opposite sign, (A,) has precisely 
one limit cycle in C ,  ( L o ) ,  which is also stnrctuvally stable. 

P r o o f .  T h e  e x p a n s i o n  of d (no, p) i n  t h e  neighborhood of ( 0 , O )  h a s  t h e  
f o r m  (08): 

Then if Lo is  a limit 

d (no. P I  = (uio - 1) no + UOIP f uiinp -+ UZOU: + 
w h e r e  uIo is c o m p u t e d  f r o m  (34). 
Ey (101) and condi t ion  (a ) ,  it fo l lows  tha t  U O I  = 0.  
c o m p u t e d  f r o m  ( 4 2 )  a n d ,  as w e  h a v e  s e e n  a t  t h e  end  of 133.1, u l l  =i= 0 u n d e r  

T h e  coef f ic ien t  uol i s  c o m p u t e d  f r o m  ( 3 6 ) .  
The coef f ic ien t  uI1 is 

40 1 



Ch.XII1. LIMIT CYCLES OF SYSTEMS DEPENDING ON A PARAMETER 

the conditions of our  theorem. 
satisfied for  the function d (no ,  p) if it is considered as P (to, z ) .  
of the theorem follows directly f rom this  lemma.  

Thus, the conditions of Lemma 4 a r e  
The proof 

Q. E .  D .  

S33. CREATION OF A LIMIT CYCLE 
F R O M  A CLOSED PATH O F  A 
CONSERVATIVE SYSTEM 

1. The integral invariant and conservative system. 
Statement of the problem. 
the small parameter  

The  method of 

The concept of the i n t e g r a 1 i n v a r i a n t  was introduced by Poincare 
( see  1241,  Sec. 235, p .  5) .  
invariant for  a dynamic system of second o rde r .  
for  a system of n-th order  - this  concept is defined analogously. 

We will give he re  a definition of the integral 
In the general  case  - 

A s  in 
the previous section, we assume that all the relevant sys tems a r e  analytical. 

Let 

be  a dynamic system defined in G. 
made up of whole paths of system (A). Let D be a closed subregion of 
G, M o  (zo, yo) ED any point in this  subregion. 
y = ( t ;  zO, yo) of system (A) which for  t = 0 passes  through the point Mo. 
Let the point with the coordinates p ( t ;  zo, yo), $ ( t ;  z,,, yo) be designated M ( t ,  M o ) .  
The set  of all points M ( t ,  M,) obtained when M O  runs over al l  the points of 
the subregion D for  a fixed t ,  i .  e., the set of point ( M  ( t ,  M o ) ;  M O  E D ) ,  is 
designated D t .  Dt  is clear ly  homomorphic to D and is contained in G. Dt is 
obtained f rom D ,  so to  say, by a t r a n s l a t i o n  o v e r  a d i s t a n c e  t 
( i n t i m e )  a l o n g  t h e  p a t h s .  

this  region. 

For simplicity, we assume that G is 

Consider the path x = ‘p ( t ;  z,, VO), 

Let p (z, y) be an analytical function in G which is not identically ze ro  in 

D e f i n i t i o n  31. The integval 

is called the integral invariant of a dynamic system (A) 
closed subregion D C G  and f o r  every t ,  we have 

in every bounded 

If (I) i s  an integral invariant, the function p ( x ,  y) is called the density 
of the integral invariant. 

The integral invariant readily lends itself to  a hydrodynamic interpreta- 
tion. Let (A) be regarded as a system of equations describing the velocity 
of steady- s ta te  motion of some two-dimensional “fluid“ filling the region G, 
which contains neither sources  nor sinks. Let p (2, y) be the density of the 
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fluid a t  t h e  point (2. y). 
f i l l ing t h e  r e g i o n  D, and equal i ty  ( 2 )  s i g n i f i e s  tha t  t h e  fluid mass  is c o n -  
s e r v e d  as t h e  fluid p a r t i c l e s  m o v e  a long  t h e i r  s t r e a m l i n e s  i n  a t i m e  t to 
f i l l  t h e  r e g i o n  D t .  For a n  i n c o m p r e s s i b l e  f luid,  p (5, y) = c o n s t ,  and t h e  
i n t e g r a l  i n v a r i a n t  i s  t h e  area of t h e  r e g i o n  D. 

i n t e g r a l  i n v a r i a n t .  
t h e  notat ion 

'The i n t e g r a l  (1) t h e n  e x p r e s s e s  t h e  mass of fluid 

L e t  u s  d e r i v e  t h e  condi t ion t o  b e  s a t i s f i e d  b y  p (3 ,  y) for (1) t o  b e  a n  
A s s u m i n g  a fixed D for  t h e  t i m e  be ing ,  w e  wi l l  u s e  

J ( t )  = 5 'i p (E, Y) dx d y .  ( 3 )  
( D t )  

T h e n  'i 5 p(x ,  y ) d s d y = J ( O ) ,  and for e q u a l i t y  (2)  t 9  hold t r u e  for  a n y  1, it  i s  

n e c e s s a r v  and suf f ic ien t  tha t  
(D) 

J' ( t )  3 0 

( t h e  d i f fe ren t iab i l i ty  of J ( f )  wil l  be proved  b e l o w ) .  
r e p r e s e n t  J ( f )  as a n  i n t e g r a l  o v e r  D. 

To c o m p u t e  J ' ( t ) ,  we 
T h e  s u b s t i t u t i o n  of v a r i a b l e s  

= 'p (1; Zo, Yo). Y = II, ( t ;  r o t  Yo) (4 )  

in  ( 3 )  m a p s  D onto  Dt .  U e  t h u s  obta in  

w h e r e  
D (T ( t ;  50. YO). $ ( t :  2 0 .  YO)) 

D ( z o +   YO^ A If;  so, Yo) = 

is t h e  J a c o b i a n  of m a p p i n g  (4). 
w h e r e  i t  i s  shown (QT, 83.5, L e m m a  6) tha t  

This J a c o b i a n  has  b e e n  c o m p u t e d  i n  QT, 

It fol lows f r o m  t h e  l a s t  e q u a l i t p  t h a t  A ( t ;  zo, yo)+ 0, i .e . ,  ( 4 )  i s  a r e g u l a r  
mapping ,  and 

F v  (5), J ( t ) =  5 pAdxo,2yo. Since  t h e  r e g i o n  of i n t e g r a t i o n  i n  t h i s  i n t e g r a l  
(W i s  independent  of t ,  and t h e  i n t e g r a n d  is d i f f e r e n t i a b l e ,  J ( f )  i s  d i f f e r e n t i a b l e  

and 

J' (I) = 1 5 & [ p  (9 ( t ;  ZO, yo), 9 ( t ;  50, YO)) ( t ;  q, yo)] dxo &/a. (8)  
( D) 

L e t  u s  c o m p u t e  t h e  int  -grand  i n  ( 8 ) .  U s i n g  ( 7 )  and t h e  obvious  r e l a t i o n s  
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Ch.XII1. LIhlIT CYCLES OF SYSTEMS DEPENDING ON A PARAMETER I 
we find 

Since J ’ ( t ) = O ,  we have J’(0) = 0 .  The las t  equality should hold for 
e v e r y region D, so that the integrand in (10) must identically vanish, 
i . e . ,  at any point (z, y) of G we should have 

On the other hand, it follows from (8) and (9) that if (11) is satisfied, 
J’ ( t )  3 0 for  any D. We have thus established that identity (11) is the 
necessary and sufficient condition for (1) to  be an integral  invariant. I 

R e m a r k  . Condition (1 1) can be written in the form v+ = 0. 

1, 2, .  . . n, the function 
av 

For an n-th o rde r  system %=P,(zi, x2, . .  ., xn) ,  i 

p (z,, x2, . . . , x,,) is the density of the integral invariant i f  and only i f  the 
following identity is satisfied ( see  /30/): 

- + ? L O .  L 

,= i  

Let G, as before, be a region consisting of whole paths of (A) .  
D e  f i n i  t i  o n  32. i t  has 

Consider a system (A) which is conservative in G .  Let 1 $ p(z, y)dxdy, 

System (A) is  said to be conservative in G 
an integral invariant with positive density in this region. 

(D) 
where p(z, y) > 0, b e  i t s  integral invariant. 
with the paths of the system 

The paths of (A) then coincide 

(A) d x  
z = P ( X ,  Y)P@, y ) = f i ,  g = P ( z ,  Y)Q(z,y)=Q. 

By ( l l ) ,  we have in G 
aQ aP 
d y  a+ * 
-=_-  

Therefore,  i f  G is a simply connected region, a single-valued function 
H (z, y) exists in G which satisfies the equalities 

and (A) mag be written in the form 



5 33. CLOSED P.iTHS OF COhSFRVATIVE SYSTEAIS 

D e f i  n i t  i o n 33. A dynamic system of the form 

where H (J. y) is  a single- valued function defined in G is called a Harniltonian 
system in G .  

s y s t e m  is a p a r t i c u l a r  ~zase of a c o n s e r v a t i v e  s y s t e m .  The d e n s i t y  p of t h e  
i n t e g r a l  i n v a r i a n t  of a Elamiltonian s y s t e m  m a y  b e  c h o s e n  as t h e  n u m b e r  1; 
t h e  i n t e g r a l  i n v a r i a n t  0.) t h e  s y s t e m  i s  then  rhe  area of t h e  r e g i o n .  
H a m i l t o n i a n  s v s t e m  h a s  a g e n e r a l  i n t e g r a l  H (z, y) = C ( s e e  QT, 5 1.13). 

Ke have  t h u s  e s t a b l i s h e d  tha t  if ( A )  i s  a c o n s e r v a t i v e  s y s t e m  i n  a 
s i m p 1 v c 
i n v a r i a n t ,  (-A) i s  a Hamil tonian  s y s t e m  i n  G. p (2, y) i s  t h e  i n t e g r a t i n g  f a c t o r  
of t h e  d i f f e r e n t i a l  equat ion  Q (3. y) dx - P (z. y) dy = 0 c o r r e s p o n d i n g  t o  s y s t e m  
( - A \ .  It i s  r e a d i l y  s e e n  ,'.hat if 
also a n  a n a l y t i c a l  funct ion.  

If G is not s i m p l y  connec ted ,  r e l a t i o n  (12)  i s  not  enough t o  e s t a b l i s h  t h e  
e x i s t e n c e  i n  G of a s i n g l e - v a l u e d  funct ion H (2, y) which s a t i s f i e s  condi t ions  
(13). In t h i s  case w e  c a n  only  s a v  tha t  s u c h  a funct ion e x i s t s  i n  a n y  s i m p l y  
connec ted  s u b r e g i o n  of G. 

In t h i s  s e c t i o n  we wi l l  o n l y  c o n s i d e r  t h e  case of G which  is an "annular"  
r e g i o n  c o m p l e t e l y  f i l l ed  with c l o s e d  pa ths '  of s y s t e m  (-4) e n c l o s i n g  o n e  
a ' io ther .  We wi l l  s h o w  that in  t h i s  case (-A) i s  a c o n s e r v a t i v e  s y s t e m  i n  G, 
i .  e ., it  h a s  a n  i n t e g r a l  i n v a r i a n t  with pos i t ive  d e n s i t y  p (J, y) i n  t h i s  r e g i o n ,  
and tha t  t h e  s y s t e m  

From Pef in i t ions  32 and 33 and condi t ion  (11) it fo l lows  t h a t  a Hamil tonian  

A 

n n e c t e d r e g i o n  G, and p (1. y) is the  d e n s i t y  of i t s  i n t e g r a l  

and 0 are  a n a l y t i c a l  func t ions ,  II (3, y)  i s  

-- 'pp. dr dY=pQ d t  dt  

i s  a Hami l tonian  s y s t e m  
Let (A)  be an analytical system, and G a closed annular 

region coinpletely filled with concentric closed paths of system (A). There 
exists an analytical function p (2, y) defined in G which satisfies the condition 

TIL e o r  e m 74 .  

i. e. ,  system is cmsevoative in G ,  and the system 

ds d y _ p Q  
d t  - = pP,  d t  

is  Hani illonian. 
P r o o f  . C o n s i d e r  an anal-y-tical arc without c o n t a c t  1 conta ined  i n  C ,  

which c o n n e c t s  t h e  p o i n t s  of t w o  c l o s e d  b o u n d a r y  p a t h s  (see F i g u r e  172; 

FIGC'RE 172 

t h e  e x i s t e n c e  of t h i s  arc is p r o v e d  i n  QT, 
$ 19.5, Lemma 6 ) .  
b e  t h e  p a r a m e t r i c  e q u a t i o n s  of the arc I 
( f  and g are a n a l y t i c a l  func t ions) .  
know, e v e r y  c l o s e d  pa th  of G has p r e c i s e l y  
o n e  c o m m o n  point with 1 .  
p e r i o d  of t h e  c l o s e d  p a t h  which crosses 
t h e  arc 2 a t  a point c o r r e s p o n d i n g  t o  t h e  
v a l u e  s of t h e  p a r a m e t e r .  

so lu t ion  of s y s t e m  (A)  s a t i s f y i n g  the initial 

L e t  2 = f (s). y = g (s), a,<s ,<b  

A s  we 

L e t  T (s) b e  t h e  

L e t  x = (C q. yo). y = Q ( t ;  zo. yo) b e  t h e  
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Ch.XIII. LIMIT CYCLES OF SYSTEMS DEPENDING ON A PARAMETER I 
conditions 'p (0; xo. yo) =z0, 9 (0; xo, yo) = y o .  
b y  the equalities 

Consider the mapping T, defined 

z=a)((t, s), y = Y ( t ,  s), (15) 

where 

The functions 4, and Y a r e  analytical, and T maps the region R of the 
plane ( t ,  s) defined by the inequalities 

I a,<s,<b, O<t,<r(s), (It) 

onto the region G .  
( see  QT, $3.5, Lemma 8), but i t  is not one-to-one, since every point of 
the a r c  1 corresponding to the value s ( a < s < b )  of the parameter  is the image 
of two points (0, s) and ( t  (s), s )  belonging to  the boundary of the region under 
this  mapping. 

The mapping T i s  regular  at all the inter ior  points of H 

This follows f rom the obvious relations 

Q(0, s ) = Q ( T ( s ) ,  s), Y(0, s )=Y(r (s ) ,  s). ( 1 7 )  I 
Let 

t 
- $  [ P ; ( Q ( t ,  r)'f'(!, s))+QL(m(t. *), Y ( f ,  *)>I 

r ( t ,  s)=e  0 at. (18) 

The function r ( t ,  s) is defined in region R of the plane ( t ,  s). 
relations (15), i t  may be considered a s  a function of z, y defined in G .  
Let the corresponding function be p (z, y). 

In virtue of 

We thus take 

P (z7 Y) = r (1 (5, LA, s (z. 59). (19) 

where t = t (I, y) and s = s (5, y) a r e  the functions defined by (15). 

in G .  
responds precisely to  one point (t,  s) of the region R and therefore t o  a 
definite value of the function r .  
to  the a r c  1 and corresponds to the value s of the parameter .  
a s  we have seen before, the point M (z, y) is the image of two points of the 
region R under the mapping, namely the points ( 0 ,  s) and (T (s), s). 
establish the single-valuedness of p ( x ,  y). i t  s u f f i c e s  to show that r (0, s) = 
= r (T (s), s). 

W e  will f i rs t  show that the function p ( x ,  y) defined by (19)  is single-valued 
If the point ( x ,  y )  does not belong to the a r c  without contact 1 ,  i t  cor -  

Let now M (I, y) be a point which belongs 
In this  case ,  

To  

But r (0, s) = 1 by (18). On the other hand, 

'f'm (9 (t: f? g), 9 ( t ;  f, g 1) + 0; ('p ( t ;  f, g) ,  $ ( t ;  f, d ) l  dt 

is equal, apar t  f rom the factor T (s), to  the character is t ic  index of the closed 
path LM passing through the point M (see § 13.3, Definition 17) .  
path LM belongs to the family of the concentric closed paths filling the region 
G ,  i t  is not a limit cycle and i t s  character is t ic  index, together with the las t  
intepral, vanishes ( see  5 13.3, (31) and § 12.3) .  But then, by (18), r (r (s), 8 ) -  

-= 1 = r (0, s). W e  thus established that the function p (z, y) is uniquely defined 
by (19) in G. 

Since the 
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S 23. (:LOSED P.4THS OF CONSERI’.-\TIVE SYSTEhIS 

We wil l  now show tha t  t h i s  func t ion  fu l f i l l s  t h e  propos i t ion  of t h e  t h e o r e m ,  
i . e . ,  s a t i s f i e s  ident i ty  (11) .  By (18) and ( I S )  we  have  

( 2 0 )  

5Iul t iplying t h e  e q u a l i t i e s  i n  ( 2 0 )  b y  P ( I ,  y) and Q ( I ,  y), r e s p e c t i v e l y ,  adding  
t h e m  up, and r e m e m b e r i n g  tha t  

w e  obta in  

i . e . ,  r e l a t i o n  (11 ) .  
We wi l l  now show t h a t  t h e  s y s t e m  

(A) d r  -= d t  pP=P,  g=pQ=Q 

i s  a Hami l tonian  s y s t e m  i n  t h e  r i n g  G. 
with t h e  p a t h s  of ( A ) ,  i .  e . ,  t h e y  are c l o s e d  p a t h s .  F u r t h e r m o r e ,  i n  v i r t u e  
of ( X I \ ,  

S i n c e  p > 0 ,  t h e  p a t h s  of ( A )  c o i n c i d e  

Q(0, P) U(P.  V) = 0, 
d r  O Y  

I.t?., 

Let . I . ~ O ( I , > .  yo) b e  a f i x e d ,  and N(s, y) a n  a r b i t r a r y  point i n  G. L e t  y b e  a 
W e  wi l l  show tha t  smooth c u r v e  conta ined  i n  G which goes from Mo to JI. 

t h e  l i n e  i n t e g r a l  

i s  a s ingle-va lued  funct ion of I ,  y. 
t h a t  t h i s  i n t e g r a l  is independent  of t h e  i n t e g r a t i o n  path y ,  i .  e . ,  t h e  i n t e g r a l  
a long  a n y  c l o s e d  c u r v e  Contained i n  G i s  z e r o .  

t h e  c u r v e  C i s  e n t i r e l y  conta ined  in  G, w e  have  [ odx- P*dy = 0 b y  G r e e n ’ s  

f o r m u l a  and r e l a t i o n  ( 2 1 ) .  L e t  now C b e  t h e  c l o s e d  pa th  z = 6 ( t ) ,  y = 4 ( t )  of 
s v s t e m  ( A )  which p a s s e s  t h r o u g h  t h e  point  .\Io ( t h i s  pa th  e n c l o s e s  t h e  i n n e r  
bounrlarv c u r v e  of G ,  i.-e., i t  is not homotopic  t o  z e r o  in G ) .  L e t  T b e  t h e  
p e r i o d  of t h e  f m c t i o n s  g, and 9. 

To t h i s  e n d ,  it s u f f i c e s  t o  e s t a b l i s h  

If t h e  r e g i o n  e n c l o s e d  b y  

(;:) 

T h e n  



Ch.XIII. LIMIT CYCLES OF SYSTEMS DEPENDING ON A PARAMETER 

It follows from the last  relation and from ( 2 1 )  that the line integral  vanishes 
along a n y  closed curve C which belongs to G. 
i s  independent of the integration pathy, i . e . ,  it is  a function of the point 
M (5 ,  y). Let this function be I f  ( I ,  y), i. e ., we take 

But then the integral  ( 2 2 )  

H (x, Y) = S 6 (x ,  Y) d x - p  (x ,  Y) d ~ .  
CY) 

The function H (.T, y) defined i n  this way clearly satisfies the relations 

as , i . e . ,  ( A )  is a Hamiltonian system. This completes p= --, aH Q,?X 

the proof of the theorem. 
In what follows, a c o n s e r v a t i v e  s y s t e m  w i l l  be a n  a n a l y t i c a l  

s y s t e m  d e f i n e d  i n  a d o u b l y  c o n n e c t e d  r e g i o n  G f o r  w h i c h  
a l l  t h e  p a t h s  c o n t a i n e d  i n  G a r e  c l o s e d  (they a r e  evidently 
concentric). 
c lass  of conservative systems in the sense of Definition 3 2 .  
we wi l l  only consider these systems, w e  wi l l  use the general t e rm c o n  - 
s e r v a t  i v e s y s t e m s in this res t r ic ted sense from now on. 
a H a m  i 1 t o n i a n s y s t e m  in this section will be regarded a s  a Hamiltonian 
system defined i n  a doubly connected region which i s  completely filled with 
concentric closed paths. 

s y s t e m  I i. e., systems of the form 

These systems evidently constitute a comparatively restr ic ted 
However, since 

Similarly, 

%'e will also consider s y s t e m s  c l o s e  t o  a c o n s e r v a t i v e  

(A,,) 
ns 
x = P ( + ,  Y)+PP(G Y, P), $ = Q ( x ,  y l + P q ( x ,  Y, P), 

where p is a small  real  number, p and q a r e  analytical functions of the 
respective arguments, and system (Ao), i .  e . ,  

i s  conservative. We will establish the s u f f i c i e n t  c o n d i t i o n s  to be 
met by the functions p (2, y,  p), q ( x ,  y,  p) for  a limit cycle of (A,,) to exist in 
the neighborhood of one of the closed paths Lo of (Ao). In other words, using 
our  terminology, we wi l l  establish the sufficient conditions for the creation 
of a limit cycle L, of system (A,) f rom the path LO of system (Ao). 

A s  a particular c a s e  of systems close to a conservative system, w e  will 
consider s y s t e m s  c l o s e  t o  a H a m i l t o n i a n  s y s t e m ,  

where p and q a r e  analytical in the doubly connected region, and (Ho) i s  a 
Hamiltonian system. 

We will show that on passing from the general  ca se  of systems close to 
a conservative sys tem to the case of systems close to  a Hamiltonian system, 
the sufficient conditions for  the functions p and q a r e  markedly simplified. 

The situation i s  particularly simple when the original conservative 
system is l inear.  In this case,  we may take, without loss of generality, 
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5 33. CLOSED PATHS OF CONSER\'r\TI'I'E SYSTEIIS 

( P o )  is a H a m i l t o n i a n  s y s t e m  and its p a t h s  are t h e  circles 

xa f ya = c. ( 2 3 )  

A s y s t e m  close to a l i n e a r  c o n s e r v a t i v e  s y s t e m  h a s  t h e  f o r m  

( B P )  
d r  x= - Y T P p ( x r y * p ) r  ~ = = z P ~ ( x . Y , P ) .  

T h i s  s y s t e m  c a n  b e  inves t iga ted  e i t h e r  as a p a r t i c u l a r  case of a s y s t e m  
close t o  a Hamil tonian  s y s t e m ,  o r  d i r e c t l y  by  changing  o v e r  t o  p o l a r  
c o o r d i n a t e s .  S i n c e  t h e  d i r e c t  a p p r o a c h  is v e r y  s i m p l e  i n  t h i s  case, and 
a t  t h e  s a m e  t i m e  p r o v i d e s  a b e t t e r  i n s i g h t  in to  t h e  g e n e r a l  p r o p e r t i e s  of 
a s v s t e m  close t o  a c o n s e r v a t i v e  s y s t e m ,  we wil l  f i r s t  i n v e s t i g a t e  ( i n  t h e  
n e s t  s u b s e c t i o n )  a s y s t e m  of t h e  f o r m  (BJ b y  changing  o v e r  t o  p o l a r  
c o o r d i n a t e s .  

c e r t a i n  cases t h e  p r e s e n c e  (or a b s e n c e )  of l i m i t  c y c l e s  i n  n o n l i n e a r  
d v n a m i c  s y s t e m s .  T h i s  is a c c o m p l i s h e d  b y  t h e  s o - c a l l e d  P o i n c  a r e' 
m e t h o d  or t h e  m e t q o d  of a s m a l l  p a r a m e t e r .  A c c o r d i n g  
i o  t h i s  method,  a n o n l i n e a r  d y n a m i c  s y s t e m  i s  c o n s i d e r e d  as a s y s t e m  
close to  a c o n s e r v a t i v e  s y s t e m .  
n o n l i n e a r  s y s t e m  i s  e s t a b l i s h e d  b v  f inding t h e  c l o s e d  p a t h s  of t h e  con-  
s e r v a t i v e  s v s t e m  which c r e a t e  t h e s e  c y c l e s .  T h e  P o i n c a r g  m e t h o d  I S  
n a t u r a l l v  appl icable  o n l y  i f  t h e  n o n l i n e a r  s y s t e m  is indeed  close t u  a 
c o n s e r v a t i v e  s y s t e m ,  01-  i f  it c a n  b e  "fitted" with a c o n s e r v a t i v e  s y s t e m  
b v  some technique .  

