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PREFACE

The present monograph is a direct continuation of our Qualitative
Theory of Second-Order Dynamic Systems (QT) published
in 1966, It may also be considered as a second volume of the definitive
treatise on dynamic systems and their applications planned by A. A.
Andronov back in the 1940s. All this notwithstanding, however, Theory
of Bifurcations can be treated as an independent volume and the
reader is only expected to be acquainted with the basic concepts of the
qualitative theory of differential equations on a plane.

In distinction from QT, the greater part of which is devoted to the
classical theory (of Poincaré and Bendixson), Theory of Bifurcations
presents relatively recent results which were obtained during the last
three decades and published — in part or completely — in a number of
letters and papers in scientific journals. These results are closely linked
to the theory of oscillations and have by now found many important uses in
physics and engineering.*

The present book, like QT, was begun by A. A. Andronov, E. A,
Leontovich, and A.G. Maier and completed by E. A. Leontovich and
I.I. Gordon. N.A. Gubar' and R. M. Mints also took part in the preparation
of the monograph, the former being responsible for Chapter VIII and the
latter for part of Chapter XIV. The final version was prepared by
I. 1. Gordon.

The main results presented in Chapters III through VII were derived by
A. A, Andronov and L. S. Pontryagin, and those in Chapters IX through XII
by A. A. Andronov and E. A. Leontovich. Chapter VIII is based on the work
of N. A. Gubar' and the results of Chapter XIII are due to E. A. Leontovich,
A. G. Maier, and L. S. Pontryagin. The general editing of the book was
undertaken by Yu. M. Romanovskii.

The book naturally falls into two parts — the theory of structurally
stable systems (Chapters I through VII) and the theory of bifurcations
(Chapters VIII through XIV). The second part is largely independent of the
first, and the reader will only require some basic information from
Chapters I, 1I, IV, and V.

Although the book contains numerous references to QT, many of these
refer to proofs of well known or relatively simple and obvious propositions
contained in QT, and the reader may safely ignore these references.

Each chapter includes a brief introductory summary. These chapter
introductions were written in such a way as to enable the reader to form
a clear idea of the contents of each chapter and to decide what chapters
deserve detailed study and what can be skipped.

* Some data on structurally stable dynamic systems and bifurcations (without exhaustive proof) will be
found in the second edition of A, Andronov, A. Vitt, and S. Khaikin, Theory of Oscillations
(Moscow, 1959),




The book contains numerous drawings and worked-out examples
illustrating the various mathematical propositions. Unfortunately, space
limitations prevented us from including many more remarkable examples
which arise from applications (see, e.g., /2,3/).

The sections, theorems, definitions, figures, and examples are
numbered continuously through the book. The numbering of lemmas and
equations is restricted to each section. In the Appendix at the end of the
book, the equations and lemamas are numbered according to the sub-
sections.

The reference §21.2, (5) is to equation (5) in subsection 2 of §21. The
reference (7) is to equation (7) of the current section. The reference QT,
§8.5, Lemma 4 is to Lemma 4 in subsection 5 of §8 in QT.

A list of bibliographical references directly related to the subject
matter of the present volume will be found at the end of the book.
References to the sources in this bibliography are indicated by numbers
between slashes.

E. A. Leontovich
1. I. Gordon

Gor'kii, 1966
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INTRODUCTION

The subject-matter of the qualitative theory of dynamic systems is
formulated in QT. The theory is concerned with the topological structure
of the partition into paths of the domain of definition of the dynamic system.
A number of topics relating to second-order systems (defined in a plane
region or on a sphere) are treated in QT. In particular, the different kinds
of paths of different systems are identified, the limit sets of these paths
are described, and methods for investigating the configuration of paths in
the neighborhood of an equilibrium state are given. A large part of QT is
devoted to establishing the minimum information about the paths of a
dynamic system needed in order to determine its topological structure in
a region. This problera is completely solved in QT under certain limitations
on the class of dynamic systems being considered: it is established that
the topological structure of a dynamic system is determined by the
character and the configuration of the so-called singular paths
(equilibrium states, lirit cycles, and separatrices). All the relevant
information can be presented in the form of a certain finite scheme. The
basic problem in elucidating the topological structure of a dynamic system
is thus to find the particular scheme of the system. So far, however, no
regular methods have kteen devised enabling us to establish the existence
of limit cycles of a dynamic system, their configuration, and the configura-
tion of the separatrices. Only individual particular techniques are
available which permit solving — and sometimes quite successfully — a
number of particular problems related to the existence and behavior of
limit cycles and separatrices. The most useful of these techniques are
described in QT, together with examples of their application.

In QT the approach to the qualitative structure of dynamic systems is
static — it is assumed that the system does not change. On the other
hand, the main problems treated in the present volume are concerned with
the changes in the topological structure of a dynamic
system when the system itself changes. As in QT, we are dealing with
autonomous systems on a plane, i.e., systems of the form

d. d
F=P@ v F=0G .

Let a system of this kind be defined in some region G. What happens
to the topological structure of the partition of this region into paths when
the system — i.e., the functions P and Q on the right — changes?

This question is obviously of independent mathematical significance.
It is also highly important for various applications. The point is that
dynamic systems corresponding — under certain idealizations — to physical

Xi




or technical problems invariably contain a certain number of parameters,
and we are generally interested in the changes in the topological structure
of the system when the parameters are varied. In particular, it is impor-
tant to find the partition of the parameter space into regions each corre-
sponding to identical topological structure and to determine the change in
the topological structure when the system moves across the boundary of
two such regions in the parameter space.

The changes in topological structure evidently need be considered only
for the case of small changes inthe system. One of the most
important classes of dynamic systems comprises those systems whose
topological structure in a given region does not change under small
modifications of the right-hand sides of the system. Such systems,
generally known as structurally stable, were first introduced by
A. Andronov and L. Pontryagin in /4/ under the name of coarse
systems or systémes grossiers.

Structural stability of a dynamic system is particularly important in
applications, e.g., in various physical problems. The values of the
parameters entering the right-hand sides of the system are generally linked
with the particular physical problem being considered and are only known
to some approximation. If small changes in these parameters — within the
experimental margin of error — lead to a change in the topological structure
of the dynamic system, i.e., if the system is structurally unstable,
the topological structure of the system is clearly not a suitable criterion for
analyzing the physical phenomenon. Conversely, if the system is structurally
stable, its structure may be directly related to the properties of the
physical phenomena. It is interesting to remark in this connection that
Andronov and Pontryagin's term, coarse systems, was originally
proposed in contradistinction from fine systems whose topological
structure would break under the action of arbitrarily small external
disturbances.

The first problem to be considered is that of the distinctive or identifying
characteristics of structurally stable systems. For systems defined in a
bounded plane region, this problem was essentially solved in A. Andronov
and L. Pontryagin's original paper 4/, and subsequently elaborated in
/5/ and /8/. :

The necessary and sufficient conditions of structural stability for plane
regions are relatively simple {see Introduction to Chapter VI), but a
rigorous derivation of these conditions necessitates detailed scrutiny of
a whole range of important concepts and scrupulous proofs. The first half
of the present volume (Chapters I through VII) is entirely devoted to the
theory of structurally stable systems and, in particular, to the derivation
of these conditions of structural stability. The book deals only with
structural stability of systems in a bounded plane region and on a sphere.
Note, however, that the concept of structural stability has been extended
and investigated, especially in the last decade, for a number of other
objects also. Peixoto considered the conditions of structural stability of
dynamic systems on an arbitrary closed surface (see [7/). Gudkov /8/
introduced the concept of structural stability of algebraic curves.

Structural stability of many-dimensional dynamic systems is treated in
/32,33,36/.




Structurally stable systems are the rule, so to say, in the metric space
whose points are dynamic systems defined in some region. It is shown
in Chapter VI that structurally stable systems form an open everywhere
dense set in this space. The set of structurally stable systems is
partitioned into components, each consisting of structurally stable systems
of identical topological structure. The "partitions" between these
components consist of structurally unstable dynamic systems. When a
dynamic system is altered or modified, its topological structure will
change only if the system passes through an intermediate stage of
structural instability. The theory of bifurcations, which is con-
cerned with changes in the topological structure of dynamic systems,
therefore appropriately concentrates on structurally unstable systems.
Structurally unstable systems are also of interest in applications: the so-
called conservative systems (see Chapter XIII), often encountered in
physics, are structurally unstable. We are thus naturally led to a detailed
examination of structurally unstable systems.

The first step in this direction evidently involves a classification of
structurally unstable systems. Structurally unstable systems can be
divided into ''less structurally unstable'" and '"'more structurally unstable."
This leads to a classification according to the degrees of structural
instability, originally introduced in /9/. The least structurally
unstable systems in this classification are the systems of the first
degree of structural instability: under small changes, these
systems either go to a structurally unstable system or retain their
topological structure. The complete conditions for a system to be of the
first degree of structural instability were derived for plane systems (see
/9,10/; these conditions are derived in Chapter XII). A dynamic system
of the first degree of structural instability was found to have one and only
one structurally unstable singular path, i.e., it has either a multiple
equilibrium state, or z multiple limit cycle, or a saddle-to-saddle
separatrix.* To establish the bifurcations of a system of the first degree
of structural instability, it suffices to consider the changes in its topological
structure in the neighborhood of its structurally unstable singular path.
Bifurcations involving a change in the number of limit cycles — i.e.,
bifurcations in which limit cycles are created or destroyed — are
of particular interest in theory and in applications. Dynamic systems of the
first degree of structural instability may only exhibit the following
instances of creation of limit cycles: from the multiple focus of the system,
from the multiple cycle, from a loop of a saddle-point separatrix, from a
loop of a saddle-node separatrix. The various cases are treated separately
in Chapters IX through XII. Note that the material presented in this chapter
applies to bifurcations of systems of both first and higher degrees of
structural instability.

The concepts of structural instability, degrees of structural instability,
and especially examination of the simplest bifurcations leads to a number
of techniques for the investigation of particular differential equations.
These techniques were successfully applied to a number of equations of
special physical interest (see, e.g., /2,3, 20, 256—28/).

* Certain additional conditions ¢hould also be satisfied; they are formulated in Chapter XIiI.
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Chapter XIV is entirely devoted to examples of dynamic systems,
analyzed by the tools of the theory of bifurcations.

Chapter XIII occupies a somewhat special position in the book: it
treats the creation of limit cycles from closed paths of conservative
systems.

Xiv




Chapter I

MULTIPLICITY OF ROOTS OF FUNCTIONS AND
MULTIPLICITY OF INTERSECTION POINTS OF
TWO CURVES

INTRODUCTION

In this chapter we consider some fairly elementary concepts relating to
the root of a function and the intersection point of two
curves. In §1 we define the - closeness of two functions to
rank rand the multiplicity of a root of a function. Roughly speaking,
a root I, of a function f(z) is said to be of multiplicity r3» 1 if functions F (x)
"sufficiently' close to f(x) cannot have more than r roots in a "'sufficiently’
small neighborhood of z,, but there is any number of functions sufficiently
close to f{r) which have exactly r roots in any arbitrarily small neighbor-
hood of x,. The necessary and sufficient condition of r-multiplicity of a
root is derived (Theorem 5), which states that flxy) = f (Lo =... fr—b(ry)= O,
f () == 0. It follows ‘rom this condition that for analytical functions {and
in particular, for polynomials), the root multiplicity defined in this chapter
coincides with the usuzl concept of multiplicity.

The multiplicity of a common point of two curves,
analogous to the concept of root multiplicity of a function, is introduced
in §2, and the necessary and sufficient conditions are established for r-
multiplicity of a common point (z,, y;) of two curves Fy (z,y) = 0 and Fa(r. y) =
=0, whenr=1and r= 2. I r= 1, the common point is said to be simple
or structurally stable. The necessary and sufficient condition of structural
stability of a point (x,. ¥,) is simply

VP12 (o go)  Fiy (Zo Yo)

=i . . 0 (Theorem 6).
° lpilx(‘z(h yo)  Foy(zo yo) - ( )

The conditions for a common point with r = 2 are more complicated
(see Theorem 7).
§1. MULTIPLICITY OF A ROOT OF A FUNCTION
1. 6&-closeness to rank r

We will consider functions defined at all points M (r, 2z, ..., z,) of some
open (or closed) region G (or &) in n-dimensional euclidean space £,. In




Ch.I, MULTIPLICITY OF ROOTS AND INTERSECTION POINTS

applications we will be mainly concerned with the cases n =1 or n = 2.
Here it is assumed, however, that n is any natural number.

A function is said to be a function of class & in G (or G, ), where k is a
natural number, if it is continuous and continuously differentiable up to
order k, inclusive, in its domain of definition; a function is said to be a
function of the analytical class in some region if it is analytical in that
region.*

Let Fy (x, 2, ..., %,) be a function of class k or an analytical function in
G (or G ), § is some positive number, r a natural number such that r<k if
Fy is a function of class k.

Definition 1. A function F(zy, z,, ..., z,) of class k,>r or analytical
in G (Gy) is said to be §-close to vank r to the function Fo(x,, z,, ..., z,) in the
region G(G,) if at any point of the region

1) i)
|F—Fo|<<d, lFigx,gu,,_xg—,‘— o;gxxg._,,,ga1<5y

where 1l =1,2,..., r, all a; are non-negative numbers and a, + oz + ...
oo+, =1

Clearly if two functions are §-close to rank r in some region &, they are
§-close to any rank r; <r in that region; moreover, for any &, 8, >8, they
are 8;-close to rank rin any subregion of G.

If everywhere in the region we only have the one inequality

| F — Fo | <8,

i.e., only the functions as such are §-close, but not their derivatives, the
functions F and F, are said to be §-close to rank 0. In what follows,
with rare exceptions, we will always consider §-closeness at least to
rank 1. Therefore the expression ''two 8-close functions' is to be under-
stood as qualifying two functions which are §-close to rank r>»1. The most
interesting case is that of a function depending on one or several para~
meters which for any ("arbitrarily small") 8 >0 can be made 8-close to
any required rank to a given function F, (z) by an appropriate choice of the
parameters.

Let us consider simple examples of functions which are §-close to rank
rto a given function F, (z) when » = 1 and Fo (xr)= 0. To be specific, we
will only consider functions defined on the segment [—1, +1].

Example 1. Let f(z) be a function of class kon [—1, +1], § some
positive number. Then the function pf (z) for any sufficiently small (in
magnitude) p is 8-close to 0 to rank k. If f(z)is an analytical function,
then for any natural number r and sufficiently small g, the function pf (z) is
§ -close to rank r to zero (i.e., to the function F (z) = 0).

Example 2. Consider the function

Fy(@)=psin 5
(p>0). For any given 8 > 0, an appropriate choice of a sufficiently smalln

* If G, is closed and M, is a boundary point, partial derivatives (of any order and type) do not necessarily
exist at My. In this case, a partial derivative at M, is defined as the limit value of the corresponding
partial derivative at an inner point M when M tends to Mg (see /11/, Vol.I, Sec.258, p.589). An
analytical function in a closed region G, is evidently defined in some larger open domain.
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will clearly make this function §-close to zero, but only to rank 0.
Indeed,

. 1

Fu@= T cos —:,

and as p decreases, the upper bound of F, (z) increases to infinity. There-
fore, if & is sufficiently small, we can never choose a p that will ensure

§ -~closeness of F, (z) to zero to rank higher than 0. It is also clear that,
by an appropriate choice of a sufficiently small p, the function

i X
D, (2) =p*™ 1smm

can be made arbitrarily close to zero to rank m, but never to rank greater
than m,

We will now give w:thout proof two theorems which are repeatedly used
in what follows. One is Weierstrass's classical theorem on polynomial
approximation to functions (see /23/, Sec. 109, Theorem 1), reformulated
in terms of our new concept of 8-closeness to rank r, and the other readily
follows from the forméer.

Theorem 1. Let F(xy, z;. ..., 2,) be a function of class k defined in a
closed bounded rvegion G of the space E,. Fov any &> 0 and r <k there
exisls a polynomial ® (a, z,, . .., z,) Which is e-close to rank r to the function
Firy, 23 ..., ,) in G.

Theorem 2. Let Mi(£. 28, .... 2)Ybe a point in a closed bounded
rvegion G, and F (x,, x,. ..., z,) = F (M) a function of class k defined in that
region. For any e >0 and r<k there exists a polynomial ®(z;, 22, ..., 2,) =

= O (M) which is e-close to rank r to the function F (M) in G such that
D (M) = F (M),
Drgs, | xan (Mo) = Fidiogs | an (Mo),

wiere 1=1,2, ..., r, all =, are non-negative whole numbers, and =, + a, -
b, =L

2. The theorem of a small increment of implicit functions

We now proceed to srove a theorem which can be called the theorem
of a small increment of implicit functions. Let F(r,y.z) be
a function of class k defined in the parallelepiped A

n<T<T, BEY<Yn H<i< (4

of the three-dimensional space E;, such that at any point of A
Fix, y. 7)== 0. (1)
Let further
i=g(z. )
be a function defined everywhere in the rectangle R

5n<L<eLTy LYY (R)
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in the plane (z, y), such that inside this rectangle

<oz, <z (2)

and
Fx, y, 9z, y)=0. (3)

From (1), (2), and (3) it follows that @(z, y) is the unique solution of the
equation

F(z, y, 5)=0 (4)
in A, and the surface

has no common points either with the top or the bottom of A. Moreover,

in virtue of the theorem of implicit functions, ¢ (z, y) is a function of class k.
Theorem 3. For any e >0 there exists 8 >0 such that for any

Junction F(z, y, z) defined in A which is 8-close to rank r(l<r<k) to

F(z, y, z) the equation

F(z, y, =0
has a solution

z=¢(x, y)

defined in the vectangle R, such that (a) ¢(z, y) is the only solution of
equation (5) inA; (b) ¢(r, y) iS @ function of class >r and is e-close to the
Sunction ¢(z, y) to rank r.

Proof. According to our assumptions, inequality (2) is satisfied at
any point of the rectangle R:

2 << @ (x, y)<< 2.
Therefore, if e >0 is sufficiently small, we have
2 << Q2 y) £ & <2 (6)
We choose g, >0 which satisfies condition (6), such that &;<<e. By (1) in A
Fi(z y, 2)5=0.
To fix ideas, let in A
Fi(z, y, 9>0. (7)
From (3), (6), and (7) it follows that in R
F y 9@ )—ed<<0, F(z y 9= y)+e)>0. (8)

Now since F and ¢ are continuous, we conclude from (8) that at any point in
R

F(.’t, Y. qJ(I, y)_81)<_c! F(.'C, Y, (P(xv y)+81)>6, (9)
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where ¢ is a positive number. Moreover, from inequality (7) we conclude
that in A

Fie, g 5y >m, (10)

where m is a positive number.
Let ¢ be such that

{11)

Consider any function F(z, y, =) defined in A which is 8-close to rank rto
the function F(z, y. 3} in A, From the definition of é-closeness and from
relations (9), (10), and (11) it follows that in A

80, d<Z-, 8<

ol

Fiz. y, z)\% (12)
and that
F@ g 9@ g)—e) <—5 <0, F(z, y, gz y)+e)>5>0. (13)
Fhen clearly the equation
F(z, y. 2)=0 (5)

has a unique solution z=g¢(x. ¢) in A, which is defined in R and which every-
where in R satisfies the inequality

(T Y—o@ pl<e<e (14)

By the theorem of implicit functions we now conclude that the solution
z .- ¢ £, y) of equation (&) is a function of class »r.

It remains to show that § > 0 can be chosen so that condition (b) of the
theorem is satisfied. To this end we note that the partial derivatives of
¢ (z. y) are obtained successively from the set of equations

Fe—-Fg.=0,
Fy - Fogy =0, (15)

and the partial derivatives of g(z, y) are calculated from analogous equations:

Fe+Fig.=0,
Fy+Fg, =0, (18)
i';x‘,"zhp;‘la’x‘*"i’;z (ax)zTi; 6;:':01

<

Since F:(r.y,z)+ 0 nowhere in A\, the partial derivatives of ¢ (z, y) to order r
inclusive are continuous functions of the arguments Fz. Fy, Fi, Fig, Fly, ..o, F‘IF’,
and the range of these arguments can be regarded as a closed region.

Hence it clearly follows that if § > 0 is sufficiently small, e.g., 8§ < §,, and
the function F is §~close to rank rto F, the function ¢ (z.y) is e-close to

rank r to @ («r, y). Thus any positive number § smaller than Z, £, and §,
IR

satisfies the theorem. This completes the proof.
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The previous theorem is naturally generalized to any number of functicus
and equations. We will formulate the corresponding theorem for two
functions and two equations.

Let the functions

Fi(xv Yy, U U) and Fz(z, Yy Uy U)
of class k>1 be defined in some parallelepiped II

L KELT  Bi1<Y<Y:, i <<uKuy, VUL,

in E,. Moreover, suppose that

Fiu Fy
1) %iang 7=BFuly_|ote The

Do) —|Fya Fio do not vanish in II;

2) the equation
Fy(z, y, u, v)=0
has in II the solution
v="8(z, y, u)

defined at any point =z, y, 4, ;< <25, <Y<Y WwLuLu,, such that

v;<B(x, y, uy<<v,. Since %;ﬁ 0, this solution is unique;

3) the equation
F, (z, ¥, u, e(x9 Y, u'))=0

has a solution u=¢(z, y) in the rectangle R,

<L, Y<Y<Y2 (R)
such that u;, <o (z, y) <u,.

aFy(z, ¥, u. 8 (. ¥,
du

vanish in the relevant region, and ¢(z, y) is the unique solution of the
equation Fy(z, y, u, 8(z, y, u)) = 0. Therefore the functions

it follows from condition 1 that the derivative ) does not

u=9¢(, y) and v=0(z, ¥ @, Y=Y (= y
constitute the unique solution of the system
Fi(z, y, u, V)=0, Fy(z, y, u, v)=0
in I, which is defined for all (z, y)€ R. By the theorem of implicit functions,
¢ and ¥ are both functions of class k.

Theorem 4. Under the above assumptions, for any >0 and r,
1<r<k, theve exists 8> 0 such that if the functions

;g‘(x, Y, U, v) and iz(-‘”v Yy u, v)

are defined in Il and are 8-close to rank r to the functions F, and F,,
respectively, the equations

?1(1‘, Y, U, U)ZOv Fz(x- Y, u, 1})=0
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have a unique solution inil,

u=6(x, vh D=E(-’5, ¥h

which is defined for all (z, y)€ R, and the functions ¢ and § are d-close to
rank r to the respective functions ¢ and %.

Theorem 4 is proved by applying Theorem 3 first to the function
Fy(r,y.u,v)* and then to the function F,(x,y,u,0(x,y, u)), where 8 (z, y, u) is
the solution of the equation F, (x, y, u, v)= 0 for v,

Remark. Theorem 4 clearly remains valid if the functions Fyand F»
are independent of = and y, i.e., if we are concerned with equations of the
form Fy,(u,v)= 0 and F,(u.v) = 0. The wording of the theorem can be
changed without difficulty to conform to these new conditions. This also
applies to Theorem 3.

3. Root multiplicity of a function of a single variable

The concept of root multiplicity is generally applied to the roots
of analytical functions (in particular, polynomials) in connection with the
calculation of derivatives and factorization of polynomials. In this sub-
section we will advance a general definition of root multiplicity for a
function of a single variable in a form that will readily link up at a later
stage with a number of other, more complex concepts in the theory of
dynamic systems. For analytical functions, our definition will naturally
coincide with the usual definition of multiplicity.

Let

y=Fy(z)

be a function defined on some segment [z, r,], where it is a function of class
k > 1 or an analytical function, and let z, be a root of the equation

FO(I):‘Ov

in [z, z,l. For simplicity let z, = 0 (this can always be accomplished by

changing over to a new variable r = z — x,) and suppose that F, () is defined

for |z | <a, where g is some positive number. Let r be a natural number
Definition 2. The voot 0 of the equation

Fy(x)=0

is called a root of multiplicity r (or an r-tuple root) of this equation and
also a root of multiplicily r of the function F, (z), if F, (z) is a function of
class k>r and the following conditions are satisfied:

(a) lherve exist e >0, 8, >0 such thal any equation F (r) = 0, where
F (z)is afunctionof class r whichisb,-close to rank r to the function F, (z), has
at most r voots for | x| < €,;

(b) for any positive e << &, and § there exists a function F (z), - close to
rvank r to the function F, (x) such that the equation F (z) = 0 has precisely r
rools for |z | <e.

* Theorem 3 applies to functions of three variables. Nevertheless, it can be formulated and proved without
modifications for a function of any number of variables.
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A root of multiplicity 1 is called a simple ora structurally
stable root of the equation.

A root of multiplicity r at the same time may be a root of a lower or a
higher multiplicity.

Lemma 1. Let F (z) be a function defined for | z | <a such that

F (z)=2"O (z),
where n is a natural numbeyr, O (x)is a continuous function, and ® (0)s< 0.
Then for any >0 and 6> 0 theve exist numbers o, aa, ..., o,y Such that
la| <8 (i=1, 2, ..., n—1),
and the function
F(x) =T+t + . . . + Gy 1 4270 (2)

has at least n different roots for |z | < e.

Proof. By assumption, @ (0)== 0. Let ® (0)> 0, and choose ¢ >0,

6> 0. Since @ (z) is continuous, there exists 1w > 0, 7, << e such that for
all positive z, z <1,

F(x)=2"®(z) >0.

We choose one of these r, say z;, and keep it fixed. Then 0 <<2z; <<m; and
Fx)=2ar ®(z;) >0. If an_y is of gufficiently small magnitude, the function
Fy (z) = dp—gx™! 4+ 2”@ (z) at the point z; has the same sign as the function
F (x). The number a, | therefore can be chosen so that

[t | <8, ttn—y<<0 aNd Fy(2)=an-@? ' + 210 (z) > 0.
Now consider the function

Fy(@)=2""1 (ap-g+ 2D (2)).

For all sufficiently small z, the sign of F, (z) coincides with the sign of
an-1, i.e., it is negative. Thus, there exists a number 0, << z, such that for
allz, 0 <<z<<1v, F;(z)<< 0. We choose one of these z, say z:, and keep
it fixed. Then

I<nm<p<o<m<e

and

Fy(2)=ney23 ™" 230 (2,) < 0.

As the next step, consider the function
Fa () = Otn—o2™ -+ Fy (2) = 2™ * (Up~g + Opy T + 220 (2)).
The number a,., is chosen so that

n-2>0,  |tap|<<8, Fa(z)>0, Fp(z;) <0,




£1, ULTIPLICITY OF A ROOTL OF A FUNCTION

For small positive z, F.(z)> 0, and we can choose a number n,< 1. and z;,
0 <z3<tn; such that F:(z3)> 0. Continuing along the same lines, we obtain
a function

7’(1‘) =Fpa (@)= oz + .. a2 2D ()
and a set of numbers z,. z,, ..., Tp_;. o, Such that

la;| <8, i=1.2,.... n—1.
O, <y << < Ty 2y <<
and

>0 for odd n,

Flr)>0. F)<0..... F(zy) =0 for even n.

Now, each of the intervals (2,44, 2,), i = 1,2,..., n —1, contains at least
one root &, of the function F (), and

0<§n-|<§n—2<---<§3<§2<§1<-‘-\

But F(0) = 0. Thus, ‘or|ri<e, ¥ (z) has at least n different roots. This
completes the proof of the lemma.

Remark 1. Lemma 1 can be generalized as follows. Let
D (r: 2y, 2%3. ..., %y-1) be a continuous function of all its arguments for | r { <a,
la; I<t(t>0,i=1,2,..., n—1), and let ®(0; 0, 0,..., 0) 5= 0. The
proposition of Lemma 1 is then also true, i.e., we can choose numbers
@y, %z, ..., @n—y such tha* their magnitudes are arbitrarily small and in any
arbitrarily small neighborhood of the point r = 0 the function

7'(1) =T A2 4 L A T 2D (T 2y, .., Gpey)

has at least n different roots.

An even more general proposition is the following: let ¢;;, be any real
numbers, and the function @ (r; 2«,, ..., 2,1} as before. The above proposition
is then also true for the function

F (x) = o)z 4 (23 4 €21%1) &* + (@3 + o -+ Cy2y) 23 4. . .
R o T e S R e ) e B ) J €-H- FRY . S B

Both these general propositions are proved along the same lines as the
lemma.

Remark 2. Sometimes an additional requirement is introduced into
the conditions of Lemma 1, namely that some (fixed) coefficients «;are
zero. The function F z) in this case has the form

F @) =anah +angh+ ... fax_ 2"t +2"D (),

where 1 <ki<<k,<<...<<kiy<n —1, and s<<n. In this case we can choose
(sufficiently small) numbers ay, such that in any arbitrarily small neighbor-
hood of the point z = ( the function ¥ (z) has at least s different roots. This
proposition is proved like the lemma. A similar remark applies to
functions considered in Remark 1.
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Theovem 5. The number x = 0 is a voot of multiplicity r of the func-
tion F, (z) if and only if

Fo(0)=0, Fy(0)=0,..., F§~V(0)=0, F(0)=£0 (17)

(F, (x)is naturally assumed to be a function of class k >r).

Proof. Letus first establish that conditions (17) are sufficient.
Suppose that these conditions are satisfied. Let [F (0) | =m (m > 0). We
choose g, > 0 sufficiently small so that for all |z | << e,, we have

[F @) >5 .
For 8, we take a positive number smaller than % (e.g., 5= -'41 ). Then for

any function F(z) defined on the same segment as F, (z) and §, ~close to rank r
to F,(zr), we clearly have for |z | << g, the inequality

[P @) | > 2 >0, (18)

Now suppose that some function F(z), which is §,-close to rank r to #, (z),
has at least r + 1 roots in the interval |z | < g,. Then, by Rolle's theorem,
the function F’ (z) has at least r roots in this interval, F” (z) has at least
r—1 roots, etc., and finally F (z) has no roots altogether, at variance with
inequality (18). Thus, if condition (17) is satisfied, any function F (z), which
is 8y-close to rank rto Fo(x), cannot have more than r roots for |z | < e,
i.e., condition (a) of Definition 2 holds true.

Let us now prove that condition (b) of Definition 2 is also satisfied. The
function F, (z) can be written in the form

Fo (2) = "0 (), (19)

where @ (2) is a continuous function and @ (0) = 0. Indeed, by Taylor's
theorem and conditions (17), we have in the neighborhood of z= 0

)
Fo(x)=z";3f%" ©0<8<1)
Setting

O@) =225 for zw0and ®(0)=£1;1®(x)=ﬂ:)!ﬂ ,

we conclude that representation (19) is applicable at any point of the segment
|z |<e, @ (x) is continuous in this segment, and @ (0) 0.

From (19) and Lemma 1 it follows that for any &>0 and § > 0 there
exists a function F (z) of the form

P@)=aym+apa®+ ...+ 5 42’ @ (),

which is 8 -close to rank rto F (z) and has at least r different roots for
|z | < e. This means that condition (b) of Definition 2 also holds true, and
the sufficiency of (17) has been fully established.
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It now remains to prove that conditions (17) are necessary. Suppose
that these conditions are not satisfied, i.e., either
1) there exists r, 1 <r < r, such that

Fo(0)=: Fo(0)=...=F{*10)=0, T (0) 5= 0,

2) Fo(@) =Fy(Q)=...=F5 (0)=0. (20)

We will show that in either case xr = 0 is not a root of multiplicity r. This
will establish the necessity of conditions (17).

In case 1, the proposition is self-evident: because of sufficiency z = 0
is a root of multiplicity r, << r and by definition it cannot be a root of
multiplicity r.

Consider case 2. lLet e and § be any positive numbers. By Theorem 2,
there exists a polynomial P (z) which is §/2-close to rank rto the function
F, (z) and such that

PO)y=P{(Q)=...=P"(0)=0

(if the function F, (z) is a polynomial, F, (x)itself can be chosen as P (.r)).

P (z) has the form zr+!Q (1), where ® (z) is some polynomial. We may take
@(0) 5= 0 (otherwise, we may take for P (z) the function zr+! (@ (r) + y), where
y is a sufficiently small number, ys« 0). By Lemma 1 there exists a
polynomial P (z) which is §/2-close to rank rto P (z), and therefore &-close
to rank r to F, (z), and which has at least r+1 roots for |z |<e. Hence,

z = 0 is not a root of multiplicty r for Fe (r). This completes the proof.

It follows from Theorem 5 that for analytical functions, and in particular
for polynomials, root multiplicity in the sense of Definition 2 coincides with
the normal concept of multiplicity.

Remark. Let z= 0be a simple root of the function Fy (z), i.e., r=1,
Fy(0y= 0, F,(0)==0. Then there exist &, >0 and 8§, > 0 such that any function
F (r) which is §,-close to F, (x) has precisely one root for |z | < e,, which is
moreover a simple root. Furthermore, for any &< &, ¢ >0, we can find
8§ > 0 such that any function F (2), §~close to F, (z), has preciselyone (simple)
root forjz|<<e.

Indeed, for ¢, we may take any number such that the derivative F,(r) does
not vanish on the segment |r ] <&. Then on this segment |F,(x)| »m >0
and for 8§, we may take, say, any positive number which satisfies the
inequality

So<min {2, {Fo(—edl [Folen|} -

For e < g, 8 is found by the same method.

We have shown that if F, (z) is of class r and condition (20) is satisfied,
there exists a function F (z) arbitrarily close to rank r to F, (r)which has at
least r +1 roots in any small neighborhood of the point 0. This proposition
can be strengthened by showing that under the same conditions there exists
a function F (x) arbitrarily close to rank r to F, (z) which has at least I roots
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in any small neighborhood of 0, where [ is a natural number. This proposi-
tion is formulated and proved in the following lemma.
Lemma 2. If

Fo(Q)=F;(0)="... =F(0)=0, (20)

then for any positive e and & and any natural number 1, there exisls a
Junction F (z) which is 8 -close to vank r to the function F, (z) and has at
least 1 rools for |z | <e (we recall that the entire treatment is confined to
some segment |z | < a).

Proof. The function F (z) whose existence is to be proved can be
constructed by several different methods. We will describe here one of
the possible constructions. Let e¢>0, 8§ > 0, and ! be given.

1) We choose & << & 50 small that the function F, (z)is §/2-close to
rank rto zero (i.e., to the zero function) for 0 <z <e,, and the polynomial

, )
Foe)+ 5 (z ey ... +F3Tf‘“’— (@—e)

is 8 -close to zero to rank rfor 0 <z<a. For g we may naturally take any
sufficiently small positive number; this follows from conditions (20) and
from the continuity of the function F, (z) and its derivatives.

2) We choose a large natural number N, so that each of the numbers

L2 . L is less than 2.

N®'N'"
3) We choose u> 0 small enough for the function

@ () = pz’™ (x— &)t sin Nz

to be 8/2-close to zero to rank r for 0 <z<e;. Note that the numbers

%. 7%-, cee 75,— are roots of the function ¢(z) which lie in the interval 0 <z <e,,

and that the functions ¢(z), ¢ (z), ..., ¢ (z) vanish at the points z = 0 and
Ty
We now define the function F(z) as follows:

F(x)=Fy(z) for —agz<0;
F@)=9(2) for 0 <zge,;
F(z)=F, (x)—[Fo(si)+E’~(fil(x—ei)+. . .+£r;l(—"") (x——e,)’} fore,<z<a.

The function F(z) constructed in this way is readily seen to be a function
of class r which is §-close to rank rto the function F, () and has at least
! roots in the interval (0, e). This completes the proof of the lemma.

The function F (z) constructed in the above proof is of class r, but in
general its class is not higher than r. It is readily seen, however, that
there exists a polynomial P (z) which satisfies all the conditions of the
lemma (i.e., a polynomial which is §-close to rank r to F, (z) and has at
least ! roots in the e - neighborhood of 0). Indeed, it follows from

N —Zﬁ, .. .,—11,7 are simple (structurally stable) roots

of the function F(z). But then, in virtue of the remark to Theorem 5, any
polynomial P (x) which is sufficiently close to F(r) has at least ! roots for
|z {< e, and thus satisfies the requirements of the lemma.

Theorem 5 that the roots +

»
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Note that Lemma 2 is also valid for r = 0. This means, in particular,
that if the function F; (r) of class k> 1 has a simple root, z = 0 say, then
for any ¢ >0 and 6 > 0 there exists a function F (z) (possibly a polynomial
P (x}) which is 8§-close to rank 0 to F, (z)and whose roots in the e¢-neighbor-
hood of the point 0 are more numerous than any chosen number. However,
if closeness to rank 1 is required, F (x) will have only a single root in the
neighborhood of 0 for small & {(see remark to Theorem 5). This shows
that the requirement of closeness to a certain rank is highly significant in
the definition of multiple or simple roots.

Definition 3. A root x =0 of the function F. (z) is said to be of
infinite multiplicity or not of finite multiplicity if either

1) F,(x) is a function of class r but not of class r +- 1 (r»0) and

Fo(0)=F;(0)=...=F{(0),

or

2) Fo (1) is differeniiable to any ordev over the velevant segmenit, and
all devivatives vanish at the point 0.

A root r = 0 of the function F, (z) is said to have a multiplicity higher
than r (or to be a rvoot of multiplicity >r, whevre ris a natural number) if
it has a finite multiplicity r >r or if it has infinite multiplicity.

From Definitions 2 and 3 and Theorem 5 it follows that the root of each
continuous function has a definite, finite or infinite, multiplicity. Each
root of an analytical function which is not identically zero has a finite
multiplicity.

4. Multiplicity of a root relative to a given class
of functions

In our definition of a root of multiplicity » we assumed that all the
functions (F, (x), F (2), etc.) were functions of class r, without imposing
any further restrictions. For certain purposes, however, it is worthwhile
considering narrower classes of functions.

Let MM be the set of all functions of class r (where r is a non-negative
integer) defined on the segment [z [<a. We will particularly concentrate
on the following groups:

1) the set M* of all functions of class k;

2) the set M, of all analytical functions;

3) the set Mp of all polynomials;

4) the set M, of all polynomials of degree <n.

Clearly, for any n and &,

My« Mp = M, = WP,

Moreover, if ny<<n, and &y << k,, we have

My, = My, and MWD = M*Y,

We will now define root multiplicity relative to a given class
m.
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Definition 4. A rool z = 0 of a function F, (z) of class WM is said to
be a root of multiplicity r velative to the class m if Mc M~ and the
JSollowing conditions are satisfied:

(a) there exist eg >0 and 8, > 0 such that any function F (z) of the class M
which is 8,-close to vank r to F, (z) has at most r voots in the interval
| x| << &o;

(b) for any positive e << e, and § there exists a function F (z) of the class
M which is 8-close to rank r to F, (z) and has exactly r roots in the interval
lzl<<e.

If 9 is one of the four classes above {M™, M4, Mp, and M,), conditions
(17) of Theorem 4,

FoOy=F,0)=...=FF0)=0, F0)s£0,

are both necessary and sufficient for the root z = 0 of the function £, (z) to
be a root of multiplicity r relative to the class M.

Indeed, it is readily seen that the proof of sufficiency in this case
(i.e., for multiplicity relative to the class M) follows letter by letter the
proof of Theorem 5.

The necessity of conditions (17) is also proved as in Theorem 5, except
for the case M =M, and r = n. In this case, the equalities

Fo(Q)=F)0)=...=F"=0
show that F, (r) = 0, which clearly contradicts condition (a) of Definition 4.

It follows from the above that if F, (x) is a function of class M, where M
is one of the four classes M™, M,, Mp, M,, and z =0 is a root of

multiplicity r of this function in the sense of Definition 2 (i.e., relative to
the class M), then z= 0 is a root of #, (z) of multiplicity r in the sense of
Definition 4 (i.e., relative to the class M), and vice versa. Therefore, we
do not have to consider multiplicity relative to any of the above particular
classes of functions, and in all that follows root multiplicities are under-
stood in the sense of Definition 2.

§2., THE MULTIPLICITY OF A COMMON POINT OF
TWO CURVES

1. Definition of multiplicity

Let F, (z, y) and F (z, y) be functions of class k> 1 defined in some closed
region G of the plane (z,y).
Consider the set of equations

Fi@. y)=0, Fy(z, y)=0. (1)

Let (C,) and (C,) be the curves described by these two equations, B
respectively. Let equations (1) have a simultaneous solution Zg, Yo in G,
i.e.,

Fy (%o, yo) =0,  F2(%o» 4o)=0.
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The point M, (x5, ¥o), whichis a common point or a point of
intersection of the curves (C,) and (C;), is invariably assumed to lie
inside the region G. Moreover, we may take z,=y,= 0. This assumption
clearly does not detract from the generality of our argument.

Let r be a natural number not greater than the class of F, and F,,
ie., 1<r<k (if F, and F, are analytical functions, ris any natural number).

Definition 5. A common point M, (0,0) of the curves (Cy) and (C:) is
said to be a common point of multiplicity r of these curves or a solution of
multiplicity r of equations (1) if the following conditions are satisfied:

(@) There exist ¢y 0, 8, >0 such that any two curves F,(z,y) = 0 and
Faz,y) = 0, where F,arnd F, are functions of class r,8,-close to rank r to
Fy and F,, rvespectively, have at most r comnion points in U, (M,).

(b) Forany d and e <& (8 >0, &>0) there exist functions &, (z, y) and
@, (2. y), 6-close to rank r to F, (x,y) and Fa(x. y), Such that the curves
Py (x, ¥) =0 and D: (z, y) = 0 have exactly r common points in U, (M,).

An intersection point of multiplicity 1 is called a simple or
structurally stable point of intersection of curves (C)) and (C»).

A common point M, of two curves (1) is said to be multiple or
structurally unstable if it is not a simple intersection point. Note
that a common point of two curves is not necessarily of finite multiplicity.
Consgsider the following example.

Let Fy (x) be a functionof class r which is not a function of class r+1 and
let Fo(O)=F(0)=...=F{"(0).

G is chosen as some bounded closed region with 0{0, 0) as its interior
point,

Consider two curves:

y=0, y—F,(@)=0. (2)

0.(0, 0) is a common pcint of these curves. Let e and § be any two positive
numbers, ! some natural number, and F (x) a function constructed as in
Lemma 2 (§1. 3), i.e., a function which is §-close to rank rto F, (xr) and has
at least [ roots in the intervaljz | << e. The curves

(3)

are then 6 ~close to rank r to the respective curves in (2) and have at least
! common points in /. (0). The intersection point 0(0, 0) of curves (2) thus
does not have a finite rultiplicity.

If a common point o7 two curves does not have a finite multiplicity, it
is said to be an intersection point of infinite multiplicity. Finally, a
common point 0(0, 0) of two curves is said to be of multiplicity higher than
r either if it has finite multiplicity r’ > r or if it has infinite multiplicity
(see Definition 3, §1).

2. Condition of simplicity for an intersection point
of two curves

We will now consider the necessary and sufficient condition for an
intersection point of two curves to be a simple (structurally stable) inter-
section point, i.e., a common point of multiplicity 1.
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Theovem 6. The intersection point 0 (0, 0) of two curves
Fi(z, =0 (€)
Fa(z, y)=0 (C»)
is of multiplicity 1, i.e., simple (structurally stable), if and only if

Fiz(0,0)  F1,(0,0)

8= | Fp(0,0)  Fi 0, 07" (¢)

Proof. We will first show that Ay== 0 constitutes a necessary condition.
Suppose A= 0. Let ¢ and 8 be some positive numbers. Let further P, (z,y)
and P, (z, y) be polynomials which satisfy the following conditions:

1) P,(z, y) and P,(z, y) are 8/2-close to rank 1 to the functions F,(z, y) and
Fy(z, y), respectively;

2) Pi(0, 0)= 0, Pi(0, 0)= Fic (0, 0), Py (0, 0)= Fi(0, 0) (i =1,2)

These polynomials exist by Theorem 2, §1. Two cases are possible:
(a) at least one of the numbers Pi.(0, 0), Pi, {0, 0), P (0, 0), P, (0, 0)
does not vanish; (b) all these numbers are zero.

First let us consider case (a). The polynomials Py and P in this case
have the form

Pz, y) =Aix+Byy-+Cat+ . ...

Py (z, y) = Apz+ Boy + Cox® + . . .,
B
B,
not vanish. For example, let B;5= 0. Then either B;s= 0 or 4;=B,= 0.
Consider the polynomials

= 0, but at least one of the coefficients 4,, B,, 4,, B, does

Ay
where Ayg= A
2

Pz, ) = A+ By touz+Ca?+... =P, (z, y) +az,
Py (z, y) = Agz+ By + gz + Cox® 4 . .. =Py (z, y) + gz

and the point M, (x,, —g;:x,), where z;% 0. We choose the coefficients «;and

o, so that the two curves
P, (z, y)=0 and Py (2, y)=0

pass through the point M;. Clearly o, and @, should satisfy the equations

axy+Cxt+ ... =0,
Aoty + Coti + oo =0,

Dividing through by =z, (z; 5= 0), we get
ay=—Cxy— ..., Qg=—Cozy—...

Thus o, and «; are uniquely determinable and can be as small as desired
for sufficiently small z;. We choose z; small enough for the point M; to lie
inside U, (0) and for the polynomials P, (z, y) and P, (z, y) to be §~close to

P, (x, y) and P, (z, y), respectively (and hence, & -close to the original functions
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F, (z, ) and F, (1, y), respectively). Then the curves P, (z,y)= 0 and P, (z,y) =
= 0 have at least two common points in U, (0), namely the point O and the
point M,. This clearly signifies that the intersection point O of the curves
Fi(z,¥)= 0 and F, (z, ¥)= 0 in case (a) is not a simple (structurally
stable) intersection point of these curves.

In case (b), when

Pix(oy O):P;y(ov O):Pé,((), O)=P§y(0v O)=0v

we reason along the same lines as in case (a), but the previous point I, is
now chosen as M, (21, 0). The number 1, is chosen so that the polynomials

. Py (z, y) =,z + P, (z, y) and P, (z, y) = ayz + P, (z, y)

are % ~-close to the polynomials P, and P;, respectively, and the curves

P, (z, y) = 0 and P:(z,y)= O pass through the point M. Thus again 0(0,0) is
not a simple point of curves (¢;) and (C;). We have proved that the condition
A = 0 is necessary. Thae sufficiency of this condition follows directly from
Theorem 4, if we assume that the functions F,, F, and F,, F, of that theorem
are dependent on z and y only (see remark to Theorem 4). This completes
the proof.

Remark 1. If the original functions F, (z, y) and F: (x, y)are polynomials,
we may take them as the polynomials P, and P.. Then the polynomials
D, (z, y)and P, (z, y) consiructed in our proof of the necessity of condition {(4)
are of the same degree as the polynomials F, and F; respectively.

Remark 2. It follows from condition (4) that if 0(0, 0) is a simple
intersection point of curves (C;) and (C;), the angle between these curves
at the point O is other than zero, i.e., the curves are not tangent to each
other at this point.

Remark 3. A simple (structurally stable) intersection point O (0, 0)
of the curves (C;)and (C:) has the following property: there exist & > 0 and
8o > 0 such that if the functions @, (r, y) and @, (z, y) are §,-close to the
functions Fy (x, y)and F; (r, y), respectively, the curves

Dy (z, y) =0 and @Oy (z, y)=0

have exactly one intersection point in U, (0) and this intersection point is
also simple. DMoreover, regardless of how small & << g, is, 8, can be made
sufficiently small so that this intersection point falls inside U, (0).

The validity of this remark follows directly from Theorem 4 (Sl. 2) and
Theorem 6.

3. Condition of duplicity for an intersection point
of two curves

We have established the necessary and sufficient condition for a root of
a function to be of multiplicity r{Theorem 5). The derivation of the
necessary and sufficiert condition for an r-tuple intersection point of two
curves in the general case (any natural r) is far from being so elementary,
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and it is therefore not considered here. For r = 1 the corresponding
condition is given by Theorem 6. We will now derive the condition for a
double intersection point oftwocurves, or an intersection
point of multiplicity 2, which is often used in what follows.

As before, we consider two curves

F!(xvy)=0v Fz(-"?,!/)=0

with a common point 0(0, 0). F, and F, are now assumed to be functions of
class 2 in G.

Theorem 7. A common point 0(0,0) of the two curves F, (z,y) =0
and F» (z, y) = 0 is a double intersection point if and only if the following
conditions are satisfied:

(@) | Fix(0,0)  Fiy (0, 0) —0
07| F3.(0,0)  F3, (0,0 |~

(b) at least one of the elements in the determinant A, is other than zero;

(c) the number x= 0 is a double root of the function F, (z, ¢ (x)), where
y = ¢ (x) is the solution of the equation F,(z,y) = 0 for y in some sufficiently
small rectangle |z |<a, |y |<P (this solution exists and is unique in viritue
of condition (b) and the theorem of implicit functions; also ¢ (0) = 0).

If F;,(0, 0)= 0, but some other element of A, does not vanish, condition
(¢) should be appropriately reworded.

Proof. 1) Necessity. Condition (a), Ag = 0, is clearly necessary by
Theorem 6. We will now show that condition (b) is necessary. Suppose
that this condition is not satisfied, i.e.,

Fix (0, 0) =F1, (0, 0) = F3x (0, 0) =F3, (0, 0)=0.

Let ¢ and 8§ be some positive numbers. By Theorem 2, there exist

polynomials P, (z, y) and P, (z, y), %-close to rank 2 to the functions F; and F,,

respectively, such that
P (0,0)=P;,(0,0) =P}, (0, 0)=0  (i=1, 2)

(if F, and F, are polynomials, P;and P;are identified with #, and Fz). The
polynomials Py and P; are written in the form

Dy (z, y) =Ax*+2Bay+Cyt+ ...,
Py (z, y) = Aa® + 2By +Cal® + - .-,

where the omitted terms are all of higher than second order.
The rest of the proof proceeds along the same lines as in Theorem 6.
Consider the two polynomials

ﬁ! (xv y) =aix+ﬁly+Pi (I, y)-

By (@, y) = sz + Boy + P2 (%, ¥).
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We choose ay, By, @2, B2 0 that the curves B, (z, y) = 0 and B, (2, y)= 0 pass
through two fixed points M, (z;, ) and N (0, y1) (z; %= 0, 31 == 0). To this end,
the following equalities should be satisfied:

az; - Py(z, 0)=0, By + Py (U, ) =0
and
Ay Palzy, 0Y=0, Boyp+ Py (0, yy) =0.
Dividing through by z; and y,, respectively, we express «; and f; as

polynomials in z, and y, without a free term. The numbers «,and B; there-
fore go to zero tor z;— 0 and y, — 0, and we can choose z; and y; so small

that the polynomials 131 and ﬁz are % -close to rank 2 to the polynomials P,

and P; and therefore §-close to rank 2 to the functions F, (z, y) and F; (x. y).
if, moreover, |z;|<e¢, |y | < e, the curves B, (z.y)= 0 and P; (z, y) = 0 have
at least 3 common points in U, (0): these are 0 (0, 0), M, (x;, 0), and N, (V. y).
This clearly proves thail the common point 0 of curves (C;) and (C;) is of
multiplicity higher than 2. We have thus established that condition (b) is
also necessary.

Let us now proceed with condition (¢). Let y = ¢ (z) be the unique solution
of the equation

F( (Iv y):()
in some sufficiently small rectanglejz|<a, {y|<B, such that |e(z)|<<B. Let
0 (2) =F2(z. ¢ (2)). (5)

Since ¢(0) = 0, we have 6(0)=0. Now, using the equality

0 Fix (0. )
3 (0) = e 12 O
¥ O Fiy (0, O)
we readily see that
0 0)= ——D0__
F1y(0, 0

t.e., (0)=0 in virtue of condition (a).

Suppose that condition (c) is not satisfied, i.e., z = 0 is not a double root
of the function 6 (z). Since 6 (0)=96(0)= 0, this assumption is equivalent to
the equality 6”(0)= 0. Note that the derivatives of the function ¢ (z) at the
point z = 0 are expressed in terms of the partial derivatives (up to
corresponding orders, ‘nclusive) of the function Fy (z, y) at the point 0(0, 0)
and the derivatives of the function 6 (z) at the point O are expressed in terms
of the partial derivatives of F, and F. at 0(0, 0).

Thus, let 8”(0, 0)=0. We choose somee >0 andé>0. Let -g— be a

positive number smalle:r than §, on which additional restrictions will now

be imposed. Consider the polynomials P; (z, y) and P: (z, y},6,-close to
rank 2 to the functions & (z, y) and F, (z, y), respectively, such that their
values and the values of their derivatives to second order inclusive at the
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point 0(0, 0) coincide with the respective values of the functions F, (z, y) and
F, (z, y) and their derivatives at that point (see Theorem 2). By Theorem 3
(the theorem of a small increment of implicit functions), if 8; is sufficiently
small, there exists a function y = ¢ (z) which is the solution of the equation

Py(z, y) =0

for y in the rectangle |z |<a, {y [<B. We choose 8, s0 small that the
function ¢ (z) becomes sufficiently close to rank 2 to @ (z) for |z |[<a, and
the analog of 8 (z), the function

Y (2) = P2 (=, $ (=),
becomes sufficiently close to rank 2 to the function
8 (z) = F, (2, ¢ (2))-

Clearly ¢ (0) = y (0) = 0. The derivatives ¥’ (0), ¢" (0), 7 (0) and ¥" (0) are
expressed in terms of the partial derivatives of the polynomials P, and P,
(to second order inclusive) at the point 0(0, 0). Seeing that the values of
these derivatives coincide with the corresponding values of the derivatives
of Fy and F;, we readily conclude that

¥ (0 =9 (0), VO =9 (0),
V(0 =0 (0)=0, v (0)=6"(0)=0.

v (z) is clearly an analytical function. If y (x) = 0, all the points (z, ¢ (z)) for
|z |<a are common points of the curveg P; (x,¥) = 0, Py (x, ) = 0, i.e., in
any neighborhood of 0 (0, 0) these curves have an infinite number of common
points.

Now suppose that y (z) is not identically zero. Then it can be written in
the form (since y (0) = ¥' (0) = " (0) = 0)

¥ (2) =" (2),

where k» 3, and © (0) == 0 {see §1, {(19)).
Consider the polynomials

Bi(z,y)=Pi(z,y) and Pp(z,y) =+ + Py (1, y).

¥ (@) =P, (z, ¥ (2)) =2z + 27* + 2D (2).

¥ (z) is also an analytical function. By Lemma 1, $§1, and Remark 2 to the
lemma we know that for any £ > 0 and §, > 0 we can choose two numbers

as # 0 and a, = 0 such that the polynomial B, (z, y) is 8-close to rank 2 to the
polynomial P; (z, y) and the equation

v@@=0,

apart from the root z = 0, has at least two more roots x; and =z,, |z | < &,
|za | < 8. This choice of a,, a, ensures that the polynomials B, and B, are
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8-close to rank 2 to the functions F, and F,, respectively, and the
curves

Piz.y)=0. Py(z,49)=0
have at least three common points,
00,0, Mz, ¢ (r)y, Ma(ze, ¢(22))s

such that if ¢, > 0 is sufficiently small, M;and ¥, lie in U, (0). This means,
however, that 0 (0, 0) is not a double intersection point of the curves (C,) and
(C)). The necessity of condition (c) is thus established.

Note that if F, and F. are polynomials, they can be used as P, and P..
The polynomial 72, in this case is of the same degree as the polynomial F,.

2) Sufficiency. Let conditions (a), (b), and (c) of Theorem 7 be
satisfied. Since Fi,(0,015=0, by Theorem 3 for any & =0 we can find 3, >0
such that if the functions F,(z, y) and Fz(x. y) are §,~close to rank 2 to the
function F, and F; in G, the following holds true;

1) the equation F|(r, y) =0 has a unique solution y=¢(z) in the rectangle
fzl<a, |y|<B, and @(z)is & -close to rank 2 to ¢ (z) for |z|<a;

2) the function 8(z)=7F, (z, §(z)) is 8-close to rank 2 to the function
6(z)=F.(z, (7)) for |z|<a.

In virtue of condition (¢), =0 is a double root of the function 0 (z).
Therefore, there exists g >0 such that for sufficiently small §, the equation

6(1\:0, i.e., Fz(xv 5(1))'—_0

has at most two roots which are smaller than ¢ in magnitude. Let g be a
positive number smaller than e, such that U, (0) is entirely contained in the
rectangle |r{<a. |y|<B. Then, if 3, is sufficiently small and the functions
F, and F, are §,-close to rank 2 to F, and F;, respectively, the curves

Fi(z.y)=0 and F,(z, y)=0

cannot have more than two common points in Ug (0), i.e., condition (a) of
Definition 5 of the duplicity of point O is satisfied.

It now remains to show that condition (b) of Definition 5 is also satisfied,
i.e., for any positive e<Ze, and & there exist functions F, and F. 8-close to
rank 2 to the functions F, and F,, such that the curves

Fi=0 and F,=0

have two common points in U, (0).
Consider the functions

Flay=F@y
and
Fa(z. y) =gz -+Fplz, ).

For these functions clearly P=0 (x) and

B8(@2)=F, (2 ¢ (@) =a;z+F2 (z, ¢ (@) =,z + 0 (2).
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Since z=01is a double root of 6 (z), this function can be written in the form

8 (z) = 220 (z),

where @ (z) is a continuous function and ® (0)5=0 (see §1, (19)). Therefore

8 (z) =z 22D (z). .

By Lemma 1, §1, o4 can be chosen so that both 2 =0 and x, |z; | < e, are
roots of the function 8 (z) and the point M, (z;, 9 (z,)) is inside U, (0). This a,,
moreover, can be made so small that the function F, (z, y) will be §-close
to rank 2 to the function F, (z, y). Condition (b) of Definition 5 is thus
satisfied, which completes the proof.

Remark. Itis readily seen that condition (a) of Theorem 7 follows
from conditions {b) and (¢}, and may therefore be omitted from the full
statement of the theorem. We nevertheless preferred to include it in
explicit form. Theorem 7 is a particular case of a more general proposi-
tion proved in Chapter VIII (§23.1, Theorem 33).

We conclude this section with a remark analogous to that in §4.1, where
we discussed the multiplicity of a root relative to a given class of functions.
Let M be one of the following classes of the functions ® (z, y) of two
variables: the set M® of all functions of class & > 0, the set M4 of all
analytical functions, the set Mp of all polynomials, and the set M, of all
polynomials of degree <n. For functions Fy (z, y} and F, (z, y) from the class
M, we define the multiplicity of a commeon point O (0, 0) of the curves
Fi(z,y) =0, Fy (z,y) = 0 relative to the class M (see §1.4, Definition 3), Itis
readily seen, however, that the various arguments leading to the final
proof of Theorems 6 and 7 remain fully in force if functions ¥, and F, belong
to the class MM, and the multiplicity of their common point is considered
relative to this class M, and not in the sense of Definition 5. Thus, the
condition A, 5« 0 is the necessary and sufficient condition for simplicity of
the common point of two curves relative to the class M, and conditions (a),
(b), (c) of Theorem 7 are the necessary and sufficient conditions for
duplicity of the common point relative to the class M (M is one of the
classes M™, M4, Mp, M,). There is thus no need (for r = 1 or r= 2) to
consgider the multiplicity of the common point of two curves relative to the
class M, and in what follows simplicity and duplicity of intersection points
are always understood in the sense of Definition 5.




Chapter II

DYNAMIC SYSTEMS CLOSE TO A GIVEN SYSTEM
AND PROPERTIES OF THEIR PHASE PORTRAITS

INTRODUCTION

All the results of this chapter directly follow from the theorems of
continuous dependence on the initial conditions and the right-hand sides.
Although of no intrinsic significance and almost trivial, these results are
absolutely essential for a rigorous treatment of the main material. This
background chapter consists of two sections.

In §3, 8-close systems are defined and the relevant theorems of
continuous dependence are stated (Theorems 8 and 9). Some properties of
regular mappings are considered. The next section, §4, considers inter-
sections of paths of close systems with arcs and cycles without contact; it
is established that the behavior of the paths of system (A) which is
sufficiently close to system (A) relative to arcs (or cycles) without contact
is on the whole similar "o the behavior of the paths of the original system
(A). The reader who is interested in following the main line of argument
can skim through this chapter, omitting the proof of the various lemmas
and concentrating only on the relevant statements. The reader must
acquaint himself, however, with the concepts of e~close regions
{Definition 7), e-translation (Definition 8), and e-identical
partitions of two regions into paths (Definition 9), which are
introduced in this chapter. The last of these definitions — e-identical
partition into paths — is the most significant: it is used in the definition
of structural stability, which is the main subject of the book.

§3. CLOSENESS OF SOLUTIONS. REGULAR
TRANSFORMATION OF CLOSE SYSTEDMS

1. Theorems of closeness of solutions

We will consider systems of differential equations {(dynamic systems) of
the form

Py L<0@y). (A)

These systems are defined in a bounded region G of the plane (z, y); they
are often considered, however, only in some closed subregion G * of G.
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System (A) is said to be a system of class k or of analytical class if P and
Q are functions of class & or analytical in G.
Consider two systems defined in G,

&Py E—Q@y (a)

F=Pan. H=q@w (A)

which both belong to some class k or are both analytical.

Definition 6. System(A)is said to be 6-close to rank r to system (A)
in G (ov G if the functions P and § in G (or G *) are §-close to vank r to P
and Q, respectively (see Definition 1, $§1).

Let

P, y))—P@y)=p@y), O y—0Q( v =q(, ).

The functions p (z, y) and ¢ (z, y) are the increments of the right-hand
sides of system (A). If these functions are 8-close to rank r to zero, we
will call them 8-increments of rank r. System (A) considered in
conjunction with (A) is called modified (relative to system (A)), and is
sometimes written in the form

E—PEn+r@y, L=Q@n+e@ . (&)

In what follows, if system (A) is §-close to rank 1 to system
(A), we shall simply say that system (A) is 6-close to
system (A), omitting the qualification "to rank 1.

Consider two vector fields defined by system (A) and a §-close system
(A). At each point M (z, y) of G two vectors are defined, v (P, Q) and v (P, Q).
Let v 0, vs< 0, and let 8 be the angle between v and v (see QT, Appendix,
§5.1). It is readily seen that this angle is infinitesimal for sufficiently
small §. Indeed,

|QP—PQ|
VPT@V B4 ga

and for P and @ which are close to P and @ sin 9 is close to zero while cos 6
is positive (close to +1).

Let us now formulate for these systems the theorem of continuous
dependence of solutions on the increments of the right-hand sides and on
the initial values. Let the systems (A) and (A) be defined in G. Let

sinf =

=0 (t—to, Toy Yo} Y=V (t—to, To, Yo) (1)

be the solution of system (A) corresponding to initial conditions %, z,, yo-
Solution (1) is defined for all t in some interval v <<t<:T. Let 1, and 1,

be two numbers, such that v <<t <<t; <<t3<<T. Let L be the path corre-

sponding to solution (1). Let the segment of L corresponding to the values
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of t, 7, <f< 1, be completely contained in the closed region G * (G* — ), and
let

I=5(t—to, ;Ov .;/:))v y=$(t_t07 -;ov !7;)) (2)

be the solution of system (A) corresponding to the initial conditions #g o, Jo.
Theorem 8. For any e>>0, there exist w>0and >0, such that if

1) |Zo—zol<<m, |o—yo| <<t and 2) system (A) is s-close to system(A)in G*,

solution (2) of system(A)is defined for all . n,<t<,, and in this time

interval

|$(!'—t0y ;ﬂv ;0)'_' (P(t—[m oy .l/o) [ <e,
P (t—to, Zov Ya) — Y (t—tor Zo, Yo) | <e.

Theorem 8 is a particular case of Theorem 2 from subsection 1 in
the Appendix.

Remark. Since the functions @(t—ty, xo,¥) and ¢ (¢ — Zs, T4, yo) are
continuous, and are therefore uniformly continuous in ¢ over the segment
< t<12, Theorem 8 clearly can be strengthened as follows: for any
e>0, we can choose 1> 0 and 6§ >0 such that if in addition to conditions 1
and 2 above we also have condition 3) [ —¢" | <n(¢fand ¢t are any two
values from [v, 1)), ther

1@ (" —to, Zo, Yo)—P (¢’ —to, X0, Yo) |<<e,
1 (1" —to, Tor Yo) — (¢’ —tor 2o, Yo} | <e.

Theorem 8 can also ke formulated in geometrical terms. This formula-
tion is particularly convenient for what follows.

Let L be a path of system (A), M, and M, are the points of this path
corresponding to # and i;; the arc M M, of L is completely contained in a
closed region G* (G* C—G). M () represents the point of L which corresponds
to time t. Similarly, # (f) is the point of the path £ of system (A)
corresponding to time ¢t.

Geomelrical form of Theorem 8. For anye >0, there exist
w>0and 6 >0, such that if system (A)is 6-close to system (A)in G* and
the path L at t = t, passes through the point M, ¢ U, (M,), the corresponding
motion along L is uniquely determinable for any i, to<t<t,, and for these
t, M) e U M (W). In particular M, = § (t,) ¢ U. (M,) (Figure 1).

The next theorem is a generalization of Theorem 8. Let F be a closed
bounded region, F =G. Consider the solutions

=@ (t—1o Zo, Yo)y Y= (t—to, To, Yo)

of system (A) corresponding to various points M, (%o, yo) of region F.
Suppose that each solution (1) is certainly defined in a closed interval

Ty (Tos Yo) <t < T2 (ZToy Yo)s
where T, ( ¥o) and Tz (%, ¥o) are continuous functions of z;, y;, such that

Ty (Zoy Yo) <tloy T2 (Tor Yo) > Lo.
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FIGURE 1

By QT, §1.9, Lemma 9, we may take [T (o Yo} —20| > ko | T2 (To, Yo)—1t0 |5 has
where ;>0 is some constant number (which is independent of the point
MO (IO' yo)ﬁE F)-

Let G* be a closed region which completely contains all the arcs of the
path defined by solutions (1) as the point M, (ze, yg) goes over the entire region
F and ¢ varies from 7, (2o, ¥o) tO0 T2 (%0 ¥o). G* contains, in particular, the
closed region F.

Theorem 9. For any e>0, there exist 8 >0 and o> 0 independent of
the point Mo(zo, yo) €F, such that if 1) |To—xe| <t |Yo—vol<<n and 2) system
(A)is 8-close to system(A)in @, the solutions

T=Q (t—to, T, Yo)» Y= (t—Lo Tor Yo) (2)

of system(A) are defined for all t, =, (zo, yo) <1< (2o, yo), @nd in this time
interval

|9 (t—tor o, Yo)—@ (¢t —to, %o, vl <e,
|9 (t—20, Tor Yo)— (t—1to, %o, Yo) | <e.

The proof of this theorem follows in the usual way from compactness
considerations of region ¥ and from Theorem 8. Note that instead of a
closed bounded region, F can be any compact set.

Remark. The numbers 1> 0 and § >0 can be so chosen that if in
addition to conditions 1 and 2 above we also have condition 3)1¢ — " | <,
where 7T((2o, yo) <t <72 (%o, Yo} T1 (%o, Yo) <" < T2 (2o, Yo), then

|@ (" —tor Zor Yo)— (' —2ar o Yo | <8,
l‘p(t’_tm Zo» !Z))—‘\P(l'—to' Loy y()‘)|<e

(see remark following Theorem 8).

In what follows we will repeatedly use the theorem of closeness of the
functions ¢ and ¢, and also of P and \F(see Appendix, subsection 1,
Theorem 3).
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2. ¢-Closeness of regions. Lemmas of regular
transformation

In this subsection we formulate two propositions concerning the
substitution of variables in systems of differential equations. The proof
is elementary and is therefore omitted.

First we have to define the concept of t-closeness of regions.

Definition 7. The closed regions G, and G, are said to be e-close if

1) each point in G, is distant less than « from G,, and conversely each
point in G, is distant less than ¢ from G,;

2) each boundary point of G, is distant less than e from the boundary
of G., and conversely each boundary point of G. is distant less than = from
the boundary of G,. * _

Clearly if G, is the image of G, under a topological mapping f and for any
MeG, p(M, f(M) < e regions G, and G, are s-close.

Consider a regular transformation of variables of class k+1

Uu—=@(x y) =%y, (3)

which is defined in some region of the plane (r, y) {(see QT, Appendix, $6.1).
We say that this transfermation is §-close to rank r(rgk + 1) to the identity
transformation

u=z, v=y, (4)

if the functions ¢ (r, y) and ¢ (r, y) in this region are §-close to rank rto the
functions z and y, respectively.

Suppose that transformation {3) is considered in an op=2n domain G, and
G, is a closed bounded region, G, C G. Let

r=fu, v), y=g, ) (5)

be the inverse of transformation (3) @‘; is the (u, v) image of G, under
transformation (3).

Theorem 4 (the theorem of a small increment of an implicit function)
and the compactness of G, clearly show that if transformation (3) is
sufficiently close to rank r to the identity transformation (4), transfor-
mation (5) in G! is arbitrarily close to rank rto the identity transformation

If the plane (u, v) coincides with the plane (z, y) and the axes z and y coin-
cide with the axes u and v, respectively, i.e., if the point M* (u,v) is in fact
a point in the plane (z, y) with the coordinates u, v {relative to the system of
coordinates defined in taat plane), then, transformation (3) being §-close
to the identity transformation, we immediately conclude that G} is 6,-close
to Gy, where 8, = ¥V 25.

Consider a dynamic system of class &

L Py L-0@y (a)

at

* Simple examples will show that conditions 1 and 2 are independent,
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defined in domain G of plane (z, y). We apply to this system a regular
transformation (3) of class k +1:

u=9(x, y), v=%( y).

This gives a system

di dv
%':P*(u’! U), T=@(u$ U),

P* (u, v) =@z (f (u, v), g (1, v)) P(f(u v)’ g, v))+

Fou (f (. v), g, V) QU V), g, V)
Q* (u, V)= (f (u, V), g, v))P(f(u, v), gu v))+

+ vy (f (u, v), g(u, V) Q@ v) g, V).

(A*), like (A), is clearly a system of class k.
Treating u, v as coordinates in the plane (z, y) and reverting to previous
notation, we write system (A*) in the form

d
&Py, X0y (a%)
Let Gy = G be a closed bounded region, and G¥ its image under {3).
Lemma 1. For any e >0, there exists 8§ > 0 such that if transfor-
mation (3) is 8-close to rank k +1 to the identity transformation in G, then
GG and system (A*)in G*is 6-close to vank k to system (A).

Now consider two systems-of class k defined in G (at this stage, it does
not matter whether this region is closed or open):

&P H=0Q ) (a)
L =Py -=0&wn (&)

and let
u=9( y), v=v(@ p) (3)

be a regular transformation of class k+1. Applying this transformation
to (A) and (A), we get

LP ), =0 ) (ax)

& G @ v) (A*)

which are both systems of class k defined in G* (G* is the image of G under
(3).

Lemma 2. For any e > 0 there exists § > 0 such that if system (A)is
s-close to vank k to system (A)in G, then the system(B*)is e-close to
rank k to system (Ax)in G*.
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In conclusion of this section, we consider some simple particular cases
of increments to right-hand sides of a given system (A), which are often
encountered in what follows.

Consider two systems defined in G:

'%:-'=P(Iv ¥ 3_!:=Q(.’L', ), (A)

F=P@ )=P@ +p@ ) L-0@n=0@n+aeay. (&)

The sine of the angle 6% between the direction of the field described by
system {A) and the direction of the field of system (A) at any point in G is
expressed by
sin @ =ﬂ: .

VPr@V R
The angle 8is positive at any point where PJ—QP >0, it is negative if
PJ—QP < 0; wherever FQ—QP =0 the fields of systems (A) and (A) are either
parallel (6 =0) or antiparallel (§ ==x), so that at the relevant points the paths
of systems (A) and (A) are tangent to one another.

Consider increments of the form

p=—pfQ, g=+pfP, (8)

where f = f (z, y) is some function of the same class as the functions

Q (z,y), P(z,y) and p is a parameter. If the relevant region is closed and
bounded, then for sufficiently small p, p and ¢ are evidently arbitrarily
small (to some rank r) increments. System (A) then has the form

& _P—piQ=P, L-Q+uP=0. (7)

In particular, consider the case f= 1. Then the modified system is
dx dy
-E—=P—P-Q’ W:Q-{—pp. (8)

The sine of the angle 6 between the directions of the field of system (A) and
the field of system (A) is expressed by

sin Q= QP —FQ = B/

VEr@) et B Vidpip (9)

In our particular case (f =1), the angle between the fields of (A) and (&)
is constant everywhere in the region,

ek
sme—vi—__;__p’. (10)

We say in this case that the field of system (A) is rotated
through a constant angle relative to the field of

¢ The angle between two ordered vectors is defined as the angle not exceeding 180° through which the first
vector should be rotated so as te coincide with the second vector.
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system (A), or alternatively, that increments of the form (6) forf=1
produce a rotation of the field through a constant angle.*

Lemma 3. The states of equilibrium of system (1) are those of
system (A) and vice versa.

Proof. System (7)is in equilibrium at any point where

P—ufQ=0, pfP+Q=0. (11)

Since (11) is a system of linear homogeneous equations for P and Q and the
determinant of this system

1
pf

—P;f'=1+u’f’

does not vanish for any =z, y, equations (11) can be satisfied if and only if
P(.t, y)=Q(xv y)=01

i.e., if and only if the point z, y is a state of equilibrium of system (A).
This completes the proof.

§4. INTERSECTION OF PATHS OF CLOSE SYSTEMS
WITH ARCS AND CYCLES WITHOUT CONTACT

1. Intersection with one arc without contact

This section presents a number of elementary, almost self-evident
propositions which are analogous to those discussed in QT, §3. The main
difference is that together with system (A) we will also consider modified
systems (A). Since these propositions are repeatedly used in what follows,
they will be given detailed proof.

Consider a system of class k&

L eP@y X0y (a)

defined in G, and let G* be a closed region, G*< 6. The modified system

%=ﬁ($’ y)! ’:_Z‘=6(xv ¥) (A)

is also defined in G.

Consider an arc ! or a cycle €, which are without contact for a path of
system (A) completely contained in §*. The following self-evident
proposition is given without proof. _

Lemma 1. There exists 6, > 0 such that if system(A)is §,-close to
system (A)in G* the arc I (the cycle C) is without contact for paths of
system(A), and these paths make with arc i (cycle ¢) an angle of the same
sign (see QT, Appendix, $5.5) as the paths of system(A).

* With increments of this form, the field vectors of system (A) are not only turned through a constant angle
but also stretched in a ratio of /1 + w?. We are concerned only with directions, however.
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To simplify further formulations, we will now introduce the concept of
e-translation.

Definition 8. The mapping fof a sel E in a metric space R into lhe
same space is called e-translation® if f is a topological mapping and if for
each point McE the dislance beltween the original and the image is less
than ¢, p (M, f (M) < &,

Now consider systems (A) and (A) in regions H and H (closed or open),
respectively, HC G, H G (in particular, (A) and (5.) may coincide, and
then the same system is considered in two different subregions of G;
alternatively, H and H may coincide).

Definition 9. A partition of H by the paths of system (A)and a
partition of i by the paths of system(A)are said to be ¢-identical, or in
symbols

(H, H=A, D,

if there exists a mapping of H onto fl which is an e-lranslation and which
transforms the paths of system(A)into the paths of system(B).**

Thus, the partitions of H and # by the paths of (A) and (A) are e-identical
if these partitions have the same topological structure and are ''distorted”
or "translated’ one relative to the other by an amount less than . To
ensure e¢-identity

(H, )=, 3.

H and H should be homomorphic and &-close to each other. Moreover, it
is necessary that the partitions of these regions by the paths of the corre-
sponding systems have the same topological structure (see QT, §5,
Definition V). These necessary conditions, however, are not sufficient
in general, since even if they are satisfied, there may prove to be no
topological mapping of H onto # which conserves paths and is at the same
time an £-translation.

Now suppose that the arc I, which is an arc without contact for the paths
of system (A), is defined by the parametric equations

x=7(s}), y=g(s)

where a<s < b. According to the definition of an arc without contact, f(s)
and g (s) are continuously differentiable continuous functions. Let §,> 0 be
the number introduced in Lemma 1, i.e., such that for all modified systems
(A) §,-close to system (A) in &* (G* = G), the arc [ is an arc without contact.
We will only consider modified systems (A) which are 8,-close to system (A).

* The term e-translation is generally understood in a wider sense. Indeed, 8-translation is defined as a
continuous mapping (not nece ssarity topological) which translates each point of the set by less than e,
However, we will have opportunity to use this concept only in relation to topological mappings, and
therefore in what follows e-translation is understood in the restricted sense of Definition 8,

» A mapping which transforms paths into paths is given in QT (§5, Definition V). This is a topeological
mapping, such that any two points of a path of system (A) are mapped into points of one path of system A),
and any two peints of a path of system (A) are mapped by the reverse mapping into two points of one path
of system (A), In QT this mepping is called an identifying mapping. We willrefertoit asa
mapping which maps paths into paths or more briefly a path-conserving mapping.
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Let
=0 (t —to Zo» Yo)» Y=Y (E—Lo To, Yo) (1)
be a general solution of system (A) and

-T=E’(t—t0v Zo, Yo)s y=$(t‘—to- Zg, Yo) (2)

a general solution of system {A). Then the equations
=@ (t—1o f(s), g(N=DP{ 8), y=%(—t, f(s) g(N=Y(t 9 (3)

and respectively

z=Pt—1to) f(s) g(N=Bt 5), y=P(t—to). f(s) g(N=F(t, 9 (4)

for any fixed s, a<s<b, are equations of that path of system (A) (and
respectively (A)) which for £ = #, crosses the arc [ at the point (f (5), g (s))
(i.e., at the point of the arc ! which corresponds to the given value of the
parameter s). According to the definition of the functions ¢, ¥, ?, P we see
that

D (Lo, 5) =@ (Zo, 8) =1 (s)s ¥ (Lo, 5) =fi’(tm s)=g(s). (5)

Now suppose that at any point M, (zq, yo) of the arci(zo = f(s), yo = £ (5), a<<s<b)
solution (1) is defined for all?, t,<t<t (s), ¥ where T (s)is a continuous
function (in particular, it may be a constant), and that the corresponding
arc of the path is completely contained in G* and has no common points with
the arc I, except M,. Evidently, under these conditions, the functions

D (¢, 5), ¥ (£, s) are a priori defined everywhere in the closed region

a<s<h, t<t<(s). (8)

By QT, §1.3, Lemma 5, the functions ® and ¥ have continuous first-order
partial derivatives in region (6), which are expressed by

@i ¢, 8) =01 (£—1o, F(s)s £())

D (2, ) =@ (t—10, [ (s)y &(NF ()+ Py, (¢ —2to) F(8)y &N & (s)s (7)
Wity sy=1i(t—1to f(s), g(s)

Wity 8)="9 ({10, 7(8)s (NI (8)+ %y, (t—t0s F (), () &' (5)-

Further, by QT, §3.5, Lemma 8, equations (3)
=D, 8), y=¥({ )
define a regular mapping of region (6) onto some closed region K in the
plane (z, y) with the arc I as part of its boundary (see Figure 2; region (6)
is shown in Figure 3). In the light of our assumptions, region X is

contained in G*.

* Orfor all¢, to 3» t 5» T (8). This case is analyzed precisely in the same way.
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¥

O

FIGURE 2. FIGURE 3

4

Lemma 2. For anye>0, there exists 6> 0 such that if the system (A)
is 8-close to(A)in G*, the functions & (¢, s) and ¥ (¢, s) corresponding to
system(A)are defined in region (8), have continuous first-ovder partial
derivatives in this region, and are =-close there to the functions @ (t,s) and
¥ (L, s).

The proof of this lemma follows directly from Theorem 9 (§3) and from
Appendix, subsection 1, Theorem 3.

Lemma 3. (a) There exist 8 >0 and h> 0 such that if the system A)is
6-close in G* to system(A), the mapping

z=D(,5), y=T(,s) (4}

is a regular mapping of the rectangle
a<s<h,  |t—t|<h (8)

in the plane (t, s) onto the closed region K in the plane (z, y), and K is entirely
contained in G*.

(b) Lel K be a closed region which is the image of rectangle (8) under
the transformation

z=Q @, s), y=¥(,59), (3)

corresponding to the "'initial" system(A). For anye= 0, there exists

8* > 0 such that if system(A)is §*close to(A)in G+, K is ¢-close to K.
Proof. Letus first prove {(a). According to the definition of a regular

mapping (see QT, Appendix, §6.1), we have to prove that an appropriate

choice of 8>>0and k> 0 will make (4) a one-to-one mapping in rectangle (8)

and that everywhere in this rectangle

D, s) Dt s)
T, sy Fio9)l

(9)

A, s)=
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By QT, §3.4, Lemma 3, there exists ko > 0 such that the mapping (3)
is regular in the rectangle

a<s<h, |t—ty|<ho. (10)
Hence, at any point (¢, s) of the rectarigle (10), the determinant

; (¢, 5) @, (¢, s)
ALO=lyin 9 Wi, 5

has the same sign. Suppose that this sign is positive. Then at any point
of the rectangle (10) A (£, s) > ¢, where ¢ is some positive number. Hence,
remembering that the rectangle is compact and the elements of the
determinant A are continuous, we conclude that there exist n > 0and o >0
with the following property:

if

[ti—tyl<n, |si—s;1<0, |t—to|<hoy, a<m<b  (i,7=1,2,3,4). (11)

then
CDII ([h 8‘1) (D; (tZ’ 52) - [
Wilts, s3) Wiltas 80 2-

From the last relation and Lemmas 1 and 2 it follows that there exists
8, > 0 such that if system (A) is 8,-close to system (A) and the numbers ¢,
and s (i =1,2,3,4) satisfy (11), 1 is an arc without contact for the paths
of system (A) and

IG)Z (ti, s1) Di(tzn s2) 0. (12)

Fi(ts, 59 T (& 2)

Now suppose that proposition {(a) of the lemma is not true. Then for
any § > 0 and A > 0, there is always a system (A) 8-close to system (a)
for which (4) is not a regular mapping of the rectangle {8) into the plane
(z,y). As 6 and k we choose any two numbers satisfying the inequalities

38y h<<hy, h<<-}. (13)

This choice clearly does not detract from the generality of our argument.
® and ¥ are single-valued functions. Now, by (12),
X ®; @, 5) B, s
A AR A
in rectangle (10) and hence also in rectangle (8). Therefore mapping (4)
is not regular only if it is not one-to-one, i.e., if in rectangle (8) there is

at least one pair of different points (¢, &) and (¢", s") which are mapped
under (4) into the same point of the plane (z, ), i.e., such that

e, =0, s, T, H=T(, ). (14)
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Applying Taylor's expansion to these equalities, we see that

B2y, s) (' —=2") =Dty 8) (8" —5") =0,

Wi (tee s2) (8 — ")+ T (tas 52) (8" —5") =0, {15)

where ¢, and ¢, are numbers lying between t"and ¢, and s and s; are
numbers lying between s and s". We will now show that|s —s"|>»0. Indeed,
if [¢ —§" |<o, we have | sy — s: | <<o. Furthermore, | —t: 1<t — "<
and & — &, | <<hg.l t2 — 8, | < ho by (13). Hence, inequalities (11) are satis-
fied, and by (12)

D; (. 5y Dyt &)
T (ta s2) Tty s2)

The last equality shows that system (15) considered with respect to
¥ — ¢, s —s" has a nonvanishing determinant, i.e., ¢ =¢".¢ =s". This is
at variance with the starting assumption that (¢, s') and (¢".s") are two
different points in the rectangle (8). Hence |s —s" [>o0.

Let us consider two sequences of positive numbers $,and 4, i=1,2,...,
satisfying conditions (13), such that lim§; =limh; =0. We have seen that

i P-~sac
if proposition (a) of the lemma is not true, then for each pair §; and k; there
exists a system (A ,) which is 8,-close to system (A) and a pair of points
(¢i. 8. (45, s}) such that|s;—si|»>0and

Oy i sy =D, (¢ sD. T sy =F, (1 5. {18)

where D, and ¥, are the functions corresponding to system (Z\.‘-). Since
Lti—to| <<h; — 0 and{ti—i, <<h;—0, we have lim¢i=limti=14. If necessary we

[ 1
can pick out suitable subsequences, so that sj and s} can always be made
to converge. Lethmsi=s, limsi=s], Clearlya<s;<b a<s<b andls,—s;| >0

3+ X

From the definition of i, and ¥; and by Theorem 8 (§3) together with the

remark to that theorem we obtain the equalities lim®, (¢}, s)) =D (&, s;) and
i

lim @, (¢, s =D, ;) and similarly for ¥;. Therefore, taking the limit in

[

(16), we get
D (Lo, 5,) =D (Lo 53}, W (te. 53} =W (4, s5)

or, from (5),

fs)=1(s). g(s)) =g (s3).

These relations are at variance with the inequality |s;—s) |>»0o. Proposi-
tion (a) of the lemma is thus proved.

The validity of proposition (b) follows directly from Theorem 9 (s3),
which completes the proof of the lemma.

Remark. It follows directly from Lemma 3 that if § > 0 is sufficiently
small and the system (A) is 8-close in G*to the system (A), the paths of
system (A) which meet at ¢ = § the arc ! {arc without contact) have no
common points with the arc I for all other values of ¢, t=1i5, |{— 1 I<h,
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Let now M, (zo, o) be an interior point of the arc !, corresponding to the
value s, of the parameter s(a << so<<b).

Lemma 4. For any e >0, hy> 0, there exist n > 0,8 > 0 which satisfy
the following condition: if system(B)is s-close to system(A)in G* Mis
some point in Uy, (M), and L is the path of system (A)which at t = t, passes
through the point M, then for some t*,|t* — t, | < ho, the path L intersects
the arc | at the point M*, such that the arc MM* of the path [ is entively
contained in U, (M,) (Figure 4).

>
FIGURE ¢4 FIGURE §

Proof. Fixe>0and ky>0. Without loss of generality we may take
U. (Mo C G*. Choose o> 0 such that the part of the arc I corresponding to
the values of the parameter 5,5, — 6 <s<8 -+ 0, i8 completely contained in
U.(M,). By Lemma 3 (a), using the continuity of all the functions, we see
that there exist § > 0 and &, 0 <<k << ko, such that the mapping

z=Q(@, 5), y=¥({, s), (3)
corresponding to system (A), and also the mapping
x=d—)(t, s), y=‘r’(t, s), (4)

corresponding to any system (A) which is 8-close to aystem (A) in ¢, are
regular in the rectangle

jt—t|<h, |s—sf<o

in the plane (¢, s) and map this rectangle onto a closed region H (or H) in the
plane (x,y), HC U. (M), HC U, (M,). M, is evidently an interior point of H
and H. Let rbe the distance of My from the boundary of H {Figure 5). By

Lemma 3(b), 8§ can be cosen so small that H is 5-close to H. Then the

boundary of H is %-close to the boundary of H. For n we can take any

positive number smaller than —_.;— Indeed, if n < —;-, it is readily seen that

U, (M,) is completely contained in each region #. But then from the
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definition of A and the inequality & < h, we conclude that the particular 1 and
§ that we have chosen satisfy the condition of the lemma. Q.E.D.

Remark. Lemma 4 ¢an be generalized as follows. Let % be a part of
the arc without contact ! which is contained entirely in { (i.e., the end-points
of the arc 4 do not coincide with the end points of 1). Then for any & > 0 and
h > 0 there exist n > 0 and 8§ > 0 which satisfy the following condition: if
system (A) is § -close to system (A) in &*, M is any point whose distance
from the arc A is less tnan n(i.e., M € ', (A)), and £ is the path of the
system (A) which at £ = ¢, passes through the point M, then for some #*,
|&* — iy |<<h, the path L iatersects the arc I at the point M*, and the arc
MM* of the path L is en:irely contained in U, (A).

The validity of this proposition can be established in the usual way by
reductio ad absurdum, using Lemma 4 and the compactness of the arc i.

As before, let the arc without contact ! lie inside the region G*. Con-
sider some interior point M, (x4, ¥) of this region which does not belong to .
Let the path L of system (A) pass through the point M, at t = t,, and at
t = 1= {,it crosses the arc ! at a point M, which is not an end-point of the
arc {. Moreover, let the arc M,¥ of L be entirely contained in G*

(Figure 6).

FIGURE »

Lemma 5. For any ¢>0, h>0, therve exist n>>0 and >0 such that if
system (A)is 8-close to system(A)in G*, $,eU,(M,), and L is the path of
system(A)which at t=t, passes through the point i, then at some t=% the
path L crosses the arc | at the point M so that (a) [T—<|<<hk; (b) MeU,(M);
(¢) the arc MM of the path L is contained entively in G*; (d) if |T—ti<
<lit—to|, then M (t)eU. (M () for all t€(7, t); if, on the other hand, |t—t,| >
>lT—1to|, then J (t)cU (M (2)) for all teix, t] and the arc of the path L corve-
sponding to tc v, v)is entively contained in U, (M (x))* (Figure 6).

Lemma 5 is an obvious corollary from Theorem 8 (§3) and Lemma 4.

Remark. Lemma 5 can be generalized like the preceding lemma (see
remark to Lemma 4). Indeed, consider a compact set F jn G* such that
each path which at t = ¢, passes through the point M, (z,, yo) of this set inter-
sects at some t = T (2o, §5) the arc without contact ! at the point M (2o, ¥o), always
remaining inside G until the intersection point is reached; then for given

* Here, as in the following, M (#) is the point of the path of the relevant system which corresponds to the
time ¢ for the particular motion chosen along the path.
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>0 and A > 0, the numbers 1> 0 and 8 > 0 entering Lemma 5 can be chosen
independently of the point M, € F, and will thus satisfy the lemma irrespec-
tive of the particular point M, € F that is taken. In what follows, the compact
set F is generally identified with some arc without contact !’ which has no
common points with the arc 1.

In Lemma 3 the functions ® (¢, 5),¥ (¢, 5), and also @ (¢, s) and W(t, s), were
considered only for ¢ such that |t — & |<ho, where ks> 0 is some sufficiently
small number. Let us now again consider the case when the functions
D (¢, s) and ¥ (¢, 5) are determined for all ¢ and s in the closed region

a<s<h,  te<I<T(s), * (6)
where 7 (s) is a continuous function. We assume, as before, that for all
t and s from this region, (® (¢, ), ¥ (£, 5)) € G * and that if {, <<f<t(s)and s, ¢

are any two numbers from [a, b], at least one of the following two inequali-
ties is satisfied:

O, 8)5=D(ty, &), Y(2, 8)5=¥ (L. ),
i.e., any path of system (A) defined by the equations

»‘L'=‘P(t—tov f(s)i g(S))=®(t, s)’ y=¢(t_t0’ f(S), g(s))=‘l’(t, s)! (3)

has no common points with the arc I for ¢t going from & to 71 (s), except the
one point at t = ,.

We have noted above that under these conditions equations (3) define a
regular mapping of the region (6) in the plane (¢, s) onto some closed region K

in the plane (z, y) (Figure 2).

Consider the following lemma.

Lemma 6. For any e >0 there exists 6 > 0 such that if system (A)is
8-close in G* to system(A), the functions & (t,s) and F (¢, s) are defined in the
region (6) and the equations

z=D(, s), y=‘ff(t, s) (4)

describe a regular mapping of (6) onto some closed region K, K < G*, such
that the regions K and K are e-close.

Proof. It suffices to show that for small § the mapping (4) of the
region (8) is regular, since the other propositions of the lemma are
contained in Lemma 2. To establish the regularity of the mapping’ (6), it
suffices to show that the paths of any system (A) which is 8-close to the
system (A) have no common points with the arc I for t from the interval
to < LT (s).

By Lermma 3, there exist 8§; > 0 and 2 > 0 such that the paths of any
system (A) §;-close to system (A) which intersect the arc ! at ¢t = ¢, have
no common points with this arc for ¢ from the interval ¢ <<t<it, + k.
Here k can be taken arbitrarily small. Let i + A <<zt (s) for all s, as<<b.
§; > 0 is chosen so small that all the conditions of the lemma, possibly
except the regularity of the mapping, are satisfied for systems (A) which
are 8,~close to {(A).

* Orto >t » % (s). Condition (6) is used without loss of generality.
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Consider the region
a<s<h, lorh<t<als) (17)

in the plane (¢ #) (the cross-hatched part of Figure 7). Because of the
particular choice of 8§, and h, mapping (3) maps this region onto some closed
region # in the plane (r. y) at a positive distance from the arc ! (Figure 8).

If 8> 0,8 <86, is sufficiently small, and the system (A) is 8-close to the
system (A), mapping (4) maps the region {17) onto region H which is suf-
ficiently close to H and therefore has no common points with the arc [.

Since & << §,, 6§ clearly satisfies all the conditions of the lemma. Q. E.D.

2. Paths of close systems between two arcs
without contact

Let us now consider the intersection of the paths of system (A) and of
system (&) close to (A) with two arcs without contact. We will prove two
lemmas.

Let {, and I, be two arcs without contact for the paths of system (A)
which lie in G* and have no common points. Let

z=fi1(s), y=g1(s)

be the parametric equations of the arc l;., Suppose that the path of
system (A) which at £ = & passes through the point (f; (s}, g1 (s)) of the arc I,
intersects the arc I, at some ¢ = v (s}; the part of this path corresponding
to ¢t from the interval ¢, <t< T (s) is entirely contained in G* and has no
common points with {; or I,, except its two end-points (to fix ideas, we
take T (s) > to).

In QT, €3.6, LLemma 9 it has been shown that 1 (s) is a continuous and
therefore bounded function of s. Let M,and M, be any two points of the
arc I;, other than its end-points, corresponding to the values s and s of the
parameter s, a << § << s;<.b. Let further the paths L; and L, that pass through
the points M; and M. at ¢ = #, meet the arc I, at the points N, and N: for
Ty = 1 ($;) and 7. = 7 (s2), respectively; N, and N:do not coincide with the
end-points of l,, either. Let T designate an elementary quadrangle (see QT,
§3.6, Remark 2 to Lemma 10) limited by the segments M, M: and NV, of the
arcs l;yand [, and by the segments M\ N, and M,N. of the paths. Because of
our assumptions, I' @ G* (Figure 9).
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FIGURE 9

Lemma 7. For any e>0 there exist n>>0 and 3> 0 such that if
system (&) is 8-close to system (A)then i, and I, are arcs without contact
Jfor the paths of system(A), and moreover

(@) if M, and M.are two points of the arc I, which lie in U,(M,)and U, (M5),
respectively, and L, and I, are the paths of system{(B)which pass through
these points at t=t,, the paths L, and L, at t>1, intersect the arc i, at points
N, and N, which lie in U,(N,) and U, (N,), respectively, and the sections
M.\N( and M,N, of these paths, together with the sections M, and NN, of
the arcs I and 1,, delineate a region T which constitutes an elementary
quadrangle for system(A);

(b) the elementary quadrangle T is entirely contained in G* and is e-close
to the elementary quadrangle T.

Proof. Consider the transformation corresponding to system (A):

z=0(, s, y=Y({, 3. (3)

By assumption, @ and ¥are defined for all £ and s satisfying the
inequalities

L<tLT(s), a<s<h, (18)

and for all these ¢ and s the points (® (¢, ), ¥ (i, s)) belong to G*. By QT, §3.4,
Lemma 3, it is readily seen, however, that the ¢ interval in (18) always
can be somewhat increased; therefore, there exists a certain ks> 0 such
that the functions ® and ¥ are also defined for

a<s<h, o<t (s)+ Ry (19)

and for all these values of the parameters the points (D (t,s), ¥ (¢, 5)) lie in G*.
The points (O (¢, s), ¥ (£, s)) for which s, <58, © () <t v (8) + ho evidently lie
outside the elementary quadrangle I', i.e., these points and the interior
points of I, close to I lie on the two sides of the arc i,.

By L.emmas 1, 2, 5 and remark to Lemma 5, we see that for any >0 and
h>0, h<<hs, there exist § >0 and n>0 such that !, and [/; are arcs without
contact for any system (A) which is §-close to system (A) in G*, and
moreover:

1) the functions (¢, s), ¥ (¢, s) are defined for all ¢ and s (a<s<b, f<
<t <<t(s)+ho) and for these values of the parameters they are e-close to the
functions ® and ¥, respectively, the points (B, ), ¥ (¢, 8)) lying in G*;
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2} if M(fi(s), £ (), si<s<s, is a point of the section MM, of the arc !,
L is the path of system (A) passing through this point at t=¢,, .V is the point
of the path L which belongs to the section .V.V, of the arc /; and corresponds
to the time t(s), M (5) is a point of the arc I,, W e, (8), L is the path of
system (A) which at ¢ =, passes through the point 3/ (Figure 9), then the
path L crosses the arc lyat t=3(3), |T(5) —t(s)| <k at a point § which lies
in U. (V) (Figure 9).

Let 5 (s;) be the value of the parameter s corresponding to the point
3,1,

It follows from (1), in particular, that the paths L, and L, of system (&)
passing through the points M €U, (M) and M, €U, (}M,), respectively, meet
the arc [ at the points V,eU. (V) and N:€U:(Y:). Mloreover, arguing as
before in Lemma 6, we can show that if >0 is sufficiently small, each
path I, of system (A), which, at t=¢, intersects the arc /;at the point
GG g(®). 5 <5<s,, and meets the arc [, at t=7 (), has nq common points
with 2, and /, for intermediate values of ¢, t,<<t<<7t(s). But then the region
T limited by the sections M\ 3T, NN, of the arcs 4, and /; and by the sections
.5, JI.N, of the paths I, and L. is an elementary quadrangle of system (A).
Part (a) of the lemma is thus proved. That for the given choice of $ >0,
T'is e-close to the elementary quadrangle I' and T = G* follows directly from
Theorem 9 (§3.1) and from proposition 2 above. This completes the proof
of the lemma.

Remark. LetM, and WM, be any two points of the arc /, which lie
between M, and M;. By Lemma 7 it is readily seen that if § > 0 is
sufficiently small and system (A) is §-close to
system (A), the arcs of the paths of system (&)
lying between the part M M, of the arc /, and the
corresponding section of the arc I, belong to the
elementary quadrangle T of the original system
(A) (Figure 10).

We will prove another lemma which pertains
to elementary quadrangles I and T made up of
paths of two sufficiently close dynamic systems
(A) and (A). This lemma is repeatedly used in
what follows. We retain the same notation as
before. Let syand s;, a<<s;<<s;<<b, be the values
of the parameter s along the arc I, corresponding to the points M, and M,
s and s, the values of s corresponding to the points M, and M. (i, € U, (M),
M. € Uy (M), n>0 is sufficiently small). Then the points of the section MN;
of the path L; (i = 1, 2) which is part of the boundary of the quadrangle T
correspond to ! values from the interval t,<t<7 (s,), and the points of the sec~
tlon M.~ of the path Z;(i=1,2)whichis part of the boundary of the quadrangle
T correspond to ¢ values from the interval f<i<= (s) (Figure 9).

Consider a topological mapping ¢ of the section AM,¥; of the arc ! onto
the section #,M, such that ¢ (M,) = M,, 9 (M;) = M, A suitable mapping g is
the linear mapping defined by the equation

XX

FIGURE 10

+73 . (20)
where s is the value of the parameter in the equations of the arc I, corre-

sponding to some point M from MM, and s is the value of the same
parameter corresponding to the point M which is the image of the point M,
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The mappings ¢ of the arc MM, onto the arc MM, are not restricted to
linear mappings of the form {20), and in what follows other cases will also
have to be considered. The general mapping can obviocusly be expressed in
the form

S=0 (s),

with equation (20) considered as a particular case. If the explicit expres-
sion of the mapping ¢ is not given, we will always define it by equation (20),
however.

Lemwma 8. For any e > 0 there exist § > 0 and n > 0 such that if
system(A)is 6-close in G* to system(A), and the distance between any
point M of the section MM, of the arc |, and its image ¢ (M) is less than v,
i.e., p (M, @ (M) <<m, then there exists a path-conserving topological mapping
T of the elementary quadrangle T onto T (also conserving the direction of
motion along the paths) which coincides along the section MM, of the arc i,
with the mapping ¢ and is in fact its e-translation.

Proof. Every point P (z,y) of the elementary quadrangle I lies on the
path L of system (A)which at t = t, passes through the point M (f; (s), g1 (s)) of
the arc ;. Let the point P (z, y) correspond to some time ¢{. The numbers
t, s can be regarded as curvilinear coordinates of the point P€T'. Here s
varies from s to s,. If s is fixed, t varies from ¢, to t(s), and the point P
traces the section MN of the path L (Figure 11). The cartesian coordinates
of the point P are z, y, and

z=D, 5)=0 (t—to [(5), £(s)),
y=Y@ )= (t—to (s} £(s)).

Similarly the point P (%, y) of the elementary quadrangle I’ can be made to

correspond to the curvilinear coordinates f, §, 5,<3< 8, Lo<I< 7 (3), and

~
T

#
4
FIGURE 11

We will now define new curvilinear coordinates A, s in the elementary
quadrangle T':
s=s, t=to+A (v (s)—1o).

If sis fixed (s;<s<s,) and A varies from 0 to 1, the point P travels along the
entire section MN of L. In the elementary quadrangle [ we introduce new
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coordinates *, s by the analogous relations

$=8 Tty 3 (TS —to).

A3 7 goes from fyto (), * also varies from 0 to 1.
Let us now find the mapping T of thequadrangle I', assumingthat cach
point P (X, s) of the quadrangle is mapped onto a new point T (P) =P (%, s), where

S=o(, L=h
in other words, a point P with the cartesian coordinates
=@t AT () —to)s 5}, y=Y Lo+ A (T (s)—19), 5)
is mapped under T into a point P with the cartesian coordinates
F=0uo+rE@EN—t), o), ¥=F to+A{T (@) —t), @ ().

The mapping 7T defined in this way is clearly a one-to-one mapping of
the quadrangle T onto I'; it maps the paths of system (A) into paths of
system (A) conserving the direction of motion, and coincides with the
mapping ¢ along the section MW, of the arc {,. It is readily seen that T is
also a continuous mapping; this follows from the continuity of the functions
D, ¥, P, ¥, 0,1, and 7 (the last two functions are continuous by QT, $§3.6,
Lemma 9). 7 is therefore a topological mapping.

Finally from Lemma 2 and also from Lemrina 5 and the corresponding
remark it follows that if n > 0 and 8§ > 0 are sufficiently small, then
e (P, T (P))<efor any PeT. This completes the proof of the lemma.

Remark. It follows from Lemma 8 that if n > 0 and § > 0 are
sufficiently small, the partitions of the elementary quadrangles I and I by
the paths of the corresponding systems are e-identical (see Definition 9).

The following lemma is a stronger version of Lemma 8. We retain the
same notation and further assume that, apart from the mapping ¢ of the
section MM, of the arc {; onto the section Ifl,.flg of the same arc, there is
also given a mapping 2« of the section M.V, of the path L, onto the section
3,¥, of the path L,, such that

a(M) =3, a¥)=2N,

and a mapping § of the section .M/,¥, of the path L, onto the section .5, of
the path I,, such that

B(Mo)=JTa, B(Vo) =N,
(Figure 9).

Lemma 9. For arye=>0, there exist § >0 and n > 0 such that if
system(A)is 5-close tosystem(A)and the mappings ¢, «, and B are
n-iranslations (Definition 8, §4.1), there exists a path-conserving topo-
logical mapping T of the elementary quadrangle T onto T (which also
conserves the divection of motion ) thatl coincides on the sections MM, M\N,,
and M:N. of the boundavry of the elementary quadrangle T with the mappings
¢. a2, and B, respectively, and is an e-translation.
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Proof. The argument constitutes a minor modification of the line of
reasoning which established the proof of Lemama 8. As in the previous
lemma, we introduce a coordinate A varying from 0 te 1 along each section
of the path of system (A) in T and along each section of the path of
system (A) in T. Along the sections M,Mz and MM, of the arc I, we more-
over introduce the coordinates p and p, respectively, which vary from 0 to 1
and are lmearly related to the parameter s: s=s; (1 — p} + s;p along the arc

MM, and s =73 (4 —p) + sap along the arc M,Mz The mappings ¢, ¢, and p
can be defined by the appropriate relations p. oW, k= a (A), Ay = B (A). (we
use here the same notation P, @, B. This is not quite rigorous, but need not
cause any confusion. ) Here A, is the value of the parameter A on the path I,
at the point corresponding to the point A,on the path Z; (i= 1,2). Clearly
2 (0)=p(0)=0,a(l)=Bp1) =1, ¢(0) =0, 91)=1.

For T we take a mapping which maps the point P (x, y) € T defined by the
parameters p, A (0<p <1, 0<A<1) onto the point P (7, y) with the parameters
T, % related to p and A by the equalities

E=o@), KA=a@®{—p)+pM) p.
In other words, the point P(z, y)¢I' with the coordinates

= O (to-+2v (s (1 —p) + 524}, 8 (1—p) + 1),
y=Y (Co+Av (s (1—p)+ op), s (1—p)+sp)

is mapped onto a point P (7, g) with the coordinates

2= (to+1a®) (1—w) +B A RIT G (1—0 (1) + 50 (1), 51 (1—@ (W) + 50 (1)),
¥=F o+ e @A—p+BA BTG E—0 W) +59 @), 5 (1—@ (1) + 229 (W)-

The mapping T defined in this way is readily seen to be a path-conserving
topological mapping of the elementary quadrangle T onto T which coincides
with the mappings ¢, @, B on the corresponding sections of the boundary. If
now & and q are sufficiently small, ® and ¥ can be made as close as is
needed to @ and ¥, a (A) and B (A)to A, p and *to pand A, and 5, and 5, to s;and
s;, respectively. But then for sufficiently small 6 and n the mapping 7T is
an e-translation. Q. E.D.

Retaining the previous notation, let us consider the elementary quad-
rangle I formed by the arcs of the paths of system (A). Here, with
system (A), we will only consider modified systems (A) of one particular
form, namely systems

By, LGy, (A)

such that at any point of &* which is not a state of equilibrium of system (A)
we have

PO —QF 0. (21)
Thus, at any nonequilibrium point in 6* we have either Pg—QP> 0 or
PO—QP <0.
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An example of such systems is provided by §3.2, where we described
systems of the form

d d .
22— P—pfQ.  SL=Q+u/P,

f(k. y) being a function which does not vanish in G*.

Condition (21) clearly indicates that at those points in G* which are not
equilibrium states of system (A), the angle between the direction of the
field of system (A) and that of system (A) retains a constant sign.

Together with the parametric equations of the arc I

z=fi(s), y=2gi(s)

we will consider parametric equations of the arc &,

=), y=g() a<gs<b

The parameter s along the arc I; is so chosen that the paths of system (a)
intersecting the arcs [, and !, make with these arcs angles of the same
sign. This clearly implies that the determinants

P(fy, &) Qv 81

P(f2, g2) Q(f2, g2)
1 & :

A & (22)

Dy =

! and D,=

both have the same sign. Suppose that D, >0 and D, >0 (this corresponds
to the case schematically shown in Figure 12).

FIGURE 12

Let s and s; be the values of the parameter s corresponding to the points
Nyand N:of the arc l,., Also let M, be some point of the arc !, which lies
between M, and M., s, the corresponding value of the parameter s (s, << 5, << 83),
L, the path of system {A) which passes through the point M, for t = t,, N, the
point at which the path L, meets the arc {, for t = 1 (s)), s, the value of the
parameter s corresponding to the point ¥, (sy << s <<'s;). The section MuY, of
the path L, clearly partitions the elementary quadrangle T into two elemen-
tary quadrangles I'y and I'; and is part of the boundary of the two quad-
rangles (Figure 12). The points of the quadrangle T, (or I',) are described
by the coordinates

I=(D(t. S)y y=‘1’(t' §h
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5;<s<soy  Lo<ELT(S)

(or so<s<Csz to<t<T (s}, respectively). The boundary of the quadrangle
Ty (Ty) clearly includes the section NN (N¢¥N,;) of the arc l; corresponding
to the values s <5<8 (5 <s<$,) of the parameter s. The sections MM, and
N N, of the arcs [, and L, respectively, lie on the positive side of the path
L, and the sections MM, and NN, fall on its negative side.
Let S be some point of the section MM, of the arc iy, other than M,,
and let s* be the corresponding value of the parameter s. Clearly, s,<<s* < s;.
Lemma 10. There exists 60 such that if system(A)is 5-close to
system{(A)in G* and at any point in G*

PQ—QP >0, (23)

then any path L of this system which at t=t, meets the section M,S of the
arc 1, at the point M will cross the sectionN.N, of the arc 1, at the point N
at t=<, so that the section MN of L has no common points with the arcs 1,
and l,, except its two end points, and is completely contained in the
elementary quadrangle T,. A similar proposition holds true if the point s
lies on the section MM, of the arc I, and PO—QP <0, In this case, the
section MN of L is entively contained in the quadrangle T,.

Proof. By the remark to Lemma 7, there exists 8> 0 such that if
system (A) is 8-close to system (A) and its path L passes through some
point M of the arc M,S at t=¢,, then at £=7 the path Z meets the arc I, at
some point N so that the section MN of L has no common points with the
arcs l; and {;, except its end points, and is entirely contained in the
starting quadrangle . We will now show that if inequality (23) is addition-
ally satisfied, the section MN of T is entirely contained in TI,.

Let T denote the parameter (time) along the path L (so as to distinguish
it from the parameter ¢ of the paths of system (A)). The corresponding
motion along the path I is described by the equations

z=¢(T), y=v(. (24)

The section MN of I is generated as 7 goes from # to T(s), where ¥ is
the value of the parameter on the arc /4 corresponding to the point M.
Because of the particular choice of 8, this section of I is completely
contained in the starting quadrangle I'. Indeed, for any 7, t°<T<7{(§).

z=0 ¢, s), y=¥{({,s),

where s and ¢t are some numbers satisfying the inequalities
<KL LSt T(S).

This evidently means that the equations

D, ) =9I ¥ s)=%(T)
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for any T from the interval [4,. 7 (3)] have a unique solution for ¢ and s in the
region (25). We write this solution in the form

t=t(I), s=s(T).
et us calculate :—;. Differentiation of (26) with respect to T gives

. d . d
(¢ 5) g+ DL, ) gF=F (D),

-5
=¥ (D)

Wit 8) B Wit )
The determinant of this system is
D = (2, 5) Wi (L, s)—Di (¢, s) ¥i (L, 9).

By QT, €3.5, Lemma 6 and Lemma 7,

[P(fi.g1) Qv gD

D=— : I=—Dil,
i) g:(s) t
where
¢
§ (Pxie. WG vl
I =e¢lo -0,

Since by assumption D;>0, we have D <0 and (27) is a Cramer system.
Therefore,

ds gD Wi si—F (T Dt 5)

al —
But
DL, sy =i ({—to f1(38), &1 (6) =Pz, y)
Wi, s) =g (E—tos [1(5), £81(8)) =Q (2, y).
P =P@y. ¥ (OH=0 y.
Therefore

ds Py Qiz. y\——P(.r.y)Z) [¢ A}
ir — P )

-

Using (23) and the inequality D= —D,] <0 we conclude that at any point of

ds
> 4T
s(T) is an increasing function of 7. Since T=t, s=s>s,, we conclude that
for t,<T<7(s) also s(I) >s,., This evidently means that the entire section
MY of I lies inside the elementary quadrangle ;. This completes the
proof.

The next lemma is concerned with a single arc without contact, but the

paths are assumed to meet it twice. Thus, let M,and M: be two interior
points of the arc I; suppcse that any path of the system (A) that meets the

the section JL.V of the path £, i.e., for all T, &4(<T<T(¥) =0, i.e.,
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section MM, of the arc | at £ = ¢, crosses the arc I again at some

T =1 (s) >1,. At the intermediate values of ¢, t, <<t <t (s), these paths,
however, have no common points with the
arc i,

Let the paths L, and L, passing through the
points M, and M,, respectively, cross the
arc |l for the second time at the points N, and
N,, which are again different from the end-
points of the arc ! (if L, or L; is a closed
path, M,;and Ny, or respectively M, and N,,
coincide). We assume that the sections
MM, and NN, of the arc I have common
points, i.e., they intersect, since otherwise
we could have reduced the treatment to the
previous case of two distinct arcs without
contact Iy and I,.

Let €, (i = 1, 2) be a simple closed curve
which coincides with the path L, if this path is closed; otherwise, this
simple curve is made up of a section M,N; of the path L; and a section M N,
of the arc I{Figure 13; compared QT, §3.9).

Let W be a region whose boundary is formed by two simple closed
curves C; and €,. This region, together with its boundary, is entirely
contained in G*. As before, let system (f&) be §-close in G*to system (A)
and let § > 0 be so small that the arc I/ remains an arc without contact for
the paths of (A).

Let M;be a point of the arc [ suffxclently close to My, and M, a point of
the arc [y sufficiently close to M,; let Lt and Lz be the paths of system (a)
which at t=1, pass through the points . M, and Mz, respectively. By Lemma5
we readily see that when the points M, and M, are sufficiently close to M,
and M,, and &8 is sufficiently small, the paths Z,and Zz at 1." and T3 (t,>to
and T,> ), respectively, will again cross the arc / at points N and ¥,.
The sections #M,N, and M.N, of the paths I, and L, have no common points
with the arc I, except the end points. Let c, (i =1, 2) be a simple closed
curve which coincides with I; if this is a closed path and otherwise is made
up from a section M N, of the path Z; and a section MJV; of the arc I. Let W
be the region formed by the simple closed curves €, and C,.

Lemma 11. For any =>0 there exist >0 and n>0 such that if
system(A)is b -close in G* to system (A) and the points ¥, and M, lie in
Uy (M) and U, (M), respectively, then

(a) the pozm‘s Ny and N lie in U, (Ni)and U, (N,), respectively;

(b) each path passing through a point in W crosses the arc | both for
increasing and decreasing t;

(c) W is e-close to W.

The validity of this lemma is readily established by drawing an auxiliary
arc without contact which partitions W into two elementary quadrangles,
to which Lemma 7 is then applied.

Note that for W and W the propositions of Lemma 8 in general do not
hold true, i.e., without additional assumptions regarding the exact nature
of the paths in W we cannot maintain that for any small n and 8§ the parti-
tions of W and W by the trajectories of systems (A) and (&) are ¢-identical.

FIGURE 13
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In conclusion of this chapter we will prove another lemma which is
concerned with regions delimited by two cycles without contact.

I.et ¢, and €, be two simple closed curves, which are cycles without
contact for the paths of system (A); one of these curves, (. say, lies
inside the other curve. Suppose that each path L of system (A) passing at
t = t, through the point M of the cycle C, intersects for some 7 = 1 (M) > ¢,
the cycle €. at the point .V, so that the section M.V of the path L has no
common points with the cycles (, and C,, other than its end-points
(Figure 14). Let ¥ be a closed annular region between the cycles ¢, and
Cs, so that W < G*.

FIGURE 14

Lemma 12. For any e > 0 there exists § > 0 such that if system (A)is
8-close to system (A)in G*, then

(a) cycles C,and C: are cycles without contact for the trajectories of
system (B);

(b) the partition of i’ by paths of system(A)is e-identical to the
partition of this region by paths of system{A).

Proof. Draw any two paths which intersect the cycle without contact
¢i. They clearly partition i{" into two elementary quadrangles. Applying
Lemma 8 to each of these quadrangles, we readily verify Lemma 12.
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Chapter HI

THE SPACE OF DYNAMIC SYSTEMS AND
STRUCTURALLY STABLE SYSTEMS

INTRODUCTION

In this chapter we define the concepts of a structurally stable
system and a structurally stable path and establish some of
their elementary properties. The concept of a structurally stable dynamic
system is in fact the cornerstone of this book. Exact definitions are given
in §6 (Definitions 10 and 12). Roughly speaking, we say that system (A) is
structurally stable in some two-dimensional region W if a sufficiently close
system (A) partitions W (or some close region W) into paths in a manner
which is topologically identical to the partition of W by system (A), and an
infinitesimal translation suffices to change over from one partition to the
other. It can be shown that structurally stable systems constitute, so to
say, a majority in the set of all dynamic systems. Indeed, a given
dynamic system is structurally stable as a rule, and structurally unstable
systems are an exception. Structurally stable systems are of considerable
importance in the analysis of physical problems.

Chapter 1II, §5 is of introductory nature. Its aim is to define a metric
in the set of dynamic systems in a plane region or on a sphere, so as to
convert this set into a metric space. The metric is introduced in the
natural, and apparently the simplest, way. The aim of the metric-space
approach to the set of dynamic systems is to permit operating with
geometrical concepts, which are intrinsically less abstract in discussion.

In §6 some basic definitions are introduced: the definition of a
structurally stable system in a plane region (§6.1) and on a sphere (56.2),
and the definition of relative structural stability.

In §7, structurally stable and structurally unstable
paths are defined. A path L of system (A) is said to be structurally stable
if system (A) is structurally stable in some neighborhood of L. It is
proved that if a system is structurally stable in some region, all its paths
in that region are structurally stable (Lemma 1). Therefore, if there is
at least one structurally unstable path in some region, the system is
structurally unstable in that region. It is proved (Theorem 10) that a
structurally stable system may have only a finite number of states of
equilibrium inaclosed region. Finally, the multiplicity of an
equilibrium state is defined and it is shown that a structurally stable
equilibrium state M, (x,.y,) is of necessity simple, i.e.,

. P; (‘t(h yO) Pl’l (xﬂ! _l/o) 0
T | Qx (@os Yo} @y (%os Yo) ’
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§5. THE SPACE OF DYNAMIC SYSTEMIS
1. The space of dynamic systems in a plane region

In this section we will operate with metric spaces whose points are
identified with dynamic systems. The introduction of these spaces lends
a more graphic geometric form to the fundamental concepts and arguments
of our theory.

We are concerned with dynamic systems in a plane region or on a
sphere. In what follows, when dealing with dynamic systems on a plane,
we invariably assume that all the relevant systems are defined in the same
closed region G of the plane. If necessary, we wtll assume, without
mentioning it explicitly, that the systems are also defined in a larger open
domain {which contains G), but the analysis will always be confined to G.
We will often have to consider dynamic systems (defined in @) in some
closed or open subregions of G. In this case, we always assume that the
closures of these subregions are entirely contained in G, i.e., they lie at
a finite distance from the boundary of G.

All dynamic systems of a given class & {k is a fixed natural number) or
of the analytical class in G will be treated as points of some space. Let r
be a given natural number, r«<k. Let further M, and 3}, be two points in
our space, i.e., two dynamic systems

d .
=Py, F=0= ), (ML)
dr dy .
=Py, F=0@y). (Mj)

Consider the maximum of the absolute value of the difference

between the functions P, and P, in G, i.e.,

max | Py (z. ) — Pz (z, 9) |, (1

(= V)G

and also the maxima of the absolute values of the differences between
the corresponding derivatives of these functions to order r, inclusive, i.e.,

(k- 1y
(f“f,‘:z'Pix::" @ N—PE @) Gl=12.00), (2)

and similar expressions for the functions @, and Q. and their derivatives,
i.e.,

max {Q;—Q-| 3
(x, 156 ' i (3)

and
(xmifcng‘;;g—omyq (h+l=1,2. ..., 7). (4)

The largest of the numbers (1)—(4) is taken as the distance between
the points M, and M, in the space of dynamic systems. All the fundamental
axioms of metric spaces are readily verified.

The space of dynamic systems of class k (or of analytical class) with
the above maximum metric is designated Ry’ (or R, respectively). Clearly
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the set of all dynamic systems of class k which are § -close to rank rin G
to the system of class k

d. d|
F=P(z ), F=0Ql v

constitutes a 8-neighborhood of the point M, in the space R{’. A similar
proposition is true for points in the space R{’. For a fixed ¥, we may
clearly consider the spaces

RY, RY, ..., R,

They consist of the same elements (dynamic systems of class & defined in
G), but have different metrics. The §-neighborhoods defined by these
metrics are thus different. Indeed, let Us (M|R) denote the 8-neighborhood
of the point M in metric space R, and let 1<r  <r,<k. Consider a dynamic
system M, of class k and the neighborhoods

Us (M| RYY) and U (M, ] RU?).

Clearly Us (M, | R{Y) = Us (M, | RY), but the reverse inclusion is not
always true. The space R{» wil be designated R, (without superscript). The
space R; clearly contains each of the spaces RP (k=1,2,...). In the case
of dynamic systems of the analytical class, we can consider an infinite
sequence of spaces

(1 2
R, R, ..., RO, ...

As before, all these spaces consist of the same elements but have different
metrics. Let now ky<Ck, and choose a fixed r. Since any system of class k,
is also a system of class k¢, and an analytical system is a system of any
class, we clearly have

R{) > R(,,';’ > R, (5)

It is readily seen that any space in (5) is a subspace of all the preceding
spaces in the sense that the distance between any two elements defined in
this space coincides with the distance between these elements in the
enclosing space.

2. The space of dynamic systems on a sphere

Dynamic systems on a sphere are generally defined in terms of open
coveringas of the sphere (see QT, Appendix, §7.3). However, for
purposes of defining a metric in the set of dynamic systems on a sphere,
it is better to consider closed coverings. We will define these
closed coverings as follows: let § be a sphere (e.g., a sphere in the
three-dimensional space R® described by the equation 2* + y* 4 22 = 1), and

z={Gh sz cuey GN}
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some open covering of the sphere. If the closure G, of each G (i=
= 1,2,..., N)is homeomorphic to a closed region H, of the plane (s, vi),
we say that the covering

E:{Eh 52v ey EN}

constitutes a closed covering of the sphere S. Under this definition,
each closed covering of the sphere is related to some open covering, but
not every open covering corresponds to a closed covering. Thus, none of
the G, can be a pierced sphere (i.e., a sphere with a single point removed).
Note, however, that this restriction of the concept of a closed covering
does not restrict the class of dynamic systems being considered.