T h e  r e s u l t s  of t h e  p r e s e n t  s e c t i o n  m a k e  i t  p o s s i b l e  to e s t a b l i s h  i n  

T h e  e x i s t e n c e  of l i m i t  c y c l e s  in t h e  

2 .  Systems close to a l inear  conservative system 

We wil l  c o n s i d e r  a s v s t e m  of t h e  fo rm 

; - - Y + P P ( s . y . P ) ,  i = x + P q ( x .  Y,P), ( B,) 

:rhich is close to a l i n e a r  c o n s e r v a t i v e  s y s t e m  (Bo) whose  p a t h s  are t h e  
c i r c l e s  r"y*==C. T h e  func t ions  p and q are a s s u m e d  t o  b e  anal-ytical in  
t h e  ne ighborhood of t h e  point (O,O, 0 ) .  
e n c o u n t e r e d  i n  a p p l i c a t i o n s .  T h u s ,  for e x a m p l e ,  t h e  equat ion  

S y s t e m s  of t h e  form (B,) are of ten  

.. 
1+3= P f ( Z ,  4, 

u h i c h  is close f o r  small p t o  t h e  equat ion  of t h e  h a r m o n i c  o s c i l l a t o r  
J + Z  - 0, g i v e s  in  t h e  p h a s e  p lane  (3, y) ( s e t t i n g  y =- ii 
.. 

x = - y .  y=Lr-pCLf(z. -g), 

and t h i s  i s  ev ident ly  a n  equat ion  of t h e  f o r m  (B,,). 
q ( r , y , p )  will  be a s s u m e d  t o  v a n i s h  for r = y =  0, i .e. ,  

T h e  func t ions  p ( r ,  y, P) and 

P ( o , o , I o = Q ~ o . o , ~ ~ = o .  ( 2 4 )  
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Ch.XIII. LIMIT CYCLES OF SYSTEMS DEPENDING Oh A PARAMETER i 
This assumption does not constitute a fundamental res t r ic t ion.  
suppose that condition (24)  is not t rue .  Consider the equations 

Indeed, 

---Y+P.P(Z, Y, p)=O, Z+W(Z, Y, p)=O. (25) 

At the point 
of implicit functions, and i t  is therefore solvable for x and y. 

x-y=p=O,  this  system sat isf ies  the conditions of the theorem 
Let 

s=f ( I47  v=g(C1) 

be  the solution of (25)  near  the point (0, 0, 0) .  Then 

-g (P) + PP (f (PI? g (P), co = 0, f (P) + Pq (f (P). g (P)* co = 0, 

where f (p)  and g(p) a r e  analytical functions, and 

f (0) = g  (0) =o. 
Applying to  (B,) the substitution of variables 

2- x + f (PO, Y =  y + g  (PI, 

Ry (26) ,  
equations (28 ) .  

p*(O, 0, p)=q*(O, 0, p)=O, i. e., condition (24)  is satisfied for 

We will thus consider the system (B,) assuming ( 2 4 ) .  Let 

P(Z, Y, P)=P(z,  Y)+PPZ(Z,  Y, P)* q ( ~ v  Y* P ) = ~ ( z ,  Y)+PQZ(S, Y, P)* (29) 

BY (24 ) ,  

p (0. 0) = q (0, 0) = 0, pz (0, 0, P) = qz (0, 0, P) = 0. (30 )  

Using (29), we write the original system (B,) in the form 

dX x= ---Y+PP(G Y, P)= - Y f P P ( Z ,  Y)+P*PZ(G Y, P), 

J=z-t-l”q(sc, dr 
d ( 3 1 )  

Y. P)=Z+Pq(z, Y)+P*qz(r, y, P). 

Changing over  to polar coordinates x = p c o s O ,  y=psinO, we readily obtain 

$==ppcosep(pcose, psine, p)+sineq(pcose, ps ine ,  p)], 

By (24), the right-hand s ide  of the last equation for  IpI<p* (where p* is a 
positive number) has  the form 

1 + PF (P, 8, P), 

where F ( p ,  8, p) is an analytical function of i t s  arguments (which need not 
vanish at p = 0).  For small  pr the las t  expression does not vanish, and 
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'.VP mav t h e r e f o r e  c h a n g e  over  t o  a s i n g l e  equat ion  

( 3 3 )  

(34)  

d!) 
= P R  (p, e. p). 

Lvhcre 

, c o a 8 p ( p c o . 0 .  p q i n 0 ,  p)-8inOq(pcoiR. (>sin@. p) 
R (P. e. PI - I + P F  ;P, e. p) 

R(p,  0, p) i s  a n  analyt ic21 funct ion with a p e r i o d  of 2 x  in 8 which v a n i s h e s  a t  
p : 0. S i n c e  
t h i s  s o l u t i o n  i s  i n d e p e r d e n t  of 0 ,  it is def ined  for all 0.  
T h e o r e m  1 of Appendix 1, t h e  s o l u t i o n  of equat ion  (33)  is a p r i o r i  def ined  
for all H . c ! , < ~ < ~ x ,  for all suf f ic ien t lv  s m a l l  p, for ipI<p*, say. L e t  t h e  
s o l u t i o n  c o r r e s p o n d i n g  t o  t h e  i n i t i a l  condi t ions  Bo and po b e  

T h e r e f o r e ,  p -  0 for e v e r y  p is a s o l u t i o n  of equat ion  (33). 
But  t h e n  b y  

P =  f (0: eo, pa. PI, 
w h e r e  f i s  a n  a n a l y t i c a l  funct ion of its a r g u m e n t s .  

equa t ion  ( 1 4 )  t a k e s  t h e  f o r m  %= 0, w e  h a v e  f ( e ;  Bo, po. 0) 

Since for p =  0 

po. T h e r e f o r e ,  

; (0; eo. pn. p) = p0 T- p i ,  (0: eo, p0, p ) .  

Let eo = 0,  and t h e  so lu t ion  f (0; 0. po. p) will  b e  w r i t t e n  i n  t h e  form 

P =Po -k P'Y (0; Po. p). (35)  

H e r e  '€'(e; po, p )  i s  a n  anE.l.ytica1 funct ion in  t h e  r e g i o n  

o .< e G 2 3 ,  IPl<P*. lPl<P*. 

T h e  condi t ion  of c o n t a c t  b e t w e e n  a path of s y s t e m  (E,,) and t h e  r a y  
0 7 c o n s t  a t  t h e  point (2, y) h a s  t h e  form 

. .  
zy- yr = 9 + y' + p (42- py) = 0. 

B e c a u s e  of t h e  p a r t i c u l i r  c h o i c e  of p* and p*, t h i s  condi t ion  is not s a t i s f i e d  
in  t h e  r e l e v a n t  reg ion ,  i . e . ,  t h e  r a y s  8 = c o n s t  are without  c o n t a c t  with t h e  
p a t h s  of t h e  s s s t e m .  
ray tl 0 h a s  t h e  form 

It fol lows f r o m  f35j  tha t  t h e  s u c c e s s i o n  funct ion on  t h e  

p = P o i  p'Y p x ;  Po, p).  (36) 

T h e  closed p a t h s  of (BF; c o r r e s p o n d  to t h o s e  of po#O for- bvhich 

P'Y (2% Po, p )  = 0, 

i . e . ,  for which for p f 0  

Y (2%; Po, p) = 0. (37)  

S i n c e  t h e  s u c c e s s i o n  funct ion i s  a n  a n a l y t i c a l  funct ion of p, Y m a y  b e  
ivr i t ten  i n  t h e  form 

Y (2% p,. p) = Y e r r ;  Po. 0) sp'u; (2n; po, 0) + . . . (38)  
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The continuity of Y shows that i f  the equation Y (2n; po, p) = 0 has  a root 
po(p) which goes to  some p1 for p 4  0 ( IpI /<p*) ,  then 

Y (2s; pi, 0) =o. (39 )  

Suppose that for  some pi, )plI<p*, the las t  condition is satisfied and that, 
moreover ,  

=,pl,+ 0. 
apo 

The theorem of implicit functions then shows that there  exist p*> 0 and 
6 > 0 which satisfy the following condition: if  1p1 <p*, the equation 

I has  a unique solution po = po (p) such that I pJ (p) - p i \  -== 6 and po (0) = pl.  This  
evidently implies that for a sufficiently small  p + O ,  (B,) has  a single limit 
cycle in a smal l  neighborhood of the circle  2 + ya = p:, and this  limit cycle 
contracts  to the particular c i rc le  for p - t . 0 .  W e  can naturally say that this  
limit cycle of (B,) is "created" from the path sa + y* = p: of the original 
l inear  system. 

solutions satisfying condition (40). 
xa  + y2 = p i  of the original conservative system also c rea t e s  a limit cycle. 

I 

I Note that the equation Y (2n; po, 0)= 0, alongside with pi,  may have other 
If pz is one of these solutions, the path 

Let u s  der ive expressions for  Y(2n; PO, 0) and Jy(2:j!'o) in t e r m s  of the 

functions p ( x ,  y, p) and ~ ( x ,  y, p) entering the right-hand s ides  of (B&. 
this  end, we expand the right-hand side of (33) in powers of p. 
thus takes  the form 

To 
The equation 

3 = PR, (P, e) +mz (P, e) + . . . (42) 

Solution (35) of this  equation may be written in the form 

p = p o + p w e ;  pa, o)+pw,(e ;  pot o)+ ... (43) 

Inserting the las t  expression in (42) and equating the right- and the left-hand 
s ides ,  w e  obtain 

(44) 
d'4 -= R~ (pot e). 

F rom ( 2 9 ) ,  (33), (34), and (42) i t  follows that 

R, (po, ~ ) = c o s O p ( p 0 c o s ~ ,  posinO) +sinB~(poccs8, posin8). (45) 

On the other hand, since f (0; 0, po, p) po, w e  have Ur (0; po, p) E 0.  In - 
particular, 

Y (0; pa, 0) = 0. (46 )  

Integrating (44) with the initial condition (46), using (45), and setting 8 = 2x, 
we obtain the following expression for  Y (2n; pa, 0): 

2Z 

Y (2%; po, 0) = s [cos Op (po cos 0, po sin e) +sin 6q (po cos 8, po sin e)] d e .  (47) 
n 
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To obtain d y ~ ~ s ~ p " ~ " ) ,  we differentiate the las t  equality with respec t  to  po, 
JPU 

where p i ,  p i .  4;. q; are the values of the respective functions at  the point 
Ipucos 8,  pa sin e ) .  Simple manipulations then give 

d ~ ( 2 ~ ;  PO, 0) = @; q;) de + [( - p ;  sin e p ;  cos e) s in  e , 
0 +- (q; s in  0 - q; cos e) cos el de. (48 )  

JPO f 
The relations 

d p  (p,, cos 8, PO sin 0) - 

d q ( p ( c o s 8 ,  p o s i n 8 ) -  

- ( - p;  sin 0 f p ;  cos 0) p,,, 

- (--;sin 0 

dB 

d 0  &cos e) po 

show that the second integral  on the right in  (48) is equal to  

Integration by par ts ,  remembering that p ( p o c o s e ,  pos in8)  and q ( p o c o s B ,  pos in8)  
a re  periodic functions of 0 with a period of 2.2, establishes that the las t  
integral  is equal t o  

- 1 (p,,tos e, pa s in  e) cos e +- q (pa cost), p,, sin e) s in  el de, 
Po 

and by (41) it is thus equal to 

Y (2.T; Po. 0). I 
PO 

-- 
Therefore  

?n 

[ [p;  (pU cos 0, pU sin e) -+ J Y  (21; Po, 0) - - 
"u 

0 
i 
PO 

+q;(pocosC),  posine)]de--Y(2n; po, 0). (49) 

By (47)  and (49), the conditions 

(50)  
d'p (2.7: pi. 0) 

a?o + O  Y :2x; p,, 0) = 0 and 

are equivalent to  the cocditions 

?n S ~p (p, cos 0,  p, sin e) cos 0 + q (PI cos 0, pI sin e) sin el de = 0, 

S [p ;  (pi cos 0, p, sin e) + q; (PI cos 0, pi sin 

0 
2% 

d e  + 0. 
0 

The above r e su l t s  thus lead t o  the  following theorem. 
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Ch.XII1. LIMIT CYCLES OF SYbI’EMS DEPENDING ON A PARAMETER 

T h  e o Y e m 75. If fm some pl, 1 p1 I < p*, conditions (50), OY equivalently 
(51),  are satisfied, the transformation from system (Bo) to a sufficiently 
close system (B,) creates one and only one limit cycle of (B,) from the path 
p = p1 of the original linear system ( R ~ )  in a sufficiently small neighborhood 
of this path. 

R e m a r k . If for  p,, Y (217; pl, 0) = 0 and 0, i . e . ,  only the ayy2x:p”o)=  

f i r s t  condition in (50) is satisfied, it is no longer cer ta in  that a limit cycle 
is created f rom the path p=pi .  

Theorem 75 is a local theorem in the sense that it deals  with the creation 
of a limit cycle in the neighborhood of one path of (Bo). 
another theorem, which also re la tes  to sys tems close to  l inear  conservative 
sys tems but is nevertheless a global theorem. 
numbers, a < b. 

T h e  o r e  m 76.  If the equation Y (2n; po, 0)  = 0 has precisely s solutions 
po = p i ,  i = 1, 2 , .  . ., S ,  in the segment la, bl, each of these solutions satisfying 
the conditions a <  p i  K b ,  auc2;jpi’o)#0, then fm a sufficiently small p # 0 ,  

(B,) has precisely s closed paths in the ring a,<p,<b.  
P r o o f . 

the equation Y (2n; PO, p) = 0 has  precisely one root in each of the intervals 
( p i  - 6 ,  pi + 6 ) ,  i = 1, 2, . . . , s. 
may assume that no two of these Z i  intersect  and that they a r e  all contained 
inside ( a ,  b ) :  these requirements a r e  satisfied i f  8 is sufficiently smal l .  

Let r be the set  [ a ,  bl\fiIi (i. e., the complement of the union of the s e t s  2, 

to the segment [ a ,  b ] ) .  
Suppose that the 

theorem is not t rue .  Then there  exis ts  a sequence pi, i = 1,2,3, . . . , 
such that pi # 0, I pi 1 < p*, Iim p i  = 0,  and (E,$) has more  than s closed 
paths in the ring a,<p,<b, i .e.,  the equation ’4 (2n; PO. pi) = 0 has  more  
than s roots  satisfying the condition a , < p , g b .  
one root of this  equation which belongs to the set  I?. 
root p f ) .  

W e  will prove now 

Let a and b be some positive 

By Theorem 75, there  exist p*: 0, 6 > 0 such that i f  0 < I p I -= p*, 

Let these intervals be designated f,. We 

i = i  

The proof is conducted by reductio ad absurdum. 

Then there  exis ts  a t  least  
W e  designate this  

Thus, 
By passing to  an appropriate subsequence, i f  necessary, we can always 

p$i) E r, Y (231; p c ) ,  pi) = 0 .  

ensure convergence of the numerical sequence pa’. Let the sequence con- 
verge and le t  l im pf) = p:. But then p: 

is a root of the equation Y (2n;p0,0) = 0 which does not coincide with any of 
the roots  p i ,  i = 1, 2, . . . , s, in contradiction to  the conditions of the theorem. 
This  contradiction proves 

Evidently, p: E and Y (2n; p f ) ,  O ) = O .  
ha ,  

3 .  
conservative sys tem 

The general  case of a system close to a 
. .  . 

Let (Ao) be a conservative system in some doubly connected region G .  
W e  wi l l  consider a c lose system of the form 
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& h e r e  p (z, y, p), q (z, y , 11) are  a n a l y t i c a l  func t ions  i n  G .  
In 5 13.1, i n  o r d e r  tc def ine  t h e  s u c c e s s i o n  funct ion,  we i n t r o d u c e d  

c u r v i l i n e a r  c o o r d i n a t e s  i n  t h e  neighborhood of t h e  c l o s e d  path Lo i n  which 
Lo w a s  d e s c r i b e d  by  the equat ion  n = 0. 

\C'e will  now show tha t  if (X,j)  i s  c o n s e r v a t i v e  i n  G ,  and Lo i s  s o m e  
c l o s e d  path of (A*) ,  L o  c G ,  we c a n  i n t r o d u c e  c u r v i l i n e a r  c o o r d i n a t e s  
s. n i n  s o m e  neighborho2d of t h e  path L o  so t h a t  t h e  p a t h s  of (A") wi l l  b e  
d e s c r i b e d  b y  t h e  equat i3n  n = c o n s t .  

T h i s  i s  obvious  f r o m  g e o m e t r i c a l  c o n s i d e r a t i o n s .  
c a n  h e  f o r m u l a t e d  as fc l lows .  
t h e  path L o ,  and T ? ~ C  pc.riod of t h e  func t ions  g, and q. 
i n  t h e  neighborhood of Lo c u r v i l i n e a r  c o o r d i n a t e s  s and m us ing  t h e  
+-quat ions 

X f o r m a l  proof  

bre f i r s t  def ine  
L e t  x = Q, ( t ) ,  y = $ ( t )  b e  t h e  e q u a t i o n s  of 

z-=q ( s ) + m . $ ( s ) ,  y=$- ( s ) -m .q ( s )  ( 5 2 )  

(see $13.1, ( 6 1 ) .  In t h e s e  c o o r d i n a t e s ,  (A,) is d e s c r i b e d  by  t h e  d i f f e r e n t i a l  
equat ion  

(531 

L e t  t h e  so lu t ion  of t h i s  equat ion  s a t i s f y i n g  t h e  i n i t i a l  condi t ion  m=mo for 
s =  O h e  

dm -= d s  R'P;  m ,  1.0. 

m = f * ( s ;  mot PI (5-1) 

( s e e  ?+32 .1 , (RW) ,  (10)) .  
Since  for p = 0 all t h e  p a t h s  of (A,) i n  t h e  ne ighborhood of Lo are c l o s e d ,  

f* (s; mo. 0) i s  a p e r i o d i c  func t ion  of s with a per iod  of T f o r  all mo, 1 mo I < m*, 
w h e r e  m* i s  a suf f ic ien t ly  s m a l l  p o s i t i v e  n u m b e r .  

Lye now def ine  t h e  c o o r d i n a t e s  s, n ,  t ak ing  

s=s, m = f * ( s ;  n, 0). (55) 

S i n c e  Lo i s  a c l o s e d  path,  we  have  /*(s; 0, 0) 0 .  By $ 32, 

(see 533.1, (a) ,  ( 1 3 ) ,  ( I - I ) ,  (15)) .  T h u s ,  f o r e v e r y  s, f * ( s ,  0, O)=O.  df* an# ( 8 .  0, 0) 0 .  

T h e  equat ion  f * ( s ,  n, O ) = m  is t h u s  uniquelv  s o l v a b l e  f o r  n i n  t h e  neighborhood 
of t h e  point n 0 when m is suf f ic ien t ly  small in  a b s o l u t e  value,  i . e . ,  
e q u a t i o n s  (55)  c o n s t i t u t e  a o n e - t o - o n e  t r a n s f o r m a t i o n  of c o o r d i n a t e s .  T h e  
r e l a t i o n s h i p  be tween t h e  c u r v i l i n e a r  c o o r d i n a t e s  s, n and t h e  C a r t e s i a n  co- 
o r d i n a t e s  x ,  y ,  i n  v i r t u e  of (52)  and  (55) ,  i s  e x p r e s s e d  by t h e  e q u a l i t i e s  

z = g , ( s ) - k f * ( ~ ,  n, O)+(s)=.(F(s, n) ,  ~ = $ ( s ) - f * ( ~ ,  n ,  O ) i ( s ) = y ( s ,  n)- (56) 

It fol lows f r o m  the defini t ion of f* (s, mo, 0) t h a t  i n  t h e  c o o r d i n a t e s  s, n t h e  c u r v e s  
n-constcoincidewiththeclosedpathsof  (Ao). E q u a t i o n s ( 5 6 )  f o r a f i x e d n t h e r e -  
f o r e  c o n s t i t u t e  p a r a m e t r i c  e q u a t i o n s  of t h e s e  pa ths .  In p a r t i c u l a r ,  n = 0 cor-  
r e s p o n d s  to t h e  pa th  LO of t h e  original s y s t e m  (&). 

p a t h s  o f  (Ao), h o w e v e r ,  t h e  p a r a m e t e r  s i n  g e n e r a l  d o e s  not c o i n c i d e  with 
T h e  p a r a m e t e r  s c o i n c i d e s  with t h e  t i m e  t a long  L o .  For o t h e r  c l o s e d  
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time, and the periods of motion along these paths in  general  a r e  different 
and a r e  not equal t o  z. It is readily verified, however, that in the particular 
ca se  of a l inear  system (Ao), s always coincides with t and the period of 
motion is constant for all the  closed paths of (Ao). 
of (56) have the same  period T in the variable s for  all n. 

by (56) possess  the propert ies  1 - 4  listed at the beginning of $32 (see  932.1, 
(2) - (5) ) .  
s ame  notation. 

The right-hand s ides  

It can be  directly verified that the functions c(s, n) and $(s, n) defined 

W e  w i l l  therefore  use the resu l t s  of this  section, retaining the 

In the coordinates s, n, (A,) is expressed by the differential equation 

(57) 

Let 

where 

where R ( s ,  n, p) is an analytical function in the region 

- c o < s < + m ,  Inl<n*, IpI<p* 

( n* and p* a r e  sufficiently small  positive numbers; 

a r e  solutions of the equation (57). 
the t e r m s  in the expansion of R (s, n, p) in powers of n, p in the neighborhood 
of the point n =  0, p = 0 contain the factorp,  i.e., this expansion has  the 
form 

R (S ,  n, 

see 9 32.1, (R,)). 
The coordinates s, n a r e  chosen so that for  p = 0, the functions n = const 

Therefore  R (s, n, 0) = 0. But then all 

= -401 (s )  P + -411 (4 pn + Aoz (SI pa + . . . (58)  

A s  in $32.1, we write 

= f (s; 0, no, p) (59)  

for the solution of equation (57) corresponding to  the initial condition n=no 
for  s = 0 .  
described by the equation s = 0 we designate f (no, p). Clearly, 

The succession function of (A,,) on the a r c  without contact I 

f (no, p) = I(7; 0, no, PI. 

d (no, p) = f (no, P) - no. 