A dynamic system on a sphere is defined in terms of closed coverings
precisely in the same way as it is defined in terms of open coverings
(see QT, §2.2). Consider a closed covering

= {6|v a:v trey G\}

t4

of the sphere §. In each of the G, we define a local system of coordinates
ui ;. To this end, we consider a mapping of some region #; of the plane
(u;, v;) onto the region G, of the sphere §, defined by the equalities

z=q; (s, U3}, Y=V (U 1), =% (i, vo)- (6)

The mapping (6) should satisfy the following conditions:

1} This is a topological mapping of the plane region #,onto G,;

2) the functions ¢;, ¥;. % are functions of class k£ + 1, if the dynamic
system is of class &k, and analytical, if the dynamic system is analytical;

3) the functional determinants

D(gi. ) D(p:. X)) D (¢ %)
Diui, v’ Diu, vy D (u,y vi)

do not vanish simultaneously anywhere in f..

A dynamic system (A) of class k (or of the analytical class) on a sphere
is defined by specifying in each H; (i= 1,2,..., N)a dynamic system of
class k (or of the analytical class, respectively)

du,* dL'i

= =i vy, =V, v).

Moreover, in each region

”‘jh=17jnﬁk

the dynamic systems (A,‘) and (Ah) are transformed into one another by the
same transformation which transforms the coordinates u;, v; into u,, v, (see
QT, §1.10, and also §2.2, Definition 1).

A dynamic system (A) defined in this way is described in terms of a
system K of local coordinates on a sphere, which in its turn is described
by the covering X and equations (6). The same dynamic system (A) can
be specified using any other system K* of local coordinates defined by the
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closed covering
=G, Gt ..., Ghe)

and equations analogous to (6) (see QT, $2.2).

To define a metric in the set of dynamic systems on a sphere and thus
convert this set into a metric space, we will describe all the dynamic
systems using one fixed system K of local coordinates on a sphere.
Suppose this system is defined by a closed covering % ={G,...,Gy} and a
set of equations (6) Consider two dynamic systems (A) and (K) of class k
(or of the analytical class). Let system (A) be described by the equations

du: =U, (uis 21)s '%UT'=V| (us, vi) (Al)

.., N)and system (&) by the equations

duy
dt

dv;g

=T, v, i =V (i, ). (a,)

Choose a natural number r3> 1, such that rg<k, if k is the class of the
system (for analytical systems, any r can be chosen). Consider the
numbers

max | Uy (i, v))—T; (s, v3) | (i=1, 2, ..., N),
(u;. 8EH;

and also the numbers

max [U*FY (uy, ui)_ﬁih;rtg (s, v (G=1, 2, ..., N, kti=1, 2, ..., 1},
ug v

. vpeH, T

as well as similar expressions for the functions V; and ¥, and their partial
derivatives to order r, inclusive. The largest of all these numbers is
taken as the distance between the dynamic systems (A) and (A). All the
axioms of a metric space are readily seen to hold true.

The space of dynamic systems of class & (or of the analytical class) on
a sphere with this maximum metric is designated R{’ {or R{’). 'The remarks
at the end of §5.1 pertaining to analogous spaces of dynamic systems on a
plane are applicable to the spaces R{’and R{’ of dynamic systems on a
sphere.

Two dynamic systems (A) and (A) of class k (or the analytical class) on
a sphere are said to be §-close to rank r (r<k), if the distance between
them in space R{’ (RY")is less than §.

Remark. The metric defined in the set of dynamic systems essentially
depends on the fixed system K of local coordinates on the sphere. The
distances between the dynamic systems (A) and (fk) defined in this way
using different systems of local coordinates K and X* are in general
different. It can be seen, however, that the metrics defined by various
systems of local coordinates are all equivalent, i.e., they induce the same
topology in the space of dynamic systems.* This is obvious from the
following proposition: for any 6 > 0, there exists 6* > 0 such that any
dynamic system (A) which is 6*-close to system (A) in the metric defined

* See Aleksandrov, P.S. Combinatorial Topology, Chapter 1, §2:3.
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by the local coordinate system A*is 6-close to (A) in the metric defined
by the coordinate system K.

This proposition can be proved without difficulty, and is left as an
exercise to the reader.

$6. DEFINITION OF A STRUCTURALLY STABLE
DYNAMIC SYSTEDM :

1. Dynamic systems on a plane
Let
d d
=Py Z5=0Q= v

be a dynamic system defined in a bounded closed region G, and W a closed
or open subregion of G.*

Definition 10. A dynamic system \A)is said to be structurally
stable in W < G if there exists an open domain H containing I,

WecHcHcG,

which satisfies the following condition: for any & >0, there exisis § >0
such that if system (A) is 8-close to system (A) in G, one can find a region
H for which

(T, 3y = (H. 4 (1)

(see €4.1, Definition 9).

If svstem (A) is not structurally stable in region W, it is said to be
structurally unstable in that region.

Evidently a dynamic system (A) is structurally unstable in W if for any
H.W < Hc Hc G, there exists ¢, > 0 with the following property: for any
8 > 0 and any H, there exists a system (A) § -close to (A) such that the
partition of & by the paths of (A) is not e,-identical to the partition of H by
the paths of (A).

It follows from Definition 10 that if system (A) is structurally stable in
W, the topological structure of the partition of some neighborhood # of W by
the paths of system (A) does not change in a certain sense on passing to a
sufficiently close systern (A), or more precisely, an infinitesimal transla-
tion will transform H into H so that the paths of (A) coincide with the paths
of (A). This property explains the term structurally stable system.
An alternative term used in the Russian literature isa coarse system,
which implies that the topological structure of the partition of a given
region by paths is not affected by small changes in system (A) or, in other
words, the structure can resist small disturbances in system (a).

Examples of structurally stable systems are considered at a later stage.
Here we will analyze a structurally unstable system.

* A: we have noted in the previous section, it is implicitly assumed that the closures of the relevant sub-
regions are entirely contained in G, i.e., they are at a finite distance from the boundary of G,
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Example 3. Consider the system
dx dy
== 5= + . (2)

It is defined on the entire plane, so that any closed region on the plane
can be taken as G. Let G be the region defined by the inequality

z? 4 y? < 100.
W is defined by the inequality
x4 y2 << 16, (3)

We will now show that system (2) is structurally unstable in region (3).
Define H as ’

Z2 4y < 25. (4)

Any positive number can be taken as &. The paths of system (2) are the
point O (0, 0) and the circles

r=ccost, y=csint

centered at the origin (Figure 15).
Together with system (2) consider the modified system

d d
= —ytpz, F=ztm. (5)

For small p, system (5) is arbitrarily close in @ to system (2), the
point 0 (0, 0) is the focus of system (5), and all the other paths of this system
are spirals {(see QT, §1.14, Example 4).
Regardless of what A we choose, its partition
by the paths of system (5) clearly cannot be
eo-identical to the partition of region (4) by the
paths of system (2). Indeed, all the paths of
system (2) in region (4), except the equilibrium
point 0, are closed, whereas system (5) has no
closed paths. Hence, there exists no mapping
of region (4) transforming the paths of system
(2) into the paths of system (5). This estab-
lishes the structural instability of system (2)
in region (3)

Before proceeding any further with our
analysis, we would like to offer some back-
FIGURE 15 ground information on structurally stable

systems. Structurally stable systems were
first considered in 1937 by A. A. Andronov and
L. S. Pontryagin /4/, who originally called them systtmes grossier
or coarse systems. They considered, however, dynamic systems
in a particular region W lying inside a cycle without contact. The definition
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of a structurally stable system in such a region is very simple. Indeed,
system (A) defined in a region W lying inside a cycle without contact I'is
said to be structurally stable in that region if for any ¢ > 0 there exists

8 > 0 such that for any system (ﬁ) 8 -close to system (a)

e ~
o, Ay =g, 3.

Substantial simplification is achieved here because we do not have to
consider either the region H = I} or the corresponding H: the entire
analysis is confined to . It can be shown that in region W lying inside a
cycle without contact I both definitions — Definition 10 and the definition
in ;4; — are equivalent. Unfortunately, in case of a general region #’, a
structurally stable system cannot be defined without introducing an
auxiliary region {see Appendix, subsection 5).

Structurally stable systems {in a given region) are in a sense the
simplest dynamic systems, just as the simple roots of a function can be
regarded as the most elementary among all the roots or simple (nonmulti-
ple) intersection points of two curves are the most elementary among all
the intersection points. These three concepts — a simple root of a function,
a simple intersection point of two curves, and a structurally stable system
in a certain region — are analogous in the sense that under small
disturbances (of the function, the pair of curves, or the dynamic
system) the object remains intrinsically unaffected and only a small trans-
lation or shift is observed {see remark to Theorem 5, §1, Remark 3 to
Theorem 6, §2, and the definition of a structurally stable system).

In what follows (Chapter VI, §18.2, Theorem 23) we will derive the
necessary and sufficient conditions for a dynamic system to be structurally
stable in a given region W. These conditions, like the conditions of
simplicity of a root or simplicity of an intersection point of two curves,
are analytically expressed in the form of inequalities between certain
quantities which are continuous functions of the right-hand sides of the
dynamic system. Hence it follows that the systems which are structurally
stable in 11" (see §5) form an open set in the metric space R,.

The definition of a structurally stable system using the metric space R,
can naturally be formulated as follows:

The system \A) corresponding to a point M ¢ R, is said to be structurally
stable in W if therve exists a region H, W —« H =« H — G, such that the
following condition is satisfied: for any ¢ > 0 we can choose 8§ > 0 such that
if 8¢ Us (), the following relation holds true for the system (A) corre-
sponding to the point M and some region H ¢ G:

(A, 3) ;(H. A).

Note that it does not follow directly from the definition of a structurally
stable system that structurally stable systems (in W) form an open subset in
R,. This proposition follows, as we have remarked above, from the
analytical conditions of structural stability.

We conclude this section with two simple, but highly important lemmas.
The proof is self-evident and is therefore omitted.

Lemma 1. If system (A) is structurally stable in W, it is structurally
stable in any subregion W, of W.
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The next lemma deals with substitution of variables. Consider a regular
mapping of class 2,

u=9(z, y), v=v@ ¥ (6)

defined in &, which maps this region into some region G*in the plane (z, v).
Any system

LeP@ . X=Q=y (a)

is transformed by this mapping into some system
du dv e
F=P Y, =0, : (a%)

defined in G* (see §3.2). Let W be some subregion of & and W* the image
of this subregion under mapping (6).

Lemma 2. If system (A) is structurally stable in W, system (A*) is
stable in W*.

Lemma 2 follows from the uniform continuity of the functions ¢ and $.

Equations (6) can be considered as defining a certain substitution of
variables. Lemma 2 thus signifies that the structural stability of a dynamic
system is a property which is invariant under a substitution of variables of
class 2.

2. Structurally stable systems on a sphere

The only case of interest among dynamic systems on a sphere is that
when the system is defined on the entire sphere. Indeed, a dynamic
system defined in a region whose closure does not coincide with the entire
sphere evidently can be considered as a system defined in a plane region
(see QT, $2.2, remark following equation (10)).

The definition of structural stability of a dynamic system on a sphere,
on the one hand, is substantially simpler than the analogous definition on
a plane, since one does not have to consider the auxiliary region H.* On
the other hand, the analysis on a sphere involves certain difficulties,
since the metric defined in the space of dynamic systems on a sphere
depends on the particular system of local coordinates chosen on the sphere
(see remark at the end of §5.2). This, however, does not constitute a
fundamental difficulty.

First let us define the concept of e-identity on a sphere, analogous to
Definition 9.

Definition 11. Let (D)and (D) be two dynamic systems defined on a
sphere S. The partition of the sphere S by the paths of system (D) is said
to be e-identical to the partition by the paths of system (D), or in symbols

S, D)= (S, D),

if there exists a mapping of the sphere S onto itself which is an =-translation
and which transforms the paths of system (D) into the paths of system (D).

® Also see the remark in the previous subsection concerning the definition of structural stability of a system
inside a cyele without contact.
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When speaking of an e-translation, we naturally assume that some
metric is defined on the sphere, either internal or induced by the enclosing
euclidean space.

To define a structurally stable system, we introduce some system of
local coordinates on the sphere and measure the distances between two
dynamic systems relative to this coordinate system (sce §5.2).

Definition 12. A dynamic system (D) on a sphere S is said to be
structurally stable if for any e > 0 there exisis 6 > 0 such that, for any
system (D), 8 -close to system (D), we have

(S, Dy = (S, D).

Otherwise system (D) is said to be structurally unstable.

If a dynamic system (D)on a sphere is structurally unstable, there
exists gy > 0 with the following property: for any 8§ > 0 there exists a
system (D) 8-close to (D), such that partitions of the sphere (S§) by the
paths of &D) and (15) are not g-identical.

Definition 12 makes use of a particular system of local coordinates X on
the sphere. We now have to establish that the concept of a structurally
stable system is in fact independent of the choice of the local system of
coordinates on the sphere, or in other words, we have to show that if
system (D) is structurally stable when the metric (in the space of dynamic
systems) is defined in terms of some system of local coordinates K, it is
also structurally stable in the metric defined using any other system of
local coordinates K *. This proposition clearly follows from a previous
proposition formulated at the very end of §5 (in the remark to §5.2).
Definition 12 is thus meaningful, and structurally stable systems on a
sphere can be analyzed ina metric introduced using an arbitrary fixed
system of local coordinates.

Let (A) be a dynamic system on a sphere and W some subregion of the
sphere whose closure 7" does not coincide with the entire sphere. We
choose a system K of local coordinates so that at least one of the compo-
nents of the closed covering I corresponding to this system, G, say,
entirely contains ¥, i.e., W < G,. From the definition of the system of
local coordinates and o a dynamic system on a sphere (see §5.2) we see
that G, corresponds to some region H, on the plane (uy, vy). Let W corre-
spond to some W* on the plane, W* < H,. System (A) on the sphere thus
corresponds to some dynamic system (A1) in H,.

Lemma 3. If (A)i1s a structurally stable system on a sphere, the
dynamic system (A,) is structurally stable in W*.

This lemma follows directly from the definitions of structural stability
{Definitions 10 and 12) and the uniform continuity of the mapping of G onto
Hy.

In simpler language, Lemma 3 can be formulated as follows: if
system (D) is structurally stable on a sphere, it is structurally stable in
any subregion of the sphere.

3. Structural stability of dynamic systems in R{’ and R’
In the above definitions of structurally stable and structurally unstable

dynamic systems, (A) and (D) were assumed to be systems of class 1, and
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we have considered all systems §-close to (A) and (D) to rank 1. In other
words, we considered points in the space R; with their respective §-neigh-
borhoods (see §5). In some cases, however, we are not interested in all
the possible systems of class 1, but in the systems of some narrower
class, e.g., analytical systems or systems defined on a plane whose right-
hand sides are polynomials.

Moreover, sometimes we have to consider §-closeness to some higher
rank, and not only to rank 1. This evidently means that the analysis is not
confined to R;, but to some other space R or R, We thus naturally arrive
at the concept of relative structural stability of a dynamic
system, i.e., structural stability relative to some space in which the given
dynamic system is a point.* The corresponding definitions are entirely
analogous to Definitions 10 and 12, and we will therefore give only the
definition of a structurally stable dynamic system on a plane relative to R{’.
As before, we consider systems defined in a bounded plane region.

Definition 13. A dynamic system (A) of class k is said to be
structurally stable in W relative to Ry’ (W = W = G; r<k)if there exists an
open domain H containing W, W — H=H < ¢, which satisfies the
following condition: for any ¢ >0 one can choose 8 > 0 such that if (A)is
a system of class k 6-close to rank r to (A) in G there exists H for which

A, A= @&, 4

(also see Definition 10).

Otherwise, system (A) of class kis said to be structurally unsta-
ble in W relative to R{.

Using geometrical terminology, we say that a dynamic system (A)
corresponding to point M in R is structurally stable in W relative to this
space if there exists a domain H, Wc Hc Hc G, satisfying the following
condition: for any &> 0 we can choose § > 0 such that if M ¢ U, (M | B,
then for the system (&) corresponding to the point M and some H < G we
have

(A, &)= (H, A).

"Simple" structural stability (in the sense of Definition 10) is clearly
structural stability relative to the space R;.

Let k, and k, be natural numbers, & < k;, {A) a dynamic system of class
k, (and thus also of class k), and r a natural number, r<k,. System (a)
then belongs to both R{? and R{}). We recall that R{) = Rf}. It clearly
follows from Definition 13 that if system (A) is structurally stable in W
relative to Rf?, it is also structurally stable relative to Bfy. Similarly, if
(A) is an analytical system, then for any natural k and r<k system (A)
belongs both to R{” and to RY = R{”. If (A) is structurally stable in W
relative to R{’, it is also structurally stable relative to RY’. All these are
particular cases of the following general proposition, which follows directly
from the definition of structural stability: if a dynamic system (a) belongs
to two spaces one of which is a subspace of the other and if the system is
structurally stable in W relative to the enclosing space, it is structurally
stable in W relative to the enclosed space.

* Instead we can speak of structural stability relative to a given class of dynamic systems. But then it should
be explicitly stated what we mean by 8-closeness (i.e., to what rank).
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Let further ry << ra <k, (A) is a dynamic system of class &k, M is the
point corresponding to (A) in R{Y (or in R{?; we recall that both these
spaces are made up of the same points, but the corresponding metrics are
different, see §5.1). Then, if system (A) is structurally stable
in Wrelative to B{Y, it is also structurally stable in ¥
relative to Ry?. This follows directly from Definition 13 and from the
relation

Us (M{R{PY = Us (M| RJY)

(see §5.1).
Is the reverse also true? In other words, can we maintain that if

system (A) is structurzlly stable in W relative to R{), it is also structurally

stable relative to RY} (r<k, < k) or, alternatively, if system (A) is struc-

turally stable in I relative to Ry, it is also structurally stable relative to
RV (ry < r:<k)? These propositions clearly do not follow directly from the
definition of relative structural stability. Moreover, if system (A) belongs
to two spaces R and R*, such that R* — R, then in general system (A) may
prove structurally stable in W relative to the enclosed space R*, whereas it
is structurally unstable relative to the enclosing space R.

However, if at the cost of generality we concentrate on the spaces R}’
and R;”, which are of the main interest in the analysis of dynamic systems,
the situation is considerably simplified. It can be shown that if system (A)
belongs to one of these spaces, the necessary and sufficient conditions for
its structural stability (in W) relative to these spaces are at the same time
the necessary and sufficient conditions of its simple structural stability
(i.e., structural stability relative to R,). This will be established in the
derivation of the necessary and sufficient conditions of structural stability
(§18.4, Remark d); additional proof (in connection with R or R{’) is
naturally required only for the necessary conditions of structural stability.
Thus, if system (A) belongs to Ry’ or R’ and is structurally stable in W’
relative to the corresponding space, it is simply structurally stable.
Therefore, we do not have to consider structural stability relative to these
spaces and in what follows we can concentrate on structural stability in the
sense of Definition 10.

The situation is clearly the same for dynamic systems on a sphere.

The above arguments pertaining to dynamic systems are analogous to the
various arguments offered in §1.4 in connection with roots of functions and
at the end of §2 in the analysis of intersection points of two curves. This
analogy between dynamic systems, on the one hand, and functions or pairs
of curves, on the other, unfortunately breaks down at one significant point.
Let us discuss this aspect in some detail.

We will consider the analogy between dynamic systems in a plane region
G and pairs of curves Fy(r, y)=0, F2(z, y)=0. At the end of §2 we considered
the multiplicity of the intersection point of two curves relative to a given
class M of functions. I was identified in particular with the class M, of
all polynomials in two variables not higher than of degree » and the necessary
and sufficient condition of structural stability of the intersection point of two
curves relative to this class was established to coincide (A s« 0) with the
condition of structural stability in the sense of Definition 5 (s2.1).
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By analogy with the class of functions M, we can consider the class of
dynamic systems (on a plane) whose right-hand sides are polynomials not
higher than of degree n. We will designate this class of systems by %,.
The structural stability relative to 9, is defined in the usual way (8-close-
ness should be considered to rank 1 or to higher rank). The analogy
between the pairs of curves in M, and the dynamic systems in %, is unfor-
tunately incomplete. The point is that the attempts to derive the necessary
and sufficient conditions of structural stability of dynamic systems relative
to the class %, so far have remained unsuccessful. On the other hand, we
do not know of any particular example of a system

d d,
G=P@y F=Qa

(P and Q are polynomials of not higher than n-th degree) which is structur-
ally stable in some region relative to the class %, and structurally unstable
in the sense of Definition 10. The question of the possible existence of
these systems and of the necessary and sufficient conditions of structural
stability relative to the class %, thus remains open at this stage.

§7. STRUCTURALLY STABLE AND STRUCTURALLY
UNSTABLE PATHS. NECESSARY CONDITION OF
STRUCTURAL STABILITY OF AN EQUILIBRIUM

1. Structurally stable and structurally unstable paths

Our immediate problem is the derivation of necessary and sufficient
conditions of structural stability of dynamic systems on a plane and on a
sphere. This problem is discussed in this section and also in Chapters IV,
V, and VI. The concepts of structurally stable and structurally
unstable paths introduced in this section considerably simplify the
approach to our problem. It is assumed throughout this chapter that all
the systems are dynamic systems of first class defined in a fixed plane
region @, and §-closeness is always interpreted as closeness to rank 1.

In other words, the analysis is confined to R;. When dealing with dynamic
systems on a sphere, this is not stated explicitly.

Let (A) be a dynamic system which is structurally stable in a closed
or an open region W, and L some complete path of system (A). From the
definition of structural stability and L.emma 1, $6 we see that if L is
entirely contained in W, then there is a certain neighborhood V of L where
the system (A) is structurally stable. Moreover, L < V.*

The reverse, naturally, is not always true: system (A) can be struc-
turally stable in some neighborhood Vof L, V < W, while it is structurally
unstable in W.

These considerations lead to the concept of structurally stable
and structurally unstable paths.

Definition 14. A path L of a dynamic system (A) is said to be
structurally stable if there exists a cevtain neighborhoodV,LcVcV <6,
where system (A) is structurally stable. Otherwise, L is said to be
structurally unstable.

* Any V satisfying the conditions L ¥V < V < H, where H is as introduced in Definition 10, meets these
requirements,
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According to Definition 14, to establish structural stability of a path L it
suffices to show that system (A) is structurally stable in some neighbor-
hood V.Z < V. To establish structural instability, on the other hand, we
have to show that system (A) is structurally unstable in any region which
contains L. For this it is necessary and sufficient that system (A) be
structurally unstable in any arbitrarily small neighborhood of L. We thus
arrive at the following necessary and sufficient condition of
structural instab:lity of a path.

A path L is structurally unstable if for any ¢ > 0 there is a neighborhood
VWWIcV «aTcu,(@), where system (A) is structurally unstable.

Lemma 1. If system (A is structurally stable in W, any path of this
svstem which is entively contained in W is structurally stable.

This follows directly from Lemma 1, §6 and from Definitions 10 and 14.
As we have seen above, the proposition contained in this lemma was in fact
the reason for introducing the concept of a structurally stable path.
By Lemma 1, if there is at least one structurally unstable path of
system (A)in W, the system is structurally unstable in W. The next
question to ask is whether absence of structurally unstable
paths in W necessarily leads to structural stability of
the system as a whole in W. Only the potentially limiting paths
are of importance in connection with this problem. As is known (QT, §4.6
and §15.6), these paths include

1) equilibrium states, 2) closed paths, 3) paths which are at the
same time a- and o-separatrices, i.e., a- and w-orbitally-unstable paths
approaching the equilibrium states.

We will now establish which of these three types of paths are structurally
stable.

2. Finite number of equilibrium states in a structurally
stable system

Let

£ _pay. E=Qu (A)

be a dynamic system defined in G, and let W be a closed region, Weg.

Theorem 10. If system (A) is structurally stable in W, it has only
a finite number of equilibrium states in W.

Proof. We will first show that for any (A) and any 8 > 0, there exists
a dynamic system (A) $-close to (A) which has only a finite number of
equilibrium states. Choose some § > 0. From Weierstrass's theorem
(§1.1, Theorem 1) there exist two polynomials P* (z, y), Q* (z, y), which are —g—-

close in @ to the functiosns P (z, ¥). Q (z, ¥).
If P* and Q* are irreducible, (A) can be chosen as the system

d. d
d—:=P* (z» y)v —d}tl_ =Q* (x, y)’
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Indeed, this system is %~close, and hence also 8-close, to system (Aa).

Its equilibrium states are determined from the set of equations
P*(z, y)=0, Q* (2, ») =0,

and since the largest common divisor (P*, g*) = 1, these equations have only
a finite number of solutions according to the Bézout theorem (see /12/,
Chapter III, §3.1).

Now suppose that P* and Q* are not irreducible. They can be written in
the form

P‘(I, y)=P£ (:c, y)R(xv y)'
Q*(z, ) =0Qi(z, y) R(z, y),

where R{(z, y) are polynomials of higher than zero degree, and P; and Q are
irreducible, (P, Q)= 1.
Consider the polynomials

P(z, y)=P(z, )[Rz, y)+ol
6(% y)=Qi (1:, y) [R(.t, y)+ﬁ]’

where o and § are real numbers satisfying the following conditions:
1) « and B are sufficiently small, 2) a=£B, 3) the polynomial P (z, y)
is irreducible with R+, and the polynomial @ is irreducible with R+a.
First we have to show that such real numbers always exist. Let
Pz, y) =pi(@ ¥)p2(® ¥) ... Ps(x, ¥) be the factorization of the polynomial P,
into irreducible factors. Consider the polynomials

R(x, y)""‘ﬁiv R(I, y)+ﬁz, ey R(Z‘, y)+5n R(zi y)+ﬁl+h (1)

where B; are any sufficiently small different numbers. Suppose that none
of the polynomials in (1) is irreducible with P, (z, ). Then each of these
polynomials is reducible at least by one of the polynomials p; (z, ¥), ..., ps (2, ¥).
Since the number of polynomials in (1) is one higher than the number of
polynomials p; (z, y), at least two polynomials in (1), R (x, ¥) + Br and
R (z,y) + Bi, k=1, say, are reducible by the same polynomial p; (z, y). Then
their difference f, — f, is reducible by p: (z, y), which is absurd since B, = B,.

Thus at least one of the polynomials in (1) is irreducible with P, (z, y).
We designate this polynomial as R (z, y) + B.

Exactly in the same way we can show that there exists a number « such
that the polynomials R 4 « and @, are irreducible.

These a and § clearly can be chosen arbitrarily small and, moreover,
they can be taken different. Conditions 1, 2, 3 are thus all satisfied.

We choose o and g sufficiently small so that the polynomials P and § are

—g——close to the polynomials P* and @*, respectively, and thus § -close to the

functions P and Q.
Since « % B, the polynomials R 4+ @ and R + p are irreducible {otherwise,
the difference o« — g would be reducible by a zero degree poiynomial, which
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is impossible). From (R + @, R+ §) = 1, (P,,Q) = 1 and condition 3 it
follows, using a well-known algebraic theorem, that (?,3)= 1. Then the
system

d. 1 d; =
F=P@yw, F=Qa= v

is 6 -close to system (A) and has only a finite number of equilibrium states.

We have thus established that for any 6 > 0 there exists a system (A)
6-close to (A) which has only a finite number of equilibrium states. Note
that this lemma is true for any system (A), whether structurally stable or
unstable.

Let now (A) be a structurally stable system in ¥ with an infinite number
of equilibrium states in . From the definitionof structural stability, for any
e > 0 there exists & >0 such thatif (A) is 8-close to (A) then

(H, 4) = (#, D, (2)

where # and H are some regions, H o i .

We have seen that a system (A) 5-close to (A) can be chosen so that it
has only a finite number of equilibria in a plane. Then, in virtue of (2),
H and thus also IV should contain only a finite number of equilibrium states
of (A), which contradic:s the starting assumption. Q. E. D.

Corollary. If system (A) is structurally stable in some region IT,
it has only isolated equilibrium states in that region.

Indeed, by Theorem 10 we conclude that an equilibrium state which is an
inside point of ¥ is necessarily isolated. A boundary point of i¥is
also inevitably an isolated equilibrium state. This follows from Theorem 10,
since a system which is structurally stable in ¥ is evidently structurally
stable in some region containing W,

From Theorem 10 and Definition 14 it follows that only isolated equili-
brium states can be structurally stable.

Therefore, as we are concerned with structurally stable equilibrium
states, we need only ccnsider isolated points.

3. Multiplicity of an equilibrium state

Consider a dynamic system

d d
szP(xy ¥), %=Q(Iv y)’

defined in G. Let M, (14, o) be an equilibrium state of this system, M, €G.
This M, is an intersection point of two curves

P, y)=0, Qz, )=0. (3)

The multiplicity of the equilibrium state M, is defined as
the multiplicity of the intersection point M, of the two curves (3) (see §2.1).

Definition 15. An equilibrium state M, (xo, yo) Of a dynamic system is
said to be of multiplicity r (or r-tuple) if M, is a common point of multipli-
city r of curves (3).
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An equilibrium state of multiplicity 1 is said to be simple.

An equilibrium state M, is said to be of infinite multiplicity if M, is an
intersection point of infinite multiplicity of curves (3).

An equilibrium state M, is said to be of multiplicity higher than rif it
is of finite multiplicity > r or has infinite multiplicity.

Finally, an equilibrium state is said to be multiple if its multiplicity is
>1.

From Definition 5 (§2.1) and Definition 15 we see that if an equilibrium
state M, is of multiplicity r, then system (A)is a system of class k>r and
the following are satisfied: a) there exist g, > 0 and 8, >0 such that any
system (A) 8,-close to rank rto system (A) has at most r equilibrium states
in Us (Mo); b) for any e << g, and 8 > 0 there exists a asystem (A) §-close to
rank r to system (A) which has at least r equilibrium states in U, (M,).

The following theorem establishes the necessary condition of structural
stability of an isolated equilibrium state.

Theorem 11. An isolated equilibvium state M, (zo, yo) is structurally
stable only if it is simple (of multiplicity 1), i.e., a necessary condition
of structural stability of an equilibrium state is the inequality

A= Py (zor Yo) Py (Zor Yo) 0 (4)

T Qi(xor Yo)  Qy (Zos ¥o) ’

Proof. Let an isolated equilibrium state M, be structurally stable
and multiple. By the definition of structural stability of an equilibrium
state, there exists a region H containing M, with the following property:
for any e> 0 there is 8> 0, such that if system (A) is §-close to system (A)
then

(H, 4) = A, 3, (5)

where H is some region. Clearly H can be identified with any sufficiently
small neighborhood of M,. We take U, (M,) as H,where g >0 is 80 small
that M, is the only equilibrium state of (A) inside U, (Mo) (this e, exists
since M, is an isolated equilibrium state). Relation (5) is now written in
the form

(6)

FIGURE 16

Let W be a neighborhood U,z (Mo) (Figure 16). Some positive number

smaller than "z‘l is chosen as . System (&) is taken to be sufficiently close
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to (A), so that relation (6) is satisfied; moreover (A) has at least two
equilibrium states in 0. Such system (A) exists because M, is a multiple
(and not a simple) equilibrium state of (A) (see §2.2, Definition 5 and
Theorem 6).

i is generated from U, (M) by an g-translation, wheree < %‘l. There-

fore, as is readily seea, W = U2 (Mo) < q Hence, in H there are at
least two equilibrium states of (). This contradicts relation (6), since

in ¢, (M) there is only one equilibrium state of (A). Thus, the assumption
that M, is a structurally stable equilibrium state which is not a simple
isolated equilibrium state leads to a contradiction. This completes the

proof.
Theorem 11 can be alternatively stated as follows: an isolated equili-

brium state M, (. yp) for which

A:[Pé(l‘m yo) Py o) -0
le(xo» yo) Q.{/ (I07 .l/o)
(i.e., a multiple state) is not structurally stable.
Thus, in our analysis of structurally stable equilibrium states, we need
consider only simple equilibrium states, which is the subject of the next
chapter.

* Indeed, take some point M €WV outside H, Let f denote the e-translation which transforms U,y into g,
and let I be the boundary of the neighbothood U, (M), T the boundary of B (T=f(I)), and M =7(M).

By assumption p (M, i) <84—°. The segment M3 contains at least one point 5 of the boundary T. There-
= 8 - ~
fare p (M, S)<T°-, Let S =/ (S), where S€T. Then p(S. S)<f°—. This leads to the inequality

p (S, My <p(M, §)+p(§‘, S) <iz°, which is impossible since p (S, W)=—e—2‘l.
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Chapter IV

EQUILIBRIUM STATES OF STRUCTURALLY STABLE
SYSTEMS. SADDLE-TO-SADDLE SEPARATRIX

INTRODUCTION

We have shown in Chapter III (§7.3, Theorem 11) that if a dynamic
system is structurally stable in some bounded region, it has only simple
equilibrium states in that region. In this chapter we will establish which
of these simple equilibrium states are structurally stable equilibria. The
chapter is divided into four sections, § 8 through §11. In §8 it is proved
that a simple node (ordinary, dicritical, or confluent) and a simple
focus* are structurally stable states of equilibrium. The proof for
these different cases is exactly the same, and we therefore consider only
the ordinary node.

In §9 weprovethata simple saddle point (i.e., asimple equilibrium
state which is a saddle point) is a structurally stable state of equilibrium.

In §10 we consider a simple equilibrium state with pure imaginary
characteristic roots, and it is proved that these equilibria are structurally
unstable. Incidentally a highly important theorem is proved concerning
the creation of a closed path from a multiple focus (Theorem 14). Ac-
cording to this theorem, if 0is a multiple focus of system (A) (i.e.,

a point with pure imaginary characteristic values which is neither a center
nor a center-focus), im“initesirhally small increments will convert the
system (A) into a modified system which has a closed path in any arbitrarily
small neighborhood of 0.

Equilibrium states do not figure in §11. This section, however, is
closely linked with §10, and hence its place in the present chapter. Indeed,
§11 deals with a saddle-to-saddle separatrix, anditis proved
that such a separatrix extending between two saddle points is a structurally
unstable path of the dynamic system. For t— 4 o and - — oo the
separatrix goes to saddle points which may be different or coincident.

§8. STRUCTURAL STABILITY OF A NODE AND
A SIMPLE FOCUS

1. Canonical system

In this subsection we will review the basic propositions concerning
simple states of equilibrium. Detailed proofwill befound in QT, Chapter 1V.

* A simple node is a simple equilibrium state which is a node (the characteristic values are real numbers of
equal sign). A simple focus is an equilibrium state with complex characteristic values, which are not pure
imaginary.

[ ]

68




§8, STRUCTURAL STABILITY OF NODE AND SIMPLE FOCUS

Without loss of generality, we consider a simple equilibrium state at the
origin, i.e., at the point 0(0.0). The dynamic system in this case can be
written in the form

dr

d ,
Fearrby ez, y), F=cx+dy+¥, 9 (1)
where the functions ¢ (r, y) and ¥ (r, ) are continuous and continuously dif-
ferentiable to first order in r and y in G; at the point O (0, 0), the functions ¢
and ¢ and their partial derivatives all vanish:
g O =¢(0, 0)=g: (0, 0)=g,(0, 0)=1y5(0, 0)=y¢;(0. 0)=0. (2)
Since 0 is a simple equilibrium,

A:,:!:;’!%o. (3)

Applying a non-singular linear transformation to system (1) we can
reduce it to a canonical form described by a matrix (;’ 5) in a normal

Jordan form. Let Ay and »», bethe characteristic values, i.e., the rootsofthe
characteristic equation

Ea?}' di}'tzo (4)
or
M—oh+A=0, {5)
where
c=a-d. (s)

We should distinguish between the following cases:
I. The characteristic roots 4, and %, are real, different, and of the same
sign. System (1) is then reduced to the canonical form

. d
%:A,z—.’—q:(x. v, d—f=’»zl/+¢(1» y) (7)

where #Mi.>0. The equilibrium point 00, 0) is then called a node (an
ordinary node).
II. A and k,are equal, i.e., Ay=2=L. System (1) reduces either to the

form
d. . d,
Grehre@m Y, F=M+v@ ), (8)
or
dx =iz ay Y
Tl y), F=prtly+t y), (9)
where p=<0.
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In case (8), the equilibrium O is callec a dicritical node, and in
case (9)a confluent node.

III. A, and A;are real, different, and of opposite signs. In this case,
the canonic form of the system is as in case I, i.e., (7), but Ak, = A < 0.
The point O is then called a saddle point.

IV. A; and A, are complex numbers, which are not pure imaginary. The
canonical form of system (1) is then

L —ar—By e ¥, Wfprtay+v(n p) (10)

where A ,=a+ fii, as=0 p>0. The equilibrium state O is thena focus
(a simple focus).

V. M and Ay are pure imaginary numbers, A=Bi, A;=—8i, f=0. The
canonical form of system (1) is then

e —PytroE Y. E—Botv ). (11)

In this case 0 is called an equilibrium state with pure imaginary
characteristic roots.

We will show that in cases I through IV the point 0 is a structurally
stable equilibrium state, and in case V it is structurally uastable.

The behavior of the paths of the dynamic system in the neighborhood of
0 (0, 0) in each of these five cases is investigated in QT, §7 and §8.

We will now review some of the properties which are used in establishing
the structural stability (for detailed proof, see QT, §7).

In case I {(a node), all the circles

xﬂ_‘_y’:ri (12)

of sufficiently small radius r are contact-free cycles for the trajectories
of the system. Let Obe a stable node,* ie.,, A <0, A< 0. Then any
path with O as its limiting point goes to O0fort—+4 oo. Let

z=z(t), y=y(0) (13)

be one of these paths, M (t) a point of this path with the coordinates z (), ¥ (),
and letp () = Vz (*+y (H*be the distance of M from the origin. For

i+ 4 oo, p (t) goes monotonically to zero. In the case of an unstable
node (A{>0,4,>0), p(t) >-0for t +» — oco.

In the case of a dicritical node {case II, canonical system (8)) or a
simple focus {(case IV), the situation is precisely the same as for an
ordinary node. Indeed, circles (12) of sufficiently small radius r are
without contact cycles, and any path (13) which for f = #, crosses one of
these circles goes to O for ¢ — 4 oo if the node or the focus is stable (l <0,
or a0, respecitvely) and to ¢ — — oo if the node or the focus is unstable
{(A>0, or a>0, respectively). In either case, p (f) + 0 monotonically.

In the case of a confluent node (case II, canonical system (9)) the
circles (12) are replaced by ellipses

2L kyt=rt, (14)
* [Not to be confused with structurally stable or structurally unstable nodes.]
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where k is some positive number.* For sufficiently small r, all these
ellipses are without contact cycles for the paths of system (9). For a
stable (unstable) node, i.e., for A < 0 (L > 0), each path initially crossing
such a cycle without contact approaches the point O for ¢ - 4 oo (f - — o0).

2. Structural stability of a simple node and a focus

We will prove that a simple state of equilibrium which is a node
(ordinary, dicritical, or confluent)or a sim ple focus is a structurally
stable path of the dynamic system. The main part of the proof is contained
in Lemma 1 below.

Let

Py H=Q@w (a)

be a dynamic system defined in some region G,, and 0 (0, 0) an equilibrium
state of this system which is a simple node or a simple focus (0 < G).
System (A) is given in canonical form.

Lemma 1. There exists a neighborhood {I of the equilibrium state O
wilh the following property: for any & >0 there exists o >0 such that if
system (B) defined in G,is o-close in G, to system (A) and 0 (0. 0) is an
equilibvium state of system (B), then

(H, A)=(H, B).

Proof. First consider the case when Ois an ordinary node (case I).
System (A) has the form (7):

d N d \
—5—::/.,.t+q)(x, y) d—g=l:y+¢(1» y). (4)

We take 4 <0, 4, << 0, i.e., a stable node.

Let us summarize some of the results from QT, Chapter IV.

In QT, §6.3 it is shown that the functions ¢ and ¢ can be represented in
a certain neighborhood cf 0 in the form

¢ (@ Y=g (@ Ve, ¥, (@, Y=z/1(@ y)+yfelz, v),  (18)

where

1

1
g (@, y)= Y Ci(ta, ty)dt,  galz =\ ¢z, ) dt, (18)
) 0

and j, and f, are similarly expressed in terms of the derivatives of ¢ (z, y).
The functions gy, g, fi, f» are continuous and

£ (0, O)=g:(0, 0)=F,(0, 0) =, (0, 0)=0. (17)
Let
z=z(), y=y@ (18)

2
¢ For k we can take any positive number, satisfying the inequality k < 4 :‘T’ See QT, §7.1.
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be a path of system (A). Its equation in polar coordinates is

p=p (), 6=0(). (19)

pR(t) =22 (t) + 32 (0), (20)
we have from (A) and (15), using the standard relations x=pcos8, y=psin0,
9820 _ 203 (£) [Ay cos* 0+ Ay 5in® 8 4- cos Og, + cos 0 sin 8 (gz + £1) +sin? 65,1, (21)
where f,, f,, g, g are functions of pcosfand psin 8. The expression
Ay cos® B 4 A, sin? 0 is negative for all real 6 and is periodic in 8. Its maximum
value is therefore — m, where m > 0. Since g, g, #. f» are continuous

functions which vanish at the origin O (0, 0), there exists some r; > 0 such
that if p ()< ry, then

]cos”eg,-{—cosesine(gz+f,)+sin’6fz|<%.

The expression in square brackets in (21) is thus definitely less than

2m m
-5 <—*-§-, so that

dp2 (t
0 gt (1). (22)

From (22) it follows immediately that all the circles
224yt =12, (23)

where r<r,, are cycles without contact for paths of system (A). Indeed,
for a path (18) to be tangent to one of these circles at the point (z(f). ¥ (t))

we should have x{te)x" (to) +y (L) ¥ (80)=0, i.e., -df%iaﬂ. which contradicts
(22). Now separating the variables in (22) and integrating from t,to t>>¢,
we see that

0 () < p* (to) e mit-10),
whence it follows that for t— + o, p (t) goes to zero (monotonically, as we

see from (22)). We thus obtain, as required, that any path (18) which for
t = {ppasses through the circle

B4y =ry, (24)

crosses all the concentric circles of smaller radii as ¢ increases and
approaches the point O for ¢ — 4 oo.
Let C, be the circle (24) and H the region inside this circle (i.e., U,o (0).

We will show that the H defined in this way satisfies the lemma.
Let (B) be a dynamic system defined in G,, which is sufficiently close
to system (A) and for which O is an equilibrium state. System (B) can be
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written in the form

d. , ~ d ! A
F=(uta)ctay+3(@ y), H=axt@ata)y+¥ v (B)
where «; are sufficiently small numbers, and the functions H: and ?l: are _
sufficiently close to the functions ¢ and ¥, respectively; moreover, ¢ and }

and their first derivatives vanish at 0.
¢ and ¥ can be represented, like ¢ and ¥, in the form

G, Y)=ag (L, P+y2(x ) F(@ y) =ah @ )=yl y), (25)

where g; and 7, are expressed in the form (16) in terms of the first deriva-
tives of ¢ and'¥,
Let
p=p(t) 8=0()

be a path of system (B) defined by the equations in polar coordinates.

dp (¢)

o, we obtain

Using (B) and (25) to calculate

52 ~ o~ ~ —~ — o~
L2 257 [(hy cos* T + Ay sin B) + (ot c0s® Bt (g + ) cosTsin & -+

-+ 2, sin? 5) +Zycos?H+ (Ez +F) cos Usin 8 --7, sin? 6]. (26)

If system (B) is sufficiently close to system (A) in &, the expressions
in brackets in the right-hand sides of (21) and (26) are sufficiently close to
each other in G,, and hence also in #.* In virtue of the particular choice of

H, the expression in brackets in(26)is less than — :—jm < — LZ"- in H. There-
fore, if system (B) is safficiently close to system (A), the expression in
brackets in (26) is also less than —% in H. Then relation (22) with all the

consequences is satisfied for system (B)in . Hence it follows that there
exists ¢; > 0 with the following property: if system (B) is o,~close to
system (A) in G,, all the circles (23) are cycles without contact for the
paths of system (B) and any path of this system which for ¢ = £, passes
through the circle (24) intersects all the concentric circles of smaller radii
as t increases, approaching the point O for ¢ — 4 oco.**

Let rybe a positive number such that ry <<ry, nn < —. C, is a circle of
P 3

radius r, centered at O, H,is the region inside this circle, and W the ring
between the circles ¢, and C, (Figure 17).

We can now apply Lemma 12 (§4.2). By this lemma, there exists
G: > 0 such that if system (B) is ¢,-close to system (A) the partition of W by
the paths of system (B) is & -identical to the partition of ¥ by the paths of

* We compare the values of these expressions in the same point (z, ¥), i.e., we take E: p, =06. The
closeness of the functions 7; and g; to f; and g;, respectively, follows from equations (16) and the analogous
relations for 7; and ;. Here closeness is to be understood to rank 0.

** Hence it follows, in particular, that the point O is a node or a focus of system (B). It can be shown with
much less effort, using the continuous dependence of the characteristic roots on the system coefficients,
that for sufficiently close systems (B), O is a node. This is not enough for our purposes, however, It is
clear from the proof that, among other things, system (B) has no limit cyeles in H.
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system (A). The mapping T of Won itself corresponding to this e-identity
can be chosen so that each point M ¢ €y is mapped into itself:

T(M)=M.

Let ¢ be any number satisfying the inequalities ¢ > 0, 0 << oy, 0 << 0,. Let
system (B) be o-close to system (A) in ;. Since ¢ < o, there exists, as
we have just pointed out, a mapping of the ring W
onto itself which is an e-translation, which trans-
forms the paths of system (A) into paths of
system (B), and which leaves unchanged all the
\ points of the boundary circle Cp. Let this mapping
be T. It is defined on W, and hence on the circle
C;. Let N¢C,, L a path of system (A) passing
through N, M an intersection point of L with C,, L a
path of system (B) through M, and N an intersection
point of L with the circle ¢, (Figure 17). Clearly
T (N) = N.
The mapping Tis originally defined in the ring w.
FIGURE 17 We will now continue it to the entire X in the
following way. Let 7T (0) =0. Now let § be any point
in H,, which is not 0. The path L of system (A)
passing through § at ¢ = {; clearly crosses the circle C, at the point N for
t=1, <<t Let T'(S)= S, where §is the point which corresponds to the time
t, on the path L of system (B), if at ¢ = t, the path L passes through the point
N = T (N) (""time reflection," see Figure 17). Since the radius of C,is less

4

than ;-, we have p (5, 8) < e.

The mapping T continued in this way is now defined in the entire H. It
is evidently an es-translation which transforms the paths of (A) into the
paths of (B). We have thus established that if (B) is §-close to {A), then

(, 4) = (&, B), and also (H, 4) = (H, B). This completes the proof of the
lemmma for the case when 0 is an ordinary node.

If 0 is a dicritical node or a focus, the lemma is proved precisely in
the same way. If Ois a confluent node, the proof proceeds along the same
lines, and the only change is that the concentric circles (12) are replaced
by a family of ellipses (14), and H is taken as the region lying inside one
of these ellipses. The proof of the lemma is thus complete.

We now proceed with the fundamental theorem of structural stability of
a simple node or focus.

Theorem 12, The equilibrium state M, (xo, yo) of the system

L-P@y., H=Q@ (a)

for which A > 0, 6 5 0 (i.e., a node or a focus) is structurally stable.

Proof. Without loss of generality, we assume that the state of equili-
brium is at the origin 0 (0, 0), and system (a)is given in canonical form.
This evidently can be achieved with the aid of a linear transformation. By
Lemma 2, §6.1 and from the definition of a structurally stable system
{Definition 14, §7.1) M, is a structurally stable equilibrium state of the
original system if and only if O is a structurally stable equilibrium state
of the transformed system.
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The proof will be carried out for the case when Ois an ordinary node.

In the other cases {confluent and dicritical node, focus) the proof is exactly
the same. System (A) is taken in canonical form (7).

Let H be the region considered in Lemma 1, i.e., the interior of a
circle C, of sufficiently small radius r, centered at 0. Let G, be some
region satisfying the condition H — G, G; = G (Figure 18; & is the original
region used to define the closeness of systems). G, is at a positive distance
from the boundary of G. Let this distance be d.

FICURE 18

Let £ be some positive number. By Lemma 1, there exists o> 0 such
that if system (B) is defined in &,, where it is ¢-close to system (A) and has
an equilibrium state at 0 (0. 0), then

£

(H, 4) Z (H, B). (27)

Iet § be a positive number, 6<%, with the following property: if

system (A) is §-close to system (A) in @, then (A) has only one equilibrium
state 0y (8, no) in H and

PO, 0) =VE+m; <po. (28)
where pois a fixed number satisfying the inequalities
Po<<g. po<<d (29)

and an additional condition which will be formulated at a later stage. This
& exists in virtue of Remark 3 to Theorem 6 (§2.2).
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Consider the transformation
z=u-+E y=v+n, (30)

where O (&, no) is the previously ment}_oned equilibrium state of system (&)
s-close to system (A). Let system (&) be

d dy =
F=P@ v =0 .
Transformation (30) reduces it to the system
du d
=P+, v+n), G=Q@m+k, v+

which, changing over from u« and v to x and y, respectively, takes the form

E=Patl v+, =0@+E, v+ (B)

System (B) is defined in G*, which is obtained when & is translated by a
vector v(—=&, —mng). Since by assumption VE 11} < ps<d, G* contains G,,
i.e., Gic6*. Therefore both (A) and (B) are defined in G,. Clearly if p, is
sufficiently small, (A) and (B) are sufficiently close in G;. The third
condition imposed on p, in addition to (29) is the following: pyis suffi-

ciently small so that if VE+nl <<py, S8ystem (B) is %-close

to system {(A) in G.

Note that 0 (0, 0) is the equilibrium state of system (B)

Let K be the inside of a circle of radius r,centered at O, (Figure 18).
K is obtained when H is translated by a vector -—v (i.e., a vector with the
coordinates &y, 7o). Hence K — G, and system (A) is therefore defined in X.
Transformation (30) transforms region K into region H, system (A) into
system (B), and the paths of system (A) in K are transformed into the

paths of system (B) in H. Since VE+ nl < po < —;-, and (30) is a topological
mapping, we conclude that

£

(&, ) 2 (H, B). (31)

Let now (A) be some system §-close to (A) in &. Then, from the
definition of 8 and in virtue of the conditions imposed on p,, system (B) is

—;——close to system (A) in & and relation (31) is satisfied. Now, since 8 <%,

system (B) is o-close to system (A) in G,. Moreover, the point 0 (0, 0) is
an equilibirum state of system (B). Therefore relation (27) is also satisfied,
and from (31) and (27) we clearly have

(H, 4) = (K, ). (32)

We have thus shown that for any & > 0 there exists § > 0 such that if
system {A) is 8-close to (A) in G, relation (32) applies. This implies in
its turn that system {(A) is structurally stable in H, i.e., Ois a structurally
stable state of equilibrium of system (A)
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As we have noted above, the structural stability of a dicritical or a
confluent node and of a simple focus is proved exactly in the same way; in
the case of a confluent node, H is the inside of the corresponding ellipse.
This completes the proof of the theorem.

Remark 1. Lemma 1 can be strengthened by omitting condition 2 from
its statement. It will be used in this form in what follows, and we therefore
give here the altered formulation and the corresponding proof.

There exists a neighborhood H* of a simple node or a focus 0 enclosed
in a cycle without contact which has the following property: for any e >0
there exists § > 0 such that if system (A) is §-close to system (A), then
(H*, A) & (H*. A).

Note that the structural stability of the equilibrium state O follows
immediately from this proposition. We will, conversely, prove this lemma
proceeding from the previously established structural stability of the
point 0.

Proof. Consider the case when Ois an ordinary node and system (A) is
given in canonical form. Take a sufficiently small circle H of radius r
centered at 0, which contains no other equilibrium states except 0 and no
closed paths of the system. System (A) is structurally stable in this circle.

Let H* be a circle of radius % centered at 0. We take a sufficiently small
e* >0, e.g., e*¥ < 1% Because of structural stability there exists §* > 0 such

that if system (A) is 6*-close to (A), then
(H, &)= (&, A). (33)

Since e*<1—'('), we conclude that H¥* —c #. Hence, and by (33), it follows that

H* contains no closed paths of system {A). The boundary circle of H*is
clearly a cycle without contact for system (A).

H* is thus enclosed ky a cycle without contact of system (A) and all
systems sufficiently clcse to (A) have no closed paths in A* The rest of
the proof proceeds along the same lines as the proof of Lemma 1, but the
paths of system (A) and of the close system (&) in general tend to different
points O and §.

Remark 2. A simple state of equilibrium M, (z,, yo) of the system

d d )
—d‘—:-=P(a:, ), —d%_;Q(I' Y (A)
is a node or a focus if

A= | Px(or yo) Py (o, Yo)
Qx(zo, ¥o) Qy (2o Yo) '
8=P (0, yo)+ Q) (0, ¥o)5=0.

It system (d) is sufficiently close to system (A), there is precisely one
equilibrium state O (z,. 7o) of system (A) in a sufficiently small neighborhood
of the equilibrium state M,. The quantities X and 8§ corresponding to the
point @ are not markedly different from A and 8, so that A > 0,820, and the
point § is a simple node or focus. It is readily seen that if O is an ordinary
node, O is also an ordinary node, and if O is a simple focus, 0 is also a
simple focus. If, however, Ois a confluent node, 0is either an ordinary
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or a confluent node; if Ois a dicritical node, O is either a focus or any

of the three different types of node: ordinary, confluent, or dicritical. In
all these cases, the equilibrium state 0 is a structurally stable path of
system (A).

§9. STRUCTURAL STABILITY OF A SADDLE POINT

1. Reduction of the system to canonical form by a
nearly identical transformation

In our proof of the structural stability of a simple equilibrium state
which is a saddle point, we assume as before that the saddle point coincides
with 0(0.0)and the dynamic system has the canonical form

——Mz-Hp(z, ), %—‘,’—=7~zy+tb(x. ) (a)

where MA, << 0. Without loss of generality, we may take
M>0, A <O, (1)
We will show that any system sufficiently close to system {(A) can be
reduced to canonical form by a transformation which is as close to the

identity transformation as desired.
Lemma 1. If the system

L=P@y L=T@ (&)

is sufficiently close in G to system (A), a nearly identical lineay transfor-
mation will reduce system (A) to the form

=t e)z+3( ), L fate) y+ (@ Y, (B)

wheve &, and e, are infinitesimal, and the functions ¢ and  logether with
their first derivatives vanish at the point 0 (0, 0y and are arbitrarily close
to the corresponding functions ¢ and .

Proof. Let e;and §, be two positive numbers with the following pro-
perty: for any system (A) 6,-close in G to system (A), there is precisely
one equilibrium state O (k, 1) in Us, (0), and this equilibrium state is a
saddle point. The existence of these gy, and §, follows trom Theorem 6 and
Definition 5 (§2.1), and also from the fact that small changes in system (A)
leave the determinant A = Ay negative.

Let system (A) be &-close to system (A), where 8 << 8,, and let D (Eo, o) be
the equilibrium state of (A) lying in U, (0). System (&) clearly can be
written in the form

22— (a4 1) (2—Eo) 4 %2 (T —M0) + P4 (@ ¥)
=B (x—E&o) + (A2 + B2) (¥—mo) + i1 (=, 1),
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and if 8 > 0 is sufficiently small, the numbers a;, B, %0, N0 can be made as
small as desired and ¢; and y, will be arbitrarily close to the corresponding
functions ﬁ? and ¥, vanishing together with their derivatives at the point

O (. no). Applying the transformation

z=X-+5%, y=Y -+, (3)
we obtain the system
A =t a) X+ 2Y @ (X, ¥) S B X (et B) X (X, V), (4)

where ¢. and ¥» vanish ato 0, 0) together with their derivatives.
If the numbers a; and B; are sufficiently small, the matrix

P (s)

is sufficiently close to the matrix

(5 f) : (6)

and the characteristic roots of the matrix (5) are therefore close to A and
A, We write these characteristic roots in the form A, &, Ay-4-¢,.

We will now establish the existence of a non-singular matrix § which is
close to the unit matrix and satisfies the relation

P e CEU I 0

Azt &
S=(" ").
r.s

Right-multiplying (7) by S, we write it in the form

(P Q) by a. )__ Atgy 0 pPq (8)
ros)U By RetBe) 0 Jote)\r s/’ '

Comparing the elements in the left- and the right-hand sides of (8), we
obtain four equations:

We seek S in the form

pta)+abi=M+e)p. pretqletB)=(+e)g (9)
and
rM )+ shr=0R2+8)r,  ras+s(detfo) = (A2 +eg)s. (10)
Let us first consider equations (9). They can be written in the form

[ +a)— R —e)lp+Big=0, p+i(P2+PB)— (A +2))g=0. (11)
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The determinant of this system of homogeneous equations in p and ¢ is
equal to the characteristic polynomial of the matrix (5) for A=»A, + &. But
since A; + & is a characteristic root of the matrix (5), this determinant
vanishes. Hence, equations (11) are equivalent, and it suffices to find a
solution satisfying only one of these equations. Let p= 1, and the second

equation in (11) gives q=mf‘—:—a:—55.
Similarly, seeing that 2, 4 &;is a characteristic root of the matrix (5),

By .
Ay—Ay+eg—ay

These numbers p, ¢, r, s satisfy equations {9) and (10), and therefore

the matrlx
S P q A ——lz-{—ze —B.
(r S) ( ﬁi ' { i 2) (12)

),2—— At-ea—oy

we take s=1 in (10) and find r=

satisfies the matrix equation (7). Since A;5:},, the matrix § is arbitrarily
close to the unit matrix for sufficiently small a,, B;, &, (i=14, 2), i.e., when
system (A) is sufficiently close to system (A), and it is therefore a non-
singular matrix. Applying the transformation

u=pX+qY, v=rX+s¥, (13)

where p, ¢, r, s are the matrix elements from (12), to system (4) and writing
z and y for u and v, respectively, we obtain the system

S — Mt TPz ) gt o) y+ sl v) (14)

(see QT, §6.2), i.e., system (B). If system (&), i.e., system (2), is
sufficiently close to system (A), transformation (3) and (13), as we have
seen, are arbitrarily close to the identity transformation. But then the
inverse transformations are also arbitrarily close to the identity transfor-
mation, and the same applies to their product. Now, this product trans-
forms system (A) into system (14). We have thus shown that if system (&)
is sufficiently close in @ to system (A), a linear transformation arbitrarily
close to the identity transformation will reduce system (A) to the form {14),
i.e., to the form (B). The numbers e, and ¢, in this transformation are
arbitrarily small, and the functions @i and ¢,, as is readily seen, are
arbitrarily close to the functions ¢ and ¥, respectively. This completes
the proof of the lemma.*

2. Proof of the structural stability of a saddle point

Before proceeding with the actual proof, we briefly review the proce-
dure for investigating the pattern of the paths of system (A) near a saddle
point O (0, 0). For more details, see QT, §7.3.

* In our proof of Lemma 1 we only made use of the fact that A; = A,, without resorting to the different signs
of Ayand As. The lemma therefore remains valid when O (0, 0) is an ordinary node, and not only a saddle
point. This proposition, however, was not needed in our proof of the structural stability of the node.
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System (A), in accordance with relations (15) from §8, is written in
the form

d.

SE=hT g (@, Y) +yge (e Y)
iy (15)
=yt afi(z Y +yfa(z ),

where f,, f., g;. g. are continuous functions which vanish at the point 0 (0, 0).
Without loss of generality, we again take

>0, A <<O. (1)

The entire analysis is confined to a neighborhood of the point O where 0
is the only equilibrium state of system (a).

Leet k be a fixed positive number. We draw the straight lines y = + iz
and focus our attention on the rectangle with its vertices at A (x,. kzy),
B (— zq, kxy), By (— zo, — kixo), Ay (x5, — kxo). These straight lines are the
diagonals of this rectangle (Figure 19). Let R correspond to the entire
rectangle, and R to its interior. z, is understood to be a sufficiently small
positive number. Consider the intercepts of horizontal and vertical lines
between the diagonals of the rectangle R and the diagonals also.

r4

5

FIGURE 19
L.et L be a path of system (Aa) corresponding to the solution

I:I(t)v yzy([).

If at ¢ = {5, the path L crosses the diagonal y = kx (or y = — kx) at some
point other than the origin, we have

FYAGRN
[MLM =l k(ha—h) +f1 £ k (f2—81) — 82h*Nemter (16)

If at ¢t = £, the path L crosses an intercept of the vertical line between
the diagonals of the rectangle R, we have

[#]m [0 (oo 200 .. "

Yot k. (18)

z (ko) |

81
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Finally, if at £ = £, the path L crosses the intercept of the horizontal
line between the diagonals of the rectangle R, we have

(297 <[y (et r Z041) ], - (19)

i
Vg < (20)

Since the functions f; and g: are continuous and vanish at the point 0 (0, 0),
relations (16), (17), and (19) for sufficiently small z,lead to the equalities

1oy
[i%%’-)-],,,f + uk (a—hy), (21)
[%i = %% (o) Ay (22)

b Jit=tq

dy
[FTJ,_¢0=X=y (ta) A2, (23)
where %, X, X, are some numbers which satisfy the inequalities, say,
3 5
T<nu<g (24)

(i=1,2,3. The sign + in (21) corresponds to the diagonal 4B,, and the
sign ~ to the diagonal BA,).

It follows from (21)—(23) (see QT, §7.3) that the paths of system {A) in
the rectangle R make the pattern shown in Figure 20. On each of the sides
AB and 4,B, of the rectangle R thereis one point — Dand D,, respectively —
through which an w-separatrix of the saddle O passes, and on each of the
sides A4, and BB, there are the points ¢ and C; through which pass a-
separatrices, which are the continuation of the e-separatrices. The sides
of the rectangle R are segments without contact for the paths of system (A).
Through any point inside R, which is not the origin 0 and does not belong
to one of the above separatrices, passes a path of the system (A) which
emerges from the rectangle R through onz ofthe sides 4B, 4,B,as ¢ decreases
or through one of the sides 4A4,, BB, as t increases.

—~— e g1
|

La) —

et

—

4

)
=Y TR

Llal

FIGURE 20
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All the above relations and propositions clearly remain valid if R is
replaced by any smaller "concentric'' rectangle R with the same diagonals
y = = kr, whose sides are parallel to the coordinate axes (the rectangle
A'B'B,A; in Figure 20).

it is assumed in what follows that the number r, > 0 is sufficiently small,
50 that equalities (21)—(23) are applicable. We hence consider the
rectangle K corresponcing to this .

Lemma 2. If adynamic system (A} has the canonical form

ke ~ d ~ ¥
m-..f.,.r+cp(.r, u), —d—[=}-z‘7-"f‘¢(r7 y)

and is sufficiently close to system \A), the patterr of paths of system (&) in
rectangle R is similar to the pattern of paths of system (A). Specifically,
on each of the sides Al and 4B, of the rectangle R theve is one point — D
and D,— through which passes an o- separalrix of the saddle 0 of sys[em (&),
and on the sides A4, and BB, therve are points € and T, through which pass

= -Separatlrices that constitute the continuation of the o-sepavatrices. The
sides of the rectangle R are segments without contact for the paths of
system(A), and each path of system (B)passing through an intevior point
of the rectangle R which is neither a separvatvix nov the point O emerges
Jrom T through one of the sides AB, 4,B, as t decreases and through one of
the sides A4, BB,yas t increases.

Proof. If system (A) is sufficiently close to system (A), ?T, and 72 are
sufficiently close to »; and i,, respectively. Therefore®, >0, %, < 0, and
O is a saddle point of system (A). The point O (0, 0) is a simple equilibrium
state of system (A) (§7.3, Definition 15 and Theorem 11). Hence it readily
tfollows that all dynamic systems (]—i) which are sufficiently close to (A)
have precisely one equilibrium state in £, namely the point 0 (0, 0). Fur-
ther analysis of (16)—-(20) shows that relations analogous to (21)—(24)
apply to the paths z=12(), y = y(t) of any system {A) which is sufficiently
close to (A).” The situation with regard to the pattern of paths of
system (A) in rectangle R is therefore exactly the same as for system (A)
(QT, §7.3), and the proof of the lemma is complete,

In the following two lemmas, u.i) is a dynamic system in canonical form
which is sufficiently close to (A) for Lemma 2 to apply. LetlZ,, L. L,. L, be
the separatrices of system (A) passing through the points D, Dy, C, Cy,
respectively (Figure 20), and L., L, L4, L1, the separatrices of system (&)
passing through the pointsD, D,, €, €,, respecitvely, which lie on the sides
of the rectangle B { Dis on the side AB, D, on the sides 4,B,, etc.).

Lemma 3. Foranye=>0, there is 8§ > 0such that if system (&) is
§-close to system (A) and the sepavatrices L, and L, pass through the
points D and D att = t,, any two points of these separatrices corresponding
to the same t»toare distant less than & from each other. A similar
proposition applies to any of the separatrices L,, Ly, Li,.

Proof. The proof is carried out for the separatrix L,. The same
proof applies to the other separatrices.

Let e > O be given. Consider a rectangle R’, "concentric" with R, which
is entirely contained in U,.(0). Letd’. B’, B;,, and A4, be the vertices of this

* This is so because if system (X) is sufficiently close to system (A), the functions 7, and g; are arbitrarily
close to f; and 81 respecm ely (1=1,2), as we see from equations (15), §& and the corresponding
relations for f;, f‘ gi-
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rectangle; D’is the intersection point of the separatrix L, with the side 4’'B’
of the rectangle (Figure 21). Suppose the separatrix L, passes through the
point D for t = t, and through the point D'for t = T > t,. Let T, be some
number, 7> T.

By Theorem 8 (S3) there exists a segment KK, of the side 4B of the
rectangle R containing the point D and a number 8, > ¢ with the following
property: if system (&) is 8,-close to
system (A), M, is a point Of the segment KK,
L is the path of system (A) which passes
through M, at t=t,, M (8), M (1) the points of the
X 7ol % paths L, and A corresponding to the time ¢, then
o[ 5 p (M (1), M (1)) < e for all ¢, {,<t< T, and all the
points M (T,) lie inside the rectangle R'.

By Lemma 5, §4 there exists a segment
K K, of the side A'B’ of the rectangle R’ con-
taining the point D’ (Figure 21) and a number
4 8, > 0 with the following property: as ¢ de-

4 creases, all the paths of any system {A) which
is 8,-close to (A) passing through the points of
the segment K K; cross the side 4B of the
rectangle R at the points of the segment K.X,.

Consider the paths L, and L, of system (A)
which at some ¢ pass through the points K; and K,, respectively. Since these
points lie on different sides of the separatrix L,, with the increase in ¢ the
paths L, and L, will cross the diagonals 0B’ and 04’of the rectangle R’,
respectively. By Lemmab, §4, there exists§,>0, suchthat if system (A) is 8, -
close to system (A), the paths Z; and Z, of (A) passing through the points K; and K;
will also meet the diagonals OB’ and 0OA’, respectively, withincreasing . Then
by Lemma 2 the intersection point D’ of the separatrix I, with the gide A'B’
of the rectangle R’ lies between Kj and K,.

Let § be the smallest of the three numbers 8,,6;,8;. If system (K) is
8 ~close to system (A), its separatrix I, evidently crosses the segment K K,
{(since § < §8,), and hence also the segment KK, (since 8 <5,). Let D be the
intersection point of the separatrix I, with X,K,. Suppose that the separa-
trices L, and L, pass through the points D and D, respectively, at the same
time . Then, since §<<8; for any t, {,<t<T,, we have p (M (1), M (1)) <e.

All the points M (), M (1) of these separatrices corresponding to t > 7T lie in-

side the rectangle R’, i.e., in U, (0). The distance between any pair of such
points is therefore less than e. We have thus established that if system (A)

is 8-close to system (A), p (M &), M () < = for any t>t,. This completes the

proof of the lemma.

Remark. Lemma 3 can be generalized. Let I be any arc without
contact that meets the separatrix L, at a single point §, which does not
coincide with the end~points of {. Then for any &> 0 there exists § > 0,
such that if system (A) is §-close to system (A), the separatmx L, of
system (A) meets the arc I at a single point §, and p (S, §) < e; if in addition
to the above, L, and L, pass through S and § at ¢ =t,, any two points of
these separatrices corresponding to the same time { > ¢, are also distant
less than e from each other. This proposition can be proved without
difficulty. In what follows we will only make use of the fact that if 8§ is
sufficiently small, the points § and § (or D and D) are arbitrarily close.

2o
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FIGURE 21
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We now proceed to the next lemma. Retaining the notation of L.emma 3,
we again consider the rectangle R and the separatrices L, Ly Ly, Ly, of
the saddle point O.

On the side AB of the rectangle R we choose two poirts S and S,1lying on
the two sides of the point D, and on A,B, we choose two points §,and S;lying
on the two sides of D, (Figure 22). Let
L. Ly, Ly, Lybe the paths passing through
these points. As the parameter ¢ in-
creages, these paths meet the sides A4,

!
! A and BB, of the rectangle R at the points
= 7 ! { i\ 7 T, Ty, T.. T;, respectively. Let H be the
e k Z =7 region delimited by the segments
2;“/,-—’—-—“'—~~ , ii S8,, 8283, TT,, 2T, and the arcs ST and
I | 8:T; (i=1,2,3)of the paths L and L,.
S~ 7% H is a canonical neighborhood of the
2 N equilibrium state 0 (QT, §19.2). The
4 E) 4 separatrices L,,L,,. L,, and L,, of
system (A) partition the canonical neigh-
CIGURE 22 borhood X into four regular saddle-point

regions, which are designated o, g1, 02, 0,
(Figure 22). The region ¢ is delimited
by the arcs 0D and OC of the separa-
trices, the point 0, the arc ST of the path L, and the segments DS and CT;
the boundaries of the other regions ¢; are similar to the boundary of o.

Consider system (A) which is §-close to system (A) and is also given
in canonical form. Let 8 > 0 be so small that, first, Lemma 2 holds
true and, second, the points D and D, (the intersection points of the
separatrices I, and L,, with the segments AB and A,B,) lie inside the
segments .S and S.5;, respectively. Let L, L, L,. L, be the paths of
system (A) which pass through the points S, S;, S;. §;, respectively (in
Figure 22, these paths and the separatrices of system (A) are marked by
dashed lines).

Let # be the canonical neighborhood of the saddle point O of system (&)
analogous to H. Like H, the neighborhood # ispartitioned by the separatrices
of the saddle point O of system (A) into four regular saddle-point regions ¢
agd 6;{i = 1, 2, 3}, which are analogous to the regions ¢ and ¢,. All the
regions o and ¢ are assumed to be closed. )

Lemma 4. For anye >0, theve exists 86 >0, such that if system (A)
is §-close to system (A), we have

(H, A) = (A, ). (25)

Proof. We will show that if § is sufficiently small, there exists a
mapping 6 (or 6,, i = 1, 2,3, respectively) which maps ¢ {and ;) onto ¢ (3,);
the mappings 6 and 6, (a) are z-translations, (b) map paths into paths, and
(c)@and 68,, 8,and 6,, 6. and 8,, 8; and 8 coincide on the arcs of the
separatrices 0D, 0C,, OD,, OC, respecitvely.

Lemma 4 clearly follows directly from this proposition.

To fix ideas, let us consider the region o and the corresponding ¢
{Figure 23).
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5 Y

FIGURE 23 FIGURE 24

Let e > 0 be given. As in Lemma 3, we consider the rectangle R’ with
the vertices A, B’, B, A;, which is ""concentric' with R and is entirely
contained in Uz (0). In ¢ we draw the path EF which meets the sides
AB, AA,, A'B’, A’A] of the rectangles R and R’ at the points E, F, E’, F’,
respectively (Figure 24). Let I, II, III be the elementary quadrangles
shown in Figure 24 (their vertices are TSEF, E'EDD’, FF'C'C, respectively).
By Lemma 9, §4.2, for any given e, there exists a pair of numbers
Ne, 84 (M2, 825 3, 85) for the quadrangle I (II, III) with the following property:
if system (A) is 8, (8, 8;)-close to system (A), T (1, IfI) is the corresponding
elementary quadrangle of system (A), and mappings are given of the sides
FE. ES, and ST of the quadrangle I onto the respective sides FE, E§, and §T
of the quadrangle 1 (or of the sides DD’,DE, and EE’ of the quadrangle II and
the sides CC’, C'F’, and F'Fof the quadrangle I1I), which are n,-translations
(or n2-, Wi-translations, respectively), there exists a path-conserving
mapping of the quadrangle I onto I (Il onto fI, III onto III) which is an
e-translation and coincides with the given mapping on the three sides of the
quadrangle.

Let 8, > 0 be so small that if system (&) is §,~close to (A), the segments
EE',E'F', and F'F of the path of system {A) can be mapped onto the respective
segments EE,E'F’, and F'F of the path of system (A) through the point £, and
the segment ST can be mapped onto the segment S7 by mappings which are
n,-translations, where 14 << min {ny, 12, 13}. The existence of such §,is seif-
evident.

Draw the path KL’ of system (A) which crosses the side 4B of the
rectangle R at the point X lying between D and E(Figure 25), and the
segment C'F’ at the point L’. From QT, §7.3 it follows that if point K is
sufficiently close to D, L’is arbitrarily close to €. We choose the point X
s0 that if the length of the segment DX is less than <-;]-02-, the length of C'L’
is less than <%5—. Let 8; > 0 be so small that the following condition is

satisfied: if system (A) is 8;-close to system (A), we have | DD | < —;%,

e ]<~%, the arc DD’ of the separatrix L, can be mapped onto the arc Db’

of the separatrix L, by an n,-translation, and the arc C'C of the separatrix L,
can be mapped onto the arc C'C of the separatrix L, by an n;-translation.
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The existence of such §; follows from Lemma 3 and from general considera-
tions concerning the phase portraits of close systems (see Lemma 5, §4.1).
Let finally §¢>0 be such that if system (A)is §;-close to system (A), the
paths of (A} and (A) passing through any point M of the segment KE will
intercept with increasing ¢ the side A’d| of the rectangle R’ at two points
which are distant less then y, from each other.

v
s
g p A
g 4,
FIGURE 235

We will now show that if 8 is a positive number less than any of our
8, 1<i<6) and system (&) is §-close to system (A), then

(o0 4) = (3. 4. (26)

To prove this we will establish the existence of a mapping 6 which
realizes the relation (26). The mapping 9 is constructed in several stages.
We will describe these successive stages by indicating what is mapped
onto what and to what closeness. When the mappings are extended, care
is taken to ensure that paths are still mapped into paths.

1} ST onto S7. EE’ onto EE', E'F' onto E'F', F'F onto F'F, all these to
closeness n, << min {n,. M2, s},

2) ESonto ES identically (to zero closeness).

3) Mappings 1 and 2 are extended to I: I onto T to closeness .

4) DK onto DK (closeness automatically <2 < n.), KEonto KE identi-

cally, DD' onto DD’ to closeness n..

5) Mappings 1 and 4 are extended to II: II onto II to closeness e.

6) K’'L'onto K'L’ arbitrarily, K'E onto K'E’ using the mapping which is
induced by the identical mapping of KE onto itself.

7) Mappings 1 and 6 are extended to a mapping of the elementary
quadrangle K'E’'F'L’ onto the quadrangle K'E'F’L’. Since both quadrangles
lie in U. 2 (0), the closeness is automatically less than .

8) 0 into itself, D’0 onto D'0.0C’ onto 0, D'K’ onto D'K’ by the mapping
induced by mapping 4, DK onto DK

87




Ch.[V., BQUILIBRIUM STATES OF STRUCTURALLY STABLE SYSTEMS

8) Mappings 6 and 8 are extended to a mapping of the regular saddle-
point region L'K’D’0Z’ onto the analogous region L/K’'D’0C% This is feasible
by QT, §18.4, Lemma 11. This mapping is an e-translation, since both
saddle~point regions are in U,z (0).

10) ¢'C onto U'T to closeness n;, C'F onto €'F using the mappings
induced by the mapping of D'K’ in 8 and the mapping of X'E’ in 6. The
closeness is <n3.

11) Mappings 1 and 10 are extended to III: III onto 111 to closeness e.
Mappings 3,5, 7,9, and 11 jointly define a mapping 8 of the regular
saddle-point region o onto 0. It is readily seen that 8 is an e-translation
and maps paths into paths, i.e., it has the properties {(a) and (b). The

mappings 0 (t= 1,2, 3) of o; onto g, are constructed in the same way.

Note that on the arc 0D of the separatrix L, the mapping 6, should coin-~
cide with the given mapping 6. Therefore, in constructing the mapping of
DD’ onto DD’ in 4, closeness to n, is not enough: we should ensure close-
ness to n; < 12, and correspondingly replace §; by 8 < 8.. This is clearly
always feasible. A similar remark applies to the mappings 6, and 8;. The
set of four mappings 8, 8, 8,, 8; can be treated as a mapping of H onto H.
This mapping realizes the relation (25). The proof of the lemma is
completed.

Theorvem 13. An equilibrium state M, (z,, yo) Of the system

dz dy
W=P(11 v, W=Q(xv )8

for which A < 0 (a saddle point) is structurally stable.

Proof. Theorem 13 is proved in the same way as Theorem 12 (§8).
However, instead of Lemmma 1 and transformation (30), used in §8 in our
proof of Theorem 12, we should use Lemma 4 and a linear transformation
which reduces the modified system

d. & d ~
F=FP@y, F=0@=yp

to the canonical form
d =~ ~ d - ~
Fehr ey, E=Ny+¥ @ .

If system (&) is sufficiently close to (A), this transformation, by
Lemma 1, is arbitrarily close to the identity transformation. The argu-
ments used in the proof of Lemma 12 therefore still apply. Q. E.D.
Remark 1. From Lemma 4 and the proof of Theorem 13 we see that
if H is a sufficiently small canonical neighborhood of the saddle point O, then
for any e* > Othere exists 6* > 0 with the following property: if system (A*)
is 6*-close to system (A), then

(H, A) = (H*, 4%), (27)

where H* is the canonical neighborhood of the saddle point O* of system {Aax),
Indeed, relatiorgxﬁ (27) follows from relation (25) of Lemma 4 and from

the relation (H, 4) g(H*, A*) which is obtained in the proof of Theorem 13.
But H is a canonical neighborhood, and H*and A* are obtained from H and 4,
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respectively, by a linear transformation (specifically, by the transformation
which reduces (A¥) to the canonical form (A)). Therefore H* is also a
canonical neighborhood of the saddle point O*.

Remark 2. As we have already noted, if M, (r;. yo) is a simple saddle
point of system (A), any system sufficiently close to (A) has precisely one
state of equilibrium in a sufficiently close neighborhood of W,, which is
also a saddle point.

§10. STRUCTURAL INSTABILITY OF AN EQUILIBRIUM
STATE WITH PURE IMAGINARY CHARACTERISTIC
ROOTS

1. Investigation of an equilibrium state with complex
characteristic roots (a review)

We will show in this section that an equilibrium state with pure
imaginary characteristic roots is structurally unstable. As in the previous
sections, we will study, without loss of generality, canonical systems of
the form

By S =prr (s ) (1)

where g == 0. We always assume that § > 0. ¢ and ¢ are functions of
class k.- 1or analytical inG; they vanish at the point 0 (0, U)together with
their first-order partial derivatives.

System (1) is a particular case of the system

=ar—Py oY), L—priayrpz y). (2)

The phase portrait of system (2) near the point 0 (0. 0) is studied in
detail in QT, §8. We will only summarize the corresponding results,
which are needed in what follows. We use the same notation as in QT.

System (2) is investigated in polar coordinates, introduced by the
relations r =pcos 8, y = psin6. The transformation to polar coordinates
gives the set of equations

4 @0 ,
F=F6.0 F=p+2(.0. (a)

where

F(p, 0) =ap+q (pcosB, psinB) cos O+ (pcos 9, psin ) sin 6,
(o, 0) = \p(pcos(z, psin 6) 05 0 — q;(pcosi, p sin 0)

(4)

sin 6.

It is further assumed that

D0, 0) =0 (5)

for —w <0<+, This condition ensures the continuity of the function ®.
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System (3) can be reduced to a single equation

dp ___ F(p,0)
HFED (0 (6)

which is obtained by dividing the first equation in (3) through the second
equation. The right-hand side of equation (6) is written in abbreviated
form as R(p, 8):

__F(p.9)
RO =grom o - ()

System (3) and equation (6), and hence the function R (g, §), are consi-
dered in the strip

—pt<<p<<p* (8)

of the (p, 6) plane, where p* is a sufficiently small positive number.
Elementary calculations show that the function R(p, 8) has a continuous
partial derivative with respect to p in the entire strip (8), and

IR (p, 8) l

oo

0= (9)

for any 8. The existence of a continuous derivative of R with respect to p
indicates that the existence and uniqueness theorem and the theorem of
continuous dependence on the initial conditions both apply to equation (6)
in the strip (8) (QT, Appendix, §8.2). Therefore, for any 8, and po,

i po | < p*, there exists a unique solution of equation (8)

p=11(6, 80 p), (10)

satisfying the condition

1 (8o, 80, po) = Po. (11)

Solution {10) is defined in some {maximum) interval (8;, 8,;) which contains
the point 6,. Moreover,

F1(8; 8y, 0) =0, (12)

so that p = 0 {the axis 6 in the (8, p) plane) is a solution of equation (6). This
solution is defined for all 8, — oo <{ 8 <C co.

The family of paths of system (3) in strip {8) coincides with the family
of integral curves of equation (6). If

p=p@), 8=0()

is a solution of system (3), L is the corresponding path, and (p, 6,)is a point
on this path,

pt‘—f(e, eov Po) (13)

is the equation of this path.




§10, STRUCTURAL INSTABILITY OF AN EQUILIBRIUM STATE

The relation between the paths of system (2) in the (. ) plane, on the
one hand, and the paths of system {3} in the (p, 0) plane (or, equivalently,
the integral curves of equation (6)), on the other, amounts to the following:
the path p = 0 of system (3) in the (p, 8) plane corresponds to the equilibrium
stateO (U, ) of system (2) in the (z. y) plane. Let now L be a path of system (3},
other than the axis 6, which lies in the strip (8) and corresponds to the
solutionp = o (). 8 =10 (t); let (13) be the equation of this path. In the (z, y)
plane, L corresponds to a path L of system (2) lying inside a circle of
radius p* centered at the point 0, which describes the solution

T:==p(t)cosB(t), y=p)sinB{) (14)

of this system. Equation {13) can be considered as the equation of the
path L in polar coordinates. Note that if L is a closed path, there is only
one path L of system (3) corresponding to it; if, however, L is not closed,
there is an infinity of such paths corresponding to it, with the parametric
equations

p=0), Y=0()+2ka (k=0. £ 1, £2,...; see QT, §8.3).

The investigation of the paths of system (2) in the neighborhood of 0 (0, 0)
is based on the following proposition:

For any ¢ > 0 there exists n > 0, such that any path of system {2) which
at t = t. passes through some point M, in U, (0), other than the point 0O itself,
will cross with the increase and decrease in t every half-line 6 = const
without leaving U, (0) (Figure 26) (QT, §8.4, Lemma 3).

FIGURE 26,

Take any ray 6 = 6,, p > O(or p << O). By the last proposition, if pois
sufficiently small (e.g., | po}<C0), solution {13)

p=/(8, 85, po)

is defined for all 8, 6,<0:{6y -+ 2x.
The function

01 =f (o 27, 9. Po) = fey (Po)
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is known as the succession function on the ray 6=8,, since the
points M, (pe, 80) and M, (ps, 8o} are two successive intersection points of a
path of system (2} with this ray obtained for increasing ¢ (for g >0; for

B<O, Z—? << 0 and increase in 9 corresponds to a decrease in t). Since 8,is

any number, we may take without loss of generality 8, = 0, and for the
corresponding succession function fo (po) we simply write f(po). Thus,

1 (po) = f (25 0, po)- (15)

Since (8, 8, 0) =0, we have
f0)=0. {18)

To determine the behavior of the path L of system (2) which passes
through the point M, with the polar coordinates p,, 0 {(pg > 0), consider the
function

d (po) = 1 (Pe) — pPo- (17)

If d (po) = 0, the path L through M,is a closed path. If, however,
d (po) << 0 (d (po) > 0), Lis a spiral which for t— + oo (or £t > — o) either
approaches the equilibrium state O or tends to a closed path encloging the
point 0.

The equilibrium state O of system (2) is a stable (unstable) focus if and
only if for all sufficiently small po > 0, d (po) << 0 (4 (po) > Q).

2. Calculation of the first focal value

Since the right-hand side A (p, 6) of equation {6) has a continuous partial
derivative with respect to p, the solution of this equation f(0; 8¢, po) is
continuously differentiable with respect to p,{QT, Appendix, §8.3). The
succession function f (p,) therefore has a continuous first derivative, whose
value at po = 0 we will now calculate.

Note that by definition f(8; 0, po) satisfies the differential equation

G000 — R (£ (8; 0, po), 6). (18) .

Differentiation with respect to p, gives

2 (ALO0p0 ) _ PRUO:0.00.0) 905 0. p0), (19)

9po a8 dp apo

As we know (/13/, §24, Theorem 16), the mixed partial derivative in
the left-hand side is continuous and is thus independent of the order of
differentiation. Therefore

K3 (6l(6; 0, po))= 3R (1 (8; 0, po), ©) 8/ (8; 0. po) (20)
dpo ap 9po

a0
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This isa variational equation relative to the initial value p;. It is
clearly a linear differential equation with the unknown —,—]% Fron. (12) and

(9) we see that for po=0 equation (20) takes the form

A (0,0 _ a (60,0
a8 ( dpy )_ 9pg " (21)

Let us determine the corresponding initial condition. By (11), £(0; 0, py) = p,-
Therefore

A (6: 0, pt]
—TE——Lﬁ—i. (22)

Integrating (21) with the initial condition (22), we obtain

3/ (8:0,0 2o

T (23)
Hence, using (17) and (15), we find

: 2ng (24)

d (0y=e"8—-1.,

The number d’ (0)is called the first focal value of the
equilibrium state 0.* We see from (24) that for an equilibrium state with
pure imaginary characteristic roots, in particular for the
equilibrium state 0 (0, 0)of system (1), the first focal value
is zero.

3. The theorem of the creation of a closed path from a
multiple focus

An equilibrium state with pure imaginary characteristic roots is called
a focus (either stable or unstable), a center, ora center-focus
(QT, $8.6).

Definition 16. An equilibrium slate of a dynamic sysiem which has
pure imaginary charactevistic rools and is a focus will be called a
multiple focus.

Theorem 14 (theorem of the creation of a closed paith from a
multiple focus). If the equilibrium state M, (zo, yo) of a dynamic system (A)
is a multiple focus, then for any ¢ > 0 and 6 > 0, there exists a system (A)
5-close to (A) which has at least one closed path in the -neighborhood
of M,.

We will use this theorem in our proof of the structural instability of an
equilibrium state with pure imaginary roots. It is, however, also of
considerable independent significance.

Proof. As before, it suffices to consider the equilibrium state 0 (0, 0)
of the canonical system

= —pyte ), =% (2, Y- (a)

s The i-th focal value is the number d¥ () (if it exists, of course).
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Let B > 0 and suppose that 0 (0,0)is a stable focus. Aswehavenoted
at the end of §10.1, there exists r, > 0, such that for all pg, 0 << pe <75, the
function d (p,) is defined and d (pg) << 0.

Let r; be some fixed number, 0 <ri <<r,. Then

d(ry) << 0.

Consider the modified system

dz

=oz—By+9(z, ¥),

- (8)
=Pz +ay+¢(z, y)

rn
dy
di

with the corresponding functions F, &, etc., which are the analogs of the
functions F, @, etc., relating to system (A). If ais gufficiently small in
magnitude, system (A) is arbitrarily close to system (A). It is readily
seen that the functions 7 and @, and therefore also B, are arbitrarily
close to the respective functions F, ®, and R (§10.1, {4) and (6)), at least
to rank 0. Then by Theorem 1, Appendix, subsection 1, the solutions

7 (8, 8, po) and F (6, B,, po) of the equations %%=R (p, 6 and %=§ (p, 8 are

arbitrarily close to each other over a finite range of values of 8, and hence
the numbers d () and d(ry) are also arbitrarily close. Using {(25) we thus
conclude that if & is sufficiently small, we have

d(r) <0. (286)

Let @ be so small that inequality (26) is satisfied; we choose this
number positive, a>0. Then, by (24)
an (27)

d(Q)==¢ B—1>0.

Since d’(po) is continuous, @ (p,) >0 for all sufficiently small p,; in other
words, d(p,) is an increasing function in a certain range. Hence, using
the equality d(0) =0 (see (15), (16), (17)), we conclude that for all suffi-
ciently small positive py, d(po)>0. In particular, for some ry 0<ra<<ry,

d(rs) > 0. (28)

From inequalities {(26) and (28) and the continuity of 4 it follows that
there exists at least one ri, 12 << rs << ry, such that d (ry) = 0. This signifies
that the path L, of system (&) passing through the point with polar coordi-
nates (r; 0)is a closed path.

It is readily seen that if & and r are sufficiently small, the closed path
L,is entirely contained in U, (0). Indeed, let p = 7(8; 0, p) be the general

solution of the equation ;g = R (p, 6) corresponding to system (A). The
solution corresponding to the closed path Eois p = ]7(6; 0, r3). The general
solution of the equation %’ =R (p, 0)is p=7(8; 0,p0), and f(8; 0,0 =0

(see (12)). If = and ry, are sufficiently small, (A') is arbitrarily close to
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system (A), the function R (p,0)is arbitrarily close to R (p, 8), and rzis
arbitrarily close to zero. Therefore, by the theorem of continuous
dependence on the right-hand side and the initial conditions (Appendix,
subsection 1, Theorem2), for all 0, 0<8 <23, the difference F(0;0, ry) —
F(8;0,0), equal to 7(0;0,ry), islessthane, i.e.,

0<<7(8; 0, ry) <e.

This indicates that the closed path I, is entirely contained in Up (0). Q. E. D.

Remark 1. Since by assumption 0(0,0)is a focus of system (a),
there are no closed paths in a sufficiently small neighborhood Uof 0. On
the other hand, any svstem (A) sufficiently close to (A) with @ > 0 has at
least one closed path in U. We will say in what follows that this closed
path is created from the multiple focus.

Remark 2. Clearly, if ryis the least of numbers satisfying the
conditions r, << r;<<ry, E(r;;) == 0, the closed path Ly is a priori a limit~
continuum from the irside (it may, however, also be a limit-continuum
from the outside, and thus a limit cycle). Similarly, if r;is the largest
of these numbers, L,is a priori a limit continuum from the outside.

Remark 3. Inour proof of Theorem 14, system (A) can be replaced
by the system

d.
Tj:P-pQ:-—pﬁx—ﬁy—e—.... =

A
Z—f=0+p1’:ﬁz~—uﬁy+--.- (4)

whose vector field is obtained from the field of system (A) by rotating
through an angle tan™ " p (gsee end of §3). If p> 0, the point 0 (0,0) is a
simple focus of system (A), which is stable for p > 0 and unstable for p < 0.
If 0(0,0) is a stable fccus of system (A), and d is the function corresponding
to system_(A), we can again find r and r;, such that 0<<r, <<ry <<ro and
dir) <0, d(r) <0, d(r:) >0.

The last inequality is satisfied for sufficiently small r: if p << 0. We thus
have the following prcposition: if 0 (0, 0) is a multiple focus of system (A),
a sufficiently small rotation of the vector field through a positive angle or
through a negative angle creates a closed path in an arbitrarily small
neighborhood of 0.

4. Proof of structural instability

Theorem 15. The state of equilibrium M, (xq, yo) of the sysiem

dz dy
W=P(Iv ) ’32‘=0,(Iv Y

for which

- P (x0, ya) Py (%os Yo) ~0
Qx(zor Yo} Qy (o, o) '

0 = Py (2o, Ya) + Qi (20, yo) =0,

A

i.e., a slate of equilibrium with pure imaginary characteristic roots, is
structurally unstable.
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Proof. We will carry out the proof for an equilibrium state 0 (0, 0) of
system (A) in canonical form (1) {(by Lemmas 1 and 2, $6.1, this can be
done without loss of generality). Let O be a structurally stable equilibrium
state of system (A). According to Definition 14 (§7.1) this implies that
system (A) is structurally unstable in some neighborhood H of the point 0,
where A can be made arbitrarily small.

From the definition of structural stability, for any e > 0 there is § >0
such that for each (A) which is 8-close to (A) we have

(H, 4) = (, &, (29)

where His some region. The neighborhood H is made so small that 0 is the
only equilibrium state of system {(A) in it. The next step is to make ¢ 50
small that the region #, obtained from H by e-
translation, contains the point 0. Finally, (A)is
identified with system (2) with sufficiently small
non-zero a.
Under these conditions O ¢ H and it is an equili-
brium state of (A). It follows from (29) that, as
H contains only one equilibrium state of (A),
system (K) has only one equilibrium state in H,
namely the point 0. Since a = 0, the point O is a
focus of system (K) "Hence, in a sufficiently small
neighborhood of O system (A) has no closed paths.
Under the e-translation realizing relation (29),
FIGURE 27 point O is mapped into itself (since this is a path-
conserving translation). Therefore system (A) does
not have any closed paths in a sufficiently small
neighborhood of 0, either. This indicates that 0 is neither a center nor a
center -focus for (A), i.e., it is inevitably a focus.
We have shown so far that if 0 (0, 0) is a structurally stable state of
equilibrium of system (A), 0is a multiple focus.
Let U be the neighborhood U, (0), where r is so small that system (A) has
no closed paths in U and the only equilibrium state in this neighborhood is 0;
moreover, system (A) is structurally stable in U. For a small r, these
conditions are satisfied since 0 is a structurally stable multiple focus.

Let W denote U,;; (0) (Figure 27). Fix &> 0, e <%, and let § > 0 be so small
that if system (5) is §~close to (A), we have

W, 4) = (@, A), (30)

where T is some region. System (A)is a system &-close to (A) which has
a closed path I, in W; this system (A) exists in virtue of Theorem 14
(i.e., the theorem of creation of a limit-cycle from a multiple focus).

Note that W — U.* Therefore ¥ contains the closed path L, of system (A),
and then, by (30), U contains a closed path of system (A). This contradicts
our choice of U. The contradiction establishes the fallacy of our original

* All the points of W are distant more than % from the boundary of U. Therefore a %-translation cannot

move any point of W outside the "translated” region U, Also see footnote on p.67.
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assumption, namely that the equilibrium state O of system (A) is struc-
turally stable. We have thus proved that this equilibrium state is
structurally unstable. Q. E. D.

Remark 1. F(A)isa system of class ¥, but not of class ¥ =+ 1 (¥ = 1),
it can be treated as a point in any of the spaces Ry, 1<k< N, I1<r<k
(see §5.1). If (A) is an analytical system, it can be treated as a point of
any space R.”(kis any natural number, 1<r<k) or of any space R, (ris
any natural number). Theorem 15 of structural instability remains valid
relative to any of these spaces containing system (A). This is so because
the modified system () used in our proof of structural instability differs
from system (A) by the analytical increments az and ay, and is therefore
part of any space containing (A).

Remark 2. Thecrems 11,12,13, and 15 show that structurally stable
equilibrium states are simple nodes, foci, and saddle points. From
Remark 2 to Theorem 12 and Remark 2 to Theorem 13 it follows that if
point O is a structurally stable equilibrium state of system (A), any
system (A) sufficiently close to {(A) has precisely one equilibrium state in
a sufficiently small neighborhood of the point O, which is also structurally
stable and is a point of the same type as that of system (A) (i.e., a node,

a focus, or a saddle point, respectively).

§11. A SADDLE-TO-SADDLE SEPARATRIX

As is known (QT, §4.6 and §23.1), if a dynamic system considered in
a bounded closed region has a finite number of equilibrium states, the a-
or e-limit-set of any path of this system is either {a) an equilibrium state,
(b) a closed path, or (c) a limit continuum comprising a finite number of
separatrices, which are continuations of one another from the same
direction, and a finite number of equilibrium states.

We would like to establish what limit sets the paths of structurally
stable systems have. In the preceding sections we have identified the
structurally stable equilibrium states. The structural stability of a closed
path is discussed in the next chapter. At this stage, consider a structurally
stable system with a limit continuum of the form (¢c). This continuum
comprises the separa-rices of structurally stable saddle points (since other
structurally stable equilibrium points have no separatrices), and each of
these separatrices tends to a saddle point for both f + — o and {— + co.
Such a separatrix is said to go from one saddle point to
another, and for brevity we will refer to it as a saddle-to-saddle
separatrix. The two saddle points of such a separatrix are either
distinct or coincident. We will show that a saddle-to-saddle
separatrix is structurally unstable (Theorem 16). Hence it
follows that the limit set of the paths of a structurally stable system is
either an equilibrium state or a closed path.

1. The behavior of the separatrix under vector field rotation

Let

Z—‘::P(x, y), %‘=Q(xv y) (A)
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be a dynamic system considered in a bounded planar region G, 0 a simple
saddle point of this system, 0 € G, L, the separatrix of the saddle point 0.
Let further € be a point of the separatrix L,, and ! an arc without contact
through € which has no common points with L, (except the point C) or with
other separatrices of the saddle point 0. The arc ! is defined by the
parametric equations

z=f(s), y=g(s), a<s<gy},

and the point € on I corresponds to the value s of the parameter s (a < s, < b).
The positive direction along the arc ! is the direction of increasing s.

To fix ideas, let the angles between the paths of system (A) and the
arc I be positive (Figure 28).

FIGURE 28

Consider a modified system {A*) of the form
d d,
B —P—pQ=P", L _gipp=gr, (a%)

where p is a parameter. Clearly, if p is sufficiently small in magnitude,
(A*) is arbitrarily close to (A). System (A*) was considered at the end of
§3 (§3.2, Lemma 3). It was shown that the sets of the equilibrium states of
(A) and (A*) coincide and that at any point which is not a state of equilibrium
the field of system (A) makes a constant angle 8 with the field of system (A*),
such that

sin 8 =

.
Vitp

For p > 0 this angle is positive. According to §9 (see §9, Lemmas 2
and 3 and remark to Lemma 3), if (A*) is sufficiently close to system (a),
i.e., if p is sufficiently small, O is a saddle point of system {(A*), whereas
system (A) nas a single separatrix L; of the saddle point 0; this separatrix
meets the arc I, and there is only one intersection point C*. If L;is an
a (o-)-separatrix of the saddle point O of system (A), Ly is an « (w-)-separa-
trix of the saddle point O of system {A*). Let s! be the value of the
parameter s corresponding to the point C*.

Lemma 1. If p>0and L, is an a-separatrix of the saddle point 0,
then st > s,y if, however, u >0 and L, is a o-separatrix, then sy < s.*

¥ We naturally assume that the above condition is satisfied, namely that the paths of system (A) make
positive angles with the arc without contact I,
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Proof. Without loss of generality we may take the saddle point O of
system (A) to coincide with the origin and write (A) in the canonical form

d. N
F=hEte @ =P, )

; 1
%:7-:’/"-41(:, v) =0 (z. y). (1)

where 2, >0, A, << 0.

As in §9, consider a sufficiently small rectangle R with vertices
A, B, B;. A, (Figure 20). The paths of system (A) in this rectangle are shown
in Figure 20. As the separatrix L, we take L,. We will first prove a
particular case, when the arc without contact ! is the side 44, of the
rectangle R.* The positive direction along [ is defined as the direction from
44 to0 A, and the parameter s is identified with y. Under these conditions,
the paths of system (A) form positive angles with 4,4.

Note that if (A) is a system sufficiently close to system (1), then

1) system (A) has a single equilibrium state O in the rectangle R, which
is also a saddle point and is arbitrarily close to 0 (i, 0);

2} the_sides of the rectangle R are arcs without contact for the paths of
system (A), the paths leaving R through the sides Ay and BB, and entering
the rectangle R through 4B and A,B;

3) the separatrices L, and L,, of system (A) cross the sides A.4, and
BB, at the points € and ¢, respectively, which are arbitrarily close to € and
Cy, and the separatrices L, and L., cross the sides 4B and 4,B, at the points
D and D,, respectively, which are arbitrarily close to D and D,.

The validity of propositions 1 and 2 above is self-evident.

The validity of proposition 3 follows from propositions 1 and 2, the
theorem of continuous dependence on the right-hand sides, and from the
fact that a closed path cannot enclose only one equilibrium state of
sy stem (A) ifit is a saddle point (see QT, §11.2, Corollary 1l of Theorem 29 and
§11.4, Theorem 30), so that R contains no closed paths of system (A)

For system (A) we takes a system (A*) of the form

F=P—po=P L-uwPiQ=0. (a%)

Let u > 0; this number is assumed to be so small that conditions 1,2, 3
above are satisfied. Then system (A*) has a single equilibrium state in

R, viz., the point O, which is a saddle point, and the separatrix L§ of this
saddle point crosses the segment Ayd at a pointC*%  Let y, be the ordinate
of the point €, and yj the ordinate of the point C*. To prove the lemma,

we have to establish that y* > y,. Consider the path L* of system (A1)
which passes at t = ¢, through the point €. Since the separatrix L, makes

a positive angle with L*, L*enters into the region W, limited by

the simple closed line 0D,4,C0, as t increases (Figure 28). Take some
point M* from ¥ which lies on the path L*. As tincreases, the path L of
system (A) passing through M* crosses the segment .11 at the point A which
is below the point €, and as ¢ decreases it crosses the segment B, at the
point .V, Consider the region W, limited by the simple closed curve V4RV,

* It s readily seen that if the rectengle R is sufficiently small, each of its sides, and in particular 44,,
:atisfies the previous conditions imposed on the arc without contact £,
** The reader {s advised 1o work oul the complete sroof of propesition 2.
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The path L makes a positive angle with L* at the point M*, and therefore as
tdecreases, L*penetrates into W,. As f decreases further, the path L*
should emerge from this region. The path
L* however, may cross neither the segment
KA, nor the arc NK of the path L. There-
fore, as t decreases, L* will cross the
segment N4,, But then all the paths of
system (A*) passing through various points
of the segment A,C will cross the segment
NA; as t decreases, i.e., none of these paths
is the separatrix L} of system (ax ) Hence
it follows that the separatrix L% crosses the
segment 414 at a point C*above C, as origi-
nally stated. The corresponding proposition
for the w-separatrix L,is proved along the
same lines. Our lemma is thus proved for
a particular case, when the arc without
contact is the segment 4,4 (or BA). Now, by Lemma 10, §4.2, we see that
the lemma also holds true for any arc without contact I, which satisfies
the relevant conditions. Q. E. D.

Remark. Itis clear from the above proof that the lemma remains
valid if system (A*)is given in the form

FIGURE 29

L =P—pf@ 0 L=Qtpfz P,

with f (z, y) > 0 everywhere in G, except the saddle point, where it may
vanish.

2. Proof of structural instability

Theorem 16. A saddle-to-saddle separatrix is a structurally
unstable path.

Proof. Let the path L; be also an a-separatrix of the saddle point 0 and
a o-separatrix of the saddle point 0’. To fix our ideas, let O and O be two
distinct points (the same proof will apply if these two points coincide).

Let the separatrix L, be structurally stable, i.e., system (A)is struc-
turally stable in any sufficiently small neighborhood H of the separatrix L,.
Then for any &> 0 there exists § > 0, such that if system {A) is §-close
to system (A), we have

(H, 4= (&, &, (2)

where His some region. Let dbe the distance from the boundary of H to
L, and choose e <<d. Let T be the mapping which realizes relation (2) (i. e.,
T is an e-translation which transforms ¥ into H and maps paths into paths).
Under the mapping T, the separatrix L, of system (A) is clearly mapped
into a saddle-to-saddle separatrix I, of system (A) which lies in # (the
latter follows from the inequality & << d, sothatthe e-translation does not
move the path L, out of H).
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We thus see that if L is a structurally stable path of system (A), then,
for any neighborhood H of this path, every system (R) sufficiently close to
(A) has a saddle-to-saddle separatrix which is entirely contained in #. We
will show that the last condition is not satisfied in a certain neighborhood
H. This contradiction will evidently establish the validity of our theorem.

Let L,, L,, L, be separatrices of the saddle point 0, and L}, L}, L, separa-
trices of the saddle point 0’, none of them coinciding with ZL,. On the
separatrix L; (L’,) we choose a point M, (M|} and draw through this point an
arc without contact I; (I;), whose end points do not coincide with M, (M) (i =
= 1,2,3). Let further the point M; (M} be the only common point of the
arc I; (I;) with the separarices of the saddle points O and 0’ (Figure 30),

FIGURE 30

H is taken to be a sufficiently small neighborhood of the path Ly; it is
so small that O and O’ are the only equilibrium states of system (A) in this
neighborhood, and the arzs without contact 4, and ¥ {i = 1, 2, 3) lie outside H.

Let M, be a point on the separatrix L,. Through this point we draw an
arc without contact l,, which is entirely contained in A and which has no
common points with the separatrices of the saddle points 0 and O, other
than M,.

Consider the system

4 _P—po, L_0gipp. (3)

Let p>0. If pis sufficiently small, the only equilibrium states of
system (A) in H are 0 anc 0; these equilibrium states are saddle points,
and their separatrices L, and L; {i = 1, 2, 3) cross the respective arcs without
contact {; and l; {in virtue of the remark to Lemma 3, §9). Moreover, the
saddle point 0 of system (A) has a separatrix L, which crosses the arc [, at
the point #7,, and the saddle point 0’ has a separatrix I; which crosses the
arc l, at the point ¥,. By the lemma of the previous subsection, M, and ¥,
lie on the arc [, on different sides of the point M, (Figure 30). We will prove
that system (A) does not have in H a separatrix going from saddle point O to
saddle point O'.

Indeed, suppose that such a separatrix exists (call ity). Clearly vy cannot
be one of the separatrices L; or L; (i = 1, 2, 3), since these separatrices
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cross the arcs [; () and emerge from H. Hence y should coincide both with
L, and Z;, i.e., at some t=71, it should pass through the point #yand at some
t=7,it should pass through the point #;. Clearly, L<3,. Let§ (§) be the
intersection point of one of the separatrices L, (Li) the separatrix Ly (L),
say, with the boundary of region H.* We choose § (§) as the first inter-
section point of I, (L,) with the boundary, i.e., all the points of this separa-
trix between 0 and S’ (between 0’ and 3") are entirely contained in #. Con-
sider a simple closed line OM M,0'S’SO made up of arcs of the paths Iyand
Ls, the section M,,M of the arcl,, and the sections OMo and MO’ of the
separatrix y. This line delimits a certain subreglon H*of H.

Let M,be the point of y correspondmg to the time %,+7, and M, the point
corresponding to the time #,—v, where 1 is a sufficiently small positive
number and % +7<#—1. The points M and M,, as is readily seen, lie on
two different sides of the arc without contactl;,, Therefore, one of these
points lies outside H* (M,in Figure 30), and the other lies inside this
region. But then the path y, moving from #, to ¥, with the increase in ¢,
should cross the boundary of H*. This is impossible, however, since for
To+T<<t<<i;—t the separatrix cannot cross itself somewhere along OM,or
M.;O’, nor can it corss the arc without contactl,,. Moreover, for any ¢, the
separatrix y cannot have common points with the arcs 0§ and 'S’ of the
separatrices I;and L, nor with the boundary of region H. We have thus
proved that there is no separatrix in # going from 0tc 0. Q.E.D.

Corollary. Ifa dynamic system (A) is structurally stable in a
bounded region, the a- ande-limit sets of any path of this system are
either equilibrium states or closed paths.

Indeed, if system (A) is structurally stable in a bounded region, it only
has a finite number of equilibrium states (Theorem 10, §7.2). Therefore,
by QT, §4.6 and §23.1, each limit set of the system is either an equilibrium
state, or a closed path, or a limit continuum comprising saddle-to-saddle
paths. The last possibility, however, is ruled out in virtue of Theorem 186.

Remark 1. System (&)

d
=P—pQ, G=0Q+pP

is a system of the same class as the original system (A), and for suffi-
ciently small p it is arbitrarily close to (A) to any rank. Hence and from
the proof of Theorem 16 it follows that a saddle-to-saddle separatrix of
system (A) is a structurally unstable path relative to any space RY, Ry’
containing (A) as a point.

Remark 2. Inthe proof of Theorem 16, system (A) can be replaced
with

L —Ppf@n0 L—Q+pi@ P, (&)

where the function f(z, y) maintains a constant sign everywhere inG, except
the saddle points, where it may vanish. This follows from the remark to
Lemma 1, §11.1. Thus, if p =0 is sufficiently small, the saddle-to-saddle
separatrix disappears on passing from (A) to (Ay)

® 1t is assumed, without loss of generality, that the boundary of H is a simple smooth closed curve,




Chapter V

CLOSED PATHS IN STRUCTURALLY
STABLE SYSTEMS

INTRODUCTION

In the present chapter we consider closed paths and classify them into
structurally stable and structurally unstable. The chapter is made up of
four sections (§12 through §15). In §12 we investigate the configuration of
paths in the neighborhood of a closed path L,. To this end, we draw an arc
without contact / which intersects [, and on this arc consider the succession
function f (n) and the function d (n) = f (n) — n, where n is the parameter
defined on {. It is es:ablished that either 1} a certain neighborhood of L,
contains no closed paths other than L, itself, i.e., L, is a limit cycle, or
2) all the paths passing through the points of some neighborhood of L, are
closed paths, or finally 3) any arbitrarily small neighborhood of L, con-
tains both open and closed paths, other than L, itself. If the system is
analytical, only cases 1 and 2 are possible. The particular topological
structure of the dynamic system in a neighborhood of the path L, depends
on the properties of the function d (n); particularly significant is the
quantity 4’ (n,), where n, is the value of the parameter on the arc ! corre-
sponding to the intersection of / with L,.

In §13, a relatively simple system of curvilinear coordinates is intro-
duced in the neighborhood of the closed path L, which makes it possible to
calculate d’ (ng). This system is introduced as follows: through every point
M (s) of Ly, corresponding to the time s, a segment of the normal is passed,
and to the points on this segment we assign the coordinates s and »n, where
n is the value of the parameter on the normal. The arc ! is identified with
one of these normal segments., It is established that if the equations of the
close path L; arex = ¢ (1), y = ¢ (!), where ¢ and ¢ are periodic functions of
period 7, then

T
) § [PR(G(s), $G) ~Qui@ist, $splds
d (L) =eY —1=e/—1.

If the integral J in this equality does not vanish, L, is an isolated closed
path, i.e., a limit cycle, and it is calleda simple limit cycle. Itis
proved that if J <0, L, is a stable limit cycle, and if J > 0, L, is an unstable
limit cycle.
If L,is a limit cycle andJ =0, L, is calleda multiple limit cycle.
In §14 it is proved that any simple limit cycle is a structurally stable
path of a dynamic system (Theorem 18). Finally, in §15 we consider a
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closed path L, with J = 0 and prove that this path is structurally unstable.
The proof uses Theorem 19, which is of considerable independent interest
(this is the theorem of creation of a closed path from a multiple limit
cycle).

Note that the investigation of a structurally unstable closed path has
much in common with the investigation of an equilibrium state with pure
imaginary characteristic roots, presented in §10.

§12. A CLOSED PATH AND ITS NEIGHBORHOOD.
SUCCESSION FUNCTION

1. Introduction of the succession function

Let

&Py, L-0@y (a)

be a dynamic system of class N or an analytical system, defined in G.
Suppose that (A) has a closed path L, in ¢. Let

2=9(t), y=v@) (1)

be the motion corresponding to this path. ¢ ()and ¢ (t) are periodic
functions of the same period, which we denote v (vt > (). We are interested
in the configuration of the paths of system (A) in the neighborhood of L,.
Let g, > 0 be so small that U, (L) does not contain any equilibrium states of
(A) (this e, exists since L, is a closed path).

On L,, we choose some point M, and pass through this point an arc
without contact { which is contained in U,, (L.}, ensuring that M, remains
an inner point of I. On the arc I, we define some parameter n. This can
be done, say, by specifying the parametric equations of the arc i:

z=g(n)y y=g2(n). (2)
The parameter » = n, corresponds to the point M, on the arc !.
Let n > 0 be so small that all the paths crossing at ¢ = {, the part of the

arc ! corresponding tc

ne—n<nng+1 (3)
cross the arc ! again for ¢ greater than ¢,, without leaving U,, (L) prior to
the second intersection. This n exists by QT, §3.8, Lemma 13. In this
way, on the part of the arc ! corresponding to the values (8) of the para-
meter n, we have defined a succession function

n=f(n), (4)

constructed in the direction of increasing ¢ (QT, §3.8).
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Let M’ be the point of [ corresponding to n = n, — 1, L' the path of (A)
passing through M’ /& the point at which L crosses the arc ! the second time
with increasing ¢t. The point V' evidently
corresponds to n= f(n, —n). .V’ is either
different from M’ or coincides with it. If
the two points coincide, L’ is a closed path,
and we denote by I” the annular region be-
tween the paths L;and L. If M’ and N are
different points, L’is not a closed path, and
I'"is the annular region limited by the path L,
and the closed curve consisting of the turn
AN of the path L’ and the part M'N’of the
arc !(Figure 31).

Similarly, taking M”to be the point of the
arc [ corresponding to n= ny + 71, we intro-
FIGURE 1 duce a path L” a point ¥, and a region I,

analogous to I" (Figure 31). Regions of this
type were considered in QT, §3.9. From
QT, §3.9, Lemma 14 and Remark 1 to the lemma, we clearly see that

1} regions I' and I'" together with their boundaries are contained in
Uy (Lo);

2) every path passing through a point of I’ crosses the segment M,N’(or
MM’, if N’lies on I between M, and M’) of the arc [ for both increasing and
decreasing time ¢. Similarly, every path passing through a point of I'"
crosses the segment M,V"{or M,M") of the arc [ for both increasing and
decreasing ¢,

2. The configuration of paths in the neighborhood of a
closed path

Let us first establish the possible configuration of a single path passing
near a closed path. 7To this end, we take a path L*which for ¢ = ¢, passes
through a point M*of the arc [ corresponding to the value of the parameter
n*, | n* — n, }<<n. Let M**be the succeeding intersection point (the
successor of M*) of the path L* (with the arc ). M** corresponds to n= f (n*).

We introduce an auxiliary function

d(n)=f(n)—n, (5)

which is analogous to the function d (p) used inthe investigation of a multiple
focus (§10.1, (17)). The function d (n) is a priori defined for all the values
of n satisfying inequality (3), |n— ny <. As we show in QT, §3.8, Remark1l
to Lemma 13, if system (A) and function (2) belong to class N(or to the
analytical class), the function f (n), and hence d (n), are functions of the class
¥ (or analytical).

The following cases should be considered:

1) d(n*) =0, i.e., n* = f(r*). In this case M* and M** coincide, and L*is
a closed path completely contained in I"and I'".

2) n*>0,d(n*)<<0, or n* < 0, d(n*) > 0. To fix ideas, let us consider
the case n* >0, d (n*) < 0. In this case, L* is not a closed path, M** is a point
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of the arc ! between M,and M*, and the path L* for ¢ > ¢, is completely
contained in I (Figure 32). Since I is contained in U,, (L) and therefore
does not contain any equilibrium states, the path L*for t— 4 oo goes to
some closed path which either coincides with L, or is completely contained
in I'". Fort< t,, the path L*may either emerge from I through the
section M”"N” of the arc I/, or remain entirely in I'. In the latter case, the
path L* is defined for all t < ¢,, and its limit a-continuum is a closed path
completely contained in T” which does not coincide with L,. Note that if the
a-limit or the e-limit closed path of L*is completely contained in I'", it is
homotopic to zero in I"{(i.e., the internal region limited by this closed curve
is not contained entirely in ).

FIGURE 32 FIGURE 33

For n* < 0, d (n*) > 0, the situation is precisely the same, with the only
difference that L*is completely contained in IY. For t— 4 oo, the path L*
does not leave I, going either to L, or to a closed path in I'. For t-+ —oo,
L*either leaves I" or goes to a closed path in I which ig different from L,
(Figure 33).

FIGURE 34 FIGURE 38

3) n*>0,d (n*¥)>0 or n* <0, d (n*) <« 0. This case is analogous to the
preceding. L* is not a closed path, M* is a point of the arc / between M, and
M** (Figures 34 and 35), and the path L*for ¢{-» —oo goes either to a closed
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path contained completely in I'" (I'"), or to L,. As increases (i> (), the
path L*either leaves I" (I")or goes to a closed path in I ([") which is
different from L,.

Cases 1, 2, 3 above clearly cover all the types of paths which cross the
section M'M" of the arc without contact /. Every path passing through a
point of [ and I'"crosses this section M'W” of the arc ! either with increasing
or with decreasing ¢t. We have thus established the possible configuration
of the paths which pass through points of IV and [,

Let us now consider the topological structure of the dynamic system (A)
in the neighborhood cf a closed path L,. To this end, we again introduce
the function d (n) = f (n) — n. Since n = ny, corresponds to the point Y, of the
closed path L, on the arc without contact, we have d (ng) = 0. The following
two cases should be considered:

a) there exists m > U, m<y, such that d(n) ==0for all n,0 << |n — n, |<m;

b) for any m > ¢, there exists n, 0 << [n — ny } <<m, such that d (ny) = 0.

Let us consider case a in some detail. All the paths passing through the
points of the arc [ which correspond to the values of the parameter =,
0<<ln— nl<m, are not closed.

The closed path L, in this case is isolated, i.e., it is a limit cycle (QT,
€4.9). Because of the continuity of d (n), we conclude that in case a, d (n) has
the same sign for all positive n and the same sign for all negative n (| n | << m).
The following four subcases are therefore possible:

a[)d(n)<0 for n>ny d{(n)>0 tfor n<ngy
az)d(@n) >0 for n>n;, d(n)<<0 for n<<ne;
az) d{n)<<0 for n>ny, d((n)<<¥ for n<<ngy
ay) d(ry>0 for n>ng d(n)>0 for n<<n,.

In case a;, all the paths passing for a sufficiently small § through the
points of Us (L,) which do not coincide with L, go to L, for ¢t - + o, whereas
for decreasing ¢, they leave Us (L,). The limit cycle Ly is stable, and we
shall say that all the paths sufficiently close to L,, which do not coincide
with Ly, wind onto L,.

In case ap, all the paths sufficiently close to L, {which do not coincide
with L,) go to L, for t - — oo, and for increasing ¢, they leave Us (Ly). In
this case, the limit cycle L, is unstable. We shall say that all these
paths paths unwind from L,.

In cases a3 and a4, all the paths which pass through points of U (L,) and
lie on one side of L, go to Lyfor ¢t —+ 4o and leave U, (L,) as ¢t decreases; the
paths lying on the other side of L,, go to L, for { > —oo and leave Us (Ly) as
t increases.

The limit cycle in cases az and a4 is said to be semistable. The
paths close to the semistable cycle L, wind onto L, on one side and
unwind from L, on the other side of the cycle.

Let us now consider case b. Any neighborhood of L, contains an infinite
number of closed patas in this case. Without going into a detailed
analysis, we will only note that this case, like the analogous case of an
equilibrium state with pure imaginary characteristic values {see QT, $§8.6),
covers an infinity of various possible topological structures of the neighbor-
hood of the closed path L,. Any particular topological structure is com-
pletely determined by the properties of the function d (n) and depends on the
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structure of the set of its roots and on the signs of the function d (n) when-
ever it does not vanish. In particular, if for sufficiently small n, d(n) =0,
all the paths through the points of a sufficiently small neighborhood of L, are
closed.

3. The case of an analytical dynamic system

We will now consider in greater detail the case of an analytical system
(A) and establish all the possible topological structures of the neighborhood
of a closed path. We will derive the conditions to be satisfied by the
succession function in the neighborhood of a closed path L, in order for this
closed path to be a limit cycle of a certain type (stable, unstable, or semi-
stable). The arc I {i.e., the functions (2)) is assumed analytical. Then,
if (A) is analytical, the succession function n = f (n) is also analytical
(QT, §3.8, Remark 1 to Lemma 13). As before, we assign to the closed
path L, the parameter n = ny, so that

fg)=n, for dng=0. (6)

In the case of an analytical dynamic system (A), we have to consider two
possibilities:

1) At least one of the derivatives d® (n,) does not vanish, i.e., there
exists a natural number k3>»1 such that

d () =d"(n)=  =d" D (n)=m0, d® (ng)=0. (7)

In this case, expanding the function d (r) around n = n, in powers of n — n,,
we get

d (n) = (n—no)* [d¥ (ng) + (n—ng) d*TV (ng) + . - . ]=
= (n—no)* [d® (o) +(r—n) ® (W],  (8)

where @ (n) is some analytical function. It follows from (8) that the sign of
d (n) in the neighborhood of nr, coincides with the sign of the number
(n — ng)* d® (n,). Hence it readily follows that for an even k, we have case ag
or ag (according as d® (n,) is negative or positive), i.e., a semistable limit
cycle is obtained. For an odd & and d® (ng) << 0, we have case aj, i.e., a
stable limit cycle, and finally for odd 4 and &' (n,) >0, we have case az, i.e.,
an unstable limit cycle.

Let us consider separately the case k =1, i.e., when

d’ (ng) =’ (ng)—14 5= 0. (9)

The closed path L, in this case is called a simple limit cycle. A

simple limit cycle is evidently either stable or unstable, according as d' (n,)

is positive or negative, or, equivalently, according as f (ny) <1or f (ng) >1.

If k> 1, the closed path L, is called a multiple limit cycle of

multiplicity £.% The multiplicity of the cycle evidently coincides with

the multiplicity of the root n = ny,of the function d (n).

* These definitions of a simple limit cycle and a multiple limit cycle of multiplicity &
are linked with the choice of the arc without contact Z, For these definitions to be meaningful, we have

to show that they are independent of the particular choice of the arc. No proof of this will be given here,
but later (§13) an invariant definition of a simple limit cycle will be formulated.
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2) Allthe derivativesd® (n,) are zero,

d'(ng) =d" (ng) =+ oo =d DV (ng) =... =0.
Then, by analyticity,
d(n)y=0,

i.e., all the paths through the points of a sufficiently small neighborhood of
the path L, are closed.

We have thus shown that any closed path of an analytical dynamic system
is a simple or a multiple limit cycle, or else all the paths through the
points of a sufficiently small neighborhood of the path L, are closed. In the
case of an analytical dynamic system, the necessary and sufficient condition
for a closed path L, to be a limit cycle is that at least one of the derivatives
d'it (ng) (i »1) vanishes.

4. The case of a nonanalytical dynamic system

Let us now consider the case when a dynamic system (A) is not analytical
and belongs to the class V. The arc { (i.e., the functions (2)) is also
assumed to belong to the class .¥. Then, by QT, §3.8, Remark 1 to
Lemma 13, the succession function n = f (r) is also a function of class M.

In this case, proceeding along the same lines as before, we can find the
sufficient conditions Jor a closed path to be a limit cycle. Indeed, suppose
that not all the derivatives of the function d (n)

d" (Ro)s -+ oy @ (ng)
vanish at n=n,, and there is a number % 1<k<.¥N, such that
d (ng)= ... =d* D (ng)=0, d™ (ny)+=0. (10)

From this condition end from the equality d(n,)=0, we obtain using Taylor
expansion

d(n)= 4 (no—l!‘—!e (n-—ng)) (n—no)kv (1 1 )
where 0<<06<1.

Since the £-th derivative is continuous, the sign of the coefficient of
(n — ng)t in (11) for n — ny of sufficiently small absolute value coincides with
the sign of d® (ny). Then it follows from (11), as in the previous section
from (8), that we obtain one of the cases a;, as, a3, and a4 according as k is
even or odd and d* (n,) is positive or negative.

As for an analytical dynamic system, we consider the case & =1

separately.
In this case, the path is called a simple limit cycle, as before.*
The condition that at least one of the numbers d® (ny), k =1, 2, ..., N does

not vanish is sufficient, but not necessary, for the closed path L, of a
system (A) of class .V to be a limit cycle.

* Je¢ footnote to the definition of simple and multiple limit cycles in §12.3,
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If for a system of class N
& (n)=d" (rg) = .. =d™ (ng) =0,

additional information regarding the function d (r)is required in order to
draw definite conclusions about the topological structure of the dynamic
system near the closed path L,.

§13. CURVILINEAR COORDINATES IN THE NEIGH-
BORHOOD OF A CLOSED PATH. SUCCESSION FUNCTION
ON A NORMAL TO A PATH

1. Curvilinear coordinates in the neighborhoocd of a
closed path

In the previnus section we demonstrated that the succession function f(n)
on an arc without contact ! (or the function d (n) = f (n) — n) and the values of
its derivatives at the point n, corresponding to a closed path L, are of the
greatest importance for investigating the topological structure of the
dynamic system in the neighborhood of L,. To calculate the derivatives of
the succession function, we introduce an auxiliary system of curvilinear
coordinates in the neighborhood of L,. This system is analogous to the
polar system of coordinates, and the treatment that follows is not unlike
the analysis of the paths near a focus (§10).

Let

L =0@w (a)

be a dynamic system (of class ¥ or analytical), Ly a closed path of this
system,

=9, y=1() (1)

the motion corresponding to the path L, T > 0 the period of the functions ¢
and y. Note that the functions ¢ and ¢, being solutions of a system (A) of
class N (or an analytical system), are functions of class N + 1 (or
analytical). In particular, they are a priori known to have continuous
second derivatives. In what follows, the particular choice of the arc without
contact for the construction of the succession function near the closed

path is immaterial. We therefore choose I as the simplest of these
arcs, namely a segment of the normal to the path L,. We will construct a
system of curvilinear coordinates in the neighborhood of L, which is the
most convenient for our purpose.

Through every point M (¢ (s), ¥ (s)) of the path L, we draw a normal to the
path at that point and lay off segments of length § YV ¢’ (s)* + ¢’ (s)> on either
side of L, along the normal.

Lemma 1. If § > 01s sufficiently small, no two segments of normals
drawn thvough different points of L, have any points in common.
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The proof of this lemma using the usual compactness considerations and
the existence and continuity of the second derivatives of the functions ¢ and
‘tis given in the Appendix, subsection 4.

We will take § > v to be so small that Lemma 1
is satisfied. Then the ends of the segments of

length 8 | ¢’ (s)* — ¢’ (s)* laid off the normal on the
positive (negative) side of the path Z, form a simple
O closed curve I'y (). The curves I and I'; are
\\/ "concentric' with the path L, and enclose a region Q
/ of the plane (z,y). Q is clearly homomorphic to an

open circular ring (Figure 36).

FIGURE For a sufficiently small §, system (A) has no
equilibrium states in €. We will assume that this

condition is also satisfied.

We introduce the functions

INY

G (5,n1 =G () +ny (s), F(s.n) =y (s)—ng’ (s), (2)

where s stands for the time ¢t. These functions are defined on the entire
plane (s, n), but we will only consider them in the strip

—oe <L s x,  —od<<n<d. (3)

The functions ¢ and ¥ clearly have the following properties:

1) if (A)is an analyt.cal system, ¢ and ¥ are analytical functions; if
\A)is a system of class V, ¢ and i are also functions of class ¥, and
moreover ¢ and ¥ have continuous derivatives with respect to n of all orders
P oRHI

ont st T gn* st

2} The functions ¢ and ¥ with their partial derivatives are periodic
tunctions of s of period 1.

3) TGO =¢()T(s,)=y(s), i.e., for n=0 the equations =g (s. n),

y =¥ (s. n) are the parametric equations of the path L, where the parameter s
coincides with ¢.

4} The functional determinant

and continuous mixed derivatives for any & and s< V.

Ny = 2@ D [T ) Ealsn)
(s, n) Dis. n) T (s ny This. n) (4)

for n=0 is equal to

As, 0) = — @ (92—’ ()2,

i.e., for n=0 it does not vanish for any s,—s0 <s<C+ .

From property 4 and the compactness of the segment Ug<s<t, using the
periodicity of the functions ¢ and ¢ in s, we see that for all sufficiently
small »,

A(s.ny==0. (5)

Finally, it is readily seen that if § is sufficiently small, all the normal
segments are arcs without contact for the paths of (A).

1H
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Let 8 be so small that all the above conditions are satisfied. To help
the reader, we list them here again.

1) The segments of normals of length 256 V¢ (5 & ¥ (s* drawn through
different points of the path L, do not intersect. Hence it follows, in
particular, that the region Q is homomorphic to a circular ring.

)2) All these normal segments are arcs without contact for the paths of
(A).

3) There are no equilibrium states of (A) in Q.

4) The determinant A (s, n) does not vanish in the strip (3).

Consider the mapping defined by the equalities

x=$(sv n) = @ (s) -+ ny’ (s), (G)
y="0(s, n) =P () —ng (s).

It has the following properties:

a) Mapping {6) maps the strip (3) of the (s, ») plane onto the annular
region Q of the (z, y) plane.

b) The axis n = 0 is mapped by (8) into the path Ly, the lines n=
=¢, 0<<|c| <6 parallel to the axis s are mapped into nonintersecting simple
closed curves which lie one inside the other in Q (these curves are
"concentric' with L,).

c¢) The segments s = const, —8 << n<<8, of the strip (3) are mapped into
normal segments to L,(Figure 37).

FIGURE 37

d) All the points (s, n) with the same value of »n and s differing by
multiples of the period 7, i.e., all the points of the form (s + kv, n),
k=0,=%1, +2,.., are mapped into one point of the plane (z, y).

e) The mapping (6) is now one-to-one. However, for any fixed s,, it is
one-to-one on the "half-open' rectangle in the (s, n) plane, defined by the
inequalities

S<s<so-tT  —8<<n<y, w)

and it maps each of these rectangles onto Q.

It follows from property e that (6) is a locally one-to-one mapping, i.e.,
it is one~-to-one in any sufficiently small region of the strip (3). Since
moreover A (s, n) -0 and the mapping (6) is continuous, itis re gular in
every small region of this kind. In other words, the mapping (6) is
locally regular. s andn can be considered as curvilinear coordinates
in Q. To every point in Q corresponds one value of the coordinate n and an
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infinity of values of s, differing by multiples of the period 1 (the situation is
analogous in this respect to the polar coordinates on a plane).

2. Transformation to the variables s,n in a
dynamic system

Take the system (A)

L=P@y H=0@y (a)

and change over — quite formally at this stage — to the new coordinates s and
n. Differentiating

z:fp_(s,n). y=tf(s, n)

with respect to ¢ and using (A), we find

d. =, d =, d - o

TRt g =P@( ), ()

o (7)
¥ » dn

T LV R =@ ), Fisn).

By condition 4, the determinant

As, n)= f. En
¥ tn
does not vanish in the strip (3). Equations (7) are therefore solvable for
ﬁ dn
ETIr TR —— —— - —_—
ds _ PO 9)%—Q@ Ve, dn _ QG 0GP PIY (8)
ar = A(s, n) * Tdr A(s, n) :

Since (see (2))
5(3, 0) =@ (S)v ‘E(sv O) = ‘; (S)

and

=), y={¢(¢), O0<ig<r

is a solution of system (A}, we have

B0 pEs0), $ 0 FED_ 0@ 0) Fs 0) (9)

for all s, 0<s<t. Hence it follows that
P (s, 0) € (M) (5, 0—Q (g (s, 0), (s, 0) Fn(s, 0)=
=G (5, 0) ¥ (s, O)— T (5, 0) P (5, 0) = A (s, 0), (10)

By condition{5), A(s, 0)z=0for all 5, 0<s<v. The left-hand side of the last
equality therefore does not vanish for all s, 0g<s<t. But then, from the
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continuity of all the relevant functions and the compactness of the segment
0<s<t, we have for all sufficiently small » and for all s, 0sgr,

P @5 ) B (s 1) P (s, m) —Q (@ (5, 1), P (5, 1) P (s, n) 7 0. (11)

Since the functions p and ¥ and their derivatives are periodic in s, the last
relation is satisfied for all s and for sufficiently small n. We will agsume
that it is satisfied everywhere in the strip (3); this obviously can be
accomplished by choosing 6> 0 sufficiently small.

By (11), the right-hand side of the first equation in (8) does not vanish
in the strip (3). Therefore, equations {8) now can be replaced by a single
differential equation

n Q0@ V%—P@& OV _ g, (12)
s P, ) Pn—Q (9 ) Pn '

which is obtained when the second equation in (8) is divided through by the
first.

L.et us consider the principal properties of the solutions of equation (12)
and the relation of these solutions to the paths of (A).* The function R (s, n)
is defined and continuous in the strip (3), and it is readily seen that it is
continuously differentiable with respect to » in (3). Therefore, both the
theorem of existence and uniqueness and the theorem of continuous depen-
dence on the initial conditions are applicable to equation (12). From the
theorem of existence it follows that for any s, and ny, | n, | << 8, there exists
a unique solution of equation (12),

n=f(s; So, Mo), (13)

which is defined on some (maximal) interval (s, s,) containing the point s, and
satisfies the initial condition

f (o3 S0 7o) = 7. (14)

By (6) and (9),
R(s, )y =0. (15)
Therefore n = 0 is the solution, and the axis s in the plane (s, n) is an
integral curve of equation (12).

All the integral curves of equation {12) lying in the strip (3) evidently
coincide with the paths of (8) If

s=s(t), n=n() (186)
is a path L of (8), and sg, np is a point on this path, the solution n="{(s; sq, no)
of equation (8) is an equation of [ in the coordinates s, n. The mapping (6)

moves the path £ into the line

1‘26(3 @), n(t))v y=$ (S(t), n(t))v (17)

* The treatment of these subjects is analogous to the treatment of paths near a focus. See §10.1 and also
QT, §.3.
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which, in virtue of local regularity of (6), is a path of system (A) lying in
the ring Q. Let this path be L. It is readily seen that every path L of (A)
in ¢is an image (under (6)) of at least one path £ of (8) in the strip (3),
i.e,, it is an image of at least one integral curve of equation (12).*

The equation

n=f{(s} So ng) (13)

of the path £ in the plane (s, n) may be treated as an equation in curvilinear
coordinates s. n of the nath L on the plane (z,y). We will make use of this
fact in our analysis of the succession function. Let [ be the segment of the
normal to L, which lies in Q and passes through the point M, of the path £,
corresponding to s= 0. As we know, [ is an arc without contact for (A).

From the theorems of existence and continuous dependence of the
solution on the initial conditions, and algso from the fact that » — 0 solves
equation (12}, we directly have the following propositions:

I. Any solution n = f (s 54, ny) of equation (12) for all possible s, 0<s <t
and sufficiently small iz, is defined for all s, U< s<t and can be written in the
form

n=j(s; 0, ng).

For system (A) this means, in geometrical terms, that every path of
the system passing through a point in a sufficiently small neighborhood of
L. crosses the normal [ {for s = 0) and also all the other normals to L, in the
ring 2, and then crosses the normal ! again (for s = t) (Figure 38). Note

that for n — 0, dg; = 1(see (10) and (8)), and since the numerator and the
denominator of the expression for g—j in (8) do not reverse their sign in the

strip \3), we have df > 0 in this strip, i.e., an increase in s corresponds

to an increase in ¢, and vice versa.

FIGURE 38

II. For any e>0, there exists n> 0, n = n (g), such that if | n, | <<, then

[f(s. 0, mo) | <e
for all s, 0<<s< 1.
This implies that the part of a path of system (A) lying between two
successive intersection points of the path with the arc without contact ! is

* The path L of (A} is an image of one (if it is closed) or infinitely many (if it is open) paths of systemn (8).
we will not ¢o into this problen. 3eeQT. §8.,3.
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completely contained in U, (Lo) if the first intersection point corresponds to
ngwhich is less than 7 in absolute value.

3. Succession function on a normal to a closed path

We will now consider the succession function on the arc without contact !
defined in the previous section, i.e., on a normal through the point M,.
Since s increases with increasing ¢ (see proposition I, §13.2), the suc-
cession function on the arc ! is evidently f (t; 0, ng). For brevity, we will
write simply f (n,). Thus,

f (ro) = £ (%; 0, no). (18)
Since n=0 is a solution of equation (12), we have

f{(s;0,0)=0, (19)
and therefore
F(0)=0. (20)

In §12.3 and §12.4 we have shown that the derivatives of the function
d (ny) = f (ng) — no play an important role in investigating the topological
structure of a dynamic system in the neighborhood of a closed path. We
will now calculate the first derivative of this function at the point n, = 0.
The calculation method is completely analogous to the calculation of the
first vocal value of an equilibrium state with complex characteristic
numbers (see §10.2).

By definition, f (s; 0, ny) is a solution of the differential equation (12), so
that

df (s; 0. no) .
T2~ R (s, (55 0, ma). (21)

Differentiating with respect to n,, we obtain

3@ (df(s; O,ng\ _ AR(s, f(s: 0, ng)) 3f(s; O, ng)
. ;970( ds )_ on any ) (22)
Since R (s, n)is a continuous function with a continuous partial derivative with
respect to n, the mixed derivative in the left-hand side of (22) is continuous
and independent of the order of differentiation (see /13/, §24, Theorem 16).
Therefore,

a (3f (s: 0, "0)) __ @R (s: f(s: 0, ng)) f (55 O, ng)
ds ang - an ang (2 3)

(a variational equation with respect to 7o)
By definition, f(0; 0, ng) =nre. Therefore

9f (s; 0, ng) =1
ng =0
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Setting ny=0 in equatioa (23) and integrating with the initial condition (24),
we find

s
N AR (3} ra:‘s;0.0)) ds
o (25)

af (s1 0, ng)
ang no=0

=g

Since f(s;0, 0) =0 (see (19)), the integrand in (25) is equal to ‘mlfl:‘ D Let

us calculate it explicitly.
Differentiation of {12) with respect to n gives
OR(s, ) _ —[Pxgn-t- Py¥nl ¥s -+ [Q3@n -+ Qy¥n] E‘—Pan-?—’ﬁ:ﬂ_’_
an P‘E;‘*Q(}_;l

PE-Q5 0 pr. o (26
(PE‘;"‘Q'E;I)S an ( 1,:71 Q¢n)' \ )

where P:==P (. }),Pr=Pi(9, V), etc.
From (9) we see that for n=0, P(9, $) ¥;—Q (9. $) ¢, =0. Therefore, for
n =0, only the first fraction remains in the right-hand side of (267,

We have
LoP@()h t () E=0@E) Bs)-

Differentiating with respect to s, we find

G ()= Px(&(s), ¥ (N F () +Pu(@(s)y $(NY (),
Y7 (s) = @z’ (5) + Qpt" (s)-

Py(@(s), N Y () =0"(8)— P (9 (s)y ¥ (s)) @' (s),

Q5 (9 (), ¥ (NP () =" () — Qi (P (), () ¥ (5). (27)

Taking n=0in (26) and using {6), (9), and (27), we find after simple
manipulations

ey , a0y () (1
D~ P is) B () + 04 (2 (0), () —ZEDT LT L)

R0 pL(@(e), B+ Q; (@ (), N —Mn (@ E+1 ()Y, (28)

The left-hand side of the last relation is the integrand in (25). Therefore,

s
V upL+a -l C [ (BT d
F (2 0, mo) ,__e() UPx+Qy)—[In ([ (sN2+[¥’ (s)]D)})'} ds
any ng=0

3
(¢ O 2 (¥ (O)f2 § IPL(® () % (s)+Qy (@ (), B (NI ds
AT EES Ca ) (29)

From (18) and (29), setting s=t and remembering that the functions ¢ and
¥ and their derivatives are periodic, we finally obtain an expression
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for §' (0):

T
[P (® (s}, ¥ (s)+Qy (® (8}, % (s)] ds
# (0) = 2L 0. mo) _a !

dang ng=0

T
§ P2 @ @), % (en)+Qy (@ (1), » ()]s
a0 =5 O)—1=¢ -1

Definition 17. The numbeyr

T

1= { 1P2(@ ), w () +Q} (@ () w(ENds (32)

0
is called the characteristic index of a closed path L,.

Direct calculations show that 3 [Py (9 (), ¥ () + @, (¢ (s), ¥ ()] ds, and there-

fore the characteristic index g, aore invariant under a transformation of

coordinates, i.e., they do not depend on the particular system of coordinates

in which the dynamic system is described. This integral is therefore

completely determined by the closed path £,. If the characteristic index

x =0, thend (0) =0, and the closed path L, is a limit cycle (§12.3 and §12.4).
Definition 18. A closed path L, is called a simple limit cycle if

{ 1P @ () $ () +0; @ (9. p(e)ds =0 (33)
0

or, equivalently, if the characteristic index y does not vanish. If L,is a
limit cycle and y =0, i.e., condition (33) is not met, the path L, is said to
be a multiple limit cycle.

Note that if y = 0, the closed path L, is not necessarily a limit ¢cycle
(see §12.4).

From §12.3, §12.4, and equation (31), we have the following theorem.

Theorem 17. A simple limit cycle L, is stable if

T

{120, v +0 @), vas<o,

0

and unstable if this integval is positive.

§14. PROOF OF STRUCTURAL STABILITY OF A
SIMPLE LIMIT CYCLE

et

d. d,
=Py, F=0@y
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be a dynamic system of class V31 or an analytical system, defined in G.
Let [, be a closed path of (A} in G, which is a simple limit cycle. Let also

=g (),  y=%() (1

where ¢ and ¢ are periodic functions of period t, describe the motion
corresponding to the cy:zle L,.

The present section is concerned with the proof of the following theorem.

Theorem 18. Amy simple limit cycle L, of a dynamic system (Atis a
structurally stable path.

Proof. We draw a normal through some point M, of the path L, and
define a parameter n on this normal, as in the previous section.* The
point M, corresponds to 2 = 0 on the normal. To {ix our ideas, let the
negative values of n correspond to the points of the normal which lie inside
L., and positive n to the points of the normal which lie outside Z,(Figure 39).
Consider the part of the normal corresponding ton, 0<ln|gn*. If »* >0is
sufficiently small, the corresponding part of the normal is an arc without
contact, which we denote [,

FIGURE 33

Let n = f (n) be a succession function constructed in the direction of
increasing ¢t. We may take it to have been defined everywhere along the
arc { (this can be accomplished by using a sufficiently small n*). Consider
the function

d(n)y=f(n)—n.

Clearly d (0) = 0, and from the definition of a simple limit cycle, d' (0} =<0.
Let d' (U) << 0, i.e., the limit cycle L, is stable. If L,is an unstable limit
cycle, the proof is completely analogous.

* If the point My corresponds to ¢ =: Q on the path L,, the equations of the normal are (see §$1.3.1, (85

2 =G 1) ng’ (1), y =¢(0) —ng’ (0).
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Since 0 is a simple root of the function 4 (n), this function has no other
roots in a sufficiently small neighborhood of 0. We assume that d (r) has no
roots for 0< |n|<n*. Under this assumption, all the paths crossing the
arc ! are not closed, going to the limit cycle L, for f —» 4 oco.

Let Z; be a path through some point 2 of the arc ! corresponding to
n= ng, 0 << ng<<n* (i.e., a path through some point outside L, ), and L; a path
through some point @, corresponding to n= n,, n,<<0, [n, | << n* (i.e., through
a point inside L,). We have thus generated a sequence of points

P, Py ..., P, ...

of the path L, lying on the part of the arc / outside L, which evidently go to
the point M,, and another sequence of points

Qh Q2v seey Qm

of the path L, lying on the part of the arc [ inside L,;, which also go to the
point M, (see QT, §3.7, Corollary 2 of Lemma 11). Evidently, any path
crossing the segment P,P; (1Q;) of the arc [ at any of the points other than
the ends successively crosses every other segment PP, (Q2Qry) at one
and only one point which is not an end point.

Together with I, let us consider another arc without contact !’ passing
through the point M, of the path L,, which has no common points with I. A
section of the normal through the point M, can be chosen as such an arc.
We take n* > 0 to be so small that each path crossing the arc I for ¢t = ¢,
crosses the arc I’ for t > ¢,, and has no other common points with either | or
I'. Let the paths passing through the points P, and @, (i.e., the paths L, and
L,) cross the arc I at the points P, and Q;, respectively (Figure 39).

Let ¢, be a simple closed curve formed by the arc PP, of the path L, and
the segment P,P, of the arc I, and C; a simple closed curve formed by the
arc @,Q; of the path L, and the segment Q,Q, of the arc {. Let further H be
the region limited by the curves C; and C,. All the paths of system (A)
passing through the points of H evidently cross the arc ! at points which fall
between Q, and P,, and L, is the only closed path between these paths. The
segments P;Q, and P;Q; of the arcs without contact { and ¢’ divide the region
H into two elementary quadrangles P,P;Q;Q, and P,P,Q,Q,. We denote the
first quadrangle by A,, and the second by A,.

Let us now consider modified systems (A) sufficiently close to (A). By
Lemmas 1,2, and 11 of §4 and the remark to Theorem 5 {§1.3), there
exists a number 8, > 0 such that for any (A) which is 8§,-close to (A)

1) the arcs I and I are arcs without contact;

2) on the arc ! for all n, [nl<n*, a succession function E:f(n)is defined;

3) the equation d(r)=f(n)—n=0 has a single root n such that |r|<r*, and
this root satisfies the conditions n, << << n,and &' (7) < 0;

4) all the paths of system (A) which for:=1t,cross the segment P,Q, of the
arc !, cross for t>¢, the arc I/, without meeting again the arc ! before this
time. Let £; and I be the paths of system (A) §,~close to (A) which pass
through the points P, and Q, of the arc I, respectively, and P, and {; the
intersection points of these paths with the arc /.

Condition 3 signifies that among the paths of system (A) 8;~close to (A)
which cross the arc {, there is only one closed path I,, and this path is a
stable limit cycle crossing the arc [ at a point M, between the points P, and
Q,on this arc. Evidently, the path I, lies outside the closed path Z,, and
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the path L, inside I,. The segment P.JJ, of the arc ! contains a sequence of
points

Py, P, Py,

of the path ; converging to the point 3, (nere P, coincides with P,}, and the
segment Q,JI, of the arc / contains a sequence of points

Qi Gor Qs -

of the path [, converging to the point ¥, (here @, coincides with Q,}. Consi-
der Smele closed curves analogous to the curves € and (;, namely the
curve C, consisting of the arc PP, of the path Ll and the segment P,p, of the
arc {, and the curve C, consisting of the arc §,§; of the path I, and the
segment 0.0, of the arc !. Let us further consider the region A enclosed by
the curves €, and C;. All the paths of system (&) through the points of
region H evidently cross the arc ! at points lying between Q,and P,. There-
fore, not a single closed path of system (A), except the path [,, passes
through any of the points in . The segments £,Q, and P,J, of the arcs
without contact / and !’ partition the region / into two elementary quadrangles
PP, and BP,0.J;, which are designated A, and &,, respectively (these
quadrangles are analogcus to the quadrangles A, and A, of system {ay.

We will show that for any £ > 0, there exists 6>0 such that if system (&)
is §-close to system (A), then

(H, 4= (A, J).

In this way we shall have proved that L, is a structurally stable path (see
§7.1 and Definition 10, $6.1).

Let o be any positive number. We shall first show that if 8,, 0 << 6, << §,
is sufficiently small, and system (A) is §,-close to system (A), we can
construct a topological mapping ¢ of the segment P9, of the arc ! onto itself
which has the following properties:

{a} The points P, and @, are mapped into themselves, i.e., ¢ (P)) = P,,
@ (@)= (,. Points lying on one path of system (A) are mapped into points
of one path of system (A) (and vice versa).

(b} The mapping ¢ is a o-translation (i.e., for any point Af of the
segment PQy, o (M, ¢ (M) < o).

We will first construct a topological mapping of the arc P,Q, onto itself
which satisfies property {(a) above, without bothering with property (b) for
the time being. This mapping is constructed separately on the segment
P M, and then on the segment Q,M,. The segment P,M,;is mapped onto the
segment P M, in the following manner:

1) Take any topological mapping ¢, of the segment P P; onto the
segment £,P, such that

T (P) =P, ¢ (P)=P.

2} Assuming that the mapping q,-, of the segment P,_,P, onto P,.\B, (k=
=2. 3 4, ...) has been constructed, we define ¢, as the mapping of P,P,., onto
P.P,., induced by the mapping ¢.., in the following sense: if W,., and M,
are two successive intersection points at which some path L of system (A)
meets the path { as ¢ increases, which lie in the segments P,.,P, and PP, .,
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respectively, and M an~d M, are two successive intersection points at
which path L of system (A) meets the arc [ as ¢ increases, which lie in the
segments P, P, and P,P,,,, respectively, and if gs-y (Ms-y) = W4, then

@ (M) = I,

(Figure 40). In this figure, the intersections of the arc / with the path £ and
with the path [ are shown separately for clarity. Since every arc L (L)of
system (A) ((A)) passing through points of the segment P,P, (F,P,) meets each
of the segments PyPry (PP, £=2, 3, 4, ..., precisely in one point, the
mapping ¢, is single-valued. Clearly,

Ps (P)=Prs @5 (Pass) = Py

3) Let @ (M) =M, and suppose that ¢ coincides with g, on the segment
PPy k=1, 2, ...}

FIGURE 40

We obtain a mapping ¢ defined on the segment P|M,. Exactly the same
mapping ¢ is constructed on the segment Q:M,(i.e., we first take an
arbitrary mapping ¢} of :Q, on $,J,, and then the induced mappings ¢f of
QuOrit o0t OuQrvt). As a result, we obtain a mapping ¢ of PQ, onto P,Q,. The
mapping ¢ constructed in this way satisfies condition {(a) above and is a
topological mapping.*

* We can readily write an analytical expression defining the mapping ¢. Let f(n)be the succession function
on the arc { defined by system (A), and 7(n)an analogous function for system (B). Let g (n) be a function
which defines a topological mapping of the segment PP, onto P, 5,. Clearly, the iteration
[f (mi*~1 = f*=1) (n) defines a mapping of P P, on PyPy,. This is a topological mapping, and the
inverse mapping therefore exists, The corresponding function for the inverse mapping will be designated
j=*=1(p). The functions 7*~1) and j~(k—!) are treated similarly. Then if M is a point of the
segment PrPyy, n the value of the parameter corresponding to this point M, and » the value of the
parameter corresponding to ¢ (M), we have

B=T0 g~ k=D m),

An analogous expression is obtained for the mapping @ on the segment QuQasy. %) (n)= {f(m)]* is not a
symbol of a derivative here: this is the k-th iteration of the function f, i.e., f(f{f{... f(n)...})).
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We will now show that for a sufficiently small §, and an appropriate
choice of ¢, and ¢,*, the mapping ¢ constructed according to the above
formula will satisfy condition {b), i.e., it will be a o-translation. To prove
this, we start with a fixed ¢ > 0 and choose a sufficiently large natural
number /, so that the segment P,Q, of the arc [ is entirely contained in
I’y 2 (M,) (the point M, evidently lies on this segment).

All the paths passing for ¢ = { through points of the segment PP, (0,0,
resgpectively) cross all the segments PP, (Q,Q,‘,, r‘espectively) for
i 2,3 ... —1in a fin:te time {see QT, §3.8, Lemma 13). It follows from
this and from $4.2, Len.mas 7 through 11, that for sufficiently small §, and
an appropriate choice of the mapping ¢, and ¢,*

1} the section P/, of the arc [ {containing the point M,) is entirely con-
tained in Ugy» (Mo);

2) the mapping ¢ of the segment PyP,., onto the segment PPy (k =
—1,2, ....I—1)isa o-translation;

3} the mapping ¢ of the segment QyQ,., onto the segment 0.y (k=
=1,2, ..., [—1) is a o-translation.

Since the two segments P,Q; and P,g, lie in U, and the mapping ¢ moves
the former into the latter, the mapping ¢ is a ¢-translation on the
segment P,Q;. Hence and from conditions 2 and 3 it follows that under
these conditions the mapping ¢ of P,Q, is a o-translation.

We have thus shown taat if &, is sufficiently small, and system (&) is
d.-close to system (A), we can construct (for any ¢>0) a mapping ¢ of the
segment P,Q, of the arc / onto itself which satisfies conditions (a) and (b).

We will now show tha: for any > 0and for system (A) sufficiently close
to {A), we have

(H, ) = (d, o).

Let e>0 be fixed. By Lemma 8, §4.2, there exist o'>0and 8;>0, 3;<< b
which satisfy the following condition: if ¢’ is a mapping of the segment P,Q,
of the arc !’ onto the segment PJ;, of the same arc, which is a ¢’'-translation,
and systems (A) and (z—i) are §;-close, there exists a mapping 7, of the
elementary quadrangle A, onto the quadrangle i, which coincides with ¢’ on
PQ;, moves paths into paths, and is an e-translation. Let §,>0, §,<< 0, be
50 small that if system (A) is 8,-close to system (A), there exists a
mapping T of the elementary quadrangle A, on the quadrangle A, satisfying
the following conditions:

1} T, coincides on Py, with the previously described mapping ¢ of this
segment onto itself;

2) T,moves paths into paths;

3} T,is an e-translation;

_ _*) on P, the mapping 7 is a ¢’~translation (moving this segment into
P}

The existence of a number §, > 0 with the above properties follows from
Lemma 8, §4.2, and frorm the fact that for close systems the mapping ¢ is
an arbitrarily small translation (property b). As the number § we choose
an arbitrary positive number, smaller than either §; or 6;. Let system (A)
be &-close to system {A). We construct a mapping g of the segment P,0,,
then a mapping T, of the cuadrangle A, onto §, with properties 1 through 4.
The mapping ¢ is identified with the mapping T, on the segment 2,Q; (which
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moves this segment into B,@,), and as the last step we construct a mapping 7T,
of the elementary quadrangle A, onto A., which coincides with ¢’ on PQ;,
moves paths into paths, and is an e-translation.

It is readily seen that the mapping T which coincides with T, on A, and
with T, on A, moves the region H into H, conserves paths, and is an e-
translation. This indicates that

(H, 4) = (H, 4).

The proof of the theorem is thus complete.

Remark. It follows from our proof that if L, is a simple limit cycle
of a dynamic system (A), there exist e* > 0 and §* > 0 such that any
system (A) 8*-close to (A) has a single limit cycle L, in the e*-neighborhood
of the paths Z,, and the characteristic indices of the cycles L, and L, have
the same sign (i.e., the cycles L, and L, are either both stable or both
unstable).

§15. STRUCTURALLY UNSTABLE CLOSED PATHS
1. The fundamental lemma
Let, as before,
L-P@y, F=0@w (a)

be a dynamic system of class N 3»1 or an analytical system in region G,
Ly, a closed path of this system (L, = G),

c=(), y=v() (1)

the motion corresponding to this path, ¢ (¢}, ¢ (!) are periodic functions of
period Tt > 0. ¢, v, being a solution of system (A)of a class 21, are a
priori functions of class 2.

Lemma 1. Theve exists a function of class 2,z = F (z, y), defined in
G such that for all s, — co << s << + o0,

(a) F(o(s), ¢()=0;

(0) (Fx (@ (s)y $ NP+ (Fy (@ () $(8)))25%0.

Proof of {a). We will first construct a function 7 (z, y) of class 2
satisfying conditions a and b not in the entire region @ but only in some
neighborhood of the path L,.

To this end, consider the set of equations

z=9(s)+na(s), y=y(s)+nrb(s), (2)

where a(s) and b(s) are periodic functions of period v which belong to class 2,
such that the functional determinant

¥ e
W) b (3)

Dz, y)
D (s, n) [n=0

=Am4
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does not vanish for any s:
A(s)==0, —0 < s <400, (4)

For a (sy and b (s) we may take the functions ¢’ (s) and — ¢’ (s), respectively,
provided they are functions of class 2 (this will be so if (A) is a system of
class 2, say). If, however, ¢ (s5and — ¢’ (s)are functions of class 1, but
not of class 2, a(s)and & (s) can be identified with trigonometric polynomials
of period v which ensure an adequate approximation to ¢’ (s) and — ¢’ (s).
I'hnese polynomials exist in virtue of Weierstrass's theorem (see /117,

Vol, 3. Sec. 734, p,580) evidently meet condition (4).

Let & be some sufficiently small positive number. We will consider (2)

as equations which define the mapping of the strip

s, —dgn<d (5)

in the plane (s, n) into the plane (z, y).
Under this mapping, the axis s is clearly moved into the path L,, and
every vertical segment

s == const, —-0<ngé

of the strip (5) is moved to a straight segment [, through the point M (s) of
the path L, corresponding to the value s of the parameter. In virtue of
condition (4), the segment /, does not touch the path L, at the point .M ().
Moreover, from the theorem of implicit functions and from condition (4)
it follows that in a sufficiently small neighborhood of any point (s, 0) of

the axis s, the mapping "2) is one-to-one. But then it can be shown,
precisely as in Lemma 1, §13.1, that if 6 is sufficiently small, no two
segments I, corresponding to different points of the path Z, {e.g., for

U< s < 1) intersect. We will assume that this condition is indeed satisfied.
The strip (5} is then moved by mapping (2) into some closed ring @ in the
plane (z. y) enclosed by simple closed curves Iyand TI',{Figure 41). If §is
sufficiently small, then at any point of the strip (5)

Dz, y)
om0 (6)

We will assume that this condition is also satisfied.

é
9
‘l

FIGUERE 41

Mapping (2} of strip (5) onto the region Q is entirely analogous to the
mapping (6) considered in §13.1 and it has similar properties. In
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particular, the mapping (2) is locally one-to-one in strip (5), and by virtue
of condition (6) it is also regular, i.e., this mapping is locally regular.
Let us consider (2) as a set of equations in s and n, assuming that
(z,y) € Q. In virtue of the above, to every point (z, y) € Q there corresponds
precisely one value of n and infinitely many values of s, such that the
numbers s, n satisfy equations (2) (the various s differ by a multiple of 7).
The particular n is therefore a single-valued function of z, y. We will
designate it by F (z, y):

n=F(z, y). (7)

iIf we consider only the local situation, s may also be regarded as a single-
valued function of 2 and y. Moreover, n and s are functions of class 2 (in
virtue of the theorem of implicit functions).
We will show that the function of class 2 defined by relation (7), F (=, ¥),
satisfies conditions (a) and (b) of the lemma.
Condition {a) follows directly from the fact that at every point (z, ), i.e.,
(9 (s), ¥ (s)), the value of n corresponding to the path L, is zero in virtue of
equations (2).
The proof of (b) will be based on local considerations, and both n and s
will be regarded as single-valued functions of z and y.
Proof of (b). Differentiation of (2)with respectto z and y respectively
gives
1= (9" () +na’ ()] G +a (o) 5o
0= [’ () +nb’ ()12 4 (s) 22

X

(8)

0=[¢' (9)+na’ ()] 5o +a () o,

(9)
, , as on

L= () +nb ()] 5 +b () 0 -
For n=0, each of the systems (8) and (9), considered as a linear system
of equations in the partial derivatives, has a determinant A (s) which does not
vanish in virtue of (4). Solving these systems and remembering that
n=~F(z, y) and that for n=0, z=9(s), y=v(s), we find

(_a—:—)x=w<s> =Fr(p(sh $(s))=— A’((:)) ,
V=) Y

(10)

- F )
Yoo = Fo @@, v =%
y=1¥(s)

(F2 (@), WM+ Fy @ (9), ()t = LLEELE N (11)

The last expression does not vanish, since if ¢’ (s) = ¢’ (s) = 0 for some s,
(9 (), ¥ (s)) is an equilibrium state of system (A), and this contradicts the
fact that the point (¢ (s), ¥ (s)) belongs to the closed path L,. Condition (b) is
thus proved.

We have thus shown that there exists a function F (z, y)of class 2 in the
ring @ which satisfies conditions (a) and (b) of the lemma.
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The boundary of th2 ring O comprises the two simple curves I'y and T,
with the parametric equations

r=@(s)+0a(s),  y=1y(s)+ k(s

I=@(s)—bda(s), py=1y(s)—db(s).

The right~-hand sides of these equations are functions of class 2. There-
fore, by Whitney's theorem {see /11/, Vol. 1, para.260, p.594), the
function £ (z, y)can be continued to the entire region G without changing its
class. The continuation of the function evidently retains the same
properties {a) and (b}). This completes the proof.

Remark 1. (A)isa system of class ¥ > 1, there exists a function
F (z. pyof class N + 1which satisfies conditions (a) and (b) of the lemma.
The proof is the same as before, but a (s) and b (s) are functions of class
Vo1

Remark 2. Let the plane (r.y)in which system (A) is defined be a
coordinate plane of the three-dimensional space (r, y. z). The equation
z-- Fir,y), where F is the function discussed in Lemma 1, is the equation
of a surface through the path L,. It follows from condition {b) that at the
points of this path the surface does not touch the plane (z, y).

2. The theorem of the creation of a closed path from a
multiple limit cycle

We recall that a closed path L, is said to be a limit cycle if it is
isolated, i.e., if any neighborhood of the path does not contain any closed
path except L, itself. In this case, as we have seen in §12.2, all the paths
which pass through points sufficiently close to the path L, either wind
onto IL,(a stable limit axis) or unwind from /7, (unstable limit cycle),
or else paths on one side of L, unwind from it and paths on the other side
wind onto it {a semistable cycle). A limit cycle is called multiple if its
characterisitic index is not zero (Definition 18, §13.3).

We will now prove a theorem which is the analog of the theorem of the
creation of a closed path from a multiple focus (Theorem 14).

Theorem 19 (theorem of the creation of a closed path from a
multiple limit cycle). Let (A) be a dynamic system of class ~ .1 (or
analvtical), L, a multiple limit cycle of the system. For any ¢ > 0and
50, there exists a system (A) of the same class which is §-close to (A)
to rank r<N (r < + «) and which has at least two closed paths in the e-
neighborhood of L,.

Proof. The proof of Theorem 19 is based on Lemma 1, and in all
other respects follows the proof of Theorem 14. We will consider, as in
the previous sections, a succession function f (n) and a function
d (n) = f (n) — non some normal to the path L,. Let n be the parameter along
the normal, defined by equations (2) in §12.4. Since by assumption Ly is a
limit cycle, there exists n* > 0 such that for alln, |n|<n*, n+£0, a
succession function f(n)and f(n) — n = d (n) = 0 (d (0) = 0)are defined. Let!

il
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be the segment of the normal corresponding to the values of n such that
| n )< n* To fix ideas, let L, be a stable limit cycle (the proof for an
unstable or a semistable cycle proceeds along the same lines). Then for
all n,in|<<n* ns0,
d(r)=f@)—n<<0, if nr>0; (12)
dny=f(n)—n=>0, if n<O.

We will first prove the theorem for system (A) of class 1.

Let e >0and 6§ > 0 be given. Let n* > 0 be so small that each arc of a
path of system (A) whose ends lie on our normal and correspond to the
values n and f (n)of the parameter (i.e., an arc between two successive
intersection points with the normal), | n |<n*, is contained in U, (Ly)-

Take any n,, 0 < n; < n*. By (12),

d (ny) << 0. (13)

Let further 8, 0<3,< 3, be so small that if system (A) is §,-close to
system (A) then (a) the normal I remains an arc without contact for the
paths of system (A); (b) for all n, |n|<n*, the functions f (n) and d (n) are
defined on the normal; (c) the arcs of the paths of system (A) between two
successive intersection points » andf(n)with the normal (Jn|<n*) are
contained in U, (L,), and (d) the following inequality is satisfied:

d(n) < 0. (14)

The existence of a number § satisfying the above conditions follows
from Lemmas 1,2, and 11 of §4.

We will consider modified systems of a special form, as follows.

Let F (z, y) be afunction of class 2 satisfying the conditions of Lemma 1,
and p any real number. We take a modified system (A) of the form

& —P(z, ) +pF (@ ¥) File, ) =Pz ),

B~ Qe ) +uF (@ y) Fy (2 =G (. v). (&)
Clearly, (A)is a system of class 1, and if p is sufficiently small in
absolute value, (A)is arbitrarily close to (A).

Since z=9 (), y=1Y(¢) is a solution of system (A) corresponding to the
path L,, and the function F(z, y) has been defined so that it satisfies the
equality

F (o), $()) =0, (15)

the functions ¢ (), ¥ (f) are also a solution of system (A), i.e., the path L, of
gystem (A) is also a path of system (A)

Let p be so small that (&) is 3,-close to (A). Inequality (14) is then
satisfied, i.e., d (n) <<O.

Let us compute d' (0). By definition ¢’ (0)=0, i.e.,

b3

§ 1P (@ (), 9 () + Q) (@ (5), 9 (s)]ds=0.

0

(18)
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Differentiating P and @ with respect to z and y, respectively, and
using (15) and (16), we find

P2 (@ (), Y1) +Q) (@ (s), ¥ ()] ds=

=R\ U@ (), $ (N (Fy (9 (), $(s)) lds=pd. (17)

The letter J identifies the integral in the right-hand side of the equality.
From property (b) of function F it follows that J > 0. Finally, from (17)
we see that

i
- (PetQpds
d’ (0) = e® v — =, {18)

Letp>0. Then d (0)>-0, i.e., the path L, is an unstable limit cycle of
svstem (A). Hence, for all sufficiently small n>0, d(r) >0.
In particular for some n, 0<<n,<<ny,

d (n3) >0. {19)

The continuity of the function d and inequalities (14) and (19) show that
between n, and n, there is at least one value n* >0 such that d (n*)=0. This
number corresponds to a closed path L* of (A) which does not coincide with
Ly, By condition (¢} imposed on &, L*<U,(L,). The second closed path of
(&) lying in U.(Ly) is L, itself. The theorem is thus proved for the case
when (A) is a system of class 1.

If (A)is a system of class N >1. r<.N, and the closeness is considered
to rank r, the proof proceeds along the same lines, but F(z, y)is a function
of class N+ 1 (see Remark 1 to Lemma 1} and p is sufficiently small for
(A) to be 8-close to (A) to rank r.

Let now (A) be an analytical system. In this case, L.emmma 1 does not
apply inits original form. Indeed, we can construct in the neighborhood
of L, an analytical function F (z, y) satisfying conditions (a) and (b); this
may be accomplished as for systems of class ¥. This function, however,
cannot be continued to the entire region G in general. We will therefore
adopt a slightly different course.

To fix ideas, let us suppose, as before, that L, is a stable (multiple)
limit cycle. We choose some n,.0 < n < n*. Thend(n)< 0. Taking a
fixed & > 0, we construct a function F (z. y) of class (r + 1) which satisfies
the conditions of Lemma 1 and consider the system (:&) p is chosen as a

positive number, sufficiently small for (&) to be -3—-close to (A) to rank r and

for the following inequality to be satisfied:

d(n) < 0.
Since for p>0, 4 (0)>0and also d(0)=0, we have for sufficiently small
n,>0and nz<<0

d (n) >0 {19)
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d (ng)<<0

(Figure 42a).
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FIGURE 42

Let us now consider an analytical system (Aa*) n-close to (A) to rank r,
where n<f3~. n is taken to be sufficiently small so that a succession
function f*(n)is defined on the arc ! for system (A*) and the following
inequalities are satisfied:

d*(n)<<0, d*(n) >0, d*(ny<<U. (21)

Clearly, (A*) can be chosen as any system whose right-hand sides are
polynomials providing a sufficiently close fit to the right-hand sides of (A).

Since 7!<~d25—: system (&) is 6-close to (A) to rank r. It follows from (21)

that there exist at least two values of n (which lie between n, and n, and
between n, and n3, respectively) for which the function d* vanishes. These
values of the parameter correspond to two closed paths of system {(A*).
For sufficiently small §, these paths clearly lie in U, (Ly)).

The case of unstable or semistable L, is treated along the same lines.
These instances are illustrated in Figure 42, b and c¢. The proof of the
theorem is thus complete.

Remark 1. Itis readily seen that if L, is a stable or an unstable
multiple limit cycle, there exist systems (A) arbitrarily close to (A) which
have at least three closed paths in any arbitrarily small neighborhood of
Lo. The validity of this proposition can be established reasoning along the
same lines as in the proof of the theorem (see Figure 42a illustrating the
stable case). For a semistable cycle L,, however, the last proposition
(regarding the existence of at least three closed paths) is in general
inapplicable.

Remark 2. It can be readily seen that if L, is a multiple limit cycle
of system (A), there exists a system (A*) arbitrarily close to (A) which has
at least two simple, i.e., structurally stable, limit cycles in
any arbitrarily small neighborhood of the cycle L,. We will prove this
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proposition for the case of analytical systems. The first step is to
construct, as before, a system (A,) of class 1 of the tvpe (A) for which
L, is a simple limit ¢ycle and which has another closed path L, close to L,.
If £,is a simple limit cycle, we take a polynomial (and therefore
analytical) system (A’ } sufficiently close to {(A;). Because of the
structural stability of the cycles L, and L, of system {(A,), system (A" )
will have siructurally stable cycles L} and L} in a close neighborhood of
J,and L,. IfL,is not a simple limit cycle of (A,), we construct a
svstem \Al} related to the cycle L, in the same manner as system (A) is
related to cycle L, in the proof of Theorem 19. For an appropriate choice
of the number u, \A;) will be so close to (A;) that in any arbltramly small
neighborhood of L, the system (A)) will have a simple limit cvcle £, The
path £, will be a simple limit cycle of (A}) {see proof of Theorem 19). It
now remains to approx.mate to (A]) with a sufficiently close analytical
system.,

Let us prove another lemma which will be needed in the following. Its
proof is based directly on Lemma 1.

Lemma 2. Let

D‘:—:P(r. . %=Q(r. ¥) (A

be a dynamic svstem oj class N> 1defined in region G, and r = ¢ (), y =y (H
a closed path L of the system (L = G)which is not a structurally stable
(i.e., simple) limit cycle. For any 8 > 0, there exists an arbitrarily small
neighborhood U of the path L and a dynawmic system (B) of class .Y with the
rollowing properties:

(@) Svstein (B)is §-close to rank N to system (A) in G.

(b) Systemn (B coincides with system \A) outside the neighborhood U.

(¢) The path L of system \A)is a structurally stable limit cycle of
system (B,

Proof. Since (A)is a system of class .V, ¢ and  are functions of
class .V + 1. In the neighborhood of the path L, we introduce curvilinear
coordinates s and n defined by the relations

=@ () +ny’' (s), y=vy(s)—ng (s). (22)

In Lemma 1 we have seen that to every point (z. y) of a sufficiently small
neighborhood of the path L corresponds precisely one value of the
parameter n,

n=F(x y)

and infinitely many values of s, such that the numbers s and n satisfy
equations (22). By the theorem of implicitfunctions, F (z. y)is a function of
class V.

Let n; be a sufficiently small positive number, and »n, and n; some positive
numbers such that nz < n. << ny. LetW. U, and ¥V be the neighborhoods of L
defined by the respective inequalities

Il <ns lnl<nma |nl<n.
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Clearly,
WclcV

(see Figure 43a, where the neighborhood Wis cross-hatched).
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FIGURE 43

Let v (n) be a function satisfying the following conditions:
(a) v (n) is a function of class N defined for all n, | n | << ny;
y(r)=1 for |rn|<n,
y(r)=0 for ny<|nj<ny,
Oyt for nmagln|<n,
(Figure 43b). There evidently exist functions y (r) of any class satisfying
condition (b).
In our proof of Theorem 19 we established that if L is not a structurally
stable limit cycle of (A), there exists a system

'%‘:;——'ﬁ(xv y)v %":‘6(17 y) (K)

of class N arbitrarily close to (A) to rank N for which L is a structurally
stable cycle.
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Consider a system (B) which coincides with system (A) in G—V and is
expressed by the equations

&2 = P (2, 9) 1P (@ 1) — P (2, Y ¥ (F (2, 1),

Y Qa. ) +1Q (7 1 —Q (2, Yy (F (2, ¥)

(B)

in the neighborhood 1" of the closed path. It is readily seen that in the
neighborhood W, system (B) coincides with system (A), i.e., Lisa
structurally stable limit cycle for (B). Moreover, in V — U system (B)
coincides with system (A). Hence, (B) coincides with {(A) in G — U too.
Finally, (B)is evidently a system of class N and is arbitrarily close to
rank ¥ to system (A), provided that (13:) is sufficiently close to (A).
System (B} thus satisfies all the propositions of the lemma. This com-
pletes our proof.

3. Structural instability of a closed path with a zero
characteristic index

Theorem 20. A closed path L, of system(A) for which

T

§1PL @) )+ 04 (@(s), ¢ (9N1ds=0

0

is structurally unstable (in relation to any of the spaces RV, r< N, if (A)
is a system of class N, and R, if (A)is an analytical system).

Proof. We shall first prove Theorem 20 assuming that (A) is a
system of class .V and structural instability is treated in relation to the
space RY', where 1<r<y.

Suppose, contrary to the proposition of the theorem, that the path L,is
structurally stable in some neighborhood # of L,. Then for any >0,
there exists 8 > 0 such that if system (A*) of class N is §-close to rank rto
system (A), we have

(H, 4) = (H*, A7), (23)

where H* is some region. We will now show that L, in this case is
necessarily a limit cycle of (A).

Let !/ be the arc without contact for the paths of system (A) considered
above (which is a normal to L,), Q@ a neighborhood of the path L, with the
property that each path of system (A) passing through a point of Q meets
the arc without contact [ toth for increasing and decreasing 7, Any sufficiently
small canonical neighborhood of the path L, may be takenas Q(see QT, $§24.3).
Regarding the neighborhood H, we assume that it lies inside Q at a
positive distance from the boundaries of this region. Lete >0 be so
small that a region H* generated by an e-translation of # is contained in Q,
ie., H* = Q. Let § > 0 be a number corresponding to this ¢ in a sense
that if (A} and (A* ) are &-close, relation (23) is satisfied. Let 8, 0 << 8, < &,
be so small that if system (A"‘) is §,-close to (A), every path of (A*)
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passing through the points of Q crosses the arc without contact / both for
increasing and decreasing ¢, and a succession function j*, and hence also
d*, can be defined on this arc for system (A*).

Let us first consider system (A) of class N of the form

P y) FOF (@ ) Fr Y, L eQ@ ) +uF (@ ) Fi@y  (B)

(see §15.2), choosing p>0so that (&) is Z—‘-close to rank r to (A). By {(18),
d (0)>0, i.e., d(n) %= 0. Now let (A*) be an analytical system §,-close to

rank rto (A). Also 0<8, <"_21. If 8, is sufficiently small, d* (n) is not

greatly different from d (n)and therefore d* (n) = 0. We will assume that
this condition is satisfied. System {(A*)is 8~close to {A) to rank rand is
analytical; the function d* (r) is therefore also analytical. Since d* (n) == 0,
this function may have only a finite number of roots in a finite interval of
n values. Hence it evidently follows that system (A*) may only have a
finite number of closed paths in Q. Then each of these paths is isolated,
and is therefore a limit cycle.

In virtue of the assumption of structural stability of system (A) in H and
in virtue of the conditions imposed on §,, 8, and &, relation (23) is satisfied
and H* = Q. The mapping of H onto H* ensuring the e-identity (23) moves
the closed path L, of (A) into some closed path L* of {A*) which lies in #*and
is therefore isolated. Then L, is evidently also isolated, i.e., it is a limit
cycle of (A).

We have thus shown so far that if L, is a structurally stable path, then
Lois a limit cycle. Let L, be structurally stable in neighborhood H. We
may assume that H contains a single closed path L,. Let U be a neighbor-
hood of path L, such that U « H and U is at a positive distance from the
boundary of H.

We take £ > 0to be so small that an e-translation of # leaves U inside
the 'translated' neighborhood.* Let 8 be a number corresponding to e in
the sense of the definition of the structural stability of system (A) in #.
By Theorem 19 (the theorem of the creation of a closed path from a
multiple limit cycle), there exists a system (A) of class N,8-close to
rank r to system (A) which has at least two closed paths in U.

In virtue of the particular choice of the numbers § and ¢ and the
neighborhood U,

(H, A) = (1, A),

where ¥ is some region and U < H. It follows from these relations that &
contains at least two closed paths of (A), so that H contains at least two
closed paths of (A). This contradicts the original assumption that # con-
tains a single closed path of (A), namely Z,. This contradiction establishes
the structural instability of the path L, in relation to the space AW .

If (A)is an analytical system, the structural instability of Z, in relation
to RY is proved along the same lines. The proof of the theorem is
complete.

* See footnote on p.67,
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Corollary. A closed path L, is structurally stable if and only if it is
a simple limit cycle, i.e., the characteristic index

¥ 2 L Pa@) ¥ () + Qg (), ¥ (9 ds

LeL e PN

loes not vanish.
the validity of this proposition follows directly from Definition 18 and
Iheorems 18 and 20.

135




Chapter VI

NECESSARY AND SUFFICIENT CONDITIONS OF
STRUCTURAL STABILITY OF SYSTEMS

INTRODUCTION

In the previous chapters we derived a number of necessary conditions
of structural stability of a dynamic system. We established, in particular,
that if a dynamic system (A) is structurally stable in a closed bounded
region G*, then:

1. It may have only a finite number of equilibrium states in &*, which
are of necessity simple nodes, saddle points, or foci (A < 0 or A > 0 and
05 0; see §7, Theorems 10 and 11, and §10, Theorem 15).

II. All the closed paths of systemt(A) are simple limit cycles (i.e.,

paths « = @ (), ¥ =¥ () for which J= { (Pi (¢ (5, % () + O} (@ (5), ¥ (<)) ds = O,

where t is the period of the functionsoqz and ¢; see §15, Theorem 20).

III. System (A) does not have saddle-to-saddle separatrices in G* (§11,
Theorem 16).

In the present chapter, we will prove that conditions I through III are
both necessary and sufficient for structural stability of a system
in G*. A rigorous proof of this proposition, although essentially simple,
requires a fairly lengthy and tedious analysis. It is analogous to the proof
of Theorem 76 in QT, §29.4. )

Chapter VI consists of three sections (§16, §17, §18).

In §16 we prove that if system (A) is structurally stable in G*, it may
have only a finite number of closed paths in G*(Theorem 21), and hence
only a finite number of orbitally unstable paths and semipaths (Theorem 22).
The concept of a region with a normal boundary is also intro-
duced in §16. A normal boundary is made up of a finite number of simple
closed curves, each of which is either a cycle without contact or consists
of an even number of alternating arcs without contact and arcs of paths.
The fundamental theorem of structural stability is proved for regions with
a normal boundary, since this assumption greatly simplifies the proof
without imposing a significant restriction.

§17 is completely devoted to supplementary material. It is proved in
this section that a region ¢* with a normal boundary can be partitioned into
canonical neighborhoods of equilibrium states and limit cycles and into
elementary quadrangles. This partition is actively used in the proof of the
fundamental theorem.

In §18, we give a complete proof of the fact that conditions I through III
are the necessary and sufficient conditions of structural stability for a
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avstem (A} in G* {Theorem 23}, In §18.3 we prove that these are also
necessary and sufficient conditions for structural stability on a sphere
{Theorem 24J. At the end of the section, §18.4 offers a number of signifi-
cant remarks and supplements. These include a theorem which states that
the structurally stable systems form an open set in the space of all dynamic
systems in a plane region {Theorem 25) and on a sphere (Theorem 25'} and
a theorem according to which the structurally stable systems are every-
where dense in the space of the dvnamic systems (Theorem 26). These
theorems indicate that "almost all” the dynamic systems are structurally
stable, and structurally unstable systems are an exception.

A reader wishing to get his teeth into the meat of the theory without
further delay may skip the proof of the fundamental theorems 23 (§18.2)
and 24 1%18.3; and only peruse §16.1, the statement of Theorem 23 in §18.2,
and also €18.3 and $1£€.4.

€16. SINGULAR PATHS AND SEMIPATHS OF
DYNAMIC SYSTENMIS

1. Finite number of closed paths for structurally
stable systems

Betfore proceeding with the proof of the sufficiency of conditions I
through Il (see Introduction to this chapter) for structural stability of a
system, we will show that these conditions allow only a finite number of
closed paths in a structurally stable system. Note that in virtue of
condition II, each closed path in a structurally stable system is isolated.
This conclusion in itself, however, does not establish that the number of
closed paths is finite, since a condensation point for the points of closed
paths evidently need not belong to a closed path.

Theorem 21. If svslem (A) is structurally stable in G*, it may have
only a finite muonber of closed paths in G*.

Proof. Suppose taat this proposition is not true, i.e., a system (A)
has an infinite number of closed paths in G*. Take a sequence Ly, L., Ls, . ..
ot these paths and choose an arbitrary point on each path. Let M, M., Mj. ...
be the sequence of these points, M; € L;. Since G* is compact, the sequence
{)M.} has at least one condensation point, and without loss of generality we
may assume that {W;} :s a convergent sequence (if this is not so, we can
always choose a conve:rrgent subsequence). Let the sequence converge to a
point M*. Thus closec paths completely contained in G* pass through any
neighborhood of M*. We will now show that if {(A) is a structurally stable
svstem, no such point M* may exist in G*. If M*is not a state of equili-
brium, we will designate by L* the path through M*. I the =- and e-limit
sets of the path L* lie in G*, we will denote them by K, and K,, respectively.

We have to consider the iollowing alternatives:

1) MU*is a simple focus or a simple node.

2} M*is a simple saddle point.

3) The path L*leaves G* as ! increases or decreases.

4) K,or A, is a node or a focus.

3} Kgor A, is a closed path.
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6) K, or K, is a saddle point.

7) K, or K, is a limit continuum, comprising a saddle point and
saddle-to-saddle separatrices which are continuations of one another.

Let us consider each of the seven cases separately.

Case 1 is inapplicable, since all the paths passing sufficiently close to
a node or a focus go to that singular point, and are therefore not closed.

Case 3 is inapplicable, since if L* leaves G*, any closed path /. passing
sufficiently close to M* also leaves G*. This contradicts our assumption
that all the closed paths are completely contained in G*.

Case 7 is inapplicable, since a structurally stable system has no
saddle-to-saddle separatrices.

We can now concentrate on the remaining cases.

Case 4. Let K, be a node or a focus 0. Let U, (0)be a sufficiently
small neighborhood of the point 0, so that all the paths through this neigh-
borhood go to the point O for ¢t— 4 co and
are thus not closed. Since the path L* has
points in U, (0), the theorem of the con-
tinuous dependence on the initial values
indicates that any path L, passing sufficiently
close to M* also passes inside U, (0), and is
thus not closed, contrary to the definition
of Lk.

Case 5. Let K, be a closed path. We
choose an arbitrary point S on this path.
Any neighborhood U, (S) contains points o
the path L*, and by the theorem of con-
tinuous dependence on the initial values, it
also contains points of any closed path L,
passing sufficiently close to M*. But then
K, is not an isolated closed path, which
clashes with the structural stability of (A).

Case 6. Let Ky be a saddle point, so
that L* is a separatrix of one of the saddle points of the system. Since a
structurally stable system has no saddle-to-saddle separatrices, there are
two alternatives: L*leaves G* as t increases (case 3), or K, is a node, a
focus, or a closed path in G* (cases 4 and 5). None of these cases is
applicable, as we have shown above.

Case 2. Let M* be a saddle point. Consider a sufficiently small
canonical neighborhood U of this point, limited by a simple closed curve C,
which is made up of four arcs without contact and four arcs of paths
(Figure 44). We take U to be so small that the saddle point M*is the only
equilibrium state of (A) contained in U. By assumption, U contains an
infinite number of points M, which belong to the paths L,. However, none
of the closed paths of system (A) may be completely contained in U, since
such a closed path, if it existed, would not enclose any equilibrium states
or would enclose at most one equilibrium state, which is a saddle point,
This is forbidden by QT, §11.2, Theorem 30 and Corolldry 1 from
Theorem 29. Therefore each closed path L, has at least one point M, lying
on the curve €. Since this curve is compact, we can select a sequence of
points {M,} converging to some point M* ¢ C. M* is not a state of equi-
librium, and it can be taken as the initial point M*. We have thus reduced
our problem to one of the cases 3— 7, which are inapplicable.

FIGURE 44

'
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None of the cases 1 through 7 is thus applicable. This establishes the
validity of the theorem.

In QT, §15, we introduced the concept of orbital stability and dis-
tinguished between orbitally stable and orbitally unstable paths. We will
not repeat the previous results here. It suffices to say that if system WA
is structurally stable in region ¢*, its orbitally unstable paths in this region
are all the equilibrium states, limit cycles, and saddle-point separatrices.

Theovem 22. If svstem (A} is structurally stable in G*, it ma have
only a finite number of orbilally unstable paths and semipaths in G*.

The validity of this theorem follows directly from Theorem 10,
Theorem 11 (§7), and Theorem 21,

Remark., Theorems 21 and 22 clearly remain valid when the require-
ment of structural stability of svstem (A) is replaced by a requirement that
system (A} satisfies conditions [ through III (these requirements are
actually equivalent, but this still remains to be proved).

2. Regions with normal boundary

The proof of sufficiency of conditions I— III (see Introduction to this
chapter) for structural stability of a system in 6* will be carried out for a
particular case, assuming that C* has a so-called normal boundary.
Regions with a normal boundary were defined in QT, §16.2, and we will
repeat here the corresponding definition in full. Note that the requirement
of a normal boundary does not impose a significant restriction, but it helps
us to avoid various complications in the proof of sufficiency.

Definition 19. The boundary of a compact connected region is called
normal for a given dynamic system A} if the following conditions are
satisfied:

1) The boundary is made itp of a finite number of simple closed curves,

2) Each of these closed curves is either a cycle withoit contact or
consists of a finite nuinber of alteynating arcs without contact and ares of
paths.? The common point of arn arc of a path and an arc witho:ut contact
making the boundary will be called a covney point; a semipath Ilving in G*
and terminating at a corner point will be called a corney semipath: an
arc of a path which is completely contained in G*, except for its end points
which lie on boundary arcs without contact so that at least one of them is
a corner point, will be called a corner avc; the corresponding are of ¢
path for which neither end point is a corner point will be called a whole
non-singulayr arc.

3) For any cornev arc, only one end point is a corney point.

4) None of the cornev semipaths is a saddle-point separatrix.

3) None of the boundary arcs of paths belong to a closed path com-
pletely contained in G*.

Conditions 4 and 5 clearly indicate that the boundary arcs of pa:hs do
not belong to orbitally unstable paths or semipaths lying completely in G*.

¢+ Sadiie-point separatrices mav be whole paths or semipaths, Jepeading on whether the are complotels
ontained i G* or nct.,
** If the boundary of a region-G* consists of a finite number of simpte closed non-intdrse Lty Merewsse s

smaooth curves. it ¢can be fitted by an arbitrarily close normal houndary.
t Soundary ares of paths will sometimes be called for brevity houndary arcs.
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A boundary arc and a corner arc of a path with a common end point,
which thus form a single arc of a path of system (A), are said to be a
continuation of each other (in the direction of increasing or
decreasing t). Similarly, a boundary arc and a corner path with a
common end point are regarded as a continuation of each other.

Figure 45 shows a triply connected region G* with a normal boundary. .
The boundary consists of three simple closed curves, one of which is a
cycle without contact A, and each of the other two is made up of an even
number of arcs of paths 4, andarcs without contact ; (1 <i< 5forthe exterior
boundary curve and 6 <i< 7 for the interior boundary curve). Thearcs with-
out contact A; are marked in the figure by straight segments.

The corner points are 4; (1 <i<10) and B,; (1 <j<4). The figure also
shows the corner arcs C 4, Csdq, A,C,, BCg; a corner semipath L} with an end
point A, going to a stable focus 0,; a corner semipath L] going to a stable
limit cycle Z, which encloses an unstable node or focus 0,; a saddle point O,
with four separatrices.

FIGURE 45 FIGURE 46

The boundary arcs b, and b; have no continuation in G*. Each of the other
boundary arcs has continuations in two directions. The continuation of the
boundary arc b; in the direction of decreasing t is the corner arc 4.C;, and
the continuation in the direction of increasing t is the corner semipath L}.
Figure 46 shows a boundary arc » with a continuation in one direction only
(in the direction of increasing ).

Definition 20. Ovbitally unstable paths, saddle-point separatrices
and corner semipaths, boundary and covnev arcs of paths, boundary arcs
without contact and boundary cycles without contact in G* will be re-
spectively called singular paths, semipaths, avcs (of paths), arcs without
contact, and cycles without contact. All the other paths, semipaths, and
arcs of paths will be called non-singular. Singular paths, semipaths,
etc., will also be rveferred to as singular elements.




f16. SINGULAR PATHS AND SEMIPATHS

We will now give a complete list of the various paths, semipaths, and
ares of a strucwurally stable system (A) in a region G* with a normal
boundary.

Aj Singular orbitally unstable paths and semipaths:

1) An equilibrium state {a stable node or focus, an unstable node or
focus, a saddle point).

2} A limit cycle (stable or unstable).

3} A separatrix which goes to a saddle point for t— + o (— o) and to an
unstable {stable) focus, node, or limit cycle for ¢t —+ — oo (-~ o), or which
leaves G* through a boundary arc or through a cycle without contact as ¢
decreases (increases).

B) Singular orbitally stable semipaths.

4) A corner semipath goihg for {— — o (-- o) to an unstable (stable)
node, focus, or limit cycle.

C) Singular arcs and cycles without contact:

5} A corner arc.

6) A boundary arc of a path.

7/ A boundary arc without contact.

8} A boundary cycle without contact.

D) Non-singular whole paths and semipaths:

9} Paths going for t— — o to an unstable and for ¢t - -+ oo to a stable
node, focus, or limit cycle {9 different possibilities).

10} Semipaths going for ¢t - — oo (+ =) to an unstable (stable) node,
focus, or limit cycle and emerging from G* through a boundary arc or cycle
without contact as ¢ increases (decreases).

E) Non-singular whole arcs:

11) An arc of a path which is neither a corner arc nor a boundary arc,
whose end points lie on boundary arcs or cycles without contact, and all
the other points are in G*.

In what follows, stable nodes, foci, and limit cycles of system (A) lying
in G*(or in fact only in G*) will be called attraction elements or
sinks, and unstable rodes, foci, and limit cycles will be called repul-~
sion elements or sources. Boundary arcs or cycles without con-
tact through which paths emerge from G* as ¢t increases can also be inter-
preted in a sense as attraction elements (sinks), whereas boundary arcs
and cycles without contact through which paths enter G* may be regarded
as repulsion elements 'sources).

Since a structurally stable system in G* has only a finite number of
singular elements, all the propositions regarding the partition of G* into
cells, formulated in Q7, §16, remain valid. In particular, the set F of all
the points of G* which belong to singular elements is a closed set. Iis
complement, i.e,, the open set G*—E, consists of a finite number of com-
ponents, called cells. Each cell is filled with non-singular paths, semi-
paths, or arcs of paths which show '"identical'' behavior in a certain sense
(see QT, §16, Theorems 46— 48, 53, 57). The cells are either singly
connected or doubly connected. In the next chapter we will consider the
various types of cells of structurally stable systems.
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§17. A REGULAR SYSTEM OF NEIGHBORHOODS AND
THE PARTITION OF G* INTO CANONICAL NEIGHBOR-
HOODS AND ELEMENTARY QUADRANGLES

1. A regular system of canonical neighborhoods for
structurally stable systems

As we know, a cycle without contact can be drawn around any node or

focus, so that it encloses no equilibrium states other than that node or
focus and no closed paths. The cycle can
be drawn in any arbitrarily small neighbor -
hood of the node or the focus.* We will say
that this cycle without contact
belongs to the given node or
focus, and conversely, that the node or
the focus belongs to the particu-
lar cycle without contact.

The closed region comprising the points

inside this cycle without contact and the
points of the cycle itself will be called a
closed canonical neighborhood of
the node or the focus. All the paths passing
through the points of a canonical neighbor -
hood of a node or a focus ¢, which do not

FIGURE 47 coincide with the point 0, evidently do not
leave that neighborhood, going to O for
t > + oo (if 0 is a stable node or focus)

or for ft-» — oo (in the unstable case).

Let us consider a limit cycle L, of system (A). In QT, §24.3, it is
shown that in any neighborhood of the cycle L, we can pass two cycles with-
out contact €' and €”, one lying inside L,, and the other enclosing L,, so
that the annular region 7 between the cycles €' and (" contains no equilibrium
states and no closed paths other than L, (Figure 47). The closed annular
region T is a union of two closed unilateral canonical neighborhoods T’ and
T", limited by the closed curves L, and ¢’ and L, and (", respectively. We
will say that the cycles without contact ¢’and C"belong to the
limit cycle L,. T will be called a bilateral closed canonical
neighborhood, or simply a canonical neighborhood of the limit cycle Z,.

Any path, other than L,, passing through a point of the canonical neigh-
borhood T goes, without leaving T, to the limit cycle Lofor ¢ — 4 oo if L, is
stable and for t— — oo if it is unstable. As t decreases or increases,
respectively, this path leaves T through one of the cycles without contact ¢’
or ¢”. Clearly, for any e >0, the cycles C'and C”can be always drawn so
that T'is entirely contained in U, (Lo).

In what follows, we will not deal separately with the canonical neighbor -
hoods of nodes, foci, or limit cycles; we will speak invariably of the
canonical neighborhoods of sinks or sources (attraction or repulsion
elements). We will also say that a cycle without contact belongs to a given
sink or source, and conversely, that a sink or a source belongs to a given
cycle without contact.

* See QT, §18.1, Lemma 3 and the remark to this lemma.
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Apart from canonical. neighborhoods of nodes, foci, and limit cycles,
we will also consider cznonical neighborhoods of a saddle point. This
neighborhood is delimited by four arcs without contact, each crossing one
of the saddle-point separatrices, and by four arcs of paths (Figure 44; the
canonical neighborhoods of a saddle point are defined in QT, §19.2). For
any &€ >0, we can choose a canonical neighborhood of the saddle point O
which is entirely contained in U, (O).

In what follows, we invariably assume that all the dynamic systems
satisfv conditions I through III in the Introduction to Chapter VI and consider
regions with a normal boundary.

Lemma 1. If the arcs without contact forming the boundayy of a
canonical neighborhood of a saddle point O are sufficiently small, each of
these arcs has only one common point with the corresponding separatvix
of the saddle point 0, and has no comnion points with any of the other
singular paths or semipaths (i.e., limit cycles, separatrices, and corner
semipaths) or with any of the corvrer arcs.

Proof. The validity of the lemma follows directly from the finite
number of singular paths and semipaths in the relevant dynamic system
(§16, Theorems 21 and 22; remark to Theorem 22 and Definitions 19 and
20} and from the fact that, in virtue of condition III, the saddle-point
scparatrices of these systems cannot be limit paths (i.e., they do not
enter the limit - or w-continuum of any path).

Lemma 2. There exists £,> 0 such that if the canonical neighborhood
of each saddle point 0, lies inside U., (0,), none of the paths through the
bpoints of the canonical neighborhood of one saddle point has points in the
canonical neighborhood of any other saddle point.

Proof. We first chrose the canonical neighborhoods of sinks and
sources (nodes, foci, and limit cycles} in such a way that they have no
commeon points. All the saddle points of system (A) evidently lie outside
these neighborhoods. Let us consider the set © comprising all the cycles
without contact which en:er the boundaries of the canonical neighborhoods of
the sinks and sources, all the boundary cycles without contact, and all
the open boundary arcs without contact (i.e., the boundary arcs without
their end points). By condition Ill, every z-separatrix (o-separatrix) of
each saddle point intersects with increasing (decreasing) ¢ one and only one
element of the set Q at a single point.

Let 0,(i= 1,2,..., m)be the saddle points of system (A) lying in G*,
and L™ (k= 1,2, 3,4} the separatrices of the saddle point 0;. Consider a
semipath which is part of the separatrix L{¥, ending at the point of its
intersection with the corresponding cycle or arc without contact of the
set 2. To avoid introducing new symbols, L{® will denote this semipath.
The set comprising the saddle point 0; and all the points of the semipaths
L (k= 1,2,3,4) will be denoted F; (i= 1,2,..., m). Each of these F, is
evidently a closed set, and they have no common points as there are no
saddle~to-saddle separatrices. The distances between any two sets F, are
therefore positive, and there exist nonintersecting closed neighborhoods ¥,
of these sets. By Wili= 1,2,..., k) we mean a closed neighborhood of
the set F, in the set comprising the points of G* which lie outside or on the
boundary of the canonical neighborhoods of the sinks or sources. The
neighborhoods IT, are typically "cross-shaped" (Figure 48).
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FIGURE 48

Let us consider the canonical neighborhoods U, (0;) completely contained
in W,. Let the boundary of U, comprise the arcs without contact &® (k =
= 1,2,3,4). If these arcs are sufficiently small, then for both decreasing
and increasing ¢, every path passing through the points of these arcs will
either leave the region G* or enter one of the canonical neighborhoods of the
sources or sinks, remaining until that time in the set W,. But then the
same property is characteristic of every path through any point of the
neighborhood U;.

Let &, be a sufficiently small positive number, so that for any i =
=1,2,..., m, Ug (0;) = U;. This number clearly satisfies the proposition
of the lemma, which completes our proof.

Definition 21. Let{A) be a dynamic system satisfying conditions 1
through III in the Introduction of Chapter VI. Consider a region with a
novmal boundary. A system of canonical neighborhoods of the system (A)
is said lo be regular* if the following conditions are satisfied:

1) The canonical neighborhoods of various states of equilibrium are all
disjoint and do not intevsect with any of the canonical neighborhoods of the
limit cycles; the canomical neighborhoods of differvent limit cycles are
also nonintersecting.

2) None of the paths of system (A) passes through the canonical
neighborhoods of two different saddle points.

3) Every arc without contact contained in the boundayry of the canonical
neighborhood of a saddle point satisfies the conditions of Lemma 1, i.e., it
hkas precisely one comwmon point with the corvvesponding separvatrix and has
no common points with any of the other singular paths and semipaths oy
corney arcs.

Lemmas 1 and 2 establish the existence of regular systems of canonical
neighborhoods. In what follows, we will only deal with regular systems of
canonical neighborhoods.

* In QT, §27, the concept of a regular systern of canonical neighborhoods was defined for dynamic systems
of a more general type. The dynamic systems considered in this chapter satisfy conditions I—1III, and
therefore their regular system of canonical neighborhoods meetsthe condition formulated below (these condi-
tions are stronger than in the general case).
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The following obvious propositions derive from the above list of paths,
semipaths, arcs of paths, etc., and from the properties of canonical
neighborhoods:

A) Any non-singular path completely contained in G* crosses one cycle
without contact which belongs to a source and one cycle without contact
which belongs to a sink.

B) Any non-singular semipath crosses one cycle without contact which
belongs to a source or a sink, and one boundary arc or boundary cycle
without contact.

C) Any a-separatrix (w-separatrix) either crosses one cycle without
contact which belongs tc a sink (sour‘ce) or leaves G* with increasing
(decreasing) t through a boundary cycle or a boundary arc without contact.

D) Any positive (negative) corner semipath crosses one cycle without
contact which belongs tc a sink (source).

We will now present the terminology and some facts pertaining to cycles
and arcs without contact comprising the set 2 and the division of these arcs
and cycles into parts by singular paths and semipaths (the set Q is defined
in the proof of Lemma 2).

Let ¢ be a cycle without contact contained in the boundary of some
canonical neighborhood or in the boundary of the region G*. If this cycle
has no common points with singular paths, semipaths, and corner arcs of
the system, it is said to be free. We say that C is a free o-~cycle (a-
cycle), if € belongs to a sink (source) or if € is a boundary cycle through
which the paths of the system leave G* (enter G*).

A cycle without contact C is said to be non-free if it has at least one
common point with singuvlar paths, semipaths, or corner arcs (a corner arc
may have a common point with € only if € is a boundary cycle without
contact}). If a non-free cycle without contact ¢ has more than one point in
common with singular semipaths, paths, or corner arcs, it is divided by
these points into a finite number of simple arcs, which have no common
points with the singular elements, except the end points. These arcs are
called simple elementary arcs. If anon-free cycle ¢ has only one
point M in common with singular paths, semipaths, and cornerarcs, Cis
called a cyclic elementary arc, and M is the end point of a
cyclic arc. An elementary arc — whether simple or cyclic — is called
an elementary o-arz (a—arc ) or simply aw-arc (x-are ) if the
cycle without contact € containing this arc belongs to a sink (a source) or
if Cis a limit cycle without contact through which the paths of the system
leave G* (enter G*).

Boundary arcs without contact are also divided by points which belong
to singular elements — specifically to separatrices or corner arcs — into
simple elementary arcs, which have no common points with singular
elements, except their end points. In particular, a simple elementary arc
may coincide with a boundary arc without contact. These elementary arcs
are also o- or g-arcs according as the paths of the system leave or enter the
region G* through these zres.

We will now formulate without proof some auxiliary proposition which
will be helpful in the following. The proof can be found in QT, §27.4 for a
more general class of dynamic systems (namely, systems which do not
necessarily satisfy conditions I— [II}. From the list of paths, semipaths,
ete., in §16.2 and from the definition of free cycles without contact and
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elementary arcs, it follows directly that every non-singular path of a
dynamic system (A) lying in G*, whether a whole path, a semipath, or a
whole arc, crosses one a-arc or free a-cycle and one w-arc or

free w-cycle.

Lemma 3. All the paths passing through the points of one free a-cycle
(o-cycle) cross the same free o-cycle (a-cycle), one of the two cycles lying
inside the other.

Remark. The paths of this lemma are non-singular {from the definition
of a free cycle). They are either all whole paths, or all semipaths, or all
whole arcs. Free a- and w-cycles through which pass the same paths are
called conjugate.

Lemma 4. All the paths passing through the (inner) points of one a-arc
(v-arc) cross the same o-arc (a-arc).

Remark. Here again we are dealing with non-singular paths. Two
elementary arcs without contact through which pass the same paths are
called conjugate elementary arcs. Two conjugate elementary arcs of a
structurally stable system are both simple elementary arcs; alternatively
one of them is simple and the other is cyclic.

If (A) is a structurally unstable system, it may have two conjugate cyclic
arcs. However, structurally unstable systems have no conjugate cyclic
arcs. This will be proved in Chapter VII, §19.3, Lemma 3.

4 s z
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FIGURE 49

In Figure 49, the simple a-arcs A;B, and B,C, are the conjugates of the
simple w-arcs 48 and BC, and the simple a-arc BB, is the conjugate of the
cyclic o-arc I' with M, as its end point. All these arcs are contained in
the boundary of the doubly connected region G*.

2. The partition of the region G* into canonical
neighborhoods and elementary quadrangles

We again regard (A) as a dynamic system which satisfies conditions 1—
Iil of the Introduction in region G* with a normal boundary. Let some
regular system of canonical neighborhoods be defined in G*. Let K be the
set of all the interior points of all the canonical neighborhoods. The points
of G* which do not belong to X constitute the closed set G*—K.
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Lemma 5. The closed set G* — K can be partitioned into a finite numbeyr
of closed elementary quadrangles, so that every arc without contact con-
tained in the boundary of any of these quadrangles is either a part of a
boundary cyvcle without contact, or a part of a cycle without contact which
belongs to some sink or source, or a pavi of a boundavy arc without contact,
or an arc without contact contained in the boundary of the canonical
neighborhood of a saddle point.

Movreover,

a) any two quadrangles of the partition either have no common points or
theiy common points form an avc of a path which is part of the boundary
of each quadrangle;

b) an arc without contact forming part of the boundary of a quadrangle
of the partition either has one point, other than the end point, in common
with the saddle-point separatrix and no other common points with singular
elements; or one of its end points belongs to a corner semipath or a
corner arc or is a corner point of the boundary, and all the otheyr points
belong to non-singular paths; ov it entirely consists of points which belong
to non-singulayr paths.

Remark. A partition of G* into canonical neighborhoods forming a
regular system and into elementary quadrangles satisfying the conditions
of Lemma 5 will be called a regular partition of G*,

Proof. Firstlet us consider the canonical neighborhoods or the
saddle points of system (A). Let O be some saddle point, H its canonical
neighborhood, yan arc without contact
entering the boundary of H, 4 and B the
end points of this arc, L a separatrix of
the saddle point O crossing the arc vy,

D the intersection point of L and y
(Figure 50). To fix our ideas, let L be
an a-separatrix. Then, for increasing
t, L leaves the neighborhood # through
the point D and crosses either a cycle
without contact C (this is a boundary
cycle or a cycle belonging to a sink) or
a boundary arc without contact. L.et the separatrix L cross the cycle with-
out contact C at point D’ (if L crosses a boundary arc without contact, the
argument remains the same). From the definition of a regular system of
canonical neighborhoods we see that all the paths through points of the arcy
will cross with increasirg ¢ an arc without contact ¥ which is part of the
cycle C. The end points of v ( A’and B’) lie respectively on the paths L, and
Lg through the end points 4 and B of the arc y, and y’ has no points which
belong to singular paths, except the point D"

The arcs y and ¢’ will be called conjugate arcs. The quadrangle A
delimited by y and ¥ will be called an elementary quadrangle.

Thus, to each arc without contact y entering the boundary of a canonical
neighborhood of a saddle point corresponds an elementary quadrangle. Let
A =1, 2, ..., N) be all such quadrangles, y;, and yi the corresponding arcs
without contact. The quadrangles J\,; are evidently all disjoint {see
Definition 21, 2).

Let us now consider a corner path L which ends at a corner point R of
the boundary. Let L be a negative semipath. Then L has a common point &

FIGURE 5¢
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with a cycle without contact ¢ which belongs to a source (Figure 51). On

the cycle ¢ we choose two points A and Bon the two sides of R and sufficiently
close to it so that the arc AB of the cycle ¢
contains no points of the previously defined
arcs y; and no other points of any corner
paths, except the point R. Let us consider
the arcs R4 and RB separately, denoting
them %, and %,.

As t increases, the paths through the
points of one of these arcs (in Figure 51,
through the points of fu) will cross the arc
%2 which is part of a boundary arc without
contact and has R as one of its end points
(all the other points of %: belong to non-
singular paths). The paths through the
FIGURE 51 points of the second arc, g, will cross with

increasing ¢ the arc ¥;, which is also part

of a boundary arc or cycle without contact,
or (as in Figure 51) is part of a cycle without contact which belongs to a sink.
One of the end points of %, — we denote it by R, — belongs to a corner arc or
semipath or is a corner point of the boundary, and all the other points of the
arc ¥ belong to non-singular paths. The quadrangle delimited by the arcs
without contact y; and ¥, (i = 1, 2) and the arcs of the paths through their end
points is the elementary quadrangle A,. The arcs y; and x; will be called
conjugate, as before.

We take all the corner semipaths L;,, whether positive or negative, and
construct the corresponding elementary quadrangles A, in the same way.
Note that if there are two different semipaths, a positive and a negative one,
which are a continuation of the same boundary arc of a path, the two corre-
sponding arcs x and x will be chosen ''compatibly.' This is best illustrated
with an example: in Figure 51, the semipaths L and L, with the end points R
and R, respectively, are continuations of the same boundary arc RR,. We
may therefore choose arbitrarily one of the two arcs y; and )&, and the other
arc is automatically determined by this choice. Both these arcs define
the same elementary quadrangle 4,.

Let A; (j=1, 2, ..., N) be all the different elementary quadrangles constructed
in this way. All the arcs x, (and %;) are taken sufficiently small, so that they
have no common inner points between themselves and no common points
(whether inner points or end points) with the previously defined arcs y;.
Under these conditions no two elementary quadrangles A, (i =1, 2,...) and
A;(j=1,2,..)have any inner points in common {but A; and A; may have
common arcs of paths in their boundaries or parts of boundary arcs. The
second case is observed, e.g., for the quadrangles A, and A;in Figure 51).

The elementary quadrangles A; adjoin corner paths (and possibly their
continuations also; for example, the quadrangle A, in Figure 51 adjoins the
semipath [, and A, adjoins the semipath £, its continuation - the boundary
arc RE, — and the continuation of this arc, the semipath Z,).

Following the same procedure as for the quadrangles A;, we define the
elementary quadrangles Af (¢ = 1, 2, ..., N*)adjoining corner arcs. The arcs
without contact forming the boundaries of the quadrangle A} will be de-
signated A, and A}; these arcs will also be called conjugate. Note that a
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quadrangle adjoining a corner semipath may at the same time adjoin a
corner arc also (e.g., A, in Figure 52). Therefore, AL (k = 1, 2, ..., N*) are
defined specifically as elementary quadrangles adjoining corner arcs, but
not adjoining corner semipaths. We moreover take the arcs i, and i} to be
sufficiently small. Under these conditions, the guadrangles A;, 4,, and A}
are alldifferentand notwo of these quadrangles have interior points incommon
{but 3; and A} may have common arcs of paths in their boundaries or parts
of boundary arcs; such are, e.g., the pairs of quadrangles A} and L., 3, and
i,. A? and A? in Figure §2).

FIGURE 52

Let us now consider boundary arcs of paths. Those which are the
continuations of corner arcs or corner semipaths form the boundary of the
quadrangles A} and 4; (such are, e.g., the arcs 8,7, and S.T, in Figure 52,
which form the boundaries of i, and Af, respectively). Now suppose that
a boundary arc of a path S7 has no continuation in G* It is readily seen
that the corner points of this arc belong to two different boundary arcs
without contact. Take a sufficiently small section p of one of these arcs,
adjoining a corner point (e.g., the section $B, in Figure 52) and draw
through the points of p paths of the system until they emerge through a
section p of the second boundary arc without contact. We have thus formed
an elementary quadrangle adjoining a boundary arc of a path ST {in
Figure 52, this is the quadrangle A). Let X, (I=1,2, .., .¥) be all such
quadrangles. 'Their boundaries contain the conjugate arcs without contact
K, and w,. . _

Let us now consider all the elementary quadrangles A,, 3;, A}, and 3, and
all the arcs without contact ¥4, ¥; and y;. k, and A%, u, and i entering their
boundaries (except the arcs y;, entering the boundaries of the canonical
neighborhoods of saddle points). For simplicity, we will designate all these
quadrangles by A; (i = 1, 2, ..., s, where s =% 4+ V¥ + &* + ¥)and the relevant
arcs without contact by v (%) (m = 1, 2, ..., k)if they are parts of cycles
without contact which belong to sources (sinks) or if these arcs belong to
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the boundary of G*, the paths of system (A) entering G* (leaving G*) through
them.*

Let us further consider all the non-free cycles without contact ¢ which
belong to sources, and all the boundary arcs without contact ¢ and the
non-free cycles without contact Z® through which paths of system {A) entex
G*. All the arcsy® (m = 1,2, ..., belong to these cycles without contact and
boundary arcs €%, ¢®, and Z”. Removing from each cycle ¢ and Z® and
from each boundary arc ¢ the points of the arcs y{¥ which belong to the
corresponding elements, we obtain a finite number of open arcs without
contact which have no common points. The closures of these arcs are
designated a®, a@), ..., ¢{. Note that the end points of each of these arcs
belong to non-singular paths.

Similarly treating all the non-free cycles without contact ¢ which belong
to sinks and the boundary arcs without contact ¢ and the cycles Z¢, we
remove from them the points of the arcs y® to obtain arcs without contact
whose closures are designated a®, a{®), ....

Let us now consider all the paths which at some ¢ pass through points of
the arec a{¥ (i =1, 2, ..., p). It is readily seen that as ¢ increases, they all

cross one of the arcs a@ (by an appropriate choice of our
notation, we can ensure that this is the arc «{”). Hence
)/ it follows directly that the number of arcs ¢ is exactly
equal to the number of arcs «{®, i.e., pin both cases.
The arcs of paths extending between the arcs without
contact ¢ and ¢/ form an elementary quadrangle, which
we designate Aj(i =1, 2, .., p). All the quadrangles Aj,
like the quadrangles A;, are elements of the set G* — K.
Finally, let us consider the free a-cycles of system (A)
FIGURE 53 in G* (if any). They are designated B® (i=1, 2, ..., ¢). A
cycle B{® is conjugate, as we know (see §18.1, Lemma 3),
with the free o-cycle B{*), and both these cycles delimit
an annular region filled with sections of non-singular paths (Figure 53).
Drawing three path sections in each of these annuli, we partition them into
elementary quadrangles Aj (i = 1, 2, ..., 3¢g). Theyare all evidently elements
of the set G* — K.

It is readily seen that each point of the set G* — K belongs at least to one
of the quadrangles A (j = 1,2, ...,p), A; (i=1,2, ..., 8, and Ag (k= 1, 2, ..., 3¢9)
and that all these quadrangles satisfy the conditions of Lemma 5. This
completes the proof of the lemma.

Figure 52 shows a doubly connected region &* with a normal boundary.
It comprises two canonical neighborhoods, that of an unstable node 0, and
that of a saddle point 0.. The complement G* — K is partitioned into 15
elementary quadrangles. This partition meets all the requirements of
the lemma.

§18. THE FUNDAMENTAL THEOREM OF STRUCTURAL
STABILITY OF A DYNAMIC SYSTEM

1. Lemmas

We will give here a number of lemmas that will be needed in

connection with the proof of the fundamental theorem of structural
* 1t is readily seen that the number of the arcs ¥'Z) is equal to the number of (¥ (we designate this common
number by r). If there are no saddle points in G*, then s= r. If G* has k saddle points, then r = s — 2k.
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stability of a dynamic system. Some of these lemmas are presented
without proof.

Lemma 1. Let(A) be advnamic system defined in G, and let
G* (G* < G) be a region with a novmal boundayy. For any ¢ =0, there exists
a region with a novrmal houndary G** such that G* — G*<G* =G, and all the
points of G* which are not points of G* are contained in an «-neighborhood
of tite boundary of G*; moreover, the boundaries of G* and G** have
identical schemes.*

Lemma 1 is geometrically self-evident, and its proof is omitted.
Region G** which satisfies the proposition of the lemma will be called an
extension orans-extension of G*. Figure 54 shows a doubly con-
nected region G* and its extension. The region G**—G* is cross-hatched.

FIGU'RE 534 FIGURE 33

Remark. I conditions I—III formulated in the Introduction to this
chapter are satisfied in G*and if ¢ >0 is sufficiently small and G** is an
¢~extension of G*, systera {A) hasg no equilibrium states and no closed paths in
¢** other than those that it has in G* i.e., conditions I—III are also satisfied
in G+,

The truth of the remark regarding the equilibrium states follows from
the fact that the equilibrium states of a system cannot lie arbitrarily close
to the boundary of G*, siice there are no equilibrium states on the boundary.
The truth of the remark regarding closed paths is proved by the same
argument that we have used in the proof of Theorem 21.%%

Lemma 2, Let! be a simple arc, M, and M. two points on this arc.

If v > v is sufficiently small, and M, and M, are {wo poinits of the arc !

* Rezarding the scheme of a bouncary of a rezion, see QT. §26,

“io Lot gy >0, €5, 0. H, is an gp-extension of G*, L is a closed path in H, which is not contained
completely in &%, M, is 2 point of L, lying outside Hn. M, can be taken to converge to Mo, My lics
o the houndary of G*, Let Ly be a path throush M,. If Ly has 2 point $ ourside G*, ata distance ¢ >0
from the banndary of G*, then for latze n, L, passes arbitrarily close to 8 and yet lies inside an
irhirrarily small neishborhood of G*, which is mmpossible. [f, on the other hand, Ly is completely con-
taned In G¥, Mybelonas to a boundary arc of a path, whose continuations in the two directions are
corfier semipaths, one gcoing to 1 source in G* and the other to a sink, But then a path L, passing suffi-
ciently close to My coes to the same source for ¢ —~ —cx and to the same sink for 1> +oo . i.e., it
cannot be closed. This proves the proposition.
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lying respectively in the n-neighbovhoods of M, and M,, the direction of
the arc | defined by the motion from M, to M, coincides with the direction
defined by the motion from M, to M, (Figure 55).

Lemma 3. Let C be a simple closed curve, M; i =1, 2, ..., n; n>»3)
points lying on this curve. Let these points be orderved M, M,, ..., M, for
the motion in a certain divection (one of the fwo possible divections) along
the curve C. Then if n > 01is sufficiently small, and M; (i = 1,2, ..., n) are
points of the curve C so that M; € U, (M), the motion in the same divection
along the curve C will find the points M; in the ordev M, M,,..., M, (Figure 56).

The proof of Lemmas 2 and 3 is omitted.

Together with a given system (A), we will consider modified systems
(A) sufficiently close to (A).

FIGURE 55 FIGURE 57

. Lemma 4. Let L be a structurally stable limit cycle of system (A),
i.e., a limit cycle with a non-zevo chavacleristic index), and v a
canonical neighborhood (ving) of the limit cycle bounded by cycles without
contact C, and C,. Then for any e > 0, there exists & > 0 such that if
system (A) is 8-close to (A), then

(a) Ciand C,are cycles without contact for the paths of system (R), and
these paths cross each of the cycles C, and C, in the same direction as the
paths of the oviginal system (A);

(b) the ring v contains a single closed path L of system (R), and this L is
a stable structurally stable limit cycle if L is stable, and an unstable
structurally stable limit cycle if L is unstable;

(c) v, 4) = (v, ). (1)

Proof. To fix ideas, let us consider a stable limit cycle L. We choose
some point M, on this cycle and draw a normal to the path L through this
point. Let lbe a segment of this normal, P,, @, its end points, L;and L,
the paths of system (A) passing through P; and Q,, respectively. We assume
that M, is aninterior pointof the segment I. Moreover, the segment listaken
to be so small that I is an arc without contact for the paths of system (A)
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and the paths L, and L, with increasing ¢ will again cross the segment [ at
points P, and Q,, the arcs P,P,and Q,Q: of these paths lying completely
inside v (Figure 57; see §12.1).

Let T’y be a simple closed curve made up of the turn PP, of the path L, and
the segment P,P, of the normal /; T, is the analogous curve consisting of the
turn Q,Q; of the path L, and the segment Q,Q, of the normal { (Figure 57). We
use W to designate the region between the curves I'y and I':. Clearly,
LcWcy.

From the definition of a canonical neighborhood, y and therefore Wdo
not contain any closed paths of {A), except L. Therefore, as ¢decreases,
the paths L, and Z, passing through the points P, and @, will emerge from y
through the points Py and Q, lying on the cycles without contact C, and C,,
respectively (Figure 57).

Take some point S on the segment P,P, of the normal I and some point R
on the segment Q,¢,. The paths L; and L; of system (A) through these

points emerge with decreasing ¢
from the neighborhood y through the
respective points S, and R, of the
cycles C,and C, (Figure 57). The
arc PoP;of path L, and the arc $,S of
path L] partition the region between
the closed curves C, and T into two
elementary quadrangles, which we
denote A, and A; (Figures 57, 58).
Also the arc Q,0, of path Land the
arc RyR of path L; partition the re-
gion between the curves C, and I,
into two elementary quadrangles A,
and Aj.
Let (A) be a dynamic system
sufficiently close to (A), and 5,, 0,
FIGURE 58 S, R, L;, L, X, etc., the elements
of (A) corresponding to the elements
Py, Qs S, R, Ly, L), A, etc., of (A)
(it is assumed that the points P, @,, the normal [, and the closed curves C,
and C, do not change on passing to system (A)).

In Chapter V, §14, in our proof of Theorem 18 (on the structural
stability of a simple limit cycle) we established that for any & >0, there
exists 3,0 with the following property: if system (A)is 8, -close to
system (A), then

(¥, 4) = (¥, 3), (2)

and the mapping T, which realizes this relation is defined in ¥ and can be
chosen so that

Ty (P) =Py, T(Q)=0Q, and T, ()= (3)

We will now use Lemma 9 of §4 (Chapter II, §4.2). By this lemma, for
any & >0, we can find two numbers &, >0, 1 >0 with the following property:
if system (A)is 3,-close to system (A) and a topological mapping ¢ is given,
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transforming the arcs PoP,P,, SS, Qo0:Q, and RR, of the paths of system (A)
into the arcs B,P,P,, $5,, 0,0:Q0, and RR,of the paths of system (&), respec-
tively, and the arcs without contact §P, and RQ, into the arcs §B, and RQ,,
and ¢ is an n-translation, then the mapping ¢ can be continued to a
mapping 7, which moves the quadrangles A; and A; into A; and &, respec-
tively, conserves paths, is an g,-translation, and coincides with the
mapping ¢ wherever the latter is defined.

By Lemma 8, §4 (Chapter I, §4.2), for any e3>0, we can find such 4;>0
and n*>>0 that if system (&) is 8, -close to (A) and a topological mapping ¢* is
given moving the arcs without contact SP, and RQ, of system (A) into the
arcs without contact §P, and RQ, of system (&), respectively, and this ¢* is
an n*-translation, the mapping ¢* can be continued to a mapping 7; which
moves the elementary quadrangles A, and A, into &, and A,, respectively,
conserves paths, is anez-translation, and coincides with the mapping ¢* on
the segments SP; and RQ,.

Finally, let 8 >0 be so small that if system (ﬁ) is §,-close to system (A),
the cycles without contact C; and €, and the arc without contact ! of system
(A) are respectively cycles without contact and an arc without contact of
system (A), the paths of (&) crossing each of the cycles C; and C, and the
arc [ in the same directions as the paths of (A).

Let e>>0. We take g;=¢ and for this &, find the numbers 3, andn. We
take g3<Ce, e3<<m, and for this g; we find the numbers n* and §,.

We take g <<e, 8 <1, g<<n*, and for this e, find §;.

Finally, we take

& << min {9,, 8, 8;, 0,}.

The number 6> 0 obtained in this way meets all the requirements of the
lemma,

Indeed, let system (&) be 6 -close to system (A). Then, according to
the choice of 8, there exists a mapping T, of W onto W which satisfies
conditions (2) and (3).

Further, since 8§<<8; and g, <<n*, ¢, <<e, wWe can construct a mapping T,
which moves the elementary quadrangles A, and A, into A, and A,, respec-
tively, and has the required property ( ¢*is identified with the mapping 7,
previously defined on the segments P,§ and Q,R).

Finally, since e;=¢e, & <1, e3<<n, and §,<d, we can construct a mapping
T, of the quadrangles A] and A, onto A] and A,, respectively, which has the
required properties (¢ is identified with the mappings 7T; and T, previously
defined on the corresponding segments of the boundaries of A, and A} ).

It is readily seen that the mappings Ty, T;, T; jointly define a mapping T
of the canonical neighborhood y onto itself which is path-conserving and is
an e-translation. Therefore, if (&) is 8-close to (A), we have

(v, 4) = (v, A),

i.e., proposition (c) of the lemma is satisfied.. Proposition (b) follows

directly from (c). Proposition (a) is satisfied in virtue of the peculiar

choice of the number &, and the relation §<<¢,. This completes the proof

of the lemma.*

" Figure 58 shows the numbers e, 8, n corresponding to the regions W, Ay, A{, Ay, A3y. The first step in the
construction of the mapping is the construction of 7y (in W), then the construction of T3(in the quadrangles
Ajand Ap), and finally the construction of T’ (in the quadrangles Aj and AL,
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The following lemma is a stronger version of Lemma 4.

Lemma 5. Let L be a structurally stable limit cycle of system (A},

y its canonical neighborhood limited by cycles without contact ¢, and C,.
Then, for anv e >0, therve exist w> 0 and 8§ > 0 with the following property;
if system (A) is 8 -close to system (A), and ¢ is a topological mapping
moving each of the cycles C, and C, into ifself which is an w-translation,
then €, and €, are cycles without contact for system (A) and theve exists a
mapping T of the neighbovhood v into itself which is an e-translation,

which conserves paths, and which coincides with the mapping ¢ on the
bhoundary of the neighborhood v (i.e., on the cycles €, and C.).

Proof of Lemma 5 is analogous to the proof of Lemma 4, differing only
in an obvious modification of the argument. Specifically, we first construct
the mapping 7 of the elementary quadrangles
AL AL Mg Nonto 3, 8, &, 8, respectively,
so that it coincides with the mapping ¢ on
the boundary of y. This mapping induces a
mapping of the segments PP, and Q,Q., onto
the segments P B, and §,0,, respectively
{the points P, and P, need not coincide in this
case, whereas in Lemma 4 this was the same
point. This also applies to the points Q, and
@,). This induced mapping is continued first
to a mapping of P,Q, onto 2,(J,, and then to a
mapping of ¥ onto I’ by the technique deve-
loped in the proof of Theorem 18 (see §i4).

We will require two further lemmas. The
first deals with the neighborhood of a saddle
point.

Let O be a structurally stable saddle point
of system (A, y its canonical neighborhood
limited by arcs without contact 7/, #*. /", /{** and arcs of paths C,C;. C»B;,
£,.C,, and B,B, (Fxgure 59). The separatrices of saddle point O crossing the
arcs without contact will be deaignated LY, LY, L, LY, respectively.

Let 2\* (i=23. %) be the "elongation' of the arc without contact I}, i.e.,
an arc without contact incorporating i’ whose end points are not the
end points of !’ (in this way, all the points of {” are the inner points of 2{*’).
Let \A) be a dynamic system which is sufficiently close to (A). As ¢ de-
creases, the paths of (A) ) passing through the end points C; and B; of the arcs
without contact £{* (i =1, 2) will cross the arcs A{“ (i =3, 4) at four _points
designated C,. B . B, respectively. The sections C,B8; and C,5, of the
arcs 24" and }‘““wﬂl be designated 74" and 15", respectively. Let y denote
the reglon limited by the arcs !, & I3, and /, and the sections C,C;. C.5,. B.C,,
and B,B, of the paths of system (A). Finally, ¢ is a topological mapping
moving each of the arcs {, and {, onto itself, so that the end points of /; and
{>» remain fixed, and the intersection points of these arcs with the separa-
trices L{* and LY, resrectively, move into intersection points with the
separatrices L{* and IY.

Lemma 6. For any e>0, there exist 8>0and n>0 with the following
property: if system (A is & -close to system (A) and the mapping ¢ is an
n-translation, the arcs L, b, A3, and », are arcs without contact for the

FICERE A%

We will sometimes use tite shorter notation ly, la, I3, {,.

n
N
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paths of (R) and theve exists a mapping T of vegion y onto y which coincides
with ¢ on the arcs I\ and I¥”, conserves paths, and is an e-translation.

Remark. Itevidently follows from Lemma 6 that y contains a single
equilibrium state & of (A), 0 being a saddle point and ¥ its canonical neigh-
borhood. Also

v, 4 = 7, 4.

Proof of Lemma 6 is analogous to the proof of Lemma 4, §9.2, from
which it is obtained by obvious modifications.

Lemma 7. Let O be a structurally stable state of equilibrium of
system (A), which is either a node or a focus, v is its canonical neighbor-
hood limited by a cycle without contact C. For any e >0, theve exist 1> 0
and § > 0 with the following property: if system (A) is 6-close to system (A)
and ¢ is a topological mapping of cycle C into ilself, which is an -
translation, then C is a cycle without contact for system (A) and there exists
a mapping T of v into itself which is a path-conserving e-translation that
coincides with the mapping ¢ on the boundary of vy (i.e., onC).

Proof of Lemma 7 is analogous in all respects to the proof given in
the remark to Theorem 12 (§8.2).

2. The fundamental theorem for a plane region

Theorem 23, For a dynamic system (A) defined in a plane region G to
be structurally stable in a vegion G* with a normal boundary G* < G), it is
necessary and sufficient that conditions I through III in the Introduction to
Chapter VI be satisfied:

I. System (A) has in G* only a finite number of equilibrium states, which
are simple nodes, saddle points, or foci.

II. The closed paths of system (A) in G* are simple limit cycles.

III. System (A) has no saddle-to-saddle sepavatrices in G*.

Proof. The necessity of conditions I—III for structural stability of a
system (A) in G* has been proved in previous chapters (§7, Theorems 10 and
11; §10, Theorem 15; §15, Theorem 20; §11, Theorem 16). We thus have
to prove the sufficiency of conditions I— III for the structural stability of a
system.

Suppose conditions I—1III are satisfied. By Lemma 1, §18.1, and the
remark to that lemma, for a sufficiently small o > 0, any o-extension of G*
contains no equilibrium states and no closed paths of system (A) other than
those contained in G*. Let H be such an extension of 6*. We will show that
H has the following property: for any e > 0, there exists 4>0 such that if
system (&) is 8 -close to system (A), then

(H, 4) = (&, A), (4)

where H is a region. Since G*c H, this implies, by definition, that
system (A) is structurally stable in G*.

Clearly, H has a normal boundary and system (A) satisfies conditions I—
III in this region. Thus there exist regular partitions of H into canonical
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neighborhoods and elementary quadrangles (§17.2, Lemma 5). We choose
and fix one of these partitions, which we denote II.

We introduce the following notation:

U, (i=1,2,..., p) are the canonical neighborhoods of the sources and the
sinks of the partition IT;

V;(i=1,2,...,¢) are the canonical neighborhoods of the saddle points 0;;

09, 67, 19, 89 (=1,2, ..., ¢) are arcs without contact making up the
boundary of the canonical neighborhood of the saddle point 0;;

F2, PR, F®, FY (i=1,2,...,q) are the elementary quadrangles of the
partition I whose boundaries incorporate the arcs I§3,5, 1§, {9, respec-
tively. We will use the following abbreviated notation for these quadrangles
and arcs: Fy, Fpo .o, Figs Iy, by ooy Ly

Ry (k=1,2, ..., r)are all the other elementary quadrangles of the partition
In;

ay (by) k=1, 2, ..., ) are the arcs without contact making up the boundary
of quadrangle R, through which the paths of system (A) enter R, (leave
Ry )

A; (i =1,2,..., s)are the ''vertices' of the elementary quadrangles which
belong to the boundaries of the canonical neighborhoods of the sources or
to the boundary arcs without contact through which the paths of (A) enter
the region H;

B (i=1,2, ... s*)are the vertices of the elementary quadrangles which
belong to the boundaries of the canonical neighborhoods of the sinks or to
the boundary arcs without contact through which the paths of (A) leave
the region H (all the corner points of the boundary of H are evidently
included among the A4, and B,).

Let (A) be a dynamiz system sufficiently close to (A). We will first
define the region # in which this system is considered. Let C be some

closed boundary curve of H. If C is a cycle without
contact, it will be used as the boundary curve of H.
Suppose € is made up of arcs without contact
Uy, Iy, ..., In and arcs of paths z, %, ..., z, of
system {(A), so that when the curve C is traversed in
the positive direction the various arcs are encoun-
tered in the order /,, 3y, I3, 25, ..., In 2z, (Figure 60),
their end points (corner points) being respectively
Xy Yo Xoo Yoo ooy X5, Yu. Let A3, ..., 4, be some
fixed elongations of the arcsi, I, ..., &.* Through
the points ¥y, ¥, ..., ¥ we passthearcs 4, 2z ..., z,0f
paths of system (A) to their intersection with the
arcs Ay Ag ..., Ay, Ay at the points X., X;, ..., X, X,
respectively (in Figure 60 these arcs are marked by
FIGURE 60 dashed curves). The arcs without contact X, Yy,
X, Yy .... X, ¥, will be designated T,, I, ..., I,
respectlvely If () is sufficiently close to (A), the
curve € made up of the arcs Iy, zy. L, Zsy ...y ino 2p iS @ 31mp1e closed curve.
For each boundary curve C; of H we substitute a curve €; constructed in
this way. The region limited by all the curves C, is H.

Let us now construct a partition [T of #, analogous to the regular

partition I of H, making each element Uy, Vj Fm, R, of the partition II to

* If Ais an arc without contact aad I is the partofthis arc consisting entirely of interisr points of A, then
Ais called an elongation of the arc without contact /.
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correspond to an element Ty, ¥; F,, Ry. In particular, we assume that U,
coincides with U;(i=1,2, ..., p).

Each canonical neighborhood V; of a saddle point 0; (j=1,2, ..., q) is made
to correspond to a region V;, whose construction is described in the state~
ment of Lemma 6 (see Figure 59; the regions V; and V;in Lemma 6 are
designated v and y, respectively). Furthermore, we will identify 7{?,
I@,i=1,2,...,q, with 7, If¥, respectively. 1% (11¥) is an arc without con-
tact entering the boundary of V;. It is part of the arc 9 (D) or of its
elongation (we assume that all the elongations have been chosen and fixed
beforehand).

Every elementary quadrangle F,, (m =1, 2, ..., 49) of the partition Il is
made up of arcs of paths of system (A) and is limited on one side by the
arc l,, and on the other by an arc without contact which belongs either to a
limit cycle I' of the neighborhood of a source or a sink, or to a limit cycle
(or an arc without contact) of the region H. The quadrangle F, is made to
correspond to the quadrangle %, made up from arcs of paths of system (A)
and limited on one side by the arc I,, and on the other by an arc without
contact belonging to the same limit cycle I (or the same boundary cycle
without contact, or the same boundary arc without contact).

The corner points of the boundary of H are the corner points Y, of the
boundary of H and the points X; described in the construction of I
(Figure 60). Corner semipaths and corner arcs of paths in H are deter-
mined by the region itself and the system (A).

Consider an elementary quadrangle R, and the arca, (k =1, 2,..., r; see
above) entering its boundary. Let A}’ and A be the end points of the arc a,.
Let I'” be the cycle without contact (a boundary cycle or a cycle belonging
to a source) or the boundary arc without contact incorporating a;.

The point A (or A®) may be a corner point of the boundary of H, or a
point of a corner arc or of a corner semipath of system (A), or it may be
a vertex of one of the quadrangles #,. In each of these cases, the corre-
sponding point A (or A®) is naturally determined by the preceding con-
struction. If A (or 4%) is not a point of one of the above types, we may
take AL to coincide with AP ( AP to coincide with 4%, respectively). The
points Af and AP are thus well defined. The arc a,is made to correspond to
an arc without contact ax which is part of the cycle (or the arc without
contact) T between the end points 4% and A®. Finally, the elementary
quadrangle R, consisting of the arcs of paths of system (A) and delimited
(on one side) by the arc a, is made to correspond to the elementary
quadrangle R, consisting of the arcs of paths of system (A) and delimited
by the arc without contact a;.

The points B; (i=2,3, ..., s*) corresponding to the points B, and the
arcs without contact b, corresponding to the arcs b, (k=1,2, ..., r) are
determined in a natural way using the previously constructed arcs ax and
points 4;.

Let system (A) be sufficiently close to system (A). Moreover, when
going around the cycle without contact I"®which belongs to a source or to
a boundary of H (or when traveling along a boundary arc without contact)
in a certain direction, let the points 4; be encountered in the order
Ay, Aigy ..., Ai,. From Lemmas 2 and 3 it follows that when going around the
cycle T in the same direction, the points 4;lie on T in the order
Ay, Ay, ..., A, A similar proposition is valid for the cycle (or the
boundary arc without contact) and for the points B; and 5;.
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It is readily seen that if system (A) is sufficiently close to (A), then:

a) G (they coincide with Ui) are canonical neighborhoods of sources or
sinks of system (A); if /; is a canonical neighborhood of an equilibrium
state (a limit cycle) of system (A), T,is a canonical neighborhood of an
equilibrium state (respectively, a limit cycle) of the same stability of
system (A).

b) To every saddle point O; of system (A) corresponds a saddle point J; of
system (A) and f"_,- (i=1.2, ..., q)is a canonical neighborhood of 0;.

¢) The previously constructed regions Fn (m=1,2, ..., 4¢) and R, (k=
=1, 2, ...,r)are elementary quadrangles of system (A).

d) The set of all points of the quadrangles Fn and R, and the neighborhoods
U,and T, coincides with the entire region H. _

e) System (A) has no other equilibrium states and closed paths in H,
except those which lie in the canonical neighborhoods I’; and ¥';.

This proposition follows directly from the preceding statement and from
the fact that each elementary quadrangle £, and R, adjoins either the
boundary of H or the boundary of one of the canonical neighborhoods ¥, or V.

f) The canonical neighborhoods I, and ¥'; and the elementary quadrangles
Fm and @ form a regular partition of #, which will be designated IT.

g) The canonical partitions NI and IT of the regions A and H, respectively,
are isomorphic in the obvious sense.*

We will now show that for any e>0 and a sufficiently small $>0, we have

(&, A= (H, 4

for a system (A) which is & -close to {(A).

Choose a fixed e>0. The corresponding >0 will be selected in several
steps.

1) We choose a number 85 >0 such that if system (R)is dp-close to
system (A), H satisfies the above conditions (a) through (g).

2) For every canonical neighborhood U; we select two numbers n; > 0 and
§; >0 =1,2, ..., p)in accordance with Lemmas 5 and 7 (i.e., such that if
system (A) is 8;-close to system (A) and ¢, is a topological mapping of the
boundary of U, into itself, which is an y,-translation, there exists a mapping
T,of U; into itself which is an e-translation, conserves paths, and coincides
with ¢, on the boundary of U, ).

Let

6U’= min {617 82y o0y 61:r}v Ny =min {ﬂn N2y oovy np}'

3) Consider an elementary quadrangle F; and an arc without contact
, G=1, 2,..., 49) entering its boundary (note that l; enters the boundary of
a canonical neighborhood of a saddle point). Let ¢;and d, be the arcs of
paths of system (A) entering the boundary of the quadrangle F;. Let
ep = min {e, fy}.

By Lemma 9, §4.2, there exist 8;>0 and ;>0 such that if system (&) is
d,-close to system (a), and ¢; is a mapping of the arcs I, ¢; d; onto the

* To be precise, if any two elemrents £, and E, of the partition are incidental, i.e., one of these elements
enters the boundary of its counterpart, the corresponding elements E, and E, of partition I are also
incidental. By elements of the partition IT we mean the neighborhoods U; and V;, the elementary
quadrangles £, and Ry, the ares without contact and the arcs of paths entering their boundaries, and the
end points of these arcs. The previous construction established a natural one-to-one correspondence between
the elements of partitions II and I,
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corresponding boundary arcs I, ¢;, d; which is also an n;-translation, there
exists an gp -translation T;of the elementary quadrangle #; onto #; which
coincides with ¢; on I;, ¢; d; and conserves paths.

Let

Sp=min {8, 82, ..., O}y Mp=umin {1y, N2, .o+, Mg}

4) Consider an elementary quadrangle R, and the arc without contact a,
and arcs of pathscyand d; (f=1,2, ..., r) entering its boundary. As in case 3,
we take ep=ep=min{e, 1y} and select for each of the quadrangles Ry the two
numbers §; and 7, (along the same lines as before). Let

Sgp=min {8, 83, ..., &:}, na=min{my, Nz .+.r N}.

5) Consider the arc without contact a4, entering the boundary of the
quadrangle R,. Let 4,, and 4,, be the end points of a;. Let ¢y and cx2 denote
the arcs of paths of system (A) passing through 4,, and 4,,, respectively,
and entering the boundary of the quadrangle R, (¢k=1,2,..., r). The arc g, lies
either on a boundary cycle or a boundary arc without contact, or on a cycle
without contact which belongs to a source.

If () is sufficiently close to (A), the elements of the regular partition II
corresponding to the quadrangle R,, its sides aa ca, a2z, and the vertices Axn

and A,.z are the quadrangle R;., its sides

dy. cn, crz» and the vertices 4y and 4. By
Lemmas 7 and 8, §4.2, we can select >0
and 8;>0 such that if system (A) is 8,~close
to system (A), and p (A, An) <lx»

P (Anz, Ars) < li, there exists a mapping s
defined on the arcs an Chy and ¢z which maps
these arcs into as, c.,, c,.z, respectlvely,
and the points 4, and A4, into 4, and 4,,,
respectively, and whichisalsoan ng~trans-

sminfe,q,)  lation (ng is defined in step 4 of the proce-
dure; see Figure 61). Let

§A=min {gh sz ey Cr}v
6A=min {61, 63, sy 6,-}.

6) Consider a canonical neighborhood
V;of the saddle point 0, and the arcs without
contact IP8, I, ¥ entering its boundary.
Let 8y >0 be a number with the following
property: if system (&) is 8, -close to
system (A), V;is a canonical neighborhood
of the partition [T corresponding to the
neighborhood V;, and ey =min {e, ng, nr}, then

a) there exists a mapping T; of V, onto Vs
which conserves paths, is an ey-translation, and coincides with the

mapping ¢ described before the statement of Lemma 6 on each of the arcs
HAN SR

IFIGURE 61

* In other words, the mapping Tjtopologically maps each of the arcs #fy, I onto itself, leaving the end
points of these arcs fixed and moving the intersection points of the arcs with the separatrices of system (A)
into intersection points with the corresponding separatrices of system (A).
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b) every arc of a path ¢ (or d) entering the boundary of the elementary
quadrangles F{¥ (or F§?, F{Y, F$') can be mapped onto the corresponding arc
¢(d) by an n*-translatior.,, where n*=min {ng, na};

c) to every vertex ., of the quadrangle F\{) or Fi$’ (=1, 2, ..., ¢) there
corresponds a vertex A4, of the partition II such that

P4y, ) <la

(;A is selected in step £ of the procedure),

The existence of 8§, follows from Lemma 6 (§18.1), from Lemmas 7and 8,
§4.2, and from the remark to Lemma 3, §9.2.

7) Consider an elementary quadrangle R, and the arc without contact a,
tk =1, 3, ..., r) entering its boundary. Let E E,, ..., E.» be the end points
of the arcs @, which are corner points or belong to corner arcs or corner
semipaths.,” Let 8> 0 be so small that if system QA) is 8g-close to system
{A) and E,is a point corresponding to point E,(s =1, 2, ...,r*), then
p(Esv Es)<;A' -

The existence of g follows from the method of construction of # and
from Lemma 5, §4.1.

Let

& == min {1, 8y, By, Or. 84, Oy, dg).
We will prove that if system (ﬁ) is § -close to system (A), then
— 4 = ~
(g, 4 =T 5. (4)

To prove this proposition, we assume system (A) to be 8§ -close to (A)
and construct a mapping T which realizes the relation (4).

Construction of mapping 7.

Step I. In each sacdle-point neighborhood I~'j (j=1,2,..., g we con-
struct a mapping 7T; satisfying the conditions described in step 6 above,
and assign the symbol 7' to T;.

Step II. We now ccnstruct a mapping T of the arcs of paths ¢ and d
entering the boundaries of the quadrangles F\*, F{! onto the arcs ¢ and d so
that this mapping is an n*-translation (see step 6 above) and coincides with
the previous mapping T at the points of the neighborhood V.

Step III. The mapping T completed on the boundary arcs !, ¢, and of

the quadrangles F,; (j = 1, 2, .. ., 4g) is now continued to F; so that it is an
ep-translation and conserves paths. This is feasible because of condition 3.
Step IV. Every pointE,(s= 1,2, ..., r*) is made to correspond to a point

E., taking T (E,) = E,.