(60) 

(61) 

From the particular choice of our  coordinates, f (s; 0, no, 0) =no. 
d (no, 0) = f  (no, 0)-no = O ,  and the series expansion of d (no, p) near  the point 
(0, 0)  has  the form 

Therefore  

d (not p) = UOIP + ~tinop + UOZP' + . . ., (62 )  

d ( n o ,  ~ ) = p * d i  (no, P), (63) 

(64)  

so that 

di (no7 p) = UOI + Ull  +nouozP + * 
A s  we have noted before, the function d (no, p) and therefore dl (no, p) a r e  

no = 0 corresponds to  the closed path Lo of (Ao). 
a pr ior i  defined for  all sufficiently small  no, p. 

i f  I no I and p a r e  sufficiently smal l  and p #O,  we have d (no, p) f 0.  This  implies 
Let d,(O, 0) = 0 .  Then, 
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that the sys tem (A,) sufficiently close t o  (Ao) h a s  no closed paths i n  the neighbor- 
hood of the path L o  of (&). Thus  the equality 

d, (0 ,  0) = o  
i s  the n e  c e s s a  r y cor,dition for  the sys tem (A,) sufficiently close to (Ao) 
t o  have closed paths in  a sufficiently small  neighborhood of LO. 

The question of the number of closed paths is equivalent to  the question 
of the number of the  roots  of the equation dl (no, p )  = 0 which are sufficiently 
c lose  to ze ro  when p # C  i s  sufficiently small. By the theorem of implicit 
functions, a s u f f i c i e 11 t condition for  the existence of only o n  e such 
root i s  

dl (0, 0 )  = 0,  din, (0. 0 )  # 0. (65) 

T h e o r e m 77. Let Lo be a closed path of systeni (A,,) corresponding to 
no = v, and let the following conditions be satisfied: 

d ; ( O ,  0 )  = V ,  d j n o ( O ,  0) 2.0. (66) 

Then there exist e > 0 aiai 6 > 0 such that 

which contracts to L o  f o r  p + 0; 

p . 4 ,  (0, 0 )  < 0 and unstable when p.dj,,  (0, 0 )  > 0.  

(a) f o r  any p ,  I p I < 6 ,  (A,) has one and only one closed path L ,  in r e  ( L o )  

(b) this path is a strticturally stable limit cycle, which is stable when 

P r o o f .  By (63), 

d;(O, O)=dl(O,  0). dj,,(O, O)=dino(O, 0).  (67)  

The last relations show that conditions (66) are equivalent to conditions (65) 
and proposition (a) follows directly f rom the theorem of implicit functions. 

Let the closed path L ,  correspond t o  
no = h ( p )  ( p  # 0, I p < 8 ) .  , This  value of the parameter  sat isf ies  the equation 
dl (no. p )  = 0, i .e . ,  dl (h (p), p )  = 0.  h (p )  is an  analytical function, and s ince  
d t ( 0 ,  0)  = 0, we have h (0)  = 0, i.e., the expansion of h ( p )  i n  powers of p h a s  
the form 

Let u s  now prove proposition (b). 

h (p )  = aip f a,pa f . . . (68) 

To prove s t ruc tura l  stability of the cycle L p  and to establish i t s  stability 
From conditions charac te r i s t ics ,  we have to  compute dk,(no. p) f o r  n o = h ( p ) .  

(60), using (64), (65), and (67), we obtain 

ug* == 0, ui, = di, (0, 0) = djno(O. 0)  # 0. (69) 

Differentiation of (62) w t h  respec t  to  no gives 

d,, (no, p)  = f ~ l + ~  T 3~2inop f . . f ,  

whence 
c',, (h  (p), p)  = p'u,, f ut,pa f 2uz,h (p )  p T . . . 

db,O(h(P). P)==CC.dC",(O, O ) + o ( p ) .  

or ,  by (68) and (69), 
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The las t  equality shows that for sufficiently smal l  p # 0, the derivative 
d;, (h (p ) ,  p) does not vanish and i t s  sign is equal to  the sign of p.d;, (0,O).  
This  signifies, in virtue of the resu l t s  of Chapter V (see § 12.3), that 
proposition (b) is satisfied. The proof of the theorem is complete. 

4 .  Systems close to a Hamiltonian system 

If the original system is Hamiltonian, the conditions of the creation of 
a limit cycle f rom a closed path of the system takes on a particularly 
simple form.  
relations of § 32. 

We will derive these conditions using Theorem 7 7  and the 

Let the system close to a Hamiltonian system be given in the form 

The equations of the closed paths of the original system (Bo) have the 
form H (z, y) = C. 
with the paths H (z, y) = C ,  where Ci < C <C2. Let Lo be one of these paths, 
z = 'p ( t ) ,  y = J, ( t )  the motion corresponding to  this path, T the period of the 
functions cp and $. In the neighborhood of L o ,  we introduce curvilinear 
coordinates s, n described at the beginning of 933.3 (see (56)), in which 
the paths of the dynamic system (Bo) a r e  described by the equations 
n = const. Let the path Lo be described by the equation n = io. The ex- 
pansion of d (no, p)  around the point n = Go, p = 0 then has  the form 

(B,) is considered in  a doubly connected region G filled 

d (no, P )  = u o i ~  +  it (no-Lo) p + uO2p + . . . 
(see (59)- (62)). In this  case, the numbers d; (O,O), d;"@ (0,O) of Theorem 77 
evidently should be replaced with d; (no, 0) dLno (no, 0). 

Since d; (no, 0) = uoi ,  equation ( 3 6 ) ,  932.1, can be used to  compute d; (no, (I 
replacing A (0, 0) with A (0, no). 

- 
Since for  a Hamiltonian system 

or, changing over to  a line integral, 

where 
(72 )  

(73) 

Let Go be the region enclosed inside the curve Lo. If (B,,) is defined 
everywhere in  Go, using Green's function we can change over  f rom the 
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l i n e  i n t e g r a l  t o  a double  i n t e g r a l .  
equiva len t  to t h e  condi t ion 

T h e  condi t ion  d;(Ko. 0) = 0 i s  t h e r e f o r e  

s ( lP is (Z ,  Y)-! -QiY(2 ,  Y) ldZdY=o.  (74) 
G; 

If (B,) i s  not def ined  e v e r y w h e r e  i n  Go, t h e  condi t ion  d;  (no, 0) = 0 is 
equiva len t  to t h e  condi : ion 

J (no) = q, dx-p ,  dy = 0. 
( L o )  

( 7 5 )  

Let u s  now c o n s i d e r  t h e  n u m b e r  d;F-O(&, 0). S i n c e  t h e  n u m b e r  Eo i s  i n  
n o  way d is t inguished  from t h e  o t h e r  n u m b e r s  no, d;,o(no, 0) c a n  b e  obta ined  
b y  d i f f e r e n t i a t i n g  ( 7 2 )  with r e s p e c t  t o  Go. T h u s ,  

- 
Let u s  c o m p u t e  ‘0 . 
c l o s e d  p a t h  Lo is t r a c e d  i n  t h e  pos i t ive  d i r e c t i o n .  

To fix i d e a s ,  w e  a s s u m e  t h a t  a s  t i n c r e a s e s ,  t h e  
dG,> 

We h a v e  

L e t  LOh b e  the  c l o s e d  p a t h  of (Po) which c o r r e s p o n d s  to t h e  v a l u e  G o t h  of 
T h e  s i g n  of h t h e  p a r a m e t e r ,  Gh t h e  r e g i o n  bounded b y  t h e  p a t h s  Lo and Lob. 

is c h o s e n  so t h a t  t h e  path LO i s  e n c l o s e d  i n s i d e  LOt,(Figure 173). 
J ( ~ o f h ) - J ( ~ )  is t h e  l i n e  i n t e g r a l  (73) t a k e n  a long  t h e  b o u n d a r y  of Gh, and 
b y  G r e e n ’ s  f o r m u l a  

T h e n  

J ( n o f h ) - J ( G ~ ) =  - 11 Ipi,(z, y)-!-qiU(s, y ) l d z d y .  (78)  
‘ h  

Changing  over to t h e  c u r v i l i n e a r  c o o r d i n a t e s  s, n i n  t h e  l a s t  i n t e g r a l  
a c c o r d i n g  t o  t h e  r e l a t i o n s  Z=?(S,  n), y=$(s,  n), w e  o b t a i n  

J(;o-t-h)-J(%,)= -1 j [ p i x ( ; ,  $ ) + q i v ( G ,  $) ] lA(s ,  n ) l d s d n ,  (79) 
‘h 

w h e r e  A ( s ,  n) is the J a c o b i a n  -. 
a c o n s t a n t  s i g n  n e a r  t h e  path L o ;  l e t  A ( s ,  n)> 0.  

This J a c o b i a n ,  by a s s u m p t i o n ,  r e t a i n s  D ( s .  n )  
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Because of the particular choice of the curvilinear coordinates s, n, the 
expansion of ( 5 7 )  in powers of p and n-zo  contains no t e r m s  with p (see (58)) 
In particular, A i o ( s ) = O .  In our  case ,  however, by $32.1, (32), 

d 
Ai0 (4 = ( c p 9  N + QI (cp, 9) -x In (A (S, GO))? 

- d and P ; + Q ; = O .  

independent of s. and for  every  n we have 

Therefore  z l n ( A ( s ,  n o ) ) = O ,  i .e. ,  A(s,  Lo) fo r  every iois 

A ( s ,  n) = A (0, n). (80) 

By assumption, the path Lo is t raced in the positive direction a s  t 
increases ,  and 

I Therefore ,  the vector v(cph(s, KO), tpk(s, Go)) points inside the curve Lo 
(Figure 173) .  
to increasing no on the curve z=G(s,  no), g=q(s, no), where s is constant. 
Therefore ,  since Lo is enclosed inside LO*, we have h < 0.  Changing over  
f rom a double integral in (79)  t o  two successive integrations and seeing 
that h < 0 and A ( s ,  n ) = A ( O ,  n)> 0, we obtain 

On the other hand, the direction of this  vector corresponds 

where G = G ( s ,  n). $=$(s, n). Hence, 

The above considerations and Theorem 77 evidently lead to the following 

T h e  o y e  m 78. Let Lo be a closed Dath of the Hamiltonian system 
theorem, f i rs t  formulated by Pontryagin (see / 3 1 / ) .  

x=cP(t), Y = t p U )  

the motion corresponding to this path, 'c the peyiod of the functions 'p and 9 ,  
Go the region enclosed inside the path Lor  and 
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a sj*stevi close to a Hauiiltonian systetii (p is a small paratnetel-1. Then, if 

there exist e == 0 and 6 :> 0 such that 
(a) fbr ecery p, I p 1 < 6, (R,) has one and only one closed path L ,  in u, (L,,) ,  

and this L ,  contracts to L o  for p+O; 
(b) this path is a structurally stable limit cycle, which is stable fbr 

p l  < 0 and iinstable far 111 > 0. 
R e ni a r k 1. 

and not ever -where  in Go,  condition ( 7 4 )  should be replaced with the equality 
If (B,) i s  defined only in the neighborhood of the path L o ,  

f 141 (T (4, IC- ( s ) ) 9 '  (S)-P1 (T (4, $ (4) $'(s)l ds = 0 

(see (75 ) ) .  

svs tems which are close to the linear conservative system - = --y, 9 = t, 

is a par t icular  ca se  of Theorem 78. Indeed, the equation of a path of this  
l inear  system has  the form x = pi cos t ,  y = pt sin t .  Inserting these  functions 
for q and $ in (71) and ( 7 5 ) ,  w e  obtain relations (51) of s 3 3 . 2 .  

In conclusion of this  section, we wish to  comment on the creat ion of l imit  
cycles  f rom a focus o r  a center .  We have repeatedly noted the deep anaIogy 
between the investigation of a dynamic system in the neighborhood of a 
closed path and the investigation in the neighborhood of a focus o r  a center .  
This  analogy also extends to the creation of limit cycles .  

Suppose that the original dynamic sys tem (Ao) has  at the origin an equi- 
librium s ta te  with pure imaginary charac te r i s t ic  numbers ( i .  e., a multiple 
focus o r  center ) .  

R e m a r k  2 .  It is readily seen  that Theorem 75 (see S 33 .2 ) ,  relating to  
ds 
d t  at 

Consider the modified system 

dr 
dt P + ppt T pap,  f . . . , d t  = Q f p41 i p'42 4 * ' (A,) -_  

Changing over  to polar coordinates p ,  0 and replacing the sys tem with a 
single equation, w e  obtain a differential equation analogous to  (57)  in $33 .3 :  

where the coefficients R i ,  a r e  periodic functions of 0 with a period of 2 x ,  
and the series in the right-hand s ide of the las t  equation converges for  
all sufficiently smal l  p and p (see $24.1, ( 5 4 ) ) .  

A s  in s 33.3,  we s e e k  i i  solution f ( e ;  0, po, p) of (R,) which sa t i s f ies  the 
condition j ( 0 ;  0, pa, p) ZE po in the form of a series 

P =  ~loPT~Otll+~?0Pf+~IIP~+. f .. 
where the coefficients uij  a r e  functions of 0 satisfying recurs ive  formulas 
analogous to  equations ( 14) (s 3 2 . 1 ) .  
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Considering the succession function p = f (2n; 0, po, p) and the function 
d (po, p) = f (2x; 0, po, p) - p o ,  we can use Newton's diagram to derive the 
sufficient conditions of the creation of limit cycles f rom a multiple focus 
or  center ,  as i n  S32.4. 

Since the succession function constructed in the neigkborhood of a 
focus o r  a center  has  a number of specific propert ies  (see 324.1, 
Lemmas 1, 2, 51, the specificity is also extended to the function d ( p 0 ,  k). 
We will not consider this  aspect of the matter ,  however. 

a system close to the l inear  dynamic system (31) is defined for  all suf- 
ficiently smal l  po and p. 
to  investigate the creation of limit cycles f rom equilibrium s ta tes  of the 
type of a center ,  a s  well a s  from closed paths of the original conservative 
system. 

Note that the function UC (0, po, p) constructed in 9 3 3 . 2  in connection with 

Therefore, the same  function can be applied 
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C h a p t e r  XI\' 

THE APPLICATION OF THE THEORY OF 
BIFLJR CA TIOiVS TO THE I iWESTIGA TION OF 
PAR TICC'LAR DY,VA,IIIC SYSTE.IIS 

IN TROUUCTIOX 

In this chapter,  we consider some examples of dynamic sys tems con- 
Almost all sys tems of this kind arose in connection 

The main problem which 
taining parameters .  
with particular physical or engineering topics. 
is encountered in applications is to es tabl ish the parti t ion of the space 
of parameters  into regions corresponding to identical qualitative s t ruc tures  
of the dynamic system. b 

L i  hen the parameters  a s sume  values f rom each of these regions, the 
systeni re ta ins  the same  qualitative s t ruc ture  and, in general ,  remains  
structurally stable (or, in any case,  "relatively s t ructural ly  stable," 
i .e . ,  s t ructural ly  stable relative to the space of the dynamic sys tems 
spanned by the range of variation of the parameters ) .  The points in the 
parameter  space which lie on  the boundary of two regions correspond to 
structurally unstable systems,  which - with the exception of isolated 
points - are sys tems of the first degree of s t ructural  instability. 

The a im of the present  chapter is to familiarize the reader  with cer ta in  
techniques of the theory of bifurcations which enable u s  to obtain information 
regarding the qualitative s t ruc ture  of dynamic sys tems and to analyze the 
changes in  qualitative s t ruc ture  of sys tems following a change in  parameters .  

In the application of these techniques, i t  is very  important to be able  to 
establish the qualitative s t ruc ture  of the dynamic system a t  leas t  for some 
particular values of the parameters .  
chapter are therefore salved by the application of cer ta in  par t icular  
techniques developed in QT (the isocline configuration, Dulac's  cr i ter ion,  
the topographic system, e t c . ) .  

In broad outline, the qualitative techniques based on the theory of 
bifurcations can be described as follows: 

1 )  If for some values of the parameters  the sys tem has  an  equilibrium 
state  with 1 > 0 (i.e., a uode or a focus), we f i r s t  have to establish the 
existence \or the absence)  of numerical values of the parameters  for which 
the equilibrium state  changes i t s  stability, i .e.,  to find the values of the 
parameters  for %*hich the system has  a n  equilibrium state  with pure 
imaginary character is t ic  roots. The procedure described in S 2 5 . 3  enables 
us to detect in this case \if  the equilibrium state is not a center )  the 
creation of a l imit  cycle and thus to identify the range of parameter  values 
for which the dynamic sys tem a pr ior i  has  a l imit  cycle.  

The examples discussed in this 
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2 )  If the equilibrium states  cannot be determined by elementary 
techniques, we search  for  parameter  values a t  which the equilibrium 
states  have maximum multiplicity. 

parameter  values close to the values which correspond to maximum 
multiplicity enables u s  to establish in cer ta in  cases  all the alternatives 
regarding the number and the type of the equilibrium states .  

in two different points of the parameter  space, the transition from one 
of these points to another wi l l  enable u s  to establish,  say, the existence 
of a saddle-to-saddle separatr ix  and hence the possibility of creation of 
l imit  cycles.  

The largest  difficulties in  qualitative investigation of dynamic systems 
a r e  encountered when we attempt to prove the absence or the presence of 
l imit  cycles created from a "condensation of paths." A complete analysis 
i s  therefore often impossible. 

Investigation of the possible character  of the equilibrium states  for  

3 )  If the qualitative s t ructure  has  been established by some technique 

S 3 4 .  EXAMPLES 

E x a m p l e  12 (the creation of a l imit  cycle f rom a multiple focus). 
Consider the system 

-$ = 6xy + p ( 4 - b - 2 ~  -2' + 2zy + 3 ~ 3 ,  

$ = 4-h-2y-k ' f  2xy + 3y'- 6p.7~4, 
(1) 

where p>O is sufficiently small .  

system 
The vector field of this system is obtained from the vector field of the 

(2) 
d x  - dt = 6xy, -$-= 4-&-2q- 225+ b y +  3y' 

by rotation through an angle tan-' p (see S3.2) .  
ordinate axis  z = 0 is a path of system (2 ) .  System ( 2 )  has  two equilibrium 
states ,  the points A (1, 0) and B (- 2, 0). 
s ta tes  (A # 0). The character is t ic  equation of the equilibrium state  A (1, 0) 
is Aa + 36 = 0, i.e., A (1, 0) is an equilibrium state  with pure imaginary 
character is t ic  numbers.  
multiple focus o r  a center .  
state B (- 2, 0) is A* + 61 + 72 = 0. Its roots  a r e  
B (- 2, 0) is a simple stable focus of system (2) .  

B (-2, 0)  as system (2) (see footnoteonp. 210). Clearly, if p is sufficiently 
small ,  B (-2, 0) is a simple stable focus of system (1) also.  

To investigate the equilibrium state  A (1, 0), we wi l l  use  the resu l t s  of 
Chapter IX. 
notation, we obtain from (1) 

It is obvious that the 

They a r e  both simple equilibrium 

Since ( 2 )  is an analytical system, A is either a 
The character is t ic  equation of the equilibrium 

= - 3 f 3 i p ,  i.e., 

System (1) has  i t s  equilibrium states  at the same points A (i, 0) and 

Moving the origin to the point A and reverting to the previous 

dt 
dt -.6~+66y--~*+(6+21r)~y+311~, 

= --6~-6py-- 2 9  + (2-6p) q/+ 3y', 

-= 
( 3 )  
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and for  p = O  this system reduces to 

(4 i d X  -= dl  6y+&y,  $;= -6t-2.2?+2xy+3y2. 

For system ( 3 ) ,  u (p) = P; f Q; = - 12p, u'(0) = - 12 < 0. The value of a3 

for ( 4 )  is computed using equation (76), S24.4; i t  is found to be &, i.e., 

a3>0 .: The table in  S 2 5 . 3  thus shows that the point .-l (1, 0) is an unstable 
multiple focus of systeni ( 2 )  and - for  a smal l  positive p - a stable focus 
of system (1) containing an  unstable limit cycle in i t s  neighborhood. 

Let u s  now investigate the behavior of the paths of system (1) a t  infinity, 
following the scheme described in QT, 5 1 3 . 2 .  Applying the transformation 

~ ~ w e  establ ish that the "ends" of the z axis  are not equilibrium 1 r-:--.y ,v 
1 s ta tes  of the sys tem.  

and multiplying the righr-hand s ides  of the resulting system by z ,  w e  obtain 

Applying the transformation z = f , y = to system (I) 

$ = 3p- 2pz +- (3  + 2p) L' f 4pza 4 (2 -2p) LVZ + 
4 ( 4 p - 2 )  P - - ~ Z = ~ +  2 c a ~  .+ 2c3 z2 P (L9, J), 

- 3- 3. (6p-2) uz + 2z* +- 2c*z + 2uza- 4;3 = 0 (c, 3). 

(5) 

-= :; 
Since 0 (c, z )  contains .a factor  z ,  the ax is  z = 0 consis ts  of paths of 

system (5).  
consider the equation 

To find the equilibrium s ta tes  lying on this axis ,  w e  have to 

P ( L * ,  0) = 3 ~ i ( 3 + 2 p ) ~ , i ( 4 p - - ) o * + 2 ~ ~ = , 0 .  (6) 

The derivative 3; (L,, 0) = 3 + 2p f (8p - 4 )  u + 6ct has  no real roots  for  
smal l  j . ~ .  

root q, and i t  is readily seen  that r,, < 0 and lim ro = 0. 

has  a single equilibrium s ta te  on the ax is  : = 0, B (c0, 0). 
determinant 

Therefore if p is smal l  and p > 0, equation (6)  has  a single real 
System (5) thus 

Consider the 
P+Q 

.=I3 $. 2~ t ( 8 p - 4 )  vo i 6 ~ 3  [ - 3 +- ( 6 ~ - 2 )  PO + 2141. 
LVhen p is sufficiently small ,  ro is sma l l  and A (q,, 0) < 0, i.e., the 

T w o  of i t s  equilibrium state  D (co, 0) is a saddle point of sys tem (5). 
separa t r ices  coincide with the semiaxes z = 0 adjoining the point D (ro,  0). 
The direction of motion along these separa t r ices  is defined by the equation 
dr;dt = P (c ,  0). W e  see from this  equation that the two separa t r ices  lying on 
the ax is  z = 0 are a-separa t r ices .  
saddle point D lie on the two s ides  of the*axis z = 0, and the path configura- 
tion of sys tem (5) near  the saddle point D can  be schematically represented 
by the diagram shown in Figure 174. 

The ru l e s  for  establishing the behavior a t  infinity (QT, § 1 3 . 2 )  now show 
that the paths of system (1) near  the equator are arranged as shown in 
Figure 175. 

The indices Q;, and in particular as, are  introduced in Chapter IX (E24.4, (61)). In this chapter i t  is shown 
that i f  0 is 3 multiple focus and a.z 

Therefore, the o-separa t r ices  of the 

0 ,  the  sign of a3 determines the stability of the focus. 
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4 - 1 i 
FIGURE 175 FIGURE 174 

dv BY (I), for  x = o ,  A =  dt p(4-2y+3ya))0, and -;ii-=4-2y+-3yp>0. For y=O, 
d x  
~ = 2 p ( x + 2 ) ( 1 - x ) ,  and$-=2(x+2) (1-4. Therefore the paths of sys tem(1)  

c r o s s  the coordinate axes  in the directions shown in Figure 175. 

foci A (1, 0) and B (- 2, 0) and an unstable l imit  cycle in the neighborhood of 
the focus A .  Using this fact, and taking into account the path configuration 
at  infinity and the direction of motion along the paths a t  the points of in te r -  

We have thus established that system (1) for  a small  p > 0 has  two stable 

section with the coordinate axes,  we conclude 
that in the half -plane x < 0 system (1 ) has a l imit  
cycle C,  u n s t a b l e  f r o m  t h e  o u t s i d e  to 
which the separatr ix  of the saddle point D goes 
for  t -+-co, and in the half-plane x > 0 the 
system has a l imit  cycle Cz s t a b l e  f r o m  t h e  
o u t s i d e  to which the separatr ix  of the saddle 
point D' goes for t-++co. Evidently, any closed 
path of system (1 ) a  other than Cl and C2, is 
entirely contained either in the half -plane x < 0, 
and then i t  is enclosed inside C1 and encloses 
the point B ,  o r  in the half -plane x > 0, and then 
i t  is enclosed inside C z  and encloses the focus A .  
It is readily seen that system (1) may only have 
a finite number of closed paths. 