Step V. Steps III and IV have defined the mapping 7 at the end points
of each arc without contact g, entering the boundary of the elementary
quadrangle R,. We continue this mapping to a mapping T of the entire arc q,
onto a;, so that 7 is an fp-translation. This is feasible because of 5.

Step VI. Let E, be the end point of the arc without contact ¢, entering
the boundary of the quadrangle R, (see step 7), ¢, the arc of a path of
system {A) passing through the point E, and entering the boundary of the

* The end pounts of the arcs ay may also belong to the elementary quadrangles Fy.
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quadrangle R,, ¢, the corresponding arc of a path of system (&) entering the
boundary of the quadrangle £,. The mapping T defined at the points E, by
step IV is now continued to a mapping T of ¢, onto Ce(s=1,2,..., ™, so that
Tis an nr-translation. This is feasible because of 5.

Step VII. The mapping T has been defined by steps I through VI on the
arc without contact a, and on the arcs of paths entering the boundary of each
elementary quadrangle R, (k. =1, 2, ..., r); this mapping is an np-translation.
We continue it to a mapping T of the quadrangle R, onto R,, which conserves
paths and is an egz-translation. This is feasible because of 4.

Step VIII. The mapping T is defined by the previous steps on the
boundary of each canonical neighborhood U; (i=1, 2,..., p) and is an ny-
translation. We continue this mapping to a mapping T of the neighborhood U,
onto itself which conserves paths and is an e-translation. This is feasible
because of 2.

The mapping T defined by steps I through VIII is evidently an e-translation
which maps # into # and conserves the paths. We thus have the relation

(H, )= (&, ). (4)

This completes the proof of the fundamental theorem.

3. The fundamental theorem for a sphere

The definition of a structurally stable dynamic system on a sphere was
given in Chapter III (§6.2, Definition 12). It amounts to the following: a
dynamic system (A) defined on a sphere § is said to be structurally stable
if for any e > 0 there exists 8 > 0 such that for any system (A) §-close to (A),

~

(S, ) = (S, A).

The necessary and sufficient conditions of structural stability of a
system defined on a sphere precisely coincide with the corresponding con-
ditions for a system on a plane. We will now prove the following theorem.

Theorem 24. A dynamic system (A) defined on a spheve S is
structurally stable if and only if

I. Each of the equilibvium states of system (A) is a simple node,
saddle point, ov focus.

II. The closed paths of system (A) ave simple limit cycles.

I, System (A) has no saddle-to-saddle separatrices.

Proof. To fix our ideas, let (A) be an analytical system on a sphere,
and we will prove structural stability relative to the space R, Structural
stability relative to the space RY (> 1) is proved in the same way, and
the proof relative to the space RY is even simpler.

Sufficiency. The sufficiency of conditions I through III for the
structural stability of system (A) on a sphere is proved along the same lines
as Theorem 23, but on the whole the proof is somewhat simpler. The
simplification naturally derives from the fact that there are no boundary
arcs of paths and boundary arcs and cycles without contact on a sphere.

Necessity. We will only prove the necessity of condition II, namely
that every closed path of a structurally dynamic system on a sphere is a
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simple limit cycle. The absence of multiple equilibrium states and saddle-
to-saddle separatrices for a structurally stable system is proved along the
same lines, with some simplification.

Without loss of generality, we may consider the systems on a sphere §
in a three-dimensional space R?, defined by the equation

a2-bytz?=1. (S)

As the closed covering of the sphere (see §5.2) we choose the covering
which can be regarded as the simplest in a certain sense: it comprises
two regions G, and G,, where G, is the set of all the points of the sphere $ for
which z,€z<1, and G, is the set of all the points of the sphere for which
—1<z2<z;. We further assume that —1<2, <20 and s, <<z,<<1 (Figure 62).
Let U, V:be the local coordinates inG; (i =1, 2); G, corresponds to a region
H; in the plane (u;, v;), which may be regarded as a circle centered at the
origin.

e

FIGURE 62 FIGURE &7

The intersection of G, and G, is the ring B.

Consider a structurally stable analytical system (A) defined by the set
of analytical equations

B e Pyt v), D= Qi (s, w0), (a,)
wherei =1, 2, and P;, (; are functions defined in G, (or equivalently, in H,-);
in the intersection B of these regions, system (A;) is transformed into
system (Az) in virtue of the transformation equations {also analytical)
between the coordinates u,, v, and u,, v, (§5.2).

The proof will be done by reductio ad absurdum. Indeed, suppose there
is a closed path L of system (A) on the sphere § which is not a simple limit
cycle (i.e., a path with a zero characteristic index). Again without loss of
generality, we may take the path L to lie in G,, outside the ring B, and we may
then treat it as a closed path of the system

d d
i;Tl=P1 (ug, vy), 71%—=Q, (uy, v1), (Ag)
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defined in the plane region H,. Since the characteristic index of L is zero,
the results of Chapter V show that either

(1) the path L is a multiple limit cycle of system (A), or

(2) all the paths passing in a sufficiently small neighborhood of L are
closed paths.

Let us first consider case (1), In virtue of Remark 2 to Theorem 19
(§15.2), for any 8; > 0 in this case there exists a system (A’f) 8,-close to
(A1) which has at least two structurally stable limit cycles in any
arbitrarily small neighborhood of L. We will denote these limit cycles by
L* and L%

To simplify the presentation, we identify G, with #,, i.e., consider as
a circle of radius R with a center at the origin in the plane (u,, vy). Let the
ring B be made up of points of the circle G, for which the radius-vector p
satisfies the inequality Ry <p< . Further let the cycle L lie inside the
circle 0gp<< R, , where R,<< R, (Figure 63), and let the system (AT) have
the form

du dv
g =Pl v), =01, v). (A7)

Let us construct a system (A;) of class 1 which is sufficiently close to
(A1) and coincides with (AT) in the circle p< R, and with the system (A1) in
the ring B. We will use a function ¢ (p) with the following properties:

a) o@{p)is a function of class 1 defined for all p, 0<p< R;

b 9()=1 for 0<Lp< Ry,

eP)=0 for Ri<p<R,
0<ep)<t for Rp<<p<< Ry
(Figure 64; there evidently exist functions of any class r»1 satisfying
condition b).

2

'
AT
i

1 —

Y A A A

FIGURE 64

The right-hand sides of system (A;) — the functions P, (uy, v,) and @; (us, v,) —
are defined by the equalities

bi=P+(PI—P)e(p), Q@=0Qi+(@—Q)% ) (5)

where p=Vuj+vi.

System (A;) with right~hand sides defined by (5) is a system of class 1
which coincides with system (A;) in the ring B and with the system (AT) in
the circle 0<p< R,. Moreover, it is readily seen that if §; is sufficiently
small, (Aj) can be made arbitrarily close to (A;).

Since (A;) and (Aj3) coincide in the ring B asbefore, taken together they
constitute a certain dynamic system on the sphere §, which we denote by (A).
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In general, this is a system of class 1. We will show thatit canbe approxi-
mated with any degree of accuracy by an analytical system.

To this end, consider the vector field w(M)=w(z, y, 2) (Where M (z, y, 2) is
a point of the sphere) corresponding to the system (A) in the space R®.
The vector w(M) lies in a plane tangent to the sphere at the point M.

Let fi(x, y, 2), i=1{, 2. 3, be the coordinates of the vector w(z, y, z). Consider
a cube E with its center at the origin and with faces parallel to the coordinate
planes, enclosing the sphere S. Consider a spherical layer ¥, defined by
the inequalities

l—n<rt+y,
where r=Va*+y?+2?, and n is a positive number sufficiently small for the

layer T to lie inside the cube E. We define a function F,(z, y, 2) at any point
(z. y, z) of the layer Z by the relation

Fia, g y=H{%, L. %)

(i=1,2 3; r= V24 y® +2z%). Since (A) is a dynamic system of class 1,

it is readily seen that F; (z, y, z) are functions of class 1 in the layer £, By
Whitney's theorem (see /11/, Vol.1, Sec. 260), the functions F; (z,y, z) can be
extended over the entire cube E without changing their class. Let the
functions F; be components of the vector w; this approach yields a vector
field of class 1 defined :n the cube E which coincides with the field w on the
sphere S. By the Weierstrass theorem, the field w can be approximated
with any accuracy to rank 1 with an analytical field w,. On the sphere S, the
vectors w, are in general not tangent to the sphere. However, projecting
these vectors on the corresponding tangent planes to the sphere, we obtain
a field of vectors tangent to the sphere which define some dynamic
system (A) on S. Clearly (A) is an analytical system which can be made as
close as desired to (A) and thus to the initial system. Now, since the
cycles L% and L* are structurally stable, system (&) has structurally stable
eycles I, and L, in the neighborhood of each of these cycles.

We have thus established that if an analytical system (A) has a multiple
limit cycle L on the sphere S, there exists an arbitrarily close analytical
system {(A) which has at least two closed paths in any arbitrarily small
neighborhood of the cycle L. This, however, implies that (4) is not
structurally stable, as demonstrated in the proof of Theorem 20 (§15.3).

It now remains to consider case (2), when all the paths passing sufficiently
close to L are closed. In this case, as in the proof of Theorem 20, we can
construct an arbitrarily close system of class 1 with L as its simple limit
cycle, and then proceed to approximate to it, as before, with an analytical
system (A). System (A) will have a simple limit cycle I arbitrarily close
to the cycle L. If ¢ is sufficiently small, the mapping which realizes the
¢ -identity of the partition of the sphere by the paths of {A) and (A) moves
an igolated closed path I of (&) into a non-isolated closed path of (A) lying
near L, which is impossible.

The problem is thus proved for the structural stability relative to the
space RY}'. In other cases, the proof is analogous with obvious modifica-
tions.
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4. Remarks and supplements

a) Remark regarding structurally stable systems
inside a cycle without contact,

As we have already noted (§6.1), structurally stable systems were
originally considered in a region limited by a cycle without contact /4/, and
not in any general region. The definition of a structurally stable system
can be significantly simplified in this case (compared to Definition 10, §6.1).

Indeed, let (A) be a dynamic system defined in G, and G* a closed sub-
region of G, limited by a cycle without contact I.

First let us assume that (A) is structurally stable in G*. Since G*is
evidently a region with a normal boundary, Theorem 23 applies and condi-
tions I through III are thus satisfied in G*. Repeating the same arguments
as in the proof of the sufficiency in Theorem 23, we readily see that the
following lemma holds true.

Lemma 8. For any >0, there exists & > 0 such that if system (R) is
8-close to system (A), we have

(G, &= (G*, A). (6)

Now suppose that Lemma 8 is satisfied for a system (A). Let Abea
o-extension of G* (see Lemma 1, §18.1), where o > 0 is sufficiently small.
Clearly, H in this case is also a region limited by a cycle without contact,
and G* « H. Then by the previous lemma and by Lemmas 12 and 8 of §4.2
we see (this conclusion is easgy to demonstrate) that for any e > 0

(H, A) = (H, A),

provided that systems (A) and (A) are sufficiently close, and this implies
that (A) is structurally stable in G*.

We have thus shown that if (A) is structurally stable in G*, Lemma 8
holds true, and vice versa. Hence, the statement of Lemma 8 can be
adopted as a definition of structural stability of a system (A)ina region
limited by a cycle without contact.

A similar remark applies to the case when the system is considered in
a region limited by several nonintersecting cycles without contact. The
proof is entirely analogous.

In the general case, when G*is a region with a normal boundary, the
statement of Lemma 8 no longer provides a definition of structural
stability. Indeed, if (6) is satisfied, the boundary arcs of paths of G* should
be arcs of paths of both (A) and (A). This, however, is not generally true.

b) Structurally stable systems on closed surfaces.

The conditions of structural stability of dynamic systems (of class 1) on
closed surfacesof non-zero kind, both oriented and non-oriented, were
considered by M. Peixoto /7/. These conditions amount to the following:
a dynamic system (A) of class 1 defined on a surface of the kind p>»0is
structurally stable if and only if

1) it has a finite number of equilibrium states, all of which
are structurally stable;

2) it has no saddle-to-saddle separatrices;
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3) it has a finite number of closed paths, all of which are
simple limit cycles;

4) the z-limit (w-limit) set of each path is either an equilibrium
state or a limit cycle.

The only new condition added for structural stability on a closed surface
of a nonzero kind is thus condition 4. On a sphere (or on plane), condition 4
automatically follows from conditions 1 through 3 by the Poincaré —
Bendixson theorem (QT, $4.6). On a surface of a nonzero kind, however,
dynamic systems may exist whose paths, say, are everywhere dense.
Condition 4 rules out the possibility of the existence of these paths.

¢) Structurally stable systems in the space of
dynamic systems.

We have already noted (§6.1) that systems which are structurally stable
in a certain region form an open set in the space of dynamic systems. We
are now in a position to prove this statement. Let G be a bounded plane
region, R, the space of dynamic systems of class 1 defined in G, and G*a
region with a normal bcundary, G* = G.

Theorem 25. The dynamic systems of class 1 defined in G which are
structurally stable in G* constitute an open set in R,.

Proof. Let(A)be a dynamic system structurally stable in G* which
belongs to the space R,. We will show that all the dynamic systems which
are sufficiently close to (A} are also structurally
stable. This will prove the theorem.

By Theorem 1, §18.1, and the remark to this
theorem, there exists a region f# with a normal
boundary such that

G*cHcHcG,

and system (A) hasno equilibrium states and no closed
paths in H other than those which are located in G*.
FIGURE 65 Let o be the distance from G*to the boundary of #.
Evidently, o>0 (Figure 65).
Let £ be a positive number, e<¢/2. In our proof
of Theorem 23 we have shown that if §, >0 is sufficiently small and system
(A) is 8,-close to system (A), then

Il

A, )= (#H, D, (4)
where 7 is some region. We will take 8 =0 so that it satisfies this condi-
tion.

From (4) and the inequality e<< ¢ /2, we have

G*cH

(see footnote on p. 67).

The region H was described in detail in our proof to Theorem 23. In
particular, it has been established that if system (A) is 82 -close to system
(A), where §, is sufficiently small, (A) hasno equilibrium states and no closed
paths in f other than those which fall in the canonical neighborhoods U; and
Vi
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Finally, if (A) is 8s-close to (A), where 8; is sufficiently small, the
equilibrium states and the closed paths of (A) which are located in U, and V;
are structurally stable (by Remark 2 to Theorem 18, §8.2, Remark 2 to
Theorem 18, §9.2, and remark to Theorem 18, §14). From (4) it follows
that (&) has no saddle-to-saddle separatrices in #.

We thus see from the above that if

8 =min {3, 85, 83},

and (&) is 6 ~close to (A), conditions I through III of Theorem 23 are satis-
fied for system (&) in a region # with a normal boundary and, in virtue of
this theorem, (A) is structurally stable in this region. But then, by (8)
and Lemma 1, §6.1, we conclude that (&) is structurally stable in G*. This
completes our proof.

An analogous theorem is evidently also true for a sphere.

Theorem 25'. The structurally stable dynamic systems on a sphere
Jorm an open set in the space of dynamic systems.*

The validity of Theorem 25' follows almost immediately from Theorem 24.

Peixoto /7/ has shown that Theorem 25' is applicable to dynamic systems
of class 1 on any closed surface, whether oriented or not.

We will now show that the structurally stable systems form an every-
where dense set in the space of dynamic systems. We will consider dynamic
systems of class 1 defined in some regionG. Let H be a simply connected
region limited by a simple closed curve I', such that & — 6. For simplicity,
the proof will be given for the space of dynamic systems defined in & for
which the curve T is a cycle without contact. Let this space be B*. Close-
ness in this space is defined as closeness to rank 1 inG.

Theorem 26. Let

'——-—P(I' y)v '_‘_'Q(xi y) (A.)

be a dynamic system in R*. For any 6 >0, therve exists a system (A) &-
close to (A) which is structurally stable in H.

Proof. Letd>0 be fixed. We may take 8§ so small that any system
which is 8 -close to {A) belongs to R*, i.e., T is a cycle without contact of
this system.

By the Weierstrass theorem on the approximation of continuous functions
with polynomials, there exists a system

'__"‘Pl (xi y)7 'F"‘Q(xV y)1 (AI)

8/5-close to (A), whose right-hand sides are polynomials.

Let P, and @y be polynomials of degree m and n, respectively. In our
proof to Theorem 10, §7.2, we have shown that there exist irreducible
polynomials arbitrarily close to P, and Q,, respectively, which are moreover
of the same degree as P; and Q;.

Let P; and Q; be such polynomials, and let the system

=Py(z, 1), H=0:( ) (82)

be 8 /5-close to (A;).

s Structural stability relative to one of the spaces R, R{" is naturally meant here.
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By the Bézout theorem (/12/, Ch.IlI, §3.1), system (Az) may only have
a finite number of equilibrium states, which does not exceed m.n. Let
0, (x;, yi), i =1, 2, ..., s beall the equilibrium states of (Az) located in
H (s<m-n).

Suppose that some of the equilibrium states 0;, e.g., 0,, is notl simple,
i.e.,

9Pa(xy, yy) Pz (zy, yy)
dx oy

=0.
Q2 (71, yy) Q2 (x4, Y1)
EX3 Jdy |

Consider the system

dx
—=a(x—z)+ P2(z, y) = Pi(z, y), .
a ' (a%)

B Bly—u) + Qa2 ) = Q%(=, v).

For any choice of o and §, the point 0, is an equilibrium state of (A%),
and P} and @f are polynomials of degrees m and n, respectively. We take
a and B sufficiently small, so that

IR v 0P% (24, w)
ax dy
3Q% (x4, yy)  00% (=1, ¥
ax ay

#0

{this is evidently always possible), System (A%)is then arbitrarily close to
(Az), and 0, is a simple equilibrium state of (A3).

If the polynomials P} and Q! are not irreducible, we replace them with
sufficiently close polynomials P, and @, of the same degree (i.e., m and n,
respectively) which are irreducible. We then obtain the system

Z—;=p2(1' ), %—‘:QAZ(:’ ) (AZ)

which also has at most m.n equilibrium states.

If (Az) is sufficiently close to (Af), it has a simple equilibrium state J, in
a sufficiently small neighborhood of 0, (see §2.2, Remark 3 to Theorem 6).
Suppose that this is indeed so. System (Az) is thus arbitrarily close to (Ajz)
and has a finite number of equilibrium states (less than m.n), at least one of
which, 0,, is simple.

Suppose that one of the equilibrium states of (As) in ¥ is multiple {(we may
take it as 0,). Then, just as we have passed from (Az) to (A;), we will pass
from (Az) to an arbitrarily close system

B =Paa,y), =0z ), (B2)

where the right-hand sides are irreducible polynomials of degrees m and n
and which has a simple equilibrium state §, in the neighborhood of §,.

If (A3) is sufficiently close to (Aj), (A3) also has a simple equilibrium state
0, in the neighborhood of 0.
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Continuing along the same lines, we obtain after a finite number of
steps the system

%=Pa (=, ¥)» %";—-—-Qa(x» y) (A3)

which is 8/5-close to (Ag) and has a finite number of equilibrium states in
H, all of which are simple.

If {A3) has multiple foci or saddle-to-saddle separatrices in #, they can
be eliminated by a suitable rotation of the vector field. Indeed, consider
the system

& e Pa—pQa=Py (2, 1)y L = QutpPi=Qu (. ), (Ad)

where p 5= 0. The vector field of this system is obtained by turning the
vector field of (Ag) through the angle tan™!p,

The equilibrium states of (A4) are all the equilibrium states of (A3) and
nothing but the equilibrium states of (A3) (Lemma 3, §3.2). Since (Asz) only
has simple equilibrium states in H, (A4) will also have only simple equilib-
rium states in H, provided p is sufficiently small. Suppose that (As) has a
multiple focus (zy, y,). Without loss of generality, we may take x, = y, = 0.
Let

aP3(0,0) 2P (0, Oy b Q3 (U, O) c 9Q3(0, 0) d
EE) % dy B az -0 dy -

Since 0 (0, 0) is a multiple focus, we have for the equilibrium state O of (Ag)

a b

A== >0, g=a-d=0.

c

For the same point considered as an equilibrium state of (A4), we have

a—pe b—pd
Ol c—(»p.a d—*—}lb” Uu=l‘(b—‘5)~
If 0 (0, 0) is a multiple focus of (A4), then b =¢. Since alsod = —a, we
find A = —a®— >0, which contradicts the condition A > 0. Thus, the point

0 (0, 0) cannot be a multiple focus of (A4). Clearly if p == 0 is sufficiently
small, we have A* > 0, and ¢* is small, i.e., 0 (0, 0) is a simple focus of
(A4). Thus, we have incidentally established that a rotation of the vector
field of a dynamic system thvough a sufficiently small angle will reduce any
multiple focus to a simple focus.

We have shown in Chapter IV that a saddle-to-saddle separatrix of a
dynamic system disappears when the vector field of the system is turned
through a sufficiently small angle (it ""decomposes' into two separatrices; see
the lemma in §11.1 and the proof of Theorem 16 in §11.2). Since system {A3)
may only have a finite number of equilibrium states and separatrices, we
conclude from the above that for a sufficiently small p 5% 0 the following
conditions are satisfied:

1) System (A4) is 8/5 close to {Aj).

2) System (A4) has only a finite number of equilibrium states in H, all
of which are simple and which do not include multiple foci (in other words,

H inch).ldes a finite number of equilibrium states all of which are structurally
stable ).
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3) System (A4) has no saddle-to-saddle separatrices in 4.

Another condition follows from conditions 1 through 3 combined with the
analyticity of (Ay):

1) System (A4) may only have a finite number of closed paths in H,

The validity of condition 4 is proved along the same lines as in
Theorem 21 (§16.1). There is only one distinctive feature in this proof
which is worth considering separately. Using the notation introduced in
the proof to Theorem 21, we will show that A, or K, cannot be a closed
path (i.e., case 5 in the proof to Theorem 21 is inapplicable to our con-
ditions). Indeed, let X, be a closed path. Then, by the definition of K,
this pathisanon-isolated closed path. The presence of a non-isolated
closed path in an analytical system leads to the existence of a cell which
is completely filled with closed paths (§12.3). Let W be such a cell. As
we known (see QT, §23.2), the boundary of the cell /" should be made up of
two zero-limit continua, each of which is either a) a closed path, or
b) an equilibrium state classified as a center, or c¢) a continuum of
saddle-to-saddle separatrices and equilibrium states. However, in our
case, no such zero-limit continua exist, since system (A4) does not have
any centers or saddle-to-saddle separatrices in #, and a closed path of
an analytical system cannot be a zero-limit continuum (any closed path of
ananalytical system is either anisolatedor aninterior pathinacell). Thus,
K. cannot be a closed path. In all other respects, the proof of proposition 4
does not differ from the proof of Theorem 21.

Let the closed paths of (Ayg) lying in H be L,, Ly, ..., L, (they are all
limit cycles). If all these limit cycles are simple, (Ay) is structurally
stable (by Theorem 23, §18.2) and our theorem is proved. Suppose now that
some of the cycles L, (i =1, 2, ..., r} of (A4) are multiple. We may then
rotate the vector field and consider the system

d. dy \
F=Pi—pQ=Pi(my),  F=0u+nPi=P;(z, ). (A,)

In §12.3 we defined the multiplicity of a limit cycle and estab-
lished that every limit cycle of ananalytical system has a definite multipli-
city. We shall now use some results whose proof will only be given later
on (Theorems 60 and 61, $32.4). By these theorems, if L; is a cycle of finite
miltiplicity of an analytical system (As), there exist g; > 0 and p} > 0 with
the following property: any system (A“) for which |p}<<pf has at most two
closed paths in U, (L)), znd these paths are simple limit cycles.

Let ¢ = min {&, &>, ..., &;}. We denote by V; (i =1, 2, ..., r)a canonical
neighborhood of the close paths L, lying in U, (L,), and by yi and y; the
cycles without contact of (A4) which form the boundary of V;. We may take

all the ¥, to be nonintersecting neighborhoods in H. The set H\ 'ClVi (i.e.,
3

the complement of the union of the neighborhoods V,; in H) will be designated
F.

Let p*, 0 <p* <min {p¥, ui, ..., u*}, be so small that if |p | < p*, the
following conditions are satisfied:

a) The system (A,)is 8/5 close to (Ag).

b) The system (A,) has only a finite number of equilibrium states in #,
which are all structurally stable.

¢) The system (A,) has no saddle-to-saddle separatrices in H.
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d) The cycles without contact y; and v} (i = 1, 2, ..., r) of (A4) are cycles
without contact of (A,).

e) In every neighborhood V;, there are at most two closed paths
of (A,), and these paths are structurally stable limit cycles.

The validity of conditions a through d for small p is self-evident.
Condition e follows from the definition of the number e, the numbers u}, and
the neighborhoods V;.

We will now show that if p is sufficiently small in absolute magnitude,
conditions a through e are supplemented by an additional condition:

f) Any closed path of (Au) lying in H is completely contained in one of
the neighborhoods V,.

To prove this proposition, note that the set F is a closed region limited
by a finite number of cycles without contact of (A4), and that (A4) has only
a finite number of equilibrium states in F, all of which are structurally
stable, and has no saddle-to-saddle separatrices and no closed paths in
this region. Therefore (A4) is structurally stable in F. But then any system
sufficiently close to (A4) has the same topological structure in F (see
§18.4a).

Hence it follows that for a sufficiently small p, (A,) cannot have closed
paths which are completely contained in #. Furthermore, if a closed path
of (A,) has a point which belongs to one of the V;, the entire path belongs
to that V;, since otherwise the path would intersect one of the cycles without
contact yi or yi, which is impossible. This proves condition f.

We have thus shown that if p is sufficiently small, the system (A,)
satisfies conditions b, ¢, d,e. Then this systemis structurally stable in & by
the fundamental theorem of structural stability (Theorem 23, §18.2). Since
system (A,) is 8 -close to (A), the proof of Theorem 26 is complete.

Peixoto has shown that Theorem 26 is also true when R* is the space of
the )dynamic systems on any closed surface, whether oriented or not (see
/1/).

It follows from Theorem 26 that structurally stable systems form an
everywhere dense set in the space R* of systems of class 1.

In our proof of Theorem 26, we have actually established that any
system in R* has an arbitrarily close analytical structurally stable
system. Hence it follows that in the space of analytical systems, the
structurally stable systems are also everywhere dense.

Theorems 25 and 26 signify that structurally stable systems constitute,
s0 to say, the ''bulk' of the space of dynamic systems. Structurally
unstable systems, on the other hand, constitute ''partitions'' partitioning
the space into regions, each filled with structurally stable systems of the
same topological type.

d) Remark regarding the conditions of structural
stability of a dynamic system relative to the spaces
R{’ and R

In Theorem 23, which formulates the necessary and sufficient conditions
of structural stability of a dynamic system, structural stability is naturally
understood in the sense of Definition 10 (§6.1), i.e., relative to the space R;
(see §6.3). Let now (A) be a system of class ¥ > 1 or an analytical system,
which is consideredas a point of the space R*, where R* is one of the spaces
RY (r<N) or R (see §5.1). As before, we consider a region G* with a
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normal boundary, G* = ¢. Let (A) be structurally stable in &* relative to
the space R*. Then:

(A) may only have a finite number of equilibrium states, all of which
are simple (in virtue of Theorems 10 and 11, §7.3);

(A) does not have equilibrium states with pure imaginary characteristic
numbers (by virtue of Remark 1 to Theorem 15, §10.4);

(A) does not have saddle-to-saddle separatrices (by virtue of the remark
to Theorem 16, §11.2);

(A) may only have closed paths which are simple limit cycles (by virtue
of Theorem 20, §15.3).

All this means that conditions I through III of Theorem 23 are the
necessary conditions of structural stability of system (A) in T* relative
to the space R*.

Conversely, if these conditions are satisfied, (A) is structurally stable
relative to the space R,, and therefore relative to the space R¥* (see §6.3).

We have thus established that conditions I through III of Theorem 23 are
the necessary and sufficient conditions of structural stability of a system
(A) in G* relative to any of the spaces RY’, Ry which contain (A) as a point.
Hence, if we are only dealing with the spaces RY and R{’', there is no need
to indicate explicitly that (A)is structurally stable (or unstable) relative
to one of these spaces.




Chapter VII

CELLS OF STRUCTURALLY STABLE SYSTEMS. AN
ADDITION TO THE THEORY OF STRUCTURALLY
STABLE SYSTEMS

INTRODUCTION

The present chapter comprises three sections. The first, §19, deals
with cells of structurally stable systems. The conceptof a cell of a
dynamic system was introduced in QT, Chapter VII, §16. If all the
singular elements, i.e., boundary arcs, equilibrium states, limit cycles,
and orbitally unstable paths and semipaths, are removed from the region G
(or the sphere) where the dynamic system is considered (assuming that
there is only a finite number of such elements), the remaining points of &
form an open set comprising a finite number of components. T'hese com-
ponents are the cells of the dynamic system. In every cell, the paths of
the system show an identical behavior in a certain sense. The general
properties of cells are investigated in QT, Chapter VII, and for general
dynamic systems, there are infinitely many different types of cells. How-
ever, dynamic systems which are structurally stable in G* and have a
normal boundary are characterized by relatively few cell types. An
investigation of these types is the subject of §19. It gives a complete
listing of all the different types of simply connected interior cells of
structurally stable systems (i.e., cells which do not touch the boundary
of the region), and also of all the different types of doubly connected cells
(both interior and adjoining the boundary).

Some examples of structurally stable systems with their cells are
considered in §20.

The last section, §21, has no relation to the subject of cells. It proves
that we can do without the requirement of ¢~identity of close systems
(see §18.4,a) in the definition of a structurally stable system within a
cycle without contact (or on a sphere), i.e., the following definition can be
advanced:

System (A) is said to be structurally stable in a region enclosed by a
cycle without contact if any sufficiently close system has the same
topological structure like (A) in the relevant region.

The equivalence of this definition and the original Definition 10 (§6.1),
incorporating the requirement of e-identity, is proved in §21, which thus
constitutes an addition to the theory of structurally stable systems.

Note that the definition incorporating the condition of e-identity is
quite natural and is more convenient for the derivation of the necessary
conditions of structural stability, since it permits restricting the analysis
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to local considerations (e.g., in the neighborhood of a particular path),
rather than proceeding with global treatment. On the other hand, the
definition without e-identity is intrinsically simpler and it directly shows
that structurally stable systems constitute an open set in the space of
dynamic systems.

§19. CELLS OF STRUCTURALLY STABLE
DYNAMIC SYSTENMS

1. General considerations pertaining to cells of
dynamic systems

The concept of a cel: of a dynamic system and the properties of cells
are considered in detail in QT, Chapter VII. In this section, we will
reiterate without proof the essential information about cells that will be
needed in our treatmen: of the cells of structurally stable systems.

The analysis can be carried out either on a sphere or in a bounded
plane region G. In the case of a sphere, we will assume that the dynamic
system (A) has a finite number of singular paths (see QT, §16.9). If (A}
is defined in a plane region G, we will consider the system in a subregion
G*with a normal boundary, assuming that (A) has a finite number
of singular paths in &*. To fix ideas, let us consider the case of a system
defined in a plane region.

Let E be the set of all points which belong to the singular elements of the
system in G*.> Since we assume a finite number of singular elements, £ is
a closed set. Its compliement, the set G*\ £, is therefore open and consists
of disjoint components. These components are the cells of the dynamic
system (A).

The following general propositions are proved in QT, Chapter VII, §16:

I. The number of cells is finite.

II. Any cell is either simply connected or doubly connected.
III. Paths belonging fo a single cell are either all whole paths, or all
positive \negative) semipaths, or all arcs of paths.

If the cell consists of whole paths, its paths areeitherall closedpaths, or
all loops, or all nonclosed paths, i.e., a- and e-limit continua without
common points.

IV. All the nonclosed whole paths which belong to the same cell have the
same a-limit continuum and the same w-limit continuum.

V. If a cell consisting of nonclosed whole paths is doubly connected,
one of its boundary conzinua is an a-limit continuum, and the other is an
w-limit continuum of the cell.

* The set E comprises the points of all orbitally unstable paths and semipaths, the points of corner semi-

paths and corner arcs of paths, the points of boundary arcs and cycles without contact and bound.ary

arcs of paths, and all the equilibrium states. See §16.2,

We recall that a bounded region is said to be simply connected if its boundary consists of one connected
set (the boundary continuum) and doubly connected if its boundary consists of two nonintersecting
connected sets. In doubly cornected regions, one of the two continua is an exterior boundary continuum,
and the othet is an interior boundary continuum,. The interior boundary continuum, in particular, may
comprise a single point.
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VI. If a point P is a boundary point of a cell consisting of whole paths,
all the points of a path Lp through P are boundary points of the cell.

VII. The boundary of each cell consists of points which belong to
singular elements. If some point P is part of the boundary of a cell Z and
belongs to a singular path L completely contained in G*, or to a singular
semipath LO (orbitally unstable or corner), or to a corner arc, the entire
path L (semipath LOor arc [ respectively) belongs to the boundary of the
cell Z.

If the point P is part of the boundary of the cell Z and belongs to a
boundary arc ! of a path and P is not a corner point of the boundary, the
entire arc ! also belongs to the boundary of the cell Z.*

VIII. If a path or a semipath £ is part of the boundary of the cell Z, all
the limit points of L also belong to the boundary of the cell Z.

We will use the term a singular arc to designate a part of a
boundary arc without contact where all the points, except the end points,
belong to nonsingular paths, and each end point is either a corner point
or belongs to a singular arc or a singular semipath (a singular arc may
coincide, in particular, with a boundary arc without contact). A singular
arc is called a singular a- or o -arc depending on whether the paths
of the system enter into G* or leave G* through this arc. Similarly, a
limit cycle without contact with all its points belonging to nonsingular
paths is called a singular a-cycle (or o -cycle) depending on whether the
paths of the system enter into G*(or leave G*) through this cycle.

IX. If a semipath (or an arc of a path) of cell Z crosses a singular
w-arc {a-arc) A, all the semipaths (arcs of paths) of the cell Z cross the
same arc A at its inside points and do not cross any other e-arc (a.—arc)
except A.

If a semipath {or an arc of a path) of the cell Z crosses a singular
w-cycle (a-cycle), all the semipaths (or arcs of paths) of the cell Z cross
this cycle.

X. A cell whose boundary contains an e-arc or an a-arc is simply
connected.

XI. A cell whose boundary contains a singular - or a-cycle is doubly
connected.

Our problem is to identify all the various types of cells which are
allowed for structurally stable systems. Since structurally stable systems
have only a finite number of equilibrium states and closed paths and have
no saddle-to-saddle separatrices (the equilibrium states being only simple
nodes, saddle points, and foci), there are relatively few different types of
cells in structurally stable systems. For example, structurally stable
systems may not have cells filled with closed paths or loops.

2. Doubly connected cells of structurally
stable systems

We will now proceed with a detailed analysis of the cells of structurally
stable systems. In this subsection, we shall identify all the different types
of doubly connected cells, which can be done very easily.

* If the point P belongs to the boundary of the cell Z and is a corner point which belongs to a boundary

arc of a path, this arc will either belong entirely to the boundary of the cell Z or not belong altogether.
This can be verified by simple examples.
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First consider cells of structurally stable systems filled with whole
paths. From proposition IV of §19.1 and from the properties of
structurally stable systems we obtain the following theorem which is
valid for both simply and doubly connected cells.

Theorem 27. If Z is a cell of a structurally stable system filled with
whole paths, all these paths for t - + o go to the same sink (i.e., a stable
node, focus, or limit cycle), and for t - — « théy all go to the same source
(an unstable node, focus, or limit cycle).

Theorem 27 evidently can be restated as follows: any cell of a
structurally stable system filled with whole paths has one source and one
sink.

Doubly connected cells filled with whole paths.
Theorem 27 and propositions IV and V of §19.1 enable us to establish
directly all the different types of doubly connected cells of a structurally
stable system which are filled with whole paths.

Indeed, the boundary of such a cell consists of a single sink and a single
source, i.e., either two limit cycle, or a limit cycle and an equilibrium
state, or else two equilibrium states. The last alternative, however, has to
to be rejected, since the boundary of a bounded cell cannot consist of two
points. The boundary of a doubly connected cell thus consists either of two
limit cycle or a limit cycle and an equilibrium state. Evidently, in either
case, the exterior boundary continuum is necessarily a limit cycle,
enclosing all the paths of the cell. The interior boundary continuum may be
a limit cycle, a node, or a focus.

Before we can proceed withour classification of the different types of
cells, we should decide on a criterion for inclusion of two cells in one type.
Different criteria are zvailable, and we will use the following definition.

Definition 22. Cells Z, and Z, are said to be of the same type ( or to
belong tothe same type) ** if there exists an orientation-conserving, path-
conseruving topological wmapping T of Z, onto Z, which does not reverse the
direction of the paths int. Otherwise, we shall say that the cells z, and z,
are of differvent types.

We are now in a position to describe all the different types of doubly
connected cells of a structurally stable system which are filled with whole
paths.

I. Cells bounded by a limit cycle and an equilibrium
state. The boundary of each cell in this category consists of a limit
cycle L, and an enclosed equilibrium state — a node or a focus. The
cycle L, may be either stable or unstable, and the increase in ¢ may
correspond to motion in positive (counterclockwise) or negative sense
along the cycle. Accordingly, there may be four different cell types in
this category, which are shown in Figure 66.

® To structurally unstable systems, this theorem in general is inapplicable. For example, in a cell

filled with loops, all the path¢ go to the same equilibrium state for ¢t - — oo and ¢t — + oo, i.e., the
source of this cell coincides with its sink.

The condition stated in this definition could be replaced by a requirement of the existence of a mapping
T with the relevant properties maoving the cell Z, into Z, (i.e., without considering the cell closures),
Alterpatively, we could omit the requirement that T should be an orientation-conserving mapping or
conserve the direction of motian in ¢ along the paths. The choice of the particular criterion assigning
two cells to the same type is largely arbitrary. Sometimes, the actual choice depends on the problem
being considered.
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FIGURE 66, a) Stablecycle; b) unstable
cycle; c) stable cycle; d) unstable cycle.

It is readily seen® that the four cell types are different in the sense of
Definition 22, and that every doubly connected cell consisting of whole paths
and bounded by a limit cycle and an equilibrium state corresponds to one of
the types shown in Figure 66.

II. Cells bounded by two limit cycles. Let L; be the
exterior limit cycle of the boundary and L, the interior cycle. As ¢ in-
creases, the point may move along each of the cycles L, and L, in positive
or negative sense. Moreover, the cycle L, is either stable or unstable.

All this leads to eight different possibilities, which are depicted in
Figures 67 and 68.

.L, ‘

FIGURE 67, L;— limit cycle: a) and FIGURE 68. L~ limit cycle: a) and
b) stable, c¢) and d) unstable. b) stable, c¢) and d) unstable.

* Using a scheme of a dynamic system, say (QT, §29),
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It is readily seen that all the four cells shown in Figure 67 belong to
different types. On the other hand, each cell in Figure 68 is of the same
type as the corresponding cell in Figure 67.” There is
therefore a total of four types of cells bounded by two
limit cycles.
iIl. Doubly connected cells filled with
semipaths or arcs of paths. The boundary of
a cell filled with semipaths or arcs of paths evidently
should comprise limit arcs or cycles without contact
(see §19.1). By proposition X in §19.1, the boundary of
a doubly connected cell cannot comprise singular arcs,
FIGURE €9 and i: therefore incorporates at least one singular cycle
without contact. Hence it follows directly that the
boundary of a doubly connected cell filled with semipaths
consists of a singular cycle without contact and a source
or a sink {a limit cycle, a node, or a focus). From these considerations,
one can readily find the different types of these cells, and this assignment
is left to the reader as an exercise. Doubly connected cells filled with
arcs of paths are bounded by two singular cycles, one inside the other.
Only one type of such cells is possible (Figure 69).

3. Interior cells of structurally stable systems.
Simply connected interior cells

A cell Z in region G*is said to be interior if Z< G*, i.e., the boundary
of cell Z has no common points with the boundary of G*

Lemma 1. Every intevior cell consists of whole paths.

Proof. If cell Z consists of semipaths, their end points evidently lie
on the boundary of the cell and therefore belong to certain singular elements,
The only suitable singular elements are boundary arcs or cycles without
contact. The boundary of a cell consisting of semipaths thus intersects
the boundary of region G*, i.e., this is not an interior cell. It is similarly
proved that an interior cell cannot consist of arcs of paths.

Lemma 2, The boundary of an interior cell has no points which
belong to corner semipaths or cornev arcs of paths.

Proof. Let L be a corner semipath or an arc of a path, P a point
of the semipath which belongs to the boundary of an interior cell Z. By
proposition VII, §19.1, the end point M, of the semipath (or arc of path)
L which is a point of the boundary of G* also belongs to the boundary of
cell Z, i.e., Z is notand interiorcell. This completes the proof.

From the definition of an interior cell and from Lemma 1, supported
by proposition VI in §19.1, it follows that the boundary of an interior cell
of a structurally stable system consists of whole paths, which are limit
cycles, separatrices, or equilibrium states. Doubly connected cells
were considered in the previous subsection, where we saw that their
boundaries contain neither saddle points nor separatrices. We will now
prove that the reverse situation applies to interior cells.

® The mapping T moving cell a in Figure 67 into cell a in Figure 68, while conserving the orientarion, the
paths and the sense of motion, clearly maps the exterior limit cycle of the cell into the interior limit
cyele, and vice versa. This, however, does not contradict Definition 22,
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Theorem 28. The boundary of a simply connected interior cell of a
structurally stable system comprises a saddle point and at least two
sepavratrices.

Proof. Let Z be an interior cell of a structurally stable system whose
boundary contains neither saddle points nor separatrices. By Lemma 2,
the boundary of cell Z then consists of nodes, foci, and limit cycles only,
i.e., of sinks and sources. Since these elements are disjoint in pairs and
at least two of these elements — namely the a- and w-limit coninua of the
paths of the cell Z — are included in the boundary of Z, Z cannot be a simply
connected cell, which contradicts the original assumption. The boundary
of Z thus must contain a saddle point or a separatrix. Now, if the boundary
of a cell filled with whole paths contains the separatrix of some saddle
point, it also contains the saddle point (§19.1, VII). On the other hand, if
the boundary of a cell contains a saddle point, it contains at least two
separatrices of this saddle, which are continuation of each other. This
completes the proof.

Let us now consider a regular system of canonical neighborhoods of a
structurally stable system (A) in G*(§17.1). Any a-separatrix (w-separa-
trix) of a structurally stable system entirely contained in G* invariably
crosses a cycle without contact which belongs to a sink (a source).

In Chapter VI, §17.1, we introduced the concept of free and non-free
cycles without contact, elementary a- and w-arcs, simple and cyclic
elementary arcs. Let us reiterate some of the propositions corresponding
to these concepts.

1) Any nonsingular path crosses either precisely one a-cycle or
precisely one a-arc (simple or cyclic) at an interior point, or it crosses
either one w-cycle or one w-arc.

2) Nonsingular paths crossing an a-arc (w-arc) cannot cross a free
w-cycle (@-~cycle), and all these paths cross the same w-arc (e-arc). If
the e-arc and the o-arc are such that a nonsingular path crossing one of
the arcs inevitably crosses the other arc, the two arcs are said to be
conjugate. Similarly, free ¢- and e-cycles which are crossed by the same
paths are called conjugate free cycles.

3) Any a-separatrix (w-separatrix) of a saddle point of system (A)
passes either through the common end point of two simple w-arcs (a-arcs)
or through the end point of a cyclic w-arc {a@-arc).

4) The paths of the same cell cross a single pair of conjugate o~ and
w-arcs or a single pair of conjugate a- and w-cycles (QT, Chapter XI,

§27, Lemma 5).

We will now prove that no two cyclic arcs of a structurally stable
system are conjugate. Note that this proposition does not apply to
structurally unstable systems.

Lemma 3. Of two conjugate elementary arcs of a structurally slable
system, at least one is a simple (not cyclic) arc.

Proof. Let abe a cyclic arc, M, its end point. To fix ideas, let abe
a cyclic a-~arc. The arc ¢ and the point M,constitute a cycle without
contact € which either belongs to a source or is a boundary cycle. Let L,
be a path through M,. According to the definition of a cyclic arc, L, is
a singular path, i.e., it is either a separatrix, or a corner semipath, or a
corner arc of a path.
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First assume that L, is a separatrix of some saddle point 0. 1t is
clearly an w-separatrix, i.e., it goes to Ofor ¢t—» + o. Let L, and L; be
w-separatrices of the saddle O(Figure 70). Let b be the w-arc conjugate
with a. All the paths passing through points of the arc a, other than its
end point M,, cross the arc 4 at its interior points as t increases.

¥

FIGURE 70 FIGURE 71

The separatrices L, and L, should pass through the end points of ¢&.
Indeed, if the separatrix L, does not pass through an end point of 4, it
passes through the common end point of two w-arcs b, and b, or through
the end point of a cyclic w-arc b;. But then paths passing through the
points of the arc a near the point W, alsocrossthearcs b, b;, or bzas!?
increases, i.e., they do not cross the arc b, contrary to the assumption
that a and & are conjugate arcs.

The separatrices L, and L, thus must pass through the end points of b.
Since these separatrices have no common points, the end points of b do not
coincide, i.e., b is a simple arc.

Let now L, be a corner arc or a semipath. Let P be a corner point,
which is the common end point of the semipath {(or arc) L, and the boundary
arc without contact » (Figure 71). The paths through the points of the
arc a sufficiently close to the point M,, which lie on the same side from
L, as the arc 4, will evidently cross the arc % as ¢ increases. It is thus
readily seen that % and &« are conjugate arcs. Since X is a boundary arc
without contact, it is a simple w-arc. This completes the proof of the
lemma.

We will now consider the different types of simply connected interior
cells of structurally stable systems.

Let Z be such a cell. By Theorem 28, the boundary of Z comprises
a saddle point and its separatrix. Paths of the cell Z clearly do not
intersect the free cycle 7 which belongs to a source or a sink. Indeed,
if the paths of Z cross this cycle, all the points of the cycle belong to Z.
Therefore, boundary points of the cell, and hence the boundary continua,
lie both inside and outsice the cycle €. These boundary continua should
not have any common points, i.e., the cell Z is not simply connected,
contrary to the original assumption.
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Hence it follows that in virtue of property 4 the paths of a simply
connected interior cell cross the single pair of conjugate a-~ and w-arcs.
By Lemma 3, at least one of these arcs is simple (not cyclic). Let the
a-arc be simple. We will denote it by @, and the cycle without contact
incorporating this arc will be designated C,. Clearly C, belongs to a
source (unstable node, focus, or limit cycle).

Let M, and M, be the end points of the simple arc ¢, and L, and L, the
paths through M, and M,. These paths enter the boundary of cell Z, i.e.,
by Lemma 2, they are separatrices. Suppose that the arc a lies on the
positive side of the separatrix L, and therefore on the negative side of
the separatrix L,. All the paths crossing the cycle without contact C,
emerge from the canonical neighborhood of the corresponding source (to
which C, belongs) as ¢t increases. The source may lie either inside the cycle
C, or outside the cycle. Let us consider the two possibilities separately.

A) The source which belongs to cycle C, lies inside Cs.

The source may be an unstable node, focus, or limit cycle. The paths
crossing the cycle C,, the separatrices L, and L, included, will emerge
with increasing ¢ from the canonical neighborhood enclosed by the cycle C,.
Let 0, be a saddle point to which the separatrix L, goes for t —+ 4 oo (see
Figures 72, 73,75, 77,79, 80). This saddle point and its a-separatrix L,,
which is a continuation of the w-separatrix L, in the positive direction, also
enter the boundary of the cell Z (see proof of Theorem 28).

FIGURE 72 FIGURE 73

The separatrix L, through the end point M, of the arc e also goes to some
saddle point O, for t—+ 4 co. Two cases are possible:

Ai) Oy and 0, are different saddle points.

A,)} Saddle point 0, coincides with 0,.

Let us consider the first of the two cases.

A1) 0,and 0, are different saddle points (Figures 72 and 73).
The arc e lies on the negative side of L,, and the a-separatrix L;, which is
an o-continuation of the separatrix L, in the negative direction, also enters
the boundary of the cell Z. The separatrices L; and L, evidently pass
through the end points M; and M, of the e-arc b conjugate with the arc a.
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Since M, and M, are two different points, b is a simple arc. Let (, be 2
eycle without contact comprising the arc 4. C, belongs to the sink to which
the separatrices L; and L, go for ¢t —~ - oo.

Here again we should consider two alternatives:

A1) The cycles without contact C, and C, do not enclose one another.

Aiz) The cycle C, lies inside the cycle (.

Consider case A, first.

Aji} The cycles without contact s, and (,do not enclose
one another. Lety be a simple clesed curve consisting of the arcs a
and b, the segments M,0, and M,0, of the separatrices L, and L,
respectively, the segments 0,M; and 0,3/; of the separatrices L; and L;, and
the equilibrium states @, and 0,. Let A be the simply connected region
bounded by the curve y. Thepointsofthecurvey whichare the interior points
of the arcs a and bbelong to the cell Z, and all the other points of y are
boundary points of Z. All the paths of the cell cross the arc ¢ and emerge
from the cyvcle ¢, with increasing ¢. These paths should either enter the
region A or leave it. We will show that they necessarily enter this region.

N
P
)

FIGURE 74, a' S, unstable node, S, stable node: b) S unstable
node; c¢) S unstable node; d) § stable node; e) § stable node.
In cases f, g, h,i, L, is an unstable cycle,
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Indeed, let the paths of the cell Z which cross the arc a leave the region
A as t increases (Figure 73). Then there are points of the cell Z which lie
outside the curve ¢, and therefore also boundary points of Z with this
property. Let E be the set of these boundary points {(which lie outside 7).
The set E consists of the points of singular paths. It is readily seen that
the regions enclosed by the limit cycles €, and ( lie inside the curve.
Therefore, the separatrices Ly, L}, L,, and L; have no points which lie
outside y, i.e., £ is the set of points of singular paths, other than the
separatrices Ly, L;, Ls, L,and clearly other than the equilibrium states 0, and
0,. But all the points which are sufficiently close to the curve y from the
outside belong to nonsingular paths. The set E is therefore at a positive
distance outside the curve y. This means that ¥ does not intersect with
the boundary continuum which contains the separatrices Ly, L., L;, L; and
their limit points, i.e., the cell Z has at least two boundary continua. This
evidently contradicts the assumption that Z is simply connected.

We have thus established that in the case A;; all the paths of the cell Z
crossing the arc a leave the cycle C, and enter into the region Aas ¢
increases (Figure 72). The cell will be of one of the types shown in Figure 74
according as the source or respectively the sink to which the paths of the
cell go is an equilibrium state or a limit cycle, and in the latter case,
according as the direction of motion along the limit cycle is positive
(clockwise) or negative. In case Aj; the boundary of the cell Z evidently
consists of the separatrices Ly, L;, L,, and L, and their a- and o-limit
points.

Ap;z) Cycle ¢, lies inside cycle(, In this case, the cycle
without contact €, clearly belongs to some stable limit cycle L,, and ¢, lies
inside L, (Figure 75). Considering, as before, a simple closed curve y and
the region A enclosed by this curve, we readily see that A is part of the ring
region enclosed between the cycles C, and C,. The paths of the cell Z cross
the arc « and with increasing ¢ enter into A. As ¢t further increases, these
paths cross the arc &, enter into a canonical neighborhood of the cycle L,
and go to L,. The separatrices L; and L,, with increasing ¢, also go to L,.
The limit cycle L, is therefore part of the boundary of the cell Z. As before,
this boundary consists of the separatrices L, L;, L;, and L; and their a-
and o~limit points. The cell Z belongs to one of the types depicted in
Figure 76. The exact type depends on the character of the source to which
C. belongs and on the direction of motion along this source (if it is a cycle)
or along the cycle L,.

VN

FIGURE 75
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Z

FIGURE 78

Let us now consider case Aa.

A;) The saddle point 0, coincides with 0, (Figures 77,79, 80).
In this case, the separatrix L;, which is an y-continuation of the separatrix
L, in the positive direction, is also an e-continuation of the
separatrix L, in the negative direction and enters the
boundary of the cell Z. Let b be an arc without contact
conjugate with the arc e, and (, a cycle without contact
comprising the arc &. The separatrix L; passes through
the end point M, of the arc 6. [t is readily seen that paths
crossing the arc ¢ pass through the points of the cycle
sufficiently near the point M;, on either side of this point.
Therefore b is a c¢yclic arc.

Let » be a simple closed curve consisting of the
segments M,0; and M0, of the separatrices L, and L.,
respectively, of the arca, and the point 0;; let A be the
FIGURE 77 region enclosed by the curve y. There are two

possibilities:

Az} The paths of the cell Zcross the arc a
and enter into Aas tincreases (Figure 77). In this case, the
separatrix L;, and also the cycle without contact ¢, lie inside the cycle 4,
and the sink to which (» selongs lies inside C,. The cycles ¢, and C do
not enclose one another. The boundary of the cell Z consists of the
separatrices L;. L.. L, and their «- and »-limit points. The cell Z belongs
10 one of the types shown in Figure 78. As in the previous cases, the
exact type of the cell depends on the character of the sources and sinks to
which the paths of the cell go and on the direction of motion along the
source (or the sink), assuming that it is a limit cycle.

Azs) The paths of the cell Zcross the arcaand leave
Mlast¢ increases (Figures 79 and 80). In this case, either the cycles
¢, and Cp do not enclose one another (Figure 79) or cycle ¢, lies inside
¢, (Figure 80).
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FIGURE 78

4

FIGURE 79 FIGURE 80

However, reasoning along the same lines as for case A,;, we can show
that the case depicted in Figure 79 is inapplicable. Thus, cycle C; lies
inside C,. Hence it follows that the source to which (, belongs is a limit
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cvele Ly, and C, lies inside L,. The boundary of the cell Zconsists of the
separatrices Ly, L,, L; and their limit points. The cell Z may belong to one
of the types shown in Figure 81.

FIGURE 81

We have fully covered case A, when the source belonging to the cycle C,
lies inside C,.

B} The source which belongs to cycle C.lies outside C..

An unstable limit cycle L,, with (, lying inside L,, is evidently a source
of this kind. As in case A, the separatrices L, and L, through the end
points M, and M, of the arc a may

B;) go to different saddle points 0, and O.(Figure 82);

B2) go to the same saddle point O, (Figure 83).

FIGURE &2 FIGURE 83




Ch. VII. CELLS OF STRUCTURALLY STABLE SYSTEMS. ADDITIONS TO THEORY

It is readily seen that case B, is analogous to case Ajz, differing from
the latter only in the direction of arrows along the paths, and case B3 is
analogous to case Ap.* Correspondingly, there is no need to analyze
these cases in particular detail. The types of cells corresponding to
case By are shown in Figure 84. These cells are analogous to those
shown in Figure 81.

FIGURE 84

We have so far assumed that the arc a is a simple arc, and its conjugate
arc b is either simple or cyclic. The cases when bis a simple arc and its
conjugate arc g is cyclic are obtained from Az and Bz by reversing the
direction of the arrows along the paths.

We can now count the total number of different — in the sense of
Definition 22 — simply connected interior cells which may exist in
structurally stable systems. We will not do this, however. It should
only be stressed that the above analysis does not show that each of the
different cell types described actually exists for one of the structurally
stable systems. We have only established that structurally stable systems

* In case Agy, the source lies inside the sink, and in case B, the sink lies inside the source,
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can have no other types of simply connected interior cells in addition to
those described. It can be proved without difficulty that all the cell types
described do exist, however. This can be done, say, by constructing a
dynamic system corresponding to each cell type in terms of its vector
field.

We have established all the different types of doubly connected cells
1§19.2), and all the types of interior gimply connected cells which may
occur in structurally stable systems. It remains to consider simply
connected cells which are not internal cells, i.e., cells whose boundaries
have points in common with the boundary of the region. We will not
analyze these cells, ac this can be done along the same lines as before.
Figure 85 depicts the different types of simply connected cells of a
structurally stable system which touch the boundary of G* for the case
when this boundary consists of a single cycle without contact.

r
74
5
g
FIGURE 85

The concept of the region of stability in the large of a given
sink is of considerable importance in various applied problems. This
region is defined as the set of all the cells for which the given singular
element is the sink. Examples of regions of stability in the large will be
found in the next section.
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§20. EXAMPLES OF STRUCTURALLY STABLE
SYSTEMS

In this section we will consider some examples of structurally stable
systems.
Example 4. Consider the system

z=az+by—z (@3 +y?) =P (z, y), (1)
y=cz+dy—y (@ +y") =0, p),

assuming that

A= 0
c d!<
D=0*—4A=(a—d)*+4bc >0 (o=a+4d).
Since for system (1)
P(—-I, —-y)=——P(x, y) and Q(—.’L‘, ~y)=_Q(Iv y)’
then together with any solution z =@ (), y =% () of (1), x= —@ @), ¥y = — ¢ ()
is also a solution of (1) Geometrically this signifies that the reflec-
tion of any path of system (1)at the origin is also a path
or, alternatively, the phase portrait of the dynamic system
(1)is symmetrical about the origin.
Let us consider the system (1) inside the circle
2?4y < R, (5)
with the boundary
22+ yt=R3,
The path
r=9(), y=9()

of system (1) is tangent to the circle (6) at a point (z, y) when

| Y ar gy =0.

From equations (1), .we have for sufficiently large R

2z 4+ yy = az? + (b+c) 2y + dy*— (2 + ) < 0.
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The last relation shows that for sufficiently large R, circle (6)is a
cycle without contact for paths of system (1) Moreover, since

. . 1 d
zrtyy =54 @@+y%),

it follows from (8) that, as ¢ increases, z* -~ y* diminishes, i.e., all the
paths crossing the circle (6) enter into the cycle without contact {6) as ¢
increases. We will take R to be so large that the last condition is satisfied.

It follows from (2), as is readily seen, that the paths through the points
of the axis ¢ = 0 cross from one side of the axis to the other side (with the
exception of the path which is the equilibrium state O (0,0)).

Let P(z, y) = 0. We then change over from system (1) to a single
equation

dy _ cx-bdy—y (=24 (9>

dr T aztby—ax(zttyl)
Let us determine for what & the straight line
y=kz (10)

or part of this line is an integral curve of equation (9). From (9) and (10)
we have

_ct-dk—kat(14k2)
T e+ bk—zr({+ k%)

bk3+(a_d)k—c=o. (11)

k= d—a =+ V(d—a)2+4be . (12)

2b

From (2) and (4) it follows that there exist precisely two values of &
satisfying equality (12). Let these two roots be k, and k,, where %, corre-
sponds to the plus in (12) and k, to the minus.

Let us now find the states of equilibrium. One of these is the
point O (0, 0). There are obviously no other equilibrium states on the
vertical axis. The coordinates of any equilibrium state other than the
point O (0, O)therefore have the form (x,, kz,}). Inserting these coordinates
in the equations P (x,¥y) == 0, Q (z, y) = 0, we find that % satisfies
equation (11), i.e., every equilibrium state of system {1), other than the
point O, lies on one of the straight lines y = ki and y = k,x, where &, and
k» are defined by (12).

From the equation P (z,, kx,) = 0 we now find that

bk 13
To=+ ';_{-;—ki (13)

so that
(14)
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The characteristic equation of the equilibrium state 0 (0, 0)is
AM—gh--A=0. (15)

It follows from (3) that O (0, 0) is a simple saddle point. Let A; and A, be
the roots of equation (15). Direct calculations show that

a+bky=Xy,  a-t by =My, (18)

and, by (3), A4, > 0,2, < 0. From (13) and (16) it follows that the straight
line y = k,z has no equilibrium states (except the point 0) and therefore the
rays ¥y = kz (x> 0) and y = kz (z << 0)are
paths of the system, i.e., separatrices of
the saddle point 0. The straight line

y = k2, on the other hand, contains pre-
cisely two equilibrium states in addition to
the origin, Oy (g, ¥o) and O, (—zy, —¥,), Where
zoand y, are obtained from (13) and (14) for
k = k. The equilibrium states 0, 0,, and O,
partition the line y = kr into four parts,
each of which is a path of the system. The
segments 00, and 00, of the line y==kx are
separatrices of the saddle point O.

Fairly simple calculations show that
A (zo, Yo) =A(—zo, —¥a) =20 VD >0.

Therefore the points 0, and 0, are simple
nodes (these cannot be foci, since they are
limit points of paths which are segments of the line y = k;z).

System (1) has no closed paths. Indeed, a closed path should enclose
at least one of the equilibrium states 0, 0,, 0, and it should therefore cross
the line y = k,z, which is unfeasible, since this line is made up of a number
of paths of the system. System (1) thus has no closed paths and no saddle-
to-saddle separatrices; it has three equilibrium states — a simple saddle
and two simple nodes. Therefore by Theorem 23, system (1) is structurally
stable in the circle (5). The configuration of the paths is shown in
Figure 86. The direction of the arrows along the paths is chosen so that
all the paths enter into the circle (5) as ¢ increases.

The circle (5) contains two cells of system (1), Z, and Z,. Both cells
are filled with semipaths and are simply connected. The boundary of the
cell Z, (Z,) is made up of the separatrices 0A4,, O4,, and 00, (00,),
equilibrium states 0 and O, (0;), and a simple arc without contact
ABA, (AByA,). The conjugate arcs of 4,8,4, and A4,B,4, are clearly cyclic.
The cell Z; (Z,)is the region of stability in the large of the stable node
0y (0s).

Example 5. Consider the system (1) as before

FIGURE 86

z=azt+by—z (@ +y%), y=cz+dy—y @@+,
assuming that
¢=a-+d>0,
a b
A= ¢ d’>0'
D=0*—4A>0.
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As in the previous example, circle (8) of a sufficiently large radius R is
a cycle without contact and all the paths of our system enter into it as ¢
increases.

Consider the system inside circle {5) of sufficiently large radius. The
lines y = k,z and y = k.z, where k, and &, are the roots ot {11}, are made up
of paths of our system:.

The characteristic roots », and i, of the equilibrium state O (0. () are
positive and different in virtue of conditions (17),118),(19}, so that O is an
unstable node. From (13),{14),
(18) and from the fact that both 3,
and i, are positive we conclude that
each of the straight lines y = &z,

y = k.r contains, besides the point
0, two other equilibrium states.
Let these equilibrium states be

A Byand 4., B,, respectively
(Figure 87). Calculations show
that for the equilibrium states .,
and B, lying on the straight line

y = kux, the determinant A =

=25, 1D > 0, and for the equilib-
rium states A, and B,, A =

= —2, 1} D < 0. Thus, 4, and B,are
simple nodes, and 4, and B, are
simple saddle points. The system
has no closed paths for the same
reasons as before, and its phase
portrait is symmetrical relative

to the origin 0. The configuration of the paths is shown in Figure 87. The
direction of the arrows along the paths and the direction of the separatrices
are determined so as to ensure that all the paths enter into the boundary
cycle without contact as ¢ increases.

By Theorem 23, the system is structurally stable inside the circle (5).
This circle consists of four cells: Z,, Z, and the two cells Z,, Z. in
symmetrical position relative to the origin. 2, is an interior cell. It
consists of whole paths extending from the unstable node O to the stable
node 4, and belongs to the same type as cell ain Figure 74. Cell Z,con-
sists of semipaths and belongs to the same type as cell ¢ in Figure 85. The
stability region of the node 4, comprises the cells Z, and Z,, and that of
the node B, the cells Z; and Z,.

Remark. System (1) may be investigated by analogous methods for
any other combination of the coefficients a, b, ¢, d. See QT, §30,

Example 18.
Example 6. The system

FIGURE 57

%=2y+ry+x’+y’—~1=P(I, )
dy

or = —2r—22=Q(z, y)

(20)

has two equilibrium states, A4(0, —1+172) and B(0, —1—V'3). Here, dis
an unstable focus and B is a saddle point. It is readily verified that
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the circle
224y —1=0 (21)

is a path of the system (see QT, $§30, Example 14). The focus 4 lies inside
this circle, and the saddle point B outside the circle.

We will now show that the circle (21) is a structurally stable limit cycle
of system (20). To prove this, we have to evaluate the integral

T

J= § 1P% (@ (1), b () + Qx (@ (1),  (£)14de, (22)

where
z=9(), y=¥v(@)

is a solution of the system corresponding to path (21), and t is the period
of the functions ¢ and ¢ (v>>0). By {34), §13

1= | Vi o .

(Lo) ’ ’

where L, designates the circle (21). The last integral is readily evaluated

by expressing the circle L, in parametric form z=cos{, y =sin ¢ and in-
serting for P and @ their expres‘sions from

sint+2costdt=

Infinity (20). As a result, we findJ = S =

=47 (3—2V3) <0. Hence it follows that

circle (21) is a stable structurally stable
limit cycle for our system.

The topological structure of system (20)
in a plane was investigated in QT, §30,
Example 14.% It was established there that
system (20) has no other closed paths,
except the circle (21), and has no saddle-to-
saddle separatrices. The configuration of
the paths of system (20) is shown in
Figure 88.

Let G*be a region with a normal boundary
bounded by the arcs without contact EF and
RS and the arcs of paths FR and ES {Figure 88),
which encloses the equilibrium states 4 and B of the system and its limit
eycle {(21). By Theorem 23, system (20) is structurally stable in G*, G+
contains four cells. Z, is an internal doubly connected cell consisting of
whole paths which unwind from the focus 4 and wind onto the limit cycle L,.
The other three cells are simply connected. The cell Z, consists of
semipaths and is bounded by an arc without contact EF,, three separatrices

FIGURE 88

* This investigation analyzes the behavior of the paths of system (20) at infinity and considers the paths of an
auxiliary system

dx dy
o 2 - 9y
at =2y - 234-y2—1, = 2z,

which have a general integral (x2 4- y3 — 1)e¥ = €. The closed paths of the auxiliary system form a
topographic system of curves for system (20).
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of the saddle point B, limit cycle L,, and saddle point B. The other

two cells Z, and Z, consist of arcs of paths. The conjugate of the arc
without contact E,F, entering the boundary of the cell Z, is clearly a
cyclic arc without contact. The stability region of the cycle L, comprises
the cells Z, and Z,.

§21., A DEFINITION OF STRUCTURAL STABILITY
FOREGOING THE REQUIREMENT OF ¢-IDENTITY

We will consider in "his section dynamic systems structurally stable
in W which are bounded by a cycle without contact I. We have
seen in Chapter VI (§18.4,a) that structural stability of system (A) in such
a region can be defined as follows:

I. System (A)is structurally stable in region W bounded by a cycle
without contact I' if for any £ > 0 there exists 8 > 0 such that for any
system (A) §-close to (A) the following relation is satisfied:

(F, 3 = (T, 4.

Definition I not only requires that systems sufficiently close to the
structurally stable system (A) have the same topological structure as (A)
in W, but also imposes a further condition, namely that the paths of any
such system can be moved into the paths of system (A) by an arbitrarily
small translation. All ~hese factors combine into a fairly complex
definition of structural :nstability of a system. And yet, according to the
most natural and straightforward definition, a system is structurally
unstable if its topological structure can be altered by infinitesimally small
increments. We thus arrive at a better definition of a structurally stable
system:

II. System (A} is structurally stable in region ¥ bounded by a cycle
without contact T if there exists 8 = 0 such that any dynamic system (&)
s-close to (A} has the same topological structure as (A)in W.’

Definition II is simpler than Definition I, since it imposes fewer
restrictions on structurally stable systems. It is clear that if system (A)
is structurally stable in the sense of I it is also structurally stable in the
sense of II. The reverse is not immediately obvious: it would seem that
there might be dynamic systems which would be structurally stable in the
sense of Il and structurzlly unstable in the sense of I. In fact, however,
this is not so, and the two definitions are equivalent. This fact was proved
by Peixoto in /14/, and the present section is devoted to Peixoto's proof.

To fix ideas, we will consider structural stability in relation to the space
R Y, i.e., the space of analytical functions with the distance defined in
terms of the first derivatives only.

In case of structural stability relative to the spaces R, R, the
proof is completely analogous {or even simpler).

We should specify in Definitions I and II in relation to what space, R;') or R\, the structural stability is

being considered. However, by virtue of remark d in §18,4, this is immaterial for Definition I, We will
see in what follows that it is immaterial for Definition 11, either.
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Conditions I, IL, IIT of Theorem 23 (§18.2) will be designated CSS
(conditions of structural stability). These conditions postulate

1) existence of only a finite number of equilibrium states of system (A)
in region W, these equilibrium states being simple nodes, saddle points,
or foci;

2) absence of saddle-to-saddle separatrices;

3) absence of closed paths with characteristic index equal to zero.

To prove the equivalence of Definitions I and II, we will establish that
the CSS follow from Definition II. We will require a number of lemmas
in the process.

In Lemmas 1 throught 8 it is assumed that system (A)with the
right-hand sides Pz, yyand Q, y)is an analytical dynamic
system structurally stable in Win the sense of
Definition II, and 6§ is the number mentioned in this definition.
Analytical dynamic systems §-close to system (A) will be called
feasible systems. By Definition II, feasible systems have the same
topological structure in W as the system (A). We will assume that all the
paths of system (A) which cross the cycle without contact T enter into W as
t increases.

Lemma 1. Structuvally stable systems in the sense of Definition II
form an open set in the space of all (analytical) dynamic systems.

The validity of Lemma 1 follows directly from Definition II, since by
this definition feasible systems are structurally stable.*

Lemma 2. System (A) has only a finite number of equilibrium states,
which are all simple.

Proof. By Weierstrass's theorem, there exists a feasible system (A)
whose right-hand sides are irreducible polynomials (see proof of
Theorem 10, §7.2). From the Bézout theorem it follows that (A) only has
a finite number of equilibrium states. But then (A) may also have only a
finite number of equilibrium states. The first proposition of the lemma
is thus proved.

Let us now prove that all the equilibrium states are simple. Suppose
that one of the equilibrium states of (A} is multiple. Let this be the
point 0 (0, 0), i.e., P(0,0) =Q (0, 0) =0 and A (0, 0) = 0.

Let ¢ (z, y) be a polynomial which is equal to 1 at the point O (0, 0) and
vanishes for all the other equilibrium states of {A). Consider the system

42 —P(z, y)+eazp(z, ) =P(z, ),

-diy-=0(x, )+ ebye (z, y) =§ (=, v),

(1)

where a and b are real numbers smaller than 1 in absolute value, and e >0 is
so small that system (1) is feasible. All the equilibrium states of (A) are
clearly at the same time equilibrium states of system {1). Since (1)is a
feasible system, the number of its equilibrium states in W is the same as
that of (A). This means that the two systems (A) and (1) have the same
equilibrium states in W.

Let C be a circle centered at 0 (0, 0) which lies in W so that all the
equilibrium states of system (a), except the point O, fall outside this

* Similar propositions for structurally stable systems in the sense of Definition I were advanced in §18.4,¢,
Theorems 25 and 26. Their proof, however, far from following directly from Definition I, conversely
requires a preliminary derivation of the conditions of structural stability.
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circle. We choose ¢ > 0 to be so small that for any two systems of the
form (1}, the vectors of the corresponding fields do not point in opposite
directions at any point of the circle ¢. Then by QT, §10.2, Lemma 2,
the rotations of the vector fields of all these systems on the circle (¢ are
equal to one another. Since C encloses a single equilibrium state O of (A),
and hence of any system (1), the Poincare index of the equilibrium state 0 is
constant for all the systems (1).

On the other hand, it follows from equations (1) that

I 0 = %—%] \ =¢[aP (0, 0) — 6Q; (0, 0) — eab}.
- f-'

An appropriate choice of the numbers a and 4 will make 3 (0. 0) either
positive or negative. Ey QT, §11.4, Theorem 30, in the former case the
Poincare index of the equilibrium state 0 is +1, and in the latter case it is
~1. This, however, contradicts the previous result. The proof is thus
complete.

Lemma 3. None of the equilibrium states of system (A) is a center.
9P
“T
div (P, Q). We will use this notation in the following.

Let O;(a;. b)), i=1, 2, ..., n, beallthe equilibrium states of system (A).
Consider the linear functions

¢z, yy=m(z—a,)+ply—b))

Proof. —4-73- is the divergence of the vector field (P, Q), designated

(i=1,2,...,n), where the numbersm and p are chosen so that
div(g,, ¢)=m+p=0

and forjsek, @;(ar ba)s=0. Let ¢(z. Y)=¢1ge... ¢s.
Clearly, @(z, y)=0 at any of the points 0,. Now from the equality

n
div (g. qh)=i§l e @, V(P Q) .. Bn

and from the previous conditions it follows that div (¢, ¢) does not vanish at
any of the equilibrium states of system (A).
Consider the system
d d N
Gr=P@y) rep(z g =P L =0y gz y) =0 (a%)
where ¢5¢0 is so small that system (A*) is feasible. The set of the
equilibrium states of (A*) evidently coincides with the set of the equilibrium
states of (A), i.e., it consists of the points 0;. Since

div (P*, Q) =div (P, Q) +ediv (¢, §),

for sufficiently small e, div(P* @*)5£0 at those of the points 0; where
div (P, Q) 0. At those of the points 0, where div (P, Q)=0, we have

div (P*, Q*) =z div (9, ) 0.
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Thus, div (P*, Q*) 5= 0 for all 0;, i.e., none of the equilibrium states of
system (A*) is a center. Therefore, system (A) has no centers either,
and the proof of the lemma is complete.

Remark. The above proof remains in force for systems of class 1,
too. The fact that structurally stable systems of class 1 cannot have
center-foci follows directly from the existence of feasible analytical
systems.

Lemma 4. System (A) has no saddle-to-saddle separatrices.

Proof. Letn, O0<<n<=xn, besosmall that for any A € I, where {is the
segment 0 A<, the system

%f— = P cos (An) — @ sin (A7),

: (A)
S5 =Psin (M) + Q cos (An)

is feasible. The vector field of the system (AL) is clearly obtained from the

vector field of {A) by rotation through the angle An in the positive sense.

The equilibrium states of {A,) and (A) coincide. Finally, the Jacobians A of

(A,) and (A) are equal at every point, as is readily seen. Therefore the
saddle points of (A,) and (A) coincide.
Let these saddle points be O; (i =
=1, 2, ..., m); the separatrices of
each saddle point 0, will be denoted
Ly, Lizy Lysy L.

On each separatrix L;; j =1, 2, 3, 4;

i=1,2, ... m)we choose a point C;;
which is sufficiently close to the corre-
sponding equilibrium state 0;,, so that
no two segments 0;C;; of the separa-
trices intersect. Let U;;be the
neighborhoods of these segments
satisfying the following conditions:
each neighborhood U;; contains only one
equilibrium state of system (A),
namely 0;, and only one of the points C,

FIGURE 89 namely C,; (Figure 89). If the points
C,;; are sufficiently close to the

respective 0;, such neighborhoods clearly exist.

Through each point C,;, we now pass a segment without contact /;;(e.g., a
segment of a normal to the path l,;) which is entirely contained in¥U;;and is
so small that the segments [;; have no common points with one another and
each segment [;; has only one common point with all the segments 0,C;; of
the separatrices, namely the point C,;. If system (A,) is sufficiently close
to (A), e.g., if n is sufficiently small, we conclude from $§9.2, remark to
Lemma 3, that to every segment 0,C;; of the separatrix L;; of the saddle
point O; corresponds a segment 0, of the separatrix L{} of the saddle
point 0; of system (A,) which is entirely contained in U, and is such that
C¥ €1;. Furthermore, as in the case of system {A), every segment I, has
a single common point with all the segments 0,C{) of the separatrices of the
system (A,). We will assume that y is so small that this condition is
satisfied for all (A,), A€l
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In view of the above, every neighborhood U;; thus naturally corresponds
to a single separatrix of any system (AA), 02 <1, namely the separatrix
LM We will refer to this separatrix as the separatrix corre -
sponding to the neighborhood U;;.

Let now system {A) have a saddle-to-saddle separatrix y. To fix
ideas, let y extend from saddle point 0,to 0,. The case of a separatrix
extending from some saddle point to the same saddle point, i.e., forming
a loop, is treated analogously.

Let 7; be a homomorphism of { into itself, which moves the paths of (A)
into the paths of (A,) (this homomorphism exists, since (A) is a structurally
stable system and {A,) is a feasible system; see Definition II). Evidently,
T (y)is a separatrix exteanding from the saddle point T) (0,) to the saddle
point T3 (0;). Being a separatrix of two saddle points, it clearly corre-
sponds to two (different) neighborhoods U,

There are uncountably many separatrices T; (y) (since A € I), whereas
the pairs of neighborhoods U;;form a countable set. Consequently, there
exists an uncountable set /* — / of the values of A and also two
neighborhoods ¢/;;, e.g., the neighborhoods U/;; and U,, of the saddle points
Op and O,, such that if A € /*, the separatrix T, (y) extends from saddle point
0; to saddle point O, and corresponds to the neighborhoods U;; and U,;.

Since /* is an uncountable set of points of the segment I = [0, 1], [*can-
not consist entirely of isolated points. Hence there exists at least one

L€ I*and a sequence of A;, i =1,2,3, ...,
such that i, € I* and ‘lim A = Ao Without

loss of generality, we may take A;to be
a monotonically decreasing sequence.
The separatrix Ty, (y), and likewise
the separatrices T, (y), extend from
saddle point O; to saddle point O; and
correspond to the neighborhoods U,; and
FIGURE 90 U, (Figure 90). Let ¥ be a neighborhood
of the separatrix T3, (y). From §9.2,
remark to Lemma 3, and from §4.2, Lemma 7 it follows that for all
sufficiently large n, T; (y) < V. But the vector field of (A,,) is obtained from
the vector field of (A) by rotation through a positive angle. In our proof
of Theorem 16 (§11.2) we established that if there exists a saddle-to-
saddle separatrix of system (A} and a sufficiently small neighborhood of the
separatrix, the system generated from (A) by a rotation of the vector field
through a sufficiently small angle cannot have a saddle-to~saddle separatrix
in that neighborhood.” We have thus reached a contradiction, which
proves the lemma.

Remark. The procf of the last lemma actually shows that if a dynamic
system (A) with a finite number of simple saddle points has saddle-to-
saddle separatrices, the system obtained by rotating the vector field of (A)
through a sufficiently small angle no longer has any such separatrices.

In our proof of Theorem 16 we did not consider systems (A,), but systems of the form

8z _p_ dy _ (4)
dt =P “Qv ?;_PP’{"‘Q'

To move from (A) to (A), we Fave to rotate the vector field through an angle «, tan @ = p, and
stretch the field vectors by a factor V1 4+ p?.
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Lemma 5. Everyclosedpath L of system (A) is isolated, i.e., it is a
limit cycle.

Proof. Since (A)is an analytical system, a closed path L either is a
limit cycle or is enclosed in an open ring E entirely consisting of closed
paths (see Chapter V, §12.3). We will show that no such ring can exist.

Indeed, suppose that ring E does exist. By QT, $§23.2, the interior
boundary of this ring, which isazero-limitcontinuum, iseither a closed
path L,, or consists of a finite number of saddle-to-saddle separatrices,
or finally is a center. The last two alternatives are ruled out by
Lemmas 3 and 4. The first alternative is unacceptable because all the
paths which extend outside L, and sufficiently close to it are closed. But
all the paths inside L, and sufficiently
close to it are also closed, i.e., L, con-
sists of the interior points of the ring E,
which contradicts the original assumption.
Lemma 5 is thus proved.

Remark. The proposition of the
lemma is clearly also valid for systems
of class 1.

Lemma 6. System (A) may only have
a finite number of closed paths.

Proof of Lemma 6 is entirely
analogous to the proof of Theorem 21
(s16.1).

Lemma 7. System (A) has no multiple

FIGURE 91 limit cycles.
Proof. By Lemma 6, system (A) may
only have a finite number of limit cycles. Let L,, L,, ..., L, be all the

cycles of the system. Suppose that one of these, L, say, is a multiple
cycle.

Let U be a sufficiently small neighborhood of L; which does not intersect
with the paths L, ..., L, (Figure 91). Using the theorem of the creation of
a closed path from a multiple limit cycle (§15.2, Theorem 18) and applying
the same construction as in our proof of L.emma 2, §15.2, we obtain a

system (A;) of class 1 which is —g—-close to (A), coincides with (A) outside

the neighborhood U (L), and has in this neighborhood at least two closed
paths. Let L} and L be two such paths {(in U).

By Lemma 2, §15.2, there exists a system (A2) of class 1, %—close to

system (A;), for which the curves L, L{, Ly, L, ..., Lyare structurally
stable limit cycles.

Finally, let (As) be an analytical system providing an adequate
approximation to (Az). By Theorem 18 and the remark to this theorem
(the theorem of the structural stability of a limit cycle, §14), system (Aj)
has one limit cycle in the neighborhood of each of the curves L;, L],

Ly, ..., Ly, i.e., it has at least p+1 limit cycles. If (Aa) ig also —g—-close

to (Az), it is §~close to (A), i.e., it is a feasible system. But then,
because of the structural stability of (A), (As) should have the same number
of limit cycles as (A) does, i.e., p. The assumption of a multiple cycle
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among the limit cycles of {A) thus has led to a contradiction. This com~-
pletes the proof of the lemma.

Lemma 8. System (A) has no multiple foci. v

Proof. Suppose that one of the equilibrium states of (4), 0, (a,, by say,
is a multiple focus (we assume that it is a stable focus). At the point O, ,
the Jacobian A >0, anc div (P. Q) = 0. Let (A" ) be the system introduced
in the proof to Lemma 3. We may take ¢ = ¢’ to be so small and of such a
sign that for the corresponding system (A* ) — we can denote it by A¥ (e') —
the point 0, is an unstable focus. Simple standard reasoning (see,

e.g., the proof of Theorem 14 about the creation of a closed path from a
multiple focus, §10.3) shows that in this case, for some &” between 0 and ¢/,
the system A’ (¢") will have a closed path contained entirely in a neighborhood
of 0,., By Lemmas 6 and 7, system (A) has a finite number of closed

paths, which are simple limit cycles. Seeing that a transformation to a
sufficiently close system produces only a slight translation of every simple
limit cycle,” we conclude immediately that the system A’ (¢”) has at least one
closed path more than system {A) does. This, however, contradicts the
condition that A> (¢")is a feasible system. The lemma is thus proved.

Remark. The proof of this lemma is also greatly simplified if we
consider syvstems of class 1, and not analytical systems. In this case,
we can easily find a feasible system whose right-hand sides in the neighbor-
hood of a multiple focus 0, are linear parts of Pand Q. O, is evidently a
center of this feasible system, which is again impossible.

Theorem 29. Definitions I and II of structural stability of a dynamic
system in a region bouiaded by a cycle without contact are equivalent.

Proof. If system (A)is structurally stable in the sense of Definition I,
it is structurally stable in the sense of Definition II. This is obvious. If
system (A is structurally stable in the sense of Definition II, Lemmas 2
through 7 show that it satisfies the conditions of structural stability {Css).
Finally, if system (A) satisfies the CSS, it is structurally stable in the
sense of Definition I by Theorem 23, §18.2. We thus see that [-~II—+-CSS—1.
This means that Definitions I and II and CSS are all equivalent. Q. E.D.

Theorem 29 is also valid for dynamic systems on a sphere. However,
in the case of a sphere, we will consider only systems of class 1. Let the
IV in Definitions I and Il be identified with a sphere S®. We thus obtain two
definitions of structural stability on a sphere, where Definition [ coincides
with Definition 12 (§6.2), and Definition II is free from the requirement
of e-identity.

Theorem 30. Dejinitions I and II of structural stability of a dynamic
systemn of class 1 on a sphere S* are equivalent,

Proof of Theorem 30 is conducted along the same lines as the proof
of Theorem 29. Our proofs of Lemmas 1 through 8 remain in force for
dynamic systems of class 1 on a sphere; the only difference is that some
additional arguments, analogous to those adopted in the proof of
heorem 24 (§18.3), have to be used when dealing with a sphere.

Theorem 30 can be generalized without difficulty to systems of class
r>1. [he case of analytical systems on a sphere is more complicated,
and it will not be considered here.

Remark. Theorem 30 is valid for dynamic systems of class 1 on any
closed surface, whether oriented or unoriented, and not only on a sphere
[ SN

This follows from the structural stability of a simple limit cycle (see §14, Theorem 13).
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Chapter VII

BIFURCATIONS OF DYNAMIC SYSTEMS,
DECOMPOSITION OF A MULTIPLE
EQUILIBRIUM STATE INTO STRUCTURALLY
STABLE EQUILIBRIUM STATES

INTRODUCTION

The first seven chapters of the book dealt with the theory of structurally
stable systems. Chapter VIII begins the second part of the book, devoted
to certain aspects of the so-called theory of bifurcations of
dynamic systems. The present chapter contains two sections, §22 and
§23. In §22, the main problems of the theory of bifurcations are formu-
lated and a link is established between the first and the second part of the
volume. In particular, the concepts of bifurcations and degree of
structural instability of a dynamic system are defined. Since §22
is "narrative” (without any lemmas, theorems, and proofs), we will not
summarize its contents here. It should be noted, however, that the theory
of bifurcations is concerned with the changes which occur in the
topological structure of a dynamic system in a particular region when the
system itself (i.e., its right-hand sides) is altered, and the term
bifurcation generally refers to these changes in topological structure.

Bifurcations of a multiple isolated equilibrium state (i.e., bifurcations
of the dynamic system in the neighborhood of such an equilibrium state)
are the subject of §23. The discussion is confined to analytical
systems, and only the simplest multiple equilibrium state is con-
sidered, i.e., such that the series expansions of the functions P and ¢ in
its neighborhood contain at least one linear term. Furthermore, the topic
of bifurcations of these equilibrium states does not receive a fully general
treatment in §23, as we only investigate the number and the
character of the structurally stable equilibrium states
into which the multiple state decomposes on passing to close systems™.

The topological structure of these equilibrium states is treated in detail
in QT, Chapter IX (§21 and §22). It is established in QT that if for an
equilibrium state O (0, 0)

o =Pz (0, 0) +@; (0, 0) 0,

the point O is a topological node, or a topological saddle point, or a
saddle-node. If, however, ¢ = 0, six different possibilities arise: a

¢ The problem of bifurcations of a multiple equilibrium state in its general form is formulated as follows:
establish the changes in the topological structure of 2 dynamic system in the neighborhood of an
equilibrium state on passing to close systems, A relatively narrow segment of this general problem is
considered in §23,
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topological node, a topological saddle point, a focus or a center, an
equilibrium state with an elliptical region, a degenerate equilibrium state,
a saddle-node. In §23, a relationship is established between the
topological structure of a multiple equilibrium state, on the one hand, and
the number and character of the structurally stable equilibrium states into
which the multiple state decomposes when passing to close systems, on

the other. For example, if ¢ = P, (0, 0) =~ Q) (0. 0) == 0 and the multiple
equilibrium state O is a topological saddle point, it may only decompose
into an odd number of structurally stable nodes and saddle points, the
number of structurally stable nodes being of necessity one less than the
number of structurally stable saddle points. The other results of the
chapter are contained in Theorems 35, 37 through 39. Note, however,

that for o = 0, the type of the multiple singular point is entirely determined
by the number of struc-urally stable equilibrium states into which it
decomposes and by the:r topological structure. If, on the other hand, ¢ =0,
the difference {other than topological} between nodes and foci has to be
taken into consideration in some cases, and in other cases it is altogether
impossible to establish the character of the multiple equilibrium state
using the component structurally stable equilibrium states.

A reader wishing to speed up his progress through the book may omit
the proof of Theorems 37— 39, and familiarize himself with the statement
of the theorems only.

In conclusion note that §23.3 contains a theorem by Poincaré
( Theorem 36) which stztes that if a dynamic system has only simple
equilibrium states and the isocline P (z, y) = 0{or Q (z, ) = 0) has no singular
points (i.e., points at which P; = P, = 0), then saddle points alternate with
nodes and foci along this isocline. This theorem is used in the proof of
Theorem 38, but it is also of considerable independent interest.

§22. THE DEGREE OF STRUCTURAL INSTABILITY AND
BIFURCATIONS OF DYNAMIC SYSTENMIS

The previous chapters dealt with structurally stable dynamic
svstems on a sphere or in a plane region. The definition of a structurally
stable system in a plane region W was formulated assuming that ¥ is an
arbitrary bounded region (§6.1, Definition 10}). A certain additional
restriction was imposed at a later stage on I}', e.g., in the derivation of
the necessary and sufficient conditions of structural stability, and W was
treated as a region with a normal boundary (§16.2, Definition 19). This
restriction is not fundamental, although it simplifies some proofs.

The definition of strictural stability in an arbitrary plane region W
{including a region with a normal boundary)has one distinct disadvantage:
together with ', we are forced to consider other regions close to W. To
avoid the difficulties (again not of fundamental nature) associated with this
approach and to achieve a more plastic description of the concepts that
follow, we will assume in this section that the boundary 'of W is a cycle
without contact.”

* The simplest and most complete picture is obtained for dynamic systems on a sphere. where the definition
of structural stability is marked!y simpler., We again wish to emphasize that the restriction imposed on the
relevant region is solely intended to simplify the presentation. The concepts of bifurcation and degree of
structural instability can be defined analogously for dynamic systems in any bounded plane region.
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Thus, let

LaP@y, E=Q@y (a)

be a dynamic system defined in & and considered in a closed region W
bounded by a cycle without contact I' (W — G). The exact space of dynamic
systems in which our analysis is carried out should be indicated. Let this
be one of the spaces RY (1 <r<N) or R (r»1), defined for the region G,*
which we will denote by R*. System (A) clearly should belong to the space
R*. In the following, structural stability (or structural instability) of
system (A) in W will be understood as structural stability {or structural
instability) relative to the space R*,

The structural instability of a dynamic system may be considered using
the concept of ecidentity of partitions {§6.1, Definition 10 and
§18.4, remark a). In Chapter VII (§21, Theorem 20) we have seen, how-
ever, that the e-identity can be dropped when dealing with a region bounded
by a cycle without contact. Indeed, system (A) is structurally
stable in region Wif all sufficiently close dynamic
systems (A) have the same topological structure as (A)
in W. In other words, if (A) isa structurally stable system in W, all the
points of a certain neighborhood Us ((A) | R*) of (A)in the space R* are
systems with the same topological structure in W.

Conversely, if (A) is structurally unstable in W, there always exist
systems (&) arbitrarily close to (A) whose topological structure in W is
different from the topological structure of (A).

In Chapter VI (§18.4) we established that the structurally stable
systems form an open set in the space R* and that this set is everywhere
dense in R*. Structurally unstable systems form in R* "partitions’’
separating between regions filled with structurally stable systems. Each
of these regions consists of dynamic systems with the same topological
structure in W.

In QT we investigated the different topological structures of a dynamic
system in a particular region and the factors determining this structure.
Our present topic deals with the changes in the topological
structure of a system in W when the dynamic system
(i.e., the right-hand sides, the functions Pand @) is altered. The
remaining chapters of the book are concerned with the applications of this
topic to a number of important particular cases.

It is naturally assumed that, despite the changes, the dynamic system
always remains in the space R*.

In applications, this question is sometimes considered in a restricted,
particular form. Indeed, given a certain set E, £ < R*, one considers the
changes in the topological structure in W as the dynamic system runs
through the points of this set. The particular choice of the set £ is
determined by the problem being considered. £ isoftenchosenasasmall
neighborhood of a given dynamic system (Ag) or as some line, surface, or
hypersurface in the space R* Dynamic systems related to real physical
problems generally contain one or several parameters, i.e., they have

* See §5.1. R{’ is the space of dynamic systems of class ¥ with a metric defined by the distance (in &) of
the functions P and Q and their derivatives to r-th order inclusive. Rg’) is the space of analytical functions
with the same metric.
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the form
dr dy
=P @ Ay b een B)y SE=0( ¥y Ay Aoy aeny Bm) (Asm)

In these problems we generally have to consider the changes in the
topological structure of the dynamic system as the parameters }; vary in
a certain region. The set £ in this case is clearly an m-dimensional
hypersurface (or some region of this hypersurface). If the system depends
on a single parameter, the corresponding set Eis a line in the space R*.

The question of the changes in the topological structure of a partition
into paths with changes in the dynamic system is of great independent
theoretical interest. Two further factors greatly enhance its importance.
The first is that the study of the changes in the topological structure
associated with changes in a dynamic system, i.e., the theory of
bifurcations, provided the main tool in the investigation of particular
dynamic systems. As we have noted above, no general regular methods
are available for this investigation, and without exaggeration we can state
that almost all the available results in this direction have been obtained
using the theory of bifurcations. The theory of bifurcations therefore plays
a leading role in the study of particular systems.

l'he second factor is associated with the importance of the theory of
bifurcations in applied problems, in particular in physical and engineering
applications. Dynamic systems corresponding to these problems always
contain a certain number of parameters. The changes in topological
structure following changes in these parameters are of the utmost impor-
tance in the analysis of the properties of physical systems related to the
topological structure of the corresponding dynamic system (e.g., when
considering sustained oscillations in a given physical system}. The theory
of bifurcations in one form or another is therefore applied virtually to
every dynamic system corresponding to a physical problem.

We will consider in what follows the case of small changes of a
dynamic system. This is the key to the study of 'large' changes, and it
also has numerous important applications, e.g., in problems of stability
of physical systems. Our problem is thus formulated in the following
form: investigate the changes in the topological struc-
ture of the partition of region ¥ into paths following
small changes in the corresponding dynamic system.

Only structurally unstable systems should be considered,
since if (A) is structurally stable in W, its topological structure does not
change as a result of small changes in the system. If, however, (A)is
structurally unstable, dynamic systems of different topological
structures always exist in any arbitrarily small neighborhood of (A) (in
the space R*).

We say in this case that the point (A) of the space R*is a
bifurcation point of a dynamic system.* Bifurcation is
generally understood as the change in the topological structure
of a dynamic system occurring when it passes through a bifurcation point.

Structurally unstable systems, and only these systems, are
bifurcation points in the space of dynamic systems, and the problem

+ A more precise statement would be the following: (A) is a bifurcation point of the topelogical structure
of a Jynamic system in W, We will nevertheless use the more concise form given in the main text,
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reduces to the following: investigate the changes in the
topological structure of a structurally unstable system
on passing to sufficiently close systems.

The next topic to consider is the classification of structurally unstable
systems. A structurally unstable system may be "'more structurally
unstable" or "less structurally unstable."” These imprecise terms can be
imbued with precise mathematical meaning by introducing the concept
of the degree of structural instability of a system. Originally
this concept was introduced in /9/. For the sake of simplicity, we will
only give a definition of the degree of structural instability in a region W
bounded by a cycle without contact. TIhe corresponding definition for a
general bounded region will be given at a later stage (§31, Definition 30).

We shall assume that the relevant systems are either analytical in G or
of class N, where N is a natural number whose magnitude, as will be seen
from the definition, depends on the degree of structural instability of the
system. W is a subregion of G bounded by a cycle without contact.
Structurally stable systems in W will be called systems of zero
degree of structural instability. As we know (§18.4,a),
system (A) is structurally stable in W if it has the following property: for
any e > 0, there exists 8§ > 0 such that if (A) is A-close to (A), then

W, & =W, 4.
We will define the degrees of structural instability by induction.
Definition 23. A dynamic system (A) of class N> 3 is said to be a
system of 1st degree of structural instability (or Lo have a degree of
structural instability 1) in W if it is not structurally stable in this region
and satisfies the following condition: for any e > 0, there exists 6 > 0 Ssuch
that for any structurally unstable system(A) 8-close to (A) to rank 3 we
have
@7, A) = (7, 4).

System (A) of class N>5 is said to be a system of 2nd degree of
structural instability in W if it is not a system of zevo ov first degree of
structural instability and the following condition is salisfied: for anye> 0,
there exists § > 0 such that any system (A) 6-close to (A) to rank 5 is
either a system of zevo ov first degree of structural instability in W or
satisfies the relation

W, &) = @7, 4).

System (A) of class N>2k + 1 is said to be a system of k-th degree of
structural instability in W if it is not a system of lowev degree of
structural instability (i.e., zevo, 1st, 2nd, ...k — 1)-th) and the following
condition is satisfied: for any e >0, there exists 8 > 0 such that any
system (A) which is 6-close to rank 2k + 1to (A) either has a degree of
structural instability of at most k— 1 in W or satisfies the relation

— —~ e
(W, 4) =W, 4).

A few remarks concerning degrees of structural instability. We see
from Definition 23 that for a system to have a definite degree of structural
instability, it must be a system of a sufficiently high class. This is not
an unexpected conclusion: we have encountered a similar situation in
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Chapter I. Indeed, in Jdefining the multiplicity of a root of a function, say
(§1.3, Definition 2), we could speak of a root of multiplicity r of a function
F (rnyonly if F (z)was a function of class .V >»r. A somewhat puzzling point
in our definition of degrees of structural instability is the fact that only
systems of class .W>2k + 1 can be of a k-th degree of structural instability.
We will not discuss here the factors responsible for this restriction. Note,
however, that this fact is related to the properties of a multiple focus dis-
cussed in Chapter IX (§25.1, Theorem 40).

A significant shortcoming of Definition 23 is that it does not assign a
definite degree of structural instability to each and every dynamic system.
For systems of a finite class this is obvious. Indeed, let NV =2k L+ 1, k>1.
We can easily construct a system (A] of class ¥, which is not a system of
class .V + 1, with k41 equilibrium states, each of multiplicity 2, in some
region W. It follows from Definition 23 and from the definition of the
multiplicity of an equil.brium state {§7.3) that this (A) cannot have a degree
of structural instability less than or equal to £ On the other hand,
Definition 23 states that (A) cannot have a degree of structural instability
greater than 4 The system (A) that we have constructed thus does not have
a definite degree of structural instability.

Let us now consider the analytical case. [t is readily seen that
analytical systems of any finite degree of structural instability exist.
Furthermore, there exist analytical systems with other analytical systems
of all finite degrees of instability contained in any of their neighborhoods.
These systems are naturally assigned an infinite degree of structural
instability. However, it does not follow from Definition 23 that each
analytical system may have a definite finite or infinite degree of structural
instability.™

Systems of the 1st degree of structural instability are relatively
structurally stable in the set of all structurally unstable systems.
Similarly, systems of 4-th degree of structural instability are relatively
structurally stable in the set of all structurally unstable systems of degree
of structural instability > k.

We have seen before that dynamic systems associated with physical
problems generally contain one or several parameters. Therefore,
systems dependent on parameters are of particular interest. Let, for
simplicity, the right-hand sides contain a single parameter, i.e., ~ve are
considering a system of the form

dr M dy __
S=P@y A =0y k). (A,)

The parameter L may vary over a certain set of real numbers or run
through the entire real axis.

If we are interested only in systems which are obtained for various
values of the parameter A, we should specifically consider the concept of
structural stability and degrees of structural instability in relation to
systems (A,). The following definition of structural stability can be given
(for a region W bounded by a cycle without contact): system (A, ) is
structurally stable in W relative to systems (A,) if there exists § > 0 such

* This can he shown without much trouble. See Gudkov /8/ p.4%5.

** In the following sense: if we consider the set of structurally unstable systems and closeness to rank ?,
sustems of the st degree of structural instability are stable relative to this set.
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thatevery dynamic system (A ,) for which {A — A¢ | < 8 has the same topological
structure as (A,,) in W. The degrees of structural instability are similarly
defined.

If system (a M) is structurally stable in the usual sense, it is also
structurally stable relative to system (AA). The converse, naturally, is not
always true: a system may be structurally stable relative to the
systems (A,), without being structurally stable in the usual sense.

The concept of bifurcation may also be redefined relative to systems
(A,). We thus arrive at the following definition of the bifurcation
value of the parameter:

Definition 24. The value L, 0f the parameter A is called a
bifurcation value of the parvameter if theve exist values of the parameter »
arbitrarily close to A, for which the topological structure of the dynamic
system in the relevant vegion is diffevent from the topological structure
of (A,,). Values of the parameter which ave not bifuvcation values are
called ordinary values.

The situation is entirely analogous for a system dependent on several
parameters. Thus, for instance, for a system

dz dy
"E‘;‘P(Iy Y Ai }1), W—Q(Z» Y, A,p)v (AA.,“)

depending on two parameters A and p, we can speak of structural stability
or degrees of structural instability relative to the systems (A . u). We
can similarly speak of the bifurcation pair of values of the
parameters A, u and of the bifurcation point in the plane of
the parameters. If the particular region in the plane of the para-
meters contains no bifurcation points, all the dynamic systems corre-
sponding to this region have the same topological structure. A change in
topological structure may occur (as a result of a continuous change in the
parameters) only when the system crosses through a bifurcation point.

It is readily seen that the investigation of all the bifurcations of a
dynamic system in a given region W reduces to an inspection of the changes
which occur following small changes of the system in the neighborhood of
the elements determining the topological structure. In other words, it
suffices to investigate the changes in the topological structure in the
neighborhood of the equilibrium states, closed paths, and limit continua
in W. Some of the pertinent topics will be treated fully or partially in
this and next chapters.

In conclusion of this section, let us consider two examples.

Example 7. Consider a system

%:P(z, y, @) =zcosa+ysina—(rcosa—ysina) (22 4+ y?), (a.)

@
%:Q (z, y, @) =zsinax—y cosa— (zsin & 4 y cos &) (z® -+ y*),
depending on a single parameter a. This system is generated by a rotation

of the vector field of the system.

d d
=@+, = —y—y @+ (A0)
through the angle «. We may therefore take « to vary from 0 to 2n. We

shall consider the system (Aa) over the entire plane (z, y). Since(Ag+n) is
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obtained from (A} by reversing the direction of the field vectors at every
point of the plane, we need only consider the system (A,) for Oga < .
From the relations

P(—z, —y,a)==—P(x, ¥, 2), Q(—z, —y,a)=—0Q (= ¥y, &)

it follows that the phase-plane representation of the dynamic system (A,z)
for any = is symmetriczl about the origin (§20, Example 4}.
We will first apply the Bendixson criterion. Since

Pz g ) 4 Q= y @)

_ 2 2 2
o 3y 4 (z* 4+ y*)cosa,

we see that for as=3-, 0 <a< a, the sum %—f—% does not reverse its sign

anywhere in the plane. Therefore, by the Bendixson criterion (QT, $12.3),
system (A,‘) with 'z-—,&% has neither closed paths (in particular, limit

cycles) nor closed curves consisting of paths in the phase plane.
Let z==x(t). y=y(t)be paths of (A,). Then, as it follows from the
system equations,

;t(t);z:'(t) +y(t) _l}(t) =%":_: [x (1) +y (t)®] =z*cosa 4+ 2zysina—y® cosa— (22 - y?)tcos .

[he last relation shows that for O\<a<—%, the infinity is absolutely unstable,
and for —:_,i < a<nthe infinity is absolutely stable (see §20, Example 4, and

also QT, §13.1). .
We can now easily establish the configuration of the paths of system (A,)
for various values of the parameter o, Oga<ca. We will consider

separately the four cases a=0, 0<a<3, a=+, p<a<a.

1) @ =0. From the equations of {Ag) we readily see that the positive
and the negative coordinate semiaxes are paths of the system. Calculations
show that (Ag) has three equilibrium states, the saddle point 0 (0, 0) and two
stable dicritical nodes 4 (—1, 0)and B (1,0). Hence it follows that, in the
absence of closed curves consisting of path segments, the partition of the
phase plane into paths has the form schematically shown in Figure 92.

K4

\

3

FIGURE 92 FIGURE 913
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2) 0<aq <%. System (a,) again has the same three equilibrium states

00,0, 4 (—1,0), B (1,0) as in the previous case.* 0 (0, 0)is a simple saddle
point for any «. The points 4 and B are stable structurally stable foci.
There are no closed curves consiting of system paths, in particular, no
limit cycles and saddle-to-saddle separatrices. Therefore the -
separatrices of the saddle point O reach from infinity and the a-separatrices
wind onto the two foci 4 and B. To define the direction of winding of the
paths (spirals) around the foci, we have to establish the field of directions

. d . . . .
on the z axis. For y =0, %=x sina — 2¥sina = (zx — z®) sina. Since for the

values of abeing considered sina >0, we have

(;—":>0 for 0O<<z<<1 and for — co<x << —1,

¥ <0 for —1<z<0 andfor 1<z< + oo.

dy
at

of the separatrices of the saddle point 0 is determined from the equation

- d . .
Moreover, on the z axis, 71:—=(""‘"x3) cosae, so that = tan ¢. The direction

sina-k2 4 2cosa-k—sina=10

(see QT, §9.2, corollary of Lemma 1). Its solutions are
by =tang, k2=tan(—g-+—’2-‘—).

We now readily see that the partition of the phase plane into paths should
have the form shown schematically in Figure 93.

3) a=-7. The system takes the form

d d
FEVHYE@ Y, gr=r—z@4yY).

A direct substitution shows that (A“/z) has the common integral

(@+y?)—2(t—y)=C
(see QT, §1.13).
Since
(@ 93 —2 (@2 —y?) = (¥ —1)? - 2y% (1 4-2%) - y*—1,

we conclude that C» —1. We may therefore take C=a*—1, where a>» 0.
Equation (1) thus takes the form

(@ 4y —2 (2 —y?) =at— 1. (2)

The curves (2) constitute a family of Cassini ovals with the foci A (—1, 0) and
B (1, 0} Elementary analysis shows that for a» J/2 the curves (2) are
convex ovals, for 1< a<< )2 these are 'pinched’ ovals, and for a = 1 the
curveis alemniscate. For 0<a<:1the curves break into two separate ovals,

* When a vector field is rotated, the number and the position of the equilibrium states do not change. Only
their character may change (see QT, §1.14, remark preceding Example 7).
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and finally for a = 0 they degenerate into two points A and B (Figure 94).
Fach of the ovals is a path of system (A _,), the lemniscate consists of
three paths (the saddle point O and the two separatrices forming loops),
and the points 4 and B are centers. The direction along the paths is

readily defined by considering the sign of Z—f for y = 0. We thus obtain the
configuration shown in Figure 94.
4) %<a << ax. This case is analyzed along the same lines as case 2.

The configuration of paths in the phase plane is schematically shown in
Figure 95.

FIGURE 91 FIGURE 95

For a==, ﬁ<a<—g~ft, a=%a,% T <<a << 2xn, the configuration of the

paths is the same as in Figures 92,93, 84, and 95, respectively, but the
direction of motion along the paths is reversed. For a =21, we return
to the original system (Ag).

ILet W be the interior of the circle

24yt = R,
where the radius Ris so large that the lemniscate
(@47 —2 (a2 —y) =0
is contained entirely inside W. From the fundamental theorem of

structural stability (Theorem 23, §18.2) it follows that for « between the

limits 0<a < 2, @ 5 % , @ -3—-: (A,) is structurally stable in W,” and

for a = —fz‘—and o = %1 it is structurally unstable. The bifurcation

values of the parameter are thus %and %n.

* Theorem 23 was proved for a regicn with 2 normal boundary, whereas W need not be such a region for
(A,). However, a circle of a sufficiently large radius Ry > Ris a cycle without contact for (A ), and
therefore inside this circle (A,) is structurally stable by Theorem 23, and then it is also structurally
stable in W (§8.1, Lemma 1).
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If in the determination of the topological structure we consider not only
the configuration of the paths but also the direction of motion along the
paths, bifurcation occurs when the parameter passes through the value

%, say, since the stable foci 4 and B change into unstable foci,

i.e., the topological structure changes. Note, however, that if the direc~
tions along the paths are ignored, the transition of the parameter through
the bifurcation value does not Jead to a bifurcation in our example.

Figures 92 through 95 enable us to trace the changes in the configuration
of the paths of (Ag) during the rotation of the vector field. Originally, the
points 4 and B are nodes, and the separatrices of the saddle point O are the
coordinate semiaxes. As the vector field is rotated in the positive direc-
tion, the nodes change into foci, the paths wind onto the foci in the clock-
wise sense, and the tangents to the separatrices at the point 0 also rotate
in the positive direction with half the rotation velocity of the field vectors.*
For o = %, all the paths are closed, except the foci (which are now
centers) and the saddle point O with its separatrices. The separatrices
join in pairs forming loops. As the field is further rotated, the centers
again become foci, but the paths unwind in this case. TIhe separatrices
of the saddle point O separate, the a-separatrices extending to infinity for
t—+ + oo and the o-separatrices going to the foci for t—+ — co. The change
of configuration with further rotation of the field is obvious.

Let us consider still another example which illustrates the variation
of the topological structure as a result of field rotation.

Example 8. Consider the system

%:——xsina—ycoscc—{—(z’+y’—~i)"(a:cosa—-—ysin a), (B.)

-2
—j—ty————:ccosa—ysina+(m’+y’—1)’(xsina+ycosa).

This system is obtained by rotating the vector field of the system

L ey t@ 1, %=x+y(x’+y’—1)‘ (Bo)

through the angle «. We may therefore take a as varying between —n and =.
However, (B,) and (B...) have identical paths, which only differ in the
direction of motion, and we may therefore consider only the system (B.)

n n
for —r<a <5

System (By), and therefore (B,), has a single equilibrium state 0(0, 0).
The characteristic equation of this equilibrium state

cosa—sina—A —(sine4-cosa)
cosa-sina cosa—sina—A|

0 (3)

has the roots

M, 2 =cosa—sina £ } —sin 2 — 1.

* This follows from the relations k; = tan —, k,= tan { -2 1) (p.210).
1 3 2 3 + 2 P
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Therefore for o between the limits —%f-<a<%, the equilibrium state 0 (0, 0)
of (B,)is
an unstable focus for —f<a< —3 and for —F<a<F;
an unstable dicritical node for a= —%;
a multiple focus or center for rz:%;
a stable focus for a/t<<a<5.
The paths z=z(t), y=y(¢)of {(B.) are tangent to the circle

22yt = R? (4)
when
do? . . _
%»%-—-xx-&—yy:O o=V (3)
From the equations of (13,),
zz -+ yy = (22 + y?) [(#* + y? — 1) —ranc| cosa., (6)
if —F<a<4, and
2z Yy = — (@ 4y, (7)

if a=%~.
Finally note that, in polar coordinates, (B,) can be written in the form

g—‘t’-=p[(p’—1)2cosa—sina], (8)
%:(pzui)“sina—f—cosa. (9)

Equality (8) is clearly equivalent to (8) for a = -;_,l and to (7) for e=3.

T'he above relations enable us to investigate the configuration of the
paths of {(B,) for various values of the parameter a.

1) a= % The equilibrium state 0 (0, 0) is a stable focus. It follows

from (5) and {7) that all circles {(4) are cycles without contact. The
system therefore has no closed paths. Since the focus O is the only
equilibrium state, the system has no limit continua consisting of

continued paths. By (7), the paths crossing the cycle without contact (4)
enter into the cycle as ¢ increases. Thus all the paths of the system

wind onto the focus O (0,()as ¢t increases, and go to infinity as ¢
decreases (Figure 96). Equation (9) shows that as ¢ increases, the motion

along the paths is counterclockwise.

2) > a>%. In this case, the equation

(P* —1)2cosr —sina =0 (10}
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has a single real root po = }/1 -+ ) tana. By (8), the circle
p=po 1i.e., 224yt=pf, (11)

is a path of (B,). All the other circles (4), in virtue of (6), are cycles
without contact; if R > po (R << po), the paths crossing the circle (4) leave
the circle (enter into the circle) as t increases. The circle (11) is there-
fore an unstable limit cycle of the system. The point 0 (0, 0)is a stable
structurally stable focus. The system has no other limit continua, and all
the paths are therefore spirals unwinding from the limit cycle. It follows
from (9) that the motion along these paths in the direction of increasing ¢ is
counterclockwise. The configuration of the paths is shown in Figure 87.
The analysis of the other cases proceeds along the same lines.

3) a= i,} The system has a single unstable limit cycle, the circle

2 +yr=2. (12)

The equilibrium state O (0, 0)is a multiple (structurally unstable) stable
focus. The motion along the spirals with increasing ¢ is in the counter-
clockwise sense (Figure 98).

FIGURE 96. o= ?“ Stable focus.

FIGURE 87. 5 >a> 7, r>VZ FIGURES8. o= 7 ,r=1y72

Unstable cycle; stable focus. Unstable cycle; multiple
stable focus.

4) —Z—>a>0. The system hastwolimitcycles, an unstable limit cycle

2+yt=14Vtana, (13)
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which is a circle of radius greater than 1, and a stable limit cycle
2iyt=1—_)tanx, (14)
~hich is a circle of radius smaller than 1. ‘The equilibrium state 0(0,0) is

an unstable focus. The motion along the spiral is in the counterclockwise

sense (Figure 99).
5} a = 0. The svstem has one semistable, and therefore multiple (see
§12.3}, limit cycle, the circle

zt -yt =1, {15}

and an unstable focus O (0, 0). The motion along the paths is in the counter~
clockwise direction (Fizure 100}.

|

FIGURE 49, —:,l—>/1>0» re>1, FIGURE 107, a=0. \o stahle
+

, . cheles: upstable focus.
unstanle ovele; rp << 1 stable cyele, .

unstihle foecus,

o

+

6) 0>a>— All circles (4) are cycles without contact. The system

therefore has no closed paths and no closed curves consisting of paths. All
the paths go to infinity as ¢ increases, and for ¢t — o they wind onto the
unstable focus 0O (0, 0).

We see from (9) that

de e €03
'd—f>0’ if pz<1+l T iina

Cos
sipa’

and

a6 , ,
<0, i >} -

Therefore inside the circle

, o / cos 2 ’

pr=aftyt=1- V —s5a (186)
the motion along the paths is counterclockwise, and outside this circle the
motion is clockwise {Figire 101). The circle (16} is evidently orthogonal
to each crossing path.
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Y,
«

FIGURE 101. 0 >a>— 5. No FIGURE 102, & = —%. No cycles.
cycles, R>>yZ unstable focus. R ==y/2 unstable dicritical node.

7) a=— % The configuration of the paths is the same as in the

previous case, but the point 0 (0, 0) is an unstable dicritical node, and not a
focus (Figure 102). Circle {16) is replaced by circle (12).

8) — 34‘—><z>—~%. The equilibrium state 0(0, 0) is an unstable focus.

All circles (4) are cycles without contact. The derivative -':% = (p? — 1)*sin ¢+

-4 cosa vanishes on the circles

10

P14y -8 (17)

Pr=1— i (18)

sina

In the ring between these circles, %’- > 0, and elsewhere in the plane %?— < 0.

Therefore the motion along the paths with increasing ¢ is in the counter -
clockwise direction inside the ring and in the clockwise direction outside
the circle (17) and inside the circle (18) (Figure 103).

For a= —-%, the system has the same paths as for a=2<, but the
direction of motion is reversed. As « further diminishes from —%to

- —g—n, we successively obtain the same configurations as in Figures 97

through 103, but with the direction of the arrows reversed. Finally, for

o= — %n , we return to the original system (Bas) (Figure 96).

The bifurcation values of the parameter a (for 3 >a» —3) are clearly

o
2 4
of the system evolve as the parameter « decreases (i.e., as the field

vectors rotate clockwise Jand what bifurcations the system experiences.

0, and ~—;3. Our analysis and the figures clearly show how the paths

On passing through the bifurcation value of the parameter _’2‘_, anunstable
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limit cycle appears — a circle of a large radius centered at o(this cycle,

as we say, is created from infinity). As a decreases further, the
cycle contracts (the radius of the circle
monotonically diminishes). For the bifurca-

tion value o = —’I—, the topological structure

of the system is the same as before, but the
stable structurally stable focus O changes

into a multiple (structurally unstable) focus.
When the system passes through the bifurca-

tion value%, a stable limit cycle is

created from this multiple focus, and the
multiple stable focus changes into an un-
stable structurally unstable focus, while the
existing unstable limit cycle continues con-

FIGURE 103, —F>a>— 2. No tracting. After that, the stable limit cycle
cveles, Ry <<yD, Ry < ) unstablz expands, and the unstable limit cycle con-
focus. tracts, and for the bifurcation value a =0

both cycles merge into a single multiple
semistable cycle. When the system crosses the valuea = 0, this
multiple cycle disappears, and further decrease of a between the limits

0>a0>— —’23 does not produce any additional change in the topological

structure. We see from Figures 101 — 103 how the direction of motion
along the paths is reversed. Indeed, when the system passes through

a =0, a circle p’:l-}-}/v—i‘i’jg appears from infinity on which this change

occurs. This cirele contracts as « diminishes. Fora = — %, the focus

0 (0, 0) changes into a dicritical node (of the same stability). Further
decrease of a produces a second circle near O on which the direction of
rotation is again reversed, and the dicritical node changes back to a

focus. Both circles move one toward the other. For a= _g they merge

and the motion along the two circles is in the same direction, i.e., clock-
wise (Figure 96 with the direction of the arrows reversed).

Note that as @ increases, the changes of topological structure occur
in a reverse order. In particular, for small negative «, the system has no
limit cycles (Figure 101). When « reaches the value 0, a semistable
(multiple) limit cycle z?* + y? = 1 appears (Figur'e 100). In this case we say
that the limit cycle is created from path condensation (or path
clustering). Further increase in a produces two iimit cycles. In this
case, we say thata multiple limit cycle decomposes intc two
cycles or an additional cycle is created from a multiple
cycle. Inour example we thus observed creation of cycles from
infinity, from a multiple focus, from a multiple limit cycle, and from
path condensation. In Chapters XI through XIII we shall encounter additional
cases of limit cycle creation.
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§23. DECOMPOSITION OF A MULTIPLE
EQUILIBRIUM STATE INTO STRUCTURALLY
STABLE EQUILIBRIUM STATES

1. The number of structurally stable equilibrium
states obtained from a multiple equilibrium state

In the present section we will only consider analytical dynamic systems.
Some propositions regarding multiple equilibrium states, however, will
remain valid for systems of class & also. However, since the various
proofs given for the analytical case either remain without change for
systems of class N or are actually simplified, we will concentrate on
analytical systems.

Let

2 _ Py, %-0Q@y (a)

be a dynamic system and O (0, 0) its equilibrium state. We assume that
0 (0, 0)is a multiple equilibrium state of multiplicity r, where r is a
natural number, r>»2. By Definition 15 (§7.3) and Definition 5 (§2.1), an
equilibrium state O of system (A) is of multiplicity r if the following con-
ditions are satisfied:

(a) there exist numbers g, > 0 and 8, > 0 such that any system (&) 64~
close to rank r to system (A) has at most r equilibrium states in U, (0);

(b) for any e << ggand 6 > 0, there existsasystem (A) 8-close to rank r to
(A) which has at least r equilibrium states in U, (0).

From the definition of r-multiplicity of the equilibrium state 0 and from
the condition r>2 and Theorem 6 (§2.2) it follows that O (0, 0) is an isolated
equilibrium state in our case and that

Pi(0,0) Py(0,0)| o (1)
Q:(0,0) Q0,0

In the following, &, >0 and 8§, > 0 are fixed numbers defined by condi-
tion (a). Moreover, we take g, to be so small that 0 (0, 0) is the only
equilibrium state of (A) in Ue (0). If necessary, other conditions will also
be imposed on g, and §,, provided they do not clash with the basic require-
ment of smallness of these numbers.

Analytical dynamic systems §,-close to rank r to system (A) will be
called feasible systems. Let Cbe the boundary of the neighborhood
Ug (0). We take §,to be so small that no feasible system (K) has
equilibrium states on the circle €, and the vectors defined by systems (A)
and (&) do not point in opposite directions at any point of this circle. Then
by QT, $10.2, Lemma 2, the rotation W, (C) of the vector field of
system (A) along the curve C is equal to the rotation W4 (C)of the vector
field of system (A) along the same curve, i.e.,

Wz (O)=Wai(0). (2)

AO) =

We will try to elucidate maximum information about the equilibrium states
of a feasible system (A) which lie in U (0), if it is known that they all are
structurally stable. We will first present some propositions which are »
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applicable to any r-tuple equilibrium state (Lemmas 1 and 2 and
Theorems 31 and 32), and then restrict the range of equilibrium states by
imposing one further ccndition.

If the feasible systera (A) has precisely k equilibrium states
0y, Oy, ..., Opin the neighborhood U,,(0), and they are all structurally
stable, we shall say that the multiple equilibrium state O(or the multiple
singular point 0) decomposes into structurally stable equilibrium states
Oy, Oay ..., Op On passing to system (A).

Lemma 1. If a feasible system (&) has r equilibrium states in a
neighborhood U, (0) of an r-luple equilibrium state 0, all these equilibrium

states are simple. -
Proof. Let the feasible system (A) have r equilibrium states

0Oy, Oz, ..., O, in U, (0), and at least one of them, O, say, is a multiple
equilibrium state. Let U; be a neighborhood of 0;, i =1, 2, ..., r, such that
U, < U, (0) and no two U; intersect. Lf the point 0;, i =2,3, ..., r, is not a

simple equilibrium state of system (A), we can replace this system in a
sufficiently small neighborhood V, of the point O; (V;, < U;) by a system (A;) as
close as desired to (A) for which 0, is a simple equilibrium state.” Fur-
thermore, in a sufflclently small neighborhood V; of the point 0,,¥V, < U,,
we can replace (A) by another system (A}), as close as desired to {A),
which has in ¥, at least two equilibrium states O; and 0,; this can be done
since by Theorem 6 (§2.2) a multiple equilibrium state has a multiplicity
higher than 1., By the Jirst footnote to this page, 0; and O, may

be regarded as simple equilibrium states. We can further construct a
system (A') of class r, which would be as close to rank r as desired to
system (A) and would coincide outside the neighborhoods U, with (A) and
inside each of the neighborhoods ¥; with (A;).#* Let now (A*) be a dynamic
system whose right-hand sides are polynomials providing a sufficiently
good approximation to thz right-hand sides of (A’}. Evidently, (A"} is then
a feasible system with at least r + 1equilibrium states in Ue(0). This
contradicts the assumption that O is an r-tuple equilibrium state. The
proof of the lemma is complete.