FIGUKE 176 
Indeed, 

/ /  

suppose that this is not so. Then there  exis ts  
an infinite s e t  of closed paths {r} arranged concentrically inside a cycle, 
C ,  say. We can select  an infinite sequence of paths rl, rZ, r3, ... with the 
following property:  every successive path encloses i t s  predecessor  and 
every path of the se t  {J?) is enclosed a t  least  inside one of the paths rr (see 
QT, Sl6 .9 ,  Lemma 16) .  
rL (see QT, Appendix, S l . 1 0 ) .  It is readily seen that e i ther  K is a closed 
path r*, such that closed paths l ie  in any sufficiently small  neighborhood 
inside r* and no such paths a r e  observed outside I'*, or K has  the s t ructure  
of a 0-limit continuum (see QT, 523.2,  Theorem 70),  i.e., i t  consists of 

L e t K b e  the t o p o l o g i c a l  l imit  of the sequence 
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equilibrium states alternating with separa t r ices  which go to these 
equilibrium states .  
have a closed path r* of this kind. 
s t ruc ture  of the null-limit continuum ei ther ,  because all the equilibrium 
states of sys tem (1) are foci. 

closed paths, and there  is a t  l eas t  one l imit  cycle in the half -plane 1<0 and 
at least  two limit  cycles in the half-plane t > O .  The exact number of the 
l imit  cycles  of system ( I )  cannot be established. It is clear, however, that 
the number of l imit  cycles  (counting each according to its multiplicity) in 
the half -plane I < 0 is odd, and the number of l imit  cycles  in  the half -plane 
I > o i s  even. 
is used as  a model of the Euclidean plane, is shown in Figure 176 (up to a n  
even number of l imit  cy- les) .  

E x a m p 1 e 13 (the creat ion of a l imit  cycle f rom a multiple focus and a 
separa t r ix  loop, see / 2 0 / ) .  

Consider the system 

However, since (1) is a n  analytical system, i t  cannot 
The topological l imit  K cannot have the 

i V e  haire thus established that sys tem (1) only has  a finite number of 

The configuration of the paths of sys tem (1) in a circle, which 

z=y. y'= --r+py+zy+z2+-y*. (7) 

I t  has  two equilibrium states ,  0 (0.0) and d ( f ,  0). -4 is a saddle point for 
any p. 

i.,.? = 2 & {e 4 - 1; i t  is therefore 

The character is t ic  numbers  of the equilibrium state  0 (0, 0) are 

1 )  a stable node for p.-< - 2; 
2 J a stable focus for - 2 < p < 0;  
3 )  an  unstable focus for 0 e p < 2;  
4) a n  unstable node for -,- 2 d p .  
For p = 0, 0 is an  eqiiilibriuni s ta te  with pure imaginary character is t ic  

numbers .  To investigate i t s  character ,  we will use,  as  in the previous 
example, the resu l t s  of 1 2 5 . 3 .  

computed from (76), 1 2 4 . 4 ,  and is found to be equal to $ > O .  

for smal l  p > 0, and a l so  for p = 0, the point 0 is a n  unstable focus of 
system (71, without any l imit  cycles  in i t s  sufficiently small  neighborhood, 
and for smal l  p -== 0 the point 0 is a stable focus with an  unstable cycle in  its 
neighborhood (see table in 1 2 5 . 3 ) .  

transformation I = 4 ,  y = +. 
sulting sys tem by I, we obtain 

IVe have (I (p) = p> (I' (11) = 1 > 0. a3 is 

Therefore ,  

To investigate the situation a t  infinity, w e  f i r s t  apply the Poincarg 

hIultiplying the right -hand s ides  of the re - 

( 8 )  

For 3 = 0, sys tem (8) has  a single equilibrium s ta te  (0. 0), which is a 

di. d z  
dt d t  - = - u f z - pL'3 - y= - ut, - us, - = - z - vz - p,* f L.za - usz. 

stable node. 

of paths of sys tem (8). 

sys tem 

The second equation i n  ( 8 )  shows that the ax is  z = 0 is made up 
1 The PoincarC transformation I = T, y= gives the 

du d: 
dt d t  
-= 1 + u - z s p u ; - 3 u 2 + u = .  -= -u,?. 
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For z = 0, the las t  system has  no equilibrium s ta tes .  Hence i t  follows 
that, in accordance with the ru les  for  investigation a t  infinity (QT, §13.2), 
the paths of system (7)  a r e  arranged at  infinity as shown in Figure 177.  

FIGURE 111 

3 
FIGURE 178 

To proceed with further investigation of system (7), we wi l l  use  the 
auxiliary system 

Its general  integral, a s  is readily seen, is 

. .  . .  

in Figure 178. 
a t  the saddle point A ,  which is described by the equation 

One of the paths i s  the loop i originating and terminating 

All the paths of system (9) enclosed inside the loop Lo a r e  closed. 

I t s  equation is 
Consider the c o n t a c t  c u r v e  of systems ( 7 )  and ( 9 )  (see QT, 512.5). 

or 

u2 ( p i x  +l/) = 0. (12) 

It consists of the points of contact of the paths of systems (7)  and (9) and 
the equilibrium states  of these systems.  The contact curve decomposes 
into straight lines x + y + p = 0 and y = 0, but the line y = 0 constitutes a 
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false contact, i.e., a path of system ( 7 )  contacting a path of system ( 9 )  a t  2. 

point with y = 0 will inevitably cross this path from one side to another {see 
QT, 512.5). 

closed path is 1, any cl3sed path of system (7)  encloses  the equilibrium 
state 0 without enclosing A .  
closed paths of system ,5 ) .  

by the loop i, with the contact line z C y f p = 0. 
(1 1 ), we obtain the equation 

Since the sum of the indices of the equilibrium states enclosed inside a 

This path therefore necessar i ly  c r o s s e s  the 

Consider the interseztion of the curve ( I l ) ,  par t  of which is represented 
Inserting y = - z - p in 

Since f‘ (z) = xf - 22 -. p has  the roots  xi.? = 1 iz 1 ‘m, f’ (z) > 0 for 
kt < - 1 and equation (13) only has  one real root.  
has  a tr iple root J = 1, !..e., the contact line x -r y 4- p = 0 c ros ses  the 
curve k 1 1 )  at the point d (1, 0).  
in common with the contact line (the point -4). 
position of the line x + 
~ - y - p = U f o r p < - l .  Hence theconclusionthat  f o r  p < - I  s y s t e m ( 7 )  
h a s  n o  c l o s e d  p a t h s .  Indeed, let  L be a closed path of system ( I ) .  
-4s we have seen before, L crosses the closed paths of system ( 5 )  and 
encloses  some of these paths. 

For p : - 1 equation ( 1 3 )  

Thus, for 11 = - 1  the loop i has  one point 
But then, as w e  see  from the 

- p = 0, the loop .? does not cross the contact line 

This means that there  exis ts  a closed path 
of system ( 9 )  which has  a ( t rue)  point of contact 
K i t h  the path L ,  namely the “least” path 2, 
having a point of contact with L .  
point of contact. Jf lies inside the loop i on the 
contact curve (12), i.e., on the straight line 
y = 0. This is a contradiction, however, since 
all the points of this line correspond to false 
contacts.  

Having thus established that system (7 )  has  
no closed paths for p S -  1, w e  can  find i t s  
topological s t ructure .  To fix ideas let p = - 1 
(for p < - 1, the s t ruc ture  is the same,  but f u r  
p S -  2 the point 0 is a stable node, and not a 
focus).  
saddle point .4 (1, U) should extend froni the 
unstable focus to infinity, s ince there  are no 

Let 31 be this 

FIGC‘RE 17”. p = --i < p*. The o - separa t r ices  L 1  and L: of the 

other a -l imit  points in the plane. This, however, automatically fixes the 
behavior of the a -separz t r ices  L 3  and L,: one of them, L 3  say, winds onto the 
focus 0 for  t-+ + m, and the other,  L, ,  goes to the stable node a t  infinity. 
Allowing for the direction of the paths a t  the intersection points with the 
coordinate axes,  we obtain the path configuration shown schematically in 
Figure 179. 

In 
this case, 0 (0. 0) is an  unstable node. The absc issa  of the intersection 
point of the curve (11) with the contact l ine z y f 3 = 0 is determined, 
a f te r  eliminating y, froni the equation f (5) = 33 - 3z2 - 9z - 13 = 0. 
standard investigation of the function y = f (3) readily shows that i t  has  a 
single real root zo, and J:O > 3 (the curve of f (z) is shown in Figure 180). 

Let u s  now consider t.he path configuration of sys tem ( 7 )  for  p = 3. 

A 
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Hence it follows that the contact line z + y +- 3 = 0 does not c r o s s  the loop 
and, reasoning as before, we conclude that for  p = 3 system ( 7 )  has  no 
closed paths e i ther .  The behavior of the separa t r ices  of the saddle point 
A ( 1 ,  0) of system ( 7 )  is thus fixed automatically (as  in the case  p <  - 1). 
Indeed, the a -separa t r ices  L3 and LI of the saddle point A may only extend 
to the stable node at  infinity, and the closed curve formed by these 
separa t r ices  should enclose the point 0. Consequently, one of the w -  
separa t r ices  of the saddle point A ,  Ll say, should go to the node 0 for 
t - t  - 00 and the other separatr ix ,  L z ,  should go to the unstable node at  
infinity. 

FIGURE 180 FIGURE 181 

Allowing for  the direction of the paths a t  the points of the coordinate 
axes  and at the node 0 and for  the direction of the separa t r ices  a t  the saddle 
point A,  we conclude that the path configuration of system ( 7 )  for  p = 3 can 
be schematically illustrated by the diagram in Figure 181. 
seen that for p > 3 system (7)  s t i l l  has  no closed paths and i t s  topological 
s t ruc ture  is therefore the same as for  p = 3. 

Let u s  investigate the behavior of the separa t r ices  Ll and L, as the 
parameter  p var ies  f rom -1 to 3. 
a value pi of the parameter  to some value p z  > pi ,  all the field vectors  a r e  
turned in the same direction, specifically counterclockwise. 'This follows 
from the fact that by equations (7)  

It i s  readily 

We should f i r s t  note that on passing from 

Let the "first" intersection point of the separatr ix  Li (L3)  of system ( 7 )  
with the negative half-axis x be Mi (p); the abscissa  of this intersection 
point is z1 (p) ( M ,  (p) and x3 (p), respectively).  
no contact points with the paths of the system for  any p. 
apply the resu l t s  of $11.1. If we take into consideration the directions in 
which the separa t r ices  Ll and L,  c r o s s  the axis  x ,  this lemma shows that 
for  increasing p, z3(p) decreases  and xi  (p) increases ,  i.e.,  the points M i  (p) 
and M 3  (p) move in opposite directions along the axis  x .  
with the previous resul ts ,  xi (- 1) (2, (- I), and zl (3) > z, (3) (see Figures  179 
and 181). 
r e m a r k  to Lemma 3, 59.2). Therefore,  there  exis ts  one and only one value 

The negative half -axis z has 
We may therefore 

In accordance 

Furthermore,  xi (p) and x 3 ( p )  are continuous functions (see 
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of the parameter ,  p*, in the interval (-1, 3 )  such that zl (p*) = z3(p*). This  
signifies that the separa t r ices  Ll and L3 corresponding to this p* coincide, 
i .e . ,  for  p = it* the systszm has  a separa t r ix  which forms a loop. Let this 
loop separa t r ix  be L * .  The value of the function o (2, y) = P; (2. y) + Q; (3. y ) a t  
the saddle pointl(1,U)for p = p* is p* T 1. Since p* > - 1, we have p* - 1 > 0. 
Therefore (see Theorem 14, 525.1), the loop L * i s  unstable, i .e. ,  a l l  the 
sufficiently c lose paths enclosed inside this loop a r e  sp i ra l s  unwinding 
from the loop. 
t h e  l o o p  L* is deterniined unambiguously. The topological s t ructure  of 
the system i n s  i d  e t h e  1 o o p I-* depends on the number of limit cycles  
and the stability charac.:eristics of the equilibrium state  0, which are not 
known. 
inside the loop L*, or e l se  i t  has  an even number of such paths (counting 
according to multiplicit:.esj. 
node and system (7)  has  an  odd number of closed paths inside the loop L * .  
b-igure 182  shows the topological s t ruc ture  of system (7) forp = p*under the 
assumption that this system has  no closed paths. 

For p = p*. the topological s t ruc ture  of system (7)  o u t  s i d e  

If p* ( 0 ,  then 0 is a stable focus and system ( 7 )  has  no closed paths 

Lf, however, p* - 0 ,  0 is an  unstable focus or 

Applying the resul ts  3 f  Chapter XI> w e  can t race  the behavior of the 
separa t r ix  loop as the parameter  va r i e s  near  i t s  value p*. 
the remark  to Theorem 49 (529.3)  that as the parameter  p i n  c r e  a s  e s 
above it*, the separatr ix  loop L* disappears ,  and a single unstable limit 
cycle is created in i t s  n5ighborhood (see Figure 183, drawn under the 
assumption that the sys tem has  no other  limit cycles) .  
d e  c r e  a s e s below p*, the separa t r ix  disappears  without giving rise to 
limit cycles  in i t s  neighDorhood. 

To follow the changes in the topological s t ruc ture  of the system as the 
parameter  var ies ,  w e  requi re  the exact number of the l imit  cycles  of the 
system fo r  every  p. The number of l imit  cycles  may change only when 
the system passes  through a bifurcation value of the parameter ,  and in such 
a system limit cycles  aye created e i ther  from a multiple focus, or f rom a 
loop of a saddle-point separa t r ix ,  or  from a c o n d e n s a t i o n  o f  p a t h s  
(see $22, Example 8), or finally f rom a multiple l imit  cycle ( i f  any). W e  
will nevertheless  proceed with a tentative analysis  a s s u m i n  g t h a t p* < 0 
a n d  t h a t  s y s t e m  (7) f o r  e v e r y  p h a s  a t  m o s t  o n e  c l o s e d  

It follows from 

As  the parameter  p 
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p a t h ,  w h i c h  i s  m o r e o v e r  s t r u c t u r a l l y  s t a b l e .  A s a f i r s t  
step, let u s  consider what happens to a limit cycle of the system when the 
vector field is rotated.  

R e m a r k  r e g a r d i n g  t h e  v a r i a t i o n  of t h e  l i m i t  c y c l e  
f o l l o w i n g  r o t a t i o n  of t h e  v e c t o r  f i e l d  

Let I 
(A,) 

I 

d x  dy ~ = P ( X ?  Y, P), x=Q("> Y, PI 
be a dynamic system which for  p = po has a l imit  cycle Lo. Suppose that Lo 
is a stable l imit  cycle with motion in the positive direction for  increasing t 
(Figure 184) and suppose that the field vectors  rotate in the positive sense 
a s  p increases .  

Through some point M o  of the cycle Lo w e  draw an a r c  without contact I ,  
choose a point MI on this a r c ,  which l ies  inside Lo and is sufficiently close 

to M O  (Figure 184), and consider the path Li through 
the point M i .  Li wil l  c r o s s  the a r c  1 at  another 
point M z ,  which lies between Mi and M o .  

close to pa, p > po. The path ZI of (A,) passing 
through the point Mi c rosses  the a r c  without contact 1 
a t  a point kz, which is sufficiently close to MZ. rhe 
l imit  cycle Lo of (ApJ is a cycle without contact for  
(A,), and, as f increases ,  every path of (A,,o) 
crossing the cycle Lo wil l  enter  into the region F 
bounded by the curve Lo and the closed curve c" con- 
sisting of the coil M$Z of the path %$ and the segment 
M i @ ,  of the a r c  1 (in Figure 184, ? is diagonally 
hatched). 
equilibrium states  in this region, I? contains one and 

Consider the system (Aw), where p is sufficiently 

FIGURE 184 
Since L" cannot leave 7 azd there  a r e  no 

(by Theorem 72, 132.4) only one closed path L"o of system (Aw). 
conclude that as the vector field of system (AFo) is rotated in the positive 
direction, the l imit  cycle Lo c o n t r a  c t s . Clearly, when the field is 
rotated in the negative direction, the l imit  cycle Lo e x p a n d s  . 
resul t  is obtained for  an unstable l imit  cycle. Applying the same reasoning 
to a semistable cycle (of even multiplicity) and using Theorem 71 (%32.4), 
we conclude that as the vector field is rotated in one direction, the cycle of 

direction, the cycle decomposes into two cycles  (a stable and an unstable 
one), of which one contracts and the other expands. 

le t  system (7)  have a t  most one closed path, which is moreover structurally 
stable. 
Figure 179; in particular,  i t  has  no closed paths. For p ranging between 
-1 and p*, system ( 7 )  has  no closed paths either. Indeed, as p increases  
f rom -1 to p* < 0, a closed path can be created only from a condensation 
of paths, but then i t  is not a structurally stable path. Thus, as p increases  
f rom -CO to p*, the topological s t ructure  of the system remains unchanged 

We thus 

A s imi la r  

even multiplicity disappears,  .and as the field is rotated in the opposite I 

After this digression, we can re turn  to system (7).  Thus, le t  p* -= 0 and 

For  p <  - 1, the system has the topological s t ructure  shown in 
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(Figure 179) ,  the point; .Ifl and .If, of the separa t r ices  L ,  and L ,  moving one 
toward the other along the I axis .  

Since the equilibrium state  0 is stable in this case, system ( 7 )  may have no 
limit cycles  under our  assumptions, and i t s  topological s t ruc ture  is 
correspondingly shown in Figure 182. 

A s  p increases  above p = p*, the separa t r ix  loop c rea t e s  an unstable 
limit cycle. The system may not have any other  cycles, and i t s  topological 
s t ruc ture  a s sumes  the form shown in Figure 183 .  A s  p increase f rom y* to 
0, this cycle contracts  and for  p = 0 i t  "collapses:' into the equilibrium 
state  0, which changes i t s  stability a t  this instant. Since for  p = 3 the 
system has  no closed p,&ths, i t  may not have any closed paths for  p -= 0 
ei ther .  Indeed, as I( decreases  f rom 3 to 0, a closed path may be created 
only from a condensaticm of paths, but then i t  is not s t ructural ly  s table .  
Thus, the topological srructure  of the system corresponding to p :;,O is shown 
in Figure 181. 

A s  p decreases  from 03, the system a t  f i r s t  has  no closed paths, and i t  
is only when the system crosses the value p = 0 that an unstable l imit  cycle 
is created from the focus 0, which then expands and for  p = p* t ransforms 
into a separa t r ix  loop which disappears  as the system passes  through the 
value p = p*. 

The reader  is advised to w o r k  out for himself a s imi la r  ("tentative") 
analysis assuming that p* > 0 or p* = 0 and that the sys tem a t  any time has  
the least  possible number of closed paths. 

E x  a m p 1 e 14 (the ci-eation of a l imit  cycle f rom the loop of a saddle- 
node separatr ix ,  see /34/). 

Consider the system 

For  p = p*, the separa t r ices  L, and L 3  merge forming an unstable loop. 

d " = y ( ~ f p ) f 2  dt i y ' - l = P ( ~ ,  Y, p), ~ = - ~ ( z t p ) = Q ( ~ ,  Y, p). (S,) 

I t  is readily seen  that the circle 

Z Z - + + - i = O  

(which w e  designate W )  is made up of paths of {S,). 

Q(.r. y. p) = O .  
8, ( ( I ,  b,,), where 

The equilibrium s ta tes  are determined f rom the equations P ( z ,  y. p)=O, 
There  are two equilibrium s ta tes  on the y axis, A,,(O, a,,) and 

U p =  -$+ / v > O ,  b,,= -$.- I y q 7 c o .  
The other equilibrium states are obtained f rom the equations z + p = 0 and 
x2 - ya - i = 0. 
2, < 1 p 1 < 1, they determine two additional equilibrium s ta tes  (other than 
A,, and B, , ) ,  C, (-p, c,,) and D, ( -p , -~ , ) ,  where c,, = 1- 1 - p a .  
0 < I p I < 1, the system has  four equilibrium states. For I p I = 1, the 
equilibrium s ta tes  C,, and D, merge into one, and the system has  three 
equilibrium s ta tes  A t ,  BI,, and C, ( C ,  coincides with Dl) .  
the system has  two equilibrium s ta tes  A ,  and Bo (which may be regarded as 
coinciding with Co and Do* respectively). C, and D ,  lie on the circle W'. 
Since a ,+b ,  = - 1, then f o r  p f 0, one of the points A , ,  B,  lies inside Wand 
the other outside the circle .  

For I p I > 1, these equations are contradictory. For 

T'hus, for  
.- 

Finally, for  p = 0,  

The configuration of the equilibrium s ta tes  of 
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(S,) for  the various values of the parameter  p is shown in Figure 185 (the 
a r rows  in this figure mark the direction of motion of the equilibrium states  
as p increases) .  

techniques. For p # 0, I p I # 1, the points A ,  and B ,  a r e  nodes or foci 
when p > 0 and saddle points when p<O, whereas the points B ,  and C, a r e  
nodes o r  foci when p < 0 and saddle points when p > 0 (Figure 185). 
The equilibrium state C, of (S,) is multiple for  p = & I ,  having A = 0, 
u = P; +- Q; # 0. 
outlinedinQT, $21.2, using Theorem 65 of this section. 
p = - 1 has the form 

The character  of the equilibrium states  is determined by the usual 

To fix ideas,  le t  p = - 1. We wi l l  proceed by the method 
System (S,) for 

dz 
d t  

d t  

- = y (z- 1) f2e + ya-I, 
*= -z(z-I). 

The coordinates of the equilibrium state Cl are ( 1 , O ) .  Moving the origin 

to the point C+ we effect a transformation of coordinates z= -2y, y =  lG+y, 2 - 
t = t  ~ , and reverting to the old notation x ,  y, t we obtain 

Applying Theorem 65 from QT, $21.2 to this system, we find that the 
point C-( is a saddle-node of (S-1) and that the path configuration near  this 
point can be schematically shown as in Figure 186 (this resul t  could be fore-  
seen beforehand, by regarding the point C-l as the outcome of the merging of 
the node C, and the saddle point D ,  of (S,) for  p -+ - 1). 
entirely analogous with regard to the point Ci of (SI). 

The situation is 

FIGURE 185 

5438 

FIGURE 186 
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.ao and Bo are a l so  saddle-nodes (of sys tem (so)). W e  do not prove this 
proposition, however, since the only relevant fact for  what follows is that 
the Poincare index of each of these equilibrium s ta tes  is 0. 
can be established i f  w e  note that on passing to a c lose  system (SA, two 
equilibrium s ta tes  A ,  and C ,  (B,and D,, respectively) appear  in the neigh- 
borhood of the points A O  (,or B o ) ,  the sum of their indices being zero.  

-As w e  have seen before the c i rc le  kV (z* + yz - 1 = 0) consis ts  of paths of 
(S,). 
Il'is a closed path of system (S,): W e  will now show that (S,) has  no closed 
paths other  than Wfor any value of p. 

Fi r s t  consider the case  p = 0. (S,,) then has  two equilibrium s ta tes  A ,  and 
BO, each with PoincarC index 0. 
brium s ta tes  lying inside a closed path is 1 (QT, $11.2, Theorem 28, 
Corollary l ) ,  (So) has  no closed paths. 

The la t ter  point 

If this curve does not contain equilibrium states ,  i.e., if  1 p I > i ,  

Since the sum of the indices of the equili- 

Let now p # 0. Consider an  auxiliary system 

- 
(the two systenls  (S,) and (S,) can be considered as par t icular  cases of 
the sys tem 

i t  is directly verified that (S,) has  a general  integral 

the family of curves  (15) for p > 0 is shown @ Figure 187a and for I( -= 0 in 
Figure 187b. 
z2 (z2 - y2 - i )  = 0. 
c i rc le  Lt'. 
example, and also QT, §12.5), and the sign of the expression fl (zz + y' - 1) 
is reversed only when we c r o s s  the circle W. 