Lemma 2. Ifo is an r-tuple equilibrium state of system \A), there
exist systems as close to rank r to system (A)as desired, which have r
structurally stable equilibrium states in U, (O).

The validity of Lemma 2 follows directly from the definition of
multiplicity of an equilibrium state and from the first footnote to this
page.

Theorem 31. If 1,0) = I1is the Poincaré index of an r-tuple
equilibrium state O of system (A), then

I=r (mod2). (3)

Proof. Let C be the boundary of the neighborhood U, (0). By
definition, the Poincaréindex/is equal to the rotation 13", (C) of the vector field

* Let the system have the formi—f:a(x—z‘-) +b(y—y)+ ..oy d: _c(z—x,)-{-d(y yi)+ ... inthe

neighborhood of the point Oy (x4, yi) - IfA=l:' :‘:0, adding sufficiently small increments to @ and d
we obtain a close system withA := 0, 1.e., a system whereQ; is a simple equilibrium state. Similarly, a
structurally unstable point can be converted into a structurally stable point by an arbitrarity small change
of the system.

**  The possibility of constructing such a system of class r is established in Chapter VI(§18.3) in our proof
to Theorem 24,
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of system (A) along the curve C divided by 2= (QT, §11.2, Definition XIII
and §10.2, Definition XI). According to the preceding lemma, there exists
a feasible system (A) which has in U, (0) precisely r equilibrium states,

all of which are structurally stable. Furthermore, from equation (2)

Wy (C) =Wa (C) =2nl.
On the other hand, by QT, §11.2, Lemma 1,
[=1z(0)+ 15 (O + ... + 1z (0)). (4)

Butevery equilibrium state 0; of (A} is structurally stable, i.e., its index
is either +1 or ~1, so that it follows from the last equality that

I = r (mod 2).
The proof is complete.
Theovem 32. If an equilibrium state O of system (A) is of multiplicity
r, and a feasible system (A) has precisely k equilibvium states in U, (0),
all of which are structurally stable, then

k= r (mod 2). (5)
Proof. As in the previous theorem, we prove that
k= I (mod 2). (6)

Relation (5) follows from (3) and (6). Q.E.D.

The previous lemmas and theorems are valid, as we have observed,
for any r-tuple equilibrium state. We will now consider in some detail
a relatively narrow, but extremely important class of equilibrium states.
Throughout the remaining part of this section, we will
assume that the series expansions of the right-hand
sides — the functions Pand @— in the neighborhood of the
relevant equilibrium state 0(, 0) contain at least one
linear term, i.e.,

1P2(0, 0){+1 Py (0, O)|+]Q: (0, 0) {+]Q) (0, 0) |+ 0. (7)

To fix ideas, let

Q}(0, 0) 0. (8)

If Q, (0, 0) = 0, but P: (0, 0) does not vanish, say, nothing changes
significantly.

We will first derive the necessary and sufficient condition for the
equilibrium state of the particular type to be of multiplicity r. Note that
for r =1and r = 2, condition (7) is fulfilled automatically (Theorems 6
and 7, §2.2 and §2.3).

Theorvem 33. Let 0 (0, 0) be an equilibrium state of a system

LaP@y, L=Q@y (a)

of class r (in particular, analytical system) and let at least one of the first
derivatives of the functions Pand Q, say @, (0, 0), not vanish at the point
0 (0, 0). Let further y = ¢ (2) be the solution of the equation

Q@ y)=0 (9)
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Sor y in some sufficiently small neighborhood of 0,* and
0(x) =P (z. ¢ (). (10)

Then the point O is an r-tuple equilibrium state of system (A) if and
only if the number 0 is an r-tuple voot of the function 8 (z).**

Proof of Theorem 33 is analogous to the proof of the corresponding
proposition in Theorem 7 (§2.3). Using Lemma 1, §1.3 in our proof, we
take for P (z, y) the function

T4t 4 ...+ e T4 Pz, )

with appropriately chosen coefficients ;. Conditions (a) and (b) of
l'heorem 7 are represented by conditions (l) and (8), respectively, and
are fulfilled in our case by assumption.

We now proceed to the next theorem. Let O (0, 0) be an r-tuple equili-
brium state of (A) for which condition (8) is fulfilled, and &, > 0and §,>0
the numbers introduced in the preceding. We moreover assume that g is
sufficiently small so that Q, 5% 0 in the neighborhood U,,(0), and the curve
Q (z, y) = 0 may be defined in this neighborhood by an explicit equation

= @ (z), where§, <z <&, § <0, §&,>0.

Theorem 34. For any whole numbey k salisfying the inequalities
O<k-r k=r(mod2), and for any positive § < 8, and & < e,.there exisis an
analytical system (A) which is §-close to vank r to system (A)and has in
Ue, (0) precisely k, and al that structurally stable, equilibrvium slates, all
of which moveover lie in U, (0).

Proof. Let, as before,

P(z, @ (2)) =0(2). (10)

By Theorem 33, z=0 is a root of multiplicity rof function 0(z). There-
fore,

B(@)=Az + ... = A2 (1 +/ (D), (11)

where A=£0, and f(z) is an analytical function, f(0)=
Consider the system

L P, =P N+p ), %=0@ =0, (12)
where
P ) =A@-—-z)(@—z) ... @—a) (@ +a) (1 +f(2) -0 (2), (13)
and £ is an integer, 0<k<r, k=r(mod2), a>0, & <z; <k, and all r;, are

different (p(:r, y) is mdependent of y).
Since § = Q, the curve Q(x, y) =0 coincides with the curve Q(z, y)=0, i.e.,
in the neighborhood U, !0)it may be expressed by an explicit equation

*  Yhe equation Q (¥, y) = 0 has a single-valued solution ¥y = @ {2} in a sufficiently small neighborhood of 0
in virtue of condition (8) and the theorem of implicit functions; here, @ is a function of class rand
@ (0) = 0.
** 1f Qy (0, 0) = 0, but Pz (0, 0), say, does not vanish, @ (z)should be replaced by a function 6% (y) =
= Q (9* (), y)» where x = ¢@* (y) is the solution of the equation P (x, y) = Ofor z.
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y=¢(x), & <z<§. Therefore

B@)=P@. 9@)=P(z 9@)=p@ ) +P& ¢@)=
=A@E—a;) (@T—25) ..o (T—x2) (@) (1 +f (@) (14)

By assumption, 0(0,0) is the only equilibrium state of (A) in Ug(0). It
thus follows from (10) and (11) that 14 (z)5%0 for & <z<<E. Moreover,
r*4 a0, since a>0, and r—k is even. But then we see from (14) that
system (12) has in U,, (0) precisely & equilibrium states O, (x:, @ (z1)),
i=1,2,...,% By (11)and (13),

P ) =A@ +f@) ™ e—2) (z—0) - (@—z)—2"]+
Fa(@—x) (T—2) ... (x—x4)}.

If the numbers z;, i=1, 2, ..., k, and a are sufficiently small, the function
p(z, y)in a finite interval is arbitrarily close to zero with its derivatives,
and system (12) is therefore arbitrarily close to rank r to system (A).
Moreover, for small z;, all the points 0; lie in U, (0).

We will now show that the equilibrium states O;(zi, ¢ (1)) of system (12)
are all simple. “Indeed, from the relations P(z, ¢(z)=108(z), Q(z, 9 (2)) =0 it
follows that

P (z, @) Pyl o)
Q;;(:u @ () Q;, (=, P (x)) sk
Q= (=) :

B (x) =

Therefore

BO) =Rz, @)= —8 @) Qy(zn, o (@)  (i=1,2,..., k).

But @} (z:;, @ (x:))=0 by assumption, and 8(z;) does not vanish, since z is
a simple root of the function 8(z)(see (14)). Hence, A(0))s£0, i.e., the
points 0; (i=14,2,..., k) are simple equilibrium states of system (12).

If the points 0, are structurally stable equilibrium states, the proof is
completed. If some of these are structurally unstable equilibrium states
(i.e., multiple foci or centers) we can adopt the same technique as in
Lemma 1 and change over to an arbitrarily close analytical system which
has in U, (0) precisely k equilibrium states, all of which are structurally
stable and lie in U, (0). This completes the proof of the theorem.

Remark. Theorems 32 and 34 naturally complement one another
and completely determine the number of equilibrium states of a
sufficiently close system which may lie in U,, (0) if they are all structurally
stable. Theorem 32, however, has been proved for a general case,
whereas in Theorem 34 we assumed condition (8) (or (7)) It is therefore
interesting to try to establish whether or not Theorem 34 is applicable to
the general case, i.e., when condition (7) is not satisfied.

2. The character of the structurally stable equilibrium
" states obtained from a multiple equilibrium state with ¢ 5= 0

In the previous section we determined the number of structurally stable
singular points to which an r-tuple equilibrium state O of a dynamic

* We have previously encountered this formula in the proof of Theorem 7 (§2.3).
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system (A) may decompose on passing to close systems. In this subsection
we will try to elicit some information about the character of these
structurally stable singular points. We assume that the multiple equilibrium
state O is isolated and satisfies the condition

1220, 0)[+{ Py (0, 0)[+]Qx (0, 0)[+1Q; (0, 0)| 5= 0. (7)

The topological structure of the dynamic system in the neighborhood of
such an equilibrium state has been studied in detail in QT, %21 and §22.
We will require the principal results from QT, which are reiterated
below. We distinguish ocetween two cases, ¢ =0 and o 0.

(a) Let

o= P5(0, 0)+Q; (0, 0) 0. (15)

In this case, system {(A) is transformed by a non-singular linear
transformation to the form

LP@my), Lyt ) (18)

where P, and @, are analytical functions whose series expansions in the
neighborhood of the point 0(0, 0) consist of terms of not lower than second
order.
Let
y=9() (17)

be the solution of the equation

y+Qalz, y)=0 (18)

in the neighborhood of & (0, 0) and let the expansion of the function

¥ (z) =Py (z, 9 (2)) (19)

in powers of £ have the form

V(r)=Amz" ..., (20)
where m>» 2, and

Ap==0 (21)

(the existence of these numbers m and A, follows from the fact that the
equilibrium state is isolated).

The following propos:tion applies:

1(QT, $21.2, Theorem 65)

1. If mis odd, and A,, > 0, the equilibrium state 0 of system (16) is a
topological node (Figure 104).

2, If mis odd, and A,<90, Ois a topological saddle point (Figure 105).

3. Ifmiseven, the equilibrium state 0 (0, 0) is a saddle-node, i.e., its
canonical neighborhood consists of a parabolic and two hyperbolic sectors
(Figures 106 and 107).

(b) Let
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4

FIGURE 104, Oddm, Am > 0. FIGURE 105. Oddm, A, <0,

7
2

FIGURE 106. Evenm, Ay > 0. FIGURE 107. Evenm, Ap <<O.

In this case, system (A) can be transformed by a non-singular linear
transformation to the form

d 3
'g‘:i=y+Pz(1'v y)' ‘d_l:=02(zi y)- (23)
System (23) in its turn can be reduced to an even simpler form

d —

H=0Em)

by the transformation
t=z, n=y+P(= 9,

which is one-to-one in the neighborhood of 0(0, 0). Reverting to the
original notation, we may thus consider a system of the form

=Y, ";—Z=Qz(xv y)v (24)

where the series expansion of Q,(z, y)contains no linear terms.
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Since 0(0, 0) is by assumption an isolated equilibrium state of
system (24), this system can be written in the form

ey, el @by g @)+ Y (@ ), (25)
where h(z), g (z), f(x., y) are analytical functions; 2 (0) = g (0) = 0; r>2;
a = 0; bmay be equal to zero; if b=+0, we haven>1.

In this case, the following proposition applies:

I {QT, $§22.2, Theorems 66 and 67)

1. If ris odd, the equilibrium state Ois either a topological saddle
point, or a topological node, or a focus (a center), or finally an equilibrium
state with an elliptical region (whose neighborhood contains one hyperbolic
and one elliptical sedtor, Figure 108).

<

]

/

FIGURE 108 FIGURE 109

2, If ris even, O is either a degenerate equilibrium state (two hyper-
bolic sectors, Figure 109), or a saddle-node (Figure 110).

V

&

FIGURE 110

Note that by Theorem 33 and the condition a s= 0, the number r is the
multiplicity of the equilibrium state 0.
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We can now consider the character of the structurally stable equilibrium
states obtained from a multiple singular point. First we consider the case
when

6=P; (0, 0)+Q; (0, 0) 0. (15)

The solution of the problem is very simple, since the character of the
component structurally stable states is entirely determined by the Poincaré
index of the singular point 0. We may assume without loss of generality
that the system has the form (16).

Let A be the number of hyperbolic, and E the number of elliptical sectors of
a canonical neighborhood of the equilibrium state 0. According to
Bendixson's formula, the Poincaré index of the point Ois

I ==E2;H+ 1 (26)
(see QT, Appendix, $§10).

In our case, as we see from (16), o=1and A =0. Let (&) be a dynamic
system §4,close to (A) to the required rank, and O, O, ..., Oy the equili-
brium states of this system lying in U, (0), all of which are structurally
stable. If the numbers §, and g,are sufficiently small, the number o; = 0(0))
ig close to 1 for each of the equilibrium states 0;, i =14, 2, ..., k, and
A= A(0;) is close to zero. Then, if A (0;)) > 0, 0; is a structurally stable
node, and if A; (0;) << 0, O; is a structurally stable saddle point. Thus, in
our case, all the structurally stable equilibrium states into which a
multiple equilibrium state O decomposes are structurally stable nodes and
saddle points.

By Theorem 33 and relations (20) and (21), the multiplicity of the
equilibrium state O (0, 0) of system (16) is m. Evaluating the Poincaré index
I =1, (0)of the point O from (26), we obtain the following results:

1) If O is a topological node, I =1 (E = H = 0).

2) If O is a topological saddle point, [ = — 1 (E =0, H = 4.

3) I Ois a saddle-node, I =0 (E =0, H=2).%

On the other hand, we know (see the pronf of Theorem 31) that

IaO)=I=1Iz O)+Iz(0)+ ...+ 1z (On. (27)

Since the Poincare indices of a structurally stable node and a structurally
stable saddle point are +1 and -1, respectively, equation (27) directly gives
the number of structurally stable nodes and structurally stable saddle points
among the points 0, 0z, ..., O in each of the cases 1, 2, 3 above. The value
of the number k is completely fixed by Theorems 32 and 34.

All the various results can now be summarized in the following
theorem.

Theorem 35. Let

* Note that the Poincaré index of the equilibrium state O (0, 0)of system (16) can be readily computed
without using Bendixson's formula (26). To this end, we should count the number of times the field vector
of the dynamic system crosses the direction of the y axis while moving along a circle of small radius
centered at 0. See Kranosel'skii et al. /19/, §7.
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be a dynamic system, 0 (0, 0) an equilibrium state of this system for which
A=0and o = P (0,0) +2,(0,0)52 0, and let m>2be the multiplicity of the
equilibrium state 0. Then the number k of structurally stable equilibrium
states Oy, O, . .., Oy into which the multiple equilibrium state 0 decomposes
on passing to arbitrvarily close sysiems* satisfies the conditions

0g<hkg<m and k=m (mod?2)

and may be equal to any number satisfying these conditions. Each of the
points 0, (i =1, 2, ..., k) is either a structurally stable node or a structurally
stable saddle point. Moreover,

1) if 0is a topological node, k is odd and the numbey of structurally
stable nodes among the points 0,,0,,. .., Oy is 1 movre than the number aof
structurally stable saddle points;

2) if 0 is a topological saddle point, k is odd and the number of
structurally stable nodes among the points 0,, O, ..., 0, is 1 less than the
number of struclturally stable saddle points;

3) if 0is a saddle-node, k is even and the number of structurally
stable nodes among the points Oy, O,. ..., O is equal lo the number of
structurally stable saddle points.

Remark. Theorem 35 fully determines the types of the structurally
stable equilibrium states which are obtained from a multiple equilibrium
state O (0, 0) in the case o = P, (0,0) + Q, (0, 0) = 0. It follows from this
theorem, in particular, thatthe topological structure of the equilibrium
state O in this case is uniquely determined by its Poincaré index, which is
equal to the difference between the number of structurally stable nodes
and the number of structurally stable saddle points obtained from the
multiple equilibrium starte.

3. The character of the structurally stable equilibrium
states obtained from a multiple equilibrium state with

=0

In our proof of the basic theorems of this subsection, we will make use
of one proposition which belongs to Poincaré (/15/, p.43, Theorem V) and
is also of independent interest.

Theorem 36 (Poincaré theorem). If a dynamic system

Z_f=P(xv ¥), 3_¥=Q(-7-'» y) (A)

has only simple equilibvium states and if the isocline P (z,y) = 0(or

Q (z, y) = 0) has no singular poinits (i.e., points at which both partial
derivalives P, and P, vanish simultaneously), the equilibrium states with
A< 0, t.e., saddle points, alternate on this isocline with equilibrium
states with A > 0, i.e., nodes and foci.

Proof. Let O (x, y,)and O, (z,, y;) be two simple equilibrium states of
(A) and [ a simple arc of the curve P (z,y) = 0 between these points, which
contains no other equilibrium states except the end points. We have to
show that A (0,) and A (0,) are of different signs. Suppose that this is not
so and let A (0)) > 0 and A (0,) > 0, say.

® This number is defined before Lemuma 1.
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Consider the vectors n(M)=n (z,y) with the coordinates P:(z,y), P, (z,y),
where M (z, y) is a point of the curve P (z,y) = 0. These vectors form a
continuous field of normals on the arc I, anag no vector of this field is zero
(i.e., the field has no singularities on the arc /). Consider the function
Q (z, y) = Q (M) and its gradient grad Q (M). Since O, and O, are equilibrium
states of (A), we have Q (0,) = Q (Os) = 0. Furthermore, the conditions
Ay > 0 and A, > 0 clearly indicate that the vector n (0;) makes a positive angle
with the vector gradQ(0;), i=1, 2 (Figure 111).

grad 837 5
FIGURE 111

To fix ideas, suppose that the tangent O,T; at the point O, of the curve [,
corresponding to its direction from O to 0,, makes a positive angle
with the normal n (0;). Then the tangent 0,7, at the point 0, of the curve I,
corresponding to the direction from 0, to 0,, evidently makes a negative
angle with the normal n (0,). Computing the derivative of the function
Q (z, y) along the curve ! in the direction 0,0, (0,0,) at the point 0, (0,) and
remembering that this derivative is equal to the projection of the gradient
of @ (z, y) on the corresponding tangent, we find that this derivative is
negative at the pointQ,and positive at the point 0,. This result, combined
with the relations

Q0)=Q 0y =0

and with the definition of a derivative along an arc shows that the function
Q (z, y) is negative on the arc ! near the point 0, and positive on this arc
near the point 0,. But then Q (z, y)=0 at some interior point of the arc I,
i.e., this point is an equilibrium state of (A), contrary to the original
assumption. Q.E.D.

Let us now consider the equilibrium state O (0, 0) assuming that

1 P2 (0, 0) [+ Py (0, 0) |+ Q= (0, 0| +]Qy (0, 0) [0 (7)

o= P50, 0+ @y (0, 0) =0. (22)

The problem is much more difficult now than in the previous case, and
it entails a number of special algebraic propositions. We will therefore
list a number of relevant results without proof. Detailed proof will be
found in /16/.

The complications are associated with two factors. First, if a singular
point O decomposes into structurally stable equilibrium states 0, (i =
=1,2, ..., k), A(©O;)and o (0;) may take any arbitrarily small values. In
particular, the difference o (0;)* — 4A (0;) may be either positive or negative.
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Fhis means that the points 0, may in general include structurally stable foci,
and not only structurally stable saddle points of nodes. Second, the
Poincar€ index of the equilibrium state 0 no longer determines the topologi-
cal structure of this equilibrium state (as it was in the previous case).
Indeed, by proposition II of the previous subsection, if the multiplicity r of
Ois odd, this point may be

a) a topological saddle point (F = 0. H = 4);

b} a topological node(E =0, H = 0);

c) an equilibrium state with an elliptical region (E =1, H = 1);

d} a focus or a center (E =0, H = 0).

If the miltiplicity r of O is even, the equilibrium state O may be

e} a degenerate equilibrium state (H = 2, E = 0);

f} a saddle-node(H =2, E == 0).

By Bendixson's forrnula, the Poincaré index of the point O has the
following values: .

I = —11in case a;
I= 41 in cases b, c,d; (28)
[=0 in cases e,f.*

The topological structure of the equilibrium state is therefore completely
determined by the Poincaré index only if it is equal to —1, i.e., O is
a saddle point. The characteristic of the point O in terms of the component
structurally stable equilibrium states for case a is the same as in
Theorem 35, provided we do not distinguish between structurally stable
nodes and structurally stable foci, i.e., between structurally stable
equilibrium states with A>0."* Using Theorems 32 and 34, we obtain
the following result.

Theorem 37. A multiple equilibrium state 0 (0, 0y of system (A) for
which condition (7) is satisfied but ¢ = P.(0,0) -~ Q, (0,0) =0 is @
topological saddle poin! if and only if the number of structurally stable
nodes and foci into which it decomposes is 1 less than the number of
structurally stable saddle point. The total number k of structurally
stable equilibrium states into which 0 decomposes may be any positive
odd number nol exceeding r, where r is the multiplicity of 0.

For the sake of completeness, the next step in our analysis should have
been aimed at determining whether certain relations exist between the
number of structurally stable nodes and the number of structurally stable
foci or each number may take any value between 0 and # We will not
consider this problem, however.

In cases b, c,d, as it follows from (28) and from the previous results,
the number of nodes and foci among the structurally stable equilibrium

states 0y, 0, ..., O, is | greater than the number of saddle points, and in
cases e and f the number of nodes and foci is equal to the number of
saddle points.t In terms of decomposition into structurally stable

* As for system (16), the Poincar? index of the equilibrium state 0 of system (24) can be readily computed
without resorting to Bendixson's formula. See footnote on p, 226.

Note that from a pure topological point of view, no such distinction is possible, since the node and the
focus have an identical topological structure.

We recall that @y, O, ..., O, are the structurally stable equilibrium states into which the multiple
equilibrium state @ decomposes.

.

-

+
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equilibrium states, we can thus distinguish between points b, c,d, on the
one hand, and points e,{, on the other. In similar terms, we can
distinguish between points of type e and points of type f, and also fully
characterize each of the types b,c,d. However, the resulting classification
is not pure topological, since we wish to differentiate between structurally
stable nodes and structurally stable foci obtained from the multiple point 0.
Moreover, we are forced to consider in this case the decomposition into
the maximum number of structurally stable equilibrium states (equal to
the multiplicity of the original equilibrium state ), and not into any
possible number, as before. To emphasize the last factor, we will
refer to feasible system (A)as a split system if on passing from (A)
to (A) the singular point O of multiplicity r decomposes into r structurally
stable equilibrium states.

Let us first formulate a result relating to a quadruple equilibrium state
(r =0, cases e and f).

Theorem 38. Let (A) be a dynamic system, 0O (0, 0) a multiple
equilibrium state of the system of multiplicity r = 2m, m»1, for which
condition (7) is satisfied and o = P; (0, 0) + Q; (0, 0) = O (i.e., a degenerate
equilibrium state or a saddle-node). Then

1) If the equilibrium state O decomposes into k structurally stable
equilibrium states 0,, i =1, 2, ..., k,on passing to a feasible system, k is
even and the number of structurally stable saddle points among 0,is equal to
the number of structurally stable nodes and foci.

2) If 0 is a degenerate equilibrium state, there exist split systems
arbitrarily close to (A) for which 0 decomposes only into structurally foci
and saddle points.

3) If 0is a saddle-node, the structurally stable equilibrium slates into
which O decomposes on passing to any sufficiently close split system
include at least one structurally stable node.

Proof. The validity of the first proposition follows from Theorem 32
and equation (28) and has in fact been established before.

Let us prove the second proposition. Without loss of generality, we
may assume (see §3.2, Lemma 2) that system (A) has the form (25):

S _y—P@y), a1 +h(@)] + by e @]+ 1 (=5 1) = Q= y),
dt d

where k(z), g(z), f(z, y) are analytical functions, A(0)=g(0)=0, m>1;a>0;

n>1if b=0. Let 0(0, 0) be a degenerate equilibrium state. In QT (s22.2,
Theorem 67) it is proved that in this case

either =0,
or bs=0andn>m. (29)
Let, first, b 0. We take some positive number n>0and a sequence

of arbitrary numbers z;, i=1. 2, ..., n—1, such that

Oy << xy< ..o << Ty << (30)

We draw up a polynomial
b(@)=br(x—x)(x—x3) ... (F—Tp-y) = bx" - byx" 1+ ... 4 bp, (31)

whosge roots are the numbers 0, z,, 75, ..., Zny.
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By (29), m—1-crn—1. Let 1, Ts ..., Zn be any numbers satisfying the
inequalities

0<;1<I’<<1_'2<12<-n<Im-2<;m-l<xm-i<;m<7]- (32)
We now construct a polynomial
(D) =ax(@—2) ... (T—Zm. ) (Z—T)) . .. (T —Tp) = a2+, 22" L gz,  (33)

whose roots are the numbers 0, z;, ;. Clearly, if n is sufficiently small,
the coefficients 4; and a; may be made as small as desired.
Consider a system
dr 5
'ﬂzy: P (‘r, y)v

W (@™ @I L+ Gyne®) (LR (@) (R)
+ (b by L by ) y [+ g (2)] +y’f~(.t, y)=
=a(x) (L +h @)+ 0@y (14 g @+ ¥3*f (. y) = (z, y)-

We take n>0 to be so small that the following conditions are satisfied:
(a) n<ees
(b) (&) is a feasible system; } (34)
{c) if|zj<n, then1+h(z)>0.

All the equilibrium states of system (&) lie on the axis Oz. From (33)
and (34, ¢) it follows that all the equilibrium states of (A) lying in U, (0) are

0(0,0), Oi(z;,0), i=1.2...,m—1, and 0;(z;,0), j=1.2,...,m. (35)

System (A) thus has 2m equilibrium states in But U, (0) < U, (0)
by (34,a). Therefore (A)is a split system, and by Lemma 1 all the U, (0)
equilibrium states (35) are simple. Let us identify their character. To
this end, we will compute the values of A and o for each of these states.

Direct computations show that if O* (z*, 0)is an equilibrium state of (&),
then

A(OY) = ——5; (z* 0)= —a’ (*) (1 + & (z*)] —a (2) ' (z*) (36)
and
010%) =q, (2" 0) = b (2*) (1 + g (=*)]. (37)
If 0* is one of the points in (35), we have a(z*)=0 and
A(O") = —a’ (z*) [1 + & (z*)]. (38)
Computing a' (z), we insert for z* the abscissas of the points in (35),
and using the inequalities (32), (34, ¢) and the condition ¢ > 0, we obtain
from the last expression

AO)y=0; A(O)=>0, i=12 ...,m—1;

7 39
AD) <0, j=1,2....,m. (39)
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Furthermore, since r=0and z=ux; i=1, 2, ..., m—1, are roots of the
polynomial b(z), we see from (37) that

6(0)=0, o{z)=0, i=12, ...,m—1. (40)

Relations (39) and (40)show that the points 05,j=1,2,...,m, are

structurally stable saddle points, and the points 0 and 0y, i =1, 2, ...,
.., m-—1, are multiple foci of {(A). In accordance with the standard

reasoning (see, e.g., the proof of Lemma l), there exists a system ( )
arbitrarily close to (A) for which 0, remain structurally stable saddle
points, whereas Oand O, are structurally stable foci. Clearly, (K) is a
split system and, if 1 is sufficiently small, (&) is as close as desired to
(A). This proves the second proposition of the theorem for the case b 3= 0.

If b = 0, we do not need to construct the polynomial b (z), and
Zy, Tz, . . ., Tm-q CAN be taken as any positive numbers smaller than 7.

We now proceed to the third proposition of the theorem. Let the
equilibrium state 0 (0, 0) of system (A) be a saddle-node. By QT, §22.2,
Theorem 67, we have in this case

b0 and I<n<m. {41)

We will divide the proof into two parts.
a) Consider a system

O(xv y):Q(z, y)+¢1(1' y): (A)
= az®™ (4 + b (2)] 4 bz"y [ + g (2N + 1%f (=, ¥) +-q (=, v),

where b= 0 and 1<n < m. We will first prove that if (A) is sufficiently close
to rank 2 — 1 to system (A) and has in U, (0) precisely 2m equilibrium
states, which are all structurally stable, then at least one of these
equilibrium states is a node.

Evidently, closeness to rank 2m — 10of (A) and (A) indicates that the
function ¢ (z, y) is close to rank 2m — 1 to zero.

Let O, (z;,0), i =1, 2, ..., 2m, be the equilibrium states of (A) in U,, (0).
Consider the values of A, o, and A = ¢® —4A corresponding to each of these
equilibrium states. Clearly,

Az, 0) = —Qx (2, 0) = — gz (2, 0)—2 max?™~1[1 + k (x)] —az?™h’ (z), (42)

o (z, 0) = Q; (&, 0) = g; (x, 0) + ba" (1 + g (a)). (43)
It follows from these relations that

A (@) = 02— 4A = b2z - @y (2) + P2 (z) = 0% + ¢ (), (44)

@y (2) = 2b%22ng (z) + b222"g2 (z) + 8 max2™—t {1 4 h (x)] + 4ax?™h’ (z) (45)
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and
@2 (2) = q;f (z. 0) -+ 2qy (x, 0) 02" [ + g (2)] + 4qx (2, 0). (46)

From n<m it follows that2r <<2m—1. Since, moreover, g(0}=0, the
function ¢, (z) may be written in the form

@y () = a2Hig, (2),
where ¢,(z) is an analytical function. Consequently, there exists a number
ey satisfying the following conditions:
(a) 0<<ey <<eg;
(b} 8*z2" —~ ¢, (z)>0 for z—=¢, and for z= —¢,; (47)

...n)’ 62

(C) JgPm (z) | << =5 for —er<<z <.

We now choose a number §,. <8, <&, satisfyingthe following condition:
if the function ¢(z, y)is §,~close to rank 2m—1 to zero, then
1) h(—e) >0 A(e) >0

(..m b2

2 @M (x) < T for —ey <z <y (48)

3} all the equlhbrium states 0, i=1,2,...,2m,liein U, (0).

Condition (48,1) can be satisfied in virtue of (44) and (47,b). Condition
(48, 2) holds true for a sufficiently small §, in virtue of (46) and the
inequality 2n -~ 1 <2m — 1. Finally, (48, 3) is automatically satisfied for a
sufficiently small §,.

Let now (A) be 8,-close to {(A) to rank 2m — 1, i.e., the function g (z, ) is
§,-close to zero to rark 2m — 1. Consider the function

A (z) = b2 4 @ (2) (49)

on the segment [—g, &].
From the equality

¢ (@) =G (2) + F2(2) (50)
and from (47,c) and (43, 2) it follows that on this segment
[ @2 ()] << (2n)! b2, (51)

The function A (z) tharefore has at most 2n roots on the segment[— &, gl."
Let &, &, ..., & be all the different roots of A (z) on this segment (some of
them may be multiple roots). Consider the k + 1 intervals into which the
roots &;divide the segment [— &, 2). In each of these intervals, the
function A (z) retains a constant sign. By (48,1), A (z) > 0 in the first and
the last of these intervals. The intervals where A (z) << 0 will bé called
negative intervals and designated J,, J,, ..., J,(Figure 112). We will now
prove that I<na. Indeed, both ends of each negative interval are roots of
the function A (z). If the intervals J; and J,., have a common end point §,

* if the function has N roots on some segment (counting their multiplicities), its derivative has at least
.} —1roots. This follows from the Rolle theorem and from the fact that each multiple root of a function
is a root of the derivative of multiplicity smaller than 1.
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(e.g., the intervalsJ;and Jsin Figure 1 12), t, isa root of even multiplicity of
A(z), i.e., it has a multiplicity of at least 2. Therefore, the total number of
roots of the function A (z) on [— g4, ] is at least 2. Since, on the other hand,
the number of roots is at most 2n, we see that I<n. Then by (41)

l<<m. (52)

All the equilibrium states 0,, i =1, 2, ..., 2m,lie in U, (0){see (48)) and
are structurally stable and therefore simple. If O; (x;, 0)lies in one of the
negative intervals, A (0;) = A; > 0, since otherwise A (z;) = 4; = o} — 4A;, > 0.
But then by Theorem 36 (Poincaré theorem), each negative interval J, con-
tains at most one point 0;. This signifies, as we see from inequality (52),
that the number of equilibrium states 0; with A << 0, i.e., the number of
foci, is less than m. On the other hand, the first proposition of the theorem
indicates that the total number of nodes and foci among the points 0, is
equal to the number of saddle points m. Hence, there is at least one node
among the points 0,, which proves the third proposition for system (A).

'x.:’?__ /ONE -_/\/\A
-& 5;\/52 E:\/w 6""51

FIGURE 112

b) Let us now consider the general case. Let

Z—f~y+p(x, y=P ), %=0(x, N+e@ =0 v) (&)

be a dynamic system §-close to rank 2m to system (A) which has in U,, (0)
precisely 2m equilibrium states, all of which are structurally stable. We
have to prove that if 8 is sufficiently small, these equilibrium states

contain at least one node. Let the equilibrium states be Oy, O, . .., Oz,
Consider the transformation

X=2, Y=y+p(y). (53)

We assume that the region G in which all the systems are treated is convex
in y* and that § < 1. Then, as is readily seen, the mapping (53) is one-
to-one and regular, moving G into some region H in the plane (X, ¥).
Indeed, if two different pcints (zy, y,) and (z,, y;)are mapped by (53) onto the
same point, then z;==x,,y, s¢ y,and y; + p (x4, Y1) =y2 + p (1, ¥2). Butthen y, — y, =
= p (2, ¥s) — p @0 ¥2) = (U1 — ¥2) Py (21, ¥*), where y, < y* < ya(or y, > y* > y.).
Therefore | p, (z, y*) | = 1, which contradicts the condition § < 1.
Transformation (53) changes (A) into the system

dX dy’ 3
=Y F=e& .

* Convexity in y indicates that if the end points of a segment parallel to the axis Oy lie in G, the entire

segment lies in G.
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Let us consider X and Y as coordinates in the plane (z,¥), i.e., we
replace X, Y with z, y, respectively. This gives a system

(A)

dr dy _ 4
a =y 7;;—-0(-’5,!/)»

defined in H.

Transformation (53) is §-close to rank 2m to the identity transformation
¥ =z, Y =y(see §3.2). Let G, be a closed region, such that G G, o Uy (0).
If & is sufficiently small, we see by Lemma 1, §3.2 that system (A) is
defined in G, and is arbitrarily close to system (A), and hence to
system (A), to rank 2m —1. To every equilibrium state 0, i =
=1,2, . 2m,of system (&) corresponds an equilibrium state 0, of
system (A) Since (53) is a regular mapping, O, are structurally stable
equilibrium states by L.emma 2, §6.1, and the corresponding pairs 0; and
O; are either both nodes, or both foci, or both saddle points. Finally, for
a. sufficiently small §, all the equilibrium states 0, of system (A) lie in

U, (0) and there are no other equilibrium states of (A) in this neighborhood.

But then system (A) satisfies all the conditions of proposition a (see
p. 232),1i, e., among the points 0,, and therefore among 0,, there is at
least one structurally stable node. This completes the proof of the
theorem.

In Theorems 37 and 38 we considered cases when the Poincaré index of
the original equilibrium state 0 (0,0} is -1 or 0. Let us now proceed to the
last case, when the Po.ncaré index is +1. The equilibrium state 0 (0, 0) of
system (A), as we have noted before (see (28)), is then one of the following:

b) a topological node;

c¢) an equilibrium state with an elliptical region;

d} a focus or a center (see p.229).

in §23.2 we saw that the relevant system can be reduced to the form (25):

Ly Hoal R @)+ by [+ g @15 (@ g

[t is established in QT, Chapter IX, §22.2, Theorems 66 and 67, that
cases b, c,d obtain if a << 0 and r is an odd number. We may thus take
system (A) in the form

8 — a4k @)+ by [+ g (@] + 8% (3, 9), (54)
where a << 0, m>»1, h, g, and f are analytical functions, and A (0) = f(0) = 0.
Then (see QT, Theorem 66)
b) 0. 0) is a topological node if

b0, nis even, and n<m (55)

b0, nis even, n=m, and D=24+4(m+)a>0; (56)
¢) 0(0, 0)is an equilibrium state with an elliptical region if

b0, nis odd, n<m (57)




Ch. VIII, BIFURCATIONS OF DYNAMIC SYSTEMS

b0, nis odd, n=m, and D=b+4(m+1)a>0; (58)

d) 0(0, 0) is a focus or a center if

b=0, (59)

bs=0and n>m, (80)

b0, n=m and D=b44(m-+1)a<0. (61)

The next theorem characterizes — interms of decomposition into
structurally stable equilibrium states — the difference between cases b
and ¢, on the one hand, and case d, on the other. This classification,
however, is formulated for the case when system (a) is given in the
form (54) and if n = m, then D = ? +4(m+1)a£0. We will show some-~
what later (see remark to Theorem 39) that the last condition is
fundamentally not restrictive.

Theorvem 39. 1) If on passing from system (54) to a feasible system
the equilibrium state 0 (0,0) decomposes into k sitructurally stable equili-
brium states 0,,i=1,2, ..., k, kis odd and the number of structurally
stable saddle points among 0,is 1 less than the number of structurally
stable nodes and foci.

2) If 0(0,0)is a topological node or an equilibrvium stlate with an
elliptical region and if for n=m, D = b2 + 4 (m + 1) a0, the structurally
stable equilibrium states into which O decomposes on passing lo a
sufficiently close split system include at least one structurally stable node.

3) If 0 (0, 0) is a multiple focus or centey, theve exist split systems
arbitrarily close to (54) on passing to which 0 decomposes into strvucturally
stable foci and saddle points only.

Proof. The first proposition of the theorem follows directly from the
fact that the Poincar€ index is + 1 in cases b, ¢, d {(see (28)). The second
and the third proposition for m s« n are proved precisely in the same way
as the corresponding propositions of Theorem 38. If, however, m = n, the
proof is more complicated, and is omitted here.*

Remark. Ifn=m, and D = b 4 4 (m + 1) a = 0, there exist systems
of the same type, arbitrarily close to (54), for whichD > 0and D < 0. There-
fore, no criterion is applicable in this case which would differentiate —
in terms of decomposition into structurally stable equilibrium states —
between a node or an equilibrium state with an elliptical region, on the
one hand, and a focus or center, on the other.

For the sake of completeness, we require still another criterion, which
would differentiate — in terms of decomposition into structurally stable
equilibrium states — between case b and case ¢, i.e., between a node and
an equilibrium state with an elliptical region. One such criterion has been

* A number of special algebraic lemmas have to be used in this case. See /16/, Theorem 5.
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established in /16/ (p, 535, Theorem 6). It makes use, in particular, of the
character of the stability of the structurally stable nodes and foci into
which the multiple equilibrium state 0 decomposes.

This criterion, however, employs essentially nontopological concepts,
and it is therefore inadequate from the topological point of view adopted in
our treatment. The question of a satisfactory (topological) criterion of this
kind thus remains open.

In conclusion of this section, note that our results indicate that the type
of a multiple equilibrium state O (0, 0) of system (A) satisfying conditions (7)
and (22) (i.e., when o = P + Q, = 0) is not determined in general by the
topological structure and the number of structurally stable points into which
the multiple point decomposes. To obtain a full characteristic of points of
types b,c,d, e, f (p. 229), we have to consider the (non—topological) difference
between nodes and foci. Ifin(54), n=mand D =58 +4(m +1)a =0,
cases b and ¢ cannot be distinguished from case d by considering the
structurally stable points obtained from the multiple point.




Chapter IX

CREATION OF LIMIT CYCLES FROM A
MULTIPLE FOCUS

INTRODUCTION

In the previous chapter we considered bifurcations of a multiple
equilibrium state, concentrating only on the number and the character of
the structurally stable equilibrium states into which a multiple state may
decompose. In Chapter IXwe will consider a simple equilibrium state, namely
a structurally unstable focus (A == 0, pure imaginary characteristic numbers)
and determine the number of limit cycles which may be created in its
neighborhood on passing to close systems. Once this problem is solved, we
will be able to describe the possible bifurcations of a dynamic system in the
neighborhood of a structurally unstable focus.

The chapter is divided into two sections. In §24, various auxiliary
propositions are considered. It studies in more detail the properties of the
succession function, and also defines the leading concepts of focal
values and multiplicity of a multiple focus. The succession
function was originally defined in §10: let O be a focus, [a ray issuing
from the focus, M, a point on the ray, sufficiently close to 0, L a path
(spiral) through My, M;the next (after M,, in terms of increasing t) inter -
section point of the path L and ray I. Let OMg = p,, OM, = p, (Figure 286,
p.91). The function py = f (py) is called the succession function on the ray I.
The focal values are defined as the values of the derivative of the
function

d (Po) = f (Po) —po

at the point p, = 0.
In §24 we prove that if rn exists such that

&0 =d"(0)=...=d" b ©0)=0, d™ (0)=£0,

then nis an odd number (Lemma 5). In this case

n—1t
k= 2

is called the multiplicity of the focus 0. A simple focus has multipli~
city zero (n = 1), whereas a multiple focus either has no definite multipli-
city, or its multiplicity is k>1. A number of formulas are derived in §24.3
which can be applied to compute the focal values. All these formulas lean
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on the proof of the funcamental theorem of Chapter IX. Expressions for the
focal values of an analyvtical system are derived in §24.4. These expressions
are useful in treatment of particular systems.

The fundamental theorem of this chapter is proved in §25 — the theorem
of the creation of limit cycles from a multiple focus (Theorem 40). Its
formulation is very sirmple: if 0 (0, 0)is a multiple focus of multiplicity
:>»1 of a dynamic system (A), systems (&) sufficiently close to (A) to rank
2k + 1 can have at most k closed paths in a sufficiently small neighborhood
of the focus. On the other hand, there exist systems (25.) as close as desired
to (A) (to rank 2k + 1) which have precisely k closed paths inanarbitrarily
small neighborhood of “he focus. Thus a k-tuple tocus may create &, but
no more than k, limit cycles.

Theorem 41 establishes that for any s, 1 <s<k, thereexistbifurcationsin
which precisely s limit cycles are created from a k-tuple focus.

Theorems 40 and 41 show that a dynamic system may only have a finite
number of different bifurcations in the neighborhood of a focus of finite
multiplicity. In §25.2 a classification of these bifurcations is given.

At the end of the chapter (§25.3) we consider one particular case often
encountered in applications, namely a system dependent on a single para-
meter and its bifurcations in the neighborhood of a multiple focus of
multiplicity 1 when the parameter is varied. When the system crosses the
bifurcation value of the parameter, the stability of the focus changes and
a limit cycle is created, or alternatively an existing limit cycle "'contracts’
into the focus.

§24. FOCAL VALUES
1. Some properties of the succession function

The contents of the present chapter is directly related to §10,
Structural Instability of an Eguilibrium State with Pure
Imaginary Characteristic Roots. We will therefore use the
notation and the concepts introduced in §10, and some of the previous
results. We will consider a system of class ¥ which has the following
canonical form in the neighborhood of an equilibrium state 0 (0, 0) with
pure imaginary characteristic roots:

%f‘:—ﬁy-!-qo(r.y), %f-=ﬁx+q:(z,y), (1)

where p>0. This system is a particular case of the system

dr

dt =ax—By+q:(x, v %‘=ﬁz+uy+¢(1’, y)- (2)

The functions ¢ and ¢ are discussed in §10.1.
Changing over to the polar coordinates p, 8, we first obtain the system

j—i’:F(p, 0)=uap-+@(pcosB, psinB)cosO+ ¥ (pcosb, psin)sin,
a0 N o (3)
7 =B+D(p, 0) ==B+?c059—-p—sin6,
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and then the equation

a0 __ _ _Fp, 0)
a0 =80 ) =proh, 0 (4)

It is assumed here that ® (0, 8) = 0for all 8, which ensures the continuity of
the function ®. Taking

p =1 (8; 8o, po) (5)

to be the solution of equation (4) satisfying the initial condition

f (603 8o, P) == pq,

we define the succession function

0 = fos (Po) = f (8 -+ 211; B4, o)

on the ray 6=0,, and also the function

dag, (P0) = fe, (Po) — Po- (8)

For 0,=0, we designate these functions f(po) and d (p,), respectively.
Thus,

floo)=7 (2m; 0, Pod (9)
d (po) =1 (po) —pa=f (21, 0, po) —po. (10)

In §10 we considered the functions fq, (pe) and dg, (pe) for po> 0. In the
present section, we will allow negative values of ppalso. We will assume,
however, that

[po] <28, (11)

where 8 is a sufficiently small positive number.
First note that equation (4) is not affected by a simultaneous substitution
of —p for p and of 84-n for 8. More precisely, if p=p (0) is a solution of
dp*

equation (4) and if p* = —pand 6* = 0 + n, then %6 = R (p*, 6*). Indeed,

dpr _ ___do
a6* = T adETtm <

d,
— S5 =—R(, O)=R(p", 0%

(the last equality follows directly from (3) and (4)) Thus if p=p (0) is a
solution of equation (4), then

T =R(—p 8+m)=—R(p, 0). (12)
Lemma 1. The following equality holds true:

deo("p)=_deo+n(p)=—f(eo+3n; Oa - 70, p) 4 p. (13)
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Proof. By definition
da, (—po) = [ (80 +27; 89, —pu) —(—p0). (14)

where p=f(8; 0,, —p,) is the solution of equation (4) for the initial conditions
8 —ty o= —py.

Consider the solution of equation (12) for the initial conditions p* =
s —p =y, * =04+ a1=0,+:x. This solution evidently has the form

p* = —p=f(H*% G+, po) = f (8115 Oy 4 . po).
Thus for the particular initial conditions chosen
p=—FfO+x; 8+, 00) (15)

But the condition ¢*=p, for 6*=0,-+x is equivalent to the condition p - —p, for
9=4y. Therefore, in virtue of the uniqueness theorem,

— 7O+ 8o+, po) = £(85 85 —py). {16}

By (14}, (16), (7), and (8), we have

dag (—po) = f (B0 + 25 B, —po)—(—po) = — F (B0 -+ 3r1; 8y -~ 1, 05) +py ==
= —[fastx (o) —pul = — dagyrx (00)-

Substituting p for p,, we obtain (13). . This completes the proof of the
lemma.

Geometrically, LLemma 1 is self-evident. Indeed, let M, be a point with
polar coordinates (64, —p,), where p>0, and let L be a path through this
point which again crosses the ray 0M, (as the polar angle 6 is increased by
2x) at a point M, with the polar coordinates 8, + 21, —p,), p,>0 (Figure 113).
By definition dg,(— po) = — py — (— o) = po — 3. On the other hand, M, and
M, can be considered as points with the polar coordinates (8, -, p,) and
(8 = @, o)), respectively. But then dgyix (0o) = 01 — po = — day (— Po).

Lemma 2. If there exisls ry>0such that for all 0.0 <<p<lr\. da, (p) >
= 0 (dg, (p) <0), there also exists ry > 0 such that for all p, 0 <<p<lrs.
doy (— p) << O (dg, (— p)) > 0, rvespectively). Therefore, for all p, 0 < |p|<r =
= min {ry, rz},

dog () d8, (—p) < 0. (17)

%)

FIGURE 113 FIGURE 114
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Proof. To fix ideas, consider the case when for all p, 0 < p<r,
dgy (p) > 0. (18)

In this case, all the paths of system (2) through the points (8, p), 0 <p<ry,
of the ray 8 = 6, are not closed: these are spirals winding onto the focus
0 (0, 0) for t - —oo (§10.1). But then all these paths crossall the rays 6=
= const, in particular, the ray 6 = 0y + . The succession function on this
ray f gp+a (P) = f (8¢ +2n; 64+ n, p) and the function dgy+n (p) = foe+n (p) — p are
a priori defined for all p,0 << p<r;, where r; is some positive number
(Figure 114). By inequality (18) we conclude that for all p, 0 << p<r,,
dgo+n (p) > 0. Then, by Lemma 1, the function dg,(—p) is defined for all
and is negative. Hence, for all p,0 <<p<r:, 0 < p<min {r;, r.}, we have
dey (p) dog (— p) < 0. Q.E.D.

2. Multiplicity of a multiple focus. Focal values

The following treatment leans on two lemmas which will now be given.

As in §24.1, we consider system (2) and the associated equation (4).
The right-hand side R (p, 8) of equation (4) is defined for all 6 and for all
p, }p | < p*, where p*is a sufficiently small positive number; it is a
continuous function periodic in 6 with a period of 2=,

Lemma 3. If system (2) is of class N»1, the function R (p, 0) has
continuous partial devivatives with respect to p to order N inclusive
everywhevre in the vegion — oo << 8=<Coo, 0<|p | <<p*,

Proof of Lemma 3, although fundamentally simple, involves tedious
mathematics. It is therefore deferred to Appendix, subsection 3.

Corollary. It follows from Lemma 3, by QT, Appendix, §8.3,
Theorem B'', that the solution of equation (4), i.e,, the function p =
= f (8; 8o, po), has continuous partial derivatives with respect to pjup to
order N inclusive.

Lemma 4. The partial derivatives

o1 o Ny
o (19)

considered as functions of 8 (i.e., for constant 0, and p,) satisfy the system
of differential equations

- 9(f(6; B9, po)s 0) 97 (0: o, po)
op 9pg :
82R(f, 0) (a_f)’ =
dp? opy J

R (f, 0) o2
=—;%——)7‘%+E2(9; 00, po)s

+ 2R a—lf &
’ 3p? 5pN—1 dpg

_9R(f, &) o} .
= T"W""EN(Oy 8o, po) ¥

* The expressions for E,, Ej, ..., Ey in (20) are not given in explicit form. Their structure can be guessed
at without much difficulty, and they can be found if we notice that each equation in (20) is obtained by
differentiating the preceding equation with respect to pq.
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with the initial conditions

of | _y 2

af
et L e s 0,..., 2L} o (21)

0=80 ' "7 goy \0=80

Proof. The validity of (20) follows from QT, Appendix, §8.3,
Theorem B''. Relations (21) follow directly from identity {(6}). Q.E.D.

in what follows we assume for simplicity that 8, = 0 (this, evidently,
does not lead to a loss in generality). For the functions f, (po) = f (2; 0, p,)
and dy (pg) = fo (po) — po Wwe will use the respective notation f (p,) and d (py) (see
{9) and (10)). Note that the function f entering (20) and (21} is a function of
three variables, f(8; 04, p,), Whereas f(p,) is a function of a single variable.
The relation between these two functions is fixed by (9)

Since f (0; 0,, 0,) has continuous partial derivatives with respect to pyto
order .V inclusive, the functions f (py) and d (p,} are continuously differentiable
.V times.

Definition 25. The value of the i-th derivative of the funclion d (po)
atl the point 0, i.e., di' (), is called the i-th focal value of the focus 0.

If (2) is a system of class ¥, the focal values 4® (0). 1< i<V, a priori
exist.

Lemwma 5. If theve exists k such that

d(©)=0, d(0)=0,.... d*D(©0)=0, d® (0)==0, (22)

k is an odd number.
Proof. By (3)and {(4), p = 0 is a solution of equation (4). Therefore

FO)=d(0)=0. (23)

_ Applying Maclaurin's formula to the function d (p,) and using relations
(22) and (23), we find

dk
d(Po):—#P?» (24)

where 0 << n << 1. Therefore, if kis even, d{(p,) has the same sign for all
sufficiently small p,, both negative and positive (its sign coincides with the
sign of the k-th focal value d® (0)). This contradicts Lemma 2, however.
Thus k must be odd. Q. E.D.

Definition 26. If conditions (22) are satisfied, andk = 2m + 1, m >0,
we shall say thal the focus 0 (0, 0) is a focus of multiplicity m.

In Chapter IV (§10.2) it is proved that the first focal value is

dO)y=e"F—1, (25)

If m=20, then k=1, d (0)5=0, a = 0. But then the focus 0 (0, 0) has
complex, though not pure imaginary, characteristic numbers, i.e., it is
a simple focus. Conversely, if m > 0,then £33, &' (0) =0, &« = 0, and the
characteristic numbers are pure imaginary, i.e., the focus is multiple
(§10.3, Definition 18). Thus for m>1 we are dealing with a multiple
focus of multiplicity m. Note that a multiple focus does not always
have a definite multiplicity. Indeed, if (1) is a system of class ¥, but not
of class N+1, and if d'(0)=d" (0)=... =d™ (0) =0, Definition 26 is inapplica-
ble.
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In what follows we will deal with multiple foci only, since a simple
focus is structurally stable and the topological structure of the partition
into paths in a sufficiently small neighborhood of a simple focus does not
change on passing to close systems.

When B >0, the focus is stable if for all sufficiently small positive p,,
d{pg) <0, and unstable if d{po) > 0.*

Hence and from (24) it follows that if k = 2m + 1>1 satisfies conditions
(22) and B >0, the focus 0 is

stable when d® (0} 0, (28)

unstable when d™ (0) > 0. (27)

Definition 27, The first (counted in the proper ovder) nonzero focal
value of a multiple focus is called the Lyapunov value,

In other words, the Lyapunov value is the number d® (0) provided that
relations (22) hold true and k> 3. If k¥ = 2m -+ 1, the Lyapunov value will also
be called the m~th Lyapunov value (m>1).%*

From (26) and (27) it follows that for p > 0, a multiple focus is stable
{unstable) if its Lyapunov value is negative (positive).

3. Calculation of the focal values of a multiple focus

Since we will be dealing with multiple foci only, we take in what follows
o =0, i.e,, we will consider system (1), It follows from the results of
Chapter IV (§10.1, (9), and $10.2, (23)) that in this case

[£e9] =0 [2G0w) _y (28)

pg=0

To compute the focal values, we use Lemma 4.
Let

1 1 9*%(6;0, po)]
i opk

"R (p, 0) .
5 [£Re.D 5ok ]p = R@) k=12, N (30)

k k—1
‘k!l‘[Eh(e;Oy Po)lpo=o=H;.(6)=kl [OH af _+k_61}ll._[. ﬂ.]
py=0

o =Ur®), k=12, .., N (29)

ap*  9po 9pY gpk—1 dpo

(the functions E, are defined by (20)).
From (28), (29), and (30) it follows that U, (8) =1, R, (8) = 0 and that

A 1ER (80, plgmo =HA(O) = Ra(®) + ..., k=2, 3, ..., N. (31)

The triple dots in (31) correspond to a polynomial in the functions
R, (0), B3 (), ..., Ry (®)and the functions U, (8), ..., Us-; (8).

* See §10.1. Forf «<0, d (po) > 0in the stable case and d (po) << 0 in the unstable case.

* Logically, this term is not quite adequate, since every multiple focus has a single Lyapunov value. It is
convenient, however, in that it directly identifies the munping number of the focal value which is the
Lyapunov value.
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Let now py = 0in (20). We will successively integrate these equations as
first-order linear equations, using initial conditions (21), the relations

F(0;0,00=0 and R(0,0)=0

and the notation (29), (30), (31). The first of these equations has been
considered before (§10.2). Its solution is given by (28).

Multiplying the k-th equation in (20) (k = 2.3...., A) by ,r—l, and integrating,
we find
? |
| ook . VRi@a0 @ ~YR16) a0
(5t =" L 3 (52)

v

By (28) and (30), R,(8)=0. Therefore,

4
1 [k , ,
T W]%zﬁu,‘(e):(gzir;,(e)de. k=23, ... N (33)

By definition, the focal values are equal to the derivatives of the function
a(po) = f (271; 0, o) — po

at the point p, = 0. Therefore, using (28) and (33), we obtain for the focal
values

2
4 (0y =0, d"“(O):k!S Hy(0)do, k=2.3,....N. (34)
[}

Let us now express the focal values in terms of the right-hand sides P and
Q of system (2). .To this end, we first have to derive an expression for
Ry (8). System (1) has the form

G=—Bte@ ). F=ptv@y,

where the functions ¢ and y are continuously differentiable to order .V in-
clusive, and these functions together with their first derivatives vanish

at the point 0 (0,0). As is known (see Appendix, 2), for any k, 2<k< X, the
functions ¢ and ¢ can be written in the form

@ (2, y) =P (2, y) + Pa(x y)+ ... + Py (x, y) + P*(z, y),

D=0 N4 Ooe 1 - Or e D40 o | (35)
where P;(z, y) and @;(z, y) are homogeneous polynomials of degree i(i=
=2,3....,k), and

kR k
Pr= 3 aheyePi(zy), QU= 3 A rQi(n ), (36)

where PX(z, y) and Q% (x, y) are continuous functions which vanish at r=y=0.
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Consider the function R(g, §). By definition (see (3) and (4))

R{p, 8) = q)(pcosﬁ,psi[.le)cose—\—\p(pcose,ps’mB)sine .
(. 8) Bt w(pcos(?), p sin @) cos 6 — (p(pcos(;,psine) sin 6 (37)

By Lemma 3, the function R (p, 6) has continuous partial derivatives to order

N inclusive with respect to p. Moreover, (0, 8)= 0, [%%]a=0=0' Therefore

we obtain the following relation, analogous to relations (35)

R (p, 8) = Ry (0) p*+ . .. ++ Ry (8) p" -+ R* (p, 8) p*, (38)
where R, (0), i=2, ..., k, are computed from {30) (i.e., they are equal to
—il!-{‘?—'%(ppi—'ﬂl’:o ), and R*(p, 0) is a continuous function of p and 6 which

vanishes at p=0.
Inserting the functions ¢ and ¢ from (35) in (37), we obtain

3
2 p™ [Ppy co8 8- Qp, sin OH—P"‘ cos 6+ Q*sin@
R(p, 0) = —2=2

k »
B+ 3} o7t [Qm cos0— Py sin o) L 28 F15n0

m=2
where
m == Pp, (cos 8, sin 0), Qm=Qmn(cos 6, sin ),
Pl =P (pcos 8, psin @), Q=0 (pcos0, psind). (39)
We write u,, (cos 8, sin 8) and v, (cos 8, sin 0), respectively, for the factor

after p™ in the numerator and the factor after p™* in the denominator.
Moreover, by (38),

P*(pcos 0, psinB) cos 0 - Q* (pcos, psin 0) sin O =p*u* (p, cos, sin 0),

@*(pcos 8, psin6) cos 6 — P* (pcos O, psin @) sin = p*v* (p, cos 8, sin @), (40)

where u* (p, cos 0, sin 6) and v* (p, cos 8, sin 8) are continuous functions of p and
6 which vanish atp = 0.
From (38) through (40) we find

Ry (0)p*+ .. + Ha (0) 0" -+ R* (0, 0) p*=

»
>\ p™um (cos 8, sin )+ phu* (p, cos 8, sin 0)
m=2

(41)
B+

10

P~ 1oy (cos 8, sin 8) -+ p*~1v* (p, cos 8, sin 0)

2

(AN

Multiplying both sides of (41) by the denominator of the right-hand side,
we obtain an equality which is valid for all (sufficiently small) p, i.e., an
identity. All the coefficients in this identity are continuous functions of p,
and u* (0, cos 0, sin 8) = R* (0, 8) = 0. Therefore, equating the coefficients
of the corresponding powers of p and using the usual arguments of
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continuity, we obtain the following relations:

uy = PRy,
uy =R+ vy R,. (42)
Up =Py~ v:Rpoy 4 ... + 4y R
It now follows that
2, = M2 B3 VR (43)
[2 ﬁ 3 R3 ﬁ ﬁ
and, in general,
Rm=%f:-u;m, m=3, 4, k
where
n’m . _Rg-’!mu —‘-B:;vm_g—[— o T‘Rm—ﬂ"_’, . (44)

Evidently, W. is expressible in terms of the functions u;(cos8.sin8) and
1 (cos B, sin0) with the indices ¢ not exceeding m—1.

Inserting for u; and v; in (43) and (44) their expressions in terms of P; and
;, we obtain

R = Pp, (€030, sin0)cos O 40, (c03 0, sin B)sin6+ W (45)
¢n -2, 3...., k&), where W, is expressed in terms of f and in terms of the
functions P;(cost. sin6), {;(cos0, sin8) with indices i not exceeding m—1.

In our case of a multiple focus (i.e., for a = 0), the first focal value is
zero. If V2, the second focal value d" () = 0 by LLemma 5. The remaining
focal values d® (0) are computed from (34) using expressions (45) for R, (6).
A comparison of the various expressions derived above will enable us to
formulate a useful lemma.

(a) From (28), (29}, (30), and (31) it follows that

H; (6) = R, (9).
(b} From (31) it follcws that, for m=3, 4, ..., .V,
Hm (8) = R (8) + Dri (R2(0), - oy Ry (0). u2(0), -+ ., Um-y (),

where @, is a polynomial in the corresponding functions.

(¢} From (33) and (b) it follows that u, (8) is expressible in terms of
R, (8), u; (0 is expressible in terms of R, (8) and R; (6), ..., u, (8) is
expressible in terms of R, (8), R;(0), ..., R, (6).

{d) From (b) and {c) it follows that

Hp (8) = B (8) - D% (A2 (0), ..., Bmoy(0)),

where @}, is expressible in terms of the functions R, (@), ..., R, (8) using
algebraic operations and integration.
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(e) From (45) and (d) it follows that

Ho (8) = Pm (cos 0, sin 0) cos e-g Qm (cos 0, sin 8)sin 6 + o

m =2,3,..., k), where @} is expressible, using algebraic operations and
integration, in terms of the number § and the functions P; (cos 6, sin 6),
Q; (cos 8, sin 0) with indices i not exceeding m — 1.
Finally, from (34) and (d) we have the following useful result:
Lemma 6. Consider a dynamic system of class N

id’:_:_ﬁy-{.(p(x, y)=P(z, y), %——‘:ﬁz-‘rﬂ’(m, ¥)=0 (@) (a)

where the functions ¢ and ¢ are expressed by equations (35) and (38), with %
equal to one of the numbers 2,3,...,N. Then the focal value da™ (0), m =
=2,3,...,k, may be computed from the formula

25 A . N 2r
d™ (0) = m! S P (cos 0, sin 8) cos B;Qm(cos 0, 51n6)sxn0de+ml X @2 (8) b, (46)
0 0

where the function ®% () is expressible in tevms of the number B and
Sunctions P, and Q, with indices i not exceeding m — 1.

Before proceeding with the fundamental theorem of this chapter, we will
apply the above results, and in particular equation (46}, to compute the
Lyapunov value of the focus 0 (0, 0) of a modified system of one particular
form.

Let (A) be a dynamic system of class N {see above), and s an integer
satisfying the inequalities 1<s, 2s+1<N. Let (A,) be the dynamic system

9 P )+ r @+ =P ),
‘Z'z':Q(:c,y)+7~(x”+y’)“y=a(x:y), (&)

where A is a parameter. Let d (po) be the analog of d (p,) for (A,). The point
0 (0, 0) is evidently a multiple focus of (A ‘) and d (0) = d (0) = 0.
Lemma 7. If all the focal values of the focus O (0, 0) of system (A),
up to (2s + 1)-th inclusive, are zevo, i.e., if
' (0)=ad"(0)=...=d®"(0)=0, (47)

the focal values of the focus 0 (0, 0) of system (A,) up to (2s)-th inclusive
are also zevo, i.e.,

FO)=d(0)=...—d(0)=0, (48)
and the (2s-+1)-th focal value is
Je 41 (0) = (25 -+ 1)! %—-Zu. (49)

Proof. We express the right-hand sides of (&,) using formulas
analogous to (35) in the form

P@ y)=—By+Pa@ )+ +Prurs (3, ) + P* (3, 1), (50)
O y)=Bz+0:(2, ¥+ ... 4 Csoes (@ )+ 0% (2, v).
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Evidently,
Pz, y)=Pi(z,y), 0:(z,y)=0:(x y), (51)
if 2<iac2s1. If i=2s.t1, then

Py (@, §) = Passy (, ) + A (@232 z, (52)
Uzsay (2, ) = Qasey (2, ) + M (2L g%y,

From (51) and (46) we conclude that for 2<i<2s, &9 (0) = d0(0), i.e.,
dw () = 0 by (47). The first focal value is & (0) = 0, since 0 is a2 multiple
focus of {A,). Equalities (48} are thus proved.

To compute the (2s--1) -th focal value, we will use equations (46), (51},
and (52). They directly lead to the result

2

tid
gy (0) = (2s + 1)! S A (cos2 84-sin? @) cos? O-A-A(cosze-{—sin? 6)sin20 do 4+ det (0),

9

Hence and using the equality d**(0)=0, we find that
&72*+1'(0)=(2s+1)z_'g_.2n.

This completes the proof of the lemma.

4. The case of an analytical system

In this subsection we will consider the computation of the focal values of
an analytical system (A). We assume, as before, that the multiple focus
coincides with the origin and that the system has the canonical form

dzx
G =Pt e @y, Lpriaytviz,y), (a)

where p > 0, and ¢ and y are analytical functions.
The function R (p, 6) in the right-hand side of equation (4) (see §24.1) is
clearly an analytical function of 8 and p in this case in the strip

—ooT BT o, [pl<Try, (53)

where ry,is some positive number. Therefore, it can be series-expanded
in powers of p. Since by (3) and (4), R (0, 8) = 0, the series expansion has
the form

Pp, ) =R (8)p+ R (8) pt+ ... (54)

Note that the function R (p, 8) and hence the functions R, (6), i=1,2, ...,
are periodic functions of 6 with period of 2a. It follows from the standard
properties of analytical functions that there exists r; > 0 such that the
series (54) converges for all 8. 0 6<«2r, and for all p, lpl<n.

By QT, Appendix, §8.3, Theorem C, the solution

p=11(8; 0, po) (55)
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of the equation
=R, 0 (4)
satisfying the initial condition

7050, po) = po (58)

is an analytical function of the arguments. Let us expand this solution in
powers of the 'initial value' p,. Since R (0,0) = 0, we see that p =0 is a
solution of equation (4), so that f(8; 0,0) = 0. The expansion of f(8; 0, p,) in
powers of po therefore has the form

p=1(8; 0, po) =1ty (B) po+us(B) 3+ ... (57)

There clearly exists a nmumber r,<r, such that the series {57) converges
for all 8, 016« 2n, andforall p, |p [<rs
By (56) and (57),

u 0y =1, up(0)=us(0)=...=0, (58)

Inserting for p and R in equation (4) their expressions from (57) and (54)
and equating the coefficients of the corresponding powers of p,in the right-
and the left-hand sides, we obtain the following recursive differential
equations for the coefficients u; (8) i =1, 2, 3, ...):

u; (8) = Ry (0) uy (0),

i (6) == R, (8) e () + Ra (0) w3 (8), . (59)

Relations (58) may be considered as the initial conditions for the
functions u, (8) satisfying differential equations (59).* Using these initial
conditions and successively integrating equations (58) as linear differential
equations for the corresponding functions, we obtain

9
{ rieran
iy (0) = e?
[}
{R1(8)do 9
up (0) = e? { R @)u 0 b,
0

]

{R1(8yd0 @
{ 128, (0) 4, (0) + Rs (9) w2 (8)) 08,
0

By definition, the succession function is f (pg) = 7 (2n; 0, po) (see §24.1, (9)).
Therefore, taking 6 = 2nin (57), we obtain a series expressing the
succession function

p=1f(po) =us (2n) po+us (2n) pj+ . ..

It is readily seen that equations (59) are obtained from equations (20} if we set pg = 0 and introduce an
appropriate notation.
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(81)

= (Po} = 21Po + L0 - - - - (62)

From the last expression and the equality d(g,) = f (py) —ps» We Obtain for
the focal values

d(O)=a —1=u,20)— 1, dPO) =kl ap=kl us(20) (k=2,3,...). (63}

Let us now derive expressions for the coefficients «; in terms of the
right-hand sides of (A). The expression for the first focal value

3

& =e T 1

has been derived before (see §24.2, (25)). The successive focal values are
of any interest only when 0 (0, 0) is a multiple focus, i.e., whena = 0.
Svstem (A} in this case has the form

Z

d.
F=—Byte@my, L=pr+y(z, .

4
7]

q;(xvy)=P2(zyy)+P3(‘r'y)T"'7 ‘H-T,y):ozfl,y)J—Qa(I»y)-i—--», (64)

where Pi(r. y) and @, (z, y» are homogeneous polynomials of i-th degree
(i=2,3,...). By (3), (4., and (84),

< P um (cos 0, sin )

R(p, vy =—1=2 ,

<
B S ™oy, (cos 0, sin 6)
m

—

Up (058, sin8) = P, (cos 0, sin0) cos 8-+ Qp (cos B, sinB)sin @
(66)
Um (€03 0, sin €) = Qp, (cos 8, sin 0) cos 6 — P,, (cos 0, sin ) sin 6
(compare with (39); the present treatment is in fact a repetition of the

treatment of the previous subsection for systems of class V).
In virtue of the first relation in (28), we have for « =0

mO=[ 2] <o (67)

a8
The series expansion o’ the function R(p. 9) is therefore given by

R(p, 8) = Ry (0) 0+ Ry (8) p* + ... (68)
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Equalities (65), (66), (68) yield, as in the previous subsection, the
relations

us =PH,,
ug=PRs -+ Ryvy,
uy = PR, + Rav, 4+ Ryus,

- Ravs+- Ravy

»

Inserting these expressions in (60), setting 8 = 2x, and using (67) and
(63), we obtain the focal values. For a multiple focus, the first focal value
is zero, d’' (0) = 0. The second focal value is also zero, d" (0) = 2a, = 0,
by Lemma 5. Note that this fact also emerges directly from the relation

2n

d"{0) =20, =2 § R, (0) d8.

The integrand, as is readily seen, is an odd periodic function of period 2an.
The integral therefore vanishes.
For the third focal value of a multiple focus we have

2

d" (0)=3la;=6 § [2R; (8) uy (8) + Ry ()] d6.

Using the expressions for R, (8) and R; (6) in terms of the polynomials
P,, Q,, Ps. Q, and writing these polynomials (of second and third degree,
respectively) in the form

Py (z, y) = as0%* + agszy + agay?,

Py (z, y) = a3x® + anr*y + awry? + agsy®
Q2 (x5 y) = byo2® + bygxy + boay?,

Q3 (z, y) = b3oz® + by 2y + bopxy® + bosy®,

(70)

we obtain after elementary, but fairly lengthy, computations the following
expressions for a;:

ag= 'Z;} (3 (@30 -+ boa) -+ (@sa -+ b21)] —
- Z'ET [2 (azobao— ozboz) — @11 (Goa + @z0) + bus (boz + bao)l.  (71)

If @g==0, d” (0) = 6z is the Lyapunov value. From the results of §24.2
(see (24), (26), (27)) it follows that if p > 0, Ois a stable focus for a;< 0
and an unstable focus for a; > 0.

If ¢5.= 0, the character of the equilibrium state (with pure imaginary
characteristic numbers) can be determined by considering o; (if a5 = 0, then
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by Lemma 5, oy =0 too); if 3 = 0, we have to consider a; etc. However,
the computational diffizulties rapidly multiply as the index increases.”

Expression (71) for a; has been derived assuming a system of canonical
form (1). We will also give an expression for «; in terms of the
coefficients of a systemn expressed in the general form

§=m+by+P2(x. Y+Pax )+ ...
Y et dy+ Q@ )+ Qs(z )+ (72)

where P,, P;, @, Q; are expressed by (70). Since 0(0,0) is a multiple focus,
we have

a+d=0, A=ad—bc=0. (73)
The characteristic numbers of the focus O are + 8i, where

B=V3A= +Vad—te. (74)

The expression for as; in terms of the coefficients of system (72) has
been derived in /18/. To derive this expression, the substitution

- g b

§=z, n=—ga—gy

is applied to reduce (72) to the canonical form

X P EN+PE D,
S =B+ GEN+GE .. (75)

Expressing a; from (71) in terms of the coefficients of system (75) and
reverting to the coefficients of the original system (72), we find

ay= — Zg‘tﬁ—a {lac (a}, + ay1boz + @g2byy) 4 ab (b, + azob1y + @13bag) +
+ % (1) @02 + 2agzbep) — 2ac (b3, ~— 20002) — 2ab (a3, -— baobas) —
— 82 (2a00b20 + b11b2o) + (be—2a%) (byyboz — @1120)] —
— (@® - be) (3 (cbos— baw) + 28 (an + biz) + (cap— bbz)l}  (76)

(see /18/, p.29).

Equation (71) is a particular case of (76), and can be obtained from the
latter for e =d=0,b=—8,c=§.

Note that (76) actually gives an expression — in terms of the coefficients
of system {75) — for the focal value of system (75) and not the original
system (72). This is immaterial, however, for the investigation of the

* For dynamic systems with quad-atic polynomials in the right-hand sides, i.e., systems of the form

P(x, y)=az—PBy+ axz?+ayzy 4+ agey?,
Q(z, y)=PBz+ay+ bz + byyry+ booy?,

the expressions for &, a3, @7 in terms of the coefficients a;; and b;; have been derived in /18/.
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topological structure, since systems (72) and (75) are the images of each
other by a non-singular linear transformation.”

Note that the Lyapunov values were derived by Lyapunov from different
considerations,

Remark concerning the case of a center in an analyti-
cal system. As we know {(QT, §8.6), an equilibrium state of a dynamic
system of class N >1 which has pure imaginary characteristic numbers
may be either a multiple focus, ora center, ora center~-focus.
For analytical systems, the case of a center-focus is ruled out. Indeed,
if system (A) is analytical, the corresponding function d (pe) is also
analytical. Therefore, for positive po which are sufficiently close to zero,
d (po) retains a constant sign and the point O (0, 0) is a multiple focus, or
alternatively d (py) = 0 and O is a center. In the former case, at least one
of the focal values does not vanish. In the case of a center, all the focal
values vanish, i.e.,

=1, a@y=az=...=0. (77)

Conditions (72) are clearly necessary and sufficient for point 0 (0, 0) to be
a center. A center is thus observed when an infinite number of conditions
are satisfied.”™*

§25. CREATION OF LIMIT CYCLES FROM
A MULTIPLE FOCUS

1. The fundamental theorem

Theorem 40 (theorem of the creation of limit cycles from a multiple
Sfocus). If 00, 0)is a mulliple focus of multiplicity k (k >1) of a dynamic
system (A) of class N »2k + 1 or of analytical class, then

1) there exist ¢, > 0 and 8, > 0 such that any system (&) 8,-close to rank
2k + 1 to system (A) has at most i closed paths in U., (0);

2) for any e < e, and & < 8,, there exists a system (A) of class N or
(respectively) of analytical class which is 8-close to rank 2k + 1 to (A) and
has k closed paths in U, (0).

Proof. 1) Letus prove the first proposition of the theorem. Without
loss of generality, we shall assume that system (A) (of class N or analytical)
has the canonical form

%:—ﬁy-}—q;(z, ), -:%=ﬁx+¢(x, ¥, (4)

where @ and ¥ are functions which vanish together with their first deriva-
tives at the point O (0, 0).

Consider the function d (p,) = f 2, 0, ps) — po corresponding to system (A)
(see §24.1). Let this function be defined for all pq, | po | << e, Where ryis
some positive number. As we know (see §24.2, corollary from Lemma 3),

The transformation E=x, n= £ z——-ll- y is non-singular, since by (73) & = 0.

[ 3
We mean here conditions each of which requires computation of one number. All these conditions are
of course equivalent to the single condition « {pe) = 0, but the latter requires computation of a
function, and not of numbers.

*




§25, CREATION OF LIMIT CYCLES FROM A MULTIPLE FOCUS

d (po) is a function of class N or (respectively) an analytical function. By
assumption, the point Jis a root of multiplicity 2k + 1 of the function d (p,)
{see §24.2, Definition 26). Consequently, there exist numberseg, > 0and
6o > 0 such that any function d (po) defined for pe, | po | < 79, whichisg,-close
to rank 2k + 1 to the function d {p,) has at most 2k + 1 roots in the interval
(— &, 30).

Consider modified systems (A), which are given in canonical form and
for which the point O (0, 0) is a focus. Let d (po) be the analog of d (p,) for (A}.
By Theorem 3 in Appendix, 1, there exists §, > 0 such that if system (A)
is §¢-close to rank 2k 4-1 to system (A), the function d (p,) is defined for
all po. | po | << r¢, and for these p, the functions d (py) and d (p,) are g,-close to
each other to rank 2k + 1. We will now prove that the numbers §; and g,
satisfy the first proposition of the theorem. Suppose that this is not so,
i.e., suppose that there exists a modified system (A) of canonical form which
is 8-close to rank 2k + 1to system (A) and yet has more than k closed paths
in U, (0). Each of these paths L crosses every ray issuing from O precisely
at one point (see QT, €8.4, Lemma 1). Let p,and p; be the abscissas of the
intersection points of a path Z with the rays 8 = 0and 6 = xn, respectively.
Then p, and p, are respectively roots of the functions d (p) = d, (p) and 3= ().
i.e., d(p) =0,d: (p2) = 0. By (13)in §24.1, d(— ps) = — d; (p,). Therefore
d(—p3) =0, i.e., —p,1is also a root of the function d. Evidently p, and
— p2 aredifferent numbers, smaller than gsinabsolute value. Thus, to every
closed path L of (A) lying in U, (0) correspond two roots of the function g (p)
from the interval (— &,, g). Hence, if system (,.3:) has in U, (0) more than k
closed paths, the tunction d (p) has at least 2k -+ 3 different roots™ in (— &g, &o).
This clearly contradicts the choice of the numbers 6, and & We have thus
proved the first proposition of the theorem for modified systems (A) given
in canonical form.

Let us now consider a general modified system (A) (not necessarily
canonical). Suppose that the first proposition of the theorem is not satisfied.
Then, for any ¢, > 0and §, > 0, there exists a system (A*)} §,-close to rank
2k + 1 to (A) which has more than & closed paths in Ug, (0). If & and 8, are
sufficiently small, there exists a linear transformation, as close as
desired to the identity transformation, which transforms the system (a)
to the canonical form (K.) * For sufficiently small & and §,, (A) is also
§,-close to (A) and has more than k closed paths in U, (0), which are obtained
from the closed paths of (A*) in U, (0) by the same linear transformation.
This, however, contradicts the previous result. The first proposition of
the theorem is thus completely proved.

2) We can now proceed with the proof of the second proposition.
Consider a modified system of a special form

&

,Q.

f

ﬁ(l’, ¥, ho» Ay e, A'h-l):

dt

=Pz, y)+Arx+M @yt .. Lo @y, _
d —
Fﬁi=0(x) i A'07 liv "-7}""1): (A)

=Q(z, ) +Ay+ M@+ Ny + .. A (22 Ry

* Since zero is also a root of this function.
** This can be proved along the ame lines as Lemma 1, $9.1. In this lemma, a similar proposition is
proved for a saddle point. In the case of a focus, we should further make use of the fact that the

(“ + Bi Y ) is transformed to the matrix ("' "3) by a linear transformation with the matn’x(i ,_‘).
(1] a— Bi g a —i 1
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For sufficiently small A,, (&) is evidently arbitrarily close to (A) to any
(possible) rank and belongs to the same class as (A). The point 0 is an
equilibrium state of (A). Now, since the linear parts of the functions P and
Q are respectively Aoz — Py and Bz + Ay, the equilibrium state 0(0,0) is a
focus of system (A) for Ay = 0 and a focus, a center, or a center-focus for
» = 0. Let

d (0o Aos Aay -+ -y Auey)

be the analog of d (p,) for system (A). Clearly, d iE a continuous function
of p, and of the parameters A, Ay, ..., Ap—y. Since (A) is obtained from (A)
for Ag = Ay = ... = Ay = 0, We have

T(po, 0,0, ..., 0)=d (py). (1)

For any e > 0 and § > 0, there exist A* > 0 and r* > 0, r* << r,,* such that
for

fa | <<A*, i=0,1,2, ..., k—1, (2)

1) system (A)is 8-close to rank 2k +1 to (A);

2) the function d(Pos hos My -+ s Ax-4) is defined for all po, | po | <<Te, and
every root satisfying the inequality | po | < r* corresponds to a closed path
of (A) entirely contained in Us, (O).

It is henceforth assumed that the numbers 4;,,i =0,14, 2, ..., k — 1, satisfy
eondition (2).

We will show that for an appropriate choice of the parameters
Aoy Aty Azy v . ., Apy System (A) has k closed paths in U, (0).

From Maclaurin's formula, for all sufficiently small p,,

dezh+b (g
4 (po) =gy P8+ 4+ B (po) P3+ (3)

where h (po) is a continuous function and & (0) = 0 (see proof of Theorem 5,
§1.3).

By assumption, 4@k (0) 0. To fix ideas, let d@*+1 (0) > 0. Then for
all sufficiently small positive py, d {py) > 0. We choose one of these numbers,
smaller than r* designating it r;, we have

O<ricr®, d(r)=d(rs 0,0, ..., 0)>0. (4)

Let now
Ao=RAi=.. =Ay_g=0, As_q5=0,
and consider the modified system corresponding to these parameters
22 P@ 10,0, ..., 0, Aue)) =P (2, y) + hay (B + 1)1,

B Q@ 9,00, .., 0, M) =Q (@ ¥) + e (B Y

(A1)

* By definition, re > 0is a number such that the function d (po) is defined for | go | << 7o.
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and the corresponding function d,(p)=d(ps 0,0, ...,0,4,). By Lemma 7 of
the previous section,

LO=FO)=... =T =0, IO =@k—1)! 2, (5)

and by Maclaurin's formula, for all sufficiently small p,,
~ Aboy o L ap_
dy () = kﬁi PRt 4 hy (o) P31, (6)

where %, (05) is a contiruous function and % (0)=0.
To fix ideas, let f=>0, and we choose A;.; so that

[Arosl <<A*, Aoy <<0, dy(r)=d(r, 0,0, ...,0, Asy)>>0. (7)

The last of these conditions is satisfied for any sufficiently small A, in
virtue of (4) and the continuity of d{(gs Ro» X1y - - -» a-t).

From >0, A4;-; <0 and equation (6) it follows that for all sufficiently
small positive py, di(p)<<0. We choose one suchvalue, smallerthan r,, and
designate it r,. Thus,

O<ra<<ry<<r* (8)
and
dy(r) >0, dy(ra)<<O. {9)
Further construction is completely analogous.* Indeed, we consider a

system

d.
F=PE Y o (@) e L (B i =

=Bz, y,0,...,0, A_p, An_y), (A,)
d . 2
F=0@ Pt huma @YY+ Moy (@Y y =

= a(l‘, Y. 0, ..., 0, lk-zv kh-g),

which is modified both in relation to (A) and in relation to (A,), with the
corresponding function

T2 (o) =d (P 0. 0, ..., 0, Mgz, Apy)-

From (5) and Lemma 7 of the preceding section, we have
HO) =T (O =... =d20)=0, gs_gzh—3)(0)=(2k—3)!—l%‘i2n.‘ {10)
Therefore, for all sufficiently small p,,
2 (po) = k’g'z 2np3h=3 + %y (po) p2A—3, (11)
where %.(py) is a continuous function and %,(0)=0. We choose M., so that

gz [<Z A%, A2 >0, d(r) >0, dp(r)<<O. (12)

*  Also see the proof of Lemma 1, §1.3.
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By (11), @a(po)=>0 for all sufficiently small positive p,, and there exists
r; such that
0<ry<<r, (13)
and
dy (r3) > 0. (14)

Continuing as before, we eventually obtain a system

a -~
'Ef__":P(xv b, 01 A’iv DS A’*—i)=
=P P+M@+y) T+ oo+ (2 Y22, &)
~ A,
%"zo(zvyvov)'h--'ixk-i)= Aot
=Q@ Y+ME®+¥)y+... Ay @+ y
and numbers ry, 2, ..., Ta-y, 7% SUCh that |A;]| <<A*,
O<ry <rpy << oo << Pp<<ry<7* (15)
and
~ ~ - >0 if &k is odd,
Tros (r) >0, @y (ra) << 0, « ey droy (7a) }<0 i & is even. (18)
Continuing to the system
d = ~
75-=P(1'1 Yooy Mgy ooy dpy) =Pz, 4, 0, Ay, o, Apmg) A0, (&)
& A < Ay
'3":“=Q(xy Yrho by oo M) =02, 1,0, Ayy ooy Rag) Aoy,
we choose Ay, so small that
| Ao << A%, z?;,(r,)>0, gk("z)<oy reey gk-i ra) =0 (17)
and
~ <0 if k is odd,
4 (0) ]>0 if k& is even. } (18)

By (25), §24.2, we have for the first focal value

. Ao
Ty (0)=e "B —1.

Therefore, to satisfy (1 8), a negative A¢ should be taken if k is odd and a
positive one if k is even. Clearly, if for this choice of A, the number

ry+y > 0 is sufficiently small, we have

. <0 if k is odd,
da (rass) }>0 if & is even. (19)
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We moreover assume that ryo, <<rp. All the A;,i=0,1,2,..., k —1, that
we have chosen are less than i* in absolute value. Therefore, by condition 1
imposed on *, the system {A,) is 8 -close to rank 2k - 1to system (A).
Furthermore, in virtue of (17) and (19) and the continuity of dp, there is at
least one root of the function d, (p,) between each pair r, and r,, r» and
rs. ..., ry and ry.y.  Therefore, this function has at least & different positive
roots, each smaller than r* By condition 2 for r*, each of these roots
corresponds to a closed path entirely contained in U, (0). If & << g, and 8§ << §,,
U, (0) = Ug, (0) and by the first proposition of the theorem, (A,) has at most
k different closed paths in U, (0). This completes the proof of the theorem.

Remark. Inour proof of the first proposition of Theorem 40, g, and
8¢ should be chosen so small that any system (&) 8,-close to (A) has a single
equilibrium state in U,, (0), which is moreover a focus. Then we can speak
of the existence of the succession function and the function d for the system
{A). In what follows, the numbers &, and 8, are always assumed to meet this
requirement. DMoreover, if §,is sufficiently small, the points move along
the paths of (A) in U,, (0) in the same direction with increasing ¢ (clockwise).
Indeed, reducing (A) to a canonical form by a transformation close to
identity, i.e., by an orientation-conserving transformation, we obtain a
system

d- — ~ — —~
F-B+3@ ), L-FrtT ).

The number B is close to B and therefore has the same sign. This ensures
identical directions of motion. We will assume in the following that this
condition is also satisfied.

2. Bifurcations of a dynamic system in the neighborhood
of a multiple focus

The following theorem strengthens the second proposition of Theorem 40.
Together with Theorem 40, it plays a leading role regarding the bifurcations
of a dynamic system in the neighborhood of a multiple focus.

Theorem 41. Let 00, 0) be a multiple focus of multiplicity k of a
dynamic system (A) of class N 2k -~ \ or of analytical class, and let ¢, and
8y be positive numbers defined by the fivst proposition of Theorem 40 and
the above remark following the theorem. Then

1) foranycand 6.0 < e<e, 0<8-18,, and for any s, 1 s~ k, there exists
a system (B) of class N ( or respectively, analytical) which is 6-close to
rank 2k -1 to system (A} and has in U, (0) precisely s closed paths;

2) if system (B) is é,-close to rank 2k 1 to system (A) and has k limit
cycles in U, (0), all these cycles, and likewise the focus of system (B)
lying in U.,(0), are structurally stable (simple).

Proof. Letus prove the first proposition of the theorem. Leti1<s<#&
(for s = k, this proposit.on coincides with the second proposition of
Theorem 40). In the proof of Theorem 40, we constructed a succession
of systems (A1), (A2), ..., (A,.), (A,). All these systems evidently can
be assumed to be §-close to rank 2k -1 to system (A).

Consider the system (A;). According to our construction,

GO =di ()= ... =dP*2 ()0, F* 27 (0y20 (20)
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>0 if sis even,

a:(ri)>0, E‘,(rz)<0,....d~,(r“1) <0 if s is odd

(21)

(see proof of Theorem 40). By (21), (A,) has at least s closed paths in U, (0).
Suppose that it has s + 1 closed paths Ly, La, . . ., Ley in U, (0). By

condition (20), the point 0 (0,0) is a
multiple focus of multiplicity k¥ — s for
(A,). Let ¥V and Whe two neighborhoods
of 0, such that W= V< U, (0), and V lies
inside all the closed paths L; (i =

=1, 2, ..., s-+1). These paths are
"concentric" (Figure 115). By
Theorem 40 there exists a system {A*)’
of class N, arbitrarily close to (A,) to
rank 2k 4 1, which has k — s closed paths
Lgsay Leta, -« ., Lpeyin W But then, using
the same construction as in the proof of
Lemma 2, $15.2, we can construct a
system (A) of class N, arbitrarily close
to rank 2& + 1 to system (&,), which
coincides with (&,) outside ¥V and with
(A*) inside W. The system (A) evidently
can be regarded as §,-close to rank

2k + 1 to (A), and it has at least k 41
closed paths L; (i =1, 2, ..., k +1)in U, (0). This clearly contradicts
Theorem 40. Therefore, (A,) has precisely s limit cycles in U, (0), i.e., the
first proposition of the theorem is proved.*

Let now (B) be 8,-close to rank 2k -+ 1 to (A) and suppose that it has &
limit cycles in U, (0), at least one of which is structurally unstable. Then
modifying the system only in the neighborhood of this cycle (again using the
construction of Lemma 2, §15.2), we obtain a system which is close to (A)
and has in U, (0) more than k closed cycles, which is impossible. A similar
contradiction is obtained if we assume that the focus of system (B) in U, (0)
is a multiple focus. The proof of the theorem is complete.

Theorems 40 and 41 lead to important conclusions regarding the possible
bifurcations of a dynamic system in the neighborhood of its multiple focus
of finite multiplicity. Indeed, consider a k-tuple focus O (0, 0) of system (a)
(k=>2). Let g and 8, be sufficiently small numbers (defined by Theorem 40
and the remark following the theorem), and V a neighborhood of O bounded by
a cycle without contact I', V< Ug, (0). We choose 8, 0 << 8 << 8y, to be so
small that the following condition is satisfied: if (A)is 6-close to (A), the
curve I remains a cycle without contact for (A) and (A) has in V a single
equilibrium state @, which is a focus. By Theorems 40 and 41, system (K)
8-close to rank 2k 41 to (A) may have in V at most k limit cycles, and there
exist systems (A) which have in V precisely s limit cycles, where sis any
number, {<s<k. These limit cycles are arranged ''concentrically' and
enclose the focus O inside them. Let Ly, La, ..., L, be these cycles, and
suppose that L, lies inside L;4y (i = 1,2, ..., s — 1), The topological structure

FIGURE 115

* 1f(A) is analytical, (A} is also analytical.
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of system (A} in V is completely determined by the stability character of the
focus O, the number s of limit cycles in V', and their respective stabilities.
If the stability character of the focus O is known, it suffices to know whether
each of the cyvcles L,is semistable or not.” In §12, we introduced the
multiplicity of a limit cycle ** and established that an even-
multiplicity cycle is semistable and an odd-multiplicity cycle is either stable
or unstable (this follows from §12.3, (8), and §12.4, (11)). Hence, the
topological structure of the dynamic system (A') in the neighborhood V' is
completely determined if we know

\a) the stability character of the focus 0;

’\b) the number s of limit cycles of (A) inV;

(¢) the parity of the multiplicity of each of these cycles (whether odd or
even).

Since s<k, system (A) clearly may have only a finite number of different
topological structures in V. In other words, system (A) may undergo only
a finite number of different bifurcations in a neighborhood of a focus of
finite multiplicity.t

Assigning +(-) to a stable (unstable) focus, and the numbers 0(1) to a
cycle of even (odd) multiplicity, we obtain the following classification,
corresponding to items (a), (b), {(c) above:

+,1,1,0,1, 0, 0...0, 1, O,

where the number of ones and zeros is s. Each system (&) §-close to
rank 2k +1to (A)is characterized by a definite scheme of this kind. We
will not consider the inverse question, namely whether or notevery scheme
of this kind fully charac:erizes a dynamic system arbitrarily close to (A).
Note, however, that by Theorems 40 and 41, there exist systems
arbitrarily close to (A) vhose schemes contain k ones.

3. Bifurcations in the neighborhood of a multiple focus
of multiplicity 1

We will consider a special case which is often encountered in applications.
Let

d
F=aMz+bA)y+o(, 5 M) =Pz y, A),

dy (A-A)

S =M HdA) g+ ¥z Y, M =0Q(x, ¥ })
be a dynamic system wh:ch depends on the parameter 2. We will consider
the bifurcations of this system associated with the variation of the parameter
% in the neighborhood of an equilibrium state 0 (0, 0), when Ois a multiple
focus of multiplicity 1. For simplicity, we assume that the bifurcation
¢ If, say. the focus & is unstable, the cycle L, is either unstable or semistable (unstable from inside and
stable from outside). In the former case, L,is either stable or semistable, and in the latter case it is either
unstable or semistable, etc.
** In §12.3, the mulriplicity of a limit cycle is defined for analytical systems. An analogous definition

tor svstems of class .¥ will be foind in Chapter X (§26.2, Definition 28),

t We should stress that in the case of a k-tuple focus, the closeness of systems is considered to rank 2 k+ 1.
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value of the parameter is A = 0. Let

a(M)=a(d) +d @A), (22)
a(d) b(A)
c) am]" (23)

Ay =

6 (0) =0, (24)
A(0)> 0. (25)

To establish the stability character of the multiple focus 0 (0, 0) of the
system (Ap), we will proceed along the same lines as in the end of §24,
when dealing with system (72). We apply the transformation

=g, S () NS 1 (V) 26
3 1 Vao L Vam Ve (28)

which reduces (AO) to the canonical form

Be VEO+FE N, D=VEOE+FE ). (27)

Since (26) is a non-singular transformation, O remains a multiple focus of
multiplicity 1for system (27) also, and its stability does not change either.
The third focal value of the focus O of (27) therefore does not vanish, and

is the Lyapunov or the first Lyapunov value of the focus 0 (see
§24.4, Definition 27). We used the symbol 6a; for this value in §24.4, (63).
Equation (76) in §24 provides anexpressionfor a; in terms of the coefficients
of the original system (Ap), and therefore transformation (26) need not be
actually applied in practice. We have seen (s24.2, (26), (27)) that if

as << 0, O is a stable focus (of system (27), and therefore of (Ag)), and if

a; >0, it is an unstable focus.

Let ¥V be a sufficiently small neighborhood of the point 0 bounded by a
cycle without contact I' of system (Ao) which contains no closed paths of (Ao)
or equilibrium states other than O.

Let 6, > 0 be so small that any system (A,) for which | A | < 8, has the
following properties:

(a) the curve T'is a cycle without contact for this system;

(b) (AA) has no equilibrium states, other than 0, inV;

(e¢) the point O is a focus of system (AL);

(d) {A,) has at most one closed path in V.

The validity of the first three conditions for sufficiently small §,is self-
evident. Condition (d) is satisfied because 0 is a focus of multiplicity 1 of
system (Ag) and because close systems have at most one closed path in a
small neighborhood of this focus (by Theorem 40).

By condition (a), the paths of all systems (A, (} A | << 8¢) simultaneously
cross the curve I' with increasing t, either from outside to inside or from
inside to outside.

Suppose that o (A) reverses its sign as the system passes through the
bifurcation value of the parameter A = 0, i.e., the focus 0 changes its
stability. This condition is clearly satisfied if ¢" (0) == 0.
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Let us now consider the different possible cases.

1) a3 << 0. We assume that on passing through the bifurcation value of
the parameter A = 0, ¢ (A) changes its sign from minus to plus. If ¢’ (0) %0,
this condition is satisfied

when A increases, foro (0) > 0;

when & decreases, for ¢ (0) << 0.

Since 2; < 0, the focus O is a stable focus of (Ag) for & = 0. Therefore all
the paths of (A;,) enter into the cycle without contact I' as ¢ increases. For
g (») < 0, Oisastablefocusof (A,). By Theorems40and41, (A, )hasatmost
one limit cycle in V, and if this cycle exists, it is a simple cycle, i.e.,
either stable or unstable. Clearly, for ¢ (i) << 0 no such cycle exists. In-
deed, if this cycle existed, it would be stable from outside and unstable from
inside, i.e., itcould notbe simple. We have thus established thatifa; << 0and
6 ()< 0, {(A,) has no limit cycles in V.

Conversely, if g (A) > 0, O is an unstable focus of (A,;). Then, reasoning
as before, we conclude that there is a single limit cycle L, of (A;) inside V,
and this is a simple stadle cycle. It is readily seen that if A is sufficiently
small, the cycle L, is arbitrarily close to O.

We thus obtain the following results. If a;< 0 and ¢ (0) > 0, system (A;)
has no limit cycles in V" for small negative A and 4 = 0, and O is a stable
focus. As the system crosses the bifurcation value of the parameter A (i.e.,
for A>0), the focus becomes unstable, and a stable limit cycle develops
inside the neighborhood V (Figure 116).

r

©

2 b

FIGURE 116, a3 << 0, ¢’ (0) > Q. a) A <0, stable
focuss & = 0, stable mulriple focus; b) A > 0, un-
stable focus, stable cycle.

If » is varied in the opposite direction, i.e., we move from positive to
negative A, the stable limit cycle which originally existed in V would
contract to the focus 0 and vanish for A = 0, and the focus will change its
stability accordingly.

As b is further decreased, the focus remains stable and the topological
structure of V does not change.

For a; << 0, o' (0) << 0, the stable limit cycle is created on passing from
positive to negative A, and conversely it disappears when 2 increases and
reaches zero.

2} a3 >0. The investigation proceeds along the same lines as before.

If 23>0 and o’ (0)>0, tae point O for small negative A is a stable focus of
(A,) and the system has nne unstable limit cycle in V. As A increases, this
cycle contracts to the point 0, and at the bifurcation point A = 0 it
disappears and the focus O becomes unstable. Further increase of i leaves
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the focus 0 unstable and the topological structure of the system in V does
not change (Figure 117).

a b

FIGURE 117. a3 >0, ¢ (0) > 0. a) A << 0,stable
focus, unstable cycle; b) A — 0,multiple unstable
focus; A > 0,unstable focus.

If @3>0 and ¢’ (0) << 0, the unstable limit cycle is created as A changes
from negative to positive values, and conversely disappears when A de-
creases to zero.

The above results can be summarized in the following table:

A<O A=0 A>0

a3<0, ¢’ (0) >0 Unstable focus, Stable focus, Unstable focus,
no cycle no cycle stable cycle
a3<C0, ¢’ (0) <O Unstable focus, Stable focus, Stable focus,
stable cycle no cycle no cycle

az >0, ¢’ (0) >0 Stable focus, Unstable focus, Unstable focus,
unstable cycle no cycle no cycle

a3 >0, o' {0)< 0 Unstable focus Unstable focus, Stable focus,
no cycle no cycie unstable cycle

The above analysis shows that the change in A brings about a change in
the stability of the focus if a limit cycle is created from the focus or disappears
contracting into the focus. A stablefocuscreatesa stable cycle, and an
unstable focus, an unstable cycle. Thus, a focus creates a limit cycle of
the same stability, and the stability of the focus changes in the process.
Conversely, when the cycle disappears (when it is "absorbed' by the focus),
the focus acquires the same stability as that of the cycle before "absorp-
tion." This state of things is not limited to the case of a focus of
multiplicity 1: it is observed whenever a focus creates or absorbs a cycle
of definite stability (i.e., not a semistable cycle).

Example 9. Consider the system

Z—f=y, = — 24 Ay 4 Bry + vy + 822 (28)

for small values of the parameter A.* This system has two equilibrium
states, and we will consider the state O (0, 0) only.

* System (28) is of importance in the theory of sustained oscillations. It was investigated by Bautin /20/.
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The characteristic equation #2—Ak 41 =:0 has two roots k=%:t ‘/—;—};—i.

Therefore, for small A, the point O (0, 0) is a focus, which is stable for

A << 0and unstable for A > 0.
For this system, o (1) = A, and therefore ¢ () = 1. To compute a;, we

use equation (76) in §24.4, taking
a=0, b=1. ¢=—1, d=0. byy=8, by =p, bo=7v, VA =1,

This gives a; = w/4B (y--8). From the inequality ¢’ (0) > 0 and the table
above we conclude that if B (y + 8) << 0, the focus O (0, 0) is stable for A< 0 and
there are no limit cycles in its neighborhood. As we move to positive %,
the focus creates a stable limit cycle, and itself becomes unstable.

If B (y + 8) > 0, the focus 0 (0, 0) is stable for A <« 0 and there is an unstable
limit cycle in its neighborhood. As A increases, the cycle contracts to a
point and disappears for 2 =0, At this instant, the focus O becomes unstable.
The topological structure in the neighborhood of O for A > 0 is the same as
for 3 = 0.
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Chapter X

CREATION OF CLOSED PATHS FROM A MULTIPLE
LIMIT CYCLE

INTRODUCTION

The present chapter is entirely analogous to Chapter IX, Creation
of Limit Cycles from a Multiple Focus both in regard to
methods used and the results obtained. It is directly related to Chapter V,
Closed Paths, and may be regarded as its continuation. As in
Chapter V, the main emphasis is on the succession function f (n) on a normal
to the limit cycle L, and the function d (n) = f (n) — n. In Chapter V we have
seen that if &’ (0) = 0, the limit cycle L, of system (A) is structurally stable,
and if d’ (0) = 0, the limit cycle is unstable and there exist systems
arbitrarily close to (A) which have at least two closed paths in any small
neighborhood of L.

In the present chapter we consider not only the first derivative d’ (0), but
also the value of the higher derivatives of the functions d (r) at the point 0,
and this leads to more refined results regarding the creation of closed paths
from a multiple limit cycle.

Chapter X is divided into two sections. The first, §26, although highly
significant for what follows, presents auxiliary background information. It
is mainly devoted to the derivation of expressions for the derivatives of the
succession functions in terms of the right-hand sides P and @ of the dynamic
system. Moreover, the multiplicity of a limit cycle is defined
in §26 (Definition 28, §26.2). A limit cycle Ly is said to have multiplicity r
(or to be an r-tuple limit cycle) if

) =d" @) =...do-D(0)=0, dm(0)5~0.

The fundamental theorems concerning the creation of closed paths from
a multiple limit cycle are presented in §27 (Theorems 42 and 43).
Theorem 42 is analogous to Theorem 40 on the creation of closed paths from
a multiple focus. It amounts to the following: if Ly is a multiple limit cycle
of multiplicity % of a dynamic system (A), systems sufficiently close to (A)
can have at most k closed paths in a sufficiently small neighborhood of L,.
On the other hand, there exist systems as close as desired to (A) with
precisely % closed paths in any small neighborhood of L,. In distinction
from the case of a k-tuple focus, when closeness to rank 2k + 1 is postulated,
here we are dealing with closeness to rank k. Theorem 43 shows that if
Lo is a k -tuple limit cycle, and s is an integer, 1<s<k, there exist systems
arbitrarily close to (A) which have precisely s limit cycles in any small
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neighborhood of L. It follows from Theorems 42 and 43 that a dynamic
system may undergo only a finite number of different bifurcations in the
neighborhood of a limit cycle of finite multiplicity. These different
bifurcations can be readily classified.

§26. EXPRESSIONS FOR THE DERIVATIVES OF THE
SUCCESSION FUNCTICN. MULTIPLICITY OF A
LIMIT CYCLE

Expressions for the derivatives of succession functions

Let

BeP@ vy L=Qa (A)

be a dynamic system of class ¥»1 or an analytical system, L, a closed
path of (A),

=g ), y=4() (1)

the motion corresponding to this path, 1> 0 the period of the functions ¢ and
t.

Consider the neighborhood Q of the path L, described in Chapter V (§13.1)
with the curvilinear coordinates s and n, defined by the relations

N

z=@(s, n). y=%y(s, n), (2)

P M=) +nY () F(s, R)=P(s)—n-¢’ (s). (3)
The functions ¢ and ¥ are considered in the strip
—oo s foo, —d<n<yd, {4)

where 8 is a sufficiently small positive number.

The properties of mapping {2) and of functions (3) are described in
Chapter V, §13.1.

Changing over to the variables s and n in system (A), using relations (2),
we obtain the system

ds _ P@ P9 —Q@ -9, an _ Q@ VH—P @ H-¥ (5)

ar = As, n) ar Ads, n)
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(see §13.2, (8)). As in §13, we will reduce system (5) to a single differential
equation
an Q@ P9—P@ 9V,

gn X9 ¥WE " = R(s, n), 7
s P(p, V)9, —Q @ ¥, ( ) ( )

which is obtained when the second equation in (5) is divided through by the
first equation. This division is permissible by §13.2, (11). We will
reiterate here the properties of the function R (s, n) and of equation (7).

R (s, n) is defined in the strip (4), where it is a continuous function,
periodic in s with a period of v. If (A)is a dynamic system of class N
(analytical system), R (s, n)is also a function of class N (analytical function).
Moreover,

R(s, 0)=0. (8)

Therefore, n = 0is a solution of equation (7). This solution evidently
corresponds to the closed path L, of (a).
Let

n=71(s; so Ro) (9)
be a solution of (7) satisfying the initial condition
f (so5 S0, o) == nq.

Then
f(So-+T; S0, 7g)

is a succession function on the arc without contact s = s, which is a normal

to the path Z,. In what follows, we shall take for simplicity s, =0 (this
evidently does not restrict the generality of our analysis); the corre-
sponding succession function will be designated f (n,}) and the normal s = 0 will
be designated /. Thus,

fro)=7(%; 0, no) (11)

is the succession function on the arc without contact I.
Together with the succession function f(n,), we consider the function

d (o) = f (7g) — no. (12)

In Chapter V we computed the first derivative of this function at no =0,

T
§ CPi@ts), wis)+Qy (ves), ¥(s))1ds
d’ (0)=1ib —1. (13)

Our immediate aim is to derive expressions for the higher derivatives, i.e.,
a0y, d"(0y, ...,

or, equivalently, for the derivatives of the succession function

70, (), ...
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The derivation of these expressions is analogous to the derivation of the
expressions for the focal values in §24.3.

Since the right-hand side R (s, n) of the differential equation (7)is a
function of class NV, the solution

n=7f(s; 0, ng)

of this equation has cortinuous partial derivatives with respect to ny to
order .V inclusive.

As in §24.2, Lemma 4, we can show that these partial derivatives,
treated as functions of s (i.e., for constant n,), satisfy the following system
of differential equations:*

af ) _ AR s, f(s10, ng)) If (55 0. ngd
dng dan ong ’
a2 f )= dRs, fY 6% | é2R(s f) (_ir:
on and dan? dngy
__ ¢RG P

a2f
— Z +E» (s, ng),

LNDR FAl ’/_0L__

dn? ,9,,\’ 1 any

zolﬂs f) 3’+E (s, 'lo)

on

By (10}, f(0; 0, ny) =n,. Therefore,

0no]- o_1 [gz ]c_.o v Z:Of ]s—

Equalities (15) provide the initial conditions for equations (1
Proceeding as in §24.3, we introduce the notation

A T34 (500 mg) -
e e ] _u,.(s) (k=1,2, ..., N), (186)

A [O*R(s,n) _ . —1 9
T = ] Ru(s) (k=1,2, ..., V), (17)

=7 1Bx (5, no)lngmo = Hi (5) =

_ 4 [8*R ¢ of \k, ., 82R a*1p af
Tk Lank (3"0) SRR T anf=1 dng ]na=0 (18)

(k=2, ..., N, the functions E, are defined by equations (14)).
Since n=01is a solution of equation (7), we have f(s; 0, 0) =0,

PR [(0.m) ] _ [ PR n) B
ank ]_o—[ ],.:o h=1,2, ..., N). (19)

Therefore,
Hy(&)=Ba() [0+ (20)

ne=0

k=2, 3,..., N; the missing terms in (20) correspond to a polynomial in
the functions R, (s), Rz (s), . . ., R4y (s) and the functions u, (s), us (s), . . ., Up—y (s)).

®* The expressions for E;, E, ..., Eyx are not given in explicit form; see §24.2, footnote to Lemma 4.
P .
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Let n = 0 in {14). We will integrate them successively using initial
conditions (15) and the relations

f(5;0,00=0 and R(s, 0)=0

together with (16)—(20). The first of these equations has been considered
in Chapter V (§13.3). Its solution is

g Ry(s)ds

of (3; 0, ng) — =
any s ]n°=o =t (s) =e

(21)

(see §13.3, (25)).
Multiplying the k-th equation in (14) by k—‘, and integrating, we find

s 8
S Ry(s)ds 8 ~\ Runas

A [ 3% (s; 0. ng) _ 1 2
R ]’m:o_u,z (s)—e § Hy(s)e ds. (22)

From (11), (21), and (22) we obtain the following expressions for the
derivatives of the succession function at the point n, = 0:

§ Rjy(s)ds
FO)=et . (23)
Ri(e)ds T —§ Ry(s)ds
d® (0) = f® (0) = kled A0
0

ds. (24)

Let us now express the functions R, (s) and H, (s) in terms of the right-hand
sides P (z, y) and Q (z, y) of system (A). The expression

R@-[ 28]

was computed in Chapter V. Indeed, differentiating the function R (s, r) de -
fined by (7) with respect ton,
_0@®DT—PE® D,

R (s, n)=—rcr—== ————,
(& 7) P (@, V)P, —Q (@ ¥) Py,

we obtained after some manipulations

Ry(o) = 22e ] =Pi(e(s) $()+Q (@), () —
—4 @ (¥ (O (25)

(see §13.3, (28)).

Let us now compute the derivative -aig%’ﬂ, where 2<kg<N. We will

write out in explicit form only those terms which contain k-th order
derivatives of P and Q. Differentiating (7) k times with respect to n and
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using the symbolic power notation,” we obtain, as is readily verified,

prinn (ot )o@ 9]a-[ (7 &+ o) r@ D%
akh P P ¥, —Q (@ ¥,

QT P T PO §) P {[(€$%+E;0—i)kp(5v E)]‘E;u“'

TIPE D Q@ D e
~[(®BZ+®2) Q]+ }oos (26)

where the triple dots correspond to terms which contain no k -th order
derivatives of P and Q (these terms cont~iil ’the functions P and Q and their
derivatives to order <k —1). Letn=0in(26}. By (3},

Pls, =) B(s, 0)=1p(s),

(s 0 =9"(s), Wils, O) =V (s),

Fols Y=Y (s) ¥ (s M) = — ¢ (s).

Moreover, since ¢ and § are solutions of system (A}, we have
@' (5) =P(p(s), $(5))s ¥ () =Q((s), §(s))-

T'heretfore, for n = 0, the numerator of the fraction before the braces in (26}
vanishes, and we find

6% R (s, n)

o ]n=0=m(s)+..., (27)

vhere

[(vog—9©Z) 0w v ] e
—¢ T () -
NN R :
[rog-vog)reoro]ve (28)
=T ¥ (o ’

Wi (s) =

and the triple dots represent terms containing the functions P and Q and
their derivatives to order k — 1.
By (16)—(22) and (25)—(27),

Hi(5) == W (9) [y (9)]* + D (3), (29)

where @, (s) is expressed — with the aid of algebraic operations and inte -
gration — interms of the functions P and @ and their derivatives to order
(k — 1)and in terms of the functions ¢ (s}, ¥ (s), ¢’ (), ¥’ (s).

R . . kR
* If f(x, y)is a function of two variables, the symbolic binomial power (u%-{-v%) is used as an

ahhreviated notation for the operator defined by the equality
5 h
—u _”_f+ kur-1y, 1
az* azxh-1 gy
ahf

+ kE—1) ju-zy2 LR
2! azh-2 gy2

Mf
ayk
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We can now compute the derivatives of the succession function f (ng) at
the point np =0. From (23) and (25) it follows (seeing that ¢ and ¢, and
therefore their derivatives, are periodic functions) that

{ [PL(@(®), v+ (@(0), B(e)1ds
fO)=e (30)

(This expression was originally derived in Chapter V, §13.3, (30).)

From (21), (23), (24), and (28) we have

d® (0) = f® (0) =
$ 8
v (h=1) | Rus)ds € —{ R
=rO{Wime 0 dstmr©O{D@e? 4, (31)
0 0
where k=2, 3, ..., N.

This expression is analogous to (46), §24.3 and it plays an important
role in the proof of the fundamental theorem of this section. , and
W, (s) are expressed by (30), (25), and (28), respectively. We should again
emphasize that the second term in the right-hand side of (31) does not con-
tain derivatives of P and Q of higher than (¥ — 1)~th order, and the values of
these derivatives are taken at points of the curve z=¢ (z), ¥ = ¥ (s).

2, Multiplicity of a limit cycle

In Chapter V we defined the multiplicity of a limit cycle for
the case of analytical systems (see §12.3). We will now define this concept
for systems of class N. Let

2Py, E=Q@ ) (a)

be a dynamic system of class ¥N>1, L, a closed path of this system,
z = @ (#), y = (f) the motion corresponding to this path, 7> 0 the period of
the functions ¢ and .

We recall that the path L, is a limit cycle if it is an isolated closed path.
A limit cycle L, is said to be multiple (see §13.3, Definition 18) if

J={ Pr @), $ () +Q; @ (), $ (NI ds=0, (32)
[

otherwise the limit cycle is simple.

As we have repeatedly mentioned, if (A) is a dynamic system of class N,
the function f (n,) and hence the function d (n,), for sufficiently small ny, have
derivatives to order N inclusive; in particular, the numbers d’ (0), 4" (0), ...
..., d™M(0) exist. We have seen in §12.4 that if at least one of these numbers
does not vanish, the closed path L, is isolated, i.e., it is a limit cycle
(stable, unstable, or semistable).

Definition 28. A closed path L, of a dynamic system (A) of class N
is said to be a limit cycle of multiplicity r (or an r-tuple limit cycle) if

A0 =a0)=...=d""D0=0, d7(0)=0 (33)
(ris a natuval number, r<N).
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This concept of mult.plicity clearly coincides for analytical systems with
the definition introduced in §12.3. As in §12.3, it involves a certain arc
without contact /, and we have to prove that the definition is independent of
the particular choice of this arc.* However, we will not give this proof
here, since it will emerge as a direct consequence of the fundamental
theorem of this section.

It follows from Definition 18 (§13.3) and Definition 28 that any simple
limit cycle is a limit cycle of multiplicity 1 and vice versa. With
regard to multiple cycles, the situation is as follows: if (A) is an analytical
system and L, is a multiple limit cycle of (A), it has a definite multiplicity r,
where r may be any natural number greater than 1.>* If (A)is a system of
class ¥ »2 and L, is a multiple limit cycle of (A), it generally has a definite
multiplicity r, 2<r<.¥. In some cases, however, it may turn out that for
the cycle L,

O =a"(0)=...=d¥" V0 =d"V (0)=0. (34)

If (A} is not a system of class .V -~ 1, Definition 28 becomes meaningless
and the multiple limit cycle L, has no definite multiplicity. v

I a closed path L, is a limit cycle of multiplicity r, i.e., if relations (33)
are satisfied, Maclaurin's formula gives

4 (0n)

-
o

d(n)=

Hence, using the results of §12.2, we conclude that a limit cycle of
even multiplicity is semistable, and a limit cycle of odd
multiplicity is stable or unstable. For oddr, ifd” (0) < 0, the
cycle is stable, and if 4”7 (0) > 0, the cycle is unstable,

IL.et us consider a sp=cial modified system, for which a lemma analogous
to Lemma 7 of §24.3 will be proved.

Let (A} be a dynamic system of class N, L, a closed path of (4a),
x = @ (), y =1 () the motion corresponding to this path (p and ¢ are periodic
functions of period ©>0). By Lemma 1, §15.1 and Remark 1 to that lemma,
there exists a function F (z, y) of class .V + 1 in region G where system (A)
is defined, such that for alls, — o« < s< L+ o0, we have

F(@(s), ¥(s) =0 (35)
and
IFL (@ (8), (NP HIFy (9 (), $(s))IP==0. (36)
From (35) and (36) it follows that for all s we also have
Fa(@ (9, $(NY () —Fy (@ (5), $(9) @' (s) % 0. (37)

Indeed, suppose that coxndition (37) does not hold true. Then, for some s=s,,

F (@ (50), F(50)) W' (S0) — Fy (@ (S0, B (50)) @' (s0) = 0.

* See footnote on p, 108,

“* If (A} is an analytical system, Lgis a closed path of (A}, and all the derivatives vanish, @' (0) =
== Q0 (kz2:1, 2. ...), we have 4 (no) = 0 and all the paths close to Lo are closed paths, i.e., Lo is no
longer a limut cycle.  See §12,3,




Ch.X. CREATION OF CLOSED PATHS FROM A MULTIPLE LIMIT CYCLE

On the other hand, differentiating identity (35) and inserting s=s,, we get

Fie (@ (s0)s 0 (50)) @7 (S0) + Fy (P (S0)s P (S0)) ¥’ (50) =0

Consider the last two relations as linear homogeneous equations for
Fy (9 (so), P (so)) and F, (@ (so), ¥ (s5)). It follows from (36) that these equations
have a nonzero solution. But then the determinant of the system vanishes,
(9" (s)]* + [ (s))* = 0, i.e., @ (so)) = P (9 (s0), ¥ (50) = 0 and ¢’ (so) = Q (P (s0),
P (s0)) = 0. This is impossible, since the point (¢ (so) ¥ (s0)) lies on a closed
path L, and is therefore not an equilibrium state. Relation (37) is thus
proved.

Together with system (A), consider a modified system of particular
form

& P 9) =P y)+AF"Fr =0 ) =0 y)+AF"F, (A,)

where A is a parameter, and m is a natural number. Clearly, (ZXA) is also
a system of class N, and if A is sufficiently small, (Ax) is as close as
desired to system (A)

It follows from (35) that a closed path L, of system (A) is
also a path of system (Ak). Indeed, since L, is a path of (A), we
have

O ()=P@ ) v@) VY O=Q@E) V).
From these equalities and from (35) it follows that
PO=P@® ve) YO=0@w v@),

which implies that L, is a path of system (AL).
Let

f=7F(no &) (38)

be the succession function constructed for system (A,) on the same arc
without contact ! and for the same choice of the parameter as the succession
function f, for system (A) (for sufficiently small 4, the function 7 is defined;
see §4, Lemmas 1,2, and 11).

Clearly,

7 (ro, 0) = f (no).- (39)
Moreover, since L, is also a path of system (A,'), we have
F(0)=7(0, 1 =0. (40)

Together with the function f(n,), we also introduce d(ng) =d (1, A), analogous
to the function d () of (A),

d (n)) = (no, A) =7 (16, M) —no =7 (ng)—no. (41)

In topics related to the creation of limit cycles from a closed path L,, the
system (Al) plays precisely the same role as system (A,) (§24.3) in
connection with the creation of limit cycles from a focus.

Lemma 1. Let for a closed path L, of a dynamic system (A) of class
N>1

dO)=d"()="...=d(0)=0, (42)
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where 1 <r<.N, and let m be an integer,
1<<m:ir, (43)

and ) a nonzevo real number. Then the closed path L, is a multiple limit
cycle of multiplicity m for the system(A,), i.e.,

)= 0)=...=d™V©O)=0, {44)
and
™ 0y 0. (45)
Also

d™ 0y =A-m! g (0)%+ ¢ (0™
N § [F A (s} p (SN ()~ Fy @ (s}, ¢ (s)) @' (s)]™*? %
'

f@" (92 ¢ (2™

&
(m=1) { [PL(@(S), BN +QF(E), Blon] ds
re 9 ds. (48)

Proof. Since Lyis a path of system (Al), the derivatives dv (0),
i=1, 2, ..., m may be found using {(30) and (31) (for the derivatives d® (0} }

In these equatxons P (z,y) and Q (z, y) and their derivatives should be replaced
with P (z, y) and Q (z, y) and their derivatives (the functions ¢, ¥, ¢, ¥’ clearly
remain as before).

We recall that in computations using (30) and {31), the values of the
functions P and @ and their derivatives should be taken for z = @ (s), ¥ = ¥ (s),
0gs< T,

From the relations

Bz, y) =Pz y) +AF"Fy,
Q. y)=0Q(z, y) +AF"F,, (47)
F(g(s), ¥(s)) =0 and m>1,

it follows, as will be seen from elementary calculations, that at the points
(@ (s), ¥ ()} the values of tke functions P and § and their partial derivatives

to order m — 1 inclusive are respectively equal to the values of the functions
P and Q and their derivatives to order m — 1, i.e.,

P@sh v =P@), v() Q@) $EN=0Q @) ¥ ()
[a‘ﬁ(z, 9 _ [a‘mz. )
azt 8y"’i x=ep(s) dxtgyt-i xsw(l)

y=4(s} v=%(s}
[6‘6 =, ¥) _[#e@w (48)
zt dyt=t J xeq(s) ozt ayt—t Jx—mqs)
y=xy(s} y=¥(s)
(=12 ...,m—1; 0Kig).

Let us now compute the m-th order partial derivatives of the function P
and @ at the points (@ (s), ¥ (s)). In virtue of the relation F (g (s), ¥ (s)) =0, it
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suffices to consider only those terms which result from the differentiation
of the functions P, ¢, and #™ (all the other terms produced by differentiation
contain the function F (z, y) as a multiplicative factor and therefore vanish
forz =@ (s), ¥y = ¥ (s)). Simple manipulations thus lead to the relations

[ om b (z, y) ] 9mP (z, y)
ozt gym—i z——w(:) ozt gym—t Jerqy
y=1(s) y=v(s) )
+hemt[(Fx (2 g (Fy (@ y)™ lo=owp
v=%( (49)
"0 (z, ¥) _[8mQ (= v . -1 ¢ e ymetel
ozt oym=t Jaeon [ 7t gt J gy T T IR FDT ety

y=y9(s) y=P(s)
(i=0,1,2, ..., m).

Let (s), H:(s), etc., bethe functions of (A,) which are analogous to the
functions A; (s), H,(s), etc., of (A). Relation (25), the analogous relation
for R, (s), and equations (48) lead to the equality

Ry () =R, (s). (50)
Thus, using (23), we see that

7 (0)=1(0), (51)
and therefore

@ (0)=d' (0). (52)

Furthermore, using (21), (28), (29), (31), the analogous relations for (A,),
and also equations (48), (50), and {51), we conclude that

W (s) =W (s) (53)
fork<m—1;
By (5) = i (5) (54)
for k<m;
Hy(s) = Hy (5) (55)
for kgm—1, and finally,
™ ) =d™ (0) (56)

for k=2,3, ..., m—1.
From (42), (43), (52), and (56) it follows that

O =d (0)=...=d™ 1 (0)=0.

We have thus proved relation (44).
Let us now compute d‘™ (O) To this end, we will use equation (31),

replacing f, W, R, etc., with 7, W, R, etc. By (50), (51), and (54),
.f i (k—1) § Ri(s) ds T - § Ry(s)ds
T O)y=7 O\ Wn(s)e 0 ds -+ mlf (0) ((bh(s)e é ds. (57)
) )

1}
Thg expression for W (s) can be found using (28). Replacing P and Q with
P and @ and using (49), we obtain

Aead [FL (@ (5), Y (N () —Fy (@ (8)s (3D @ (™4

W () =W () + O O : (58)
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From (31} and (58) we obtain
3
hemt [Fyp’ — Fq' )=t “"'“3 Rus)ds

T R (5)? ds.

™ 0y =d™ (0) f(O)S

By the conditions of the lemma, d'™©0)-=0. Furthermore, d’ O=f—-1t-0,
i.e., //(0)=1. Inserting these numerical values and expression (25) in the
last relation, we finally obtain

d™ (0) = hom! [q (00 + g7 (O3]

‘ ﬁ F () § DY ()= Fp (¢ (3), ¥ (N g" (17
) [5G — ¢ R

i
k]
im—ty \' [P:cw,r;\sv. '\t(s))—',—Q;&w(s), ¥(3n}ds

e v ds,

i.e., equality (46) holds true.

Inequality (45) follows directly from (46) and inequality (37). This com-
pletes the proof of the lemma.

Remark. We have assumed in the lemma that r>2(and thus ¥>2) and,
imposing conditions (42}, considered the modified system (A,) with m> 2.
Under these conditions, the closed path L, of system (A ) is a multiple hmxt
cycle of multiplicity m. The casem =1, i.e., when the modified system (A N
has the form

iz , . dy _ , , %
3 =P+ MFF., L =Q+\FF, (a,)

has been considered in connection with the proof of Theorem 19 (§15.2}.

We have seen there that if (A) is a dynamic system of class ¥>»1, Lya
closed path of (A} for wkich & (0) = 0(d” (0) need not be equal to zero, or even
need not exist altogether), and 2=20, L,is a simple limit cycle of (&,,) and
the corresponding derivative is expressed in the form

A \ [lqu;(s), \i(:)»l’-L(F (Gis}, §(3)))2] ds
iy (0)=e 0 —1. (59

§27. CREATION OF LIMIT CYCLES FROM A
MULTIPLE LIMIT CYCLE

1. The fundamental thecrem

In Chapter V we considered a multiple limit cycle and showed that it
may "'create” closed paths (§15.2, Theorem 19). In this section we will
elucidate the number of paths that may be 'created’ in the neighborhood of
a multiple limit cycle on passing to sufficiently close systems. We will
in fact prove the following theorem, analogous to Theorem 40 of §25.1.

Theovem 42 (theovem of the creation of limit cycles from a multiple
limit cycle). If (A) is a dynamic system of class N > | or an analytical
system, and L, is a multiple limit cycle of multiplicity k2<k<N), then
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1) there exist e, > 0 and 8, > 0 such that any system (&) 8,-close to
rank k to (A) has at most k closed paths inUs, (Ly);

2) for any positive e < s, and 5 < 8,, theve exists a system (A) of class N
(of analytical class, respectively) which is & -close to rank k to(A) and
has k closed paths in Ug, (Lo).*

Proof. 1) Letus prove the first proposition of the theorem. As in the
previous section, consider an arc without contact {, which is a normal to the
path Lo (see §26.1), and the succession function f (n,) of system (A) on the
arc |, together with the function d (ny) = f (n¢) — n,. Let these functions be
defined for all ng, | ny {<n*, where n* is some positive number. As we have
noted in §26, d (ne) is a function of class N.

Since L, is a limit cycle of multiplicity & of system (A), we see that

&) =d" (0)=...=d®D(0)=0, 4d®(0)+0, (1)

i.e., the number 0 is a root of multiplicity & of the function d (n,). Therefore
(see Chapter I, §1.3) there exist positive numbers n<n* and o such that any
function d (n,) defined for all ng, | ny |<n* and g-close to d (no) to rank k may
have at most k roots on the segment[— 7, n].

FIGURE 118

A sufficiently small positive number is taken for g,, so that all the points
of the normal ! lying in Us, (L) correspond to the values of the parameter ng
less than n in magnitude (Figure 118). 8&,is also taken so small that the
following condition is satisfied: if system (A) is 8o-close to rank k to (A),
the succession function f(n,), and hence the function d(n,), are defined for
(A) on the arc ! for all ng, | no |<n*, and for |ns|< n* the function d (n,) is o-
close to d(n,) to rank k. This §, exists by Theorem 3, Appendix, 1. The
numbers g, and §, chosen in this way evidently satisfy the first proposition
of the theorem. The first proposition is thus proved.

2} The second proposition will first be proved for a dynamic system (a)
of class N. Consider a modified system of a particular form

&2 B 4 s Ao ooy Mac) = P (31 9) + MFFact PPt L.+ My PRI,

(R)
—Zg—:a(zy Y. Agy Agy o ey A-h-x):Q(l‘y y)+xiFFil+x2F2F;I+"'+A‘h‘iF~_lF;ﬂ

* The closed paths of Theorem 42 are clearly isolated, i.e., they are limit cycles.
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where .., are parameters, and F (z, y) is a function of class N + 1 defined in
T and satistving conditions (35) and {36 of the previous section ($26.2).
By (33}, the function F (z.y) vanishes at the points of the limit cycle L, of
syvstem (A) and therefore L, is also a path of system (A). Evidently, (A)
is also a system of class V.

For sufficiently small 3;, (A)is arbitrarily close to (A) to any (possible)
rank, and by §4, Lemmas 1,2, and 11, the function

d(nge hys koy ooos haoy).

analogous to the function d (n,) for (A}, is defined for (X) on the arc without

contact I for all n,, | ny |<n*. * Clearly, d is a continuous function of n, and
of the parameters iy, As, . ... 2x-y. Since (A) is obtained from (A) for
Py - Ry ... = by =10, #e see that

ding. UL U, ..., 0 =d(n. (2}

For any ¢ > 0and § > 0, there exist A* > 0and ﬁ<n* such thar if
[Ail<<d* i=1,2, ... &k—1, (3}

then

la) system (z—i) is § ~close to rank & to system (A)‘;

1b) the function d (ng. 2y 2z, -« ., hp-y) is defined for all n, | ne < n*, and any
roat of this function satisfying the inequality | n, | << n corresponds to a
closed path of (3 completely contained in ", (L,).

Jet ¢ and & be fixed positive numbers, s<Ce, 6<<d,. Let further, i* and
» be the numbers corresponding to e and 8 (i.e., such that if (3} is satisfied,
conditions {a) and {(b) hold true). We will show that by an appropriate choice
of the parameters iy, ks, . . ., kz-y, System (A) can be made §-close to rank k&
to (A} and will have & closed paths in U, (L,).

We will assume that the numbers i; henceforth satisfy condition (3).

From Maclaurints formula we conclude that, in virtue of relations (1),
for all sufficiently small n,,

d(n) =25y b (n) (4)

where k (n,) is a continuous function and & (0) = 0 (see proof of Theorem 5,
§1.3).

By assumption, d®()=£0. To fix ideas, let d®(0)>0. Then for all
sufficiently small positive ng, d(ny) > 0. We choose one of these numbetrs,
smaller than n, and denote it by n,. Thus,

O<<ny<<n, dn)=d(n.0, ..., 0)>>0. (5)
Now suppose that
hym=ida=...=hpo=0, Ay #£0,
T We recall that a* >> 0 (s a number such that for} ny | < n* the function d (ny) 1s defined.
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and consider the modified system corresponding to these values of the
parameters,

z

=Pz, 5, 0,0, ...,0, hay) =P (2, y) +hatF*IF,
(&)

£
L Gl 0,0, ...y 0, M) =Q (@, 1)+ AaeeF*1F,

and the corresponding function d, (o) =d (g, 0, 0, ..., 0, Ax-y). By (1) and
Lemma 1 of the previous section,

T (0 =d (0) = ... =dk~2) (0) =0, (6)

and d{*+v (0) is expressed by equality (46) of the previous section, which
gives

d®=1 (0) = Cyhn-s,

where C, is a nonzero constant (C, is the factor before A in (46) for

m =k — 1. Its explicit expression will not be needed here, however ).
As before, Maclaurin's formula and relations (6) give for all suf-

ficiently small n,

Cihny

d; (ng) = =11 np=t Ry (no) nd-1, (7)

where 7»1 (ny) is a continuous function and 3, (0)=0.
Let ;>0 and choose A3, so that

|xh_1|<7\', 7»};_1<07 gi(ni)=g(nh Oa 01 vy 01 Ah—t)>00 (8)

The last of these conditions is satisfied for any sufficiently small A3, in
virtue of equality {5) and the continuity of the function d (g, s, Az « ..y Aget).

The inequalities €y > 0, A3, << 0 and equality (7) show that for sufficiently
small positive n,, d; (ne) < 0. Choose one of these numbers, smaller than ny,
and denote it by n,. Thus,

O<<na<<ni<n (9)
and
di(n) >0, d,(n)<<0. (10)
Further construction proceeds along the same lines as above (compare

with proof of the second proposition of Theorem 40, §25.1). After the
{k—1)-th step,* we end up with the system

'Z‘?=ﬁ(zv U My Agy ooy Apmy) =
=P (2, §) + MFFat WP s+ ... + Ay FR1F,,

Tgti':a(‘r’ Ys Ay Agy ooy Rpg) =
=Q(x, Y) +MFFy+MF Y+ . .o+ Ay JPUF,

(&)

* 1In our construction of the systems By, (X,), e (X,,_,) and the numbers ngy Ray + .+ Ma—y, We always
use Lemma 1 of the previous section. However, in the last, (k — 1)-th step, the lemma itself is replaced
by the remark to Lemma 1 and formula (59) of the last section is used instead of formula (46).




§27, CREATION OF LIMIT CYCLES FROM A MULTIPLE LIMIT CYCLE

and the numbers ny, n,. ..., n, are such that|i; | << A*,
0 iy < gy < v vs Sy <12 (11)
and
~ ~ >0 if k£ is odd,
d(m) >0, d(n) <0, . d(n,,) if k is even. (12)

From inequalities (12) and the continuity of the function d (n,) it follows
that at least one root of the function d (n,) falls between each pair of numbers
ny and ns, n, and n3, ..., npy and n,. These roots correspond to closed paths
of system (A). By (3) and (11), these closed paths lie in U, (L,). Moreover,
the path L, of {(A) is itself a path of (A). Thus, at least k paths of (A) exist
inside the neighborhcod U,(L,). Since & < g,and § <« §,, the first proposition
of the theorem indicates that U, (L,) may contain at most k paths of (A},

i.e., it contains precisely k paths. This proves the second proposition of
the theorem for systems of class ¥.

3) Let us now consider the analytical case. Our proof is inapplicable
to this case, since, in general, no analytical function F (z, y) exists in the
entire G which satisfies conditions (35) and (36) of the previous section.*
We will therefore proceed along the same lines as in the proof of
Theorem 19 (§15.2).

Let (A) be an analytical system, and L, a multiple limit cycle of
multiplicity k& of (A), &, and 8, the numbers introduced in the first proposi-
tion of the theorem. Take any positive numbers e < g and § <<§,. As
before, we construct a system (A) of class ¥ >k and numbers ny, ns, ...,
such that the following conditions are satisfied:

(a) System (A)is §/2 close to rank k to system (A).

(b) Relaticns (11) and (12) are satisfied, and n is a2 number with the
following properties: any path L of system {A) crossing the arc without
contact ! at point 3, corresponding to a value ny, | ny | << n, of the parameter
crosses the arc [ with increasing ¢ at another point M,, so that the arc
M, of the path L is entirely contained in U, (Ly).

By equation (59) of the preceding section, d’ (0) = 0, i.e., L,is a simple,
and hence structurally stable, limit cycle of (A)

Let n be a number, 0 g <—2— , and (A*) an analytical system n-close

to rank k to system (&) (e.g., a system whose right-hand sides are

polynomials adequately approx1matmg to the right-hand sides of (A)).

Clearly, if n is sufficiently small, the following conditions are satisfied:
(a’ ) The function d* (ny) corresponding to (A*) is defined for all

ne, | ne } << n, and

>0 if k is odd, (13)

d* 0, d* 0,...,d*(n
() > (ma) < () <0 if k is even.

{b*) Any path L* of system (A*) crossing the arc without contact / at
point M} corresponding to the value ng, | no | <n, of the parameter crosses

® We have seen in Chapter V (§15.2) that such a function may be constructed in the neighborhood of the

path Ly This is not sufficient, however, since (R) should be defined in the entite & .
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the arc ! again with increasing t at point M;, so that the arc M*M; of the
path L* is entirely contained in U, (Ly).*

(c*) There exists a closed path L¥ of (A*) which lies entirely in U, (L,)
and crosses the arc without contact ! at point M{ corresponding to the
value n} of the parameter, where n? < n, (condition (c*) is satisfied for
sufficiently small n because L, is a structurally stable limit cycle of (A))

From {(a*), (b*), and (c*) it clearly follows that (A*) is an analytical
system, & -close to rank k£ to system {(A), which has at least £ closed paths
in U, (Ly), i.e., it satisfies the second proposition of the theorem. This
completes the proof of the theorem.

Remark. If (A) is a system of class N, the condition — in the second
proposition of T'heorem 42 — that system (A) is 6 -close to rank & to (A)
may be replaced by requirement of 8§ -closeness of rank ¥. If (A) is an
analytical system, we can find an analytical system (A) satisfying the
second proposition of the theorem and yet close to {A} to rank m, where m
is an arbitrary natural number. The validity of this remark follows directly
from the proof of Theorem 42.

2. Supplements

On the creation of limit cycles from a focus of finite
multiplicity. Theorem 42 and the remark following the theorem enable
us to strengthen the second proposition of Theorem 41. Indeed, the
following theorem obtains:

Theovem 41'. Let 0(0,0) be a multiple focus of multiplicity k of a
dynamic system (A) of class N> 2k + 1 (o analytical), and let e, and 8, be
sufficiently small positive numbers (intvoduced in the fivst proposition of

Theorem 40 and the remark to that theovemw). If system (B) is §,-close
to rvank 2k +1 to system (A), the sum of the multiplicities of the focus
and the limit cycles of (B) lying in U, (0) is at most k.

Proof. Letthe sum of the multiplicities of the focus and the limit
cycles of (B) lying in U,, (O) be k* > k. Then, using the construction of
Lemma 2, §15.2, and Theorems 40 and 42, together with the remark to
Theorem 42, we can modify (B) in the neighborhood of each of these limit
cycles and the focus, to obtain a system (B*) which is arbitrarily close
to rank 2k -+ 1 to system (B) and has k* > k closed paths in U, (0). The
existence of this system (B*), however, contradicts the condition that
0 (0, 0)is a focus of multiplicity k. If only analytical systems are considered,
the limit eycles of (B¥) lying in U, (0) should further be made structurally
stable (see §15.2, Lemma 2) and (B*) should be approximated with an
analytical system. The theorem is thus proved. It is clear that the second
proposition of Theorem 41 follows from Theorem 41'.

Bifurcations of a dynamic system in the neighborhood
of a limit cycle of finite multiplicity. We will first consider
a proposition which is analogous to Theorem 41 and strengthens the second
proposition of Theorem 42. This proposition, together with Theorem 42,
plays a fundamental role in the entire topic of bifurcations of dynamic
systems in the neighborhood of a limit cycle of finite multiplicity.

* For a small v, condition (b*) is satisfied because of condition (b) and Lemma i1, §4.2,
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Theorem 43. Let (A) be a dvnamic system of class N > 1 or an
analyvtical system, L, a multiple limit cycle of multiplicity k@2 <k<N) of (A),
and ¢, and 8, sufficiently small positive numbers (inftroduced in the first
proposition of Theorem 42).* Then

1) foranyeand s 0.-<e<e, 0<<8<6,, and for any s, 1 <s<k, there
exists a system (B) of class N (or an analytical system) which is §-close
to rank k to (A) and has precisely s closed paths inU, (L,);

2) if (B) is 8,-close to yank k to(A), the sum of the multiplicities of all
the limit cycles of (B) lving in U., (Ly) is al most k.

The proof of the first proposition is analogous to the proof of the corre-
sponding proposition of Theorem 41. The proof of the second proposition
is analogous to the proof of Theorem 41'. The
reader will be able to reconstruct the detailed
proof without difficulty.

The investigation of the bifurcations of a
dynamic system in the neighborhood of a limit
cycle of finite multiplicity is analogous to the
investigation performed at the end of §25.2 for
a multiple focus. Theorems 42 and 43 play a
leading role in the entire treatment. Let L, be
a k -tuple limit cycle of system (A} (k=2), Va
sufficiently small neighborhood of this cycle
bounded by cycles without contact I'y and I',,

6 a sufficiently small positive number. By
Theorems 42 and 43, syvstem (A)S-close to
rank k to (A) may have at most k closed paths
inV. Moreover, there exist systems {A)
which have precisely s closed paths in}’, where
sis any number, 1<s<k. These closed paths,
naturally, are limit cyclss and are arranged 'concentrically’’ (Figure 118).
As in the case of a multinle focus (§25.2), the topological structure of (&)
in V' is entirely determined by the number s of the limit cycles lying in V and
their stability characteristics. Let these cycles be Ly, L,, ..., Ly, and we
assume that L; lies inside L, ,(i=1,2,..., s —1). Suppose that the behavior
of the paths of (A) in reletion to the cycles without contact I'; and I is
known.”” The paths of any system (A) sufficiently close to (A) behave in
relation to I, and T, just like the paths of {(A). Therefore the topological
structure of (A} in V is completely determined if we know:

{a) the number s of limit cyeles of (A) in V

{b} whether each of these cycles is of even or odd multiplicity.

Hence it follows, as for a multiple focus, that in the neighborhood of
a limit cycle of finite multiplicity a dynamic system (A) may only have a
finite number of different bifurcations. We will not try to describe these
bifurcations, since the situation is precisely the same as for a focus (§25.2).

Example 10. Consider the system

b 4

FIGURE 119

.l d
=—grz@+Pp—0, FL=ztryE+r—D8 (B,)

dr
dt

where k is a natural number.

* It s further assumed that all systems 8p-close to (A1 have no equilibrium states in U, (Lo).
** In other words, it is known whetker the paths crossing the cyele Iy (i = 1, 2) enter into ¥V or leave Vas
tcreases,
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Direct computations show that this system has a single equilibrium
state 0(0,0), which is an unstable focus for even k and a stable focus for
odd k. It is readily verified that the circles

2yt =C* (14)
for € % 1 are cycles without contact of system (B,), and the circle
24yt = ‘ (15)

is a path of the system. Hence it follows that this circle is the only closed
path of the system, i.e., it is a limit cycle. We will use the symbol L, to
designate the circle {15). All the paths of (B,), except the focus 0 and the
limit cycle Ly, are spirals. Since

C ey
Yy =5 F-=p* (*— 1),

the infinity is absolutely stable. These data uniquely determine the
topological structure of the dynamic system (Bh). For an even k, the limit
cycle L, is semistable, and for an odd k it is unstable. The path configura-
tion is shown schematically in Figure 120 (even k) and in Figure 121 (odd k).

FIGURE 120. Forevenk, FIGURE 121. For odd k,

the focus is unstable and the the focus is stable and

limit cycle is semistable. the limit cycle is un-
stable.

We will now show that the path L, is a cycle of multiplicity & for (B,).
This follows directly from Lemma 1, §26.2. For the starting system (A)
of the lemma we take the system

dz dy _
Frini 9= (16)

and set '

Fz, y)=a4+y*—1.
The numbers m and A are assigned the values k and “2. Then system (A,)
introduced in Lemma 1, §26.2, coincides with (B,). The paths of

system (16) are the equilibrium state O (0, 0) (a center) and the concentric
circles z=Ccost,y=Csint, including the circle L,. Therefore, for
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system (16}, the succession function is f{po) = po, and d {p,) = 0. But then
conditions (42), $26.2, are satisfied for anyr. The following conditions
are additionally satisfied on the path L;:

F(z, y) =0, (F) 4+ (Fp)r==0

(conditions (35) and (36), §26). Thus all the conditions of Lemma 1, §26.2
are satisfied, i.e., circle L, is a limit cycle of multiplicity k of (B,).

The case k = 2 was considered in detail in Chapter VIII {(§22, Example 8).
In that example we established the exact changes in the topological structure
of the system as its field rotated and elucidated the fate of the limit cycle L,.




Chapter XI

CREATION OF LIMIT CYCLES FROM THE
LOOP OF A SADDLE-POINT SEPARATRIX

INTRODUCTION

Consider a dynamic system (D) with a simple (structurally stable) saddle
point O (zy, yo) and-a path L, which goes to the saddle point O both for t—+ —
and for t— 4+ oo. This path is both an a-separatrix and an w-separatrix of
the saddle point O, and we say that it forms a loop. In Chapter IV
(Theorem 16, §11.2) it is shown that a separatrix forming a loop is a
structurally unstable path and there exist modified systems arbitrarily
close to (D) and such that the separatrix loop disappears on moving to
these systems.

In the present chapter we consider the creation of closed paths from
a separatrix loop upon moving to close systems.

The first of the two sections, §28, presents auxiliary background
material. The succession function on an arc without contact crossing
the separatrix loop is considered in §28.1, and some properties of this
function are established. A1ll the principal results of this
chapter are derived in what follows using this succes-
sion function. The behavior of the saddle point and its separatrices
on moving to close systems constitutes the subject of §28.2.

The principal results of the chapter are contained in §29,

To fix ideas, suppose that two separatrices of the saddle point ¢ which
do not belong to L, lie inside the loop formed by the separatrix £,. We
first prove (Theorem 44, §29.1) that if the parameter

Go (%o, Yo) = P2 (%o, Yo) + Qy (%o, Yo)

is positive (negative), the loop L, is unstable (stable) from inside, i.e.,
all the paths passing through points interior to the loop which are sufficiently
close to the loop go to this loop for t— — oo (t— -+ oo},

We further consider the creation of a closed path from a separatrix loop
(Theorems 45 and 46, §$29.2). It is established that if the separatrix loop
is stable or unstable (in particular, if g, 0), there exist modified systems
arbitrarily close to the original system such that the loop disappears on
passing to any of these close systems, and yet at least one closed path is
created in any arbitrarily small neighborhood of the loop (Figure 122).

In §29.3 it is proved that if ¢, = 0, a separatrix loop will create at
most one closed path in a sufficiently small neighborhood of itself. For
the creation of the closed path it is necessary (but not sufficient) that the
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separatrix loop disappear. If a closed path is created on moving to a close
system, this closed path is a limit cycle of the same stability as the stability
of the disappearing separatrix loop (Theorems 47 and 48).

FIGURE 122

The case g, = 0 is considered in §29.4. In this case, the unigueness
theorem does not apply, i.e., there exist modified systems as close as
we desire to (D) with at least two closed paths in any arbitrarily small
neighborhood of the loop (Theorem 50).

In addition to the above topics, §29 also discusses the conditions when
the disappearance of a loop of necessity leads, or conversely does not lead,
to the creation of a closed path in its neighborhood. Theorems 45 and 49
provide a comprehensive answer to this question for the case 0, % 0.

In Chapter X1 we are dealing with analytical dynamic systems only.
However, all the resulis remain valid for systems of class n (n>» 1), and
the proof is completely analogous to that for analytical systems.

Also note that the closeness of dynamic systems in Chapter XI is
to be understood, as always, in the sense of closeness in some fixed

closed region G.

$28. AUXILIARY MATERIAL
We will present a number of lemmas which later on are actively used
in the proof of the principal proposition of this chapter. Some of these

lemmas are contained in QT, but they are nevertheless reproduced here,
sometimes without proof.

1. Correspondence function and succession function

Let

&Py, =0y (D)

be a dynamic system, !, and [, two arcs without contact of the system which
have no common points, and

z=g ), y=h@), a<u<b
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and _ _ o
x=g,(u), y=hy(u), ae<gugh

are the parametric equations of the arcs I; and l,, respectively. Let
g1, hy, g2, b, be functions of class 2. A point on the arc I (I;) corresponding
to the value u () of the parameter will be designated M (u) (or M (4)).
Suppose that every path L of system (D) which for ¢ = ¢, passes through
the point M (u) of the arc [, (a<u<b)will pass through the point M (u) of the
arc I, for some other i>t,. Moreover, suppose that for ¢, < t<<t the path
L has no common points either with /, or with ;. The parameters ¢ and u
are functions of u. We will designate them as ¥ (¢) and o (u) respectively:

Toq@), E=o@.

The functions y and o are defined for all u, agu<b, and, as is shown in QT,
§3.6, Remark 2 to Lemma 9, they are functions of class 1. The function
© (u)is called the correspondence function between arcs I, and /,.
It is readily seen that o (x) is a monotonic function.
Let, as always,

2= (¢ toy Zo» Yo} y =Y (& to, Zor Yo) (1)

be the solution of (D) which passes through the point (z, y,) for ¢t =t,. Let

(P(t; t01 81 (u)v hi (u))= (D(t’ u)’ 1.[)(!; tOv g!. (u)v hi (u))=l¥(t1 u)' (2)
Then

D(to, u) =gy (1), ¥ (o u)=h (). (3)
On the other hand, in view of the above assumptions,
D(x (@) v) =g (@), Y(x@)u) =r (o).

Since I and I, are arcs without contact, each of the determinants

it w) Wilto W) | Lng a gy PHEE B Y@,

MO W mw sOW  Kew)

retains the same sign for all u, a<u<gb. Without loss of generality, we
may assume that both these determinants are positive. Then o (u)is a
monotonically increasing function (Figure 123).

FIGURE 123
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Also note that
Dy (¢, W) =P (D, ), T, v), Vil u)=QD(, u), ¥, u). (5)

This follows from (2) and from the fact that (1) is a solution of system (D).
Lemma 1. The functions

z=Q (£ o, Tor Yo)r Y =W(t; to, Zg» Yo) (1)
satisfy the partial differential equations

2~ 2Pl Yo+ Qan Y0 =T P @ u) + Qe ). (6)

Proof. From the definition of ¢ and y, if

=@ (& to, T, Yoh Y= (&; o, Tov Yo)»
then )
Lo=@Q (to; &, x, ¥), Yo=Y (to; ¢, , Y). ()
Hence

g

of: =P (20, Yo '%f*:—=0(1‘07 Yo)- (8)

By (1) and (7),

=0 Ly § (o & 2, ¥), P (o; 2. 2. Y
y = Loy ¢ (o5 & 2, 7))y Wi & 20 Y)).

Differentiating the las: identities with respect to ¢ and using (8), we find

LE+ 52 P (m0, 40) + 5 Q (20, %) =0,

ity oxy (9)
s 2P @0 vo) + 5 Q (20, y0) =0
As we know,
G (& Lo, Zo, Yo) =G (¢ —ta 0, Zos Yo Y (25 2oy Tor Yo) = (E—to, Qv 20, Yo).
Therefore
%% . T o
Gt gt ' 6ty ot °
Equations (6) follow from the last relations and from (9). Q.E.D.
Lemma 2. Lel
Je Rl
jl;t."‘, =J = 6""‘0 '3'.’/0 i
{t; to. 29y Yo) - oo | (10)
dxy Yy
where 9=t to, 2o, Yo), Y=V (4 tor Zo, Yo)» Then
¢ +
{ (Pz(@. )49y cc )1 at
J = efo (11

Proof. Let us evaluate %.
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Differentiating the determinant,

0 o9 o9 X 8 o9 P (p, ¢) &9 P (@, ¥)
a.f _ at dzg dyg + dxg Ot dye — dxg [Z27]) xo Yo
oy op [T 2 ey | @y o |7 ew |
a3 3xy Ay, dzg Ot dyg dxy Yo dry dyo
P o oP op 39 e ) + aP oy
d9x Oz dy dxzy Yo axy ¥ Yo 8y Oyg
9Q e 4 0Q op b || b 9Q s . Q & |’
dx  dxy dy dxrg dyo dxrg dx Odyp ay dyg

we obtain after simple manipulations
= [P (9, V) +0Qy (g, WIJ. (12)

We choose fixed t, xo, y,, i.€., the last relation is considered as an ordinary
differential equation. Since

P (tos tor Toy Yo) =Zoy Y (Lo} Zor Zos Yo) = You

we have
g—z)}z=to:1’ [%]fﬂo:O’
[%J::t‘,:O’ [Tay\%_]tﬁo:i
Therefore

—(’;{—‘]'=lo=1' (13)

Integration of equamon (12) with the initial condition (13) gives (11).
Q.E.D.
Let A (¢ u)denote the Jacobian

D@, ¥ | Vit u) @yt u)
DEw Wi, w) Yawl

Lemma 3.

P gy (u), b () Qg1 (u), ky(u) (14)

B )=t = T (6 b g B )| % ()

D )

where J(i;t,, g, ), ky W) is defined by (10).
Proof. By (2) and (8),

P(g: (), Ay (u))+ Q(gx (u)s by (u)) 0=o g @)+ ay - h; (u)

(15)
%P(gi (1, 7 () 220 (g0 (), b (@) )+ B )|

A, u)=

where the values of the derivatives 22 92 —‘93’-, % are taken at the
22 Fyo ' 0z ' Bye

point (¢ ¢, g (), ks (w)). The determinant (15) is equal to the product of the

Pgy, by) Qg k)

. , , which proves thelemma.
g ki P

determinants J (t; ¢, g1 (&), ks (w)) and
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The above lemmas enable us to derive an expression for the derivative
of the correspondence function. This expression will prove to be of con-
siderable importance in what follows, and we will now proceed with its
derivation.

We have already introduced the determinants

‘(D; (ter u)  Wi(tg, u)

Wi W) u) Wiy () u)
2, (1) () )

A () =
3 (u) g5 (o)) hy (0 (w))

and Ap(u)=:

As we have seen, the two determinants can be taken positive without loss
of generality. From (2), (4), and (5) we have

P(gy(u), ke (w) g1 ()

A, (4) = , 16
Y =100 @) By @) B @) (16)
Pg2(o ), by (@ @) g (0 () -

A )= . 1
"0 @ @) k@) K (©w) )

Lemma 4. The derivative of the corvespondence function is
expressible in the form
x{u)
[Px(®, $)+Qy (@, V)] dt

a)'(u):-%let{ ° ¢ (18)

Az (u)
where
Q=@ (4 to. g (u), by W) =D&, u),
=19 lo. §1(u), hy (@)=Y (¢, w).
Proof. By (1),
D(x(u) w) =g (@),  F(x(w), u)=h (o).
Differentiation of these identities with respect to y gives

@ (x (uh, u) x () + DL (% (W), u) = g. (0 ) & (v},
Wi (x uh, w) x (1) - Wi (2 (@), w) = hy (0 (@) 0 ().

The last relations can be considered as a linear system in g (u), o (u).
Its determinant is evidently equal to A,(u), so that we are dealing with a
Cramers system. Its solution is

| @ (X (e} u) Op (X (), u)

Wi, u) W, (X (), u) (19)
Ap (1) :

@' (u) =

The determinant in the last fraction is A(yq(u), u). By (14)
Ay (), u)y =J (% (u); tor g1 (1), by (1)) By ().

Hence, using (11) and (19), we obtain (18). Q.E.D.

Remark. The derivative o (u) evidently does not depend on the choice
of motion (2) along the path L passing through the point (g (u), 2 (u)) (i.e., it
is independent of the initial time ¢,).
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Let us now consider the succession function. Let the succession
function

u=f(a) (20)

be defined in some interval of the arc without contact ! described by the
parametric equations

z=gW), y=h)

(g and k are functions of class 2).
Let M, be the point of [ corresponding to the value u, of the parameter u,
L, the path through M,, and

.Z=(P(t), y=% (@)

the motion along this path in which the point M, corresponds to the time ¢.
Let the succession function f (u) be defined at u, and let

Eo”—‘f(“o)?":uo- (21)

According to the definition of the succession function, this means that
the path L, crosses the arc without contact ! again for some T > ¢, at the
point #, (u,) and that for f, << t < T it has no common points with [ (Figure 124).
Ry (21), M, and M, are two different points and the path L, is therefore not
closed.

-

FIGURE 124

Let x5, yo be the coordinates of M,, and z, ¥, the coordinates of M,.

Evidently,
@ (to) =P (Zo, o), ¥ (Y0) = Q (Zos Ya)s
¢ (D) =P G0 0 ¥ (D)=Q o U0 (22)
Let further
@ (t0) YV (bo) - @ ¥
Ag= , A=
g ) R (o) g (o) K (o) (23)
We write
_|{Plzy) Qo
s =[G 3" (24)
By (22)—(24)
A=A (%5, Yo, ) A=A (T, Yo, Uo). (25)
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Lemma 5. The derivative of the succession function at the point M, (u,)
of the arc without contact ! thrvough which passes the non-closed path L,
is expressible in the form

r ,
N ) VIPLg), $0n+Qpiad), wit)1dt
F' Uy = 20 Y0 B0) g (26)
: A (x5, 89, uo)

Proof. Since by assumption M, and My are two different points? the
succession function # = f (u) in a sufficiently small neighborhood of the point
My maybetreated as acorrespondence functionbetweentwo arcs " and {"withour
common points, which are segments of the arc ! containing the points M, and
,, respectively.

Then, by Lemma 4 (equality (18)),

T
VI, )+ (e, W] dt
Flug= Tu efo

Hence, using (25), we obtain (28). Q.E.D.

Remark 1. The expression for the derivative of the succession func-
tion at a point through which passes a closed path is evidently obtained
from (26) if we take uy=uy Zy==%o, Yo=Yyo. 1N this case A(zy Yo, 4o} = A (%o, Yo, Uo)

VIPH(®, $)+Qy (@, $)1dt
and j’ (u,) = eto is the expression previously derived in Chapter V
(513.3, (30)).

Remark 2. Alongside with the arc without contact ! on which the

succession function (20) is defined, let us consider an arc without con-
tact (*defined by the parametric
equations

T=g*(t). y=h*(v)

(g* and h* are functions of class 2).
Let the path L, which for ¢ = ¢,
crosses the arc { at the point M, (u,)
cross the arc I* for ¢t = & > i, (or
tF << tg) at some point ¥, (v,), soO
that for ¢ lying between ¢, and #
the path Z, has no common points
either with ! or with * (Figure 125).
We moreover assume that 3, and
¥gare interior points of [ and I*,
respectively.
FIGURE 135 It is readily seen that a cor-
respondence function between the
arcs | and I* is defined cn the arc [ near the point u,,

r=0o(u),

and a succession function is defined on the arc * in the neighborhood of
the point vy,

T‘:f’* (L')v
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so that _ _
v=f*)=*(e@)=o(f@)=0). (27)

Differentiation of (27) with respect to vgives

Lo ) =0 @ @) = 2 ), (28)
Equation (28) establishes a relation between the derivatives of the succes-~
sion function on different arcs without contact. This expression will be
used in what follows. Note that if L, is a closed path, then uy, = ug, v, = 7
and by (28)
* (vo) = f' (u)-

This indicates that the value of the derivative of the succession function in
this case is independent of the particular choice of the arc without contact
and is also evidently independent of the particular choice of the parameter
on the arc without contact.

Lemma 6. Letl u = f(u)be the succession function on the arc without
contact | defined for all u, a<u<b, and let for all these values of the
parametey

Fay<t  (f@=1). (29)

Then theve exists at most one closed path crossing the segment of 1 cor-
responding to the above values of u, and if such a closed path does exist,
it will be a stable (correspondingly unstable) structurally stable limit
cycle.

Proof. Suppose that there are two points on the arc I, M (x,) and M, (u,),
through which pass closed paths, where u, and u, belong to the segment [a, &].
Then f (uy) = uy, f (u2) = uq,

f(u) —f (ug) =uy—u,.

From Lagrange's formula, f(u)- (1) = F @) (u; —u,), where 2 is a value
of the parameter from the interval (uy, u,) and hence from the segment [a, b].
But then §' () (s — uz) = uy — U, i.e., f ) = 1, at variance with (29). The
first proposition of the lemma is thus proved. The fact that a closed path
for whichf (u) <1 (f (u) > 1)is a stable (unstable) structurally stable limit
cycle was established in Chapter V (§12.4, and also $14, Theorem 18).
This completes the proof of the lemma.

We will give without proof two further lemmas which deal with (D) and
other close systems.

Let I, and I, be two arcs without contact of system (D) without common
points, and let a correspondence function u = © (u) between the arcs /; and I,
be defined on the arc [, for all values of the parameter u,a<<u<b, so that
the values @ = @ (@) and b=w (b) of the correspondence function represent
interior points of the arc I,.

Lemma 7. For any & > 0 theve exists 6 = 0 such that for every (D)
§-close to (D), I and I, are arcs without contact and theve exists a cor-
respondence function between these avcs

u=0 @),
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which is defined on the segment la, bl and is e-close to the funclion o (u)on

this segment.*

A similar proposition applies to the succession function. Indeed, let a
succession function u = f (1) be defined for system (D) on the arc { for all
values of the parameter u on this arc, e<u<®b, such that the values a = f (a)
and b = f(b) represent iiterior points of I.

ITemma 8. For any e > 0 there exists 86 > 0 such that for every system
(D) 6-close to(D)}, ! is anarc without contactand on this arc exists the succes-

Sion function - -
u=f(u),
which is defined on the segment la, bl and is e-close to the function f(u)on
this segment.

Lemma 7 follows almost directly from Lemma 2, $4.1, and from
Theorem 4, §1.1, if we remember that the correspondence function o (u),
together with some function ¥ (u), satisfy the equations

D@, a) =g @), T, =h®u)

which are analogous to equations (4). Lemma 8 may be considered as a
particular case of Lemma 7.

2. Some properties of & saddle point and
its separatrices

Simple equilibrium states classified as saddle points are considered in
detail in QT, Chapter IV, §7.3, and also in Chapter IV of the present book
{8§9). We will now give those properties of saddle points and separatrices
which will be needed in what follows. ‘

Let O (x4, yo) be a saddle point of the dynamic system (D}, which is an
interior point of G. _

Lemma 9. (@) There exist g, > 0 and 8, > 0 such that any system (D)
8,-close in G o (D) has a single equilibrium state 0 inU,. (0), which is
moreover a saddle poini.

(b) For every e, 0 << ¢ < &,, there exists 6, 0 < 6 < 8,, such that if (D)
is 8-close to (D), it has a saddle point O lying in U, (0).

Proof. The validity of Lemma 9 follows directly from the definition
of a simple equilibrium state (see $§7.3, Definition 15, and also 2.1,
Nefinition 5) and from the fact that A< 0 for a saddle point.

Remark. Consider a dynamic system whose right-hand sides are
functions of the parameter p, i.e., a system

dx

d ~
SE=P@y ), F=0auy ), (Dy)
where (15“0) is identified with the original system (D).
Then there exist g,> 0 and a > 0 such that ifjp—p,|<ec, (ﬁ“) has in U,, (0)

a single equilibrium state, which is a saddle point, and its coordinates
zo (p) and y, (p) are continuous functions of p; in particular

lim z, (1) = %o, Lim go (1) = yo.

prto Bospto

¢ We recall that closeness isto ke understood 4lways as closeness at least to rank 1. See §3.1,
Definition €, and §1.1, Definition 1.
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The validity of the last relations, i.e., the continuity of the functions
zo (p)and y, (u) at the point p,, follows directly from Lemma 8. Continuity
for all the other values ofpu, close top,, follows from the fact that each
of these p may be identified with p,.

The next proposition is contained in the
remark to Lemma 3, §9.2, and it is given here
without proof. Let O be a saddle point of (D),
L*its o-separatrix, { an arc without contact
crossing the separatrix L* at a single point M,,
which does not coincide with either end point
of the arc I, without crossing the second
o-separatrix of the saddle point (Figure 1286).
Let, furthermore, z = g (), y = h (u) be the
parametric equations of the arc /, the point
M, corresponding to the value u,of the parameter u.

By Lemma 9, any modified system (D) sufficiently close to (D) has a
single saddle point J sufficiently close to O in some fixed neighborhood
Ug, (0).

Lemma 10. For any ¢ >0, there exists § > 0 such that if (D) is 6-close
to (D), then:

(@) One of the o-sepavatrices of the saddle point O (which we denote I+)
crosses the arc ! at a single point M,, corresponding to the value u, of the
parameter, such that M,c U, (M,), and the second «-separatvix of the saddle
point O does not crvoss the arc |.

(0) If motion is defined on the separatrices L* and L* so that the points
Mo and M, corvespond to the same time ¢t = t,, then for any ¢ > t,, the point
5 () of the separatrix L+ corresponding to the time t lies in an s-neighbor-
hood of the point M (t) of the separatrix L* corresponding to the same time.

A similar proposition is true for the a-separatrices of the saddle point O.

Remark. As inthe remark to Lemma 8, let (Dy) be a system whose
right-hand sides are continuous functions of p and which coincides with
the original system (D) for p=p,. Then by Lemma 10, there exists a>0
such that if | p — po | < @, (D,) has a single saddle point O (p)in U, (0) cne
of whose w-separatrices Zj crosses the arc I at a single point M, (x), and
the other separatrix has no common point with [. Moreover, the value
%o(n) of the parameter u corresponding to the point M, (p) is a continuous
function of p. A similar proposition applies to the case when the right-
hand sides of the system are continuous functions of several parameters.

Still another useful proposition can be derived from an analysis of
the behavior of paths in the neighborhood of a saddle point (QT, §7.3).
This proposition is formulated in the form of a lemma, without proof.

Consider a circle € centered at the saddle point 0; there are
no equilibrium states of system (D), except O, either inside the area
enclosed by the circle or on the circle. Let Lf and L; be o- and a-
separatrices of the saddle point 0. Suppose that each of these separa-
trices has points lying outside €, and let M; and M, be the last common
points of these separatrices with C (so that the segments OM; and OM,
of the semipaths L} and Z; contain no points of ¢; Figure 127). The
segments OM,; and OM, of the separatrices L} and L; divide the circular
area enclosed by the circle ¢ into two (curvilinear) sectors, one of

FIGURE 126
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which contains the other two separa-
trices of the gaddle point 0. Let the
other sector be designated K. Let 4
and B be two points on the segments
OM, and OM, of the separatrices Lf
and L; which do not coincide with M,
and M, and A, A, arcs without contact
passing through 4 and B which have
no common points.

Lemma 11. There exist seg-
ments A4, and BB, of the arcs without
contact i, and i, which are entirely
contained (with the exception of the
FIGURE 127 end points A and B) inthe sector K and

have the following property: every
path L of (D) which for : = t, passes through a point M of the arc A4, other
than A, will cvoss for t,=>t the arc i, at some point N other than B;
moreover,

(a) all the points of the path corresponding lot, h<<t<t,, lie inside
the sectov K;

(b) a path passing through the point A,of the arc A4,crosses the arc
BB, al the point B,;

(c) the point N goes to B when M goes to 4;

(d) for any T >0, there exists a point M*of the arc A4, such that for any
path which for t = , crosses the segment M*A of the arc A4, we have the
inequality t» — t, > T.

Retaining the notation of the previous lemma, let us consider a modified
system (D),

From the theorems of the continuous dependence of the solution on the
initial conditions and on the right-hand side and from the previous lemmas,
it follows that there exist g,> 0 and §,>0 with the following properties: if
(D) is §,-close to (D), -hen

1} U, (0) contains one and only one equilibrium state, the saddle point o:

2) A and A, are arcs without contact of (D);

3} there exist separatrices I} and Z; of the saddle point O of (D) which
cross the arcs A, and A, at the points A and B, respectively, the point 4
lying on A, in the same direction from A, as the point A, and the point &
lying on A, in the same direction from B, as the point B;

1) the path of (D) passing through 4, crosses the arc A, at some point B,
which lies on 4, in the same direction from B as the point B,.

The following two lemmas are now self-evident.

Lemma 12, For any e>0 (e<<e) there exists 3>0 (8 << d,) such that
if (D) is 8-close to (D), then

(@) Ael.(4), Be ~U:(B). BeU,(By;

(b) the path of (D) which for t=1, passes through some point M of the
arc A4, will cross the arc i, at the point N forzﬁz2> tys

(c) the point N goes to B when M goes to A4,

Lemma 13. For a fixed T>0, let M* be a point of the arc i, satisfying
condition (d) of Lemma 11. Then there exists 8=0 such that if (D) is
§-close to (D), the point 4 lies on the arc A, in the same divection from
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M*as the point A, and for every path of (D) cvossing the segment M*4 of
the arc A, we have the inequality i,—t,>T.
In what follows, we will often require the parameter

6 (%o, Yo) = Pi (xor Yo) + @y (X0, Yo), (30)

where =z, y, are the coordinates of the saddle point 0 of (D). We will show
that it is invariant under a transformation of coordinates.
We perform in @ a transformation of coordinates defined by the equalities

E=Ff ) n=g(xy) (31)
or the equivalent equalities
c=@@& ), y=9G ), (32)
where f, g, ¢, and ¥ are functions of class 2.
In the new coordinates, (D) takes the form
S=PEn), Moo,
PrE m) =@ ©) P (@, 9V + i (@ $) C (0, ¥),
Q" n) =gx (P V) P (9, V) + g5 (72 V) Q9 ¥).
The new coordinates of the saddle point 0 in this case are
So=1 (%o ¥a)y  Me=2¢ (T0s Yo)-

Lemma 14. oz, yo) = Pi (%o, Yo) +Q; (%o, yo) 1S invaviant under a transfor-
maltion of coovdinates, i.e.,

0* (£, M0) =P’ (Eor Mo) + @ (Zo» Mo) = T (o, Yo)- (34)

Proof. Differentiating the first equality in (33) with respect to £and
the second with respect to v, adding them and inserting for ¢ ard ntheir values
& and n,, respectively, we obtain, using the relation P (zo, yo) =@ (%o, ¥o) = O,

o* (8o, Mo) = {/x (@, ¥) [P (@, V) @t -+ P (@, ¥) Wi] +
4 £u (@ $Y Q% (P, ) Pt + Qp (P $) Pil + 2% (@, ) [Pi (@, V) @n+ £} (@, V) Y]+
+ 25 (@, ) [Qx (@, V) Pn +Qy (@, ¥) \Pﬁl}éz;lo—

Equality (34) follows directly from the last relation in virtue of the identities
=9y g@Y), y=v{E). g )

which give, when differentiated with respect to z and g,

op . 09 ., ap ., °p o _
St ety 8=1, Efv+—a%‘gy=0y

[ ap v ., oY .
Tl e=0 Fhitgya=1
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§2¢, CREATION OF LIMIT CYCLES FROM THE
SEPARATRIX LOOP OF A SIMPLE SADDLE POINT

1. Some properties of the separatrix loop

Let

%:P(z. ¥), %yT=Q(I~ ¥) (D)

be a dynamic system, O (zg, ¥o) a simple equilibrium state of this system,

which is a saddle point. Suppose that one of the a-separatrices L,of the

saddle point @ is also an o-separatrix, i.e., it forms a whole path which

goes to Q both for ¢t~ -— e and for t— + co. In this case we say that the
separatrix L, forms a loop.* Let (,denote
the simple closed curve comprising the path L,
and the point 0. The curve (C,will be called a
loop of the separatrix L,or simply a
loop.

Besides the path L,, the saddle point O also
has two other separatrices L and L (either dif-
ferent or coincident) which both lie either inside
the curve C4 or outside this curve. We will
henceforth assume, without loss of generality,

FIGURE 128 that the separatrices L] and L; lies outside the
curve (o (Figure 128). The case when they
lie ingside the curve (; is entirely analogous.

Lemma 1. A separatrix forming a loop may have at most one common
point with an arc without contact.

Proof. Suppose a separatrix L, forming a loop has two common
points A and 8 with some arc without contact ! (Figure 129). Then the
saddle point O should evidently lie both inside the closed curve formed
by the segments AB of “he path L, and the arc without contact I and outside
this curve, which is clearly impossible. This proves the lemma.

Let z = g4 (), ¥y = ¢, (¢) be a solution corresponding to the separatrix
Ly Myand M, the points of the separatrix corresponding to the times ¢,
and ¢, We may take t, << ;. Arcs without contact [, and {;, without
common points, are drawn through the points M, and M, (Figure 130).

FIGURE 129 FIGLRE 130

* By Theorem 28 (§18.2), a separatrix forming a loop may exist only in a structurally unstable system,
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Let M B, be a segment of the arc {, which is entirely enclosed by the curve
C,, with the exception of its end point M,; let M A4, be a segment of the arc
ly which lies entirely outside the curve C,, with the exception of the point M,.
Furthermore, let MB, and M;A, be the analogous segments of the arc |
(Figure 130). v

Lemma 2. For anye> 0, therve exists 8 > 0 with the following pro-
perty: every path L which for t = t, passes through a point M, of the arc
M B, which lies in Us (M,) and does not coincide with M will again cvoss
the segment M,B, of the avrc 1, at some point M for T > t,, without leaving
the e-neighborhood of the loop C, during the time t,<t<T ( M may differ
Sfrom M, as in Figure 130, or coincide with M).

The proof of L.emma 2 follows directly from Lemma 11 of the previous
section, if we take into consideration the properties of paths crogsing two
arcs without contact (QT, §3.4, Lemma 5).

Remark. LetA>0 be some number. The number § introduced in
Lemma 2 can be made sufficiently small, so that for some ¢, tp < t;<<T,
|t — t; |<< A, the path L will cross the segment M,B,0f the arc .

In the next lemma, we consider paths which cross the segment MyA4, of
the arc l, lying outside the loop C,.

Lemma 3. There exist ¢, >0 and 8, > Owith the following property:
if the path L passes through the point M of the arvc M,A, which lies in
Us, (M) and does not coincide with M,, the path L will leave the c,-neighbor-
hood of the path C, both with increasing and with decreasing ¢,

Proof. Consider the w- and a-separatrices L} and L7 of the saddle
point O which lie outside the curve C,. Let N,and ¥,be two points on these
separatrices, and A, and A, arcs without contact passing through these
respective points (Figure 130). By Lemma 11 of the previous section,
there exists 8, >0 with the following property: if the path L passes through
the point M of the arc M 4, which lies in U (M,) and does not coincide with
M, this path will cross the arc A, with increasing ¢ and the arc M with
decreasing t. As g,>0 we choose a number such that the neighborhood
Ug, (Cp) does not intersect with the arcs without contact A, and A,. The
numbers 8§, and g, evidently satisfy the proposition of the lemma.

Let us now return to the case of the arc M B,lying inside the curve
Co. By Lemma 2, every path which for ¢ = ¢, crosses this arc at a point M
sufficiently close to M,, will again cross this arc at a point M (''successor"
of M) for T>1,; when M goes to M,, M also goes to M,. Since the arcs
MoB, and M;B, may be identified with the arcs BB, and 44,, respectively,
of Lemma 11 of the previous section, thig lemma together with Lemma 2
directly lead to the following useful proposition.

Lemma 4. When the point M on the arc M,B, (Figure 130) goes to the
point M, on a separatrix, the time T corvesponding to the point M goes
10+ .

We will say that the path L goes to the loop C, for ¢-» 4 oo (f -+ — oco) if
its w-limit (correspondingly, a-1limit) set coincides with the loop C,.

The proof of the following lemma, which uses Lemma 2, is self-
evident and is thus omitted.

Lemma 5. If among the palhs crossing the arc MB, at points suf-
ficiently close to M, there are no closed paths, then either all these paths
go to a loop for t— + oo 0 they all go to a loop for t > — .
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Definition 29. A loop C, is said to be stable (unstable) if all the
paths crossing the arc M.B, at points sufficiently close to M, (and yet
different from M, go to the loop C, for t— + o (correspondingly, for
t— — o).

Rv Lemma 2, a succession function is defined on some segment M,B
of the arc MB, (the point M, excepted).

Let

z=go(u), Y=ho() (1)

be the parametric equazions of the arc {,. As in the previous section, we
assume that g, and h, are functions of class 2.*

Suppose that the points Mg, d,, By, B correspond to the values u,, aq, by, b
of the parameter, where a, << uy<<b << bq.

Let

% = f (u) (2)

be the succession function on the arc M,B. In virtue of the above assump-
tion, f(u) is defined for all u, u, < u<b(we should stress that we are dealing
with a succession function in the direction of increasing ¢ i.e.,
each "succeeding' point corresponds to a later time than the time of the
"preceding' point).

In what follows, we will also consider the function

d@) = fW—u. (3)
By Lemma 2,
lim d (u) = 0. (4
u-»ug
If a closed path L* passes through the point M* (u*)of the arc M8, we
have d(u*)= 0.
If there exists uy, uy << u;<b, such that for all u, ug<< u<uy, d )0, i.e.,
if there are no closed paths crossing the arc M B, at the points u, u, << u<u,,
then

the loop is stable ifd(u)<0, (5)
the loop is unstable ifd@)>0
(for up<<u<uy).

In what follows we will consider the limit of the derivative of the
succession function § (u) for u — u,.

Let

T=9u(t), Y=1x() (6)

be the solution corresponding to the path Z passing through the point M (u)

of the arc M,B. As before, we assume that the solution (6} passes through

the point M for t = ¢, and through the successor M (u)of Mfor t=T>t.
The coordinates of tae points M,, M, M and the saddle point O are

(Eo» Mo)s (8, M), (E, m), and (=, yo), respectively. Let, as before,

Go =0 {(Zo» Yo) = Px (Zo, Yo) + Qi (o) Yo)- (7)

¢ if, in particular, ly1s a segment of the normal to the path L, at the point M,, the functions g, and ke can
be taken in the form

go(r=olto)— Yo lto)us  hotu)=1e(to) 4 @5 (te) u.
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Lemma 6. Let the point M on the arc M,B go to the point M,, i.e.,
u—uy. Then

7' (@)— +oo for o (zo, Yo} = Pi (%o, ¥o) + Qy (o, yo) =0, (8)
J' (@) —0 for o (zy, yo) < 0. (9)

Proof. First note that lim f' (u)is independent of the particular choice
u—ruy

of the arc without contact ,. This follows directly from equation (28) of

the previous section. In virtue of this equation, if I¥ is an arc without con-
tact analogous to I, v and f* (v) are the parameter and the succession function
on this arc, so that the separatrix L,crosses I* at the point v,, and if o (u)

is the correspondence function between arcs without contact I and I*, we have

@) =28 g ),

If u—>u,, thenv— vy, u—u,, and since @ (ug)5= 0 in virtue of §28.1, (18),
we have

lim f* (v) = lim f (u).

v-+2p

First consider the case when
Gg = 0 (Zo, Yo) = 0.

Let C be a circle centered at O with a sufficiently small radius so that
at any point (z, y) inside C we have

o (z, ) =P (, 1) +0Q; (z, y) > F-. (10)

The points M, and M and the arcs {; and [, are chosen so that these arcs
as well as the segments of the separatrix L, corresponding to t< ¢ and
t>t lie inside the circle € (Figure 131).

FIGURE 131

By Lemma 5 of the previous section, we have

T

(P pr(t), ¥ pe(D)) d2
= A 4O

AE M, u)
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where
_[PEw QG W
A(gv n u)*,g;(u) h‘; (u) Iv
N AE 2= PEW QE |
g hy(w)

When u—>u,, both determinants A, n, )and AE, 7, u) go to the same non-
zero limit A (&, no, %), so that

. AR . w)
lim == 22 =4,
ul-mo A u) ! (12)

We should therefore find only the limit

T
lim 3 O (@ar (2), Ear (2)) de.
M-—+Mp I
Clearly,
t

0 (@ (D), $ar () dt = § o (P, $u) d +

v

te t

O (¢ur Yur) dE, (13)

I ]

vy

where ¢, is the value of ¢t corresponding to the intersection point M; of the
path L with the arc without contact {4 (Figure 131 ; we recall that the path
L passes through the point M for t=¢,).
f 4
When M— M,, we have \ 6 (@, ¥3r) dt—>3 o (@o (¢), Yo (8))dt, where =g, (1),
o ty
y=1y(t)is the solution corresponding to the separatrix L, which passes
through the point M, for¢=t,, The first integral on the right in (13) thus
goes to a finite limit.
Let us consider the second integral, i.e.,

v

o (P (1), ¥ (1)) d2.

>

3

oL

If the point M is sufficiently close to M,, then M; is arbitrarily close
to M, and the segment MW of the path L is entirely enclosed inside the
circle C (see §28.2, Lemma 11). But then, in virtue of inequality (10),

the integrand in the last integral is greater than 32"— for any t¢(¢, 7], i.e.,

0 (@ae (£, ar () dE > (T — ;).

PrdC R Lo |

For M—M,, >t and T— + o (by Lemma 4). The last integral,
T
and hence S‘ o (Py, Yu)dt, go to + = for M—M,. This result and equalities

to

(11) and (12) show that lim f' (u) = + . We have thus proved (8). It can be

u-kg
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similarly shown that if ¢,<0, then

T
lim So((pM(t), Yar () dt=— o0, T. €. f (u)—>0.
MMy

{0

This completes the proof of the lemma.

Remark. We have assumed so far that the separatrices L} and L;of
the saddle point O which do not coincide with L, lie outside the loop C, and
that the segment M,B of the arc without contact I, on which the succession
function f (u) is defined corresponds to u>u,. If the separatrices Lf and
L3;lie inside the loop C,, the loop may only be an a- or e-limit continuum
for the paths of the system from outside, whereas in all other respects
the situation does not change. In particular, all the previous lemmas of
this section remain valid. The assumption that the separatrices L} and Lj
lie outside the loop is thus of no consequence and has been introduced for
convenience only.

Let us now see what happens if the direction along the arc [, is reversed
(e.g., by defining a new parameter u* = — u). First note that the succession
function f (u)on the arc [,(or, more precisely, on the segment of the arc
adjoining the point M,, where it is defined) is a monotonically increasing
function and its derivative f (u)is positive regardless of the particular
direction on the arc [, which is chosen as the positive direction. This
follows immediately from geometrical considerations (or, alternatively,
from Lemma 5 of the previous section and the remark to this lemma).

Our Lemma 6 thus remains in force for any choice of the parameter on
the arc without contact [,.

Conversely, conditions (5) derived in the preceding are true only when
the succession function f (u) is defined for u>>u,. If, on the other hand,
it is defined for u smaller than uy{e.g., for uy > u>u,) and there are no
closed paths crossing the arc [; at points u, uy << u<u;, we clearly see that

the loop is stable ford@)>0, (14)
the loop is unstable fordu)<0
(for up >u>u,).

We are now in a position to derive a sufficient condition of stability
(instability) of a separatrix loop.

Theorem 44. LetO (z,, y,) be a saddle point of the dynamic system

S =P@y. F=Q@=), (D)

and L, its separatrvix which together with the saddle point O forms the
loop C,. Then, if o, = P; (zo, Yo) + Qy (o, ¥o) > 0, the loop is unstabdble, and if
o, << 0, the loop is stable.
Proof. Let us first consider the case when the succession function is
defined for u close to uy, but greater than u,. Letog,>0. In virtue of (4),
lim d (u) =0.

U UQY
On the other hand, in virtue of Lemma 6, if ¢,> 0, we have

lim ' (@)= + co.
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Theretore, there exists u, such that for all u, uy<<u <<u,,
Fu>1 and d@=fw—1>0. (15)

It follanws from (4) and (13) that for all u, up<<u<<u;. d@)>0, i.e., the loop
is unstable in virtue of (5).
Let now g,<0. Then, by Lemma 6
{im /' (u)=0,

PR

i.e., there exists u, such that for all u, ue<<u <<uy,
fw<<1and d' (u) <0. (16)

Ry (4) and (18) we see that for all u, ug<<u <<u;, d(u)<0, i.e., the loop
is stable in virtue of (5).

If the succession funztion is defined for u < u,, the proof proceeds along
the same lines. In this case, relations (4) and (15) show that for uwe>u > u,,
d (u)< 0, and then by (14) the loop is unsiable. By (4) and (18) we see that
dw)>0, i.e,, the loop is stable by (11). This completes the proof of the
theorem.

Remark 1. It follows from Theorem 44 that if the four separatrices
of the saddle point @ form two loops (which lie one outside the other or
one inside the other, Figures 132 and 133}, then for a,>0 both loops are
unstable, and for ¢,< 0 both loops are stable.

FIGURE 132 FIGURE 133

Remark 2. Theorem 44 is concerned with the case g, = Px (x5 ¥y +
4+ Qy (x5, yo) = 0. We will now show that if ¢o= 0, there may be cases when
an arbitrarily small neighborhood of the loop contains closed paths, as
well as cases when the loop is stable or unstable.
Example 11. Consider the system
d
Eey=P(zy) L=12:-3=Q (), (Dy)
which is investigated in QT, §1.14, Example VIII. It can be checked that
this system has a general integral

6224 y2=C. (17)
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The shape of the curves (17) is readily established from their explicit
equation

y=+ V22— +C

considered together with the auxiliary curves
z-=6z2—a34C,

which can be constructed without difficulty. Curves (17) are shown in
Figure 134. C = 0 corresponds to the curve with a loop. For C>0,
curve (17) comprises a single branch
v located outside the loop. For 0>C>-32,

the curve consists of two branches.
One of these branches lies to the left
of the y axis, and the other branch is
an oval enclosed inside the loop. For

= —32, the curve comprises a branch
lying in the left half-plane and the
point 0,(4,0). Finally for €< -32,
the curve has a single branch in the
left half-plane. Each of the curves
(17) is either a path of system (D;)
(for €>0 and C < -32), or consists
of two (for 0> C>»-32) or four (for
C = 0) paths. System (D;) has two
equilibrium states: 0(0,0) and
0,(4,0). The first of these equi-
FIGURE 134 librium states is a saddle point, with

two of its separatrices forming the

loop L,, and the second is a center.

Here 04 (0,0) = Py (0,0) + Qi, (0,0)= 0, i.e., we are dealing with the
case g, = 0, and any neighborhood of the loop contains closed paths.

Together with system (D,), let us now consider the system

4.
S5 =2y —p (z%—6a® + ) (122 — 32%) = P, (z, y),

& 20— 3224 p (BB — 622+ 1) 2 = O, (=, ¥),

where p is a small (in absolute magnitude) number.
Clearly,
Py=P,—ufQ;, Q2=0Q,+pfP,, (18)

where
f=F(x, y) =2 — 6222 (19)

1t is directly verified that the four paths of the system (D,;) making the
curve

22 —62t - y2=0 (20)

are also paths of system (D). Moreover, (Dj) has the same equilibrium
states as (D;), i.e., the points 0 (0, 0) and 0,(4,0), and the point O is a
saddle point of (D), whereas O, for small p 0 is a structurally stable
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focus, which is stable for p >0 and unstable for pu<0. Thus L, is a separatrix
of {D,) forming a loop. The vector field of (D) is obtained by rotating the
vector field of (Dy) through an angle tan™? pf (z. y)(this is found by direct
computation; see also QT, $1.14, remark preceding Example VII). But
then all closed paths of (D,) are cycles without contact for (D,). Hence it
clearly follows that inside the loop L, (D;) has no closed paths, i.e., all
the paths of (Dy) lying inside the separatrix loop either wind onto the loop
for t -+ — o0 and onto the focus O, for ¢+ + «, or, conversely, wind onto
the focus O, for t-—»-— oo and onto the separatrix loop for ¢t — + 0. Since
for p > 0 (n << 0), the focus O, is stable (unstable), the separatrix loop L,
is
stable for p<o0,
unstable for p>0Q.

Now g, = Pi. (0, 0) + Q% (0, ) vanishes for any p. Our example thus proves
that for ¢, = 0, any of the three alternatives mentioned in Example 2 may
be observed.

2. Theorems of the creation of a closed path from
a separatrix loop

Assuming, as before, that system (D) has a saddle point 0 whose
separatrix L, forms a loop, we will consider, alongside with (D), a modified

svstem

Z—f=ﬁ(1‘, .1/), ﬂ=§(x» y)- (f))

dt

Retaining the same notation as in the previous subgsection, we write M,
and U, for points of the geparatrix L,corresponding to t = t, and ¢ = ¢, t, < 44,
l;and [, for the arcs without contact passing through these points, and u for
the parameter on the arc [, (Figure 130). Let L} be the positive half of the
path L, containing the point M, (and hence also the point M,; L; is an e-
separatrix of 0, and its points correspond to¢» ¢!, where # < #), and L;
the negative half of the path L, containing M, and M, (the points of L7 cor-
respond tot < t*, where #f > t,).

Ry Lemmas 9 and 10, §28, there exist g, >0 and §,>0 such that if the
modified system (D) is 5,-close to (D), then

(a) U, (0)contains a single equilibrium state of (D), the saddle point J;

(b) there exist an w-separatrix Z} and an a-separatrix L,” of the saddle
point 0 crossing the arc l, at the points #, and M, respectively, which lie
inside the arc /,;

(c) the w- and the a-separatrices L} and [ cross the arc , at points JI,
and M, respectively, which lie inside the arc [, (Figure 135).

Moreover, by Lemmas 9 and 10, §28, for any positive ¢ << e,, there exists
8 < 8, such that for every system (D) which is §-close to (D), the saddle
point 0 is contained in U, (0), and each point of the semipath L; (L) lies in
the e-neighborhood of the point of the semipath L] (L;) corresponding to the
same time. The points M, and ¥ lie in U, (M,), and the points 3, and ¥ in
U, (M)
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FIGURE 135

Let %, and u, be the values of the parameter ucorresponding to the points
My and M, (@<, < b, a<<u,< b). The following cases are possible for
different modified systems:

1) M, and M are two different points, i.e., &) 5= L.

2) M, and M, are the same point, i.e., u = u,.

In case 1, Lemma 1 shows that (D) has no separatrices which form a
loop whose semipaths are I} and L;. We will say in this case that on
moving from (D) to (D), the loop is broken. There evidently always
exist modified systems as close as desired to (D) and such that the loop
is broken when moving to these systems. An appropriate example is the
system

d dy
F=P—mQ, FF=Q+pP, (D#)

where p =0 is a sufficiently small (in absolute magnitude) number. By
the lemma of §11.1, if p>0, we have u; > uy, &, << 4, for system (D%}, con-
sidered as (D), i.e.,
Uy << Ugy
and if p< 0, then u,<<u,, @e>1u,, i.€.,
o>, (21)

In case 2, when the points M, and M, coincide, (D) has a separatrix I,
which forms a loop, I} and L;- are its semipaths, and inthis case the semi-
path Z;- may be simply designated ZI.

Let, as before, the succession function be defined for (D) everywhere
along the arc M B, with the exception of the point M,.

Lemma 7. There exists 8, > 0 such that if (D) is 8,-close to (D),
iy is an avc without contact for (D), and every path of (D) which for ¢ = ¢,
crosses the segment M,B of the avc I, will cross for some T > t, the
segment M.B, of this arc.

The proof of this lemma follows almost immediately from Lemmas 7 and
9— 12, §28, and it is therefore omitted, Note, however, that the cases
Uy >y, u, = uy, and u, << u, should be treated separately (Figures 135, 138,
and 137, respectively). The proof proceeds along the same lines in all
the three cases.
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FIGURE 136 FIGURE 137

Lemma 8. There exist ¢y > 0 and &, > 0 which satisfy the following
conditions: if (D)isé,close to(D), and u, < u, (u, > 4,), @ll the paths of (D)
crossing the segment MM, of the arc 1, will leave the ¢,-neighborhood of
the loop L, as t increases (decreases).

Proof. The validity of Lemma 8 follows directly from the properties
of the paths of system (D) which cross the segment #,%; of the arc without
contact [y(see Figures 135 and 137), if we use Lemma 3 of this section and
also Lemmas 9 and 10 of §28.2.

We can now prove one of the fundamental theorems, the so-called
theorem of creation of a closed path from a separatrix
loop. It establishes sufficient conditions for the appearance of a closed
path when a separatrix loop disappears (breaks).

Let 0 be a saddle point of a dynamic system (D), L, its separatrix which
forms a loop. Here, Iy, L;, L}, wo. s, Ag. Bo. @o. by, b, etc., have the same
meaning as before; moreover, a, < by and the point B, lies inside the
loop (Figure 135 or 137).

Theorem 45. Let the loop formed by the separatrix L, of the saddle
point O be stable (unstable). Then, for any = > 0, there exists & > 0 such
that if (D) is 8-close to (D) and if u, < u(u, > u.), then in the e-neighbor-
hood of the loop there exists at least one closed path L* of (D) which crosses
the arc without contact 1, at the point M* (u*), where

Uy<<ut<<b  (m,<<u*<<b).

A similar proposition applies if the separatrices of the saddle point 0
other than L, lie inside the loop.

Proof. Consider the case of a stable separatrix loop. Lete>0 be
given. On the segment M,B of the arc l, we select a point .V, (m) sufficiently
close to M,, so that the following conditions are satisfied:

(a) the path Ly of (D) passing through N, goes to the loop fort— + oo}

(b) the segment of the path Ly between the point ¥, and the ""'succeeding"
intersection point N, (u,) of the path Ly with the arc l,, together with the
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Z segment N N,of the arcl,, form a
simple closed curve Cx which is
entirely contained in Ug3 (Ly). The
region limited by the loop of the
separatrix L, and the curve Cn
enclosed inside this loop is also
contained in U, (Figure 138).

Since the separatrix loop is
stable, it is clear that if point N,
is sufficiently close to M,, both
conditions are satisfied. It is
also clear that n, << n,.

I.et us now take §,> 0 so small
that the following conditions are
satisfied: ‘

(a) 6, < 8,, where 6§,is the

FIGURE 138 number defined by Lemma 7;

(b) if (D) is §,-close to (D),

the path Iy of (D) which passes through the point ¥, crosses again the

arc l, at the point N; (7)), so thatn, < n;, and the simple closed curve

Cy, analogous to the curve Cy, is entirely enclosed inside the loop of

the separatrix Z,, delimiting together with the loop a region which is

entirely contained in U, (L).

It is clear that if §, is sufficiently small, both conditions are satis-
fied. In particular, condition (b) is satisfied since for sufficiently small
8, the curve Cy may be obtained from the curve Cy by an arbitrarily small
translation. Let us further choose §,> 0 which satisfied the following
condition: if (D) is 8,-close to (D), the simple closed curve ¢ which con-
sists of the segment OM,of the separatrix L¥, the segment OM;of the
separatrix L , and the segment ﬁoM~; of the arc l;, is entirely contained
in Ugss (Lg) and encloses the curve Cy; the region delimited by the curves
C and Cy is also contained in U, (Lo).

The existence of such 8, follows from Lemmas 9 and 10 of §28.2, and
also from the fact that, for sufficiently small §,, the curve C may be
obtained from the loop of the separatrix L, by an arbitrarily small
translation.

We will now show that the number 6§ = min {8,, 8.} satisfies the proposi-
tion of the lemma. Let (D) be 6-close to (D) and let zo<« u,. Let, further,
Ky (k) be a point on the segment M B of the arc {, sufficiently close to the
point M,. Then the path [, through this point crossgs again the arc I, at
a point K, (k»), such that the following conditions are satisfied:

(a) Ez > ky;

(b) the closed curve C, consisting of the segment KK, of the path I,and
the segment KK, of the path [, encloses the curve C, and together with Cu
delimits a region which is entirely contained in U, (L,).

Let 7(u) be the succession function on the arc without contact [, cor-
responding to (D). By Lemma 7, this function is defined on the segment
K,N,. Also

Tk =ly >k
and

7("1) =1y < ny.
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Hence it follows that there exists a number u*, k) <u*<n;, such that

Futy=ur. (22)

The point M* corresgonding to this value of the parameter lies between
Kyand .v,, and the path [*of system (D) passing through this point is closed
{in virtue of (22)). DMor=zover, L* lies inside the region delimited by the
simple closed curves Cy and g, and it is therefore contained in U', (L,).
The theorem is thus proved for the case of a loop which is stable from
inside. An analogous proof can be given for the other cases.

We have seen before that if the separatrix L, of the saddle point O of
the system

d d

=Py F=0xv (D)
forms a loop, the numbers u, and u; exist for the system

dr dy B

'd—[—P—IJQy W———Q-FPP, (D)
where p is sufficiently small in absolute magnitude, and

o<<u,, if p>0,
dy>u,, if p<0

(see (20) and (21)). This together with Theorem 44 lead to the following
theorem on the creation of a closed path from a separatrix loop:

Theorem 46. If the separatrix L, of system (D) forms a stable or an
unstable loop, then for any e >0 and 8§ > 0 theve exisls a modified system
(D) 8 ~close to (D) which has at least one closed path L*in the =-neighbor-
hood of the loop L,.

Remark. Itis readily seen that if § >0 is sufficiently small, the closed
path L}, whose existence is postulated by the theorem, crosses the arc,
at a point M* which lies in U, (M,). The point M* moreover lies on the
segment M,B of the arc I, if 4, <24, and on the segment ;B if u, < 4, (the
point M* may not lie between the points A,and ¥, if these are two dif-
ferent points, in virtue of Lemma 8).

We will say that the ciosed path L? of system (D) introduced in Theorem 16
is created from the loop formed by the separatrix L, of
system (D) (Figure 122).

Theorems 44 and 46 show that if

G4 (Zor Yo) = Py (%o, Yo} + Qy (Zos Yo) 7= 0 (23)

for the saddle point 0 (z,, yo) of system (D), there always exist modified
systems, arbitrarily close to (D), in which the loop formed by the
separatrix L, creates at least one closed path.

3. The uniqueness of the closed path created from
a separatrix loop

We will now show that i’ the separatrix L, of the saddle point O (z,, y,)formsa
loop and condition (23) is satisfied, the separatrix loop may create at most one
closed path.
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Let us first prove one lemma.
Lemma 9. For any € > 0 theve exist e > 0and § > 0 such that if
system (D) is 8-close to system (D) and has a closed path L} contained

in the s-neighborhood of the loop L,, the period t of the path L:is greater
than C.

Proof. Alongside with the arc without contactl,, we consider, as
before, an arc I (Figure 139). The separatrix L, crosses the arcs [, and
!, at points M, and M, corresponding
to the time ¢, and t; > ¢,.

By the remark to Theorem 46, the
closed path L* of system (D) intro-
duced in the lemma crosses the
arc J, at a point M*. Suppose that
this intersection point corresponds
to ¢t = ¢,., Clearly, if e>0 and 86>0
are sufficiently small, L} also inter-
sects the arc |, for some & > ¢ at
a point M? lying on the segment #,B,
of the arc !, and ¢f is arbitrarily
close to ¢ (Figure 139). Further-
more, for some T* > ¢, the path
L} again crosses the arc [, at the
point M*,

FIGURE 139 Evidently,

T*=ty+7,

where t is the period of the closed path Lj.

If e>0 and 8 >0 are sufficiently small, the point M* is arbitrarily
close to the point M, (and therefore to M, and M,), and the point M} is
arbitrarily close to M,, i.e., by LLemma 13, §28.2, T*is as large as
desired. This means, in its turn, that for sufficiently small e and §,
we have

T=T*—,>C.
Q.E.D.

Theorvem 47. If o, (xo, Yo) = 0, there exist e, > 0 and 6, > 0 such that
any system (D) 8,-close to (D) may have at most one closed path in the
eo-neighborhood of the loop L,. If such a path exists, it is a limit cycle
of the same stability as the loop of the original system, i.e., it is stable
Jor o (ze, yo) << 0 and unstable for o, (ze, yo) > 0.

Proof. To fix ideas, let

To = Og (o, Yo) = 0.

By Theorem 44, the loop of system (D) is unstable in this case.
Let £:> 0 be so small that at every point M (z, y)of U, (0)we have

oz, ¥) =Pr(& Y+ Q@ 1) > (24)

Let further z = @, (¢}, ¥ = Yo () be the solution corresponding to the
separatrix L,. The points M, and M, corresponding to the time ¢, and #
and the arcs without contact [/, and [; are chosen so that these arcs and
the semipaths OM, and M,0 of the separatrix L, are entirely contained
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in U,l (0). Let, as before, M B,and M,B, be the segments of the arcs
l,and {; which are entirely enclosed inside the loop L,, except for their
end points M, and M,{Figure 139).

Consider the integral

t
J = 1\ G (G0 (£), Yo (8))dt. (25)

Let ¥ > 0 be such that
1< (26)

Together with the system (D), we will now consider modified systems (D).
Let 8,> 0 be a number satisfying the following condition: if (D) is
4,~-close to (D), then at every point M(z. y) of L"‘!l (O) we have

o Y =Pi y)+0)@ p>7.

For any ¢ >0, there exist §,> 0 and £,> 0 such that if (D) is 6,-close to
(D) and has a closed path L? contained in L', (L;) which corresponds to a
solution

z=¢*({), y=vy"() (LY

with period 1, and if this path crosses the arc {, at point M* for ¢t = ¢, and
the arc {, at point M} for ¢ = tf, 0 << ff — ¢, << 7, then the following conditions
are satisfied:

(a) T>C;

ef

(o) | (5@ 0. v @y ae| <2y

to

(¢) the points of the path L} corresponding to ## < i<ty + © are entirely
contained in U, (0).

For sufficiently small §, and ¢,, condition (a) is satisfied in virtue of
Lemma 9, condition (b) in virtue of the theorem on the continuous dependence
of solutions on the right-hand sides and in virtue of the continuity of o (z, y).
Condition (c¢) is satisfied because the dyhamic system (D) is structurally
stable in a regular saddle-point region (this structural stability follows,
e.g., from Lemma 4, §9.2).

Now let 8y = min {§;, 82}, € = min {e,. £5}. We will show that §, and ¢,
defined in this way meet the conditions of the theorem. To this end,
let L? be a closed path of (D) which is 8,-close to (D). We assume that
this path lies in U, (L,) ard proceed to evaluate the integral

to+T

7=\ S0, v 2%

We have

i tov
Tr=\T(* @), W) dr+ | T(* (), ¥ () dr.
to g
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By condition (b), the first integral on the right is greater than ~2y. The

second integral is greater than -‘%(to-i-r——t;) by inequality (26). Therefore

T > (T — 1)~ 2y,

or, by condition (a)

J'>%(ro+c-t;)—2x.

Since for small §, ¢ is close to the constant number ¢, we conclude
that for sufficiently large ¢ (i.e., for sufficiently small §, and g,), J*> 0.
Rutthenby Theorem 17 (§ 13.3), the closed path L* of system (D) is an
unstable limit cycle.

We have thus proved that if ¢,> 0 and §, > 0 are sufficiently small, all
the closed paths of a system (D) §,-close to (D) which lie in U,, (Lo) are
unstable limit cycles. Suppose that more than one such path exists. We
can then evidently find two closed paths L} and L} contained in U, (L,), such
that one is enclosed by the other and the region delimited by the two paths
contains no other closed paths. This is an obvious contradiction, however,
since both paths L* and L} are unstable limit cycles (we naturally assume
that U, (Lo) contains no other equilibrium states of (D), except the saddle

point ). This proves the theorem.

A similar proof can be given for ¢, (xy, yo) <<O.

Remark. Theorem 47 can be generalized. Indeed, let system (D)
have a closed contour y consisting of the separatrices of the saddle points
O; ;. y).i=1,2, ...,n n>2, and the saddle points themselves. Reasoning
along the same lines as before, we can show that if o (2, y,) <0 (i =
=1,2,...,n), the contour y is stable, and if o (z;, y;)> 0, it is unstable,
and that y may create a single limit cycle, which is stable in the former
case and unstable in the latter.

The following theorem follows almost immediately from Theorem 47.

Theorem 48. Let the separatrvix L, of saddle point O (z,, yo) of system
(D)} form a loop and let condition (23) be satisfied, i.e., o4 (xy, yo) 5= 0.

Then there exist e > 0and & > Osuch that if system (D) is 6-close to (D)
and in the e-neighboriood of the loop L, it has a separatrix L, of a saddle
point O whick forms a loop, (D) can have no closed paths in the e¢-neighbor-
hood of the loop L,.

Proof, Fore and § we may take
(28)

where g, and 8, are numbers defined by Theorem 46. Indeed, let (D) be
§-close to (D) and suppose that in the e~neighborhood of the loop Z, (D) has
a separatrix L, which forms a loop and a closed pathZ,. We assume that
Z, is not a simple limit cycle of (D). By Theorem 19 (§15.2), there exists
a system (D) 8-close to (D) which has at least two closed paths £, and £, in
the e-neighborhood of the path £;., (D) is evidently §,-close to (D), and the
paths L, and L, lie in the e,-neighborhood of the loop L,. Now, this contra-
dicts Theorem 47. Thus, £, may not be a multiple limit cycle of (D).

Now let L be a simple, i.e., structurally stable, limit cycle. By
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Theorem 46, there exists a system (D) arbitrarily close to (D) which has
a closed path L, in any arbitrarily small neighborhood of the loop £,. If
(N is sufficiently close to (D), then in virtue of the structural stability
of the cycle L,, (D) may have a limit cycle £,, which is arbitrarily close to
the cycle L;, while the two cycles L, and Z; do not coincide and are both
contained in the e-neighborhood of the loop L,. But this again contradicts
Theorem 47.

We will prove another proposition which, in a sense, supplements
Theorem 45.

Theorem 49. If lhe separatrix L, of the saddle point 0 (zy, yo) Of
system (D) forms a loop and ¢, (x4, yo) >0 (<0), there exist e >0and 6§ >0
with the following property: any system ( ) which is 6-close to (D) and
Jor which u, < u,(correspondingly, u, > a,) has no closed paths in i/, (Ly).

Proof. To fix ideas, let us consider the case o, (ry, ¥o)< 0. In this
case, the loop formed by the separatrix L, is stable (§29.1, Theorem 44).
Let g4 0 and §,> 0 be the numbers defined by Theorem 47,

I. Consider a point M, (v,)of the arc {,, where u, > u,. If the point M,
is sufficiently close to M, the path L, passing through this point for ¢t = ¢,
will cross the arc /[, again at point .V, as ¢ increases. Let C, be a simple
closed curve formed by the segment M.V, of the path L, and the segment
ViM; ofthearc /,. We choose u, in such a way that the following conditions
are satisfied:

(a) the curve (,, and the ring region enclosed between the loop of the
separatrix L, and the curve C, are contained in U € (Lao);

(b) d(u) <0,

Baoth conditions are clearly satisfied if u, is sufficiently close to u,(the
second condition holds true in virtue of our assumption that the loop is
stable}.

1I. We choose 8, > 0 so small that if system (D) is §,-close to (D), the
following conditions are satisfied:

(¢) d(u)<0;

{d) the curve {; and the region between this curve and the loop of
separ‘atmx Lo, are contained in Ue, (L) (the function d is analogous to 4,
and C, isthe curve passing through M, which is analogous to C;; Figure 140),

FIGURE 140

ITT. We choose £,> 0 and §,> 0 so that they satisfy the following conditions:
(e) & <%°‘»
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(f) if (D) is 8,-close to (D), the curve &, and the region enclosed by
this curve do not intersect with U,z(L.,).

IV. We choose g3 >0 and §;> 0 so that the following conditions are
satisfied:

(g) es<;

(n) if (D) is ég-close to (D), and L is a closed path of (D) contained in
U., (Lo), the path L crosses the arc without contact l, at point M (), where
4 > 1y {#yis the value of the parameter & corresponding to the point M).

The existence of the numbers ¢, and 8, follows from the fact that if (D)
is sufficiently close to (D) and moreover u << &y, the closed path I should
enclose the saddle point @ and, with it, all of its separatrices. But then
it cannot be contained in a sufficiently small neighborhood of the loop.

We will prove that the numbers

e =min {€,, &5}, 8 =min {%"—, 8y, 3, 63} (29)

satisfy the proposition of the theorem. N
Suppose that this is not so. Then there exists a system (D) 8-close to
(D) for which

go>a; (30)

and which has a closed path I in U.(L,). Let this path cross the arc without
contact I, at point M (u).
From (29) and conditions (f) and (h) it follows, as is readily seen, that

170<;<u,. (31)

Consider the function d(u) of system (D). Since I is a closed path, we

have
d(uy=0. (32)

Moreover, by condition (c}
d(uy) < 0. (33)

Finally, if u,is sufficiently close to u, and iy <<u; <%, we have

d(u) <0 (34)
in virtue of inequality (30).

It follows from (32), (33), and (34) that either the function d (u) has at
least one more root u*, u, << u* < u;, besides the root &, or d'(@)= 0. If
the first alternative is true, a closed path Z* of (D) will pass through the
point M* (u*); in virtue of condition (d), this path is contained in Us, (Ly),
i.e., this neighborhood contains at least two closed paths. This clearly
contradicts the choice of ¢,>0 and §,> 0.

If the second alternative is true, the closed path L is not a simple
limit cycle. But then, by Theorem 19, §15.2, there exists a system
(D) arbitrarily close to (D), and in particular 8,-close to (D), which has
at least two closed paths in U, (Ly), and this again contradicts the choice
of §pand gg. Q.E.D.
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Remark. Let O{x, yo) be a saddle point of the system

Z Py, F=0uy),

whose separatrix L, forms a loop, and let
¢ (0, Yo) = Pz (Zor Yo} + Qy (Zo» Yo) 0.

A rotation of the vector field of (D) through the angle tan™' u produces
a system of the form

dx d
FF=P—pQ, L=Q+uP. (D)

Depending on the sign of u, we obtain either inequality (20) or (21}, i.e.,
Up<"UlOF Uy > 1.

1t follows from these inequalities that when the vector field of (D) is rotated
through a sufficiently small angle, the separatrix loop is broken.
Theorems 45, 47, and 49 show that when the field is rotated in one of
the two possible directions, the broken separatrix loop is replaced by a
limit cycle of the same stability, which appears in the neighborhood of
the loop; when the field is rotated in the opposite direction, no closed
paths are observed in a sufficiently small neighborhood of the broken
loop.

4. The case P;(z; yo)+ @ (%o, Yo} =0

Let us now consider ~he case when the saddle point O (z,, ¥,) of system
(D) has a separatrix L, forming a loop, but 4 (zs, ¥o)= O.

We will show that in this case there exist dynamic systems arbitrarily
close to (D) which have at least two closed paths in any arbitrarily small
neighborhood of the loop L,.

Lemma 10. Let (L) be a dynamic system, O (z,, y,) a saddle point
of the system, L, the separatrix of this saddle point forming a loop, and let

Go (%9, Yo) = Pr (0, Yo) + Qu (%o» ¥o) =0. (35)

Then for any e > 0 and 6 > 0, there exists a system (D) which satisfies
the following conditions:

(@ (D) is s-close to (D).

(b) O (zq, yo)is a saddle point of (D), and

G (23 ¥0) = Pi (%0, yo) + @) (20, ¥0) >0 (07 <0).

(c) The saddle point 9 of (D) has a separatrix L, which forms a loop and
is entirely contained in the e-neighborhood of the loop L, of system (D).
Proof. Without loss of generality, we take the saddle point 0 at the
origin and assume that the system is given in canonical form. Then
zo = yo =0 and, by (35), the system has the form u > u,.
dz dy

?=Vx+P2(-1'v v 7,‘=_V!/+Qz(xv ¥ (Dl)
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where vs£0, and the functions P, and Q, together with their first derivatives
vanish at the origin.

Let, as before, [, be an arc without contact through some point M, of
the separatrix L,, and u a parameter on this arc. The point M,corresponds
to u = uy, and the points of the arc [, lying inside the loop correspond to
u > Up.

Consider a modified system of the form

F=Ve Pz, 1) =Pa(zy), o —(v—)y+Q(z 1) =Culz,y).  (Da)

If @ is sufficiently small in absolute magnitude, 0 (0, 0) is a saddle point
of this system, and

Pn’z:(01 0)+Ql’lv(07 O)=a' (36)
Together with (D.), we consider another system

O =P Qu=v2+Py (@ y)— 11— (v—2) y+ Qs (% ¥)] = Pan (2, Y), (D)
Gn,

%=Q“+PP°‘= ——(v—a)y-|-Qz (z, y)+pt[v:t+Pz(x, y)l=Qau(Iv y),

whose vector field is obtained by rotating the vector field of (D,) through
the angle tan™'p. For any sufficiently small (in absolute magnitude) B
0 is a saddle point of (D,,) and

P{zp.x (Oo 0) +Qt'zlw (O: 0) =a.

Let a> 0.

Let, as before, L} and Ls be the semipaths comprising the separatrix L,
which contain the point M,. For any €¢>0 and § >0, there exist «,> 0 and
po > 0 such that if |a [ <@, and | p | << po, (Day) is 8-close to (D) and has
two separatrices Loy and Lggu of the saddle point O in the g-neighborhoods
of the separatrices L} and Ls;, respectively. Let these separatrices cross
the arc I, at points M, (o, p) and M; («, p), which correspond to the values
ug (@, p)and ug (¢, p)of the parameter u.

First let u= 0, i.e., consider the system (D,). Two cases are possible
a priori:

1) There exist arbitrarily small positive numbers a* such that

ug (a*, O)=u; ((Z', 0), (37)

i.e., the separatrices Lys and Liz+o merge into a single separatrix of (Dqs)
which forms a loop. Clearly, for any ¢>0 and § > 0 and for a sufficiently
small a*, (D,.) is §-close to (D), and this loop is contained in U,(L;), which
proves the lemma.

2) There exists >0, such that for all a, 0 < a << B, either

ug (&, 0) > u; (@, 0), (38)

ug (a2, 0) << u,(, 0) (39)

(if there exist arbitrarily small « for which inequality (38) is satisfied and
also arbitrarily small « for which (39) is satisfied, there also exist
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arbitrarily small «* for which (37) is satisfied, and we return to
case 1}.

To fix ideas, suppose that inequality (38) is satisfied for all 2,0 << a2 << B.
Now consider the system (D,u) with « = 0 (it is obtained from (D) by
rotating its vector field through the angle tan™'y). By the lemma of $11.1,

if p> 0 and is sufficiently small, we have

uo (0, 1) <ug (0, p) (10)
(see (20)).
Let 8> 0 and £ > 0 be fixed and let , and pybe the positive numbers
introduced above, corresponding to these 8 and e.
Let o, be a fixed positive number, a;<<a;, o,<<f. Then
uo (21, 0) > ug (a1, 0). (41)
From the last inequality and remark to Lemma 10, §28.2, it follows
that if p* is sufficiently small in absolute magnitude, we have
g (4, 1%) > g (21, B¥). (42)

Let 0 <p*<po. Byinequality (40), for a small positive p*,

uy (0, B*) << u) (0, p*). (43)

From inequalities (42) and (43) and continuity of the functions u, and u; it
follows that for some a*, 0<a*<a,,

ug (@*, B*) = uy (@*, p*).
This means that the system

j—:=vx+!’2(x, N—p—v—aty v Q:(z, Yl

%‘{—= —(v—a*)y+ Qs (z, y) +p* vz + Pz (x, y)]

( Dc'.*u')

has a separatrix L, which forms a loop. Since then 0< a*<ay, 0<<p* <p,,
system (Da,e,s) is 8-close to (D), and the loop I, lies in Ue (Lo). Moreover,

Porprx (0, 0) + Qiruny (0, 0) =a*.

This completes the proof of the lemma.

Theorem 50. Le! 0 (x,. y,) be a saddle point of dynamic system (D),
and L, its separatrix forming a loop. If a, (xo, ys) == 0, then for any ¢ > 0and
8 > 0 there exisls a modified system (D) which is §-close to (D) and which
has at least two closed paths in the e-neighborhood of the loop L,.

Proof. For simplicity, let x, = yo = 0. 1If any neighborhood of the
loop L, contains closed paths, (D) itself may be chosen as (D). It thus
suffices to consider the case when some neighborhood of the loop L,con-
tains no closed paths, i.e., the loop L, is either stable or unstable. Let
lybe anarc without contact passing through the point M, of the loop L,, u
a parameter defined on l;, u, the value of this parameter corresponding
to M;. We assume, as before, that the points of the arc [, which lie
inside the loop correspond to u, u, << u<by, and the succession function
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u = f (u) of (D) on the arc [, is defined for all u,u; << u<b, where b < b,.
Since by assumption the loop L, of {D) is unstable, we see that for u greater
than u, and sufficiently close to y, the following inequality is satisfied:

d(u)=f(u)—u>0.
Let ¢>0, >0 be given.

I. Choose u;>u, sufficiently close to ugso that the following conditions
are satisfied:

(a) d@)>0.

(b) The path L; which for ¢t = f, passes through the point M, (u) of the
arc without contact {;, will again cross the arc /;, at point #, as ¢ increases,
so that the curve C; consisting of the segment M,N, of the path L, and the
segment NM, of the arc {;, together with the region enclosed between the
curve C; and the loop of the separatrix Z,, are contained in the e/4-neighbor-
hood of the loop Lo(Figure 141),

FIGURE 141,

II. Let n be the distance between the curve C(; and the separatrix loop Z,.
We choose §,> 0 so small that the following conditions are satisfied:

(a) 8<--.
(b) If (D) is é,-close to (D), then

d(u) >0 (44)

and curve €, — the analog of €~ is contained in Uy (€) and also in Uy, (C).
(c) If (D) is 8;-close to (D) and M, (%) is the intersection point of the
corresponding separatrix L, with the arc without contact {,, we have g << i

and:che succession function f (u)of (D) on the arc I, is defined for all
U, Uy << u<<y.

III. We choose p* and a* so that the following conditions are satisfied:

(a) The system (Dya,.) considered in Lemma 10 is §-close to (D).

(b) The separatrix L, of the saddle point O of (D,,,.) forms a stable
loop, which is entirely contained both in U,, (Le)and in Uy, (Lo).

The existence of the numbers p* and o* satisfying conditions (a) and (b)
has been established in the proof to Lemma 10, In particular, for the
loop L, to be stable, we should have a*<0.
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On the arc l,, choose a point M, (u,) sufficiently close to Mo (us > u).
Let d(u)=f(u)—u, wiere f(u)is the succession function of (Dgsus). Since
the loop Ly of (Dga,s) is stable by assumption, we have

d(us) < 0. (45)

On the other hand, inequality (44) is satisfied. From these relations it
follows that, for some u*, u,<<u*<<u,,

d(u*) =0,

i.e., a closed path L* of (Dgs.s) passes through the point M* (u*).

Let (D,,,.) be designated (D#). From II(aj and 1I1(a) it follows that (D)
is 8/2-close to (D). Furthermore, as we have seen, (D) has a separatrix
L, which forms a stable loop and a closed path L*. Both the loop L, and the
closed path [* are contained in U, (L,) — the loop in virtue of 1II(b} and the
path I* in virtue of 1(bs, II{b), and III(b).

iIf the closed path L*of (D*) is not a simple limit cycle of this system,
Theorem 19, §15.2, indicates that there exists a system (D) 8/2-close
to (D) which has in U, ,(£*)at least two closed paths L, and I,. But
then (D) satisfies the proposition of the theorem. If L*is a simple, i.e.,
structurally stable, limit cycle of (D*), then Theorem 46 shows that there
exists system (D) arbitrarily close to (D*) which has a closed path Z, in
any arbitrarily small neighborhood of the loop Z,. When (D) is sufficiently
close to (D¥), system {D), in virtue of the structural stability of the cycle
L% has a limit cycle L, which lies arbitrarily close to L*, and the paths
L, and L, are different and are both contained in U, (L;). Thus, system (D)
satisfies the proposition of the theorem. This completes the proof.

Remark. Theorem 50 proves that if o, (zo, ¥) = 0, the separatrix
loop of the saddle point O (z,, yo) may create at least two closed paths.

The question of the largest number of closed paths which may be created
from a separatrix loop in the case o, (20, ¥o) = 0 and the conditions deter-
mining this number requires a much more complex analysis. The problem
was considered by E.A. Leontovich in his thesis and the results are pre-
sented in /21/,




Chapter Xl

CREATION OF A LIMIT CYCLE FROM THE
LOOP OF A SADDLE-NODE SEPARATRIX,
SYSTEMS OF FIRST DEGREE OF STRUCTURAL
INSTABILITY AND THEIR BIFURCATIONS

INTRODUCTION

The first of the two sections in this chapter, §30, deals with the creation
of a limit cycle from the loop of a saddle-node separatrix. Let (A) be a
dynamic system, M, (25, ¥o) an equilibrium state of this system, which is a
saddle-node of multiplicity 2. A canonical neighborhood of a saddle-node
comprises a parabolic sector and two hyperbolic sectors, separated from
one another by three separatrices. To fix ideas, suppose that the saddle-
node M, has one a-separatrix L; and two o -separatrices LT and L}.

Suppose that the a-separatrix L; goes to M, for t-» 4 oo, i.e., it forms a
loop, whereas none of the separatrices L} and L} is a continuation of L;
(Figure 142).

Since M, is a double equilibrium state of (A), there exist arbitrarily
close systems which have no equilibrium states in the neighborhood of M,.
The main result of §30 states that if the equilibrium stateM,, and
consequently the separatrix loop, disappear following a
sufficiently small change in system (A), one and only one
limit cycle is ecreated in the neighborhood of the loop
(Theorems 51 and 52, see Figure 143).

FIGURE 142 FIGURE 143

The second section, §31, deals with the simplest structurally unstable
systems, namely systems of the first degree of structural instability. A
system of the first degree of structural instability inside a cycle without
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contact was defined in Chapter VIII (§22). In §$31, a definition of these
systems is given for any bounded region, and the necessary and sufficient
conditions are established for the system to be of the first degree of struc-
tural instability in that region (Theorem 67). These conditions are then
applied to investigate the bifurcations of systems of the first degree of
structural instability. All these bifurcations turn out to be particular cases
of the bifurcations considered in the previous chapters and in § 30,

§30. CREATION OF A LIMIT CYCLE FROM THE
LOOP OF A SADDLE-NODE SEPARATRIX

1. The existence theorem
We consider an analvtical dynamic system
dz dy _
W“P(xv .l/)' ‘d_‘—Q('z7 y)! (D)

which has an equilibrium state (x,, y,) of multiplicity 2 of the saddle-node
type, with one of the characteristic numbers different from zero. Without
Joszs of generahtv, we may assume that this equilibrium state is at the
origin, i.e., 1o =y, = (0. Thus,

PL(0.0) P00

0:(0,0) ¢,0,0|=° ()

A, 0)=

and
6 (0. 0) = P; (0, 0)+Q; (0, 0) = 0. (2)

Equilibrium states of this type were considered in Chapter VIII (§23,

1 and 2). A canonical neighborhood of such a state consists of one parabolic
sector and two hyperbolic sectors, Suppose that the paths of the parabolic
sector go to 0 for t — + co. Then the equilibrium state O has one a-separatrix
L; and two w-separatrices L} and L;.

Suppose that the path L,, from which the separatrix L; is
cut out, goes to the equilibrium state 0 for t—+ — oo,
as well as fort—+ -0, i.e., it forms a loop. We moreover assume
that none of the separatrices L; and L} forms part of this loop (i.e., the
separatrix L; does not merge into a single path either with L} or with L,
see Figure 142).

Since O is an equilibrium state of multiplicity 2, there exist §,>0 and
£,> 0 such that if system (D)) is 8,-close to (D} to rank 2, it has at most two
equilibrium states in U, (0)(see Definition 15, $7.3 and Definition 5, §2.1).
Thus, three cases are possible a priori:

1} System (D) has one equilibrium state 0 in U, (0)

2) System (D) has two equilibrium states 0, and 0,in U, . (0)-

3) System (D) has no equilibrium states in U, (0).

All the three cases are actually observed in practice: cases 2 and 3 in
virtue of Theorem 34, $23.1; case 1 obtains if (D) is identified with (D)
itself, say.
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It is readily seen that if (D) is sufficiently close to (D), the equilibrium
state O in case 1 is also of multiplicity 2 and is a saddle-node (this follows
from the remark to Theorem 35, $23.2).

In case 2, one of the equilibrium states J; and O, into which the saddle-
node O decomposes is a structurally stable node, and the other is a struc-
turally stable saddle-point (§23.1, Lemma 1 and $23.2, Theorem 35).

We will now consider in more detail case 3, i.e., the case when
the equilibrium state disappears on passing to a close
system . We will show that a closed path necessarily forms in the
neighborhood of the loop Ly in this case. In fact, the following theorem
can be stated:

Theovem 51. For any e >0 there exists § > 0 such that if (D) is
§-close to (D) and has no equilibrvium states in U, (0), (D) has at least one
closed path contained in the ¢-neighborhood of the loop L.

Proof. Lete>0 be given. Consider a canonical neighborhood V of
the equilibrium state 0 of system (D) delimited by the following path
segments:

1) the segment KK, of the arc without contact I with end points R, and R,
which meets the separatrices L;, L}, and L} at the points No, &, andN,,
respectively (Figure 144);

2) the arc without contact l, with end points M; and M, which meets the
separatrix L; at the point M,;

3) the arcs of paths K;M, and K,M,,

FIGURE 144

The concept of a canonical neighborhood has been introduced in
QT (Chapter VIII, $19.2), where it is also shown that a canonical neighbor-
hood can always be constructed for any arbitrarily small neighborhood of
an equilibrium state. We may thus assume that the canonical neighborhood
V and the arc without contact I lie in U,,. (0) and that the following condition
is satisfied: the paths Lg and Ly, which for ¢t = ¢ pass through the respec-
tive end points M, and M, of the arc [, cross, with increasing ¢, the arc
without contact ! at points M| and M;, so that the quadrangle A limited by
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the arc without contact l;, the segment M M, of the arc without contact I,
and the arcs MM, and M M, of the paths L, and Ly is an elementary
quadrangle contained in the ¢/2-neighborhood of the loop L,. Since the
path L, crosses the arcs without contact [, and I at their interior points
M,and &,, this condition is satisfied whenever the arc [; is sufficiently
small.

Let 8> 0 be so small that if (D) is §-close 1o (D), then

{a) the arcs I, and I are arcs without contact for (D);

(b) the paths L, and £y, of {D) which for t = ¢, pass through the points M,
and M., respectively, cross, with increasing ¢, the arc ! at the points M
and M;, and the resulting quadrangle A (the analog of A) is an elementary
quadrangle of (D) contained in U, (Ly) (Figure 145);

(c) as t decreases, the paths Ly and Ly cross the arc I at points K, and
K., and the neighborhood V of the point O, delimited by the arc without
contact l,, the segment K,K, of the arc I, and the arcs of paths E,M, and
K.M., is contained in U, (L,).

FIGURE 145

Conditions (a), (b), and (c) are satisfied for a sufficiently small § in
virtue of Lemmas 1 and 5 of 4.1 and Lemma 7 of 4.2,

We will show that the number § selected in this way fulfills the pro-
position of the theorem.

Let (D) be a system §-close to (D) which has no equilibrium states in
U.(0). Let ¥ be the union of the sets A and V (these sets are assumed to
be closed). Evidently, ¥ is a closed neighborhood of the loop L,, and in
virtue of (b and (¢) W < U, (L;). We define a parameter u on the arc i,
so that the end points M, and M, of the arc correspond to the values u, and
u; of the parameter, u; << ,. Consider any point A (u) of the arc I, (u; < u<us)
and the path I of system () through that point. As ¢ increases, this path
crosses the arc without contact [ at some point M of the arc I and enters
into the neighborhood ¥. Since there are no equilibrium states, and thus
no limit continua of (D), inV, the path I should leave ¥as t further increases.
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It may evidently leave V only through the arc without contactl,, i.e., it
again crosses the arc l, at some point M* (u*). This means that for all
u, yy<uu,, a succession function

u* =7 (u)

is defined on the arc without contact l,, such that f(u,)>uy, f(u2)<u2

It follows from the last inequalities that there exists a number &, uy <t <<u,,
such that f(@)=u.

The path L through the point M (a) of the arc I, is a closed path. Clearly,

LW U (L.

This proves the theorem.

We shall say that the closed path L is created from the
loop of the separatrix L, of the saddle-node 0.

Remark. Theorem 51 and the above proof remain valid if the point O
is any equilibrium state of multiplicity 4 (and not only 2)
for which conditions 1 and 2 are satisfied (this equilibrium
state is also a saddle-node, see §23.2,a).

2. The uniqueness theorem

We will prove the uniqueness of the closed path created from the loop of
a saddle-node separatrix. As in the previous subsection, we consider an
equilibrium state 0(0, 0) of multiplicity 4 which satisfies conditions 1 and 2,
i.e., a saddle-node, and the path L, from which the a-gseparatrix L; is cut
out forms a loop, without merging with either of the w -separatrices L} and L}.

Lemma. Let M,be apoint of the path L,, and 1, an arc withoul contact
thvough M, for which M,is not an end poinl. There exist e, >0 and 6, >0
such that if (D) is 8,-close to (D), and L is a closed path of (D) contained in
U,, (L), L crosses the arc 1, at one and only one point.

Proof. Itis readily seen that if the proposition of the lemma is true
for any sufficiently small arc [, cut out from some fixed arc without contact
which crosses the path Ly, it is also true for any fixed arc without contact
l,(see Lemma 7, §4.2). By assumption, o (0,0) = P (0, 0) 4+ @} (0, 0) 0.

To fix ideas, let

6 (0, 0) =0o,>0.

Let 8> 0 be so small that for any point (z, ), (z, ) = U.(0), o (x, ¥) > 0.
Consider the canonical neighborhood V and the elementary quadrangle A of
(D) described in the previous subsection (in our proof of Theorem 51), and
also the canonical neighborhood ¥ and the quadrangle A of the close system
(f‘), alongside with their union W. Let Vo U (0). As !, we choose the arc
without contact M M. entering the boundary of ¥ (Figures 144 and 145).

Choosge 6,> 0 ande,> 0 so that if (D) is §,-close to (D), the following
conditions are satisfied:

(a) I,is an arc without contact for (D);

(b) for any point (z, y) €T, (0) ,

0@, ) =Pi(x )+ 0, (z, ) >0;
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(¢} Ve U (04

() Ue (L)W .

These conditions are evidently satisfied for sufficiently small & and §,.

Let L be a closed psth of system (D) which is §,-close to (D), and let
L < U (L). Then, by (c), Lo W. ~

if the path L is entirely contained inV, it is contained inU.{(0). Ry
condition (b) and Rendixson's criterion (QT, Y12.3, Theorem 31, corollary),
svstem (D) has no closad paths which are entirely contained in U, (0) .
Therefore, the closed path L has points which lie in the quadrangle A .
Then, by the properties of elementary quadrangles, the path L crosses
the arc Iy (at one and only one point, by condition (a)). The arc without
contact l clearlv can be chosen as small as desired in this case.

The proof of the lemma is complete.

Theorem 52. Let 0 (0, 0) be a saddle-node of a dynamic system (D)
for which a, = 6 (0, 0) == 0, and L, a separatrix of this saddle-node forming
a loop.

Thnere exist bwo numbers e > 0and § > 0 such that if (D) is §-close to (D),
it may have at most one closed path inU, (L,). If this closed path exisls, il
is a stable structurally stable limit cycle for o, << 0 and an unsltable struc-
turally stable limit cycle for o, > 0.

Proof. Consider the case 0,>0.

Let ¢y> 0 be so small that for every point (z, y)€ U, (0) we have

o (2 ) =Pi(z. Y+ 0y (&, 9> . (3)

Letl, I, V., A W, F, ewc., bethe arcs without contact, the canonical
neighborhoods, the elementary quadrangles, etc., considered in the pre-
vious subsection (Figures 144 and 145). Let the canonical neighborhood V
be so small that

VU, (0). (4)

and let A be the corresponding elementary quadrangle of (D) (Figure 146).
Choose §;> 0 so small that if (D) is 6,-close tn (D), the following condi-
tions are satisfied:
{a) The arcs ! and [, are arcs without contact for the paths of system (D).
(b) The canonical neighborhood ¥ corresponding to (D) lies in U, (Lo)
together with its closure.
{c) The paths of (D) passing through the points of the arc [, cross the
arc | with the increase int, and the segmenis of these paths confined between
the arcs [, and I form an elementary quadrangle A

(d) For all (z, ) €Us(O), G (z,4) > .

LLet ¥ be the union of the sets ¥ and A. We choose ¢,0 << &, < g5, SO
small that for any set W corresponding to a system (D) §,-close to (D),
we have

Ue, (L) = W. (5)
The existence of the appropriate 8; and e, is self-evident.

_ Let L be a closed path of system (~5)~which is §,~close to (D}, and let
L<du, (Ly). Then, by (5), Lo W = VyA. We will show that the path L
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cannot be entirely contained in V. Indeed, if £ < ¥, then by (4), L= U, (0).
This is impossible, since relation (5) and Bendixson's criterion (QT, $12.3,
Theorem 31, corollary) show that system (D) cannot have closed paths
which are entirely contained in U, (0). Thus, any closed path I of (D) con-
tained in Uel (Lo) has points which lie in the quadrjmgle A . Then, from the
properties of elementary quadrangles, the path L crosses the arcs ! and [,
and all the points of the path which lie outside & are contained in ¥ and
hence in U, ).

FIGURE 146

z=qo(t), yY=1o(t) (6)

be a solution corresponding to the path L, of (D), M, and N, the intersection
points of L, with the arcs without contact l, and I, respectively, {; and ¢,

t, <t,, the values of t corresponding to points M, and N, for motion (6)
(Figure 146). Let, further,

ia
T = 1PL(@0 (), %o () + Qi (90 0): Yo (D] di. (7

t
Let x be any number such that

Hi<<x (8)

and let C be any number such that

C>%’°i. (9)

Let S, be a point of the path I, corresponding to ¢t=¢#+C for motion (8).
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Let & and & be positive numbers such that §<§,, e<e,; let (D}) be a
Avnamic svstem é-close to (D), L a closed path of (D) entirely contained
in Ue(Ly), M and N the intersection points of I with the arcs [, and
(Figure 146). Let

z=p@). y=¥@© (10)

be the motion along the path L for which the point 3 corresponds to ¢ ={,
Let .V, and S, be the pcints of the closed path I which correspond for
motion (10} to t=t, and t=1,+C, and let T be the period of the solution
of (10)., 1If e is sufficiently small, the point 3 will be as close as
desired to M,. Hence and from the theorem cof the continuous dependence
of the golution on the iaitial values and the right-hand sides it follows
that if § and e are sufficiently small, the following conditions are satisfied:
1) The point &,, and all the points of the path L between ¥ and ¥,, are
contained in er@- N
2) The arc MS, of the path L corresponding to the values of ¢, ¢, <t <t,-C,
is so close to the arc M,S, of the path L, corresponding to the same values
~f 1 that

b+ C<t+7 (11)

{(we recall that T is the period of the path ).
3)

N=|{5@0. T a|={1RGE0, FMm+0E0, Fona<.  (12)
ty

P Iy

The last equality is satisfied for sufficiently small 8 and ¢ in virtue of (8).
Let & and e be chosen so that conditions 1 through 3 are satisfied. Let
us estimate the number
47 tr 4t
h=\ @O, b@)d=\ca+ { Gar
(31 21 ts
i
By (12), \ ¢dt>—2y. Tt follows from condition 1 that all the points of the
33
path i corresponding to t:<t<t; 4T are contained in er(O)- Therefore, by
(5) and (11),
t-t%

(| Gdt>C%andh>—2x+C-L.
I

Hence and from inequality (9) it follows that k>0, i.e., the closed path L
of (D) is an unstable structurally stable limit cycle (313.3, Theorem 17,
14, Theorem 18).

We have thus established that any closed path of system (D) §-close
1o (D) which lies in U, (Ly) is an unstable limit cycle. But then, (D) can
have at most one closed path in U, (Ly)(see the end of the proof to
Theorem 47, §29, 3).

The case d,< 0is considered along the same lines. The theorem
is proved.
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$31. DYNAMIC SYSTEMS OF THE FIRST DEGREE
OF STRUCTURAL INSTABILITY AND
THEIR RIFURCATIONS

1. The definition of a system of the first degree of
structural instability

In the previous chapters and in § 30 we considered bifurcations of the
following types:

1} The decomposition of multiple equilibrium states into structurally
stable equilibrium states.

2) The creation of limit cycles from a multiple focus.

3) The creation of limit cycles from a multiple limit cycle.

4) The creationof alimit cycle fromthe loop of a saddle-point separatrix.

5) The creation of a limit cycle from the loop of a saddle-node separatrix.

In this section we will consider dynamic systems of the first degree of
structural instability and elucidate the conditions satisfied by these systems
and the bifurcations that they may undergo. Since systems of the first
degree of structural instability are, in a sense, the simplest structurally
unstable systems, their bifurcations may naturally be considered as the
simplest bifurcations. Any one of the simplest bifurcations creating a
limit cycle proves to be a bifurcation of one of the types 2 through 4.

The definition of the degrees of structural instability of dynamic systems,
and in particular of the first degree of structural instability, will be found
in Chapter VIII (§22, Definition 23). It is assumed in this definition, how-
ever, that the system is considered in a region bounded by a cycle without
contact. We therefore have to define a system of the first degree of struc-
tural instability in such a way that the definition will apply to any bounded
closed region. The requirement of closure is not essential: a similar
definition can be stated for any bounded region.

Like the concept of a structurally stable system (see ¥6.3), the concept
of a system of the first degree of structural instability
is associated with a certain space R* of dynamic systems. For structurally
stable systems, R*can be identified with any of the spaces R’ or R,
k>r>» 1. We have noted in $22 that the concept of a dynamic system
of the first degree of structural instability is meaningful
only in relation to the spaces RY or R{?, where r>3. Therefore, in what
follows it is invariably assumed, without any explicit indication, that we
are dealing with structural instability in relation to one of the spaces RY’
or R, where r> 3. Let this space be R*.

As in the case of a structurally stable system ($6.1, Definition 10 or
$6.3, Definition 13), in defining a system of the first degree of structural
instability in some W, we have to consider, alongside with W, some wider
region. Let G be the region used to define the metric in the space R*.
Dynamic systems are henceforth understood as systems which belong to
the space R*, and closeness is interpreted as closeness in R* When
considering some subregion of G, we will always assume that its closure
is contained entirely in G, i.e., its distance from the boundary of & isfinite.

Let

S5 Py, H-Qy) (A)

be a dynamic system, and W a closed subregion of G.
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Definition 30. A dynamic system (A)is called a system of the first
degree of structural instability in W if il is not structurally stable in W
and if there exists an open region H,

WcHcHcG.

satisfying the following condition: for any ¢ > v, theve exists 8 >0 such that
Sfor any system (A} 6s-close to(A), which is structurally unstable in W, there
exists a subregion H for which

(H, H=H, ).

The meaning of this somewhat clumsy definiticn can be elucidated as
follows: (A) is a system of the first degree of structural instability in W if
it is structurally unsteble in W, whereas any sufficiently close system ()
is either structurally stable in B, or (3} and (A) have path partitions of
the same topological structure in certain neighborhoods of ', and the
transformation from one partition to another can be implemented by an
arbirrarilv small translation.

We will now derive the necessary conditions satisfied by any system
of the first degree of structural instability. Their derivation is basically
analogous to the derivation of the necessary conditions of structural
stability of a system: this is a natural and relatively simple derivation,
but it requires an examination of numerous alternatives.

Throughout the remaining part of this section, (A) is a system of
the first degree of structural instability in ¥ in the
sense of Definition 30.

2. Equilibrium states of systems of the first degree
of structural instability

We will first prove a number of theorems which establish the kind of
equilibrium states that systems of the first degree of structural instability
may have.

Lemma 1. Let P(z. yyand Q (z. y) be functions of class N, defined in a
closed bounded region =, and M, (z,. y,) any point in that region. For any
& >vand n=<N (nare natural numbers), therve exist polynomials P (z, y) and
Q tz, y) with the following properties:

a) P and § are 8-close to rank N in G to the functions P and Q,
respectively.

b) P and § are irreducible, i.e., (B,Q) = 1.

¢) The values of the polynomial P (z, y) (O (z. y)and all its devivatives to
ovder n inclusive at the point M, (x4, y,) coincide with the corresponding values
of the function P (z, y) (Q (z, y)) and ils derivatives at the same point.

Proof. Let zy=y,=0; this may be assumed without loss of generality.
Let 8>0 be given. By the Weierstrass theorem (Theorem 2, $1.1), there
exist polynomials P* (z, y) and Q* (z, y) which are 8/2-close to rank N to the
functions P and Q, respectively, and which satisfy condition (¢). 1If the
polynomials P¥ and Q* are irreducible, they can be adopted as P and @,
and the lemma is proved. Suppose that P* and @* are reducible polynomials.
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Then they can be written in the form
P*=P (z,y)- Rz, y), Q*=0Qi(x y) Rz y)

where (P, Q) = 1, and Ris a polynomial of higher than zero degree.
If (R, Q) = 1, we may take P(z, y)=P*(z,y). Now suppose that R and @,
are reducible. Let

Quz, )= (& ¥ @2(z, ¥) - - Pa (D §) P (2 ¥) P2 (& ) o Wi (20 B) (1)

be the factorization of @, into irreducible factors. It is assumed that the
following conditions are satisfied:

R (z,y) is divisible by ¥;, j=1, 2, ..., {; (2)
(R,(P,')=1, i=17 2,~..,k (3)

(the number & may be zero, i.e., the polynomials ¢; need not occur in
the factorization (1)). Let further az+By, a0, =0 be a polynomial of
the first degree which is irreducible with any of the polynomials ¥; (j =
= 1,2,...,1), and r is a natural number.

Suppose that

Ry(z, y) = R (x, y) + (@1 By) 9192 . - . Pas

and

P(z, y)=PRy=P*(z, y)+ Ps(z, y) @z +BY) ¢:1@2 - - - Pne

From (1), (2), (3) it follows that (R,, Qy) = 1. Since (P;,Qy) = 1, we have
(P,Q1) = 1. Tt is further evident that if the numbers « and B are sufficiently
small, and r is sufficiently large, the polynomials P and P* are 8/2-close
to rank N and coincide at the point (0, 0), together with their derivatives to
order n, inclusive. We have thug constructed a polynomial # which is
irreducible with Q.

Now consider the polynomials P and Q* = Q,R. If (P, R) = 1, then
(P Q%) = 1 and we may take § (z, y) = Q* (z,y). If, however, P and R are
reducible, using the same construction as for R, (z, y), we can construct
a polynomial R, (z, y) which will be irreducible with P (z, y) and such that
the polynomial

0@ ) =0Qi(x ) Re (=, ¥)

is 8/2-close to Q*(z, y) to rank N, and Q and @* coincide at the point (0, 0),
together with their derivatives to ordern, inclusive. The polynomials P
and Q constructed in this way fulfill conditions (a), (b), and (c) of the lemma.
This completes the proof of the lemma.

Theorem 53. A system of the first degree of structural instability in
W may have only a finite number of equilibrium sitales in this region, each
of which is furthermore isolated.

Proof. Since W is a closed region, it suffices to prove that every
equilibrium state of system (A) in W is isolated. Suppose this is not so,
and that M, (x4, yo) is an unisolated equilibrium state in W. Then, by
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Remark 3 to Theorem 5 (§2.2),

Py(ze, yo) Py(xo, Yo) =0

Qx (@ o) Qi (xor yo)| (4)

A (zg, Yo)=

Since (A) is a system of the first degree of structural instability in W,
there exists a region H, W < H, described in Definition 30. Lete>0
be an arbitrary number. By Definition 30, there exists 8§ > 0 such that
if svstem (A) is §-close to (A), then

either (a) (A) is structurally stable in W,

or {b) (&) is structurally unstable, and

(F, D= (H, A),

where H is some region.
Consider a dynamic system

(=, y), %=(~7(Ja’y y) (A)

§-close to (A), where the right-hand sides are irreducible polynomials
which coincide, together with their first derivatives, with the functions
P and Q and their first derivatives at the point M, (xo, ¥o) (such a system
exists by Lemma 1), M, (o, ¥,) is then an equilibrium state of (3), and

A (o, yo) =Al(z, y)=0. (8)

Since (&) is 6 -close to (A), one of the conditions (a) or (b) should apply to
this system. However, condition {a) is ruled out, since by (6), (&) has a
structurally unstable equilibrium state M, in W. Condition (b) is also
unacceptable, since (A) has in II” an infinite number of equilibrium states,
whereas (A) has a finite number of equilibrium states in the plane (since
(. §) = 1) and relation (5) is therefore inapplicable. This contradiction
proves the theorem.