The contact curve  of (S,) and (S,) has  the equation 
It car be decomposed into a s t ra ight  line z = 0 and the 

The contact points on the line z = 0 are all false (see previous 

--c 
X 

a b 

FIGURE 187. a) p > 11; b) p < 0. 
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Suppose that (S,) has  a closed path L .  Since the sum of the indices of the 
equilibriuni s ta tes  of (S,) enclosed inside L i s  1, at least one node of (S,) 
lies inside L and a t  least  one saddle point l i es  outside L. 
however, that the path L inevitably c ros ses  closed paths of system (S,) and 
consequently has  a ( t rue)  contact (see previous example) with one of these 
closed paths, Since the ( t rue)  contact may only l ie  on the circle  W ,  which 
is a path of (S,) for every p + 0, the closed path L of (S,) should be tangent 
to the c i rc le  W.  
path of (S,) or consists of paths of this system).  

precisely one closed path - the ci rc le  W- for 1 p > 1. For p = - 1, (S,) 
has  a saddle-node C-, whose w-separatrix L+ forms  a loop which, together 
with the point C+ constitute the circle  W.  For t + - 00, the separatr ix  L+ 
goes to the saddle-node C-,> being one of the inter ior  paths of the node 
sec tor .  At the point C-, (1, 0), 

This mean?, 

This is feasible only if  L coincides with W(since W is a 

We have thus established that (S,) has  no closed paths for 1 p 1 4 1  and has 

I P ; ( x ,  Y, -I)+Q1(z, Y, -1)=2>0. (16) 

Let u s  now consider the bifurcations which take place near  the circle  
W a s  p var ies  around -1. For p > - 1, the system has no closed paths, 
and on the circle  W there  is a saddle point and a node near  the point (1,O).  
A s  p decreases ,  these points draw c loser ,  and they merge into a saddle- 
node fo r  p = - i; one of the separa t r ices  of the saddle-node forms a loop. 
As p decreases  fur ther ,  the saddle-node CA disappears  and, by Theorems 51 
and 52 (S30) and relation (16), the system should have precisely one, and a t  
that stable, l imit  cycle in the neighborhood of the loop L + .  This cycle is the 
circle  W. 
loop in the following manner:  the equilibrium state  C-, is transformed into 
a regular  point which forms,  together with the separatr ix  loop, the l imit  
cycle W .  
parameter  p around p = 1 

ent i re  plane, w e  should consider in more detail the character  of the 
equilibrium states  and the path configuration a t  infinity. 
the reader  as an exercise .  
evidently p .= 0, 1, -1. 

point separatr ix  and a multiple focus). 

In this example, the l imit  cycle is created from a separatr ix  

The situation is entirely analogous for  the variation of the 

To elucidate the topological s t ructure  of the dynamic system (S,) on the 

This i s  left to 
The bifurcation values of the parameter  a r e  

E x  a m p  1 e 15 (the creation of a l imit  cycle f rom the loop of a saddle - 

Consider the system 

d r  -=_ (Jt U--B)+v(l 

e (5 + US! (1 + it=- & 

Physical considerations (see /26 / )  res t r ic t  the variable x to the range 

l +B .z>O,  (17) 
and the constants fi and e a r e  constrained by the inequalities 

o<p<;, . O < e < o o .  
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In the  half-plane defined by (17) (i.e., the half-plane to the right of the 

line 2 = - -), (A) has  two equilibrium s ta tes  O1 (-4,  1) and 0 2  (q. y ~ ) ,  where 1 
8 

=? = 7 1 B f+/-Fg Y2=-++/F$. 
After some manipulation:;, w e  find that Q i ( - i ,  1) is a node or a focus, which 

i s  stable f o r  E>L anti unstable for e<&). For  e", 8 Oi is an 
Z ( 1 - 8 )  

equilibrium state  with pure imaginary character is t ic  numbers.  

the  parameters .  

the respective equations 

t'he equilibrium state  Oz is a saddle point for all the relevant values of 

The isoclines of vertical  and horizontal inclinations are described by 
Let u s  establish some propert ies  of i t s  separa t r ices .  

and 

The f i r s t  is the equation $of a hyperbola and the second that of a parabola.. 
I'hese equations partition the half-plane 1 +&z>O into regions where x and 

The signs of 3 and y, respectively,  a r e  indicated in 
re ta in  a constant sign. 

(Figure 188). 
parentheses in the figure. 

Let these regions be designated I, 11,111, I\' 

FIGURE 188. 

The equation characterizing the directions of the separa t r ices  for  the 
saddle point Oa has the form 
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Since e > 0, 1 + pxz > 0, yz > 0, and 0 < p < f ,  the two roots  of (21) a r e  

negative. 
near the point O2 lie in regions I1 and IV (Figure 188). 

Hence i t  follows that the segments of the separa t r ices  located 

Seeing that two separa t r ices  go to the saddle point f o r  t +  + 00 and 
the other two for t +  - 00, and examining the variatior. of x and y in I 
regions I1 and IV, we readily find that the configuration of the separatr ices  
near  the saddle point O2 can be represented a s  in Figure 188. 

Consider the point of the szparatr ix  L, lying near  O2. 
correspond to the time to. Since this point l i es  in region IV, i t  w i l l  move 
to the left and up as t increases  ( x  decreases ,  I/ increases) .  But then the 
separatr ix  L, wil l  not c ros s  the parabola (20), which is an isocline of the 
horizontal inclinations, and i t  should evidently c r o s s  the straight line 
1 $. f3s = 0. 
t increases .  

ambiguously, and a detailed analysis is required.  To this end, consider 
an auxiliary system 

Let this point 

We similar ly  conclude that the separatr ix  L, goes to infinity as 

The behavior of the separa t r ices  Lz and Ls cannot be determined un- 

(E) 
d x  -= dt  y, 3= dt - e ( x + y e ) .  

Dividing the second equation through by the f i r s t  equation and substituting 
ya = z, we obtain a l inear  equation, which can be integrated to give a general  
integral  of system (B), 

F (5, y) = e2ex ( - &+z+g9) = c. (22)  

(B) has  a single equilibrium state, the origin 0 (0, 0) (it corresponds to 

Investigation of the curves (22) by the usual elementary C = - &- in (22)). 

methods shows that they can be depicted as in Figure 189. 

sponds to the equilibrium state  0 (0, 0). 

to closed paths of system (B): as C increases  these closed paths expand. 

C = 0 corresponds to the parabola -5 + x + 61% = 0, which is obtained from 

the parabola y + x* = 0 as a resul t  of a shift to the right by 5 (in Figure 189, 

this displaced parabola is shown by dashed curve; i t  is not a path of 
system (B)). Paths which a r e  not closed correspond to C > 0. 

Let u s  derive the equation of the contact curve of systems (A) and (B). 
Taking the derivative of the function F (x ,  p) 

1 
28 

C = -- c o r r e -  
1 The values - z < C  < 0 correspond 

1 

1 

-- dF(z '  ') - F ' f i + F ' & = F ; P ( x ,  y)+GQ(x,  y) 
d t  d t  dt 

(see QT, 53.13) and using (A), we obtain 

-= g - 2 e e Z C "  (5 + y*) (1 - B). (23) 

Hence i t  follows that the contact curve z=O is the parabola r + g * = O ,  which 

is an isocline of the horizontal inclinations both for  system (A) and for  
system (B). 
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FIGL'RE 189 

Since p < + ,  and e > O ,  * K O  in regions where x+yz>O,  i .e.,  in regions I1 dt 

and 111 in Figure 188. 
the closed paths of system (B) in the  direction from outside to inside as 
t increases .  In regions I and E, on the other hand, where r + y 2 < 0 ,  

c>O and the paths of s j s t e m  (A) c r o s s  the closed paths of (B) f rom inside 

to outside as t increases .  
Each closed 

path of (B) c ros ses  the positive half-axis I a t  a single point in the downward 
direction (Figure 189). 

This evidently implies that the paths of system (A) c r o s s  

The ax is  z is a n  isocline of the ver t ical  inclinations of (B). 

FIGURE 13C. The dashed curve shows the posslble be- 
havior of the separatrut LI. 

Now consider the a -separa t r ix  L2 of sys tem (A) which emerges  from 
saddle point Oz into I1 (5 > 0, y < 0, see Figure 190). Since O2 lies to the left 
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1 of the parabola - 
this point is a closed path (Figure 190) .  
At the point Oz, the separatr ix  Lz en ters  into zo, since a t  this point the 
inclination of La is negative and the inclination of go is horizontal 
(Figure 190; Oz l i es  on the isocline of horizontal inclinations of system (E)). 
While in region where x + yp > 0, the separatr ix  L2 cannot c ros s  the curve 
Lo going from inside to outside, since in this region i t s  behavior is such 
that i t  c ros ses  all the closed paths of (B) from outside to inside. 
as t increases ,  the separatr ix  Lz cannot move from region I1 into region I 
crossing the a r c  OiOz of the parabola y f xp = 0, since in all the inter ior  
points of this a r c  the paths of system (A) a r e  directed from left to right. 

W e  should therefore consider the following alternatives for the 
separa t r  ix Lz : 

1) without leaving region 11, LZ goes to the equilibrium state 0, for  
t - c  + W; 

2 )  remaining inside the curve C , ,  Lz c ros ses  the isocline of the ver t ical  
inclinations (the hyperbola (19)) and then c rosses  the parabola (20) to en ter  
region IV. 

considered for  the separatr ix  Lz (they a r e  consistent with the fact that in 
regions I and JY the paths of (A) c r o s s  the closed paths of (B) from inside 
to outside): 

l imit  cycle surrounding this equilibrium state, i f  such a cycle exists; 

with the separatr ix  L3 forming a loop; 

lower half-plane since in region IV y > 0). 

the behavior of L2. 

system (A). 

leaving the point O2 on the outside, and i t  may not have any points in 
common with other paths, in particular,  not with the separa t r ices  L2 and 
La. 
(A) has  no closed paths. Now suppose that the separatr ix  LZ c rosses  the 
hyperbola (19), and le t  zo be the absc issa  of the intersection point M, 
(Figure 190). Every closed path of (A) of necessity c ros ses  the segment 
O,Oz of the parabola (20). Making use  of this fact and taking into considera- 
tion the direction of the field of system (A) in regions I, 11, and IV and on 
the isoclines (19) and (20), we can readily show that if (A) has closed paths, 
they may only l ie  inside the region between the ver t ical  l ines  x = xz and 
3 5 5  0 .  

Let M* (x * ,  y*) be the intersection point of the path zo of the auxiliary 
system (E) with the positive half-axis z. 
examination of the behavior of Lz), we conclude from the above that i f  
s y s t e m  (A) h a s  c l o s e d  p a t h s ,  t h e y  m a y  o n l y  l i e  b e t w e e n  
t h e  v e r t i c a l  l i n e s  x = x z  a n d  x = x * .  

+ s + g* = 0, the path of system (B) passing through 

We designate this closed path z,. 

Moreover, 

As t increases  fur ther ,  the following three possibilities should be 

2 ' )  L2 goes to the equilibrium state  O,, if  it is stable, o r  to a stable 

2") Lz goes to the saddle point 0,; in this case,  i t  evidently merges 

2"') Lz  c rosses  the straight line 1 + f lx = 0 (Lzcannot go to infinity in the 

The behavior of the separatr ix  LI, as is readily seen, is determined by 

Let u s  now consider the existence or otherwise of closed paths in 

Every closed path of system (A) should enclose the point O,, while 

Hence i t  follows that i f  the separa t r ix  Lz goes to the equilibrium state 0,, 

Since zo < r* (this is clear  f rom an 

440 



5 34. EXAhlPLES 

\ V e  will now apply I h l a c ' s  c r i te r ion  (QT, 512.3). Dulac's function is 
taken in the form 

e ? ~ ~  
Q(2. Y ) = v .  

Computations show that 

Since p -=+ ~ and 1 + k # O ,  the las t  expression vanishes only a t  the points 

of the straight line 

p-2e x=- 
2Ep * 

By Dulac's cr i ter ion,  (A) may not have closed paths in the region where 
d d 

z ( Q p )  - k > ~  (OQ) 1 0 .  

between the ver t icals  r = q  and x = x * ,  i.e., if e i ther  

Therefore, i f  the above s t ra ight  line does not lie 

or 

system (A)  has  no closssd paths. 
The f i r s t  of the two conditions in (24) can  be written iu  the form 

It is satisfied for  any p O<p<+, i f  e > l .  

curve Lo is given by (22), where C is determined f rom the condition that 
zo passes  through the point 02(x2, y2). 

Let_us now consider the second condition in (24). The equation of the 

The equation of E ,  is thus 

$ex x - ~ Z - -  1 ) = e ? e x z ( x 2 + y i - x ) .  1 

e 2 e z * ( x * - L )  = e ? e x a  (x2+y:-z) I 

( 4  

Setting y - 0 ,  w e  obtain a n  equation for  x*:  

2e 

or after elementary manipulations, 

I1 - 2e (x2 f yi)]. (25) i - 2=* ~ p2e(c?--x*) 

Since every  curve (22)  c r o s s e s  the positive half -axis x a t  one point only 
(Figure 189), equation (.25) h a s  a single positive solution for  x*. Let 
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?e.x*=z. Equation (25) then can be written in the form 

1 - z - e-'f (E) = 0, 

where f(e)=e"ex2[I-2~(~Z+y~)l  (52 and y, a r e  independent of E ) .  

For E = O ,  equation (26) has  the form 

1 - z - e-' = 0. 

It has  a unique solution z = 0, and the derivative of its left-hand side a t  
the pointz = Odoes not vanish. 
to Theorem 4 (the theorem of smal l  increments  of implicit functions, $1.21, 
for sufficiently smal l  e equation (26) has  a unique solution close to zero,  
which goes to zero  for E -+ 0. It is readily verified that for  e > 0 this solution 
is positive. Andsinceequation(25) has  a u n i q u e  p o s i t i v e  s o l u t i o n  
for I*, w e  conclude that 2ex* -+ 0 for  E -+ 0. 

Therefore, by Theorem 3 and the remark  

The second inequality in (24) can be written in the form 

p -- 2E > 2EX* .p.  
This and the condition lim 2es* = 0 show that for  any f3, the second 

e-0 

condition in (24 )  is satisfied as soon as E > 0 is sufficiently small .  

We have thus established that for every fixed p,  O<f3<+. system (A)  

has  no closed paths i f  E is sufficiently smal l  or sufficiently la rge .  
now t ry  to elucidate the topological s t ructure  of (A) in these cases. 

Let u s  

Let 

A s  w e  have seen before, for  R > 0, the equilibrium state  0, (-1, 1) is an 
unstable focus or node, and for  R < 0 ,  i t  is a stable focus o r  node. 

W e  will now show that for  every $, O < f 3 < ~ ,  there exis ts  a cer ta in  E > 0 

Indeed, if  E = > 0 is sufficiently small ,  system (A) has  no closed paths 

t 

for which the separa t r ices  Lz and Ls merge into a loop. 

and, moreover: R > 0. But then Ol is an unstable node o r  focus; the 
separa t r ix  LZ does not go to O1 for  t -+ + 00 and i t  either merges  with the 
separatr ix  L, or  leaves the region IV by crossing the segment ST of the line 

t 

case, the separa t r ices  are arranged as shown schematically in  Figure 151. 

x = - -  B .  In the fo rmer  case, our proposition is proved, and in the la t ter  

s Q X 

FIGURE 191. e =e,. FIGURE 192. e = ez. 
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b e  can s imilar ly  show that if  E = e2 > 0 is sufficiently large (in par t icular ,  
so large that R < 01, the separa t r ices  L z  and L 3  ei ther  merge forming a loop 
o r  are arranged a s  shown in Figure 192. 

Now suppose that the separa t r ices  L2 and L3 do not merge ei ther  for 
E = F, or for e = E? (i.e.,  the configuration of the separa t r ices  i s  according 
to Figures  151 and 192). 

some e = eo, el < e, < € 2  has  no 

points of contact with the paths of the system (A) (this is evident directly 
from the equations of (A)).  AIoreover, since the con_tact curve of sys tems 
(A)  and (B)  is parabola (ZO), the a r c  02S of the path Lo of (B) extending 
between i ts  intersection points Ozand -%’ with the parabola (20) (Figure 152)  
has  no contacts with the paths of system (A) e i ther .  Therefore,  by the 
basic propert ies  of separa t r ices  (99.2, Lemma 3 and the r e m a r k  to this 
lemma),  i f  for some value of the parameter  E the separa t r ix  Lac rosses  

the line x = - - (Figure 191) o r  the separa t i rx  L3 c rosses  the a r c  02-V of the 

curve 
a l l  close values of the parameters .  
and L3 do not merge for  anys, e, < e < e?. 
i s  readily seen, there  exis ts  some “first” Lralue of the parameter  E = e* for 

which the separatr ix  Lz 110 longer c r o s s e s  the line 3 = -- (whereas for a l l  

e. E , < E  < e*, it does c r o s s  this line). 
Lt and L 3  do not form a loop, for  e = e* the separa t r ix  Lz goes for  t .+ + 00 
either to OI-or to a l imit  cycle encircling 0,. 
a r c  02.V of L o .  
E < e*, L 3  c rosses  the a r c  OZN and consequently, Lz  may not c r o s s  the line 

\$‘e have established a contradiction, which proves that for  some 

\ Y e  w i l l  show that in this case  they merge for  

First note that the straight line x = - 

t 
B 

(Figure 1521, the behavior of these separa t r ices  will not change for  
Now suppose that the separa t r ices  L2 

Let E vary from E, to e ~ .  Then, as 

1 
B 

Since by assumption the separa t r ices  

In e i ther  case ,  L3 c r o s s e s  the 
But then, for  all c lose values of E, and in par t icular  for 

1 
2 = - -  B .  

EO, € 1  < EO < e2, the saddle point 0 2  of (A) has  a separa t r ix  forming a loop. 

in the neighborhood of the equilibrium state  0, (-1, 1) a s  E is varied.  
Choose a fixed fi and follow the changes in the topological s t ruc ture  of (A) 

Let e = B  
- - 

For  E =  e ,  O,(-i,  i) is an equilibrium state with pure 2(1- BJ’  
imaginary character is t ic  numbers.  Since at the point 0, (-1, f ) ,  
o=p- 2 e (1-p), we conclude that for e=; ando=O, g<O. a3 is computed 

from equation (76),  524.4, which gives 

Therefore, for  e = e, O1 1s an  unstable focus, and when e increases  above E, 
the focus 0, is transformed into a stable focus and a single unstable l imit  
cycle is created in i t s  neighborhood (see table in 925.3). 

Thus, as e va r i e s  from a sufficiently smal l  e, to a sufficiently la rge  e2, 
the following bifurcations definitely occur : 

1) at  least  for one e = e,. the separa t r ices  Lz and La of the saddle point 
0 2  merge forming a loop; 
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2 )  precisely once, for  e = e, Oi is transformed into a multiple focus, 
and as e is further increased, an unstable limit cycle is created from this 
focus. 

In addition to these bifurcations, w e  may assume a pr ior i  the existence 
of bifurcations of s t i l l  another type in this system: 

3)  appearance (or  disappearance) of a l imit  cycle of multiplicity 4, and 
in par t icular  of multiplicity 2,  f rom a "condensation of paths." 

Very considerable difficulties a r e  encountered when one t r i e s  to establish 
the presence (or the absence) of bifurcations of this las t  type, and nothing 
cer ta in  can be said in our  example regarding this point. 

know, the loop formed by a saddle-point separatr ix  is stable o r  unstable, 
according as the value of P;  + Q, at the saddle point is negative or positive 
(Theorem 44, S29.1). 

Let u s  consider one fur ther  fact relating to separatr ix  loops. As we 

In our  example, for  e = eo> 

But 

Let 

eo G - b -e (30) 

( E O  is the value of e for  which the separa t r ices  Lz and L ,  merge forming a 

loop; 

readily seen that yz > 1. 

(1-b)- 

- 
e is the value for which Os is a multiple focus). For O<p.=-+> i t  i s  

This and (29). (30) show that 

We have ct . 
loop i s  unstable. 

Let u s  now analyze the changes in the topological s t ructure  of (A) as E 

increases  f rom 'el to e 2  assuming that two further conditions are satisfied: 
(a) as e var ies  f rom el to e2,  no bifurcations of type 3 occur;  
(b) there exis ts  a single value eoof the parameter  e at which the 

We should s t r e s s  that the applicability of these conditions [or of either of 

established that if the separa t r ices  form a loop for eo<;, the 

separa t r ices  Lz and L3 merge forming a loop. 

them) is not known in advance, and we introduce them as an  assumption in 
order  to proceed with our analysis.  

arranged as shown in Figure 191. 

change. 

For E = E ~ ,  the system has no closed paths and the separa t r ices  a r e  

As e increases ,  the topological s t ructure  of the system at  f i r s t  does not 
It may change only when the parameter  c ros ses  its bifurcation 
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va lue .  
will show that E (  eo .  
E = E  and the system has a separatr ix  forming a loop, which loop, as w e  
have seen before, i s  d s o  unstable. By condition (a), no closed paths may 
develop in the sys tem.  Therefore,  the paths enclosed inside the loop should 
go either to the loop or to the point O1 for  f --t t o o ,  which is impossible since 
both the loop and the point O la re  unstable. 

U'e have thus established that e< eo.  For E = 
unstable focus, and for all e between e l  and E the system has  a constant 
topological s t ructure  (that shown on Figure 191). 

simple unstable l imit  cycle L o  is created in its neighborhood (S25.3). 
system acquires  the topological s t ructure  schematically shown in Figure 193. 
?Is E var ies  between the l imits  
retained. 

The bifurcation values of the parameter  in our  case  a r e  e and € 0 .  5 5 ' ~  
Indeed, i f  ;> e , ,  Oi i s  an unstable node or focus for  

the point O1 is a multiple 

As E is fur ther  increased, O1 is transformed into a stable focus, and a 
The 

< E < E ~ ,  this topological s t ruc ture  is 

- 
FIGYRE 193. E -=z e < e o .  FIGL'RE 1"4. e eo. 

For e = e, ,  the separa t r ices  of the saddle point O2 form a loop. U'e will 
show that a t  this instant the l imit  cycle L o  disappears  (is "swallowed" by 
the separatr ix  loop), and the loop itself is unstable, i .e . ,  the system has  the 
s t ructure  shown in Figure 194. 

know that for  E = e- the system has no closed paths.  
structurally stable l imit  cycle L o  should disappear with the increase in e. 
This may occur only by merging with some limit  cycle created from the 
separa t r ix  loop, i.e., as a resu l t  of a bifurcation of type 3,  which i s  ruled 
out by coGdition (a). Thus, the l imit  cycle must disappear for  E = E,,  and 
since the focus in this case is stable, the separa t r ix  loop is unstable 
(Figure 194). 

produce closed paths, since eventually these paths w i l l  have to disappear,  
which is ruled out by condition (a). Therefore,  for  E > eo, the topological 
s t ruc ture  of the system is the same as for  E = E ?  (Figure 192). 

We thus see  that with the aid of conditions (a)  and (b) w e  succeeded in 
deriving unambiguously the topological s t ruc ture  of the system f o r  all e>O. 

Note that if conditions ( a )  and (b) (or e i ther  of them) are not satisfied, 
the number of a pr ior i  possible topological s t ruc tures  of course markedly 
increases .  Thus, if w e  allow bifurcations of type 3 - creation of a l imit  

Indeed, suppose that the unstable l imit  cycle Lo exis t s  for  e = E O .  