Lemma 2. Let Oy, O, ..., 0,be all the equilibrium states of (A) in
W. There exist e, > 0 and 8, > 0 with the following property: if (&) is
8,-close to (A) and is structurally unstable in W, the e,-neighborhood of
each point 0;, i =1, 2, ..., s, conlains precisely one equilibrium state
0, of (A)and the equilibrium states 0, and 0, have the same topological

structure. The number ¢, > 0 may
be taken as small as desired.

Proof. Let H be a region satis-
fying the condition of Definition 30,
H > W (Figure 147). Without loss
of generality, we may assume that
H contains no other equilibrium states
of (A), except Oy, O,, ..., O, (this is
so if H is a sufficiently small neighbor-
hood of the closed region W}, g, >0
is chosen as a number satisfying the
following conditions:

(a) The neighborhoods U/, {0)), i=
=1,2,..., s, are contained in A and no

FIGURE 147 two of these neighborhoods intersect.
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(b) The distance of each neighborhood U, (0;) from the boundary of # is
greater than 2¢,(Figure 147).

By Definition 30, to this e, corresponds §,> 0 such that if (A) is §,-close
to (A) and is structurally unstable, we have

(#, )= (H, 4), (M

where fl is some region.

It follows from (7) that A contains precisely s equilibrium states of (&),
which we designate 0, Os, ..., O,.

Let 7 be the mapping of H onto H implementing the relation (7), (i.e.,
f is an g-translation moving H into H and conserving the paths, see §4.1,
Definitions 8 and 9). Let, further, f(0;)=0;, i=1,2,...,s. Then

0: = Uey (0)). (8)
By condition (b), each of the neighborhoods U (0;) is contained in H, i.e.,
Usn(Oi) Cﬁ (9)

(see footnote to p. 67). It follows from (8) and (9) that J, is the only
equilibrium state of (A) contained in U, (0:). Since f@) =0, and f is a
path-conserving topological mapping, the equilibrium states 0, and §; have
identical topological structures. The proof of the lemma is complete.
Lemma 3. Let 0 be an equilibrium state of (A), 0 — W. There
exists 8, > 0 such that if (&) is structuvally unstable, 6,-close to (A),
and has an equilibrium state at the point 0, the lopological structure
of the equilibrium state 0 of (A) coincides with the topological struc-
tuve of the equilibvium state 0 of (A).
Lemma 3 follows directly from Lemma 2. §, can be chosen as the
§gof Lemma 2,
Theovem 54. A system of the first degree of stvuctural instability
in W has no equilibrvium states with A = 0, o = 0 in this region.
Proof. Let (A) be a system of the first degree of structural instability.
Suppose that it has an equilibrium state 0(0, 0) in W for which A = 0, o = 0.
Let §,>0 be the number defined by Lemma 3. By the Weierstrass
theorem, there exists a system

#-P@y L=0@y (&)

8,/2-close to (A), where P and ¢ are polynomials, and the values of # and §
and their first derivatives at the point 0(0, 0) coincide with the values of
the functions P and Q and their first derivatives at the same point. 0 (0, 0)
is an equilibrium state of (A) for which

A0, O)=A@, O)=0, o, O)=0 (0, 0)=0. (10)

At least one of the polynomials P, § has linear terms (otherwise, we
replace B withiy 4+ P, where} is a sufficiently small number; the point
O remains an equilibrium state with A = ¢ = 0)., Since (A) is a system of
the first degree of structural instability, and (A) is & /2-close to {(A) and
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has an equilibrium state at point 0, (A) is a structurally unstable system
with an isolated equilibrium state at 0.

Let us now apply the results of §23. In virtue of these results, (&) may
be written in the form

By o h @]+ Y+ @]+ (@ 9), ()

where &, g, f are analvtical functions, 2(0)~=g(0)=0, r>»2, e50, and n>1
if b0 (see $23.2, (25)).

Consider the system

By Yoo k@) by (g @)+ (@ Y), (Ay)

where A< 0 and is so small in absolute magnitude that (A,) and (A) are 3 /2-
close,

First consider the case r>2, The point O is then an equilibrium state
of (X,) for which A = 0, By $23.2, 1I, p. 226, if r is odd {even), the point O
for svstem (A) (for system (&,)) is either a saddle-point, or a node, or a
focus, or a center, or an equilibrium state with an elliptical region, and
for svstem (A,;) (for system (A)) it is either a degenerate equilibrium state
or a saddle-node. Thus, (&) and (A|) are structurally unstable systems
§4-close to (A), and the topological structure of the equilibrium state O of
(1) is different from the topological structure of the equilibrium state O of
(A;). This contradicts Lemma 3.

Let now r= 2. In this case (A,) has the form

2,

!

Loy Yircat(lrh@I4..

Q

The point 0(0, 0) is an equilibrium state of this system with A = —A>0
and ¢ = 0, i.e., a multinle focus or a center. This equilibrium state
is structurally unstable, and (A,) is therefore a structurally unstable
system. With regard to (&), the point O is a degenerate equijlibrium
state for r = 2 (see QT, $22.2, Theorem 67). This leads to the same
coniradiction with Lemma 3 as for r>2. ‘This completes the proof of
the theorem.

It follows from Theorem 54 that every equilibrium state of system
(A) in W is either a simple equilibrium state or an isolated equilibrium
state with A= 0 and a£0.

As we know, a simple equilibrium state has a multiplicity of 1 (§7.3,
Definition 156, $2.2, Theosrem 6). Let us find the multiplicity of a
multiple equilibrium state of system (A).

Theorem 55. If (A)is a system of the first degree of instability
inW, any multiple equilibrium state in W has a multiplicity of 2.

Proof. Let 0(0,0) be a multiple equilibrium state of (A), O € W. By
the previous theorem A(0,0) = 0, ¢(0,0) 0. Without loss of generality
we may take (A) in the form

LEeplo y) F=y+a ) (11)
where
p(0, 0)=p;(0, 0)=p,(0, 0)=¢(0, 0) =qx(0, 0)=4q;(0, 0) (12)
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(system (A) can be reduced to this form by a non-singular linear trans-
formation, see QT, $21.2).
According to the theorem of implicit functions, the equation

y+a(z y)=0 (13)
has a unique solution for y in the neighborhood of 0(0, 0). Let this solution
be p(z). Then

P+ 9= o@)=0, (14)
and
? (0)=0. (15)

It follows from (12), (14), and (15) that
9 (0)=0.
Consider the function

Direct computations show that
P(0)=0, ¥ (O0)=0, ¢ (0)=pkx(0, 0). (18)

From Definition 15 (87.3) and Theorem 7 ($2.3) it follows that the
equilibrium state 0(0, 0) of system (11) has a multiplicity of 2 if and only
if px«(0, 0)% 0. We will now show that this condition is satisfied. Suppose
that

P (0, 0)=0. (19)

Let g and 8, be the positive numbers introduced in Lemma 2. As in
our proof to Theorem 54, we use the Weierstrass theorem and construct
a system

Py Ley+T v (A4)
dt dt

%/2-close to (11), where p and g are polynomials which together with
their derivatives to second order inclusive coincide at the point 0(0, 0)
with the functions p and ¢ and their derivatives. Then

P (0, 0)=Dpx(0, 0)= 72, (0, 0)=7(0, 0)=7x(0, 0) =, (0, 0)=0 (20)

Pix (0, 0)=0. (21)

Since A(0,0) = 0, (A) is structurally unstable in W. Therefore, by
Lemma 2, the equilibrium state 0(0, 0) of (A) is isolated.

Let @ (z) and §(z) be the analogs of the functions ¢ and ¥y, i.e., these
are functions defined by the relations

?@+q ¢@)=0 (22)
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and

@) =piz, ¢ @) (23)

Since p and ¢ are analytical functions (polynomials), ¢ and % are also
analytical functions. By (20} and (21},

?(0) =9 (0)=0 (24)
and

O =% (=F(©0)=0. (25)

Moreaver, §(z) cannot be identically zero. Indeed, if §(z) =0, then for all
sufficiently smallz, the point (z. ¢(2)) is an equilibrium state of (1), so
that O is no longer an isolated equilibrium state. Thus, near the point

z= 0, the function ¥ (z)is expressible in the form

P(z) = az” a4, (26)
where =<0 and n>3.
Consider the dynamic system

— — d — - ~
Lz p e =Py =yt =0z ), (X

where p==0 is so small that the systems (A,) and (&) are §,/2-close.
Since 0{0,0) is a multiple equilibrium state of (1,), this system is
structurally unstable in W',

Let us try to find some equilibrium states of (z‘i.u) near the point 0.
By (22), y=¢(z)is the solution of the equation Q,(z,y) = O for y. Inserting
¢ ) for y in the equation P, (z. y) = 0, we obtain an equation forz, i.e,,
P,(z, T(a) = 0, or explicitly

" tprartart4-...1=0
ar
£k (p, x)=0, (27)

where A (n, 2)=p+ar4-ax*4....

Since k (0, 0)= 0, k; (0, 0) = a % 0, the theorem of implicit functions
shows that the equation & (u, z) = 0 has a solution z = x, near the point
01(0, 0) which goes to zero forp— 0. Clearly, if p =0, then z, %0,

The point Oy (z,. ¢ (z,)) is an equilibrium state of the system (A,) which
is different from O and lies as close as desired to O, whenyu is sufficiently
small.

We have thus establiched that if pi. (0,0) = 0, there exists a system (A,)
§s-close to (A) which is structurally unstable in ¥ and yet has two equilibrium
states in any arbitrarily small neighborhood of 0, namely O and 0,. This
contradicts Lemma 2. Thus, pix (0,0) 5 0, i.e., the equilibrium state O has
a multiplicity of 2. Q.E.D.

Theorem 56, If(A) is a system of the first degree of structural
instability in W, any multiple equilibrium state of this system in W is
a saddle-node.
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Proof. Theorem 56 follows directly from Theorems 54 and 55 because
of the following general proposition: a multiple equilibrium state
of multiplicity 2 for which 0o+#0 is a saddle-node. If(A)
is an analytical system, this proposition is contained in I, 23.2 (or,
equivalently, in QT, §21.2, Theorem 65). For a non-analytical system,
the proof can be obtained by the same method as the proof of Theorem 65
in QT.

Theorems 54, 55, and 56 show that any multiple equilibrium
state of a system of the first degree of gtructural
instability is a saddle-node with 65 0 and a multiplicity
of 2.

Let us now consider simple equilibrium states, i.e., those with A 5= 0.
We have seen (Chapter IV) that a simple equilibrium state is stable, except
if its characteristic numbers are pure imaginary. It is readily seen
that a system of the first degree of structural instability may have a
structurally stable equilibrium state of any type. We will therefore con-
centrate on equilibrium states with pure imaginary characteristic numbers.
Fach of these equilibrium states, as we know, is either a multiple focus,
or a center, or a center-focus (a center-focus is possible only for a non-
analytical system, remark at the end of §24.4).

Without loss of generality, we assume that the equilibrium state is the
point 0 (0, 0) and that (A) is given in the canonical form

& pyte(n Y, S=Prv(z v) (28)

where § >0, and ¢ and ¥ are functions of class 3, which vanisp together
with their first order derivatives at the point O.

In Chapter IX we examined the succession function f (p) defined on a ray
extending from the point O, and the function d (p) = f (p) — p. Both these
functions are of the same class as ¢ andvy. The values of the derivatives
of d (p) at the point O are known as the focal values. We have seen (§24.2,
Lemma 5 and (25)) that

d(0y=d’ (0) =d" (0) =0. (29)

If d” (0) %= 0, 0(0,0) is a multiple focus of multiplicity 1 (see $24.2,
Definition 26). If 4"(0) = 0, O is either a multiple focus of multiplicity
m>1, or a multiple focus of indefinite multiplicity, or a center, or a
center-focus.

Theovem 57. If a system of the first degree of stvuctural instability
in W has equilibvium states with pure imaginary characteristic numbers
in this region, it is a wmultiple focus of multiplicity 1, i.e., d" (0) = 0 for
this point.

Proof. Suppose that the theorem is not true, i.e., for the point
0(0,0) of system (28) we have

d” (0y=0. (30)

As we know (§24.3, (35), (36)), system (28) may be written in the form

3
E =Pz, y)= —Py+Po(z, 1) +Ps(z, y)+ D) 23-9yePl(z, ),
a=0

(31)

3
% =Q(, N=Ppr+Q:(z ¥)+0: (= y)+ 2 +3-9*0%(x, ),

=0
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where P, and Q, (P; and Q;) are homogeneous polynomials of degree 2 (of
degree 3), and P%(z, y) and Q% (z, y) are continuous functions which vanish
for z=y= 0.

Let §,> 0 be the number defined by Lemma 3. Let further Br and a; be
polynomials which provide an adequate fit of the functions P4 and Q% and
vanish at the point 0(0,0). Then the system

3

& = —By+ Paia W) +Ps(z, W)+ D 2Pz, ») =Pz, ),
a=0 ~
(3)

3
F =Pzt Q:(z, ) +0:(=, v)+ 2 2-%Qh(z, y) =0(z, y)
a=0
is 84/2-close to (A) and the point O is its equilibrium state with pure
imaginary characteristic numbers. Let d(p) be the analog of d(p) for
the system (A). It follows from equality (30) and from Lemma 6, $24,3 that

a=0) =0. (32)

Since (A) is an analytical system, the last equality shows that 0(0, 0) is
either a center or a multiple focus of multiplicity p> 1 for this system.
We will now show that it cannot be a center.

Indeed, suppose that O is a center of (A). Consider the system

LB @ +y, Z=0@ pp@Etda, (A1)

where p==0, with the corresponding function di(p). For a sufficiently
small p, system (A,;) is §-close to system (A) (i.e., to system (28)).
By Lemma 7, $24.3, we see that

) =d(0)=0, d,0)= 12::-*5- #0,

i.e., Ois a multiple focus of system (A,). Thus, (A) and (},) are struc-
turally unstable systems 8,-close to (A), and the equilibrium state O is a
focus for (A,;) and a center for {A). This clearly contradicts Lemma 3.

We have thus established that O is a multiple focus of (A).

Then, by LLemma 3, Jis also a multiple focus of the original system
(A). We will show that this conclusion involves a contradiction.

Indeed, let O be a multiple focus of (A). Then, if >0 is sufficiently
small, all the paths of system (A) contained in U, (0) (with the exception
of the point 0) are spirals which wind onto O for t— — oo or for t— + oo,
Choose 1> 0 which satisfies this condition.

Liet e be a positive number, & < —2—, 8, 0<8<8,, a number corresponding

to e in virtue of Definition 30. Then, if some system (B) is structurally
unstable in W and is 8-close to (A), we have

(H, A)=(#,, B),

where H, is some region, and X is the region introduced in Definition 30,
We may take n> 0 so small that U,(0)c H. Then, from the above relation

(Un(0), 4= (7, B), (33)

where V is some region.
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Further suppose that O is an equilibrium state of (B). We will now
try to extract some information about the neighborhood ¥ .

By (33), all the paths of (B) contained in ¥V are spirals winding onto
the point O (the point O itself excepted). It follows from the inequality

g < -thhat Ugn (0) = V. Thus, if (l~3) is a structurally unstable system

§-close to (A) with an equilibrium state at the point O, all its paths
contained in Uy, (0) are spirals winding onto 0.
Let the system (A) constructed above be 38/2-close to (A). Since
8<8,, Ois a multiple focus of multiplicity m> 1 of (&), as we have seen.
Let (B) be the system

£ P p+e@+dy, E=0@ n+pE+)s, (Ay)

where p =0 is so small that (&) is 8/2-close to (&). In our proof of
Theorem 40 we have seen that if n is taken sufficiently small and of an
appropriate sign, (A;) will have at least one closed path in Uy, (0)(see
§25.1, proof of Theorem 40, in particular equations (3)—(9); for our
purposes k = 2). This contradicts the previous proposition that all the
paths of (A,) in Uy, (0) are spirals. Q.E.D.

Theorems 53— 57 provide a complete solution to the problem of
equilibrium states of a system of the first degree of structural instability.
They show, in particular, that if (A) is a dynamic system of the first
degree of structural instability in W, it may have only a finite number
of equilibrium states in this region, and each of these equilibrium states
is either a structurally stable equilibrium state, or a multiple focus of
multiplicity 1, or, finally, a saddle-node with ¢ %0 and a multiplicity of 2.

3. Closed paths of systems of the first degree
of structural instability

Closed paths of dynamic systems were considered in Chapters V and X,
In the present subsection, we will use the earlier notation and some of
the previous results.

First, we will prove a number of lemmas relating to the succession
function on a normal to a closed path.

Let

L =Py, EL=0@ (a)

be a dynamic system of class N or an analytical system, Lpa closed
path of this system,

z=9(), y=v(@) (Lo)

the motion correspondingto this path, ©> 0 the period of the functions ¢ and ¢.
In §13.1, we introduced curvilinear coordinates s, n in the neighborhood
of the path L,, defined by the relations

x=$(s, n)7 y:=\T:(s, n)’
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where
(s my=g () n¥ (), F(s, m)=¢(s)—n-g (s). (34)

System (A) is described in these coordinates by the differential equation
4 R n), (35)

where R(s. n) is a function of class .V (or an analytical function) which is
periodic in s with the period v and satisfies the initial condition

R(s, 0)=0.

Let n=f(s, no) be the solution of equation (35) satisfying the initial
condition f(0, ny) = ng.
Then
f(na)=j (1. no)

is a succession function on the arc without contact I defined by the equations

2@ O Y (0),  y=1¢(0)—n¢ O,

which is normal to the path L, at the point s=0. Alongside with the
succession function, we considered the function

d (ny) = f (ny) — ng.

f (nyy and d (n,) are defined for all sufficiently small (in absolute magnitude)
values of n,, say for {n, | << n¥, and they are functions of the same class as
the original system () (see Y12.2, equation (5) and the text that follows).

Let us state three lemmas (Lemmas 4, 5, 6) regarding the succession
functions of close systems. These lemmas follow directly from general
cansiderations (the continuous dependence of the solutions of differential
equations on the right-hand sides and the differentiability of solutions
with respect to parameters and initial values), and we will omit the
respective proofs. It is assumed that the modified systems

G-Pay L=0@y (%)

belong to the same class as system (A7), and we consider closeness to
rank &k, where 1 k<. ¥V (if (A} is an analytical system, & may be any
natural number).

Lemma 4. For anye>"n, there exisls § > 0 with the following
property: if (A) is 8-close to (A) to rank k, then

(@) the normal | is an arc without contact of (A) also, and
a succession function ¥ (n,) of system (A) and thus also the function d (n,) =
~F(npare defined on this arc for all ng, | no } < n¥;

(b) the functions f (n)) and F(ny) and thus also the functions d (ny) and
d (nyyare 8-close to rank k.

In what follows, we will use modified dynamic systems of a special form,
namely

%’,5=P(r, ¥) P (& YA nPa (T, Y)

d k (R n)
H=Q&, Y+ (& Y+ - g (2 )
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where p; are parameters, and p;(z, y) and g; (x, y) are functions of one class
with P and Q.

Lemma 5. There exists p*>0 such that if |p;|<p*, the normall is an
arc without contact for (A,,) and a succession function f(ng, p, Pa, -- ., ba) Of
the same class as P and Q is defined on this arc for all n,, |ns|<<n}.
Moreover,

F(ne, 0, 0, ..., 0)=f (n).
Together with (A, ,), we consider the system
& =P* (@, )P (@ Bt - HRaBh (@ B

(Ax,)
%!:’"=0* (= N+ Mgl (@ Y- Fpragn (z, 1), "

where P*, Q% p!, g¢f are functions of the same class as P and Q. Let p* be
a number satisfying the conditions of LLemma 5.

Lemma 6. For anye>0, there exists 6 >0 with the following property:
if [pi|<p*, and the functions P*, Q*, pf, qf are 8-close to vank % to the
Junctions P, Q, pi, @, vespectively, the normall is an avc without contact
for the system (A%, ,) and a succession function f*(ng, pi, s, - . ., pn) IS defined
on this arc for all n,, |n,|<<n%. The function f* is of the same class as P
and Q in all its varviables and it ise-close to rank k to7 .

The next lemma is more restricted. It deals with the system

S aP@ )t =Py p), E=0@ n+r@En=0@y. (A)

Let f(n,, p) be the succession function for this system on the normal /.
Lemma 7. For the succession function F(ro, p) of system (A) on the
normal 1, we have the equalily

b3

- ‘ (Po+Qy)ds ¥ —i (PrtQy)ds
fu (0'0)=W8 S [pY'(s)—g9'(s)] e ds, (36)
0
where the values of the functions P;, Q,, p, and q are evaluated at the
point (9 (s), v(s)).

Proof. In Chapter V we rewrote the differential equation (35) cor-
responding to system (A) in the form

_00. Ve —P& WY,
P 90, —0@ 9o, |

d.
=R, n)

where @ and ¥ are defined by (34) (see $§13.2, (12)). The corresponding
equation for (A) is

(Q+ 1) 9, —(P+pp) ¥
(P+up) U —(Q+pa) 9,

LIN T

8

(37)

where the functions P, Q, p, g are evaluated at the point (¢(s, n), ¥(s, n)).
Let n=7{(s; n, p)be the solution of equation (37) gatisfying the initial
condition 7(0, n,, p) =n,. Then identically

'ﬂ"(%ﬂz ﬁ(sv ?(S; ng, B, W), (38)
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and the succession function of (1) on the normal ! is defined by the relation
Fins, =7t ny ) (36}

(the assignment of the same symbol 7 to two different functions should not
lead to confusion, since one of them is a fanction of two argaments, and
rthe other is a function of three argumentsi.

Let

0 (s) = fu (5. 0. O (10)

Nifferentiating (38) with respect to u, changing the order of differentiation
in the left-hand side, setring n,=p = 0 and using (10), we obtain

diesy [ SR (s T (o2 7y, ) @) ] 8 (5) - [ WRisi Fus, ngy ', 1) ] (110
ds un np- 0 2 g ng -0
u n

Since for u = 0 system (A) reduces to (AJ, we have (s, 0. 0y = 0, and the
coofficient before 8(s) in he right-hand side of (11 is equal to 2822 The

on

last expression was computed in Chapter V (£13.3, (28)). Thus,

RO P @) ¥ () + Qi () () — = [n (g (D)2 OF (3. (42)

o
. , 0B (517 (53 ng, W) p) . s , s
The expression for [-————U“—"—E-L:O can be obtained by direct differentia-
ny =4

tion, using (37) and (34). Using the relations ¢’ () = P(¢(s), ¢ (s)),
¥ () =0Q (g (s), ¢(s)), we obtain

[aﬁts:ﬁs: ng. ), m] P T (=g (R (). F NG (D (43)
g ﬁ"-:‘;’ G (N2 =-(§ (sn? ’

It follows from (41), (42), and (13} that

4l . " 4 , 2 ’ 21 ¢ 7 (s)—q¢’
B P @ =t 2+ (¥ ()] 00+ BEGZEELL gy

where P, Q,, p. ¢ are the values of these funcrion= ar ~'v point (@(s), ¢ (s)).
From the relation F(0; ny. p) =n, and (101, wo find s

6(0) = fu (0. 0. 0)=0.

Integrating the linear diffeventicl eque.ion 731 with rhe initial condition

H(01 = 0, setting s=1 and using (3¢, we find

{ (Prriyids : L,
~ N o0 —~ ) (PrmGys
e -, X () — T’ (s h]
9(z) - felt 00y FpO. 0 - G ONEFF 02 R [P¥' (5)—qg (s)] e ds,

&

where the functions Py, Q. p, and ¢ are evaluated at the point (¢(s), ¢ ().
This completes the proof of the lemma.
Corollary. If (%) has the form

P, -0y, =@ p P .

‘2
N
DA
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e., if the vector field of the system is a rotated field of (A), then
0, 0)=<0.

Proof. The validity of the last inequality follows directly from (36)
since in the present case

i.
fu

PY ()0 ()= —~Q (@) PN (D—P(P(s)h P(5) P ()= — (@ (N — (P (s))* 0.
In what follows we will also consider modified systems of the form
' B —PuFE,  SL=QpFmE, (A7)

where F(z, y) is a function of class N + 1 satisfying the following conditions:
(a) Fp(s), () =0;
(b) [F(@(s), $NIEHIF, (@), YN 0.
These systems were considered in Chapters V and X.
Lemma 8. If the function d(ng)=f(ne)—n, of sysiew: (A) sciisfies lthe
equalities

dO=d"Q=...=d™ (0 =d"™ (0)=0,
whevel<<m< N, the covresponding funcltion of system (A;}‘) satisfies the
equalities
dO) = Q)=...=d™ POy =0, d"™ ©0)=pp, (45)
where B=£0, i, e., forpn=%=0, Lyis a multiple limit cycle of multiplicity m
of system (A™),
Ifd’ (0)=0, the function d(ny) of the systcm
dz . dy , . Al)
=P +pFF;, SL=Q+pFF, (Ay)
satisfies the equalities
d(0) =0, & (0)=erl—1, (46)
whevre

L= 1F@ (), BN+ Fu(@(), »E)*ds,
0

i.e., foru=s0, L, is a simple limit cycle of the system (Al).

Proof. 7The first proposition of the lemyma is contained in $286.2,
Lemma 1, and the second proposition was established incidentally in
our proof of Theorem 19 (315.2 (18)). The number § in the last equality
in (45) is a constant depending on the functionsP, Q, F, ¢, and ¢ only.

Remark, If (A)is a system of class N and for its closed path L,

(O =d" ()= . .=d™V0)=0,

where l<m<N, then for all sufficiently smallp =0, the path L, is an
m-tuple limit cycle of (AT). Indeed, if ¢"{(0) = 0, our proposition follows
from Lemma 8. If, however, d™(0)s= 0, then for sufficiently smallp,
the derivative d™(0) does not vanish either, and the values of & (0),
d"Q), . . ., d™»(0) are respectively equal to d{0), d"(0), ..., &P (0), i.c
they all vanish (see §26.2, proof of Lemma 1}.
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The nevy lemma is of fundamental importance for what follows,
Lenrma . Let{A) bz adynamic system of class N »2, and m and k
scdeirad givbers, 2<m< k<N, If (A) has a limit cycle Ly of multiplicity
m, lhe: for aiiy e >0 and 8 >0, there exists an analytical system (A)
d-ciosc to rerk k to (A) which has a limit cycle of multiplicity m inU.(Ly).
Proct, The proof will be given for the case m = 3. The proof for
m = 2 orm>3is completely analogous. Furthermore, in our treatment
of svstems of the first degree of structural instability, we willonly require the
cazem = 3,
Thus, ler Ly be a limt cyvele of multiplicity 3 of the svstem (A). Then

Ay =0. & @O)=0, d"©)=0, d"(0)z0. (47)

We fix the numberse ~ 0 and § >0 and choose F(z, y) to be the function
of class ¥ + 1 defined akove (satisfving conditions (a) and (b)). Consider
the modified system

2L F @ ) —peQ(z, o)+ (@ 9 Frla y). 1
(A
Y Gl P+poP @, Y+ & DF Y "

and rhe corresponding function d=d (ng, py, py). Let po and y; be so small

“har tA,1 is 8 -2-close to rank & to (A), and the function 4 is defined for
il ng, |ngl<<n?, for which 4(ng) is defined. Clearly,

‘7(’70’ 0, 0) = d (no). (18}
“rony (17 and (181 we see that the equations
d iy Moo W) =0, dn, (Mo, Ro» i) =0, @ns(mo, pov 1)) =0 (49)

heve a siniulraneous scelution ng=0, p=0, u;=0. Consider the Jacobian of
rhiz =vsiem of equarions, We have

5 dny du, !
D(d, d, ., d}) ~
0 o d u

A (0. Mo ) = —p bt =

3 %

¢
3 ~r
:d
n oty oMo -
oy Terr

ng d"&“x

U

"
¥
nou

=

0!

Crom (48 and (47) it follows t~hat~d7.o (0,0, 0)=0. d7z (0. 0, 0)=0, dn§ (0, 0, 0)== 0.
Let us compute tiie ¢iements dp,, dy,, and dnp, at the point (0, 0, 0). In the
cotnpurarion of the numboers c?,;' 0, U, ) and d‘:,‘),,l (0, 0,0) we may evidently
rake fron: rhe start gy = 0, i.e., we mav consider the function d cor-
responding to the systerr %“;:P—(—p,FF;, %—yt—:o—;-plFF;. Lemima 8 is thus
applicable. By the first equation in (46), d(, 0, u,)=0. Therefore,

dy W V. V) =0. Now, by the second equation in (46), dy (0,0,p,)= "/ —1,
0,0, O)=1s0,

where Is= 0, Therefore, J;"o"'x
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For the computation of J;Lo (0, 0, 0) we may assume from the start p, = 0,

i.e., we may consider the function d corresponding to the system
d d
GF=P—u  F=0Q+nP.

Then, by the corollary from Lemma 7, d, (0,0, 0) 0.

Thus, for ny = pg = py = 0, none of the elements of the Jacobian
A (ny, po. uy) along the second diagonal vanish, whereas all the elements
left of this diagonal are zero, i.e., A (0, 0, 0)5= 0. Therefore, by the
theorem of implicit functions, ng=p,=p;= 0 is the only solution of system
(49) in a sufficiently smaill neighborhood of the point (0,0, 0).

Consider the analytical system

d 5 A . d A 5 4yt
F=P—pQ+wFl,  E=0+pP+pFF, (A,)

where P,Q are polynomials which are §;-close to rank k to the functions
P and @, respectively, and F is a polynomial 8;-close to rank k+ 1 to the
function F. Let d (no, Ko, py) be the function corresponding to this system,
and

‘i (nO- Ko, Mi) = O, ‘i;no (n01 Ko, P«l) = Oo d:’z% (no» Ho» P’i) =0 (50)

the equations corresponding to system (49). By Theorem 4 (the theorem
of a small increment of implicit functions, §1.2), system (50) has a unique
solution in a sufficiently small neighborhood of the point (0, 0, 0) if d is
sufficiently close to rank 2 tod. On the other hand, by Lemma 6, if §; is
sufficiently small, d is as close as desired to rank & tod, where kp»m= 3.
Therefore, we can choose §;> 0 so small that the following conditions are
satisfied:

Vs < g5

2) system (50) has a unique solution (n,, ji,, ;) in a certain neighborhood
of the point (0, 0, 0) which is as close as desired to zero.

Furthermore, if §;, po, By are sufficiently small, an additional condition
is satisfied:

3) ‘{'né (Ro, o By) 5= 0. (51)
This follows from (47).

Suppose that all these conditions are satisfied. Then

d BN AL oas d AL e T
F=P—poQ+pFFy =0+ P+ pFF (&)
is an analytical system §-close to (A) which by (50) and (51) has a triple
limit cycle L, corresponding to the value 7, of the parameter n, and contained
inU,(Ly). This completes the proof of the lemma for the case m = 3,

For m = 2, the system (A,) should be taken in the form

d d
d—f=P—Hon %=Q+P«opy

and in the general case, we should take the system
82— P—poQ+ WFFa PPt . oo P ™ F,
B O poP -+ WFFy + aFFy + . ..+ hneaF "
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In all other respects, the proof for m % 3 is the same as for m = 3.

Theorem 58. If the dynanic system (A) is a system of the first
degree of structural instability in W, it may only have isolated closed
paths in this region.

Proof. Let L, be a closed path of (A) inW. We will consider, as
before, the normal { to the path L, at one of its points and the function
d (ny). Let this function be defined for all ny, | ns | << n}, and let the path
L, correspond to np = 0. H is the region introduced in the definition of
a system of the first degree
of structural instability, H o W.

Let Q, Q <« H, beaneighbor-
hood of the path L, with the
following property: any path
of (A) passing through a point
of Q crosses the normal | both
for increasing and decreasing ¢
in the segment | ny | <n¥. A
sufficiently small canonical
neighborhood of L, may be
chosen as Q (Figure 148).

Consider a neighborhood U
of the path L contained inside
Q at a positive distance from
FIGURE 148 its boundary (in Figure 148,

Q is the entire diagonally
hatched region and U is the

densely hatched region). Lete>0 be so small than an e-translation
leaves the neighborhood U inside Q. Let further 8> 0 be the number
corresponding to e according to the terms of Definition 30. Let §,,
0 < &, < 8, be so small that if (A) is §,;-close to (A), each path of (A)
passing through points of the region Q crosses the arc without contact
{in the segment | n, | << 7§ both for increasing and decreasing ¢, and the
function d (n,) of (A) is defined for the corresponding values of the
parameter n,. By assumptiond (0)=0. Since (A) is a system of
class 3, the numbers d’ (0),d" (0), d” (0) exist. If at least one of these
numbers does not vanish, L, is a limit cycle (a simple, a double, or
a triple one), i.e., it is an isolated closed path, and the theorem is
proved.

Now suppose that

d(0)=4d’ (0) =d" (0) =d"(0) =0.
Consider the system

P4 uFF,  W_QiurF, (&)

For ps= 0 and a sufficiently small 8§, (A)is 8, /2-close to (A), and by
Lemma 8, L,is a limit cycle of multiplicity 3 of this system.

By Lemma 9, there exists an analytical system (A) 8,/2-close to (&)
which has a limit cycle L, of multiplicity 3 in any arbitrarily small neighbor-
hood of the path L,. System (A) is 8,-close to (A) and is structurally un-
stable. Therefore, (H, A) = (H, A), and consequently

U, =@, A, (52)
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where U is some region. Since U is obtained by e-translation from U,
we have U= Q.

Consider the function d (ne) corresponding to the system (A). It is
defined for all ny, | ny | << ny, and is analytical. Let no be the value of the
parameter n, corresponding to the cycle L,. We may take | no | << n*.

Since L, is a limit cycle of multiplicity 3, 4" (no) 5= 0 and therefore d (no) = 0.
But then, because of analyticity, the function & (n,) may have only a finite
number of roots for | ny | < n?, i.e., (A) may only have a finite number of
closed paths in , and therefore in &. These paths are isolated, i.e.,

they are limit cycles. The mapping of U onto U which implements the
relation (52) moves one of these cycles into the path L,. Therefore, L, is
also a limit cycle, i.e., an isolated closed path. This completes the

proof of the theorem.

Theorem 59. If{(A)is a system of the first degree of structural
instability in W, every closed path L, of the system contained in W is
either a simple (i.e., structurally stable) or a double (of multiplicity 2)
limit cycle.

Proof. Suppose that the theorem is not true, i.e., (A) has a closed
path L, in W which is neither a simple nor a double limit cycle of the system.
Let L, correspond to the value n, = 0 of the parameter on the normal ! to
the path. Let f (n,) be the succession function on I, which is a priori defined
for all ng, | ng | << n¥, and d (ng) = f (ng) — ny.

Then

d (0)=d’ (0) =d” (0) =0. (53)

According to the previous theorem, -L, is a limit cycle of (A). Therefore,
if n>0 is sufficiently small, L,is the only closed path in U, (L,), and all the
other paths passing through this neighborhood wind onto L,. Let this condi-
tion be satisfied. Moreover, let U, (L) < H, where H is the region intro-
duced in Definition 30.

Let V be a neighborhood of the path L, such that V< U, (L,); lete>0 be
so small that if 7 is generated from U, by an e-translation, then U o V.

Let further §> 0 be the number corresponding to this e in virtue of
Definition 30, Then for any structurally unstable system (A) §-close

to (A) we have (H, A) = (#, 4) and therefore
Ua(Lo), ) =T, B, (54)

where U is some region containing V.

Since L, is a limit cycle of (A), d(no) retains a constant sign for all
sufficiently small ny> 0. Suppose that d (ng)> 0 and n{® is a sufficiently
small number. Then d (n;*)> 0.

Consgider the system

d ’ d, - A
SF=P+ppF, X =Q+puFF, (A)

where F (z, y) is the function of class 4 repeatedly encountered in the
preceding. d (no) is the function corresponding to (A).
TLet p50 be so small that the following conditions are satisfied:
1) (A) is 6 -close to {A).
2) d((n{)> 0,
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By (53) and Lemma 3 we see that the path L, of (A) is a double limit
cycle of (A) and that d (0) =3'(0) = 0, 4" (0) = up, where p = 0isaconstantin-
dependent of p. If the sign of p is chosen as minus the sign of §, an addi-
tional condition is satisfied:

3) @ (0) = pp<o0.

By MNaclaurin's formula d (ng) =
ng, d (ng) < 0.

Let n? > 0, n? << ny!' be sufficiently small. Then

a"(0)

21 n® + o (n)), and for sufficiently small

1) d (»®)<0.
From conditions 2 and 4 it follows that there exists ng’, n» << ny¥ < nt?,
such that d (n) = 0. The number r® corresponds to a closed path Z of

svstem (A) which does not coincide with L,. If ¥ and p are sufficiently
small, we have L= V. Thus, for a sufficiently small nof an approprlate
sign, (A) has at least two closed paths L, and L in V" and hence in T.

Since L, is a limit cycle of multiplicity 2, (A} is structurally unstable.
This contradicts relation (54), which indicates that U contains only one
closed path of (A). The theorem is proved.

Remark. We considered systems of class 3, i.e., structural
instability of the first degree was treated in relation to the space R®(see
35.1). This proof is inapplicable to the class of analytical functions, since
the analytical function F (z, y) with the desired properties in general can
be constructed only in a neighborhood of the path L,, and not in the entire
region G. To prove the theorem in the analytical case, we may proceed
as follows: construct, as before, a system (A) of class 3 which has a
double cycle L, and a closed path Z inV. By Lemma 2, §15.2, there
exists an arbitrarily close system of class 3, (A,), which coincides with
(A) everywhere except & small neighborhood of the path £ and which has
in that neighborhood, and therefore in V also, a structurally stable limit
cycele ;. By Lemma 9, on the other hand, there exists an analytical
svstem (A,) arbitrarily close to (A,) which has a double limit cycle in
a neighborhood of the path L,. If (Ag) is sufficiently close to (A,), it has
a structurally stable limit cycle L, in the neighborhood of the cycle L.
Thus, the analytical system (A;) has two closed paths in V', and we again
end up with a contradiction to identity (54).

4. A saddle-point separatrix forming a loop

A saddle-to-saddle separatrix was considered in detail in Chapters 1V
and XI. In Chapter IV (§11) we established that a structurally stable
system can have no such separatrices. In Chapter XI we considered a
separatrix forming a loop and derived some of its properties.

In this subsection we will deal with a saddle~to-saddle separatrix of
a system of the first degree of structural instability. The case of a
separatrix between two different saddle points is of no interest for our
purposes, since these separatrices are not characterized by any addi-
tional new properties in systems of the first degree of structural instability.
We will therefore consider the case when a saddle-point separatrix goes
to the same saddle point for both t » — 0 andé— + o, i.e., it forms a
loop. The results follow almost directly from the findings of Chapter XI.
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Let (A) be a system of the first degree of structural instability in
W, O (z,. yo) 2 saddle point of (A), L,a separatrix of the saddle point 0 which
is contained in W and forms a loop there. As in Chapter XI, we assume
that the other two separatrices of the saddle point O lie outside the loop
formed by the separatrix Ls.

Lemma 10. There exisls e, > 0 such that the e,-neighborhood of
the loop L, does not contain any closed paths of (A).

Proof. Suppose that the lemma is not true, i.e., any neighborhood
of the loop L, contains closed paths of (A). Then by Theorem 44, §29

0o = P% (%o, yo) + Q@ (%0, ¥o)=0. (55)

Closed paths passing sufficiently close to L, clearly may only lie
inside the loop. )

Let H be the region introduced in Definition 30, #OW. Let further
1> 0 be so small that the neighborhood U, (L) H does not contain any
equilibrium states of (A), except the point O, nor any closed paths which

lie inside the loop L, (Figure 149)., Take some g, O<e<% . Definition 30
assigns a certain number § > 0 to this & such that if (A) is 6-close to (A)
and is structurally unstable, we have (H, A) = (H, 4). Then
L
Un (L), A)=(V, (56)

where V is some region.

Wiy
///////

i

/
Vi /
i

T

y

From identity (56) and the inequality e<—2l we have

FIGURE 149

Upz (L) = V.

We moreover see from (56) that ¥ contains precisely one saddle point O
of system (A) and precisely one loop L, formed by the path of (&) cor-
responding to the path L,. Finally, by the same relation (56), any
neighborhood of the loop L, should contain closed paths of (A). This,
however, contradicts the results of Chapter XI. Indeed, by Lemma 10,
§29.4, there exists a system (A) 6-close to (A) for which O is a saddle
point; this saddle point has a separatrix L, entirely contained in Ux(Ld)
and moreover z

To (@0, Yo) = P (20, #0) + T} (o y0) > 0.
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Py Theorem 44, 329.1, on the other hand, the loop L, is unstable, i.e.,
a sufficiently small neighborhood of the loop can contain no closed paths.
This proves the lemma.

Lemma 10 evidently implies that if (A) has in W a separatrix which
forms a loop, this loop is either stable or unstable.

Theorem 60. If asystem of the first degree of structural instability
in W has a saddle-point O (z,, yo) Whose separatrix forms a loop contained
inW, then o, (z,, yo) + O.

Proof. Suppose that the theorem is not true, i.e., system (A) has a
saddle point O (z,, yo) whose separatrix Ly is entirely contained in W and
forms a loop, and yet o (%o, ¥o) =0.

In our proof to Theorem 50 (§29.4) we showed that if the loop L, is
stable (or unstable), and o, (zg, ¥o) =0, then for any n>0 and § > 0 there
exists a system (A) §-close to (A) which has in Uy (Lo) a separatrix that

2

forms a loop and at least one closed path.

(A) is a structurally unstable system, and therefore for appropriate
e¢and 8, relation (56) should be satisfied for this system. On the other
hand, this relation carnot be true since for sufficiently small 1 ande,

U, (Lo) does not contair. closed paths of (A) and ¥ contains at least one
closed path of (A). The contradiction establishes the validity of the
theorem.

Theorem 60 signifies that if a system of the first degree of structural

_instability in W has a saddle point O (z,, yo) for which o, (24, ¥¢) = 0, no
separatrix exists for tais saddle point which forms a loop and is contained
entirely in W,

5. The simplest structurally unstable paths

As we know, singular paths of a dynamic system, i.e., equilibrium
states, limit cycles, and separatrices, are the most important elements
for the analysis of the topological structure of a dynamic system on a
plane. By Theorem 23, $18.2, structurally stable systems may only
have singular paths of the following types:

{a) structurally stable equilibrium states — nodes, saddle points, and
simple foci;

(b) structurally stable limit cycles;

(c) saddle-point separatrices going to a simple node, a simple focus,
or a simple limit cycle or leaving the region of definition.

Any structurally unstable system, in particular a system of the first
degree of structural instability, should have at least one singular path
which does not fit the sbove classification. Consider the following addi-
tional types of paths:

1. A multiple focus of multiplicity 1.

2. A saddle-node of multiplicity 2 with ¢ = Py + Q} 5=0.

3. A limit cycle of multiplicity 2.

4. A separatrix from one saddle point to another saddle point.

5. A separatrix of saddle point M (z,, ¥o) which forms a loop when
o (g, ¥o) 7= 0. '
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The paths of these five types will be called the simplest struc-
turally unstable paths. The existence of these paths in systems
of the first degree of structural instability does not contradict Theorems 53
through 60. On the other hand, a dynamic system (A) of the first degree
of structural instability in W should have in this region at least one simplest
structurally unstable path (otherwise, it would be structurally stable in W),
We will show in this subsection that a dynamic system of the first
degree of structural instability in W cannot have more than one simplest
structurally unstable path in this region.
First we shall prove a number of lemmas.
Lemma 11. Let L, be a separalvix of the saddle point O of a dynamic
system (A) of class N which extends lo another saddle point 0,. There
exists asimple closed curve of class k (k being a
given numbev <N + 1) which passes through the
points 0 and 0,, encloses L,, and does not enclose
any other sepavalvix ov any equilibrium state of
system (A).
Proof. We shall first show that an arc { of
a parabola can be passed through the point O, which
has no contacts with the paths of system (A) except
at the point 0 (Figure 150). Without loss of generality,
we may place the point O at the origin and represent
the system (A) in the canonical form

e N Y C ) - PRSI CA (57)

FIGURE 150

where ¢ and ¢ are functions which vanish at the

point 0(0, 0) together with their first order derivatives
(see $8.1, (1), (2)), and Ah, <O,

Ry assumption, all our systems, system (A) included, are systems of

class 3. The functions ¢ and ¢, by Theorem 5 of the Appendix (see
Appendix, subsection 2), may therefore be written in the form

2
@ (z, yY)=anr®+ apry +any® + 12012_“?’1); (=, ¥,

(58)
2
Y (x, y) = bya® -+ baxy 4 bogy® - aéo z2=2y*Qg (z, y),

where P& and @ are continuous functions, which vanish at the point 0(0, 0).

Consider the parabola y = Cz?, where the value of the coefficient € will
be chosen at a later stage. The condition that the parabola y = €Cz? is
tangent to a path of system (57) can be written at the point of contact in
the form

2Cz Mz 4@ (x, Y] — [y +P(x, y)1=0.

Inserting for ¢ and ¢ their expressions from (58) and substituting Cz?
for y, we obtain

22 [(2Ay —Az) C— byy] 40 (z%) = 0. (59)

by
Py —Rp

all z, |z | << z,, where zy is a sufficiently small positive number, the arc

Since MA,<0, we have 20 — A, %0, Therefore, for any C 5= and for
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of the parabola y = (z* is withour contact with the paths of system (57),
except at the point 0. We designate this arc /.

The arc | clearly can be drawn so that the separtrix Ly of the saddle
point O lies on one side of the arc { (on the concave side of the parabola},
and the nther three separatrices lie on the other side of the arc. An
analogous arc [, of the parabola can be drawn through the saddie point O,
(Figure 150},

[Let O be an «-limit point of the path L;, and 0, its o~limit point. The
points O and O, respectively divide each of the arcs ¢ and [, into two parts:
and ", { and {{. It is readily seen that any path crossing the arc { suf-
ficientlv close to the point O will also cross the arc {;, and any path
creossing the arc " wiil cross [;. Choose one arc of each of these pairs.
We obtain a simple piecewise-smooth closed curve made up of the seg-
ments P'P" and Q'Q" of the arcs ! and {, and the arcs P'Q’ and P"Q” of paths.
This clnsed curve evidently encloses the separatrix L,.

On the arc OP' we choose a point 4 which does not coincide either with
O or with P, and on the arc P'Q’ of a path we choose a point B. Since [ is
an arc withour conract, we can always join the point A to the point B by an
arc (without contact), which at the point 4 and at the point B has a point of
conract of anv desired order k<N + 1 with the arc ! and respectively with
the arc of the path (this is readily proved using QT, §3.5, Lemma 8).
Nrawing three other analogous arcs (Figure 150) we obtain a simple
closed curve of class k& which completely encloses the separatrix L, and
does not enclose other separatrices or any equilibrium states of the
system. Q.E.D.

Remark. The number k, in general, should be <¥ +1, since the
paths of systems of class ¥ are curves of class N+ 1, and acrording to
the construction used in the proof of the lemma, segments of these curves
are included in the closed curve.

Lemma 12. Let L, be a separatrix of system (A) of class N which
originates and ends in the saddle point O (forming a loop L), and lel there
be a neighborhood of L which does not contairn any closed paths (so that
the loop is stable or unstable). Then there exist two simple closed curves
¢’ and C” of class k, wheve k is any fixed integer, k<N + 1, one of which
encloses the loop L and the other is enclosed by the loop L, such that the
annulay region between C' and C* contains no equilibrium states, no closed
curves, and no sepavatrices (except L) of system (A).

Proof. Suppose that the other two separatrices of the saddle-point 0
(different from Lo) lie outside the loop formed by the path L.

We can always pass through the saddle point O a segment of a straight
line which will be without contact at all points sufficiently close to O (other
than O itself) (see QT, §$7.3, p.155). Let I be such a segment which con-
tains O and is withou" contact with the paths of (A) at all points other than
0 (Figure 151).

Let I" and I” be the two segments into which ! is divided by the saddle
point 0. It is readily seen that any path crossing the segment I’ at a
point P’ sufficiently close to O will cross I" at some point P",

We thus obtain a simple closed piecewise-smooth curve enclosing
the loop L, such that the region between this curve and L contains no
equilibrium states, no closed paths, and no separatrices (this is readily
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verified, since arcs of paths crossing the
segments I’ and I" of the arc [ pass through
all the points of this annular region).
""'Smoothing" this piecewise-smooth curve
by the same technique as in the previous
lemma, we obtain one of the two simple
closed curves, C'say, postulated by

the lemma.

The second curve C” can be chosen as
a cycle without contact, sufficiently close
1o the "'loop'" (Figure 151). The existence
of this cycle is established in QT, §24.3,
Lemma 2.

The same proof can be used in the case when the two other separatrices
of the saddle point O lie inside the loop formed by the separatrix L.

This completes the proof of the lemma.

Lemma 13. Letvy be a simple closed curve of class k in some region G.
There exists a function z = ® (z, y) of class k — 1, defined in G, whichvanishes
at the points of the curvey, takes on positive values inside y and negative
values outside v, and at the points of the curve v satisfies the relation

FIGURE 151

2+ D 52 0.

Proof. Choose the arc length s reckoned from some fixed point of
the curve as the parameter of y. Then, as is readily seen, ycan be
written in parametric form z=¢ (s), y =¢ (s}, where ¢ and ¢ are functions
of class £ +1, svaries from 0 to some 1, and @ (t)=¢ (0), ¢ (z) = (0). Since
vis smooth, ¢’ (s)and ¥’ (s) do not vanish simultaneously for any s, 0<s< .

In the neighborhood of y we define a curvilinear system of coordinates
(s, n) by the equalities

=9 () +ny () y=v()—ne (s), (60)

where the right-hand sides are evidently functions of class k. According to
Chapter V (see §15.1, Lemma 1 and Remark 1 to the lemma), equations (60)
define n as a single-valued function of the coordinates # and y in some
neighborhood of the curve y:

n=2F(z, y),

where F is a function of class k¥ — 1 which vanishes on y, is positive on one
side of y and negative on the other side of y, and on y satisfies the relation
F24-Fl50. We can choose the direction of the normals so that the function
F (z, y) is positive inside the curve ¥ and negative outside this curve. Con-
sider any two closed curves y, and y, defined by the equations n = n, and
n = ng, respectively, i.e., F (z,y) = nyand F (z, y) = n;, where the numbers
n; and n, are sufficiently small and 0 << n; << n, (Figure 152).

Let f= f (n)be a function of clags ¥ — 1 defined for 0 < n << oo, which
satisfies the following conditions:

1) f(ny=nfor OLngny

2) f(n) = n, fornpn,;

3) ny<f(n)<n, for ny < n< n, (a specimen graph of the function f(r) is
shown in Figure 153; a similar function was constructed in §15.2
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in the proof of Lemma ). The function @ (z, y) will be defined inside the
curve y by the following conditions:
1) in the ring between y andy:,

D (z, y)=f(n)=f(F (z, )
2) inside ys,

D (z, y) = n,.
Z Flni
Z
-
Zi FA A ”
FIGURE 152 FIGURE 153

@ (z, y)is similarly defined outside the curvey. The function @ con-
structed in this way evidently meets all the conditions of the lemma. Q.E.D.
Lemma 14. Let

L =P@y. E=0@y (a)

be a dynamic system of class N, L its separalvix extending from saddle
point 0' to saddle point 0" ( 0’ and 0" may be the same poinl). For any
8> 0and r<N (ris a natural nuimber), there exists an analylical system
(A) 8-close to rank r to (A) which has a saddle-to-saddle separalrix.

Proof. Through some point M of the separatrix L, we draw an arc
without contact [ and define a parameter u on this arc, so that the point M
corresponds to u = 0. To fix ideas, let the separatrix L make a positive
angle with the are I (Figure 154).

By the fundamental theorem of the structural stability of dynamic
systems (Theorem 23, 3 18.2), the dynamic system (A) is structurally
stable in sufficiently small neighbor-
hoods of the segments O'M and O'M
of the separatrix L. Hence it fol-
lows, as is readily seen, that a
number n > 0 exists with the following
property: if (&) is n-close to (A),
then in a sufficiently small neighbor-
hood of the saddle point 0" (0") there
exists a single saddle point &' (0" of
the system (A) and the separatrix
I’ (E") of the saddle point 0’ (0") crosses
the arc without contact ! at the point
M’ (M7 corresponding to the value
2’ (@") of the parameter u, so that the segment O’'M’' (0"M") of the separatrix
1’ (L") is contained inside an arbitrarily small neighborhood of the segment
O'M (0"M) of the separatrix L (Figure 154).

FIGURE 154
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L.et 3 be a positive number, §, <"7, 6,<—g— .
Consider the system

dz dy
=P—2Q, F=0+rp. (Ay)

Let ;> 0 be so small that for all &, | A | <Ay, (Aa) is §,-close to rank r to
(A). Let A >0, Ay <<Ag, A3<<0, [Az|<Che. On passing from (A) to (A,)
(i = 1,2), the separatrix L branches into two separatrices L; and L} which
cross the arc { at the points N; and Ni, respectively. Let these points
corresgpond to the values ' (A;) and u" (&;) of the parameter u. By the
lemma of S11.1, we have

u (A) >0, u”(A) <O,

u (M) << 0, u"(Ag) >0, (81)

(Figure 155).

Let P* and Q* be polynomials which provide a sufficiently close fit of
the functions P and Q so that the following conditions be satisfied:

1) For all A, |A] <Xy, the system

& o0t =t art (A4

is 8-close to rank rto (A).

2) The separatrices I’ (A,) and I” (&) of (&),) cross the arc without contact !
at the points &’ (A,) and N"(,) corresponding to the values a' (&) and u”(A,) of
the parameter which are so close to the points N; and Nj that

7My=>0, WR)<O0. . (62)

3) The separatrices I’ (A;) and L"(A;) of system (A,,) cross the arc without
contact I at the points N’ (&) and N () corresponding to the values u’ (A;) and
u’ (A) of the parameter which are so close to the points N] and N; that

W ()<< 0, @ (hs)>=>0. (63)
Ry (62) and (63), we have

U (M) —8" (hy) >0,
u' (o) —ud" (hg) < 0.

'
4
Z
Vil P
FIGURE 155
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Since 4’ and 4* are continuous functions of the parameter A, there exists
a number X, A, << A<<Ay, such that

@’ (hy =u" (A).

This implies that the separatrix of the system (Ajz) extends from saddle
point 0 to saddle point O". Since (:\,;) is 8 -close to rank r to (A) and is an
analytical system, it satisfies all the propositions of the lemma. Q.E.D.

Theorem 61. If (A} is a dynamic system of the first degree of
structural instability in W, it may have at most one simplest structurally
unstable path in this region.

Proof. Suppose that (A) has two simplest structurally unstable paths
in . In our proof, we do not distinguish between paths of type 4 and type 5
tsee p.351), i.e., a saddle-to-saddle separatrix may be a separatrix between
rwo different saddle points or a separatrix forming a loop for a saddle point
with 0% 0. We moreover assume that all the systems are analytical, i.e.,
we are dealing with strucrural instability of the first degree with respectto
the space RY’, where r>» 3. Our proof remains in force, as is readily seen,
in the nonanalytical case as well (i.e., for the space R{, 3<r<N), and
some arguments can actually be simplified in the nonanalytical case.

Let us consider successively all the possible cases of two simplest
structurallv unstable paths in W,

1) System (A) has two saddle-nodes in W .

Let one of these saddle-nodes be the point 0(0, 0), and the other 0O, (a, b),
and let the system (A) have the form

d d
Z=p@ oy Sr=y+ql o), (A)

where p(0, 0)=p;(0, 0y=r; (0, 0)=¢q (0, 0) =gx(0. 0) =g, (0. 0)=0 (see $31.1, (11)
and {12)).
Since (), (a, b) is a saddle-node, we have

Px(a, B} py(a, b)

giia b 1+gya b= (64)

Aa, b=

Consider the modified svstem

&b ) p P @b =Pz, ) L=yt g(z, =0 »).  (X)

where p==0. For anyu, the point O,(a, b) is a multiple equilibrium
state of (A), since A(q, t)=A(a, )= 0. (A) is therefore structurally
unstable.

Let y=0¢(z) be a solution of the equation y+¢(z, y)= 0 in the neighbor-
hood of the point 0(0,0), and let ¥ (z)=P(z, () =p(z. ¢ (z)). Since O is
an equilibrium state of multiplicity 2 for system (A), the function ¢(z) has
the form

P (1) =2tz + ..., (65)

where a0 (Theorem 33, §23.1).
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We will now search for the equilibrium states of (A) in the neighborhood
of 0(0,0). To this end, we have to solve the simultaneous equations

Bz, =0, J(z, y)=0

or, equivalently,
y=9 (.’L’), Q(x, P (I)) =0.

Since @ (z)=¢ (x)=0 (see (15), (16)), the series expansion of the function
@ () does not contain any terms below second order. Therefore,

0@z, 9 (@) =p @, ¢ @) +pl(z*—a+ (¢* (2) — b} =
=0zt o+ .. p et B —2patat - . L =p(at - ) ot ..,

where a, st 0, and the missing terms are of third or higher order in all
the variables p and z jointly.
We thus have to find the roots of the equation

p(@ 4 ) dopatb ... =0 (66)

which are close to zero; in this equation p 40, a3 0. A detailed investiga-
tion of the roots of this equation will be given in the next chapter, in §32.
In particular, it follows from Lemma 2 of this section that if p is sufficiently
small and its sign is minus the sign of «,, equation (66) has precisely two
real roots, which both go to zero for p— 0. This signifies that for a
sufficiently small p of an appropriate sign, system (A) has at least two
equilibrium states in any neighborhood of the point 0(0,0). Since (A) is
structurally unstable, this contradicts Lemma 2 of the present section.

2) System (A) has a multiple focus (of multiplicity 1) and a saddle-node
in W,

Without loss of generality, we may place the focus at the origin 0(0, 0)
and write (A) in the form

B eyt R =P ¥ L=zt 1) =0 y), (a)

where @ and ¥ are analytical functions whose series expansions start with
quadratic terms. Let O,(a, b)EW be the saddle-node of (A).
The modified system is taken in the form

‘;—::P—-pQ:ﬁ, %—=Q+FP=6y (A)

which is obtained from system (A) by rotating its vector field through
the angle tan™'y.

Since O, (a, b) is a saddle-point of (A), we have P(a, b)=Q(a, b)=A(a, ) =0.
From these relations and fromthe obvious equality A(z, y)=A(z, » (1+n*) we
conclude that P(a, ) = 7] (a, &)= Afa,b)=0, i.e., the point O, is a structurally
unstable equilibrium state of (A).

(A) is thus a structurally unstable system. Reasoning as in the proof
to Theorem 57 (§31.2, (33) and (34)), we can show that if p is sufficiently
small, (A) can have no closed paths in some neighborhood ¥ of 0. By
Remark 3 to Theorem 14, §10.3, for a sufficiently small n of an appropriate
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sign, (A) has at least one closed path in any arbitrarily small neighborhood
of 0. We have established a contradiction, which proves the theorem for
this case.
3) System (A) has two multiple foci in W,
L.et one of the foci be 0(0, 0) and the other 0, (a, ). We write the system
in the form
dx dy

=yt =Py, Gr=z+¥( =0 ) (a)

The modified system is

L Py —pllz—a)?+—HHQ=P(z. y), -
L =0y +ulle—aP + y—b?1P =0z, y).

Since the point 0, (a, b) is a2 multiple focus of (A), we have A (e, 5> 0,
G (a, b) =0, A direct check will show that A (a, b) = A (g, ) and o (a, b) = o (a, b).
Therefore, O, (a, b)is an equilibrium state of (A) with pure imaginary
characteristic numbers, i.e., (A) is structurally unstable.

(&) can be written in the form

%f-=—y—u(a"’+b’)x+--- , %=I—p(a’+b’)y+-.. ,

where the missing term.s are of second or higher order. The point 0(0, 0)
is therefore a siructurally stable focus of (A}, stable or unstable
depending on the sign of p. Then, as in Remark 3 to Theorem 14, we
can show that for a sufficiently small u of an appropriate sign, (&) has
at least one closed path in any arbitrarily small neighborhood of 0. We
again reach a contradiction as in case 2.
4) System (A) has a saddle-node and a limit cycle of multiplicity 2 in W,
Let 0(0, 0) be the saddle-node and L the limit cycle. The modified
system is again taken in the form

22 =P—p0=PF, L=0+pP=0, (&)

which is obtained by an appropriate rotation of the vector field of (A).
(A)is structurally unstable, since 0(0, 0) is its equilibrium state and A (0,0) =0,

We shall again use one of the results of the next chapter, namely
Theorem 71 (§32.4). By this theorem, for a sufficiently small p of an
appropriate sign, (A) has two closed paths in any neighborhood of the
limit cycle L of multiplicity 2. On the other hand, Lis a limit cycle
of (A}, and (A) is a structurally unstable system. Therefore, reasoning
as we have done often before, we can show that for a sufficiently small
u, (A) may have only one closed path in a sufficiently small neighborhood
of L. We have again established a contradiction.

5) System (A) has a saddle-node 0(0,0) and a saddle-to-saddle
separatrix L in W.

As in the previous case, (A) is chosen as the modified system.

The point 0(0, 0) is a multiple equilibrium state of (A), and therefore
() is structurally unstable. Therefore, for everye> 0, there exists p,,

such that for | p | << po we have the relation (H, A) = (#,4) and hence the
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relation (U (L), 4) = (V, 4), where U (L) is a neighborhood of the separatrix L.
From the last relation it follows that ¥V contains a saddle-to-saddle
separatrix of (A). On the other hand, in our proof to Theorem 16, $11.2,
we have seen that if the neighborhood U (L) of the path L and the numberse
and p are sufficiently small, ¥ may not contain any saddle-to-saddle
separatrices of (). We have established a contradiction.

6) System (A) has a multiple focus and a limit cycle of multiplicity 2
inW, and

7) System (A) has a multiple focus and a saddle~to-saddle separatrix
in W.

The proof which rules out cases 6 and 7 is the same. Let 0(0,0) be
the multiple focus. The modified system is taken in the form

=P @+ 0@ V=P ), A
(A)

—i—;‘i=0(z, Y4p@E2+y?) Pz, y) =0z, ¥).

The point 0(0, 0) is a multiple focus of (A) also, and (A) is therefore
structurally unstable. Furthermore, everywhere (with the exception of
the point 0), the vector field of (A) is obtained from the vector field of
(A) by a rotation in the same sense (through an angle equal to tan™!p (22 4p%).
Therefore, case 6 leads to the same contradiction as case 4, using
Theorem 71 and Remark 2 to Theorem 72. In case 7, the contradiction
is established as in case 5, using Remark 2 to Theorem 16 (§11.2),

8) System (A) has two cycles of multiplicity 2 in W.

Let L, and L, be the two cycles, U = U (L,) an arbitrarily small neighbor-
hood of L,. Using the theorem of the creation of a closed path from a
multiple limit cycle (§27.1, Theorem 42) and employing the same con-
struction as in the proof of Lemma 2, §15.2, we obtain a system (A;)
of class N>r as close as desired to (A) to rank r> 3, which coincides
with (A) outside the neighborhood U and has two closed paths, which
are structurally stable limit cycles, inside U. Furthermore, using
Lemma 9 of this section, we conclude that there exists an analytical
system (A) as close as desired to (A;) to rank r, which has a limit cycle
of multiplicity 2 in any arbitrarily small neighborhood of the cycle L,
and is therefore structurally unstable. If (A,) and (A) are sufficiently
close, (A) will have at least two closed paths in U (L;). The contradiction
is established as in case 4.

9) System (A) has a limit cycle L; of multiplicity 2 and a saddle-to-
saddle separatrix L, in W (Figure 156a).

Let the separatrix L, extend from saddle point 0, to saddle point 0,.
We choose a sufficiently small neighborhood U = U (L,) of the separatrix
L, which contains no equilibrium states except 0, and 0,. Modifying the
system (A) by a rotation of the vector field through a small constant
angle and employing the same construction as for the proof of Lemma 2,
§15.2, we obtain a system (A;) of class N >r arbitrarily close to rank
r>3 to (A) which

(a) coincides with (A) outside U;

(b) has no equilibrium states in U, except the saddle points O; and O,;
(¢) has no saddle-to-saddle separatrices in U (Figure 156b).
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FIGURE 156

Ry Lemma 9 of the present section, there exists an analytical system
(A) as close as desired to (A;) to rank r which has a limit cycle of multiplicity
2 in any arbitrarily small neighborhood of the cycle Ly, and is therefore
structurally unstable. But (A,) is structurally stable in U. Therefore,
if (A} is sufficiently close to (A;), conditions (b) and (c) are satisfied for
(X). We have thus established the existence of a structurally unstable
system (A) arbitrarily close to (A) without any saddle-to-saddle separatrices
in U. This leads to the same contradiction as in case 5.

10) System (A) has two saddle-to-saddle separatrices L, and L, in .

Two different cases are possible:

(a) at least one of the separatrices L, and L, extends between two
different saddle points;

(b) each separatrix forms a loop for its saddle point.

Let us first consider case (a). Let L, be a separatrix extending from
saddle point O to another saddle point 0,, which does not coincide with O.

The separatrix L, either passes at a finite distance from L, or at least
one of the two equilibrium states of this separatrix coincides with 0 or 0.
Since none of the points of the separatrix L, is a limit point for L,, the
simple closed curve of class k (where k is a priori known to be equal to 1)
whose existence is established in Lemma 11 may be chosen so that it
encloses L, without enclosing L,.

In case (b), several subcases should be considered. Specifically,
the distance between the loops formed by the separatrices L, and L; may
be either positive or zero, one of the two loops may enclose the other
loop or they may lie one outside the other (Figures 157 and 158).

o Zs 2,
1%
Z, o, 7
a, 2 0/@ 4 7
Lz
a b b

FIGURE 157 FIGURE 158
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Applying Lemma 12, however, it is readily seen that for each of these
subcases, there exists a simple closed curve of class ¥ which encloses
one of the separatrices L; and L, without enclosing the other.

Thus, a simple closed curve y of class k can always be chosen so that
it encloses the separatrix L;, say, and leaves the separatrix L, outside.

Let z = @ (z, y) be the function of class k— 1 defined by Lemma 13, i.e.,
a function which is zero on the curvey, positive inside y, and negative
outsidey.

Consider the modified system

$=P—AQ—p®Q, §=Q-AP+ pdP. (As)

Through a point M, of the separatrix L; we draw an arc without contact L,
and through a point N, of the separatrix L; we draw an arc without contact I,
(Figure 159).

FIGURE 159

Let u and v be the parameters defined on the arcs /; and {,, respectively,
so that u = u, at the point My and » = », at the point N,.

For all sufficiently small A and p, there exist separatrices L, and L] of
(A,,) which cross the arc [, at the points M, (4;) and M; (¥;), as close as
desired to My, and separatrices L, and L; which cross the arc I; at the
points N, (v)) and Ng (), as close as desired to No. In particular, the
points M, and M, (or N, and N;) may coincide, so that the separatrices
L; and L] (L,and L;, respectively) coincide and form a loop.

By assumption, @ (z, ¥)> 0 insidey. Hence it follows by the lemma
of §11.1 and by the remark to this lemma that if A and p are positive
and sufficiently small, (A,,) has no saddle-to-saddle separatrices in
a sufficiently small neighborhood of the separatrix L;(i.e., u; = ul;
see also the proof of Theorem 16, $11.2).

Outside the closed curvey, @ (z,y)< 0. Therefore, outsidey, the
vector field of (A,,) is rotated relative to the vector field of (A)

through a negative angle for p>0, A = 0;
through a positive angle for p = 0, A>0.




§ 31, SYSTEM S OF THE FIRST DEGREE OF STRUCTURAL INSTABILITY

To fix ideas, suppose that the separatrix L, forms a positive angle
with the arc without contact!,. Then, by (67) and the lemma of 311.1,

Loy if A =0, u>0;

ve>vs if A>0, nu =0, (68)

(The dashed curvesin Figure 158 are the separatrices L;, L], L;, Lifor A =0,u>0.)
r,and 1 are functions of the parameters A andu: v = v, (b, p), 5 = 7 (L, p),

and by remark to Lemma 3, 39.2, these functions are continuous. We
choose a sufficiently small fixed 4, >0. By (68), ¢ (A 0) > &} (Ay, 0), and

bv the continuity of v, and v}, we have for a sufficiently small u> 0

vy (e 1) >0 (hye ). (69)

Bv (68), v, (0, py<< 5(0, p) when p>0 is sufficiently small. But then, for a
sufficiently small A, > 0,

vy (Ao H) << (Bs 1), (70)

By (69) and (70) there exists A>0, A, <<i<<}, suchthatv; (R, p)=1c](. B .
The separatrices L, ard L] of {A3;) therefore coincide, forming a single
saddle-to-saddle separatrix. The system (Aj;) is thus structurally
unstable. The numbers % and p can be taken as small as we desire, in
particular, they can be made sufficiently small for (A4;) to have no
saddle-to-saddle separatrices in a sufficiently small neighborhood of
the separatrix L,.

Furthermore, if (A) is a system of class .V»3, Lemmas 11 and 12
indicate that y can be chosen as a curve of class ¥ +1 and Lemma 13
shows that @ (z,y) can 2e chosen as a function of class &N. Then (A ;;)
iz also a system of class N.

We have thus established that if (A) is a system of the first degree
of structural instability of class ¥ >»3 with two saddle-to-saddle separatrices,
there exists a structurally unstable system (Ajz;) of the same class, as
close as desired to (A}, which has no saddle-to-saddle separatrices in a
sufficiently small neignhborhood of the separatrix L;. This, however,
contradicts the definition of a system of the first degree of structural
instability. Therefore, case 10 is ruled out for a system of the first
degree of structural instability in relation to the space R, 3<r<N.

For systems of the first degree of structural instability in relation
to the space RY’ (the space of analytical system with closeness to rankr),
Lemma 14 also must be applied to prove inapplicability of case 10. Let
{A) be an analytical system of the first degree of structural instability
which has two saddle-to-saddle separatrices L, and L. Let further
r> 3 be a natural number, and § and ¢ positive numbers, &being suf-
ficiently small. As before, we can construct a system (Ajz3) of class
N>r which is §/2-close to rank r to (A) and which has a saddle-to-
saddle separatrix in U, (Lz) and no such separatrix in U, (L,).

Let §;> 0 be an arbitrary number 8§, <6/2. By Lemma 14, there
exists an analytical system (A) 8,-close to rank r to (Az;) which has a
saddle-to-saddle separatrix. If §, is sufficiently small, (A) evidently
has no saddle-to-saddle separatrices in U, (L) and we arrive, asbefore,
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at a contradiction with the definition of a system of the first degree of
structural instability. Case 10 is thus ruled out for systems of the first
degree of instability in relation to the space R{’. This completes the
proof of Theorem 61.

6. The properties of the separatrices of a saddle-node
in systems of the first degree of structural instability

Let (A) be a system of the first degree of structural instability in W
which has a saddle-node 0 (0, 0) in this region. Consider some separatrix
L of this saddle-node. To fix ideas, let this be an «-separatrix, i.e., a
separatrix which goes to 0 for t—+~—oc. By Theorem 61, the saddle-node
O is the only structurally unstable path of (A) in W, and therefore ast
increases, one of the following cases is a priori possible for the
separatrix L:

1) L will leave W.

2) L will go to a structurally stable node or focus, or to a structurally
stable limit cycle.

3) L will go to the equilibrium state O without being its w-~separatrix
(i.e., the positive semipath making up L is one of the interior semipaths
of the parabolic sector of the saddle-node 0).

4) L will be the w-separatrix of the equilibrium state 0.

5) L will go to a structurally stable saddle point.

We will prove that cases 4 and 5 are unfeasible.

First we will formulate, without proof, two lemmas that will be useful
later on.

Lemma 15. Let the sepavatrix L of the saddle-node O of system (A)
cross an arc without contact | at the intevior point M, of the arc. For
every e >0, there exists 6 > 0 such that if (A) is 8-close to(A) and 0O is
a saddle-node of (&), then

(a) there exists a single sepavatrix T of the saddle-node O of (&) which
crosses the avc l at the point M, contained in U, (M,);

(b) if the points M, and M, on the separatrices L and I correspond to
the same time t = t,, the points of the segments M0 and MO of the
separatrices L and L corvesponding to the same limes t are distant
less than ¢ from each other.

The proof of Lemma 15 is analogous to the proof of LLemma 3, §9.2
and the remark following the lemma.

Let again L be an a-separatrix of the saddle-node O of (A), M, any
point of the separatrix, ! an arc without contact through M, which has
no common points, except M,, with the separatrix L and with the other

separatrices of 0. The arc l is defined by
the parametric equations

L z=f(u), y=gu)

(- and the point M corresponds to the value u,
of the parameter.
FIGURE 160 Moreover, let the positive direction on!
correspond to the increasing parameter and
let the paths of (A) make positive angles with the arc { (Figure 160},
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We will consider modified systems (A) of the form

-~ d P ~
B =P—p@=P, L =0+pP=0, (A

which are obtained from (A) by an appropriate rotation of the vector field.

Lemma 16. If p==0is sufficiently small, O is a saddle-point of (A,)
and the arc without contact | has precisely one point M, in conumon with
one of the separvatrices T of the saddle-node 0 of (A,) and has no common
points with other separvatrices of 0. If the point M,on the arc I cor-
responds to the value u, = u, () of the parametey u, then u, (u) — u, for
p—0. Ifp>0(@<0), then i, (n)> uy (w, (n) <<uy). A similar proposition,
with suitably modified wovrding, applies when L is an o-separatrix of
the saddle-node 0.

The proof of Lemma 16 is analogous to the proof of the corresponding
lemma for the separatrix of a saddle point (§11.1}, and it is therefore
omitted.

Theorem 62. If(A)is a system of the first degree of structural
instability in W, it carnot have in this rvegion a sepavatrix which goes
from a saddle-node to a saddle point.

Proof. Suppose that the theorem is not true, i.e., system (A} has
in W a separatrix L of the saddle-node O which at the same time is a

separatrix of the saddle point O,
(Figure 161). Let ! be an arc without

contact passing through the point #/,
of the separatrix L. Consider a
system (Ap). Since O is a saddle-

z node of (A,), (A,) is structurally

" unstable. Lemma 16 and the cor-
responding proposition for a saddle
point (311.1) then show that for a
sufficiently small p =0 (A, does

not have in a sufficiently small neigh-
borhood of the path L a separatrix
which goes from O to 0,. The contradiction is now established by the

FIGURE 161

usual argument using tahe relation (U (L), A) ;(V,A,,,). This proves the
theorem.

Theorem 63. If(A) is a dynamic system of the first degree of
structural instability in W, it cannotl have in this region a path L which
is at the same time an «-separatrix and an o-separatrix of a saddle
point of (A).

Proof of Theorem 63 is analogous to the proof of the previous
theorem. It is conducted by reductio ad absurdum, using a system (A,),
Lemma 16, and the fact that a path forming a loop may cross a segment
without contact at most in one point.

Theorems 62 and 63 show that cases 4 and 5 listed at the beginning
of this subsection are unfeasible.

Let us now return to closed paths of a system of the first degree of
siructural instability and derive a further property of these paths on the
basis of the above theorems.
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Theorvem 64. System (A) of the first degvee of structural instability
in W may have only a finite number of closed paths in this rvegion.*

Proof of Theorem 64 is analogous to the proof of the corresponding
proposition for structurally stable systems (Theorem 21, $16.1). Suppose
that (A) has an infinity of closed paths in W. Consider a sequence L,,

Ly, L;, ... of these paths and choose a single point on each. Let M,,

M., M;, ... be the sequence of these points, M; € L;. Since W is a compact
region, we may assume without loss of generality that the sequence M, is
convergent. Let this sequence converge to some point M*. We will now
show that no such point may exist.

Two cases are possible a priori:

1) M* is an equilibrium state.

2} M* is not an equilibrium state.

In case 1, M*is neither a node nor a focus (whether simple or multiple),
since a sufficiently small neighborhood of a node or a focus may not contain
points of closed paths. Hence, M*is either a saddle point or a saddle-node.
But then an infinity of points M; belong to one of the hyperbolic sectors of
the equilibrium state 0, and we can show that there exists a sequence of
points which belong to the closed paths L; and which have a condensation
point which is not an equilibrium state (see $16.1, proof of Theorem 21,
case 2). Thus, case ! is reduced to case 2. Let us consider the second
case.

Let L* be the path of (A) through M*, L*clearly cannot leave the region
W, nor can it be a path which goes to a node, a focus (whether simple or
multiple), or a limit cycle (otherwise, closed paths L, would pass arbitrarily
close to the node, the focus, or the limit cycle, which is impossible).
Similarly, L*may not be an interior path of the parabolic sector of a saddle-
node. Finally, by Theorems 62 and 63, L* may not be a separatrix of a
saddle-node, and by Theorem 58, L*may not be a closed path. We are
thus left with one last possibility, namely that L* is a path which for
t—+ — oo goes to the saddle point 0, and for ¢ > + oo goes to the saddle
point O,.

Let us first assume that the points 0, and O, coincide, i.e., L*¥is a
saddle-point separatrix which forms a loop.

Let (zo, ¥o) be the coordinates of the saddle point 0,. By Theorem 60, in
this case o (zg, yo) = P% (z9, yo) + Q) (%0, ¥o) 5= 0. But then by Theorem 44,
§29.1, the loop L* is either stable or unstable,
i.e., a sufficiently small neighborhood of the
loop may not contain points of closed paths.

We have thus established a contradiction,

Let now O, and O, be two different saddle
points, L* going to O for t + — oo and to O, for
t - -4 oo(Figure 162). Consider that hyperbolic
sector of the saddle point O, which contains an
infinity of points M,. Let L** be the o -continuation
of the separatrix L* on the side of this hyperbolic sector. Clearly, L**
is analogous to the path L* in all respects, i.e., it is a saddle-to-saddle
separatrix. But then (A) has two structurally unstable paths L* and L**,
and this contradicts Theorem 61. This completes the proof of the
theorem.

FIGURE 162

* Theorem 64 is not a direct consequence of Theorem 58 (which states that the closed paths of a system of
the first degree of structural instability are isolated).
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7. Properties of separatrices of saddle points
of systems of the first degree of
structural instability

We have already derived some properties of separatrices of saddle
points of systems of the first degree of structural instability. Indeed,
we have seen that, first, the separatrix of a saddle point O (zy, y,) may
not form a loop if o (x5.¥)) = 0 (Theorem 60) and, second, an w -separatrix
(a-separatrix) of a saddle point may not be at the same time an a-separatrix
(@ -separatrix) of a saddle-node (Theorem 62). In this subsection, we will
establish two further properties of saddle-point separatrices of systems of
the first degree of structural instability.

Theorvem 65. A sysiem of the first degree of strucitural instability
in W may not have in this region two saddle-point separatrices which go
to a limit cycle of multiplicily 2, one for t - — oo and the other for
t— -+ oo,

Proof. Suppose that system (A) has a limit cycle L, of multiplicity 2
in ¥ and two saddle-point separatrices L, and L,, of which L, goes to L,
for ¢ + + o~ and L, goes to the same limit cycle for t -—oco. One of these
separatrices evidently lies outside L, and the other lies inside L,.

Liet £,>0 be such that U, {L,) does not contain any equilibrium states of
(A) and any closed paths, except L,.

An arc without contact I is passed through some point M of the cycle L,.
Let s be the parameter on the arc !, chosen so that the point M corresponds
to s = 0, Let further

s=f(s)

be the succession functinn on the arc I defined for all s, |s|<n, wheren
is some positive number. Since the separatrices L, and L, by assump-
tion go to Lo (for { > 4+ o and ¢ > — oo,
respectively), the arc | contains an
infinite number of points which belong
to L, and an infinite number of points
which belong to L,. Let M, (s;) and
M; (s;) be two successive (in terms of t)
points at which the path L, crosses the
arc !, and M, (s;) and 3; (s;) two succes-
sive (in terms of t) points at which L,
crosses {. We assume that M, and M,
are so close to M that the coils MM,
and M M;] of the paths L, and L,, respec-
tively, are contained entirely in U,, (Lg)
and |sit<<m, |sil<<n, i=1,2.

To fix ideas, let the parameters
on the arc I be chosen so that 5, <0, §§ >0
(Figure 163)., Then

FIGURE 163 S <5 <0<<sy<<s].

Also note that s;=f(s;), s{=f(s}).
Alongside with (A), consider the system

—pQ =P, %=Q+P-P=qu
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and let po> 0 be so small that for all y, |p|<<pe, the following conditions
are satisfied:

1) I is an arc without contact of (A,), and for all s,|s|<<1n, the succession
function s=f, (s) of this system is defined on the arc.

2) U, (Ly) contains no equilibrium states of (A,) and — either for all
p>0 or for all p< 0 — it contains no closed paths of (A,) (the latter proposi-
tion is true by Theorem 71,$32.4).

3) There exist separatrices Ly and Ly of (A,) which cross the arc [ at
the points Mgy, Miu, Mo, Mi, corresponding to the values sju, siu, stu, sip of
the parameter s, such that

. , 0 »
Sop < Sip < Sop < Sip

and
Sip=fu(S0u),  Stn=fu(sop)-

4) The coils My.Mi, and M, Mi, of the paths Ly, and L,, are contained
in U, (Lo) (Figure 164).

FIGURE 164

Consider successive iterations of the function f,, i.e., the functions

f2u=fu(fu)» fau:fu.(fzu)r
and let

Fru (S0p) = Skp

(k=2,3,...).

In virtue of our assumptions, if p = 0, then for any k> 2,

S5y > Shun = Fan (60)- 7y

Let Cyu and Cp be the simple closed curves formed respectively by the
coils MouMi, and My, Mi, of the paths L, and L, and the segments M{,M;, and
MiuMg, of the arc 1.

It is readily seen that in our case the curve C,, is enclosed by Cy,, and
if po is sufficiently small, the region T, between these two curves is
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contained in Ug, (0). We assume that this condition is indeed satisfied. The
limit cycle Ly is clearly enclosed between the curves (o and Czo.

Py condition 2, for all p of a certain sign (if 0<<|u| << po), Ueptlo)contains
no closed paths of (Ay)., Let this be so for positivep. Consider a path Ly,
where t<u<<p,. As t increases, the path Ly, enters into the region I,
between the curves Cy, and (o, (I'y <l (Ly), crossing through the point M, .
Since [, (Ly) contains neither equilibrium states nor closed paths of (A,),
the parh L,, will leave L', (L,), and thus the region 'y, as t increases further.
This mav occur only if L,, crosses the segment M, M|, of the arc without
contact I, Consequently, there exists a natural number V3> 1, such that

Fvu (Sou) > sipe (72)
On rhe other hand, bv (71}, we have for p= 0
Fovn(siu) <<sip. (v3)

Since s, s, and fyv, are continuous functions of u (by remark to Lemma 3,
59.2Y, inequalities (72} and (73) prove the existence of anumber p*, 0 << p* <<,
such that

Faus (Shus) = Sous,

i.e., such that

. "
SA')J.* = st)u*-

The last equality shows that the separairix Ly« of (A4 coincides with
the separatrix L, 1.e., (A,,*) has a saddle-to-saddle separatrix. The
number p* may be taken as small as desired. We have thus established
that if (A) has a limit cyzle of multiplicity 2 in W to which one separatrix
goes for ¢ - — oo and the other separatrix fort— + «, there exists a system
(A as close as desired to (A) which has a saddle-to-saddle separatrix
inW . (A, is a structurally unstable system. Therefore, since (A) is a
system of the first degree of structural instability, we should have

(H, 4= (H, A,4).

This relation is clearlv unfeasible, since (A,.) has a saddle-to-saddle
separatrix and (A} has no such separatrices in the neighborhood of W .
We have thus established a contradiction, which proves the theorem.

Theovem 66. A system of the first degree of structural instabilily
in W cannot have in this region a saddle-point separatvix which goes (for
t— — o0 0O fort— + ) lo a saddle-point separatrix forming a loop.

Proof. Again suppose that the theorem is not true, i.e., system (A)
of the firstdegree of structural instability has in W a separatrix L, of the

saddle-point O (x4, ¥o) which forms a loop and a
separatrix L, of the saddle point 0, (z,, y;) which
goes to the loop L, for ¢ > + oo (the saddle points
0 and Oy are clearly different). By Theorem 60,
0 (Zq, Yo) 7= O for the saddle point O, and by
Theorem 14, §29.1,

G (Zg, o) << 0. (74)

To fix ideas, suppose that two separatrices of
FIGURE 165 the saddle point O which are different from L, lie
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outside the loop formed by the separatrix L,, so that the separatrix L, goes
to the loop L, from the inside (Figure 165).

Let 29> 0 be such that U, (L) contains no equilibrium states, except O,
and no closed paths of (A).

Through a point P of the path Ly draw an arc without contact !, and lets
be the parameter on the arc ! chosen so that the point P corresponds to
s = 0 and the points of the arc [ lying outside the loop correspond to
positive values of s (Figure 166). Since by assumption the loop is stable,
we can always find a point 4 of the arc ! which lies inside the loop such
that all the paths crossing the segment AP of the arc ! go to the loop L,
and therefore cross the segment AP at infinitely many points. In particular,
the separatrix L; of the saddle point O, crosses the segment 4P of the arc !
at infinitely many points.

'
V4
L7
Py
A

4

FIGURE 166

Let the value of s corresponding to the point 4 be a. The succession
function

s=1(s)

is thus defined on the segment 4Pof the arci, i.e., forags<0.
Moreover, for every integer N, there is an N-th successive point for
every point of the arc AP,

Sv="Fn(s).

Consider two successive points M, and M; among the intersection points of
the separatrix L; with the arc AP. Let s, and s be the values of the para-
meter s corresponding to these points, and # and ¢ the corresponding times
on the path L;. Clearly ¢ <<, and s <{s. Moreover, let the point M, be
so close to the loop L, that the segment MM, of the path L; is contained in
Us, (Lo) (Figure 1686).

Consider the modified system

2P ) =0 ), SL=Q( ¥+ pP(z 1), (4

which is obtained from (A) by a rotation of the vector field. For all suf-
ficiently small p 5 0, (A,) has no separatrices forming loops in U, (Lg),
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bur it has two different separatrices L, (p) and L (u) crossing the arc ! in
this neighborhood.

Let L, (1) be an o-separatrix and L; (p) an a-separatrix of the saddle
point O .

Let P' (n) and P" (u) be the "first" intersection points of the separatrices
L, (nyand Ly (1), respectively, with the arc !, so that the segment OP' (p) of
the path L; (u) and the segment OP" (u) of the path Lj(u) contains no points of
the arc I, except P’ (py and P” (n). Let ¢’ (u) and s" (u) be the values of the
parameter s corresponding to the points P’ (u) and P" (n). Clearly,

lims' (p) = lim s" (u) = 0. (75)
=0 -0

Let up >0 be sufficiensly small. Then, if|p | << po, we have s’ (p) >0,
s" (n) > a, and the segments OP’ (p) and OP” (u) of the separatrices L, (p) and
Ly (p) lie in Ue, (Lo). If, moreover, u>0, and g is sufficiently small, we
have by thelemmaof §11.1 " (u)>0 and s’ (1)< 0. Ry Theorem 49 and the
remark to the theorem (§29.3), (A)) has no closed paths in U, (Ly). We
will assume in what follows that these various conditions are satisfied.

Rv Lemma 7, ¥29.2, a succession function s = f(s. p) is defined for
all{p | << po, where py> 0 is an appropriately chosen number, on the
segment AP’ (u) of the arc without contact!l, i.e., for all s, a<{s<<s' (u).

Since U, (Ly) contains no closed paths, we readily conclude that f (s, u) >s.

It is moreover obvious that

lim /(s ) =5" ()
a=+3" (N}
and that for p = 0 the function s = f (s, p) reduces to the succession function
of the original system (f (s, 0) = f (s)) defined on the segment AP of the arc [.

Since for the original system, every point of the segment 4P of the arc{
has an & -th successor for every integer v, then for any given V every
fixed point of the segment AP of the arc [ will have an ¥-th successor
for the system A,, provided p is sufficiently small. We will designate this
successor by

3:.\‘ = fN (S, P')-

Clearly, fv(s, p)is a continuous function of p (for those values of p for which
it is defined).

By Lemma 3, 9.2, and the remark to this lemma, we conclude that if
n =0 is sufficiently small, (A,) has a separatrix L, (p) of the saddle point 0,
which crosses the arc without contact [ at the points M, (u) and M, (p), where
Mo (w) > M,y and M, (u) > M, for p - 0. Let s (p) and s (p) be the values of
the parameter s corresponding to M, (u) and M, (x). By the lemma of §11.1,
if u> 0, we have s (p) > s, and s (p) > s,.

We moreover assume that po is so small that if | p | << p,, the coil of the
path L, (u) between the points M, (u) and M, (u) is entirely contained in U, (Lo).
Ry the remark to Lemma 3, §9.2, s (n), s (1), s’ (n), and s* (n) are con-
tinuous functions of p. Also note that the equilibrium states of (A) and (A,)
coincide, and therefore (A,) has no equilibrium states, except the saddle

point O, in U, (L,).
It follows from the above that if ¢>0 and ps >0 are sufficiently small,
and 0<< nu < po, the following inequalities are satisfied

o <si(W)<s @<0, s (W)>0
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and U, (L,) contains no closed paths of (Au) and no equilibrium states, except
the saddle point O.
Since M, (u) is the successor of M, (u), we have

st (R) = f (So (1), W)e

Moreover, it is readily seen from the above that for a given integer ¥ and
for all sufficiently smallp, there exists an N-th successor of the point M, (),
i.e., the function

sy () = fav (8o (1), 1)

exists, and it is a continuous function of p (naturally for all p for which
it exists).

Let us now consider the behavior of the separatrix L, (p) prescribed by
the above assumptions.

Two cases are possible:

1) there exist arbitrarily small p, { g | << po, such that for some N

Fn(so(u), p)=¢" (1),

i.e., there exist arbitrarily small p such that L; (p) coincides with the
separatrix L; (1) (Figure 167);

2) there exists py > 0, py<po, such that for all | p |<pn,, the separatrix
L, (n) does not coincide with Lg (p).

FIGURE 167

Let us first establish the behavior of the separatrix in case 2.

We will consider

(a) a simple closed curve €’ consisting of the coil of the path L, (p) between
the points M, (p) and M, (1) and the segment of the arc I between the points
M, (p) and My (p);

(b) a simple closed curve (" consisting of the segment P’ (0)O of the
separatrix L, (n), the point 0, the segment OP” (u) of the separatrix Lj (n),
and the segment of the arc I between the points P’ (u) and P” (u).
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Let [ be the ring enclosed between the curves ¢’ and C" (Figure 168).
It is readily seen that I is entirely contained in L%, (Lo) (since each point of
this region belongs to a coil of a path of system (A,) entirely contained in
U, (Lo)) and therefore contains no closed paths and no equilibrium states,
except the saddle point ¢?. The separatrix L,(p) evidently enters into I
through the point M,(u) as ¢ increases. Since by assumption it does not
coincide with the separztrix L, (1) of the saddle point O, further increase
of ¢ will inevitably cause it to leave I'. It mayv leave I' only by crossing

the segment P’ (u) P"(u) of the arc {.

FIGURE 168

Let @ (p) be the intersection point of the separatrix L, () with the segment
P’ () P" () of the arc !. The point Q (p) is clearly the .V -th successor of
M, {(n), where N is some natural number dependent on p.,

Thus, if we write sy (p) for the coordinate of the point Q (u) on the arc !/,
then for any p* > 0, p* < u, we have

sq (U*) == e (so (1*)s B*),

where A* depends on p*. The following inequality is also satisfied:
Fve (50 (*), p*) > 5 (1%). 76)

Choose a fixed p* and the corresponding &*.

For p= 0, for every.V, and in particular for ¥ = X¥*, there existis a
negative number fys (sq (0), 0). PRut sy (n), s’ (u), s" (n), fa* (so (1), p) are continuous
functions of u. Therefore, if p**, 0 < p** << p*, is sufficiently small, the
number fys (so (u**), p*) is close to fy» (s (1*), p*), and the number s (p**) is
close to zero, so that

P {so(0*), p*) <8 (u**).
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From (76) and (77), using the continuity of all the relevant functions, we
conclude that there exists a number p, p** <p<<p*, such that

Faw (S0(R), W) =5 (W),

i.e., the separatrix L, (u) of the saddle point O, coincides with the separatrix
Ly (u) of the saddle point 0. This, however, contradicts assumption 2.

We have thus established that if a system of the first degree of structural in-
stability (A) containsin W a separatrix L, of the saddle point O which forms a
loop and a separatrix L, of the saddle point 0, which goes to this loop, there
exists a system (A,) as close as desired to (A) which

(a) has a separatrix extending from saddle point O to saddle point Oy;

(b) does not have separatrices forming a loop and contained in Us, (Lo),
where gq is a sufficiently small positive number.

Ry (a), (A,) is a structurally unstable system, and by (b), the relation

(H, Ay) = (I, Ay is impossible for the systems (A) and (A,). Rut then, by
Definition 30 (§31.1), (A) may not be a system of the first degree of
structural instability. This contradiction proves the theorem.

8. The fundamental theorem (the necessary and sufficient
conditions for systems of the first degree of
structural instability)

Collecting all the previous results, we see that a dynamic system (A)
of the first degree of structural instability in a closed region W satisfies
the following conditions:

1. (A) has in W one and only one simplest structurally unstable path,
., a path of one of the following types:

1) a multiple focus of multiplicity 1;

2} a saddle-node of multiplicity 2 with ¢, = Pr + Qy % 0;

3) a limit cycle of multiplicity 2;

4) a separatrix from one saddle point to another;

5) a separatrix forming a loop for a saddle point with o5 0.

I1. (A) does not have in W any structurally unstable limit cycles,
saddle-point separatrices forming a loop, or equilibrium states other
than those listed in I.

I1I. If (A) has a saddle-node in W, none of the separatrices of this
saddle-node may go to a saddle point and no two separatrices of the saddle-
node are a continuation of each other.

IV. The separatrix of a saddle point of (A) contained in W may not go
for t— — oo or for t—+ 4 o to a separatrix forming a loop. W may not
contain two saddle-point separatrices going to the same limit cycle of
multiplicity 2, one for t—+ — oo and the other for ¢t - + oo.

Conditions I through 1V prove to be not only necessary but also suf-
ficient for (A) to be a system of the first degree of structural instability
in W, i.e., we have the following theorem:

Theovem 67. For a dynamic system (A) to be a system of the first
degree of structuval instability in a closed region W, it is necessary and
sufficient that the above conditions I through IV be satisfied.

i.e
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Proof. The necessity of conditions 1 through IV follows directly from
Theorems 54— 57, 59~ 63, 65, and 66. The proof of sufficiency is omitted
here. WNote, however, that although the proof of sufficiency is fairly lengthy,
the underlving idea is simple and it follows the proof of Theorem 23 (the
necessary and sufficient conditions of structural stability of systems, $18,2).*

9. Bifurcations of systems of the first degree
of structural instability

The above properties enable us to identify without any further difficulties
all the possible bifurcations of a dynamic system (A) in a region W where
(A} is of the first degree of structural instability. These bifurcations
evidently depend on the particular simplest structurally unstable path that
the svstem has.

[Let us consider the different cases.

1) {AY has a multiple focus of multiplicity 1 in W . Only
one bifurcation is possidle in this case, namely the creation of a limit cycle
from the multiple focus. This bifurcation transforms the multiple focus
into a simple (structurally stable) focus and changes its stability, while the
created cvcle is structurally stable and its stability is identical to the
stability of the original focus.

2} (A) has a limit cycle of multiplicity 2 in W . Bifurca-
tions of two types are possible in this case: the disappearance of the limit
cycle and decompositior. of the limit cycle into two limit cycles. In the
latter case, the two new cycles are structurally stable, one being stable
and the other unstable.

3) {A) has a separatrix from one saddle point to another
saddle point in W . In this case, the saddle-to-saddle separatrix may
decompose into two separatrices which are not a continuation of one another.
This is the only possible bifurcation of such systems.

1) (A) has a saddle-point separatrix forming a loop
in W . PRifurcations occur only if the separatrix loop disappears on moving
to close systems. Two different bifurcations are possible: either a
structurally stable limit cycle is created in the neighborhood of the dis-
appearing separatrix loop (of the same stability as the loop), or the loop
disappears without creating a limit cycle.

5} (A) has a saddle-node M, with 6,%0 in W . Two subcases
should be considered here:

5a} The saddle-node M, has no separatrix forming a
loop.

Two bifurcations are possible: disappearance of the equilibrium state
Myor its decomposition into two structurally stable equilibrium states —

a gsaddle point and a node. In either case, no limit cycles are created.

5b) The saddle-node M, has a separatrix forming a
loop.

Again birfurcations of two types are possible:

1) Decomposition of the equilibrium state M, into a structurally stable
saddle point and a structurally stable node. No limit cycle is created.

* Dynamic systems of the first degree of structural instability on 4 torus were considered by Aranson (see /38/),
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2) Disappearance of the equilibrium state M. The separatrix loop
naturally disappears, and a limit cycle is created in its neighborhood.

The above bifurcations cover all the possible simplest bifurcations,
i.e., bifurcations which may occur in systems of the first degree of
structural instability. This conclusion follows from the results of the
previous chapters and from §30.

The above list shows that all the simplest bifurcations involving
creation or disappearance of a limit cycle are particular cases of bifur-
cations congidered in Chapters IX, X, XI and in %30 of the present
chapter. Note, however, that these chapters, and Chapter VIII, are
by no means restricted to the analysis of the simplest bifurcations,




Chaptlter XIlI

LIMIT CYCLES OF SOME DYNAMIC SYSTEMS
DEPENDING ON A PARAMETER

INTRODUCTION

The subject of this chapter are analytical dynamic systems depending
on a parameter, i.e., systems of the form

ar

‘E"t‘:F(Iv yv “‘)7 %=6(xv y' l"’)r (Al‘)

where P and Q are analytical functions. We will investigate the topic of
limit cycles created from a closed path L, of the "original" system (A,)
on passing from p = 0 to close values of the parameter p.

The chapter is divided into two sections, $32 and §33. The first three
subsections of $32 are of auxiliary character. In §32.1, we investigate
the succession function on an arc without contact crossing a closed path L,
and derive a number of formulas for the coefficients in the series expansion
of this function. In $32.2 a more detailed statement of the problem is given.
§$32.3 is devoted to one classical problem of the theory of analytical func-
tions, and it is thus of independent interest. It considers the equation
F(w.z) = 0, where Fis an analytical function satisfying the condition
F(0,0) = 0, and the so-called Newton's polygon is applied to
investigate the number znd the behavior of the solutions of this equation
in the neighborhood of the point w= 0, z=

The main results of this section are presented in $32.4, in the form
of Theorems 71 and 72. In these theorems, system (A,) is taken in the
form s B

F=P—p0, L =0Q+yP,

whose vector field is obtained from the vector field of (Ay) by a rotation
through a constant angle. It is proved that if L, is a limit cycle of even
multiplicity of (Ag), rotation of the vector field in one direction decomposes
this cycle into two strucrurally stable cycles, and rotation in the opposite
direction makes the cycle disappear (Theorem 71). If, however, L, is a
limit cycle of odd multiplicity of {Ag), any system obtained by a small
rotation of the vector field of (Ag) in any direction has a single limit cycle
in a small neighborhood of L,, which is moreover structurally stable
(Theorem 72),

The creation of a limit cycle from a closed path of a conservative
system is considered in §33. The main definitions are given in §33.1.
A conservative system is defined as a system which has an integral
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invariant with positive density in the relevant region (see
§33.1, Definitions 31 and 32).

However, §33 deals only with one particular case of conservative
systems, namely systems defined in a doubly connected ("ring'") region
where all the paths are closed paths enclosing one another. In $33.1
it is proved that such a system is indeed conservative (Theorem 74).

Dynamic systems of the form

dz _ _ OH(z, y) dy _ 9H (=, y)

dit 8y ’ dt EX3 ’

are known as Hamiltonian systems, and they constitute a particular
case of conservative systems. '
In §33.2, we consider systems which are close to the linear conservative
system
T=—y, y=x (Bo)

i.e., systems of the form

T=—y+pup: (%, )+ PP (@ )+ . (Bu)
y=z+pg (& ¥+ @ Y+ ...

and we establish under what conditions the path z* 4 y® = p} of the original
system (Bg) creates a single limit cycle on passing to a sufficiently close
system (B,) (Theorem 75).

In $33.3, similar conditions are derived for the general case of systems
which are close to conservative systems (see Theorem 77), Theorem 78
(§33.4) shows that these conditions are particularly simple for systems
close to Hamiltonian.

Note that the condition of analyticity of the dynamic systems introduced
in Chapter XIII is not essential: similar results can be derived for non-
analytical systems also.

§32. THE BEHAVIOR OF LIMIT CYCLES OF SOME
DYNAMIC SYSTEMS FOLLOWING SMALL
CHANGES IN THE PARAMETER

1. The succession function in the neighborhood
of a closed path

Consider a dynamic system depending on a parameter p

d 5 d =
—d’j'=P(‘t' Y, p’)v ’%":Q(xv Y, p’)v (Au)

where P (z, y, u) and 0 (v, p) are analytical functions of z, y and of the para-
meter p, defined for z,y from some region G in the plane {x, y) and for p
from some interval containing the point u,. Clearly (A,) may be treated
as a one-parametric family of analytical dynamic systems defined in G.
Suppose that for p = p,, (A,) has a closed path L,. Without loss of
generality, we may take po= 0, i.e., L, is a closed path of the system

%‘_“P(xv y)y %=Q(-‘L‘, y), (AQ)
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where Pz, y)=P(z.y.0), Q(z. y) =0 (z. y, O).
Let

z=9(), y=v@) (1)

where ¢(¢) and §(t) are periodic functions of period v which constitute the
solution corresponding to the path L,.

As in §13, we define curvilinear coordinates s, n in the neighborhood
of this path,

z=@(s.n).  y=P(s n), (2)

where the functions ¢ and ¥ have the following properties:
1) @ and ¥ are defined in the strip

—o s 400, —nt<<n<n* (3)

where n* is some positive number, and they are analytical functions in
this strip.
2} @ and § are periodic functions of s with period r.
3) @(s, 0= @ (s), F(s. Y =(s). (1)
1) The functional determinant

(5)

does not vanish everywhere in the strip (3), i.e., it retains a constant
sign in this strip.

The function g(s. n) and $(s. n) may be taken, in particular, in the same
form as in §13

O =0(s)+nP(s), P=1v(s)—ng (s), (6)

as for sufficiently small n*> 0 these functions evidently satisfy all the condi-
tions above. We shall see in the following, however, that in some cases
functions of a different form are more convenient for @ and } (see ¥33.3,
{56}}). From relation (4) we evidently have

(s 0) =0 (),  Y(s )= (s). (7)

Let us change over to the variables s, n in all the systems (A,) with
sufficiently smallu. Differentiating (2) with respect to ¢ and using the
equations of (A,), we fiad

dz _ =, ds  — dn 5~ = dy _—.ds , =, dn = — =
=g +er=PE %, F=CF+¥r =01 V.

ds dn

- oar and eliminating £, we obtain the

Solving these equations for
differential equation

@ ¥ e, —P@ T,

2@ % W, —Q b we,

=R(s, n,p). (Ry)
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For n =0, p= 0, the denominator in the right-hand side of (R“) is evidently
equal to

P(@(s), (), 0) B (5, 0)—Q (P (5), ¥ (s). O) (s, 0) =
=¢ () ¥iu(5, 0)— ¥ (s) i (5 0) =A (s, 0).

By condition 4, A(s, 0)5= 0 for all s, in particular, for all 0 <s<t. Therefore,
if n*>0 and p*> 0 are sufficiently small, the denominator in the right-hand
side of equation (R,) does not vanish for all s, n, p satisfying the respective
inequalities

O<s<r, {nj<<n®, |nl<<u’,

i.e,, because of the periodicity in s of the functions @ and ¥ for — oo < s<+ oo,
|n|<<n* jun|<<p*. Hence it follows that R (s, n, p) is an analytical function for
— oo <L s 400, |n|<<n* (n|<<p*. Therefore, it can be expanded in a series
in powers of a, p in the neighborhood of any point in this region, and the
coefficients of this series will be analytical functions of s. It is readily
seen that

R(s,0,0)=0. (8)

Therefore, the expansion of R(s, n, p) in the neighborhood of the point (s,, 0, 0)
(where s, is any fixed number) has the form

R(s,n, p) =41 () 2+ Aot () + Ay (5} P2 + Ay () npp + A2 (S) P2+ . - (9)

Since R (s, n, p)is periodic in s, it is readily seen that the coefficients
A;; (s) are also periodic functions of period t.

It follows from (8) that the function n == 0 solves the equation (Ry). In
general, however, it does not solve the equation (R,) for ps40.

We will consider the succession function on the are without contact [,
defined by the equation s= 0 (for functions ¢ and % of the form (6), this
arc is the normal to the path (1) at the point s = 0). The succession
function is constructed as in Chapter V (§13.3). Let

n=7f(s; 0, no, B (10)

be the solution of equation (R,) satisfying the initial condition

f(0; 0, ng, p) = ny. (11)

According to general theorems, this solution is defined in the region

—n<s<THM, |nl<m |p|<<f, (12)

where >0, and n<n*and L<p* are sufficiently small positive numbers;
in this region, the solution is an analytical function of its arguments.
Since n=0 is a solution of (Ry), we have

f(5:0,0,00=0
and the expansion of the function f in powers of ny, and p has the form
f (53 0, ng, 1) = otyorg - Qloylt + Ctagh3 ++ yi Mol + oot + . . . (13)

Here the coefficients o;;=a;;(s) are analytical functions of s in the interval
—n<<s<<T4+1,
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Inserting (9) and (13) for R(s, n.p) and n in equation (R,) and equating the
corresponding coefficients in the right- and the left-hand sides, we obtain
the following recursive differ=ntial equations for the function a;,(s):

dagols)

i Ao 240
537';:‘(—8) = Ajo 2y + Aoy
diji-(s—)= Ajo-@ag - Angly, (14)
d_a;,s(_s)_ = Ay + 2A0s%10%01 — A1
L—ia—gi(—“ = Aoz + Azgy, + %oy + Apae

By (11) and (13), for i = 1, j = 0, we have «;;(0) = 1, and otherwise,
a;; (0) = 0,
The equalities
U =1, @y W)= (15)

constitute the initial conditions for equations (14). The functions «;; (s)
therefore can be found by successively solving equations (14) with boundary
conditions (15).

Note that the final expressions for the functions «,, (s}, which are the
coefficients of the terms free from p in expansion (13), are the same
expressions as in Chapter X (§26.1). Indeed, these functions may be found
by setting p= 0. PRut this leads us to system (Ag¢) and equation (Rg) con-
sidered in Chapter X.

Let the succession function of (A,) on the arc without contact [ be f (ng, p).
Rv definition, it is obtained from the function (10) for s=1, i.e.,

n=f(ng, p) = f(%; U, no. p). (16)

This and (13) show that the series expansion of the succession function has
the form

F oy 1) =40 (T) g ~+ Ry (T) = 2o (T) 2+ 2y (D) 2ot -+ . 0« (17)
Setting
@iy (T) = Uy, (18)
we obtain
n = f(ng, |t} = UigMo + Loyt -+ UzoRg + Up gt + .+ . (19)

We will now find expressions for the coefficients uy, and uy and indicate
in general outline the structure of the coefficient u,,, whose explicit
expression is highly complex. These coefficients will be needed in what
follows.

We have

Z—:= R(s,n, p)= F_?(f' f’ P)E,;—E(E' ?’ H)E; . (R,)
(@ ¥, W ¥, —Q (T, ¢t p o,

We write g(s, n, 1) and A (s, n, p), respectively, for the numerator and the
denominator of this fraction, i.e.,
g6, n ) =0@ ©, WE—P@ % ¥,

MRS 2
Bis,nyp) =P(@, b, p) $u—0(, ¥, p) P,. (20)
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Expanding the functions g(s, n, p) and k(s, n, p) in powers of » and p and
seeing that g(s,0,0)=0 and k(s, 0,0)% 0, we obtain

g(s, n, u) = gyon + gosh + Lz + . . -,

21
h(s, n, p) =hoo+ Ao +hop +hoon®+ .. ., (21)

where g;;==gi;(s) and ky;=h;;(s) are analytical functions of s, and kg (s)5=0.
Thus,

an __ g(s, ny 1) _ grontgoak+gaon?t-...
ds T h(s, m, B) | hoo+ hyon+ o ... = Ayon + Ao + Apn® +- Ay + .- -

i.e.,
gion + ot - gaon® +- . . . = (Ayon - Aggp -+ Aon® 4 Aynp A - ) (hoo F Byt - Bt + .. 1),

Equating the coefficients on the right- and left-hand sides of this identity
and solving for 4;;, we obtain

— Agoh — Aothio— Aok,
Aio=,g,—:)% , Ao:=% Agg= 820 hoow 10 A“=8n Mh;: 10701 (22)

Let us determine the functi_ons g5 (s) and hy;(s) entering (22). To this
end, we expand the functions P and @ in powers of u, and the functions g and
Y in powers of n. This gives

P(z,y, p) =P (@, y) + 1Py (x, §) + 1P (T, ¥) + - . .,
Q@ y, 1) =0, y) +1e: (T, ¥) + P2 (@ 1)+ . . .,

(23)

P (5, 1) =@ (s)+nby (s) + 1o () + .. -,

— (24)
(s, n) =P (s) + vy () +nPya(s) + ...,

where p;, ¢;, B, and y; are agalytical_functions of thg respective arguments.
Expanding the functions P (@(s, n), % (s, 7), p) and Q@ (s, n), P(s, ), p) in
Maclaurin's series in powers of p and n and using (23) and (24), we find

P(g(s, n), $(s, n), W) =P (@ (s, 0), $(s, 0), 0) +
+1P5(@ (s, 0), ¥ (s, 0), 0) Pa(s, 0)+ B (9 (s, 0), ¥ (s, 0), 0) P (5, O)] n +
+P( 0, (s, 0, Ot RO F 00,
=@ (8) + [P (@ (s), b () By () 4Py (@ (), ¥ () Vs (N + py (@ (s), V(SN p+
+1Pix (@ (8), ¥ (£)) B (8) + Py (@ (s), Y () V1 (N np+ ... (25)

and similarly

(7(5(3» n)v 1’5(31 n)v M)=
=P () + [Qx (P (5), V() By () + QL (@ (s)s (N Ve (In+gqi(@(s), $(Np+
+ (g1 (@ (s), Y (8)) By (8) + 1y (@ (5), P ()) Ve np+ ... (28)

Further, inserting (25) and (26) in (20) and using (24), we find

g (s, n, p)={[0x (@, V) B +C} (@, ) Vi1 9" —
— 1P (@, V) P14+ Py (@, $) vl ¥ + 9B — @'y} n+ (g9 — P ) 1 +
+ (@181 + 1y¥0) @ — (PLBr + Pry¥)) W + (@Bl — Pyl np+ . . (27




§ 32, EFFECT OF SMALL CHANGES IN PARAMETER

ks, n, ) =@y, — B+ (P (g, §) By -+ Py (@, ¥) Vi) vi—
—(Qx(® V)P~ Op (@ PIVO B +2(@' ya— ¥ B n H(aiyi— @B+ ... (28}

This and (21) give

£10=10x (P, V) ;- Qy (¢, PI) W1l ¢ —
—[Px (@, ¥) B+ Py (¢ V) vil ¥+ ¥'B — @'y, l (29)
o =09 — oy}’ |
&1 = (gfy + 41,70 9" — (Pr:By + Pryy) ¥+ 4B — poyy- J
hoo= 'y — ¢'By = T4 (5. 0) ¥n (5. 0)— ¥ (5. )G (s, 0) = A(s. O). ]
hio=1Px (@ %) By Py (@ 1) Vil va— L o)
(0% (@ ¥ Bt @y (@ W) Vi B 2 (F'ya— VB |
higs = py¥e—qyfy )

(by (5.
The expression for gy can be simplified. Indeed, using the relations

9" () =Pe(e. V)¢ (8) + Py (@, 1) ¥ ().
P (5) = Qx (. V)@ () + Qy (9, 1) ¥ (s),
obtained by differentiating the identity
9 (=P (@(s), ¥(5)). ¥ ()=Q(@(s), V()
we can verify directly that
810= [P (@ §) + Q4 (s W)} oo (8)—hg, (5) (31)

(compare equations (26} — (28), §13.3).
Using (22), (2¢), (30), (31), we find

A1005) =P (@ (), £ (5) + 0} (@ (), B (5)) — - 10 oo (5) =
=Pi(3. Y +0Q,(¢. Y —4InA(s, 0,  (32)

Ay (5) =2 (p(s) vGhe! ‘j’(:l:):)(@ (sh w (N’ (s) (33)

The last equations, together with equations (14), initial conditions (15), and
relations (18), enable us to find the coefficients uy,, and uy of expansion (18),
The expression for the zoefficient uy, is identical to the expression for the
derivative of the succession function obtained in Chapter V (§13.3, (30)),
indeed:

ki
{IPL(@te) wN+Qy @), ()]s
Ujp == Qg (T) = e (34)

Integrating the second equation in (14) with initial conditions (15) and
using (32) and (33), we 7ind

w

S[P;(w(m P --Qu(s). ¥ ]d: s
Qgt (5) =€ 260 [2: (2. V)G (s)—

s
- {Pi+apes

— (. 9) ¥ (s)}e O ds. (35)
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Since A(t, 0)=A (0, 0), we obtain

Ugy =gy (T) =
T Y
. § P, ©+e@ ods T~ { (P
=500 ¢ § e (94 (@, V@ (5)~py (@ WV (s)ds.  (36)

Let us now proceed with the determination of «,,. The corresponding
expression is much more complex than either (34) or (36). Integrating
the fourth equation in (14) with the initial condition «,, (0) = 0, we obtain

E 3
SAm(s)ds 8 —§A10(s)ds
0 e

ayy (s) =€ (2Ag0040%g + Ays0y0) ds.

h
Hence it follows that

T 8
Ajo(s)ds T —SAm(A)ds

Ugy = 0y (T) = 9§ e 0 (2420249001 + Ag5040) d5.

8 T
{ Asots)ds § Aro()ae
But e =aye(s) and e’ =y (1) =uy,. Therefore,

T
gy =Ugg g (A1 + 2420001) ds.
b

Inserting the expression for 4y from (22), we obtain

T
811 — Aothio— Ajoh
Upy = Uy g (—““‘*,,;‘;M%-ZAzoam) ds.
0

By (29), the expression for gy has the form
€11 =(q1:B1 + 01 ¥1) @ () — (P1Bs + DLy v) ¥ (5) + g — Byvis (40)

where the functions p; and ¢, and their derivatives are evaluated at the
point (g(s), P(s)). Using the obvious relations

Biy (@ (5), () ¥ (5) = Z2LED D _ (g (5), p(s)) @' (5)

2@ O =22V g (g ¥ (s)
we rewrite the expression for gy in the form
£11 (8) = [P1x (@ (5), $(5)) -+ g1y (P (), W ()] (@"vs— ¥By) -+ (B — pyvs) - (41)

By (30), 9'yi—¥B=he. Therefore, inserting (41) in (39), we obtain

T

ey =heo { [Pix (@, ¥+ gy (@ WIds + I, (42)
0
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where

[((hﬁ( — PaY1) = A lya — Ayohoy + 2:12”“0‘] ds. (43)

Iy =uy Proo

P

Expressions (33) for 4y, (30) for kg, and (35) for g, show that if
Pr® () (8 = qu (@ () ¥ (5) =10 (44)

i.e., if the functions p, (z. y) and ¢;(z, y) vanish on a closed path L,, we have
I, = 0. However, the integral

L [Phs (@ (), ¥ () — iy (@ (8), ¥ ()] ds (45)
need not vanish in this case. Indeed, let F(z. y) be an analytical function
satisfving the following conditions:

(a) F(@(s), $(s) = 0.

(b} Fe(@ ) ¥ ()= Fyg(s). ¥ (5))* =0
(the proof of the existence of this function in some neighborhood of
the path L, is conducted precisely in the same way as the proof of Lemma 1,
§15.1). Then, if

Pz y) - Flx y)Filz. y). a1\ y)- Fz. ) Fy(z v), (46)

the integral in (45) does not vanish.

2, Statement of the problem

We are interested ir. the number of limit cycles of (A,) located in a
sufficiently small neigkborhood of the path L, for sufficiently small p 0,
i.e., the number of limit cycles created from a closed path L, on passing
from pu = 0 to close values of p.

We define the function

d (ng, ) = f (o, B) —no- (47)

QOur problem is clearly equivalent to the determination of the number of
sufficiently small real roots of the function d(n,. p) for sufficiently small
w0,

The creation of limit cycles from a closed path of (Ay) on passing to
modified systems was considered in Chapter X. However, in Chapter X
we dealt with all the possible modified systems sufficiently close to (Ay),
i.e., the treatment was carried out in a sufficiently small neighborhood
of the point (Ag) in the space of all dynamic systems R. For the case
whenthe closed path Ly is a closed k-tuple limit cycle of (Ap), we estab-
lished that the maximuimn number of limit cycles created from L, on
passing to other systems of this neighborhood is k (Theorem 42, §27.1).

In the present section we will consider the creation of limit cycles
from a closed path L, of (Ag) in a more restricted sense. The modified
systems are confined to the systems (A,) corresponding to sufficiently
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small values of the parameter p, and we no longer consider any possible
system sufficiently close to (Ag). In geometrical terms, this means that
we are no longer dealing with the entire neighborhood of the point (Ag) in
the space R, but only with some curve /,in this neighborhood which passes
through the point (Ag). We will consider the creation (or disappearance)
of limit cycles in the neighborhood of the path L, of (Ag) for motion along
the curve [, in the space R.

We will derive the sufficient conditions for creation (or disappearance)
of limit cycles in a number of simplest cases. These conditions evidently
coincide with the sufficient conditions of appearance or disappearance of
sufficiently small real roots of the equation

d (no, p) =0 (48)

on passing from p= 0 to sufficiently small finite p.
First note that if the closed path L;is a simple limit cycle, i.e., when

T
V [P(@(s), B(8)+Qy(w(s), (s))1ds
Uy =€’ 1 (49)

(see (34)), there exists n* >0 and p*>0 which satisfy the following condition:
if | u | << p*, equation (48) has one and only one solution ng = nr, (u), such that
[ o (k) | << p*.

This follows from the theorem of structural stability of a simple limit
cycle (see $14, remark to Theorem 18). This also follows directly from
the theorem of implicit functions (§ 1.2, Theorem 3 and remark to
Theorem 4). Indeed, we see from (47), (19), and (49) that if L, is a
simple limit cycle of (Ag), then

d(0,0)=0, dn{0,0)5%0,

s0 that the theorem of implicit functions is applicable.
However, if u;, = 1, we have

d (Ov 0) =0, d';lo (Ov 0)= 0

and the conditions of the theorem of implicit functions are not met.
Suppose that in this case there exists k> 2 such that

(0, 0) =iy (0, 0) = ... =453 (0, 0), 4% (0, 0) 0. (50)

It is readily seen that we then can find n*>0 and p*>0 with the following
property: for all p, ju|<<p* the equation

d("o’ p‘) =0

has at most &£ real roots which are smaller than »* in absolute magnitude.
Indeed, let n* and p* be such that if |noj<<nr*, {n|<<p*, we have

4 (n0, B) 0. (51)

Then, if [ p | << p* and the function d (n, p) has & + 1 roots in the interval
(— n*, + n*), its first derivative with respect to n, has at least ¥ roots
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in this interval, the second derivative has at least A — 1 roots, etc., and
the k-th derivative has at least one root, which contradicts (51). Thus,
for small n,and u, equation (48) cannot have more than &k real roots. The
question of existence «f these roots, if any, requires special analysis,
however. Theanalysis is conveniently carried out with the aid of
Newton's diagram or polygon, which is described in the next
section,

3. Newton's polygon and solution of the equation F {(w.z) =0

A significant point in our analysis of the roots of a function is the
assumption that the variables are complex-valued.

We will therefore consider an analytical function F (w, z), where w
and : are complex variables. The results will then be applied to the
case of real v and :z.

Let F{0,0) = 0. The expansion of F (w, 2) in powers of v and z around
the point (0, 0) has the form

Fu, s - il 5+ Ugy s+ Uagll? 4 ... = 22 u; wie. (52)

We introduce one further assumption regarding the function F (w, z),
namely that at least one of the coefficients u;y and at least one of the
coefficients u,, do not vanish, i.e., the expansion (52) contains at least
one term without z and at least one term without w. This assumption
does not constitute a fundamental restriction of our problem (the problem
of solution of the equation F (w,z) = 0 for w). Indeed, for all u;,,= 0
{(i=1,2,...), the function F (u, 2) may be written in the form

Flw, 2)y=zF, (v, z

and the problem reduces to the analysis of the equation F; (w.z)= 0. The
situation is similar when all ug; = 0 (j > 0).
The following analysis is based on a number of theorems from the theory
of analytical functions, which are partly given here without proof.
Theorem 68 (the theovem of implicil functions). Let F (w.z) be an
analytical function in the neighbovhood of (0. 0) and let

F(0.0)=0, Fi(0, 0)==0.