Therefore the 
W e  

A s  e is further increased, the separatr ix  loop breaks up. It does not 
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cycle of multiplicity 2 (from a condensation of paths) or disappearance of a 
l imit  cycle - the topological s t ructure  may undergo the following changes: 

1) A l imit  cycle of multiplicity 2 is created.  
2) The limit  cycle spl i ts  into two: an unstable outer cycle L' and a stable 

inner cycle L". 
3 )  The outer cycle L' is "swallowed" into the separatr ix  loop, and the 

separatr ix  breaks up. 
4 )  The focus changes i t s  stability, and an unstable l imit  cycle L " i s  

created.  
5) The cycles L" and L'" merge into a cycle of multiplicity 2, which then 

disappears.  
There is nothing to prevent the separatr ix  loop and the type 3 bifurcation 

from occurring several  t imes! 
E x a m p l e  16 (the creation of a l imit  cycle f rom a multiple focus, 

see  / 3 7 / ) .  
Consider the system 

dz == - [ i + ( x + y ) y + 6 ] = P ( x .  y), $-= -y+(s+y)s=Q(x, y) (31) 

for  positive values of the parameters  y and 6. 
The coordinates of the equilibrium s ta tes  satisfy the equations 

x t  ( x t  Y) + 6 = 0, Y- b+r)t= 0. (32) 

Eliminating y between these equations, we obtain a single equation for  
the absc issas  of the equilibrium states:  

F ( x ,  y, 6) = i + 2 y Z + + ( y ~ + 1 ) x + 6 = 0 .  (33 )  

Since this is a cubic equation, ( 3 1 )  has  a t  least  one equilibrium state  
and a t  most three equilibrium states  fo r  all the relevant values of the 
parameters  y and 6 .  

the general  instructions outlined in the Introduction to this chapter.  
Specifically, we w i l l  look for  those values of the parameters  for  which the 
equilibrium s ta tes  have maximum multiplicity. 
analysis near  these values of the parameters  wi l l  solve the problem of the 
existence of regions with different number of equilibrium states .  

The ordinate y of the equilibrium states  is obtained from the equation 
y = I (x + y), i .e.,  i t  is a single-valued function of the abscissa .  Therefore, 
by Definition 15, 57.3, the multiplicity of the equilibrium state  (I, v), where 
x is a root of equation (33) ,  is equal to the multiplicity of the corresponding 
root, i.e., the maximum multiplicity of the equilibrium state  of our system 
may not exceed 3 .  
6 when equation (33)  has  a t r iple  root. 
simultaneously satisfy the three equations 

To determine the exact number of equilibrium states ,  we wi l l  follow 

A s  we shall see,  local 

Let u s  t ry  to establish the values of the parameters  y and 
As we know, a triple root should 

F (x, y, 6) = 39 + 2 Y i  + (Ya+ 1) x + 6  = 0, 

(34 )  Fk (5, y, 6) = 3x2 + 4y1 + (1 + ys) = 0, 
F;a(x, y, 6)=61+4~=0. 

4 

From the las t  equation, we have x =  - - i -y .  
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Inserting this resul t  in the second equation and remembering that w e  a r e  

interested only in posi?ive values of the parameters ,  we find y=+l'%. 

Hence x =  -1, and 1'8>0. 9 '1 '5 8 
3 

\$e have thus established the existence of a single pair  of positive 
8 -  parameters  y and 6 ,  nzmely y o = k q ,  6 0 = g J ' 3 ,  for which system (31) has  an 

equilibrium state  of multiplicity 3. Let this equilibrium state be .Ifo(zo, yo), 

where q =  -3. yo= -T.  

evidently does not have other equilibrium states .  

found by a direct  compitation). 

For these values of the parameters ,  the system 

Since Mo(z0, yo) is a multiple equilibrium state ,  A ( q ,  yo) = O  (this a l so  can be 
Furthermore,  

2 1 %  

4 a(% Yo)==P;(zo, Yo)-rQ;(Xo. Yo)= -2-y,= -s<p. 

Investigating the equilibrium state  M o  by the methods described in  QT 
(Chapter LX, $21.2, Theorem 65), we conclude that -Ifo i s  a stable topological 
node. By Theorem 35, $23.2, there  exist  smal l  increments  for which the 
multiple equilibrium state  M0 decomposes into three s t ructural ly  stable 
equilibrium s ta tes  (two nodes and one saddle point) and a l so  increments  
which replace .\Io with a single (s table)  structurally stable node. 
the resu l t s  of $23 cannot be applied to our case,  since w e  are not dealing 
with j u s t  any increment. to the right-hand s ides  of the corresponding system, 
but only with increments  which resul t  f rom changes in the particular 
parameters  y and 6 of t.he system. 

To investigate the possible existence of three equilibrium states ,  let u s  
consider the function F (z, y ,  6) (see ( 3 3 ) )  in the neighborhood of the point 
xo, yo. 60. 

However, 

Let x = xo t 5, y = yo f h,  6 = 60 - k. 
Seeing that q, yo,  6,, satisfy equations (34), w e  readily find that 

F@, y. 6)=F(zo++5* yo+h ,  6O+k)== 
= :3 + 2 h p +  + 2yoh +he) E x h  + 2ygoh + 

+2,,h2 + k = E3 +AS* + BE +C,  

where A = 2 h ,  etc .  

takes the form +5 (Ea i A 5  + B )  = 0. 
charac te r  of the other roots  depends on the value of the discriminant 

.-12 - 
as above, the equation F ( x ,  y ,  6 )  = 0 has  three different r ea l  roots ,  one of 
which is xOr and if  h > 0 ,  the equation has  a single rea l  root zo and two 
complex roots .  Clearly,  i f  h is sufficiently smal l  in absolute value, k is 
a lso  sufficiently smal l  and the parameters  y = yo 

y and 6 ,  system (31) has three equilibrium states ,  whereas for  other values 
of the parameters  i t  only has  one equilibrium state.': 

Let k = - 2xth - 2 y g , h  - x h e ,  i.e., C = 0 .  The equation F (I, y .  6 )  = 0 then 
One of i t s  roo ts  is 5 ,  = 0, And the 

= - 16x& - Sy& := - 562 x h .  Therefore,  i f  h -= 0,  and k is selected 3 

h,  6 = 6, + k a r e  positive. 
W e  have thus established that for  cer ta in  positive values of the parameters  

* Our prooi is confined to the neighborhood of a triple equilibrium state. In this case,  the sought results also 
can be obtained from d direct .rLalysis of the cubic equation F (z, y. 6 )  = 0. 
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On crossing over from one region of parameter  values to the other 
region, we evidently pass  through the bifurcation values of the parameters  
for which the system has  a multiple (double or t r iple)  equilibrium state .  
Since there  exis ts  only one pa i r  of values y o ,  8 ,  for which the system has a 
triple equilibrium state, whereas the values of the parameters  for which 
the system has one structurally stable o r  three structurally stable 
equilibrium states  f i l l  whole regions in the parameter  plane, we should 
inevitably pass  through the parameter  values corresponding to the double 
equilibrium state  on crossing over  from one of these regions (the region 
with three equilibrium states, say)  into the other (that with one equilibrium 
state) .  The equation of the curve in the parameter  plane corresponding to 
systems with multiple equilibrium states  can be found without difficulty. 
To this end, we equate to zero  the discriminant of the cubic equation (33). 
After some manipulations, w e  obtain the equation 

9 (7 ,  6)  = 1276--2y (y* + 9)]2-4. (ye-3)5 = 0, (35) 

which is equivalent to two equations 

6 ~ 2v (vZ+ 9) i - 2  w - 3 )  -- vya-a-. h (7) (36 )  
27 

and 

= f ( 7 ) .  (37) 
6 = 2 ~ ( ~ ~ + % - 2 ( P - 3 )  7/y'--3 

27 

We a r e  clearly interested only in positive values of the parameter  y which 
8 '- a r e  greater  than or equal to I/s. 

i.e., w e  obtain the point M o  (yo,  6,) corresponding to a system with a triple 
equilibrium state .  
meeting at  a common point M o  is shown in Figure 195. 

For  y = y o  = v g ,  h ( y o )  = f ( y o )  =gv3=6,, 

The curve (35) consisting of two branches ( 3 6 )  and (37) 

FIGURE 195 

rhe curve 35  partitions the f i r s t  quadrant of the parameter  plane into 
two regions I and I1 (Figure 195). It is readily seen that the dynamic 
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sys tems corresponding to the points of region I (cp ( y ,  6) > 0) have one 
(structurally s table)  equilibrium state ,  whereas  sys t ems  corresponding to 
the points of region I1 ('p ( y .  6) < 0) have three, a l so  s t ructural ly  stable, 
equilibrium states .  Systems corresponding to the points of the curve (35) 
other  than .IIo have one s t ructural ly  stable and oile double equilibrium state .  

The f i r s t  question is the possible existence of equilibrium s ta tes  with pure 
imaginary character is t ic  numbers  (a center  o r  a multiple focus f rom which 
a limit cycle may be created) .  It should be established whether such 
equilibrium s ta tes  exis t  o r  not, and i f  they do, then for  what values of the 
parameters .  

Let u s  now consider the charac te r  of the equilibrium s ta tes  of system(31) .  

For  such an  equilibrium state ,  

and u = P; + Q; = 0. 
readily seen, 

For an  equilibrium state  (2. y) of sys tem (31) ,  as is 

A == 3x2 - 4xy y? f 1, (38) 

u z -  ( 2% f Y X f 2 ) .  ( 3 9 )  

Let us  f i r s t  establish whether an  equilibrium s ta te  can  exis t  a t  all for  
which A = 0 and 0 = U simultaneously,"' 
s ta te  of system (31) for  which u = 0 simultaneously sat isf ies  equation (33) 
and the equation 

The absc issa  of an  equilibrium 

Eliminating y between these equations, we obtain 

(y, 6) = 2y4-3y6 + 62 +a = 0. (41)  

In the plane of the parameters  y ,  6 equation (41) is a curve  (a hyperbola), 
and only dynamic sys t ems  corresponding to the points of this  hyperbola may 
have equilibrium s ta tes  x i th  u = 0. 

Let u s  now determine the values of the parameters  f o r  which the dynamic 
system may have an  equilibrium state  (3, y) with 1 = u = 0. 

From the equations 

A = 312 +4xy +y'+ 1 = 0, u = - (12 +yz + 2) = 0 

w e  readily find x ='-. 
find y = -  , 3 .  Hence x =  ---and, by(33), &=A. 

Inserting this resu l t  in the second equation, we 
Y 

5 2 

1 3  1 3  
There  is thus a single point A (vi, 6,) in  the parameter  plane, with 

5 
~~~ , 61 = 8 which corresponds to a sys tem having an  equilibrium Yl = - 

state  with A = 0, u = 0. 
existence of a multiple equilibrium s ta te  of a dynamic system, i.e., the 
existence of a multiple root of equation (33), the point A (yl, 6,) lies on the 

15 ' 
Since the condition A = 0 is equivalent to the 

We are rhus considering. as befo-e, equilibrium states of maximum multiplicity. 
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curve cp ( y ,  6) = 0 (see (35)) and is the only common point of this curve and 
the curve (1 ( y ,  6) = 0. 
9 (7, 6) = 0 touch a t  the point A .  
+ (y ,  6) = 0 of the hyperbola located in the f i r s t  quadrant is entirely contained 
in region I1 (Figure 195). 
with A # 0 can change only for  those values of the parameters  when 
system ( 3 1 )  has  three equilibrium states .  

u = P ;  + Q; = - (v + 2), an equilibrium state  (2, I/) with u = 0 has  g = - 2. 
The absc issa  is x = 6 - 27 in virtue of the f i r s t  equation in  (31). Moving 
the origin in the plane ( x ,  y) to coincide with this equilibrium state 
(6 - 2y ,  -2), i.e., using the substitution of var iables  

It is readily seen that the curves cp ( y ,  6) = 0 and 
Moreover, i t  can be shown that the branch 

Therefore, the stability of an equilibrium state  

Let u s  t ry  to identify the equilibrium s ta tes  with u = 0. Since 

x = X + 6 - 2 y ,  y = Y - 2 ,  
we obtain a system 

dx =x + ( y -  
d f  . 6 ) Y -  . X Y ,  g = (26- 3 y )  x -  Y+X2+2y2+62-- 3y6 + 2. 

In virtue of the conditionu=O, relation ( 4 1 )  is satisfied, and the las t  
system takes the form 

25 dt -x+ ( y  - 6 )  Y - X Y ,  $ = (26-3y) x- Y +X'. ( 4 2 )  

Its The equilibrium state  (with u = 0 )  now has  the coordinates (0, 0). 
character is t ic  equation is 

Depending on the sign of the expression in  brackets,  the character is t ic  
roots  are either complex conjugate numbers o r  real numbers of 
opposite sign. 

It is readily seen that the curves 

and I Q ( y ,  6 )  = 2ya-3y6+ 6*+2 = O  

( y  - 6 )  (26- 3 y )  + i = 0 

have a single common point in the f i r s t  quadrant, namely the point 

A (5. p), and that this is their  point of intersection (and not a t rue point 

of contact). The expression (y - 6) (26 -- 3y) -I- 1 therefore re ta ins  the same 
sign everywhere along the branch A B  of the curve (41) (except the point A )  
and an  opposite sign everywhere along the branch AC of this curve.  

Consider the points (3, 5) and (9/2, 5) of curve (41) ;  we readilyfindthatthe 

expression ( y - 6 )  (26-3y)  f 1 is negative on the branch A B  and positive on 
the branch A C .  
to a point on the branch A B ,  i t s  equilibrium state  with u = 0 is a multiple 
focus o r  center  (we shall see la te r  on that this is a multiple focus of 
multiplicity 1). 
equilibrium state  with u = 0 is a saddle point. 

5 8  

Therefore,  by (43), i f  the dynamic system (31)  corresponds 

If the system corresponds to a point on the branch A C ,  i t s  
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The branch A B  of the hyperbola (41) parti t ions the region SI into two 

Let u s  consider the character  of the equilibrium s ta tes  of sys tems 
subregions 11" and IIb (Figure 195). 

corresponding to the points of each of these regions.  
any values of the parameters  y ,  6 in (31),  infinity is absolutely unstable. 
Indeed, along a path of :;ystem ( 3 1 )  

First note that for 

It i s  readily seen tha: for 2 + y2 > 6* the last expression is negative. 
Therefore all paths of the system enter  into a c i rc le  of a sufficiently large 
radius centered at  the origin as t increases .  

Hence it follows, in particular,  that the sum of the Poincare  indices 
of all the equilibrium s ta tes  i s  f 1. 

Systems corresponding to points of region I,  as  w e  have seen before, 
have one equilibrium state, which is moreover s t ructural ly  stable. Since 
i ts  Poincare index is 1, i t  is ei ther  a node o r  a focus. 
the infinity being absolutely unstable - that this node (or focus) i s  stable. 

Poincard indices add up to 1. Therefore one of these s ta tes  is a saddle 
point, and each of the other two i s  e i ther  a node o r  a focus. I t  can be shown 
( w e  omit the proof here)  that the nodes o r  the foci of a system corresponding 
to a point inside region IIb are stable. 
branch AB of curve (41) represent  sys tems with three equilibrium states ,  
one of which i s  a focus Hith 0 = 0.  

LVhen w e  c r o s s  over f rom IIb into IT" a c r o s s  the branch A B ,  o r eve r ses  
i t s  sign and one of the foci consequently becomes unstable. The points of 
region II" therefore repr3sent systems which have one stable and one 
unstable focus (or node) .and one saddle point. 

correspond to systems which have one simple and one double equilibrium 
state .  On crossing over  into region I, the double equilibrium state  vanishes,  
and on crossing over into region I1 i t  decomposes into two simple equilibrium 
states. 

It is readily seen - 

In region 11, the system has three s imple equilibrium states  whose 

On the other hand, the points of the 

A s  we have established before, the points of the curve (35) other than .V0 

The point MO corresponds to a system with a triple equilibrium state .  
The points of the branch A B  of curve (41) represent  sys tems with one 

multiple focus, and the points of the branch dC represent  sys tems which 
have a saddle point with (r = 0. 
equilibrium state  with 0 == 0. 

plane. 

tions. 

Finally, the point A corresponds to a double 

Let u s  now elucidate the position of the equilibrium s ta tes  in the phase 

To this end, w e  consider the isoclines of horizontal and ver t ical  inclina- 
The isocline of the horizontal inclinations Q (2, y) = 0 is the parabola 

Y =I (5 + Y). 

y (zf  y) +z+6 =O.  

(44) 

(45) 

and the isocline of the ver t ical  inclinations P ( s ,  Y) - 0  is 

For 6 = 0 ,  this isoclin'? decomposes into two s t ra ight  l ines  
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If y + 6, (45) is a hyperbola and, for  every 6, the l ines  (46) are i t s  
jymptotes. 

( x ,  y) = 0 for a fixed y = yo > 
Figure 196 shows the isocline Q (z, y) = 0 and the family of the isoclines 

X=-% 4 + I -  
b 

FIGURE 196. a) 6 > yo ;  b) d E yo; c) 8 < yo. 

On the isocline of the horizontal inclinations - the parabola y = (x  + y )  5 - 
nodes and foci alternate with saddle points (by the Poincare' theorem, 823.3, 
Theorem 36) .  Since out of the possible three equilibrium states ,  two are 
nodes o r  foci and one is a saddle point, the two extreme equilibrium states  
on the parabola a r e  nodes or foci, andthemiddle s ta te  is a saddle point. 

saddle point changes i t s  stability on crossing over  from IIb into II', i .e . ,  
which of the s ta tes  has  a = 0. 
constant sign for this equilibrium state. Consider the equilibrium state  
0, with the least  abscissa .  It is readily seen that its ordinate vi is always 
grea te r  than -1, since 0, is the intersection point of the parabola with the 
branch of the hyperbola extending above the asymptote y = - 1 (Figure 196). 
Thus, y1 + 2 =- 0, i.e., only the focus with the la rges t  abscissa  may change 
i t s  stability. 

Let u s  now establish which of the two equilibrium states  that are not a 

Since a = - y - 2, I/ f 2 cannot re ta in  a 

* If y < 3, cp ( y ,  d) > 0 (see (35)) and system (35) has one equilibrium state for a l l  6. 
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Let u s  now consider the existence of l imit  cycles  for  system (31). 
W e  wi l l  f i r s t  show that on passing from branch AB of curve (41) into 

region II', the multiple focus will c rea te  precisely one limit cycle, which 
w i l l  be unstable. 

Using the s a m e  substitution of variables as before, i.e., displacing the 
origin to coincide with :he multiple focus, w e  obtain 

(42) dY E = x +- (y- 6)  Y -XY, dt = (26- 3y) x- Y +x2. d t  

To determine the character  of the equilibrium state, l e t  u s  find the value 
of a3 (see S24.4,  (76)). 
the sign of the rat io  

Computations show that the sign of a3 coincides with 

36-4y 
26-3y ' 

(47) 

We thus have to determine the sign of this expression at the points of the 
Consider an auxiliary straight line curve A B .  This can be done as follows. 

56-8y = 0, (48) 

It is readily seen that which joins the origin with the point -4 ( 5 4 0 . 8  v5). 
the branch dB of curve (41) and the half-l ines 36 - 47 = 0 and 26 - 3y  = 0 
located in the first quadrant l i e  on the two s ides  of the line (48). 
Expression (47) thus has  the s a m e  sign on the branch AB and on the s t ra ight  
line (48). On the line (48) this expression is positive. Hence, as > 0.  
Then, according to the table at the end of §25.3, the multiple focus is 
unstable and its multiplicity is 1; on crossing over  into region IIb,  it be- 
comes stable and crea tes  a single unstable l imit  cycle. 

Let u s  now isolate cer ta in  regions in the parameter  plane which c o r r e -  
spond to systems without closed paths (in par t icular ,  without limit cycles) .  

Consider the straight line x+y=O. 
that for  6 = y  this line is an integral  curve.  

contact. 

touch this line. 

W e  see  from the f i r s t  equation in ( 3 1 )  
If 6 # y a  i t  is a line without 

Indeed, for x =  - y  andd#y,  d + - d - y # O ,  i .e.,  the paths do not dt - 

Take Dulac's function in  the form 

This gives 

This expression reverse5  its sign on the straight line 

z=6--2y. (51) 

Hence, by Dulac's cr i ter ion,  i t  follows that every closed path of system (31) 
c ros ses  the line (51). 

integral  curve.  
For 6 = y the line (51) coincides with the line x + y = 0, which is an  

Therefore, in this case the system has  no closed paths. 
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For  6 ( y ,  the line (51) passes  to the left of the line x + y = 0, and all 
the equilibrium states  of the system lie to the right of this line (this can be 
checked if  we remember that for 6 y ,  the isocline Q ( x ,  y) = 0 (the parabola) 
may only intersect  the right branch of the isocline P ( x ,  I/) = 0 (the hyperbola), 
i .e . ,  the branch which extends to the right of the line x + y = 0; 
Figure 196c). 
line (51) in  virtue of Dulac's cr i ter ion.  
path should enclose at  least  one equilibrium state .  
path should intersect  the line without contact x + y = 0 at least  at two points, 
which is impossible. 

We have thus established that for  6,(y the system has  no closed paths. 
We w i l l  now show that systems corresponding to the points of region I 

see  
Every closed path of the system should c r o s s  the straight 

On the other hand, every closed 
But then the closed 

(i.e.,  systems with one equilibrium state)  do not have closed paths e i ther .  
For  6 < y ,  this has been proved above. Let 6 > y .  In this case,  the 
equilibrium state  of the system is the intersection point of the parabola y = 
= x ( x  + y )  with the branch of the hyperbola P ( x ,  y) = 0 which extends to the 
left of the line x + y = 0 (see Figure 196a), while the line (51) passes  to the 
right of the line x + y = 0. 
should c ros s  the integral  curve x + y = 0, which is impossible. 

( 3 5 ) ,  cp ( y ,  6) = 0, i.e., the systems with multiple equilibrium states .  
line (35) consists of two branches (36) and (37)  (Figure 195). 
seen that 6 < y on the branch (37) (and in particular a t  the point M o ) .  
Therefore systems corresponding to the points of this branch have no closed 
paths.  
the region 6 > y have one structurally stable state - a stable node or focus - 
and one double equilibrium state  with zero Poincare index. 
seen (see Figure 196a) that the line without contact x + y = 0 passes  between 
the focus (or the node) and the line (51) in this case .  
Dulac's cri terion, no closed path enclosing a focus may exist. 
the closed path should enclose the double equilibrium state, and this is 
impossible because i t s  Poincare' index is zero.  

Multiple equilibrium states  corresponding to the points of curve (3  5) 
can be investigated using the resu l t s  of QT, J 2 1  and J 2 2 .  
(Figure 195) is found to represent  a system with a degenerate equilibrium 
state, and point Ma a system with a stable topological node of multiplicity 3 
(we have indicated this before).  
represent  systems for  which the double equilibrium state  is a saddle-node. 

It is readily seen that a system with a saddle-node cannot have paths 
forming a loop which goes to the saddle-node both for  t -c - cw and t - c  + 00. 
This  is proved in the s a m e  way a s  the absence of closed paths. 

The dynamic system corresponding to this point has  no closed paths and no 
paths forming a loop, as w e  have seen just  now. Moreover, this system 
has  no multiple foci (a # 0, since So does not coincide with the point A ) .  
But then w e  can show that dynamic systems corresponding to points 
sufficiently close to So do not have closed paths either (there is "nowhere" 
these paths can be "created" from; the r igorous proof of this proposition is 
left to the reader ) .  In particular,  systems corresponding to the points 
sufficiently close to So in region 11, i.e., systems with three equilibrium 
states ,  have no l imit  cycles and no closed contours consisting of paths. 

Therefore,  if there  exis ts  a closed path, i t  

Let u s  now consider the systems corresponding to the points of the line 

It i s  readily 
The 

Systems corresponding to the points of the branch (36) which l ie  in 

It is readily 

Therefore,  by 
But then 

The point A 

All the other points of the curve cp (3, y) = 0 

Now consider some point So on the segment A D  of curve (35) (Figure 195). 
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Consider the point S, which is sufficiently close to So in-IIa and point SZ 
which l ies  in IIb below the straight line y = 6 .  Let 3, and S, be the d,vnamic 
systems corresponding to these points. Since neither system has  closed 
paths and closed contours consisting of paths, their topological s t ructure  
is determined unambiguously. 

It has  one stable node or focus, one unstable node or 
focus, and a saddle point. Since the infinity is unstable, the two a- 
separa t r ices  of the saddle point go to a stable focus.' 
(or node) c lear ly  lies inside the closed curve formed by the a-separatr ices ,  
one of the o-separatr iceu of the saddle point goes to this unstable focus 
for t +  - 00, and the other goes to infinity. 
s t ruc ture  i s  shown in Figure 197. 

Let u s  prove this fact. 
I. System $. 

The unstable focus 

The corresponding topological 

FIGLIRE 197 FtGCRE 1'?8 

SI. System s",. It has  two stable nodesor  foci. 'The two o-separa t r ices  
of the saddle point go to infinity for  t +  - 00 and separate  the a -separa t r ices ,  

which go to the foci for t +  + 00. 
result ing topological s t ructure  is shown 
in Figure 198. 

which are not c lose to So, but for  which 
we nevertheless have 6 > y.  
establish the possible configurations of 
the separa t r ices  of the sys tems c o r r e -  
sponding to these points, consider the 
isoclines of the horizontal and ver t ical  
inclinations, i.e., curves  (32). These 
isoclines .partition the plane into regions 
in which x and y re tain a constant sign 
(Figure 199). 

Since 6 > y ,  one of the equilibrium 
s ta tes  (0, on Figure 199) lies to the left 
of the line z = - y o ,  and the other two 

IXe 

Now consider the points of region I1 

To 

FIGL'RE 1'23 

equilibrium states ,  O2 and O,, lie to the right of this line (Figure 196a). 
equilibrium state  O2 is a saddle point, and O3 is a stable focus or node. 

The 
It is 

' They form a closed line conwt ing  of paths, but these paths a re  not a continuation of one another. 
w t  said above that the system had no closed contours consisting of paths, we meant contours of the type 
ol limit continua. 

When 
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readily seen that the four separa t r ices  of the saddle point 0% enter  - as t 
increases  or decreases  - into four of the previously identified regions 
adjoining the point 02 (this can be shown by the same technique as that 
used to classify the saddle point: see  QT, 57.3). The following propert ies  
can also be established without difficulty: 

The separatr ix  located near  the point O2 in the region where 3: < 0, a; < 0 
is an o-separatr ix .  We designate i t  L:. As t decreases ,  it ei ther c ros ses  
the isocline of horizontal inclinations and leaves the region where 

(i.e., i t  c ros ses  the cycle without contact of the system). 
< 0, 3; < 0, or i t  does not leave this region, going to infinity instead 

The separatr ix  L; issuing from the saddle point Oz into the region where 
> 0, y 0 c ros ses  the isocline y = x ( x  + y )  with increasing t and en ters  into 

Indeed, if  the separatr ix  L; does the region where x > 0, I/ > 0 (F ig t r e  199). 
not leave the region where x > 0, y < 0 ac ross  the parabola, i t  should go to 
the equilibrium state  Oi. 
point O2 is located below the point 01, and in the relevant region g -= 0, i .e.,  
y decreases  along L;. 

x = 6 - Zy, passes  to the right of the line without contact x = - y .  
case,  a closed path, if i t  exis ts ,  may not enclose the equilibrium state Os, 
and it  only may enclose the focus (or the node) Ol. 

pr ior i  possible for  the systems being considered (i.e., sys tems with three 
equilibrium states  and 6 > y ) :  

the separatr ix  L; either goes to a stable node or focus Oi (as  for 6 < y ), or  
goes to a stable or semistable l imit  cycle encircling the equilibrium 
state  0% (Figure 198). 

2 )  The separatr ix  L; goes to a stable node or focus 0,, forming a closed 
curve together with the separatr ix  L;, which encloses the separatr ix  L:. 
The separatr ix  L: goes to an unstable node o r  focus O$ o r  to an unstable (or 
semistable) cycle encircling the equilibrium state  Oi (Figure 197). 

3 )  The separa t r ix  L; merges  with the separatr ix  L: to form a loop 
(Figure 204). 

Arguing as before, we can show that i f  configuration 1 (configuration 2 )  
is observed for  cer ta in  values of the parameters ,  the same configuration 
is retained for  all close values of the parameters .  

a r e  possible for  different values of the parameters .  

the existence of cer ta in  values of the parameters  for  which the separatr ix  
extends between saddle points. On every continuous line joining a point of 
the type Sf with a point of the type Sz there  evidently exis ts  a point S, which 
represents  a system with a saddle-to-sad 
that region I1 contains a t  l eas t  one continuous line r which passes  between 
the straight line 8 = y and the branch A B  of curve (41), whose points 
correspond to dynamic systems with a saddle -to-saddle separatr ix .  

We can now investigate the topological s t ructure  assuming, as before, 
that no closed paths form from path condensations and that all the points 
corresponding to systems with a separatr ix  loop form a non-closed line r 
(extending between the branch AB of curve (41) and the line 6 = y 
(Figure 200)). 

This is impossible, however, since the saddle 

W e  a r e  dealing with the case  when 6 > y ,  i.e., when the straight line (51), 
In this 

It follows from the above that three configurations of separa t r ices  a r e  a 

1) The separatr ix  L: goes to infinity ac ross  a cycle without contact, and 

A s  we have seen before, however, both configuration 1 and configuration 2 

Thus, reasoning precisely as the previous example, w e  wi l l  establish 
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branch A D  of the curve q = 0 (other than the 
point A )  have a stable node or focus and a 
saddle-node with an unstable node region. 
Their topological s t ruc ture  is shown in 
Figure 202. 

w e  obtain sys tems with one stable and one 
unstable node o r  focus, whose topological 
s t ructure  is shown in Figure 197. 

E 

On passing from branch A D  to region 11, I p 
r / ,  The topological s t ruc ture  of the sys tems 

on the line A D  is analogous to the s t ruc ture  

On r8 the l imit  cycle vanishes,  a f te r  "being swallowed up" by the loop 
of the separatr ix  which originates and terminates  in the saddle point O?. 

The topological s t ruc ture  of the system is shown in 
Figure 204. 

In region 3 3  (Figure 200) ,  the separa t r ix  loop 
breaks up and the system acquires  the topological 
s t ruc ture  shown in Figure 198. 
sponds to a dynamic system with a triple equilibrium 
state. It is a stable node, and the topological s t ruc -  
ture of the system is the s a m e  as in Figure 201. 
Finally, the dynamic system corresponding to the 
point A has a stable focus and a degenerate 
eq.iilibrium state .  
shown in Figure 205. 

The point M,,corre- 

Its topological s t ruc ture  is 

@ 
FIGURE 203. 

457 



Ch.XIV. APPLICATIONS OF THE THEORY OF BIFURCATIONS 

FIGURE 204. FIGURE 205. 

W e  should emphasize that the preceding analysis was carr ied out using 
fairly a rb i t r a ry  simplifying assumptions, whose validity i s  by no means 
certain.  

E x a m p 1 e 17 (the creation of a limit cycle f rom a closed path of a 
conservative system). 

Consider a system 

which a r i s e s ,  in particular,  in connection with a tube generator operating 
in the "soft mode" (see / 6 / ,  p. 703) .  
a, p,  y a r e  meaningful, and we will therefore take in our analysis u ==. 0, 
B > O , Y > O .  

Only positive values of the parameters  

System (52) may be considered for small  p a s  being close to the 
Hamiltonian system I 

I 1 where H (5, y) = T (x' + ye). 

a t  the origin. 
Since (53) is a l inear conservative system, we may investigate system 

(52)  using Theorem 75 (§33 .2 ) ,  o r  the more  general  Theorem 78. 
use Theorem 78 here ,  a s  it also provides an indication of the stability of 
the created l imit  cycle. 

The paths of system (53) a r e  c i rc les  centered 

We wi l l  

Let 

(54 )  x =  pi cos t ,  y = pi sin t ,  

where pl>O. be a closed path of system (53), and Go the ci rc le  enclosed 
within this path. Let u s  evaluate the integral  

(see (B,) in the statement of Theorem 78). We have 
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Therefore,  condition (74) of Theorem 78 (S33.4) is satisfied if and only if 
7 P,= iV / ,  5.r 

(we a r e  evidently concerned only with positive p,) .  
Let us  compute the value of 1 for  this pi (§33.4, (75)). 

I = 1 ~pix (p lcoss ,  p,s ins)+-qi , (plcoss ,  p,sins)lds= 

W e  have 
.ox 

0 
2.T 

I 
2 

1 

= 1 (a '7 Bpi cos s - yp: cos? s) ds = 2 x 2  - ypi2n 1 

Y 

0 

- 2za -T y .2rr. * = 2xa ( 0 .  

Applying Theorem 78, we conclude that the closed path (c i rc le )  

of the l inear  conservative system (53) c rea t e s  - on -7.ssing to system(52)  - 
a s t ructural ly  stable l imit  cycle which is stable lur p > 0  and unstable for  
P<O. 

Ex a m p 1 e 18 (a system close to a l inear  conservative system).  
Consider the system 

This is a system of type (B,) (§33.2), and here  

p ( x ,  y, p) .= 0, p ( x .  y, p) = 'ly +By* i vu3 + 6y'- Eyj. 

R e r e f o r e ,  by (47), §33.2, 

2s 

$ (21; po, 0)  = (ape sin e +- BpZ sin2e yp3 sins 6 .+ 
0 

I$ (2n: p,,. 0) depends only on the parameters  a,  y, and E .  

system x = - y, y = x corresponding to the nonzero roots  of the equation 
$ (2n; PO, 0) = 0. 
a ze ro  root a l so  (provided such a root exis ts) .  p o  = 0 corresponds to the 
equilibrium state  0 (0. 0) of the system x = - y. y = 2. 

Thus, sett ing po = 0, we are in fact dealing with the creation of a l imit  
cycle f rom an  equilibriurn s ta te  0 (I). 0 )  of a l inear  conservative system. 
For smal l  p, the point 0 (0, 0) is a focus of sys tem (56), which is stable for  
pa < 0 and unstable for va > 0 .  
f rom the equilibrium state 0 (0, 0) when w e  change over  from the l inear  
system to system (56) with a smal l  p is not a closed path ( i .e .> not a l imit  
cycle). but r a the r  the equilibrium state  0 (0, 0) itself. 

In §33.2 w e  considered the creation of l imit  cycles  f rom the paths of the 

The argument of that section, however, remains  valid for 

Therefore,  the periodic solution created 
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Let u s  investigate the nonzero roots of the equation 

(58) 3 5 rcI (2G Pot 0) = nP0 ( a  + 7 yP:-@) =o, 

taking y > 0, e > 0, and assuming that a may take on both positive and 
negative values (this corresponds to the physical conditions of the actual 
problem associated with this system; see f 6 f a  Chapter IX, §lo) .  

As w e  have seen 
above, for a # 0, the equilibrium state 0 (0, 0) of the original system may 
not create  a limit cycle. 

Setting in (58) 

W e  should consider only the positive roots of (58). 

3 5 p a = r ,  a y = a ,  T e = b  

and dividing through by np,, we obtain 

a + a r -  bra = 0, 

the roots of this equation being a* F. 
If a < 0 and aa+4ba < 0, equation (59) has  no r e a l  roots .  
If, on the other hand, a < 0 and aa + 4ba> 0, the two roots  of equation (59) 

a r e  positive. 
spond to two limit  cycles created from the closed paths of the original 
l inear system. 
a r e  satisfied and, by this theorem, the system has no other closed paths in 
a sufficiently small  neighborhood of 0. 
0 (0, 0) is a stable focus for a < 0. 
created (namely, the inner cycle) is unstable, and the outer cycle is stable. 

Therefore,  equation (58) has  two positive roots  which c o r r e  - 

It is readily seen that the conditions of Theorem 76 (S33.2) 

If p > 0, the equilibrium state 
Therefore, one of the l imit  cycles 

I 

C 

FIGURE 206 
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Between the (negative) a for  a* $- 4ba < 0 and those for  which a* + 4ba > 0, 
w e  have one value a = a* = - $.c 0 for  which a= +- 4ba = 0 .  

corresponds to a single positive root p: of equation (37 ) .  
that $A (2%; p:,O)= 0; therefore the theory of 5 3 3 . 2  is inapplicable to this case 
(see r emark  to Theorem 75, 5 3 3 . 2 ) .  It is readily seen, however, that the 
closed path of sys tem (56) corresponding to this p i  is a double l imit  cycle 
which separates  into two  l imit  cycles - a stable and an  unstable one - a s  a 
increases .  

A s  a is fur ther  increased and passes  through zero,  the unstable limit 
cycle contracts to the equilibrium state ,  which becomes stable for a > O .  

Figure 206 ,  a - d, shows the path configurations of sys tem ( 5 6 )  c o r r e -  
sponding to the cases  a <a*, a = a*, a* < a < 0, a > O .  It is assumed that 
p > 0 is sufficiently smzll .  

cycle from an equilibricm state  of the type of a center cannot be solved 
with the aid of the sufficient conditions of 5 3 3 . 2 .  
only prove the existence of an equilibrium state  p = 0 for  system (B&). 

Investigation of the nonzero roots  of the equation 9 ( 2 ~ ;  p, p) = 0, which 
go to zero for  p -+ 0, may naturally shed some light on the problem of 
creation of a l imit  cycle from a center-type equilibrium state  of system 
(Bo). Note that the solution of the equation 9 (2n; p, p) = 0 corresponding 
to this limit cycle should be sought a s  an expansion in fractional, and not 
integral, powers of p, and, in the simplest  case,  a s  an expansion in powers of 

This value 

Calculations show 

R e  m a r k  . It is readily seen that the problem of the creation of a l imit  

Indeed, these conditions 

6. 
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APPENDIX 

1. Theorems of the continuous dependence of the 
solutions of a system of differential equations on the 
right -hand s ides  and of the differentiability of solutions 

Let 

-= r k ( t ,  x i ,  "'2, . . . , xn), k=l, 2, . . ., n, (A) 

be a system of differential equations defined in region G of the (n + 1)- 
dimensional space.  
tinuous par t ia l  derivatives of f i r s t  o rder  with respect  to the var iables  

Let PI be continuous functions which have in G con- 

51, 1 2 ,  . . ., Xn . 
Together with (A), we consider a modified system 

d z k  - 
-= dt  P k  ( t ,  5 1 ,  . . . t Zn) = Pk (tit 51, . . . I sn) + p k  It19 51, 52, * . ., Xn), (A) 

where P k  and hence the "increments" 
conditions as the function Pk (k = 1, 2, . . .. n). 
system dependent on a parameter ,  

a r e  functions satisfying the same 
If we are dealing with a 

the transition from the value po of the parameter  to another value p cor re -  
sponds to a transformation from system (APO) to a modified system (A,,), 
and the increments a r e  the functions 

h = p k  ( t .  5 1 9  x2, * . Y  xnv p ) - P k  ( t ,  51, 521 * . . v Xn, Po). 

The situation is completely analogous for  a system dependent on several  
parameters .  

right-hand sides of the equations). 
T h e o r  e m 1 (theorem of the continuous dependence of solutions on the 

Let 

Xk=(Pk(t;tO,XioIXzo, ..., X n o ) = ( P k ( t ) ,  k = l ,  2, . . e )  n, (1) 

be the solution of system (A) satisfying the initial conditions 

P k  %l, %Oi . . . I G O )  = c k g  (2 1 
which i s  defined f m  all t from the interval (7, T ) ,  where r c t o < ~ .  Let, 
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further 
- 

:rA = ' P A  ( t ;  t o ?  TlOt XZO, . . t %;to) = (PA ( t )  ( 3  I 

be the solution of syste?m ( A )  satisfying the same initial conditions. Then, 
f o r  any + I  and ~ 2 .  T < T ~  < ~ , < T ~ < T ,  and any e > O ,  there exists a>Osatis-fying 
the follozoing condition: if I PA ( t ;  t l ,  x2,  . . . , I,,) I < 6, k =  1, 2, . . . , n ,  solution ( 3 )  
is  defined for all 1 ,  T, G: t 4 T ~ ,  and f o r  ecery t from this interval we have 

1 (Fk ( t ;  ZIO. I?,, * - 7 I n O ) - ( F k  ( t ;  t o ,  1 1 0 .  I?o* . . . Xno) I < E .  i 4 )  

P r o o f .  The same reasoning can be 

Let GI be a closed bounded region completely contained in  G, which is 

W e  will only consider t E It,, ~ ~ 1 .  
applied to t E  IT^, tole 

convex in a l l  the coordinates I ,  ( i  = 1. 2, . . .. n)  and contains the par t  of the 
integral curve (1) corresponding to t E [ to, ~ ~ 1 . : '  
this par t  of the integral curve (1) to the boundary of GI (evidently, p ,  > 0). 
Since El is a bounded closed region, the following inequalities are satisfied 
at ei 'ery point J I  ( t ;  I + ,  r2, . . .. zn) of this region: 

Choose some fixed E > 0. 

Let po be the distance of 

I pix ,  ( t i  11. 12. . . . , ~ n )  I < B. (5) 

where B > 0 is a constant. 
Let 

(6) 
- 

Ek = '?k ( t ;  to*  IO, x?oo, . . . * XnO) ( t i  t o ,  I ? o ,  . . . , X n o ) .  

The functions E k  are defined for  all t for  which the functions <k and (Fk are 
a pr ior i  defined. 
c lose to to. For t = to, Ek = 0. 

They are therefore a p r io r i  defined for all t sufficiently 
Clearly, 

- -  - 
-PA ( t ;  '?I, (F?. . . . ? (Fn) T Pk ( t ;  T I ?  'P?. , . ., (Fa) = 

= 3 P h x ,  ( t i  q k l -  qk?. . . . * f l k n ) E t  7 P A  ( t ;  ' P I .  ( F z .  . . . t (Fn). 

n - -  - - -  
( 7 )  

i = 1  

where the point ( t :  &, GI:, . . . , &,) lies on the segment joining the points 
( t ;  91, $ 2 ,  . . . . Tn) and ( t l ;  ql ,  Q. . . . . (Fn). c -  

Consider an auxiliary differential equation 

where c = u ( t )  is a function of t ,  and 6>0 is a constant. 
equation satisfying the #condition v ( t o )  = O  is 

The solution of this 

(9 i 6 - [ e n B ( f - - t o ) -  11. 
B 

Convexity in  all the coordinates ri indicates that q, together with any pair of its points M ( t ,  zI.  x?,  . . ., z,,) 
and M' ( t ,  si, . . ., rk) ,  also contains the entire segment MM'. 
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(10) 
6 0 < v ( t )  < [enB(r*-to) - 11 

and v' ( t )  > 0. 

Let e * =  min {e, $}. For b>O we choose any number satisfying the relation 

(11) 

v ( t )  < e*. (12) 

6 [enB(ra--lo)-ll ce*. 

Then, by ( lo) ,  for a l l  t ,  to<t<zz ,  

W e  w i l l  now show that the 6 chosen in this way satisfies the proposition of 
the theorem. 

Let 

I Pk (ti  5 1 3  221  . . . Y  zn) I < 6 .  (13) 

Suppose that the point ( t ,  Gt, &, . . .. q,,) and therefore the ent i re  segment 
joining i t  with the point ( t ,  qi, VZ, . . ., Vn) a r e  contained in Gi.  
and ( 1 3 )  we then have (since ( t ,  &, . . . , ;)"Rn) is a point of the relevant segment) 

- 
By (7), (5), 

' 

I % l < B i I S * l + b .  i= i (14) 

This inequality is a pr ior i  satisfied for all t sufficiently close to to .  

For t= to .  Ei=O. Therefore, for t sufficiently close to to, 1$l<b, and hence 

1% I < na. 

On the other hand, for  all  t E I t o .  TZJ, 

v' ( t )  = nBu + 6n >/ n6. 

It follows from the las t  inequalities that for a l l  t sufficiently close to 
t o  ( t  2 t o ) ,  

?*(T~ o r  it is defined for a l l  t E  [to, tz ] ,  but for  some t h this segment a t  
least  one of the inequalities 

I &k ( t )  I < e, (16) 
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and hence a t  least  one of the inequalities 

IEA ( t )  I <e* (17) 

is broken. 

corresponding point of the integral curve z1 =Gi ( t )  lies outside Gl (this 
follows from QT, Appendix, S8.1, Theorem A’). Then i t s  distance 
from the point ( f ,  cp,(t), t p z .  . . ., cp,(t)) in G, should be greater than po, i.e., 
p ’ E 1 ( t ) * + .  . . +En( t )*>po .  This is possible, however, only i f  for some k, 

[ E k ( t ) l > % . > e * .  n u s ,  :.n e i ther  case, for  some t*, to<f*<T, ,  and a t  least  

for one k, 1 Q k g n ,  w e  have the inequality I z k  ( t*) 1 >e*, and hence, by (12), 

I Ek ( t* )  1 > v ( t ) -  (18) 

On the other  hand, by (15), f o r  a l l  t sufficiently c lose to to and for all 

In the former  case, there  ex is t s  t, f o < f < T * < T 2 ,  for  which the 

i = 1 ,  2, . . . ,  n, we have 

I Et ( t )  I < 27 ( t ) .  119) 

It follows f rom (18) and (19) that the interval of t values where the two 
solutions cpt(t) and G t ( t )  a r e  defined contains a point tl, t0<t,,<.r2, which 
sat isf ies  the following conditions : 

(a) for  all t ,  to<t< ti, and for  all i = 1 ,  2, . . ., n, 

I E i  ( tJ I Q ( t i ) ,  (21) 

1 Ek (ti) I =U (ti). (22) 

and a t  least  for  one of these i, i = k  say, 

From (a) and (b) and inequality (12) ,  i t  follows that f o r  tE[to,  ti] 

VE1 (t)’ + ( t ) S  + . * . + En (t)’ c P i =  c /qg < Pa- 

i.e., the par t  of the integral curve rt=Gi(t) corresponding to t €[ to ,  t ! ]  lies in 
ct. 
w e  have 

Then, by (7) and ( 8 )  and in vir tue of the assumption I p h I < 6 ,  k=l, 2, . . .. n, 

i.e., I E k ( t l ) I < u ( t l ) r  which contradicts (22). 
theorem. 

right-hand sides and initial values). 

This contradiction proves the 

T h e o r e m  2 (thecn-em of the continuous dependence of solutions on the 
Let 

X A = T A ( t ,  tO,xl0? x20. - - * I  % O ) = ‘ F A ( t )  (‘p 1 
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be the solution of system (A) corresponding to the initial values tor 
xi0,  xZ0, . . ., xno , which is defined in the interval ( T ~ ,  T),  and 

- the solution of system (A) corresponding to the initial values To. Zlo, &,. . . ., x,,~. 
Then, f o r  any T~ and z2, r0 <q < t < 72 < T , and any E > 0, there exist 6 > 0 and 
q > 0 which satisfy the following conditions: if 

( P k ( t . x l , X Z , . . . , x n ) l < 6 ,  k=i, 2, . . , n ,  

and 

lG-tol<q u I.z*o-xItoI<?l, i = 1 ,  2, . . ., n, 

the solution (G) is defined f o r t ,  T , < ~ = S T ~ ,  and for every t f rom this interval 

I $ k ( t ) - ( P k ( t ) I < E  (k=i, 2, . .  ,n). 

P r o  o f of Theorem 2 is readily obtained if we change over in (A) to the 
variables T and z k  defined by the equalities - 

t = 'c - t o  + 10, xk = Zk-PhO f xko, 

and apply Theorem 1, using the compactness of the segment ITl, r z l  and the 
fact that the solution(q) is defined on a segment [-cl-u, r2fu], where u is some 
positive number. 

t ,  t o ,  XIO. PZO, . . .. G O ,  with the functions cpk(t ,  to; xlO, xz0, . . .. xno) defined every-  
where in this space. For every E > O ,  there exist  6 > 0  and q > O  satisfying 
the following I conditions: if ( p k ( t ;  xi, x2, . .  ., Z ~ ) ~ < ~ ~ ~ ~ ' - - ~ " ~ < T J  I to -& l<q ,  
~ x k o - x h o ~ < q  a_nd_the point ( t ' ,  to; xi, . . ., &)Ea, the functions (P,+ a r e  defined a t  
the point (t", to; %IO, . . . , Xno) and 

C o r  o 11 a r y 1. Let $2 be a compact set  in the (n+2) -dimensional space 

- 
c c -  - I (Pk (t", t o ;  110, . . . 7 2 8 ~ 0 )  - ( P A  (t'. t o ;  . . . , Xno) I < E 

@ = = I ,  2, ..., n). 

Corollary 1 follows from the previous theorem. 

C o r o l l a r y  2 .  For a system 

It is proved again by 
reductio ad absurdum, and the compactness of Q is used. 

whose right-hand s ides  a r e  functions of c lass  1 in 1 ,  x,, xz, . . ., x,,, and 
continuous functions of the parameter  p. the solutions 

a r e  continuous functions in a l l  the variables for a l l  those values of the 
variables for which they a r e  defined. 

Corollary 2 follows directly from Theorem 2. 
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pu’ow let the functions Pk and entering the right-hand s ides  of (A) and 
(A)  be functions of c l a s s  r >  1. In this case, the solutions ( F k  ( t ,  to; rlo, q0. . . .. 
. . . . % o )  , for  all the values of the var iables  for  which they are defined, have 
continuous (in all the vzr iables)  derivatives: ( a )  to o rde r  r -+ 1 with respect  
to t ;  (b) to o rde r  r with respect  to all the var iables  rio; (c)  to o rde r  r + Z 
with respect  to all the var iables ,  provided i t  contains a t  l eas t  one differentia- 
tion with respect  to t (see QT, Appendix, §8.3, Theorem B”). 
proposition applies to Cp,%. 

An analogous 

T h e  o r  e m  3. Let &he solution ( q )  of system {A) be defined for all 
t c (T~, T ) ,  and let ro < T ]  < f < T~ e T .  Then, for ecery e > 0 ,  there exist 
6 > o and r) > o satisfyingthefollowingconditions: if (A) is 6-close to rank r 
to \A)  and if I io - to I < ‘1, I ii0 - x i 0  I < q (i = i ,  2, . . ., n) the solution (Cp) is  
defined for all t ,  rl .<t<rt . ,  and for these values of the variables 

i ot ‘  oFI* Gj5 . , . &b 
- - _  - 

d ’ ” g r ( t .  ’,). r10 ,  . . ., 1~0) -  a v ~ ( t ,  to ,  r l ~ .  . .., r n o )  1 < E ,  
rjti d t i o  cis::, . . . ark ( 2 3 )  

i t i , + i , - t  . . . -  i i , = m s r f l ,  i,+z?+ ...+ i n < r .  

P r o o f  . The part ia l  derivatives of the functions fFk sat isfy the following 
sys tem of differential equations 

with the initial conditions 

(see QT, Appendix, §8.3) .  
part ia l  derivatives of the functions (Pk. 
fo l lows  f r o m  Theorem 2 ,  when the la t te r  is applied to system (24) with 
initial conditions (25). 

of some parameter  p. i.e., sys tems of the form 

The s ipa t ion  is anaiogous with respec t  to the 
The validity of Theorem 3 directly 

Consider the case when the right-hand s ides  of the sys tem are functions 

(A,) -- ‘Jft“ - P k ( t ,  21, Z:, . . ., Znr p) ( k =  1, 2, . . ., n). 

The functions P R  are defined for  all p, pi < p < p2,  everywhere in some 
region G of the (n T l)-dim?nsional space t ,  z,, x 2 ,  . . .. zn. These functions 
are assumed to be continuous in all their  arguments  and to have continuous 
par t ia l  derivatives with respect  to a.  I?, . . ., a;, and p to o rde r  r inclusive. 

Let 

( 2 6 )  x R L v k ( t t  !o.Zio. . . . , X n o , p ) .  k = Z , 2 ,  ..., 11, 

be a solution of (Au). 
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Applying this formula to the function ~ ( t ) = f ( t z ,  t y )  and taking t=  1, we find 

k - - l  

The last  t e rm in this equality is designated Q * ( I ,  y). Clearly, 

The coefficient before i-"ya in the last expression is a continuous function 
of I and y. W e  designate i t  g, (I, y). Let 

and 

P: (0, 0) = 0. 

Inserting (4) and (5) in (3), we obtain equation (l), where 

Po (I, Y) = f (0, 01, 

k 

*=O 
pk (I, y) 2 &?a (0, 0) 

and 
k 

*=O 
p* (I, .I) = y lg, (I, Y) -gu (0 ,  0)l i - a y o .  

The theorem is proved. 
of n variables.  

A s imi l a r  proposition clear ly  applies to functions 

3. 
closed curve 

The lemma about the normals of a simple smooth 

Let Lo be a simple closed curve defined by the equations 

z=(F(s), y=*(s) ,  

where g, and * a r e  periodic functions of period T. 
a r e  functions of the second class ,  and that g,' (s) and 9' (s) do not vanish 
simultaneously for any s. 

We assume  that cp and $ 
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Through each point M (9 (s), 9 (s)) of the path Lo we draw a normal to the 
path a t  that point and lay off segments of the length 6j/rp’ (s)l + *’ (s)’ on either 
side of the point M. 

L e m  m a  1 .  If 6 > 0 is  sufficiently small, no two segments of navmals 
drawn through dgferent points of the curve Lo intersect. 

P r o o f  . Since Vrp‘ (s)l + q’ (s)l is bounded from above, i t  
the lemma under the assumption that segments of length 6 a r e  laid 
off all the normals.  Moreover, i t  suffices to consider the case 
when these segments a r e  laid off on one side of the curve Lo(either 
all inside the curve or all outside the curve).  We assume that both 
these conditions a r e  satisfied. Let the proposition of the lemma be false. 
Then there exis ts  a sequence of numbers 6, -+ 0 (6, > 0) and a sequence of 
pa i r s  of points P n ,  Qnof the curve Lo such that the segments of normals  of 
length 6, drawn through the points P, and Qn intersect .  
compact, we may take P, -+ P and Q, -+ Q. where P and Q a r e  points of Lo.  

Since the curve L, is 

Let u s  f i r s t  consider the case when P and Q a r e  two different points. 
Let M ,  be the intersection point of the normal segments through the points 

P, and Q,. Then p ( P , ,  M,),<6,, p(Qn, M,),<6,, and by the triangle inequality 

P (PT Q) < P ( P ,  Pn) + P (Pn, Mn) + P (Mn, Qn) -I- P (Qnt Q )  Q I 
4 P (P, Pn) + 26, f P (Qn, Q) 

(Figure 207).  Since for a sufficiently large n, the right-hand side of the 
inequality is as small  as desired,  whereas the left-hand side is constant, 
this inequality cannot be satisfied. P and Q thus may not be two different 
points, and we have to consider only the case  when they coincide. 

FIGURE 207 FIGURE 208 

We change over to a new rectangular coordinate system, placing the 
origin 0 at the point P (which coincides with Q ) ,  and directing the abscissa  
axis along the tangent to Lo a t  0 (Figure 208). We retain the same notation 
a s  before, i.e., the new coordinates a r e  designated x and y and the 
parametr ic  equations of the curve Lo are s t i l l  x = rp (s), y = * (s). 
rp and 1p a r e  functions of the second c lass  and rp’ ( s ) ~  + rp’ (s)* f 0 for  any s. 

Near the point 0, the equation of the curve Lo is y = f (2). 

Clearly, 

Let the point 0 of curve Lo correspond to the value so of the parameter  s. 
Then 

f’ (2) =a, f’ (0) =o, *’ (so) =o, rp’ (so) p 0. v’ (8) 
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Therefore, near  the point x = 0, the function f (I) has  a continuous second 
derivative f” (I). 

points P,, and 0, intersect  for  every n (here  6, -c 0, P, -f 0,  f& 

.If, (X,,, Yn) be an intersection point, and le t  P, (a,, 6,) and Qn (an, b,). 
a n f a n ,  and for n -+ 0, *e have a,, -. 0, z,, 3 0. b, -+ 0, Kn -+ 0. 

respectively written in the form 

By assumption, the :lorma1 segments  of length S, > 0 drawn through the 
0). Let 

Then - 
The equations of the normals  to the curve Lo a t  the points P,, and Qn are 

- 
X-an = - f’ (an) (y - &), I- an = - f’ (&) (y -&). 

Inserting for  x and y in these equations the coordinates X,, and Y, of the 
point .Cfn and subtracting te rm by te rm,  w e  obtain af ter  s imple manipulations 

- 
YnI / ’ (~n ) - - f ’ (a , , )~=an- -anL(~n- -b , )  / ’ ( G n ) i - b n  [ / ‘ ( Z n ) - / r ( ~ r . ) j .  (1) 

From the Lagrange formula 

/‘ (G) - /‘ (an)  = ( E n )  ( g n  -an) (2 1 

(3 1 
and - - 

bn- 6n = f ( a n )  -t (an) e t’ ( I n )  ( Z n  - a n ) *  

.xhere En and q R  lie between a, and g,, and therefore go to ze ro  for  n -+ a. 
Inserting ( 2 )  and ( 3 )  in ( L )  and dividing through by (&-an), w e  obtain 

I”/” (En) = 1 -7 /’ ( In)  f‘ (an) T bn/‘ ( E n )  

and taking the limit 

On the other  hand, 

Since b, -+ 0 and 6, + 0, we have k*,, - 0. Therefore  

lim IF,/“ (E,,) = 0, 
n-0 

which contradicts (4) .  This proves the lemma.  

4. 
w i t h  respec t  to p 

Proof of the differentiability of the function R ( p .  0) 

&’e will f i r s t  prove an  auxiliary proposition. Let the function /(x, y) be 
defined in the circle x2 - g 2 <  R2 where i t  i s  continuously differentiable with 
respect  to 5 and y to some o rde r  N > 1 ,  and f ( 0 ,  0)=0. 

Consider the function j * ( p ,  0) defined as follows: 

f 8 ( p ,  O ) = p f  i (pcos8,  ps in0)  fo r  p#O. 
(1) 

f* (0, 8) = f ;  (0, 0)  COS 0 +- 1; (0, 0) sin 0. 
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Since by assumption f (I, y)  is a function of c lass  N ,  then for  p # O  and for 
al l  8, f * ( p ,  8) has  continuous par t ia l  derivatives with respect  to p to o rde r  N .  
The next lemma establishes the existence and the continuity of the 
derivatives of the function j * (p,  0) with respect  to p for  p=O.  

then 
L e m  m a  2. If f (x ,  y) is  a function of class N , 1  in the circle 2 + y14R1, 
(a) for every 8, p (p, 0) is continuously dqferentiable in p to order N - i; 
(b) for p +. 0, the function p - goes to zero  ungwmly in e. 

aP" 
P r o o f .  

can be direc 
If f ( x ,  y) is a homogeneous polynomial of degree n 2 1, the lemma 

:tlv verified (it suffices to check the Droaosition for a sinele v 

t e rm of the form 
two functions, i t  is also true for their sum. 
prove the lemma for  the function 

It is moreover c lear  that i f  the lemma is t rue for 
It is therefore sufficient to 

N k 

. .  
k=i q=O 

All the derivative of this function to order  N inclusive vanish a t  the point 
(0,O). Thus, in our proof of the lemma, w e  may assume without loss of 
generality that all the derivatives of the function f ( x ,  y) to order  N inclusive 
vanish at  the point (0, 0) .  If this is so, we have from Taylor 's  formula 

p=o 

where 2 and 7 a r e  numbers lying between 0 and x and 0 and y >  respectively, 
which in general  depend on the point (2, 9). 
coordinates pcose and ps ine ,  we find f (x ,  y)=pNFF,T) ,  where 

Inserting for x and y the polar 

N 

( 3 )  
1 

F ( E ,  q) == ~ g f $ - ~ , ~  (E, q) COSN-P e sinp 8. 
p=o 

Similarly, using the Taylor s e r i e s  of the functionf$)-rv-r,r, 
under the same assumption and remembering that the par t ia l  derivatives 
of the function f (x ,  y) to order  N inclusive vanish a t  (0, O), w e  obtain 

I < g <  N-i, O,(r,<q, 

or 

where 

and zq, and (p, l ie  between 0 and x and 0 and y, respectively.  F ( c ,  q) and 
F,, ( E ,  q) a r e  evidently continuous functions of E, q which vanish at E = q =O. 
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Differentiating the function 

f (I, y) f (p COS 0, p sin 0) 

q t imes with respect  tc, p (i<qP--<S-l) ,  we obtain 

( 6 )  
au dp4 f ( x ,  y) = 2 C{f($rur ( r ,  y) cos+' 0 sinre. 

r=O 

Inserting for  f$!-?#, ($7, y) its expression from (4) and dividing through by 
pN-9. we obtain 

r=o 

- -  
If p 4 0, w e  have x -+ 0. y + 0, .,I. 3 0, Fqr -+ 0, and therefore F,, (I~,, yur) -+ 0. 
The expression 

(7) 
1 I j Q f  (G Y) - p q - N  W!+, Y) 7 op'l OP', 

( 1  < q < X - - l )  thus a l so  goes to zero  for  p-+ 0 (uniformly in e). 
follows from ( 2 )  that the expression 

It fur ther  

(8) 
1 - f (I, Y) = p-"f (5, Y) 

Pv- 

a lso  goes to zero  for p -4 0, uniformly in  8. 
\Ve f i r s t  take p + O  and 

apply the Leibnitz rule  to obtain expressions for derivatives of o rde r  k of 
the function 

Let u s  now prove proposition (a) of the lemma.  

1 f*(p, e ) = p f ( p c o s O ,  psin8)  ( s ee  (I)), where l , < k , < N - l .  

The Leibnitz ru le  gives 

k 
- - ( 2  C ~ ( - ~ ) k - q ( k - ~ ) ! p q - . ~ ~ ) p ~ - k - i .  (9) 

apq 
q=o 

Since (8) and (9)  for p -+ 0 go to ze ro  uniformly in 8, w e  c lear ly  have for  
P 4 0 ,  

uniformly in 8. Moreover,  by (1) and (2), f o r  p-0, 

f'b e) - 0 (11) 

uniformly in  0. 
By (10) and (ll), proposition (a )  of the lemma wi l l  be proved if w e  show 

that f* (0, 6) = 0 and that the function f* (p, 0) for  p = 0 (i.e., a t  any point (0, e)) 
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is differentiable with respect  to p to o rde r  N - 1 and the corresponding 
derivatives vanish. Clearly , 

f *  (0, e) =o 
according to the original definition of the function f* (p, e) (since f; and f; by 
assumption vanish a t  the point (0,O)). 
existence of the f i r s t  par t ia l  derivative with respect  to p of the function 
f* (p, 8)at  the point ( 0 , O ) .  
holds t rue for  p # 0 only. 
directly, as the l imit  of the expression 

Taking N > 1, we wi l l  prove the 

Expression (9) is clear ly  inapplicable, since i t  
We should thus compute the par t ia l  derivative 

The factor in parentheses is (8), which for  p -+ 0 goes to zero  uniformly in 0. 
The l imit  of (12), i.e., the derivative of the function f* (p, 6) a t  the point (0, 6). 
thus exis ts  and is equal to zero.  
derivative with respect  to p of the function f* (p, 6) is continuous a t  p = 0. 

of the par t ia l  derivatives with respect  to p to o rde r  p , < N  - 2 for the 
function f* (p, e) a t  the point (0, 6). 
o rde r  p inclusive) vanish. 

at the point (0, 0) by the direct  techniuue, i.e., as the l imit  of the expression 

By ( lo) ,  we thus conclude that the f i r s t  

Now suppose that we have established the existence and the continuity I 
Then, by ( lo) ,  all these derivatives (to 

Let us  find the ( p  f l)-th derivative with respect  to p of the function f (p, 0) 
. .  . 

P 

Using equality (9) (for k - p , < N - 2 )  and the propert ies  of ( 7 )  and (8), we can 
directly show that the las t  expression goes to zero  for  p+O. 

that the derivative Bp+’”f’’ e) a t  the point (0, e) exis ts  and is equal to zero.  

Then by ( l o ) ,  this derivative is continuous a t  the point (0, e). 
proved proposition (a) of the lemma.  

Let u s  now prove proposition (b). 
= f *  (o. 6) o. Using the Leibnitz rule. 

This indicates 

BpP+ 

We have thus 

For  p p 0 ,  f(+, y ) = f ( p c o s 6 ,  psin6)  = 

For  o -+ 0, the left-hand side cf goes to zero  uniformly in 6 (this follows 

from (6), which is also valid for  q = N ,  and from our assumption concerning 
the function f (z~ g)). The second t e rm on the right in (14) differs f rom (10) 
by a constant factor only, and i t  therefore a l so  goes to zero  uniformly in e 
for p -+ 0. 

uniformly in  8. Q. E. D. 

the system 

B P N  

a N f *  

a P N  
But then the f i r s t  t e rm on the right p - necessar i ly  goes to zero 

Let u s  now proceed with the main proposition of this subsection. Consider 

(15) d+ du x=--PBy+cp(z, Sr)? -;ii-=&+w+cp(x, Y)? 
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where $ # O .  and the functions rp and 9 together with their f i r s t  derivatives 
vanish a t  the point (0,C).  Let 

F ( p ,  8)=cr~+cp(pcos6, ps in8)cmOfg(pcos8,  psin8)sine. (16) 
9 (p cos 8, p sin 6) cos e - ‘P (0 cos 6, P sin f4 sin e } (17) 

P P (I, (P, e) = 

for  p+O and 
(I, (0, e) = 0, 

(18) F ( P -  6) 
R ( p v  e) = p+(0(p, e)  ’ 

L e m wt a 3.  If (1 5 )  is a system of class IV > i and p* > o i s  sufficientljr 
small, the function R (p.  e) has continuous partial derivatives with respect 
to p to w d e r  S inclusive at every point (p, e )  of the region --oo <e< T-oo, 

O,<lpl<p* (Lemma 3, 024). 

rp(pcos8. pctin6) and *(pcostl. ps in6)  
P 0 

I t  is thus c l ea r  that these functions are generated f rom the functions ~ ( 2 ,  y) 
and $(z, y)> respectively, l i k e  the functions f * ( p ,  e) f rom f ( 2 ,  y) (see ( I ) ) .  
Therefore, Lemma 2 is applicable to the functions 

P r o o f .  J3e condition O(0, q E O  shows that for  p=O the functions 

in (17) are defined and are equal to zero .  

CF ((I cos 6. p sin 6) 
P 

- and 

and, using equations (15)- (18) and the inequality $ +- (I, (p, e) # 0 (which is 
satisfied for  every point (p, e)  of the relevant region for  a sufficiently smal l  
p*), w e  conclude that the function R (p, e) a l so  has  continuous par t ia l  
der ivat ives  with respec t  to p to o r d e r  .V - 1 inclusive a t  every  point 
(p,  0) ( 0 4  I p I < p* for any 0)  and to o r d e r  X inclusive a t  every point where p # V. 
Lye thus only have to establish the existence of a continuous .V-th derivative with 
respect  to p a t  points where p = 0. We represent  R (p. e )  as a product of two 
functions 

av-  1 
and find - aph-f using the Leibnitz rule  (this is permissible ,  since each of the 

factors  has  par t ia l  deri-gatives with respect  to p to o rde r  K- I inclusive at 
every point (p, e)). Simple manipulations show that 

&&--i R ~ ( p ,  e)  ~ ( p .  e) aV-la 

(19) - ~ - - _ _ .  

+N-I (p+@).V (p+(0ja apV-l ’ 

where H ( p ,  e) is a polynomial in the functions 

$-i F d o  d”-2(0 @-‘ , a, - 7  ..., - __- d F  
F, d.p, ..., dP 8a”-2 . 

The expression 

point (p, e) (O,<lp((p* for any 6 ) .  

is clear ly  continuously differentiable in p at  every (B+ (0)” 

To prove the lemma,  we thus have to 
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establish existence and continuity of the derivative with respect to p of the 
expression 

a t  the point (0, 0). 
p=O. 

We will f i r s t  prove the existence of this derivative for 
For p=O, F(p, e) -O,  and expression (20)  thus vanishes. Therefore, 

to definite l imits  for p + 0, which a r e  respectively equal to the values of 
these derivatives a t  the point (0, 0). Furthermore,  l i m o @ ,  0 ) = 0 ,  and 

lim-=a. 
p-0 P 
is equal to 

P - 4  
Hence i t  follows that the limit on the right in (21 )  exists and 

i .e . ,  

W e  have thus established the existence of the partial  derivative of (20)  with 
respect  to p for  p=O. 

To 
this end, let  u s  find 

We will now prove the continuity of this derivative at  the point (0, 0) .  

The last t e rm can be written in the form 
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1 -+L and the expression in Forp+O,  w e  have =-+aa, P @Ab,)* pa ' 
brackets goes to zero  by proposition (b)  of Lemma 2 .  
lim F ( p ,  e) = 0, and 
p-.') 

Moreover,  

By ( 2 4 )  w e  then have 

Relations ( 2 2 )  and (25) show that the par t ia l  derivative with respect  to p of 
aV-l  

the expression (20) and therefore of the function ---$ exis ts  and i s  con- 

tinuous a t  the point (0, €). This completes the proof of the lemma.  

5. 
st ructural ly  stable dynamic system 

A r e m a r k  concerning the definition of a 

In our definition of a s t ructural ly  stable dynamic system in If' 
(Definition 10, J 6 . l ) ,  w e  had to introduce a l a rge r  region H enclosing the 
relevant region W. 
a dynamic system (A)  defined in some region G ,  which has  an  unstable 
triple limit cycle Lo in this region (Definition 28, 526.2). Let W be the 
closed region bounded by the cycle L o ,  and suppose that N7 contains a 
structurally stable focus 0 and that all the paths of system (A) in W, except 
the focus 0 and the cycle L o ,  a r e  sp i ra l s  which go to 0 for t -+ -k 00 and to 
Lo for  t -+ - 00 (an example of such a sys tem is provided by system (B,) with 
k = 3 in Example 10, 827.2, see Figure 121). There exist  a rb i t ra r i ly  smal l  
modifications of system (A) which cause the cycle Lo to decompose into three 
cycles (Theorem 42,  §27.1), and system (A) therefore should be regarded 
as structurally unztable in W'. On the other hand, for  any E > 0, there  exis ts  
6 > 0 such that i f  (A)  is 6 -close to (A) to rank 3, w e  have 

W e  wi l l  now explain why this w a s  unavoidable. Consider 

where FF is some region. 
sufficiently c lose to (A) has  one, two, or three closed paths near  Lo 
(Theorems 42 and 43, 827). 
which is unctable f rom :he inside, and the region bounded by this cycle may 
be used as W. 
than the l a rge r  region h', in Definition 10, 56.1, system (A) with a triple 
limit cycle would come out as a s t ructural ly  unstable system. 

This propositionfollows from the fact that any (A) 

The innermost of these paths is a l imit  cycle 

Relation (1) shows that if  we were to consider W itself, ra ther  
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