Theve exist 8§ > 0 and « > 0 such that for every s,|z | < 8, the equation
F . sy =0 has one and only one vool w = f (z) satisfying the inequality
11 <<e., The function f (z) can be expanded in positive integral powers
of :, and the series will be convergent for |z | <8, i.e., it will be a
single-valued analytical function of z which vanishes at z = 0.

Theorem 68 is the theorem of implicit functions in the case of complex
variables. Its proof can be found in /22/, Ch.IV, p.354. The proof
uses a majorant series. Theorem 68 is also a direct consequence of
the following theorem.
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Theorem 69 (Weierstrass's preparatorytheorem). Lel F (w, z) be
an analytical function in the neighborhood of (0, 0) satisfying the conditions

- 3F (0, 0) g -iF (0, 0) _ . atF (0, 0)
FO,0=0, =0, ... o =0 i #0.  (53)
Then in some neighborhood |\w|<e, |z|<<8 of (0,0), F(w,z) may be represented
in the form

F W, z) ="+ A, @) w1+ ... + 45 (5)] © W, z), (54)

where @ (w, z) is an analytical function which does not vanish in this

neighbovhood, and A,(z), Ax{(z), ..., Ax(2) are analytical functions for |z|<<8.
The proof of Theorem 69 can be found in /22/, Ch.IV, p.352, It

follows from Theorem 69 that in a sufficiently small neighborhood of

the point (0, 0), the equation

Fw, z)=0 (55)

is equivalent to the equation
W+ A, Q) w4 L A Apy (2) w0+ Ax (2) = O, (56)

whose left-hand side is a polynomial in w. Weierstirass's preparatory
theorem thus reduces the local investigation of the general case of an
implicit function w (z) defined by equation (55) to the case of an implicit
function defined by an algebraic equation in w (which, in general, is not
an equation in z).

Note that relations (53) and (54) and the condition ® (w, z) %= 0 lead
directly to the equalities

A(0)=0, A,(0)=0, ..., A, (0)==0. (57)

Theorem 70. Let F(w, z) be an analytical function in the neighborhood
of (0, 0) which satisfies conditions (53). There exist >0 and 6 >0 such
that for every z, |z1< 6, the equation

F(w,2)=0

has precisely k voots (either different ov coinciding) w,, w, . .., wy, which
are smalley than ¢ in absolute magnitude. Movreover, if z—~0, each of the
roots w, also goes to zero.

Proof. The validity of Theorem 70 follows directly from the previous
theorem and from the theorem of the continuous dependence of the roots of
a polynomial on its coefficients (see /29/, §73). Indeed, Theorem 69 shows
that the roots of the equation F (w, z) = 0 coincide with the roots of equation
(56). By (57), equation (56) has k roots at z= 0, which are all zero. There-
fore, the roots of equation (56) go to zero for z—+ 0.

Remark. The roots wy, w,, ..., wy of equation (55) depend on z,

Suppose that for some z = 2, all these roots are different. It is readily
seen that in this case the roots w;, w;y, . .., wycan be defined in the neighbor-
hood of the point 2z, so that they are analytical functions of z in this neighbor-
hood (to ensure all this, it suffices to require that the roots w; (z) vary
continuously with the variation of z).
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In what follows, we will only consider the case whenthe roots w,, ws. .. ., w,
are different for every zs 0 in some neighborhood U of the point O (this
will be so if the discririnant D () of equation (56), being an analytical func-
tion of z, does not vanish identically). Then equation (55) naturally deter-
mines near every point :30 of this neighborhood k analytical functions

wy(3), wa(s)s ...y wa(2) (68)
which are the single-valued branches of the implicit function w. However,
in the neighborhood U of the point O, these functions, in general,
are not single-valued analytical functions, Indeed, it can be shown that if
the point z moves along some Jordan curve around the point O, the value of
the function w, (z) in general will have changed when we return to the initial
point z. The function (58) (see /35/, Ch.XIIl, 1) forms one or several non-
intersecting systems with the following property: if the point z travels once
along the curve I around the point O, the functions of each of these systems
undergo a cyclic permu-ation. These systems are known as the cyclic
systems of solutions of equation (55), and the point Ois the branch-
ing point of the function v (). Clearly, for z— 0, all the functions
w; (3) ~0.

If the discriminant D (5) =0, the situation is more complicated. This
case, however, will not be required in the following, and it is not con-
sidered here,

We now have to consider the form of the solutions w; (z) of (55) in the
neighborhood of 0.

If k= 1, Theorem 68 shows that there exists a unique solution, which
may be written as a series in integral powers of z, i.e., as a series

W= Y3k yazt 4 yazt b

which converges for sufficiently small z.

For k> 1, each of the k4 solutions which exist by Theorem 70 and the
remark to the theorem can no longer be represented as a series in integral
powers of z. To establish the natural form of the solutions in this case,
let us first consider gsome simple examples. Take equation (55) in the form

Ugy 4 Ugoll'® + uoazs =0,

where none of the coefficients vanish., Then

u
we= ‘// 01 21,3 ]ﬁ g3 z2,
u u
20 20

where } ——% and 14 =% z2 are to be regarded as one (fixed) value of each
29

of these roots. For small z, the second root can be series-expanded in
integral powers of z. The solution w therefore has the form

w=azr ozt

where a;5 0. The last series gives both solutions for w, since z'2is a
two-valued function of :z.
If equation (55) has the form

1013 + U™ + tgoz? =0,
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its solutions can be expressed by the series
w= Pz + Bpz¥s 4. ..,

where B, %= 0, and this notation gives all the three solutions of the equation,
since z'/2is a three-valued function of z.

In the above examples, the solutions of equation (55) are expressed by
series in fractional (rational) positive powers of z. This suggests that the
same representation will obtain in the general case also. We will therefore
seek solutions of {55) in the form
W= YIS Y a (59)
where v 0, and « and «, are positive rational numbers, o <o, <<a, << ...
Let us first establish what power exponent a will ensure convergence of
the power series (59) to a solution of equation (55) for small z.

Let uso be the first nonzero coefficient of the form u,, in expansion (52),
and uq the first nonzero coefficient of the form uy; (these coefficients exist
by assumption).

If (59) is a solution of equation (55), we have

F(yz®+y3%4...,2) =0, (60)

i.e., inserting for w in the series (52) its expansion from (59), we obtain
identically zero. This enables us to determine the numbers « and y. As
long as « remains unknown, we cannot identify exactly the lowest-order
terms in series (52) obtained after substitution from {59). We can neverthe-
less isolate a finite number of terms which definitely include the lowest-
order terms.

These are primarily terms of the form

ugizt and upgy*z™ (61)

and algo the terms

ui]._y"za’i"wi’ (62)

where 1 <i<k— 1, and the index j;, satisfies the inequalities 1<j; <<l—1
and is moreover the smallest index j for which the coefficient u,; with
fixed ¢ does not vanish.

It is readily seen that the terms of lowest order in z must be contained
among the terms (61) and (62).

If identity (60) is satisfied, terms of the lowest order in z mutually
cancel. Since none of the coefficients u;; in (61) and (62) is zero, we con-
clude that at least two such terms should be of the same order, which,
however, should not exceed the order of the remaining terms. Thus,
the numbers

ko, (k—1) Gt frogy (R—2) G4 faogs v vy G ji, £ (63)

include at least two equal numbers which are not greater than all the other
numbers. Suppose that j, = 0 and jo={, i.e., the numbers in (63) have the
form ix+j;, i=0,1, 2,..., k. Then a should satisfy at least one of the linear
equations

iia“'jil:iz“'f‘jizv (64)
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where i, =i,, and for anv i=0, {, 2, ..., k we should have
Ay N Py (65)

These values of 2 will be called feasible. There may be several
feasible values. To find all the feasible values, we will use a geometrical
method known as the method of Newton's polygon,

We introduce rectangular coordinates ¢, j in the plane and assign to
evervy term in (61) and (62} a point 4, on the plane with the coordinates (i, j;)
(i = . k). Thetermsin(61) evidently correspond to points of the
form A4, (0, ) and 4, (k. 0) which lie on the coordinate axes: the other points
A; fall in the first quadrant, and their abscissas and ordinates do not
exceed A— 1 and [ — 1, respectively.

Suppose that for some « relation (64) is satisfied, and ¢ s=i,. Then

a= — 20
in—iy

i.e., ais the slope factor of the straight line through the points A4 (i), j,) and
A Ue i),
The equation of this straight line is

j—iy=—a(i—i)or j—jy—a(i—i)=0. (66)

Clearly, for the points (i, j) which lie not lower than the line (66), we
have j—j,+a(i—i)>0, i.e,,

L= TR P X - #3
and for the points below this line, we have
J+a<<jy+ai.

Condition (65) signifies that each of the points A; (i, /,),:=0,1,2,...,k,
lies either on the line (€6) or above this line. Hence it follows that every
feasible a is in a one-to-one correspondence to a straight line passing at
least through two points 4;, which has a negative slope factor and is so
located that none of the points 4, lies below this line. We will refer to
these lines as feasible lines. a is equal to minus the slope factor
of the corresponding linsz,

Thus, in order to find all the feasible values of ¢, we should find all
the feasible lines. This can be accomplished in the following way. Let
s be a moving line which initially coincides with the axis i{. We turn this
line clockwise around the point A, (k, 0) until it passes through one of the
points A;, the point A, (k, jx,) say. The line 4,4, obtained in this way will
be designated 5. This is evidently a feasible line. The line s, may pass
through more than two points 4,. Then, let A, be the leftmost of these
points (i.e., the one with the least abscissa).

If A, does not coincide with the point 4, (0, {), the moving line will be
further rotated in the clockwise direction around the point A, until it
passes through some point Ay, (k;, jx) (if there are several such points,

As, is chosen as the leftrnost). The resulting curve is designated s.,
and the process is continued until the moving line passes through the
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point 4, (0, ). The result is a straight
line designated s, (Figure 169). In partic-
ular cases, m may be equal to 1.
The convex polygonal line 4,4, 4,,. ..
e Ahm—1A° obtained in this construction
is known as Newton's polygon (or
Newton's diagram). Itis clear
from the construction that each side of
Newton's polygon is a segment of a
feasible line. It is readily seen, however,
that the converse is also true: every
feasible line contains a segment which
is one of the sides of Newton's polygon.
4% We have thus established that all the
FIGURE 169 feasible values of o are equal to minus
the slope factors of the gides of Newton's
polygon.

Now let the a in expansion (59) be one
of the feasible values of the index. We will determine the corresponding
value of the coefficient v. To this end, we shall make use of the condition
that the lowest terms in the left-hand side of the identity (60) should mutually
cancel. To fix ideas, let « be the slope factor of the side AyAr, of Newton's
polygon and let Ay, Ay, ..., 41, k> 4> 1> ...>1, >k, be those among
the points A; which lie on this side. The lowest terms of the corresponding
expression will cancel out if the coefficient of the lowest degree of z (equal
to ke + jay = Lot + joy =. ... = ka + jn,) i8 zero, i.e., if

8 (Y) = Bhjy Y Uy, YA+ - 5y, V2 A Ungiy, ¥4 = 0. (69)

Since by assumption y =0, we are only interested in the nonzero roots
of equation (69), i.e., the roots of the polynomial

h (y)= uhljh"Yh‘k’ -+ ulljlgvll_h2+ e+ uk,,-hz. (70)

The number of these roots (counting each root according to its multiplicity)
is k, — k;,. Therefore, the number of values of the coefficient y corresponding
to each side of Newton's polygon is equal to the number of units accommo-
dated by the projection of this side onto the abscissa axis. The values of
the coefficient may be real or complex, and some of them may be equal to
one another. Since the length of the projection of the entire Newton's
polygon is k units, we conclude that the first coefficient vyof the
series (598) has k values (not all of which are necessarily different).

We have established the necessary conditions to be satisfied by «
and y when w = yz¢ 4 y,z9 - . .. is a solution of the equation F (w, z) = O.
These conditions can be stated as follows: « should be equal to the
absolute value of the slope factor of any of the sides of
Newton's polygon, and y— for a fixed a— should be equal
to one of the nonzero roots of equation (69).

Let us consider the case when y s« 0 is a simple root of (69). We
will show that the above conditions are also sufficient for the equation
F (w, z) = 0 to have a solution of the form (59) with the given « and y.
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Let 2 — 5, where p and ¢ are irreducible numbers, be a feasible value

of the index corresponding, as before, to the side A,,4,, of Newton's polygon,
and y = 0 one of the roots of equation (69). The equalities

ke jpy=bho= = =l Ji = kx4 fp,

clearly show that each of the numbers b —k,. /,—k.. .... I,—k, is a multiple
Ay —ka
e
Now let y=0 be a simple root of the polynomial g(y) {(and hence of k(y)}.
Then

of ¢, i.e., h(y)is a polynomial in y? of degree

gy =0. g(y)=0. (71)

To investigate the equation Fu, 2= 0 for z50, we substitute
(72)

u = rs* = pzhi,

where ! 7is one of the y possible values of this ¢-valued function. Using
(52) and (69), we readily see that

Fr, zy=F@:zre )= :h” "oy (g (v') — 99 (v, z179)). (73)

where i is a positive integer, and ¢ (v. :!'"%) is a power series in ¢ and z!' 7,
which is a priori known to converge for all s and vzt 9= u» of sufficiently
small magnitude and, therefore, converges for all sufficiently small |z},
if v takes its values from a bounded region. The equation F(u.:3) = 0 is
equivalent for z 0 to the equation

g(ry—zMig (v, 3t N =0,
Substituting

we obtain the equation
D, ) =g )+ SAe (e, =0,
The coefficients of the power series representing the function ¢ (r. ) and
therefore the function itself are independent of the particular value of the
¢-valued function :!' 9 used in the substitution {72).
Ry (71),
Dy, ) =0, @Dy, 0)=£0.

Therefore, by Theorem 68 (the theorem of implicit functions), equation (75)
has a unique solution in a sufficiently small neighborhood of the point (= 0,
which reduces to y for = 0. This solution has the form

L Gl TN TS (76)
The corresponding solution is

-

w=rzP I=yzP ¢ 4 y3p+hr @ Lyazlora s | (77)
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We have thus established that if a=p/q is a feasible value of the index,
and y is a simple root of equation (69) corresponding to this «, the equation
F(w,2) = 0 has a solution of the form (59).

Let o, o, ..., ay be all the feasible values of the index « for the equation
F(w, z) = 0, and let a; = p,;/q;, where p; and g¢; are irreducible numbers. Con-
sider the case when for any o, (i=1, 2, ..., m), all the non-zero roots of the
corresponding equation (69) are simple. Let the number of these simple
roots be r; the roots are designated yi, Yiz» --+» vir;,, We have seen before
that if % is the number defined by (53), then

FiTg b ans by =k (78)

As we have just established, to every pair of numbers oy, yiy (i=1,2,...,m;
j=1, 2, ..., s;) corresponds to a solution

W= 2PV oy g PV (79)

Suppose that for a fixed i, the same value of the root q]'/2=z”"i is taken
in (79) for all j, j=1, 2, ..., r;. It follows from (78) that there exist
precisely k solutions of the form (79). We will show that if 240 is suf-
ficiently small in absolute magnitude, the values of the solution (79) are
all different. Indeed, if this is not s0, there exist two solutions of the
form (79), w,and w,, say, which take on identical values on a sequence
of points z;,— 0. If these solutions correspond to different a, they have

different orders of smallness relative to z; therefore lim ::—i:% is either
0 or «, and the equality w,(z;)) =w,(z;) breaks down for large !. If the
solutions w, and w, correspond to the same «, they differ in the first

w, (1)
wy(z)
breaks down. Our proposition is thus proved. It follows that all the &
solutions (79) of the equation F(w, z) = 0 which go to zero for z— 0 are
different. But then by Theorem 70, the functions (79) exhaust all the
solutions of the equation F(w, z) = 0 which go to zero for z— 0.

We will now show how to find the cyclic systems of solutions men-
tioned in the remark to Theorem 70. In the process we will derive a
different form of solutions (79), which will be useful at a later stage.
As before, we assume that for everya;, i =1, 2, ..., m, all the non-
zero roots of equation (69) are simple. It suffices to consider one of
the feasible values ;. We will designate it ¢, and let

coefficients y. Therefore lim #1 and the equality w, (2;) =w;(z,) again

a=plg,  (po)=1.
Let

R (V) = Uhyg, YRIR A wg, YTty (70)

be the polynomial % corresponding to the given a.
We have seen before that A(y) is a polynomial of degree d=F—Fk ;5 ve.
Let d
[=y? (80)
and
Bi—ke li—he

H(I) =uh,“1‘ 7 +u,”'“1‘ 7 ... +uk'5k2 (81)

394
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LetI'y, T.. ..., Iy be the roots of the polynomial # ('), Since

h(Y)=H (v9) (82)

and all the roots of the polynomial k(y) are simple, the numbers Ty, I'., ..., I',
are all different.
Let
Yitr Yize -+ 0y Yig (83)

be all the ¢g-th degree roots of ;. By (80) and (82), these numbers are
roots of the polynomial A(y). Thus, every root I; of the polynomial H(I)
corresponds to a sequence (83) of roots of the polynomial 2(y). We know
from algebra that the numbers (83) can be expressed in the form

Vit Yit€s Yugh «eey Yug®?, (84)

where y;; is one of the g-th degree roots of I'; (any of the ¢ roots can be
chosen, as long as it is kept fixed), and e is the fundamental g-th degree
root of 1.

Let & be one of the values of ;q'E (also quite arbitrary, provided it is
fixed). As we have seen above, the sequence (83) of the numbers y;; cor-
responds to the sequence

Wip, Win »o.r Wig (85)
of solutions of the equation F(w, z)= 0, where
Wi =L (Vij+ Yineo+ Yipog —---) =1 2, .... . (86)

If the &, in the right-hand side of (86) is replaced with some other value
of the ¢g-th degree root of z, we also obtain a solution of the equation
F(w,3) = 0. Therefore, if we keep j fixed, setting for convenience j= 1,
and let the &, in (86) run over all the values of the ¢g-th degree root of :z,
i.e., over the numbers

(87)

(88)
where

Wir = (GoE )P [ Vi1 -+ YenrZo8® = Yoo (SeEH)2 2 . .. (=0, 1, 2..... ¢—-1) (89)

Wi = LRIV e GHh5 = (I=0.1,2 ..., ¢—1). (90)

Since e is the fundamental ¢-th degree root of 1, and (p.q) = 1, the
numbers ¢r (1 = 0, 1, 2, ..., ¢g— 1) constitute the set of all the roots of

g-th degree of 1. Therefore, the numbers vy e'p (1 =0,1...., ¢ — 1)
coincide with the numbers (84) and hence with the numbers (83). Since
every solution of the form (79) is determined by its first coefficient, it
thus follows that solutions (88) coincide with solutions (85).
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The structure of the solutions (88), determined by (89), readily shows
that the functions (88) constitute a cyclic system of solutions. Indeed, as
the point z moves around the origin tracing a simple closed curve, the
numbers !, which are the ¢g-th degree roots of z, undergo a cyclic per-
mutation.

Let us summarize our results. Leta = p/q be a feasible value of the
index (obtained by construction of Newton's polygon). To obtain the solutions
of the equation F (w, z) = 0 corresponding to this ¢, we have to find the roots
Iy Ta ..., Tq of the equation H(I) = 0. Let vi: be one of the ¢-th degree roots
of ) i=1,2,...,d. The corresponding solution is

wig = L8 (Vis + Yeaalo+ - - - ), (86)

where §, is any fixed value of Vz. Making f, run over all the values of this
root, we obtain ¢ solutions

Wiy Wizy - - -, Wigs

which constitute a cyclic system. Since i=14, 2, ..., d, we obtain a total

of d cyclic systems of solutions, corresponding to the feasible value a=p/q.

ky—ky
q

We recall that d= , where k —k; is the degree of the polynomial (70).

In our analysis of the creation of limit cycles from a multiple limit
cycle, the function F (w, z) will be identified with d (n,, u) (see (47)), i.e.,
with a real-valued function of real variables, and we will be concerned
with the existence or absgence of real roots of this function.

The following lemma will be of considerable importance in this
connection,

Lemma 1. If all the coefficients of the series expansion of the function
F (w, z) are veal, and v is a real simple non-zero root of the equation g (y) = 0
(see (69)) or, equivalently, of the functionh (v), all the coefficients vy, v,, ... of
the covresponding solution (77)

W = yzP/ 4 2PV | oz (P+2)e

of the equation F (w, z) = 0 are real.

Proof. The numbers yandy, (i = 1,2,...) are the coefficients of the
power-series expansion of the function v (see (76)) satisfying equation (75).
*Since the series of the function ¥ (w, z) has real coefficients, the series of
the function @ (v, z) also has real coefficients. When solving the equation
@ (v,z) = 0 by the method of indeterminate coefficients, each successive
coefficient y;4+; is a polynomial in the coefficients of the function @ and the
coefficients v, vy, y2. .. ., y; (see f11/, Vol.II, Sec.450). But then all the
coefficients y, are real. Q.E.D.

4. The behavior of limit cycles of some dynamic systems
following small changes in the parameter

In this subsection we will apply the previous results in order to
establish what happens to a limit cycle of a dynamic system depending
on a parameter following a small change in the parameter. We will
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anly consider systems of two particular types, one of which includes
systems obtained from some fixed system by a rotation of the vector
field. The methods used, however, can be applied to other types of
systems depending on a paramefer. As throughout this chapter, we
will again consider only analytical dynamic systems.

We will first prove a number of lemmas, which are extensively used
in the main propositions. These lemmas follow directly from the results
of the previous subsection.

Consgider the equaticn

Fuw, 2y =uyw +ugyz+ usur4-...=0. (55)
Let all the coefficients u;; of this equation be real and let uy, be the first
of the coefficients u,, wnich does not vanish. When speaking of solutions
or roots of equation (55), we will invariably mean roots of sufficiently
small magnitude which correspond to sufficienily small non-zero real
values of z.

Lemma 2. Letk be an even number, and uy = 0. Then, if 2.0

Uro

(-:—:‘0—>0), the equation I (v, z) = 0 has two different real roots for = >0 (z<0),

which are simple roots, and has no real rools for : << 0(z> 0).

Proof. Let k=2l [>»1. Since uy 0, Newton's polygon consists of
a single segment through the points A, (2L. 0) and 4, (0, 1) (Figure 170), i.e.,
the indexa may take onone valueonly, a = 2’7 The values of the coefficients y are
obtained from equation (69), which takes on the form

Uapoy? + Ugy = 0. (91)

Therefore, the equation F(w, z) = 0 has 2! solutions. As we have seen
before, all these solutions may be written in the form

w=g12 (y 4 y,zl2 . oypz2/20 Y, (92)

where the coefficients vy and v; are the same, and z!/% successively runs over
all the 2/-th degree rocts of z.

if ::z{o < 0, equation (91) has two real roots. Let one of these roots

be the y in (92). Then all the coefficients v;, i = 1,2,..., are also real
by Lemma 1.

If 2>0, there exist two real values of the function /2, These values
correspond, by (92), to real values of w. The complex values of z!/% cor-
respond for sufficiently small z to values
of w which are close to the complex number
sty i e., are also complex. If z<0, all
the values of the function z!/2! are complex,

A,(87) .
and the function w may not have real values
for sufficiently small z. '
a Anl2,0) Since all the roots of equation (91) are
FIGURE 170 different, all the & = 2! roots of the equation

397
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F (w,z)= 0 are also different for sufficiently small z, and are thus simple.

U, .
U 0, The case =2 >0 is reduced
Uszlo Uai0

We have thus proved the lemma for
to the previous case by substituting — zfor z. This completes the proof
of the lemma.

Lemma 3. If kis odd and u,, = 0, the equation F (w, z) = 0 has precisely
one real voot for both z > 0and z << 0, and this voot is simple.

Proof. Let k=2l41, 1> 1. Equation (69) has the form

12
Unpps,0Y> 1 +ug =0,

and the corresponding solution of the equation F(w, z) = 0 is

i . 2
w=z2¥! (ypy g2+ Loy, 2t )

The validity of the lemma is established along the same lines as in the
previous proof.

Corollary. If kis odd, the equation F (w, z)= 0 may have more than
one real solution only if ue = 0.

Lemma 4. If k is odd and

uor=0, w70, (93)

the equation F (w, z) = O has either three veal voots for z > 0 and one real
root for z << 0, or three real voots for z < 0 and one real root for z > 0.
All the roots of the equation, and in particular its real rools, are simple.
Proof. Let k=24 1,1l> 1 and let u,, be the first of the coefficients
uy; which does not vanish. Since uy = 0, we have m>» 2.
It is readily seen that in this particular case Newton's polygon is
made up of two segments, one through the points 4,(0, m) and 4, (1,1)
and the other through the points 4, (1, 1)
and A+ (2041, 0) (Figure 171). Con-
sequently, @ may have two values,

namely a;=m— 1 and a:z=—21—l. The equa-

tion for ¥ corresponding to ¢y=m— 1
is uyuy+uem = 0; this equation has a
real root. The corresponding solution

Ao AN

w=z(Y+vs+ v+ ...) (94)
FIGURE 171

is an analytical function of z. By Lemma 1,
all the y;(! = 1,2,...) are real and, there-
fore, for any real z, the solution w is real.

The equation for y corresponding to “2='§1T is
Ustey o¥2H Uy =0

(see {69)), and there are 2! solutions of the form

L L 2
w=22 (y+y;z8 +yz2 4 ...).
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Consider the case u":’m < 0. Equation (96) has a real root and, as in

our proof of Lemma 2, we can show that there are two real solutions of

the form (96) for z > 0 and no such solutions for :< 0. Thus, if u:“’o< 0, the

equation F(u, z) = 0 has three real solutions for 2> 0 (one of the form (94)
and two of the form (96}, and only one real solution (of the form (94)) for
z< 0,

u.
The case —2

Uater 0
tfor z. In this case, the equation F(w, z) = 0 has one real solution for z >0,
and three real solutions for z< 0, Since 2all the roots of equation (95) are
different, all the roots of the equation F (v, z)= 0 (and in particular, its
real roots) are also different and hence simple. This completes the proof
of the lemma.

We can now proceed with the main propositions of this subsection. We
will first establish what happens to a limit cycle of a dynamic system
when the vector field is rotated., Theorems 71 and 72 provide the answers
to this question.

Let

>0 is reduced to the previous case by substituting -~z

‘3—j=P(Iv y) d_!;’=0('zv y) (A)

be the starting analytical system.
The system (A,) depanding on a parameter is chosen in the form

dx

=P y—pl@ =Py w. (A)
- ®w
B Q@) +rP(m =0, y p)

and the vector field of this system is obtained from the vector field of (A)
bv rotating through an angle equal to tan™' p (see end of §3).

We will use the sams= notation as in §32.2, Then, by (23), the functions
pe and ¢q; corresponding to (A ) have the form

Pz, Y)=—Q(x, ), q(x, ¥) =P (. y). (97)
pi(x, y)=q;(z, y) =0 for ix»2

Suppose that system (A), or eqguivalently (Ay), has a limit cycle L,.

Theorem 71. If Ly is a limit cycle of even multiplicity of system
(Ao}, there exist e>0 and p,>0 with the following property: either for
every n>0, |p|<<uo, (A has precisely two limit cycles in U,(L,), which
are moreover structurally stable, and has no limit cycles whatsoever
in Ue(Ly) for every p<<0, [p|<<ps, or conversely, for every n>0, |p|<po,
(A,) has no limit cycles in U, (Lyy, whereas for pn<<0, |pi<<pg, (A,) has
precisely two limit cycles in U,(Ly), which are structurally stable. The
number e may be chosen as small as desired.

Proof. Let n=f(n, p)be the succession function constructed for (A,,)
on some normal to the limit cycle Ly (see (16)), and d (ne. p) = f (5o, 1) — 7o
(see (17)).

As in$32.1, we assume that the limit cycle L; of the system (Ag) cor-
responds to ny= 0. The series expansion of the function d (n,, n) near the
point (0,0), by (19) and (47), has the form

d (g, p) = (10— 1) no + Ut - uang + . .. (28)
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In particular,
d (g, 0) = (30— 1) 7o +Uaonl+ Usgn + . . . (99)

Ry assumption, L, is a limit cycle of even multiplicity of (Aq). This
and Definition 28 (§26.2) show that u;,— 1 = 0 and that the first non-zero
coefficient in expansion (99) is a coefficient before an even power of n.
Let this coefficient be uy,,, where {>1, Thus,

d (R, B) =y, 03’ + g+ - - - (100)

The coefficient u, may be computed from (36), $32.1. Let

=), y=v0),

where ¢ and $ are periodic functions of period r, be the solution of (Ag)
corresponding to the limit cycle L;. Then

P(e(s), $(H=9" (s}, Q@(s): ¥() =¥ (s)

Ry these relations and (97), we have

g (@ (s), P(N =9 (), Pu(@(sh PN =—¥(s).
Inserting the last expressions in (36), we obtain

3 8

, § Prtopyds + — § (PrtQ)as

o = 500 ¢ Ve ! (@ ()2 -+ ¥ ()% ds.
0

Hence it follows that ug 0. But then, in virtue of (100), the conditions of
Lemma 2 are satisfied for the function d (n,, p) if it is considered as F (w, z).
Ry this lemma, (A,), for sufficiently small p, has precisely two limit
cycles in a sufficiently small neighborhood of the path L,. Since by the
same Lemma 2 the real roots of the equation d (ny, p) = 0 to which these
cycles correspond are simple roots, the corresponding limit cycles are
structurally stable (see §13.3, (31), and also $13.3, Definition 18, and
§14, Theorem 18). Q.E.D.

The proposition of Theorem 71 may be formulated in the following
graphic form:

When the vector field of a dynamic system is votated in one direction,
a limit cycle of even multiplicity decomposes into two structurally stable
cycles, and when the field is rotated in the opposite direction, the limit
cycle disappears.

Let us now consider the case when the dynamic system (A) has a limit
cycle L, of odd multiplicity.

Theorem 72, If L,is a limit cycle of odd multiplicity of dynamic
system (A,), there exist e=>0, po> 0 such that for all p #0, | p | < po,
(A,) has a single limit cycle in U, (L,), which is moreover structurally
stable. The numbev = may be taken as small as desired.

Proof. Thefirstnon-zerocoefficient of nf(k = 1,2,..,) in expansion
(98) is a coefficient before an odd power of n,, e.g., the coefficient before
n2i+! where {> 0. The coefficient uy has the same form as in the previous
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theorem, i.e., it does not vanish. The proposition of Theorem 72 then
follows directly from Lemma 3. Q.E.D,

Remark 1. If L,is of multiplicity 1, i.e., a simple limit cycle of
(A), then it is a structurally stable path (Theorem 18, $§14). Therefore,
not only the system (A,) obtained by rotation of the vector field, but any
svstem sufficiently close to (A) will have precisely one limit cycle in a
sufficiently small neighborhood of L,. In case of higher multiplicities of
the cycle L,, there always exist systems as close as desired to (A), which
have more than one 1limit cycle near L,. Theorem 72 shows that in a
small rotation of the vector field, a multiple cycle of odd multiplicity
behaves like a simple cycle, i.e., the modified system has one and only
one limit cycle in a sufficiently small neighborhood of the original cycle,
which is moreover structurally stable.

Remark 2. Theorems 71 and 72 and our proof of these theorems
remain valid if (A)) is taken in the form

L =PE )@ 0@y, L=Q@ y+pi@ »P@ Y.

where f (2. y) is a function which retains a constant sign at all points of the
limit cyvecle L.

In conclusion of this section, we will prove another theorem, which is
no longer related to rotations of the vector fields.

Let Ly be a limit cycle of (A), £ = @ (). ¥ = ¢ () the solution corresponding
to the path L,. ©> 0 the period of this solution. Let further F (z, y) be an
analytical function defined in the same region as system (A), which satisfies
the following conditions:

(a} F(g(s). ¥ (sN =0,

(b) 1Fx(g (). $(NF+IE (@ () $(s)IP5= 0 (see end of §33.1).

Theorem 73. Lei

%I‘=P<r— P Rp (@ ) P (2 ) - =P,y ),
o _ (A
Gr=0E@ N tua (@ ) S g (n y) ... =0, ¥, p)

be a dynamic system, end let the functions p1(x. y) and q. (z, y) have the form
@ y)=F@ yFuay), @@ n=F@E pF (), (101)

where F is a function satisfying conditions (a) and (b). Then if L, is a limit
cycle of odd multiplicity of system (A), there exist p, > 0 and & > 0 which
salisfy the following condition: for allu.|pn | << p,, having the same sign,
(A,) has precisely three limit cycles in U, (L), and these cycles are struc-
tuvally stable; for all v.|p | <<p., of the opposite sign, (A,) has precisely
one limit cycle in U, (Ly, which is also structurally stable.

Proof. The expansion of d (n,, p) in the neighborhood of (0, 0) has the
form (98):

d (no. B = (ugo— 1) mg+ ugst —Uynp +upui 4 . ..,

where uy, is computed from (34). The coefficient u, is computed from (386).
Ry (101) and condition (a), it follows that us = 0. The coefficient uy, is
computed from (42) and, as we have seen at the end of §33.1, u,; == 0 under
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the conditions of our theorem. Thus, the conditions of Lemma 4 are
satisfied for the function d (n,, p) if it is considered as F (w, z). The proof
of the theorem follows directly from this lemma. Q.E.D.

§33. CREATION OF A LIMIT CYCLE
FROM A CLOSED PATH OF A
CONSERVATIVE SYSTEM

1. The integral invariant and conservative system.
Statement of the problem. The method of
the small parameter

The concept of the integral invariant was introduced by Poincaré
(see /24/, Sec.235, p.5). We will give here a definition of the integral
invariant for a dynamic system of second order. In the general case —
for a system of n-th order — this concept is defined analogously. As in
the previous section, we assume that all the relevant systems are analytical.

Let

S =P@y, L=0@y (8)

be a dynamic system defined in . For simplicity, we assume that G is
made up of whole paths of system (A). Let D be a closed subregion of
G, M, (z0, yo) € D any point in this subregion. Consider the path £ = @ (& Zo. Yo),
y =P (t; %o, ¥o) Of system (A) which for ¢ = 0 passes through the point M.
Let the point with the coordinates ¢ (¢ o, ¥o), ¥ (¢ xo, ¥o) be designated M (¢, M,).
The set of all points M (¢, M,) obtained when M, runs over all the points of
the subregion D for a fixed ¢, i.e., the set of point {M (¢, My); Mo € D}, is
designated D;. D, is clearly homomorphic to U and is contained in G. D, is
obtained from D, so to say, by a translation over a distance ¢
(in time) along the paths.

Let p (z, y) be an analytical function in ¢ which is not identically zero in
this region.

Definition 31. The integral

S(D)S p(x, y)dzdy (1)

is called the integral invariant of a dynamic system (A) if in every bounded
closed subregion D <G and for every t, we have

1§ p@wdzdy= {0 pazay. (2)
(Dy) (D)

If (1) is an integral invariant, the function o (z, y) is called the density
of the integral invariant.

The integral invariant readily lends itself to a hydrodynamic interpreta-
tion. Let (A) be regarded as a system of equations describing the velocity
of steady-state motion of some two-dimensional "fluid" filling the region G,
which contains neither sources nor sinks. Let p (z, y) be the density of the




§33. CLOSED PATHS OF CONSERVATIVE SYSTEMS

fluid at the point {z, y). The integral (1) then expresses the mass of fluid
filling the region D, and equality (2) signifies that the fluid mass is con-
served as the fluid particles move along their streamlines in a time ¢ to
fill the region D;. For an incompressible fluid, p (s, ¥) = const, and the
integral invariant is the area of the region D.

Let us derive the condition to be satisfied by p (z. y) for (1) to be an
integral invariant. Assuming a fixed D for the time being, we will use
the notation

I

J(e):g \ (& y) dzdy. (3)
)

g

a

Then '3 \ p(x. y)dzdy=7(0), and for equality (2) to hold true for any ¢, it is

.

(D) .
necessary and sufficient that

J()y=0

(the differentiability of J(¢) will be proved below). To compute J' (¢}, we
represent J () as an integral over D. The substitution of variables

=@ ({; Zo, Yo)» ¥ =" (L Zo, Yo) (4)

in (3) maps D onto D,. We thus obtain

JW=\{ew pardy = 00t 7 1), V& 70 40)A (&5 70, yo) dzodye.  (3)
(Dp) (D)

where
D (@ (¢; xo, yo)r (& To. o))
D (zy, yoi

A 14 7o, !/o) =

is the Jacobian of mapping (4). This Jacobian has been computed in QT,
where it is shown (QT, §3.5, Lemma 6) that
t

{ [P} (2, W)+Qy (9, W] dt
Aty 2o, Yo) =€ (6)

It follows from the last equality that A(f zo, yo) 5= 0, i.e., (4) is a regular
mapping, and

DA To 10) 2 A (15 20, yo) [P (32 $) + Q) (9, $)]- (7)

a

Py (58), J@ =\ SpAdxodyo. Since the region of integration in this integral

'~

is independent of Lt'i and the integrand is differentiable, J(¢)is differentiable
and
’ T d
=1 Frle @t 20 vo), B 20, y0) A (5 20, o)) o de. (8)
(D)

Let us compute the intagrand in (8). Using (7) and the obvious relations

d@ (¢ xy, d y Zor
< dfo U—O)=P((p, q‘)v _____\l:(t.d-:o Yo) =Q(q:’ ‘b)'
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arledl=[ 2252 1 208 | AL pA[PL (e, 1)+ 0} (@ W) =
—A[ 28D p g, 4+ L&Y o, o Pilp NG @ W (9)

For t= 0, ©( o, ¥o) =70, ${{; Zo, Yo) =Y, and A(t; 2o, yo) = 1. Therefore, by (8)
and (9),

J0) = S
(

S [69 (1;3:. Yol p (o, yo) + Zp—(%y—"zo (x0, yo) +
; ,
+p (%o, ¥o) (p; (Zo» yo)+0v (o, yo))ld:co dya. (10)

Since J'(ty=0, we have J'(0) = 0. The last equality should hold for
every region D, so that the integrand in (10) must identically vanish,
i.e., at any point (=, y) of G we should have

D

HP+LO+p P+ Q) =0. (11)

On the other hand, it follows from (8) and (8) that if (11) is satisfied,
J' () = 0 for any D. We have thus established that identity (11) is the
necegsary and sufficient condition for (1) to be an integral invariant.

Remark. Condition (11) can be written in the form d(pp)+ a(pQ) =0,

d z

For an n-th order system —+-=P;(xy, 3, ..., Ta), ¢ = 1,2, ...n, the functlon

o (x4, x3 ..., T,) is the den51ty of the integral invariant if and only if the
following identity is satisfied (see /30/):

S doPy) __

2 —a=0.
i=1

Let G, as before, be a region consisting of whole paths of (A).

Definition 32. System (A) is said to be conservative in G if it has

an integral invariant with positive density in this region.
Consider a system (A) which is conservative in G, Let Sgp(x, y)dxdy,

(D)
where p(z, ¥)> 0, be its integral invariant. The paths of (A) then coincide

with the paths of the system
d < d . .
F=0@ NP =P F=p@& Q= y=0. (A)
By (11), we have in G
_9F (12)

Therefore, if G is a simply connected region, a single-valued function
H (z, y) exists in G which satisfies the equalities

p_ _ OH(zy) 5 _ OH (z, y)
P=— ay v Q= oz ’ (13)

and (A) may be written in the form

dx __OH(z y) dy _0H (z, ¥)
at ay v @t ez . (14)
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Definition 33. A dynamic system of the form

Jro dH (x. y¥) dy af (z, y)
e P LE AR Lo Pt AL LIS 28

dat oy at dx *

wheve H (x.y) is a single-valued function defined in G is called a Hamillonian
system in G,

From DNefinitions 32 and 33 and condition (11) it follows that a Hamiltonian
system is a particular case of a conservative system. The density p of the
integral invariant of a Hamiltonian system may be chosen as the number 1;
the integral invariant o the system is then the area of the region. A
Hamiltonian svstem has a general integral H (z,y) = C (see QT, $1.13).

We have thus established that if (A) is a conservative system in a
simply connected region G, and p (z, y) is the density of its integral
invariant, (A) is a Hamiltonian system in G. g (z, y) is the integrating factor
of the differential equation Q (z, y)dz — P (z. y) dy = 0 corresponding to system
(A}, 1t is readily seen that if P and Q are analytical functions, H (z, y)is
also an analytical function.

If G is not simply connected, relation (12) is not enough to establish the
existence in G of a single-valued function H (z, y) which satisfies conditions
(13). In this case we can only sav that such a function exists in any simply
connected subregion of G.

In this section we will only consider the case of ¢ which is an "annular"
region completely filled with closed paths of system (A) enclosing one
asiother. We will show that in this case (A) is a conservative system in G,
i.e., it has an integral invariant with positive density p (z, y) in this region,
and that the system
T=oP = (A)
is a Hamiltonian system

Theorvem 74, Let (A) be an analytical system, and G a closed annular
region completely filled with concentric closed paths of system {A). There
exists an analytical function o (z, y) defined in G which satisfies the condition

P+ Qe (Pi+ Q) =0, (11)

i.e., system (A) is consevvative in G, and the system

w=eP = (3)
is Hamiltonian.
Proof. Consider an analytical arc without contact { contained in G,
which connects the points of two closed boundary paths (see Figure 172,
74 the existence of this arc is proved in QT,
§19.5, Lemma 6), Letz=f(s),y = g(s), ag<s<gb
be the parametric equations of the arc !
(f and g are analytical functions). As we
know, every closed path of G has precisely
one common point with I. Let 1 (s) be the
period of the closed path which crosses
the arc I at a point corresponding to the
value s of the parameter.
Let x=¢ (! xo. yo)» y=1 (¢ zo. o) be the
FIGURE 172 solution of system (A) satisfying the initial
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conditions @ (0; zo, ¥o) =0, P (0; 2o, Yo} =yo. Consider the mapping 7, defined
by the equalities

z=D(t,s), y=Y{(,s), (15)

where
Dt =@ f) g T =0 f(5), £(5)- (16)

The functions @ and ¥ are analytical, and 7 maps the region R of the
plane {¢ s) defined by the inequalities

a<s<bh 0Kt (s), ()

onto the region G. The mapping 7T is regular at all the interior points of R
(see QT, §3.5, Lemma 8), but it is not one-to-one, since every point of
the arc ! corresponding to the value s (a<s<b) of the parameter is the image
of two points (0, s) and {» (s), s) belonging to the boundary of the region under
this mapping. This follows from the obvious relations

DO, s)=D(x(s), s)y, YO, s)=Y¥((s), s). (17)

Let
5
~ ¥ [PL(@@, )T (L 4Qu (DL, ), WL, )]
r{t, s)=e 0 de. (18)

The function r (¢, s)is defined in region R of the plane (¢, 5). In virtue of
relations (15), it may be considered as a function of z, y defined in G.
Let the corresponding function be p (z, y).

We thus take

p(I, y) =7‘(l (‘tv y)) S(I’ y))v (19)

where ¢t = t (z, y) and s = s (z, y) are the functions defined by (15).

We will first show that the function p (x, y) defined by (19) is single-valued
in G. If the point (x, y) does not belong to the arc without contact {, it cor-
responds precisely to one point (¢, s) of the region R and therefore to a
definite value of the function r. Let now M (z, y) be a point which belongs
to the arc | and corresponds to the value s of the parameter. In this case,
as we have seen before, the point M (z, y) is the image of two points of the
region R under the mapping, namely the points (0,s) and (3 (s),s). To
establish the single-valuedness of p (z, y), it suffices to show that r (0, s) =
=r(t{s),s). Butr(,s)= 1by (18). On the other hand,

<(s)

S Pe(pt fi2 9 H gD+ Qe figh vt f eldt

0

is ejual, apart from the factor t (s), to the characteristic index of the closed
path Ly passing through the point M (see §13.3, Definition 17). Since the
path Ly belongs to the family of the concentric closed paths filling the region
G, it is not a limit cycle and its characteristic index, together with the last
integral, vanishes (see §13.3, (31) and §12.3). But then, by (18), r (v (s), s)=
=1 =r(0,s). We thus established that the function p (z, ¥) is uniquely defined
by (19) in G.
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We will now show that this function fulfills the proposition of the theorem,
i.e., satisfies identity (11). Ry (18) and (1¢) we have

Ap ar Jdt ar ds f .y @t ar us

L L AL A A A, -+ gy er o5

9z ot or ds ér p(Px+0Q)) gz + s oz ' (20)
dp __ or 4t gr ds __ , sy dt ar ds )
Gy =t ey T = PPt Qg g5y

Multiplying the equalities in (20) by P(z, y) and Q(z. y), respectively, adding
them up, and remembering that
__dx __ 9y
P =25 Q@ uw=2,
6t 5 . Ot o Ot dr | Gt by _ Gt
wlhigl=mutga=a—l
s ds s 6z_l_0s dy __ ds =0

we obtain

gp dp C oy
e Pr5;Q0=—pP:+ Q)
i.e., relation (11).
We will now show that the system
d A d. ~
Gr=eP=P  L=p0=0 (&)
is a Hamiltonian system in the ring &. S3ince p >0, the paths of (&) coincide
with the paths of (A), i.e., they are closed paths. Furthermore, in virtue
of (11},
de Py | d(p, Q) =0
gr ! Jdy -

8 _ _ b (21)

Let M, (73 yo) be a fixed, and M(z, y) an arbitrary point in G. Let ybe a
smooth curve contained in G which goes from M, to0 M, We will show that
the line integral

SO(z.y)dx~P(z, Vdy (22)
»

is a single-valued function of z,y. To this end, it suffices to establish
that this integral is independent of the integration path y, i.e., the integral
along any closed curve Contained in G is zero. If the region enclosed by

the curve ( is entirely contained in G, we have ( Od.r— Bdy =0 by Green's

formula and relation (21). Let now C be the closed path z = ¢ (8), ¥y =% () of
svstem (A) which passes through the point M, (this path encloses the inner
houndaryv curve of G, i.e., it is not homotopic to zero in G). Let 7 be the
period of the functions ¢ and §. Then

{0ae—Pay=(10G®), $) & O—PEW. $@) ¥ ©1d=
[ 9

B (5@ () — ¢ (&) ¥ ()1de=0.

Stra

407




Ch.X{UI, LIMIT CYCLES OF SYSTEMS DEPENDING ON A PARAMETER

It follows from the last relation and from (21) that the line integral vanishes
along any closed curve C which belongs to G. But then the integral (22)

is independent of the integration pathy, i.e., it is a function of the point

M (z,y). Let this function be H (z,y), i.e., we take

H(@, y) = 0@, 1) dz—P @,y dy.
)

The function # (z, y) defined in this way clearly satisfies the relations

P —~-%§—, Q:%—g—, i.e., (A) is a Hamiltonian system. This completes

the proof of the theorem.

In what follows, a conservative system will be an analytical
system defined in a doubly connected region @ for which
all the paths contained in G are closed (they are evidently
concentric). These systems evidently constitute a comparatively restricted
class of conservative systems in the sense of Definition 32, However, since
we will only consider these systems, we will use the general term con-
servative systems in this restricted sense from now on. Similarly,

a Hamiltonian system in this section will be regarded as a Hamiltonian
system defined in a doubly connected region which is completely filled with
concentric closed paths.

We will also consider systems close to a conservative
system, i.e.,, systems of the form

L=P@ytro@un, H=0@ »+ugiz v p, (Aw)

where p is a small real number, p and ¢ are analytical functions of the
respective arguments, and system (A,), i.e.,

%’;— == P (.’t, y), %%":"‘Q (‘zi y)v (AO)

is conservative. We will establish the sufficient conditions to be
met by the functions p (z, y, u), ¢ (z, ¥, p) for a limit cycle of (A,) to exist in
the neighborhood of one of the closed paths L, of (Ag). Inother words, using
our terminology, we will establish the sufficient conditions for the creation
of a limit cycle L, of system (A,) from the path L; of system (Ay).

As a particular case of systems close to a conservative system, we will
consider systems close to a Hamiltonian gsystem,

dz oH d 24
=g tRe@ ), Fr=S5r ey ), (H,)

where p and ¢ are analytical in the doubly connected region, and (Hp) is a
Hamiltonian system.
We will show that on passing from the general case of systems close to
a conservative system to the case of systems close to a Hamiltonian system,
the sufficient conditions for the functions p and ¢ are markedly simplified.
The situation is particularly simple when the original conservative
system is linear. In this case, we may take, without loss of generality,

3—:= —Y T . (BO)
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(Bq) is a Hamiltonian system and its paths are the circles
rPy?=C.

A system close to a linear conservative system has the form

d d .
F=—yrup@yp), F=ripzgom.

This system can be investigated either as a particular case of a system
close to a Hamiltonian system, or directly by changing over to polar
coordinates. Since the direct approach is very simple in this case, and
at the same time provides a better insight into the general properties of
a svstem close to a conservative system, we will first investigate (in the
next subsection) a system of the form (B,) by changing over to polar
coordinates.,

The results of the present section make it possible to establish in
certain cases the presence (or absence) of limit cycles in nonlinear
dynamic systems. This is accomplished by the so-called Poincaré€
method or the metaod of a small parameter. According
to this method, a nonlinear dynamic system is considered as a system
close to a conservative system. The existence of limit cycles in the
nonlinear system is established by finding the closed paths of the con-
servative system which create these cycles. The Poincaré method is
naturally applicable only if the nonlinear system is indeed close to a
conservative system, or if it can be "'fitted" with a conservative system
bv some technique,

2, Systems close to a linear conservative system

We will consider a syvstem of the form
z=—ydup(roy ), y=z+pqlz y ), (By)

which is close to a linear conservative system (Bg) whose paths are the
circles £+ y*=C. The functions p and ¢ are assumed to be analytical in
the neighborhood of the point (0,0, 0). Systems of the form (B,) are often
encountered in applications. Thus, for example, the equation

Tz = pf (2, 2),

which is close for small p to the equation of the harmonic oscillator
r+z = 0, gives in the phase plane (z, y) (setting y =— z)

r=—y, y=z—pf( —y),

and this is evidently an equation of the form (B,). The functions p(z, y, p) and
q(r, y, n) will be assumed to vanish for z=y= 0, i.e.,

p(O, 07 P)ZQ(O‘ 0, P'):O‘ (24)
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This assumption does not constitute a fundamental restriction. Indeed,
suppose that condition (24) is not true. Consider the equations

—y+pp (@ y, W) =0, z-+pg(z y, 1) =0 (25)

At the point z=y=p=0, this system satisfies the conditions of the theorem
of implicit functions, and it is therefore solvable for z and y. Let

z=f@), y=gW
be the solution of (25) near the point (0,0,0). Then
—g@W+up(fE), g@ W =0, fM@+pg(f@), 8@, w=0, (26)
where f(u) and g(u) are analytical functions, and
7 (0)=g(0)=0. (27)
Applying to (B,) the substitution of variables

z=X+fW, y=Y+g®),
we obtain

%*~Y—g(u)+up(X+f(u), Yireg@,w)=—~Y+pp*X, Y, p) (28)
L XWX+ @), Y+g@, ) =X+pg* (X, Y, p).

By (26), p*(0,0, p)=¢*(0,0, p)=0, i.e., condition (24) is satisfied for
equations (28).
We will thus consider the system (B,) assuming (24). Let

p@ ¥y W=p@ Y +pp @ ¥, 1), a@ Y W) =9, ) +1g(x ¥, 1) (29)
By (24),
P(O- 0)y=q (0, 0)=0' Pz(ov 9, P‘)=q2(0v 0, I"'):O' (30)

Using (29), we write the original system (B,) in the form

d
= —y+pp(x, ¥, B) = —y+pp(z y) +up2(z ¥, B), (31)
1

z
rn
dy
da

=T Pg (% Y W) =2+ ug (7, y) +1q (2, y, 1)
Changing over to polar coordinates x=pcos8, y=psin0, we readily obtain

%—f—:p[cosep (pcosH, psin8, p)+-sin Bg (p cos B, psin 6, p)}, (32)
d8 _ p2+p{pcosBq(pcosB, psin®, u)—psinbp{pcosh, psinb, p)j]
@ . :

p

By (24), the right-hand side of the last equation for [p|<Cp* (where p* is a
positive number) has the form

14+ pF(p, 8, u),

where F(p, 8, 1) is an analytical function of its arguments (which need not
vanish at p= 0). For small p, the last expression does not vanish, and




§33, CLOSED PATiiS OF CONSERVATIVE SYSTEMS

we may therefore change over to a single equation

dy
S5 =BR(p. 0. p). (33)
where
.. Cosbp(pcosO. psin 0, p)-~sin @y (pcos B, psinB, p) . 3
Rip. 0. = T1F 5. 0. 1) (34)

R(p, 0, p) is an analyticzl function with a period of 2z in 8 which vanishes at
p = 0, Therefore, p=0 for every pis a solution of equation (33}. Since
this solution is indeperdent of 9, it is defined for all 6. But then by
Theorem 1 of Appendix 1, the solution of equation (33) is a priori defined
for all 6. 00 2, for all sufficiently small p, for jp|<p*, say. Let the
solution corresponding to the initial conditions 6, and g, be

=1 (. pa. 1),

where f is an analytical function of its arguments. Since for p= 0
equation (14) takes the form %:7’= 0, we have f(9; 8, po. 0)=p,. Therefore,

7 (83 09, po. p) == pa -+ 1fy (0 8o, 0o, 1)

Let 6, = 0, and the gsolution f(8; 0. gy, p) will be written in the form
p =00+ p'¥ (8; 0o, p). (35
Here ¥ (0; po. p) is an anzlytical function in the region
0<82m, [pl<<p* [pl<<p*

The condition of contact between a path of system (B,) and the ray
¢ = const at the point (z, y) has the form

2y —yz = 2®+ ¥+ p (gz— py) =0.

Recause of the particular choice of p* and p*, this condition is not satisfied
in the relevant region, i.e., the rayvs 8 = const are without contact with the
paths of the system. It follows from (35} that the succession function on the
ray 6 = 0 has the form

0 =00+ p¥ (275 o, ). (36)
The closed paths of (B, correspond to those of py==0 for which
¥ (27 po, p) =0,
i.e., for which for u=%0
¥ (2m; gy p) == 0. (37}

Since the succession function is an analytical function of p, ¥ may be
written in the form

¥ (21; 3y 1) =¥ (2 pg, 0) +p¥p (25 o, O) ... (38)

411
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The continuity of ¥ shows that if the equation ¥ (2n; py, #) = 0 has a root
po (1) which goes to some p, for p— 0 ({p;|<<p*), then

¥ (2% py, 0)=0. (39)

Suppose that for some p;, |p;]<p*, the last condition is satisfied and that,
moreover,

¥ (2n; py, 0)
e 5 0. (40)

The theorem of implicit functions then shows that there exist u*> 0 and
8 > 0 which satisfy the following condition: if {p|<<p*, the equation

¥ (275; pg, p) =0 (41)

has a unique solution p, = p, () such that | p, (n) — py] << 8 and p, (0) = p,. This
evidently implies that for a sufficiently small p =0, (B,) has a single limit
cycle in a small neighborhood of the circle z? 4 y? = pi, and this limit cycle
contracts to the particular circle for n = 0. We can naturally say that this
limit cycle of (B,) is ""created’ from the path 2? + y* = p? of the original
linear system.

Note that the equation ¥ (2x; po, 0)= 0, alongside with p;, may have other
solutions satisfying condition (40). If p,is one of these solutions, the path
22 + y? = p! of the original conservative system also creates a limit cycle.
¥ (275 py, 0)

9pg

ILet us derive expressions for ¥ (2n; po, 0} and in terms of the

functions p(z, y, p) and ¢(z, ¥, ») entering the right-hand sides of (B,). To
this end, we expand the right-hand side of (33) in powers of p. The equation
thus takes the form

d
% Wy (p, )+ HRa (p, O)+ ... (42)
Solution (35) of this equation may be written in the form
p=po+ 1Y (8; po, 0) + p>W} (8; po, 0)+ ... (43)

Inserting the last expression in (42) and equating the right- and the left-hand
sides, we obtain

av
g~ = R (po, 0). (44)

From (29), (33), (34), and (42) it follows that

Ry (po, 9) =cos Op (pgcos 0, p,sin 8) +sin Bg (py cos 8, pysin 6). (45)

On the other hand, since 7(0; 0, po, p) = p,» We have ¥(0; pp, 1) =0, In
particular,

¥ (0 po, 0) =0, (46)

Integrating (44) with the initial condition (46), using (45), and setting 6=2x,
we obtain the following expression for ¥ (2x; p,, 0):

25
W (25 pg, 0) = S [cos Bp (py cos O, p, sin 8) + sin 6g (py cos O, p, sin 8)] 4O, (47)
[
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, we differentiate the last equality with respect to p,,

. 0¥ (2m; pg,
To obtain —\—y(;o‘p"o)

25
S (pxcos?0 g, sin? 0 + py sin 0 cos 8 + gz sin O cos 0) 46,
0

¥ (275 00, 0) _
apy -

where pi, p,. ¢i g, are the values of the respective functions at the point
(pocos®, pesinB). Simple manipulations then give
_— o 2x
g (;pop"‘ L. S A—q,)de—§[(—p;sine—g—p;cose)sin9+
]
-+ (gx sin 6 — g cos 0) cos 6] d6. (18)
The relations

d——————-—P (py €03 9, posin6) (— prsin @ <+ p, cos 8) p,,

dl 6 6
—————I(p‘cosep"sm) (— gz sin 6 4 g, cos 8) po

show that the second integral on the right in (48) is equal to

3 dp(pgcos 8. posme) dq (pg cos 8. pg sin B)
[ o n6— % cos 6 ] dO.

L
[

Integration by parts, remembering that p(p,cos9, pysin@) and g (pocos8, p,sin6)
are periodic functions of 0 with a period of 2a, establishes that the last

integral is equal to

2%

L [p (0o 05 8, pgsin B) cos B -~ g (pg cos O, py sin ) sin 6] 46,
Po 3 k4

and by (47} it is thus equal to
—Big‘{’@::; Po- 0).
Therefore
'ﬂ”"-' p"' 9 _ '-'S « (P c0s B, posin 6) -
’ + g, (po c03 8, posin E))]de—;—o‘?(zm por 0). (49)
By (47) and (49), the conditions
W 1235 py. 0) =0 and ‘ﬁ‘“;—p"”—‘”aeo (50)

are equivalent to the corditions

[p(pycosO, p;cinB)cosB 4 g (p, cos B, p,sinB)sinb] d08 =0,

[px (py cos 8, p, sin B) — g, (p, cos 0, p, sin 6)] dO 5= 0.

o [
el oo

The above results thus lead to the following theorem.
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Theorvem 75. If for some p,, |p, | < p*, conditions (50), or equivalently
(51), are satisfied, the transformation from system (B,) to a sufficiently
close system (B,) creates one and only one limit cycle of (B,) from the path
p = p1 of the oviginal linear system (R.) in a sufficiently small neighborhood
of this path.

Remark. If forp, ¥@n; p;, 0)= 0 and mz_:!;ﬂ,_g)

oy =0, i.e., only the
first condition in (50) is satisfied, it is no longer certain that a limit cycle
is created from the path p=p,.

Theorem 75 is a local theorem in the sense that it deals with the creation
of a limit cycle in the neighborhood of one path of (By). We will prove now
another theorem, which also relates to systems close to linear conservative
systems but is nevertheless a global theorem. Let ¢ and & be some positive
numbers, a << b,

Theovem 76. If the equalion ¥ (2xn; py, 0) = 0 has precisely s solutions
po=pi,i=1,2,..., s, in the segment la, bl, each of these solutions satisfying

the condilions a<cp; << b, 9—“%"“—0);&0, then for a sufficiently small p + 0,

(B,) has precisely s closed paths in the ving a<p<b.

Proof. By Theorem 75, there exist p*>0, 8> 0 such that if 0 < jp | < p*,
the equation ¥ (27; po, #) = 0 has precisely one root in each of the intervals
{(p; — 6, ps +96), ¢=1,2,...,s. Letthese intervals be designated f;. We
may assume that no two of these /; intersect and that they are all contained
inside (a, b): these requirements are satisfied if 8 is sufficiently small.

Let T be the setlaq, b]\fjli (i.e., the complement of the union of the sets /,
=]

to the segment le, b).

The proof is conducted by reductio ad absurdum. Suppose that the
theorem is not true. Then there exists a sequence p;,i = 1,2,3,...,
such that u; 5= 0, | p | <<p*, limp; = 0, and (B,,) has more than s closed
paths in the ring ag<p<b, i.e., the equation ¥ (2n; po, p;) = 0 has more
than s ronts satisfying the condition agp,<¥b. Then there exists at least
one root of this equation which belongs to the set I'. We designate this
root p{.

Thus, p{’ €T, ¥ (2x; pfB), p;) = 0.

By passing to an appropriate subsequence, if necessary, we can always
ensure convergence of the numerical sequence p{). Let the sequence con-
verge and let lim p{® = pf. Evidently, pf € T and ¥ (2n; p{, 0)=0. But then p}

1400

is a root of the equation ¥(2n;p,,0) = 0 which does not coincide with any of
the roots p;,i = 1,2,..., s, in contradiction to the conditions of the theorem.
This contradiction proves the theorem.

3. The general case of a system close to a
conservative system :

Let (Ag) be a conservative system in some doubly connected region G.
We will congider a close system of the form

d.
=P Y+prp@ v =P ¥ B,

: (4
=0 P tpele v =0 ¥ 1),

414
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where p(z,y, n), g(z, ¥y, p) are analytical functions in G.

In $13.1, in order tc define the succession function, we introduced
curvilinear coordinates in the neighborhood of the closed path L, in which
Ly was described by the equation n = 0,

We will now show that if (Ay) is conservative in G, and L, is some
closed path of (Ay}, Ls < G, we can introduce curvilinear coordinates
s, n in some neighborhood of the path L, so that the paths of (Ap) will be
described by the equation n = const.

This is obvious from geometrical considerations. A formal proof
can be formulated as fcllows. Let 2 = ¢ (f), ¥ = ¢ () be the equations of
the path L,, and v the period of the functions ¢ and ¢. We first define
in the neighborhood of i, curvilinear coordinates s and m using the
oquations

T=G()EmgE), Y=g —meg(s) (52)

{seec §13.1, (B8)). In these coordinates, (A,) is described by the differential
equation

o =~ Rv(s;m, ). (53)
Let the solution of this equation satisfying the initial condition m =m, for
s = 0 be

m=f*(s; mg, p) (54)

(see $32.1,(R,), (10}).

Since for p = 0 all the paths of (A,) in the neighborhood of L, are closed,
f* (s my, 0) is a periodic function of s with a period of v for all my, | m, | << m*,
where m* is a sufficiently small positive number.

We now define the coordinates s, n, taking

s=s5, m=f*(s; n, 0).

Since L, is a closed path, we have f*(5;0,0)=0. By §32,

>
A% (8) d:
[0,‘*“: mo‘o)]m o=e§ Tole 3#0
o=

amy

(see $32.1, (9), (13), (14), (15)). Thus, forevery s, f*(s, 0, 0)=0. ‘W;& 0.

The equation f*(s, n, 0)=m is thus uniquely solvable for n in the neighborhood
of the point » = 0 when m is sufficiently small in absolute value, i.e.,
equations (55) constitute a one-to-one transformation of coordinates. The
relationship between the curvilinear coordinates s, »n and the Cartesian co-
ordinates z, y, in virtue of (52) and (55), is expressed by the equalities

=)+ /(5 m O =F(s, n),  y=%E)—f*(s, 7, OF(E)=F(s,n). (56)

It follows from the definition of f* (s, m,, 0) that inthe coordinates s, n the curves
n=const coincide with the closed paths of (Ag). Equations(56) for afixed nthere-
fore constitute parametric equations of these paths. Inparticular, n=0cor-
responds to the path L, of the original system (Ay).

The parameter s coincides with the time ¢ along L,. For other closed
paths of (Ay), however, the parameter s in general does not coincide with
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time, and the periods of motion along these paths in general are different
and are not equal to t. It is readily verified, however, that in the particular
case of a linear system (Ap), salways coincides with ¢ and the period of
motion is constant for all the closed paths of {(Ag). The right-hand sides
of (56) have the same period t in the variable s for all n.

It can be directly verified that the functions ¢ (s, n) and ¥ (s, n) defined
by (56) possess the properties 1—4 listed at the beginning of $32 (see $32.1,
(2)—(5)). We will therefore use the results of this section, retaining the
same notation.

In the coordinates s, n, (A,) is expressed by the differential equation

dn
T:—R(s' n, w}, (57)

where R (s, n, p) is an analytical function in the region
—o<s<+oo, |n|<n% |p|<p*

(n* and p* are sufficiently small positive numbers; see $32.1, (Ry)).

The coordinates s, n are chosen so that for p = 0, the functions n= const
are solutions of the equation (57). Therefore R (s, n, 0) = 0. But then all
the terms in the expansion of R (s, n, p) in powers of n, p in the neighborhood
of the point n= 0, p = 0 contain the factorp, i.e., this expansion has the
form

R(s, n, p) =401 (s) p+ Ay (S) pr+ Ap2 () 2 4. . . (58)
As in §32.1, we write

n=f(s; 0, ny, p) (59)

for the solution of equation (57) corresponding to the initial condition n=n,
for s = 0. The succession function of (A,) on the arc without contact !
described by the equation s= 0 we designate f(n, u). Clearly,

f(ro, Wy=7(7; 0, ngy ). (60)
TLet

d (n, p) =1 (ng, 1)—no. (61)
From the particular choice of our coordinates, f(s; 0, ny, 0)=n,. Therefore
d (ng, 0)=f(ng, 0)—ny =0, and the series expansion of d(ny, p) near the point
(0, 0) has the form
d (fo, 1) = gyt -+ Ugyglh + Uzt + - - -, (62)
so that

d (no, p)=p-dy (ro, W) (63)
where
dy (no, W) =gy +uys+noltosh -+ (64)
As we have noted before, the function d (n,, p) and therefore d, (no, p) are
a priori defined for all sufficiently small nr,, p.

no = 0 corresponds to the closed path L, of (Ag). Let 4,(0,0) = 0. Then,
if | no | and p are sufficiently small and p 520, we have d (ny, u) == 0. Thisimplies




§ 33, CLOSED PATHS OF CONSERVATIVE SYSTEMS

that the system (A,) sufficiently close to (Ag) has no closed paths inthe neighbor-
hood of the path L, of (Ag). Thus the equality

d, (0, 0) =0

is the necessary cordition for the system (A,) sufficiently close to (Ag)
to have closed paths in a sufficiently small neighborhood of L,.~

The question of the number of closed paths is equivalent to the question
of the number of the rocts of the equation d; (ng, p) = 0 which are sufficiently
close to zero when p == C is sufficiently small. By the theorem of implicit
functions, a sufficient condition for the existence of only one such
root is

dy{0, 0y =0, din (0. 0)50. (65)

Theovem 77. Let L, be a closed path of system (A, corresponding to
n, = 0, and let the following conditions be satisfied:

A (0, 0y =0,  diing (0, 0) 5= 0. (686)

Then there exist e > 0 and & > 0 such that

(a) for any p, || <<8, (A)) has one and only one closed path L,in U, (L,)
which contracts to Ly for p — 0;

(b) this path is a structurally stable limit cycle, which is stable when
p-duny (0, 0) << 0 and unstable when p.dj,, (0,0) > 0.

Proof. By (63),

dp(0, 0)=d, (0, 0},  dhn, (0, 0)==di,, (0, 0). (67)

The last relations show that conditions (66) are equivalent to conditions (85)
and proposition (a) follows directly from the theorem of implicit functions.

Let us now prove proposition (b). Let the closed path L, correspond to
ng =hu)(n=0,p[<8)., This value of the parameter satisfies the equation
dy (ne. p) = 0, i.e., dy(h(p),p) = 0. A (u)is an analytical function, and since
di(0,0) = 0, we have R (0) = 0, i.e., the expansion of & (u) in powers of u has
the form

h(py=ap +ap?+... (68)
To prove structural stability of the cycle L, and to establish its stability

characteristics, we have to compute dp,(n,. p) for ng=~h (). From conditions
(60), using (64), (65), and (67), we obtain

gy =0, gy = ding (0, 0) =dfiny (0, 0) 5= 0. (69)

Differentiation of (62) with respect to n, gives

dng (gy B) = Py +upop? + 2anop + . . .
whence
Groth (1), ) =puy -+ upp? - 2ugh () p+ . ..
or, by (68) and (69),
g (B 1)y ) =}y (0, 0) -0 ().
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The last equality shows that for sufficiently small p =« 0, the derivative
dne ( (n), p) does not vanish and its sign is equal to the sign of p-d,,, (0, 0).
This signifies, in virtue of the results of Chapter V (see §12.3), that
proposition (b) is satisfied. The proof of the theorem is complete.

4. Systems close to a Hamiltonian system

If the original system is Hamiltonian, the conditions of the creation of
a limit cycle from a closed path of the system takes on a particularly
simple form. We will derive these conditions using Theorem 77 and the
relations of §32,

Let the system close to a Hamiltonian system be given in the form

d. aH
Tzf‘= — 5y TrPE PR D+

d oH
=Tt (@ Y)Y 4.

(By)
The equations of the closed paths of the original system (By) have the
form H (z,y) = C. (B,) is considered in a doubly connected region G filled
with the paths H (z, y) = C, where ;<< C < (C,. Let Ly, be one of these paths,
z = @ (¢), y =1 () the motion corresponding to this path, 7 the period of the
functions ¢ and ¢. In the neighborhood of L;, we introduce curvilinear
coordinates s, n described at the beginning of §33.3 (see (56)), in which
the paths of the dynamic system (By) are described by the equations
n = const. Let the path L, be described by the equation n = n,. The ex-
pansion of d (n,, p) around the point n = n,, p =0 then has the form
d (rg, 1) = thosht + Uys (Mo—1g) P+ Lot +- . . - (70)
(see (59)—(62)). In this case, the numbers dj (0, 0), djs, (0, 0) of Theorem 77
evidently should be replaced with dy (0, 0) dpng (10, 0).
Since d;, (ny, 0) = u,, equation (36), $32.1, can be used to compute dj (7, 0),
replacing A (0, 0) with A (0, o). Since for a Hamiltonian system
Pi(z, )+ Qi @ 1) = — g + o = 0,
we find
T

&y (o, 0) =5 §[qi(q»(s»sb(s))q:'(s)—pi(w(s»w<s»~p'(s)1ds (71)

0, 7o)

or, changing over to a line integral,

dy, (no, 0)=—A‘«:—;°)J(;o), (72)

J @)= § @@ »dz—p @ ay. (73)
(Lo)

Let G, be the region enclosed inside the curve L,. If (B,) is defined
everywhere in G,, using Green's function we can change over from the
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line integral to a double integral. The condition d}, (n,. 0) = 0 is therefore
equivalent to the condition

§§ 1piste )+ giv e 1z dy=0. (74)
Go

If (B,) is not defined everywhere in G,, the condition d} (n, 0)= 0 is
equivalent to the condi~ion

J )=\ qidz—p dy=0. (79)
(Lo}

Let us now consider the number dj,, (7. 0). Since the number 7, is in
no way distinguished from the other numbers nq, dji,, (1, 0) can be obtained
by differentiating (72) with respect to n,. Thus,

.= 1 a1{n -, d 1 .
dune (Mo, 0) = Z5mms df??)*i("")d—%( 0.7 )- (76)

17 (n, ., .
[Let us compute (‘—d—i"i). To fix ideas, we assume that as t increases, the
7

0l

closed path L; is traced in the positive direction. We have

dJ (g} .. J (o h)—J (7g) -
dra —},L%l 2 ’ (77)

Let Lo be the closed path of (By) which corresponds to the value ny+h of
the parameter, G, the region bounded by the paths Ly and Lyn. The sign of 2
is chosen so that the path L, is enclosed inside L (Figure 173). Then
J (ng+-h)—J (o) is the line integral (73) taken along the boundary of G,, and
by Green's formula

T+ —J ()= — | | [pix (= ) +giu @, 91 dzdy. (78)
Ch

Changing over to the curvilinear coordinates s, n in the last integral
according to the relations z=9(s, n), y=1v¥(s, n), we obtain

J (ot —J @)= —{ | 1pi= @ B+ @ P1A (s, m)|dsdn, (79)
Gy,

D (3. )
Ds, n} *
a constant sign near the path Ly; let A(s, n)> 0.

This Jacobian, by assumption, retains

whevre A(s, n) is the Jacobian

@lsiplsi)

FIGURE 173
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Because of the particular choice of the curvilinear coordinates s, n, the
expansion of (57) in powers of p and n—n, contains no terms with p (see (58)).
In particular, A, (s)=0. In our case, however, by §32.1, (32),

Ao () =P3 (@ ¥) + 0} (9> W) ——2-1n (A (s, 7o),

and P.+Qy=0. Therefore —;—‘—ln (A(s, no)) =0, i.e., A(s, no) for every ny is

independent of s, and for every n we have
A(s, n)=A(0, n). (80)

By assumption, the path L, is traced in the positive direction as ¢
increases, and
Als. 7 ®i(s: ng)  Pi(s, 7o) 9 (s) Y (s)
(s, o) = — - == — = — .
Gn (s, ng)  Yn (s, ny) P (5 ng) (s, no)

Therefore, the vector v(gn(s, no), Vn(s, ny)) points inside the curve L
(Figure 173). On the other hand, the direction of this vector corresponds
to increasing n, on the curve z=@(s, no), y=1¥(s, ny), where s is constant.
Therefore, since Ly is enclosed inside Ly, we have 2<0, Changing over
from a double integral in (79) to two successive integrations and seeing
that # <0 and A(s, n)=A(0, n)> 0, we obtain

no T
J@o+h)—J Gy =— { dn § 12tz @ D) +aiy @ DIAQ, n)ds,
no+h 0

where @=g(s, n), p=1y(s, n). Hence,

D) { [pis (@ (), $(o) + i @ (), $ENIAQ, 7o) ds.

dng 3

From (76) and (81) it follows that if J(rs)= 0, we have

T

diona (70, )= { [Pix @ (), ¥ () + iy (@ (5), ¥ (a)]ds. (82)

0

The above considerations and Theorem 77 evidently lead to the following
theorem, first formulated by Pontryagin (see /31/).

Theorem 78. Let L, be a closed path of the Hamilionian system
dzx . oH dy [22: 4

dt

By’ dt T 8z
z=0@(), y=v(@

the motion corvesponding to this path, = the peviod of the functions ¢ and vy,
G, the region enclosed inside the path L,, and
= %ﬂm(ﬂc. VR )t

d ; (By)
d—f=%’-+w:(x, ¥+, y)+ ... *
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a system close to a Haniltonian system (u is a small parametey). Then, if

1§ 1pis @ 9+ gy @ 91 dzdy =0, (74)
Go
and
1= { [Pl @ (), % (N 4+ (¥ (), B (NI ds == (75)
0

theve exist e > 0 and § >> 0 such that

(a) for everyp, |p|<<8, (B,) has one and only one closed path L, in U, (L,),
and this L, contracts to Lq for pn—0;

(b) this path is a structurally stable limit cycle, which is stable for
ul << 0 and unstable for pl > 0.

Remark 1. If (B,) is defined only in the neighborhood of the path L,
and not everywhere in G,, condition (74) should be replaced with the equality

T

(6@ @ $6) e O —pi(@ () $6) ¥ ()ds=0

]

(see (75)).
Remark 2. Itis readily seen that Theorem 75 (see §33.2), relating to
svstems which are close to the linear conservative system —Z—f- = —y, i—f= z,

is a particular case of Theorem 78. Indeed, the equation of a path of this
linear system has the form z = p,cost, y = pysin¢t. Inserting these functions
for @ and ¢ in (71) and (75), we obtain relations (51) of $§33.2.

In conclusion of this section, we wish tocomment on the creation of limit
cyveles from a focusor a center, We have repeatedly noted the deep analogy
between the investigation of a dynamic system in the neighborhood of a
closed path and the investigation in the neighborhood of a focus or a center.
This analogy also extends to the creation of limit cycles.

Suppose that the original dynamic system (Ag) has at the origin an equi-
librium state with pure imaginary characteristic numbers (i.e., a multiple
focus or center). Consider the modified system

d . . d ; %y
S mPrpn Tt ., G =Q ARG+ Rt (A)

Changing over to polar coordinates p, 8 and replacing the system with a
single equation, we obtain a differential equation analogous to (57) in $33.3:

d,
Tg—::R(B’ £r B) = Ryop + Roypt + Roop® + . . ., (Ry)

where the coefficients R;; are periodic functions of 8 with a period of 2,
and the series in the right-hand side of the last equation converges for
all sufficiently small p and p (see $24.1, (51)).

As in §33.3, we seek a solution f(8; 0, ps p) of (R,) which satisfies the
condition f(0;0, pg, p) = p, in the form of a series

P = UreP r Ugyhh + Usop® +UnPu - . -

where the coefficients u;; are functions of 0 satisfying recursive formulas
analogous to equations (14) (§32.1).
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Considering the succession function p = f (2xn; 0, py, p) and the function
d (po, b) = f (213 0, pg, p) — po, we can use Newton's diagram to derive the
sufficient conditions of the creation of limit cycles from a multiple focus
or center, as in §32.4.

Since the succession function constructed in the neighborhood of a
focus or a center has a number of specific properties (see $§24.1,
IL.emmas 1, 2,5), the specificity is also extended to the function d(p,, u).
We will not consider this aspect of the matter, however.

Note that the function ¥ (8, p,, p) constructed in §33.2 in connection with
a system close to the linear dynamic system (31) is defined for all suf-
ficiently small po and p. Therefore, the same function can be applied
to investigate the creation of limit cycles from equilibrium states of the
type of a center, as well as from closed paths of the original conservative
system.




Chapter XIV

THE APPLICATION OF THE THEORY OF
BIFURCATIONS TO THE INVESTIGATION OF
PARTICULAR DYNAMIC SYSTEMS

INTRODUCTION

In this chapter, we consider some examples of dynamic systems con-
taining parameters. Almost all systems of this kind arose in connection
with particular physical or engineering topics. The main problem which
is encountered in applications is to establish the partition of the space
of parameters into regions corresponding to identical qualitative structures
of the dynamic system. »

When the parameters assume values from each of these regions, the
system retains the same qualitative structure and, in general, remains
structurally stable (or, in any case, 'relatively structurally stable,”

i.e., structurally stable relative to the space of the dynamic systems
spanned by the range of variation of the parameters). The points in the
parameter space which lie on the boundary of two regions correspond to
structurally unstable systems, which — with the exception of isolated
points — are systems of the first degree of structural instability.

fhe aim of the present chapter is to familiarize the reader with certain
techniques of the theory of bifurcations which enable us to obtain information
regarding the qualitative structure of dynamic systems and to analyze the
changes in qualitative structure of systems following a change in parameters.

In the application of these techniques, it is very important to be able to
establish the qualitative structure of the dynamic system at least for some
particular values of the parameters. The examples discussed in this
chapter are therefore sclved by the application of certain particular
techniques developed in QT (the isocline configuration, Dulac's criterion,
the topographic system, etc.).

In broad outline, the qualitative techniques based on the theory of
bifurcations can be described as follows:

1} If for some values of the parameters the system has an equilibrium
state with A > 0(i.e., a node or a focus), we first have to establish the
existence (or the absence) of numerical values of the parameters for which
the equilibrium state changes its stability, i.e., to find the values of the
parameters for which the system has an equilibrium state with pure
imaginary characteristic roots. The procedure described in §25.3 enables
us to detect in this case \if the equilibrium state is not a center) the
creation of a limit cycle and thus to identify the range of parameter values
for which the dynamic system a priori has a limit cycle.
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2) If the equilibrium states cannot be determined by elementary
techniques, we search for parameter values at which the equilibrium
states have maximum multiplicity.

Investigation of the possible character of the equilibrium states for
parameter values close to the values which correspond to maximum
multiplicity enables us to establish in certain cases all the alternatives
regarding the number and the type of the equilibrium states.

3) If the qualitative structure has been established by some technique
in two different points of the parameter space, the transition from one
of these points to another will enable us to establish, say, the existence
of a saddle-to-saddle separatrix and hence the possibility of creation of
limit cycles.

The largest difficulties in qualitative investigation of dynamic systems
are encountered when we attempt to prove the absence or the presence of
limit cycles created from a ''condensation of paths." A complete analysis
is therefore often impossible.

§34. EXAMPLES

Example 12 (the creation of a limit cycle from a multiple focus).
Consider the system

%f— = b6zy + p (4 — 22 —2y —22* 4- 22y + 3p*),

(1)

%,”— =4—2x—2y — 23" - 22y + 3y — Bpay,

where p >0 is sufficiently small.
The vector field of this system is obtained from the vector field of the
system

Gr=6ay, =420 2y—2274 20y 3 (2)

by rotation through an angle tan™? p (see §3.2). It is obvious that the
ordinate axis x = 0 is a path of system (2) System (2) has two equilibrium
states, the points 4 (4, 0) and B (— 2, 0). They are both simple equilibrium
states (A = 0). The characteristic equation of the equilibrium state 4 (1, 0)
is A 4+ 36 =0, i.e., A (1,0)is an equilibrium state with pure imaginary
characteristic numbers. Since (2) is an analytical system, A is either a
multiple focus or a center. The characteristic equation of the equilibrium
state B (—2,0)is A* 4 60 -+ 72 = 0. Its roots are A, = — 3 £ 3i V7, i.e.,
B (— 2, 0) is a simple stable focus of system (2).

System (1) has its equilibrium states at the same points 4 (1, 0)and
B (—2,0) as system (2) (see footnoteonp. 210). Clearly, if p is sufficiently
small, B (—2,0)is a simple stable focus of system (1) also.

To investigate the equilibrium state 4 (1, 0), we will use the results of
Chapter IX. Moving the origin to the point 4 and reverting to the previous
notation, we obtain from (1)

S5 = = 6uz + 6y—2p2® + (6 +2) 2y + 3wy,

%’_ = — 6z —6py -~ 22% 4 (2—6p) 2y 4- 3y1,

(3)
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and for p=0 this system reduces to
25 —by+6ay. L= —6r— 2272y 43 (4)
For system k3) o(p) = P, +Qy = — 12pn,0'(0) = — 12 << 0. The value of a3
for (4) is computed using equation (76), §24.4; it is found to be %, i.e.,

a3;>0. The table in §25.3 thus shows that the point 4 (1, 0) is an unstable
multiple focus of system (2) and — for a small positive p — a stable focus
of system (1) containing an unstable limit cycle in its neighborhood.

Let us now investigate the behavior of the paths of system (1) at infinity,
following the scheme described in QT, §13.2. Applying the transformation

r=21 .y =%, we establish that the 'ends’ of the s axis are not equilibrium
states of the system. Applying the transformation z=2,y =1 to system (1)

and multiplying the righi-hand sides of the resulting system by z, we obtain

%=3p~2pz+(3+2u) v 4pzt (2 2p) vz -

+(4p—2) v — 422y - 2022 4 203 = P (v, 3). (5)

dz -
o= — 3z (6p—2) vz + 232+ 202z + 2022 — 433 = Q (v, z).

Since O (v, ) contains a factor z, the axis z = 0 consists of paths of
system (5). To find the equilibrium states lying on this axis, we have to
consider the equation

P, 0) =3+ @+2u) v+ (dp—2) v2 4203 = 0. (6)

The derivative B, (r, 0) = 3 + 2u + (8p — 4) v + 622 has no real roots for
small p. Therefore if p is small and p > 0, equation (6) has a single real
root r,, and it is readily seen that z, < 0 and lim 7 = 0. System (5} thus

[Te
has a single equilibrium state on the axis z =0, D (ve, 0). Consider the
determinant

Biro, O Bi(ves 0)]

Qs (v, 0) Qi (vor 0)
=[34+2p + (B —4) vo+ 605) [ — 3+ (B —2) vo - 203).

A (g, 0) =

When p is sufficiently small, =z, is small and A (z,, 0) << 0, i.e., the
equilibrium state D (z, 0) is a saddle point of system (5). Two of its
separatrices coincide with the semiaxes z = 0 adjoining the point D (z. 0).
The direction of motion along these separatrices is defined by the equation
dridt = P (2,0). We see from this equation that the two separatrices lying on
the axis z = 0 are a-separatrices. Therefore, the w-separatrices of the
saddle point D lie on the two sides of the axis z = 0, and the path configura-
tion of system (5) near the saddle point D can be schematically represented
by the diagram shown in Figure 174.

The rules for establishing the behavior at infinity (QT, §13.2) now show
that the paths of system (1) near the equator are arranged as shown in
Figure 175.
¢ The indices @;, and in particular e, are inwoduced in Chapter IX (§24.4, (61)). In this chapter it is shown

that if O is a multiple focus and @; 3= 0, the sign of a, determines the stability of the focus.
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FIGURE 174 FIGURE 175

dx

B W(—2+3M) >0, and =42y +3;2>0. For y=0,

By (1), for z=0,

9% e ou(z+2)(1—2), and H-=2(z+2) (1—z). Therefore the paths of system (1)

cross the coordinate axes in the directions shown in Figure 175.

We have thus established that system (1) for a small p > 0 has two stable
foci A (1, 0)and B (— 2, 0) and an unstable limit cycle in the neighborhood of
the focus 4. Using this fact, and taking into account the path configuration
at infinity and the direction of motion along the paths at the points of inter-
section with the coordinate axes, we conclude
that in the half-plane z < 0 system (1) has a limit
cycle C,unstable from the outside to
which the separatrix of the saddle point D goes
for ¢t -+ — o0, and in the half-plane z > 0 the
system has a limit cycle C, stable from the
outside to which the separatrix of the saddle
point D’ goes for t—4oo. Evidently, any closed
path of system (1), other than €, and C,, is
entirely contained either in the half-plane z < 0,
and then it is enclosed inside €, and encloses
the point B, or in the half-plane z > 0, and then
it is enclosed inside C; and encloses the focus 4.
FIGURE 176 It is readily seen that system {1) may only have

a finite number of closed paths. Indeed,

suppose that this is not so. Then there exists
an infinite set of closed paths {T'} arranged concentrically inside a cycle,
C, say. We can select an infinite sequence of paths I'y, T',, I3, ... with the
following property: every successive path encloses its predecessor and
every path of the set {I'} is enclosed at least inside one of the paths I; (see
QT, §16.9, Lemma 16). Let K be the topological limit of the sequence
T, (see QT, Appendix, §1.10). Itis readily seen that either K is a closed
path T'*, such that closed paths lie in any sufficiently small neighborhood
inside T'* and no such paths are observed outside I'*, or K has the structure
of a 0-limit continuum (see QT, §23.2, Theorem 70), i.e., it consists of
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equilibrium states alternating with separatrices which go to these
equilibrium states. However, since (1) is an analytical system, it cannot
have a closed path T* of this kind. The topological limit K cannot have the
structure of the null-limit continuum either, because all the equilibrium
states of system (1) are foci.

We have thus established that system (1) only has a finite number of
closed paths, and there is at least one limit cycle in the half-plane <0 and
at least two limit cycles in the half-plane « >>0. The exact number of the
limit ¢ycles of system (1) cannot be established. It is clear, however, that
the number of limit cycles (counting each according to its multiplicity) in
the half-plane z << 0 is odd, and the number of limit cycles in the half-plane
x> 01is even. The configuration of the paths of system {1} in a cirele, which
is used as a model of the Euclidean plane, is shown in Figure 176 (up to an
even number of limit cyzles).

Example 13 (the creation of a limit cycle from a multiple focus and a
separatrix loop, see /20/).

Consider the system

=y Y= —z+py+ay+a2rpt (1)

It has two equilibrium states, 0(0,0) and A (1,0). 4 is a saddle point for
any p. The characteristic numbers of the equilibrium state 0 (0, 0) are

- 2 > I
hyo = '.L_T‘:f: ‘/’i — 1; it is therefore

1) a stable node for p< — 2;

2} a stable focus for — 2 <<p << Q3

3) an unstable focus for0 < p < 2;

4) an unstable node for -+ 2<p.

For p =0, 0 is an equilibrium state with pure imaginary characteristic
numbers. To investigate its character, we will use, as in the previous
example, the results of §25.3. We have a () =p, ¢’ (W) =1>0. a;is

computed from (76), §24.4, and is found to be equal to & >0. Therefore,

for small u >0, and also for p = 0, the point Ois an unstable focus of
system (7}, without any limit cycles in its sufficiently small neighborhood,
and for small p < 0 the point Ois a stable focus with an unstable cycle in its
neighborhood (see table in §25.3).

To investigate the situation at infinity, we first apply the Poincaré

transformation z =, y =-f—. Multiplying the right-hand sides of the re-

sulting system by z, we obtain

d»
-d+=~v+z—pa*:—vz—v’z—v3, = —z—vz—pz? + vzt —oviz, (8)

Z
“ar
For z = 0, system (8) has a single equilibrium state (0. 0), which is a
stable node. The second equation in (8) shows that the axis z = 0 is made up
of paths of system (8). The Poincaré transformation z = -1— y== gives the

system
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For z = 0, the last system has no equilibrium states. Hence it follows
that, in accordance with the rules for investigation at infinity (QT, §13.2),
the paths of system (7) are arranged at infinity as shown in Figure 177.

FIGURE 177 FIGURE 178

To proceed with further investigation of system (7), we will use the
auxiliary system
dz dy

=V = —xtat (9)

Its general integral, as is readily seen, is

2 23 z2
= —5+C (10)

System (9) has its equilibrium states at the same points 0 and 4 as
system (7), 0 (0, 0) being a focus and A(1, 0) a saddle point of (9). The
curves (10) and the paths of system (9) making up these curves are shown
in Figure 178. One of the pathsis the loop L originating and terminating
at the saddle point 4, which is described by the equation

(11)
All the paths of system (9) enclosed inside the loop L, are closed.

Consider the contact curve of systems (7) and (9) (see QT, §12.5).
Its equation is

(—z+py+ay+22+y)y—y(—z-+2%) =0

Pp+z+y=0. (12)

It consists of the points of contact of the paths of systems (7) and (9) and
the equilibrium states of these systems. The contact curve decomposes
into straight lines z +~ y + p = 0 and y = 0, buttheliney = 0 constitutes a
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false contact, i.e., a path of system {(7) contacting a path of system (9} at 2
point with y = 0 will inevitably cross this path from one side to another (see
QT, §12.5).

Since the sum of the indices of the equilibrium states enclosed inside a
closed path is 1, any closed path of system (7) encloses the equilibrium
state O without enclosing 4. This path therefore necessarily crosses the
closed paths of system .,8).

Consider the intersection of the curve (11), part of which is represented
by the loop L, with the contact linez 4y -+ p = 0. Inserting y = —z — p in
\11), we obtain the equation

f@) = —a—pr g —H =0, (13)

Since f (z) = 2* — 2z — p has the roots 5. =1 %11+ p, f (x)>0for
n < — 1 and equation {13) only has one real root. For u — — t equation {13)
has a triple root z = 1, ..e., the contact line z —y +pu =0 crosses the
curve (11} at the point 4 (1, 0). Thus, for p = —1 the loop L has one point
in common with the contact line {the point 4). But then, as we see from the
position of the line =z + v + u =0, the loop L does not cross the contact line
z+y-+p=0Fforp< —1. Hence the conclusion that for p<g<—1 systemi7)
has no closed paths. Indeed, let L be a closed path of system (7)

As we have seen before, L crosses the closed paths of system {9) and

encloses some of these paths. This means that there exists a closed path
of system (9) which has a (true) point of contact
with the path L, namely the "least’” path L,
having a point of contact with L. Let M be this
point of contact. M lies inside the loop L on the
contact curve (12), i.e., on the straight line
y=10. This is a contradiction, however, since
all the points of this line correspond to false
contacts.

Having thus established that system (7) has
no closed paths forp<— 1, we can find its
topological structure. To fix ideas letp = — |
(for p < — 1, the structure is the same, but for
p < — 2 the point Ois a stable node, and not a

FIGURE 179, p = —1 < p*. focus). The o-separatrices L, and L; of the
saddle point A (1, U) should extend from the
unstable focus to infinity, since there are no

other a-limit points in the plane. This, however, automatically fixes the
behavior of the a-separsatrices L;and L,: one of them, L, say, winds onto the
focus O for t —+ + oo, and the other, L,, goes to the stable node at infinity.

Allowing for the directicn of the paths at the intersection points with the

coordinate axes, we obtain the path configuration shown schematically in

Figure 179.

Let us now consider the path configuration of system (7) for p = 3. In
this case, 0 (0, 0) is an unstable node. The abscissa of the intersection
point of the curve (ll) with the contact line r -y +~ 3 = 0 is determined,
after eliminating y, from the equation f(z) =2* — 32> — 92 —13=0. A
standard investigation of the function y = f (z) readily shows that it has a
single real root z,, and ;>3 (the curve of f (z) is shown in Figure 180).
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Hence it follows that the contact line z -+ y -~ 3 = 0 does not cross the loop L
and, reasoning as before, we conclude that for y = 3 system (7) has no
closed paths either. The behavior of the separatrices of the saddle point
A1, 0) of system (7) is thus fixed automatically (as in the case p< - 1)‘
Indeed, the a-separatrices L; and L, of the saddle point 4 may only extend
to the stable node at infinity, and the closed curve formed by these
separatrices should enclose the point 0. Consequently, one of the w-
separatrices of the saddle point 4, L, say, should go to the node O for

t —+ — oo and the other separatrix, L,, should go to the unstable node at
infinity.

T

/—L\

FIGURE 180 FIGURE 181

Allowing for the direction of the paths at the points of the coordinate
axes and at the node 0 and for the direction of the separatrices at the saddle
point 4, we conclude that the path configuration of system (7) for p = 3 can
be schematically illustrated by the diagram in Figure 181. It is readily
seen that for u > 3 system (7) still has no closed paths and its topological
structure is therefore the same as for p = 3.

L.et us investigate the behavior of the separatrices L; and L; as the
parameter p varies from —1 to 3. We should first note that on passing from
a value p; of the parameter to some value us > p;, all the field vectors are
turned in the same direction, specifically counterclockwise. This follows
from the fact that by equations (7)

(88) - (om0 o

Let the 'first" intersection point of the separatrix L, (L) of system (7)
with the negative half-axis z be M, (n); the abscissa of this intersection
point is x; (n) (Ms (w) and z; (u), respectively). The negative half-axis z has
no contact points with the paths of the system for any p. We may therefore
apply the results of §11.1. If we take into consideration the directions in
which the separatrices L, and L; cross the axis z, this lemma shows that
for increasing u, z;(n) decreases and z; (u) increases, i.e., the points M (u)
and M; (W) move in opposite directions along the axis z. In accordance
with the previous results, z,(—1)<<z;(— 1), and z, (3) > z; (3) (see Figures 179
and 181). Furthermore, z (1) and z; (n) are continuous functions (see
remark to Lemma 3, §9.2). Therefore, there exists one and only one value
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of the parameter, p*, in the interval (—1, 3) such that «, (u*) = z;(u*). This
signifies that the separatrices L, and L; corresponding to this p* coincide,
i.e., for p = p* the system has a separatrix which forms a loop. Let this
loop separatrix be L*. The value of the function ¢ (x, y) = P (z. y) + @, (z, y)at
the saddle point A(1,0)for p = p*isp* +~ 1. Since u* > — 1, we have p* — | > 0.
Therefore (see Theorem 44, §29.1), the loop L*is unstable, i.e., all the
sufficiently close paths enclosed inside this loop are spirals unwinding
from the loop. For p = p*, the topological structure of system (7) outside
the loop L*is determined unambiguously. The topological structure of
the system inside the loop L* depends on the number of limit cycles
and the stability charac-eristics of the equilibrium state 0, which are not
known. If u* <<0, then O is a stable focus and system (7) has no closed paths
inside the loop L*, or else it has an even number of such paths {(counting
according to multiplicit.es}. If, however, p*:>0, 0 is an unstable focus or
node and system (7) has an odd number of closed paths inside the loop L*.
Figure 182 shows the topological structure of system (7) foruy = p*under the
assumption that this system has no closed paths.

&

FIGURE 182, p — p*. FIGURE 183, 0 > p > p*.
p=n B

Applying the results of Chapter XI, we can trace the behavior of the
separatrix loop as the parameter varies near its value p*. It follows from
the remark to Theorem 49 (§29.3) that as thé parameter p increases
above p*, the separatrix loop L* disappears, and a single unstable limit
cycle is created in its n2ighborhood (see Figure 183, drawn under the
assumption that the system has no other limit cycles). As the parameter p
decreases below p*, the separatrix disappears without giving rise to
limit cycles in its neighoorhood.

To follow the changes in the topological structure of the system as the
parameter varies, we raquire the exact number of the limit cycles of the
system for every p. The number of limit cycles may change only when
the system passes through a bifurcation value of the parameter, and in such
a system limit cycles are created either from a multiple focus, or from a
loop of a saddle-point separatrix, or from a condensation of paths
(see §22, Example 8), or finally from a multiple limit cyecle (if any). We
will nevertheless proceed with a tentative analysis assuming that p* <<V
and that system (7) for every phas at most one closed
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path, which is moreover structurally stable. As a first

step, let us consider what happens to a limit cycle of the system when the
vector field is rotated.

Remark regarding the variation of the limit cycle
following rotation of the vector field

Let

d
=Py, m), %=Q(x, /) (A,

be a dynamic system which for p = p, has a limit cycle L.. Suppose that L,
is a stable limit cycle with motion in the positive direction for increasing ¢
(Figure 184) and suppose that the field vectors rotate in the positive sense
as p increases.

Through some point M, of the cycle L, we draw an arc without contact /,
choose a point M, on this arc, which lies inside L, and is sufficiently close
to My (Figure 184), and consider the path L, through
the point M,. L; will cross the arc I at another
point M,, which lies between M, and M,.

Consider the system (Au), where p is sufficiently
close to g, p > po. The path Z, of (A,) passing
through the point M, crosses the arc without contact
at a point #M,, which is sufficiently close to M.. The
limit cycle L, of (A s, is @ cycle without contact for
(A,,), and, as ¢ increases, every path L of (Auo)
crossing the cycle L, will enter into the region T
bounded by the curve L, and the closed curve C con-
sisting of the coil M,M, of the path L, and the segment
M,M; of the arc I (in Figure 184, T is diagonally
hatched). Since I cannot leave T and there are no
equilibrium states in this region, T contains one and
(by Theorem 72, §32.4) only one closed path I, of system (A,). We thus
conclude that as the vector field of system (A, ) is rotated in the positive
direction, the limit cycle L, contracts. Clearly, when the field is
rotated in the negative direction, the limit cycle L; expands. A similar
result is obtained for an unstable limit cycle. Applying the same reasoning
to a semistable cycle (of even rnultiplicity) and using Theorem 71 (§32.4),
we conclude that as the vector field is rotated in one direction, the cycle of
even multiplicity disappears, .and as the field is rotated in the opposite
direction, the cycle decomposes into two cycles (a stable and an unstable
one), of which one contracts and the other expands.

After this digression, we can return to system (7). Thus, let p* << 0 and
let system (7) have at most one closed path, which is moreover structurally
stable. For pg — 1, the system has the topological structure shown in
Figure 179; in particular, it has no closed paths. For p ranging between
—1 and p*, system (7) has no closed paths either. Indeed, as p increases
from ~1 to u* << 0, a closed path can be created only from a condensation
of paths, but then it is not a structurally stable path. Thus, as p increases
from —oo to p*, the topological structure of the system remains unchanged

FIGURE 184
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(Figure 179), the points M, and M; of the separatrices L, and L; moving one
toward the other along the zr axis.

For p = u* the separatrices L, and L; merge forming an unstable loop.
Since the equilibrium state O is stable in this case, system (7) may have no
limit cycles under our assumptions, and its topological structure is
correspondingly shown in Figure 182.

As p increases above p = p*, the separatrix loop creates an unstable
limit cycle. The system may not have any other cycles, and its topological
structure assumes the form shown in Figure 183. As pincrease from up*to
0, this cycle contracts and for u = 0 it 'collapses.’ into the equilibrium
state 0, which changes its stability at this instant. Since forpu = 3 the
system has no closed paths, it may not have any closed paths foru = 0
either. Indeed, as p decreases from 3 to 0, a closed path may be created
only from a condensation of paths, but then it is not structurally stable.
Thus, the topological s:ructure of the system corresponding top >0is shown
in Figure 181.

As p decreases from o, the system at first has no closed paths, and it
is only when the system crosses the value p = 0 that an unstable limit cycle
is created from the focus 0, which then expands and for p = p* transforms
into a separatrix loop which disappears as the system passes through the
value p = p*,

The reader is advised to work out for himself a similar (''tentative’)
analysis assuming that p* > 0 or u* = 0 and that the system at any time has
the least possible number of closed paths.

Example 14 (the creation of a limit cycle from the loop of a saddle-
node separatrix, see /34/).

Consider the system

Lyt L1 =P,y ), =—z@tp) =0 - (S)

It is readily seen that the circle
224 yt—1=0

(which we designate W) is made up of paths of (S,).

The equilibrium states are determined from the equations P(z, y, u)=0,
Q(r. vy, B =0. There are two equilibrium states on the y axis, 4,(0, a,) and
B, (), b,), where

G=—bt Y150, p= Ly B0

The other equilibrium states are obtained from the equations z +u = 0 and
22 - y* — 1 =0. For |p|>1, these equations are contradictory. For

0< {pl|<1, they determine two additional equilibrium states (other than
Agand Bu), €, (—n. ¢,) and D, (—p,—c,), where ¢, = }'T — p2. Thus, for
O<|ptl<<1, the system has four equilibrium states. For |p | =1, the
equilibrium states Cy and D, merge into one, and the system has three
equilibrium states 4,, B,, and C, (€. coincides with D,). Finally, for p =0,
the system has two equilibrium states 4, and B, (which may be regarded as
coinciding with C, and D, respectively). Cy and D, lie on the circle W.
Since a,-b, = — 1, then focr p == 0, one of the points A, B, lies inside W and
the other outside the circle. The configuration of the equilibrium states of
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(Su) for the various values of the parameter p is shown in Figure 185 (the
arrows in this figure mark the direction of motion of the equilibrium states
as pincreases).

The character of the equilibrium states is determined by the usual
techniques. For ps0, | p |51, the points 4, aund B, are nodes or foci
when p > 0 and saddle points when u <0, whereas the points B, and C, are
nodes or foci when p <0 and saddle points when p >0 (Figure 185).
The equilibrium state C, of (S,) is multiple for p= £ 1, having A = 0,
o= P, +Q,5%0. To fix ideas, let p = — 1. We will proceed by the method
outlinedin QT, §21.2, using Theorem 65 of this section. System (Su) for
p = — 1 has the form

S =ya—1)+at 1,

d|
= —z@—1).

(s_1)

The coordinates of the equilibrium state C-,are (1,0). Moving the origin

to the point C-;, we effect a transformation of coordinates z= —2y, y= ;—E—H],

t==§ , and reverting to the old notation z, y, ¢ we obtain

LIRS

Applying Theorem 65 from QT, §21.2 to this system, we find that the
point C_, is a saddle-node of (S-l) and that the path configuration near this
point can be schematically shown as in Figure 186 (this result could be fore-
seen beforehand, by regarding the point C_; as the outcome of the merging of
the node C, and the saddle point D, of (Su) for p—+—1). The situation is
entirely analogous with regard to the point €; of (Sl).

Saddle points

Nodes or foci{Nodes or foci

Saddle points

FIGURE 185 FIGURE 186
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A, and By are also saddle-nodes (of system (Sp)). We do not prove this
proposition, however, since the only relevant fact for what follows is that
the Poincaré index of each of these equilibrium states is 0. The latter point
can be established if we note that on passing to a close system (S,), two
equilibrium states 4, and C, (B, and D,, respectively) appear in the neigh-
borhood of the points 4,f{or B,), the sum of their indices being zero.

As we have seen before the circle W (22 + y* — 1 = 0) consists of paths of
{S,). If this curve does not contain equilibrium states, i.e., if jp}>1,

Wis a closed path of system (S,). We will now show that (S,) has no closed
paths other than W for any value of p.

First consider the case p = 0. (S,,) then has two equilibrium states A, and
B,, each with Poincaré index 0. Since the sum of the indices of the equili-
brium states lying inside a closed path is 1 (QT, §11.2, Theorem 28,
Corollary 1), (So) has no closed paths.

Let now ps+0. Consider an auxiliary system

S=wtaty—1, F=-m (8y)

(the two systems (Su) and (gp) can be considered as particular cases of
the system

d.
%:y(az-{-p)—{-x’-&—y‘——i, %=—-‘b’(a$+l—l))-

[t is directly verified that (S,,,) has a general integral
2
@y —1)en’ =C. (15)

The family of curves (15) for p >0 is shown in Figure 187a and for p < 0 in
Figure 187b. The contact curve of (Su) and (§n) has the equation

z? (2 - y* — 1) = 0. It car. be decomposed into a straight line =z = 0 and the
circle W', The contact points on the line z = 0 are all false (see previous
example, and also QT, §12.5), and the sign of the expression z2 (z* + y* — 1)
is reversed only when we cross the circle W.

SN
\J
=

z
W g
Gy *
=
a b

FIGURE 187. a)p > ; byp < 0.
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Suppose that (S“) has a closed path L. Since the sum of the indices of the
equilibrium states of (S,) enclosed inside Lis 1, at least one node of (S,)
lies inside L and at least one saddle point lies outside L. This means,
however, that the path L inevitably crosses closed paths of system (Su) and
consequently has a (true) contact (see previous example) with one of these
closed paths. Since the (true) contact may only lie on the circle W, which
is a path of (Su) for every p = 0, the closed path L of (S,) should be tangent
to the circle W. This is feasible only if L coincides with W (since Wis a
path of (S,) or consists of paths of this system).

We have thus established that (S,) has no closed paths for | u [<1 and has
precisely one closed path — the circle W— for|p |>1. For p = —1, (S“)
has a saddle-node C._, whose w-separatrix L' forms a loop which, together
with the point €., constitute the circle W. For t— — co, the separatrix L*
goes to the saddle-node C_;, being one of the interior paths of the node
sector. At the point C_; (1, 0),

Pi(z, y, —1)+Q)(z, y, —1)=2>0. (18)

Let us now consider the bifurcations which take place near the circle
Was p varies around —1. For p> — 1, the system has no closed paths,
and on the circle W there is a saddle point and a node near the point (1, 0).
As p decreases, these points draw closer, and they merge into a saddle-
node for p = — 1; one of the separatrices of the saddle-node forms a loop.
As p decreases further, the saddle-node (.4 disappears and, by Theorems 51
and 52 (§30) and relation (16), the system should have precisely one, and at
that stable, limit cycle in the neighborhood of the loop L*. This cycle is the
circle W. In this example, the limit cycle is created from a separatrix
loop in the following manner: the equilibrium state C_; is transformed into
a regular point which forms, together with the separatrix loop, the limit
cycle W. The situation is entirely analogous for the variation of the
parameter p around p = 1,

To elucidate the topological structure of the dynamic system (S,) on the
entire plane, we should consider in more detail the character of the
equilibrium states and the path configuration at infinity. This is left to
the reader as an exercise. The bifurcation values of the parameter are
evidently p = 0, 1, —1.

Example 15 (the creation of a limit cycle from the loop of a saddle-
point separatrix and a multiple focus).

Consider the system

& e (=P +y(+P) =P (2, p),

Y — —e(z 440 (14 2) =Q(z v). )

Physical considerations (see /26/) restrict the variable z to the range

. 1+pr >0, (17)

and the constants f and & are constrained by the inequalities

O<P<g, O<<e<oco. (18)
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In the half-plane defined by (17} (i.e., the half-plane to the right of the

line ¢ = — ), (A) has two equilibrium states Oy (—1, 1) and O: (.. y2), where

B
1 1 1 /13 1 ]/ 13
-"-‘223"—'3'5- FTT Y= i
After some manipulations, we find that 0,(—1,1) is a node or a focus, which

is stable for e>ﬁ1ﬁ—_ﬁ) and unstable for e<§(15——6)' For 552(15_5)’ 0,is an
equilibrium state with pure imaginary characteristic numbers.
Fhe equilibrium state 0, is a saddle point for all the relevant values of
the parameters. Let us establish some properties of its separatrices.
The isoclines of vertical and horizontal inclinations are described by

the respective equations

—( = +y(t+pn)=0 (18)

and
z+y*=0. (20)

The first is the equation of a hyperbola and the second that of a parabola.
These equations partition the half-plane 1 + >0 into regions where z and

_z}retain a constant sign. Let these regions be designated I, II, III, IV

(Figure 188). The signs of z and y, respectively, are indicated in

parentheses in the figure.

FIGURE 188,
The equation characterizing the directions of the separatrices for the
saddle point 0, has the form

2 Byz+2e(i—P) =
A’ﬁ——z—m:z—k—f—g—o. (21)
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Since e >0, 1 + Pz, >0, y, >0, and 0 < ﬁ<31, the two roots of {21) are

negative. Hence it follows that the segments of the separatrices located
near the point 0, lie in regions Il and IV (Figure 188).

Seeing that two separatrices go to the saddle point for t + + oo and
the other two for ¢t — — oo, and examining the variation of £ and y in
regions II and IV, we readily find that the configuration of the separatrices
near the saddle point 0, can be represented as in Figure 188.

Consider the point of the szparatrix L, lying near 0,. Let this point
correspond to the time ¢. Since this point lies in region IV, it will move
to the left and up as ¢ increases (z decreases, y increases). But then the
separatrix L, will not cross the parabola (20), which is an isocline of the
horizontal inclinations, and it should evidently cross the straight line
1 4 Br = 0. We similarly conclude that the separatrix L, goes to infinity as
t increases.

The behavior of the separatrices L, and L; cannot be determined un-
ambiguously, and a detailed analysis is required. To this end, consider
an auxiliary system

d
Ty G=—eEty). (B)

Dividing the second equation through by the first equation and substituting
y® == z, we obtain a linear equation, which can be integrated to give a general
integral of system (B),

F(z, y) =28 ( ——i—-{—x-{-y’) =C. (22)

(B) has a single equilibrium state, the origin O (0, 0) (it corresponds to
C = ——715- in (22)). Investigation of the curves (22) by the usual elementary

methods shows that they can be depicted as in Figure 189. C = ——-% corre-

sponds to the equilibrium state 0 (0, 0). The values —718-<C < 0 correspond
to closed paths of system (B): as C increases these closed paths expand.

C = 0 corresponds to the parabola ——2% + z 4 y* = 0, which is obtained from

the parabola y+ 2®* =0 as a result of a shift to the right by 2—13 (in Figure 189,

this displaced parabola is shown by dashed curve; it is not a path of
system (B)). Paths which are not closed correspond to € > 0.
Let us derive the equation of the contact curve of systems (A) and (B).
Taking the derivative of the function F (z, y)
EEY P2 Py~ FP (e, 1)+ F,0(, v)
(see QT, §3.13) and using (A), we obtain

G = —2eere= (z 4y (1P (23)

Hence it follows that the contact curve %£=0 is the parabola z+y?=0, which

is an isocline of the horizontal inclinations both for system (A) and for
system (B).
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|

FIGURE .89

Since ﬁ<%, and e >0, %—<0 in regions where z+y¥*>0, i.e., in regionsil

and lilin Figure 188. This evidently implies that the paths of system (A)cross
the closed paths of system (B)inthe direction from outside to inside as
t increases. In regions [ and IV, on the other hand, where z + y?<0,

%>0 and the paths of system (A) cross the closed paths of {B) from inside

to outside as ¢t increases.

The axis z is an isocline of the vertical inclinations of (B). Each closed
path of (B) crosses the positive half-axis z at a single point in the downward
direction {Figure 189).

Z(+s=)

—

3

LAC Y

AY

&
RN
\ 9/”71"?7 i
Zr-r~)
FIGURE 19C. The dashed curve shows the possible be-
havior of the separatrix L,.

Now consider the a~separatrix L, of system (A) which emerges from
saddle point 0,into Il {z> 0,y < 0, see Figure 190). Since 0, lies to the left
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of the parabola -—-218—+ z + y* = 0, the path of system (B) passing through

this point is a closed path (Figure 190). We designate this closed path Z,.
At the point 0,, the separatrix L, enters into Z,, since at this point the
inclination of L, is negative and the inclination of Z, is horizontal

(Figure 190; O, lies on the isocline of horizontal inclinations of system (B))
While in region where z + y® > 0, the separatrix L, cannot cross the curve
Ly going from inside to outside, since in this region its behavior is such
that it crosses all the closed paths of (B) from outside to inside. Moreover,
as ¢t increases, the separatrix L, cannot move from region II into region I
crossing the arc 0,0, of the parabola y + 2* = 0, since in all the interior
points of this arc the paths of system (A) are directed from left to right.

We should therefore consider the following alternatives for the
separatrix L,:

1) without leaving region II, L, goes to the equilibrium state O, for
t— 4 ocoj

2) remaining inside the curve C,, L, crosses the isocline of the vertical
inclinations (the hyperbola (19)) and then crosses the parabola (20) to enter
region IV.

As ¢t increases further, the following three possibilities should be
considered for the separatrix L, (they are consistent with the fact that in
regions I and IV the paths of (A) cross the closed paths of (B) from inside
to outside):

2Y) L, goes to the equilibrium state 0,, if it is stable, or to a stable
limit cycle surrounding this equilibrium state, if such a cycle exists;

2'") L, goes to the saddle point 0,; in this case, it evidently merges
with the separatrix L; forming a loop;

2''1) L, crosses the straight line 1 4+ Bz = 0 (L, cannot go to infinity in the
lower half-plane since in region IV y>0).

The behavior of the separatrix L;, as is readily seen, is determined by
the behavior of L..

Let us now consider the existence or otherwise of closed paths in
system (a).

Every closed path of system (A) should enclose the point 0,, while
leaving the point 0, on the outside, and it may not have any points in
common with other paths, in particular, not with the separatrices L, and
L;. Hence it follows that if the separatrix L, goes to the equilibrium state 0,,
{A) has no closed paths. Now suppose that the separatrix L. crosses the
hyperbola (19), and let z, be the abscissa of the intersection point M,
(Figure 190). Every closed path of {A) of necessity crosses the segment
0,0, of the parabola (20). Making use of this fact and taking into considera-
tion the direction of the field of system (A) in regions I, II, and IV and on
the isoclines (19) and (20), we can readily show that if (A) has closed paths,
they may only lie inside the region between the vertical lines z = z, and
T == XTg.

Let M* (z*, y*) be the intersection point of the path Z, of the auxiliary
system (B) with the positive half-axis z. Since z, < z* (this is clear from an
examination of the behavior of L,), we conclude from the above that if
system (A) has closed paths, they may only lie between
the vertical lines z =2, and z = z*,
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We will now apply Dulac's criterion (QT, §12.3). Dulac's function is
taken in the form
2ex

D (z, y)=l:ﬁx'

Computations show that

7 (D) + 7 (DQ) == =ELe— 126 (1 +p=) —B1.

Since 6<%, and 14 fz0, the last expression vanishes only at the points

of the straight line

B2
I = 285 .

By Dulac's criterion, (A) may not have closed paths in the region where
2 (®P)+ -2 (®Q)+#0. Therefore, if the above straight line does not lie

between the verticals r=23 and z=2*%, i.e., if either

f—2e 1
e <n=g—g+V -

system (A) has no closad paths.
The first of the two conditions in (24) can be written in the form

<5+

It is satisfied for any p, 0<B<+, if e>1.

Let us now consider the second condition in (24). The equation of the
curve L, is given by (22), where C is determined from the condition that
L, passes through the point 0, (z;, y;,). The equation of I, is thus

s (14 g1 o) = 24 ).

Setting y =0, we obtain an equation for z*:
. 1 s 1
G R
or after elementary manipulations,
1 —2ex* = e2etve=~=*) [1 — De (z; + y3)]. (25)

Since every curve (22) crosses the positive half-axis z at one point only
(Figure 189), equation {25) has a single positive solution for z*. Let
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Zex*=2z, Equation (25) then can be written in the form
{—z—e?f(e) =0,

where f(e)=-e2x2{1 —2e(z,-+y3)] (z, and y, are independent of e).
For e=0, equation (26) has the form

{—z—e*=0.

It has a unique solution z = 0, and the derivative of its left-hand side at
the pointz = 0does not vanish. Therefore, by Theorem 3 and the remark
to Theorem 4 (the theorem of small increments of implicit functions, §1.2),
for sufficiently small & equation (26) has a unique solution close to zero,
which goes to zero for ¢ » 0. It is readily verified that for e > 0 this solution
is positive. Andsinceequation(25) has a unique positive solution
for z*, we conclude that 2z2* — 0 for e - 0.

The second inequality in (24) can be written in the form

B--2e > 2ex*.B.

This and the condition lim 2e2* = (0 show that for any B, the second

e-0
condition in (24) is satisfied as soon as ¢ > 0 is sufficiently small.

We have thus established that for every fixed B, 0<ﬁ<%, system (A)

has no closed paths if ¢ is sufficiently small or sufficiently large. Let us
now try to elucidate the topological structure of (A) in these cases.
Let

—_F
R=ga—p—* (27)
As we have seen before, for R >0, the equilibrium state 04 (—1, 1) is an
unstable focus or node, and for R < 0, it is a stable focus or node.

We will now show that for every 8, O<ﬁ<%—, there exists a certain e >0

for which the separatrices L; and L; merge into a loop.

Indeed, if ¢ = e; > 0 is sufficiently small, system {A) has no closed paths
and, moreover., R > 0. But then 0, is an unstable node or focus; the
separatrix L, does not go to O;for t— + oo and it either merges with the
separatrix Lg or leaves the region IV by crossing the segment ST of the line

T = ———é—. In the former case, our proposition is proved, and in the latter

case, the separatrices are arranged as shown schematically in Figure 191.

FIGURE 191. . FIGURE 192. e=e,.
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We can similarly show that if ¢ = ¢, > 0 is sufficiently large {in particular,
so large that R < 0), the separatrices L. and L; either merge forming a loop
or are arranged as shown in Figure 192,

Now suppose that the separatrices L, and L; do not merge either for
e = e, or fore = g, (i.e., the configuration of the separatrices is according
to Figures 191 and 192). We will show that in this case they merge for

some e = g, & << 89 << €2, First note that the straight line z = —-—é— has no

points of contact with the paths of the system (A) {(this is evident directly
from the equations of {A)). Moreover, since the contact curve of systems
(A) and (B) is parabola (20), the arc 0,V of the path I, of (B) extending
between its intersection points 0,and ¥ with the parabola (20) (Figure 192)
has no contacts with the paths of system (A) either. Therefore, by the
basic properties of separatrices (§9.2, Lemma 3 and the remark to this
lemma}, if for some value of the parameter & the separatrix L,crosses

the line z = ——% (Figure 191) or the separatirx L, crosses the arc 0,N of the

curve Zo (Figure 192), the behavior of these separatrices will not change for
all close values of the parameters. Now suppose that the separatrices L,
and L; do not merge for anye, g, <<t <2, Letevary from g;to g2. Then, as
is readily seen, there exists some ''first' value of the parameter & = ¢* for

which the separatrix L, no longer crosses the line z = ——% (whereas for all

s, g, <t < ¥, it does cross this line). Since by assumption the separatrices
L., and L; do not form a loop, for & = e* the separatrix L, goes for { - + o
either to Oy or to a limit cycle encircling 0;. In either case, L; crosses the
arc 0,¥ of L,. But then, for all close values of &, and in particular for

e << e¥, L, crosses the arc O,N and consequently, L, may not cross the line

1 . . C s .
rT=—F. We have established a contradiction, which proves that for some

eq, 81 << 8o << €2, the saddle point 0, of (A) has a separatrix forming a loop.
Choose a fixed B and follow the changes in the topological structure of (A)
in the neighborhood of the equilibrium state 0, (—1, 1)as & is varied,

Let ?:2—(—15——_5). Fore=e, 0,(—1, 1)is an equilibrium state with pure
imaginary characteristic numbers. Since at the point 0,(—1, 1),
o=p—2e(1—B), we conclude that for g=¢ and ¢=0, %’-<O. a3 is computed
from equation (76), §24.4, which gives

2 ) 2835~ 9p)
8(1—=3p)(1—p) VB —3p)

>0.

Therefore, for e =, O,.s an unstable focus, and when & increases above &,
the focus O, is transformed into a stable focus and a single unstable limit
cycle is created in its neighborhood (see table in §25.3).

Thus, as & varies from a sufficiently small g to a sufficiently large e,,
the following bifurcations definitely occur:

1) at least for one & = g, the separatrices L; and L; of the saddle point
0: merge forming a loop;
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2) precisely once, for e = g, O, is transformed into a multiple focus,
and as ¢ is further increased, an unstable limit cycle is created from this
focus.

In addition to these bifurcations, we may assume a priori the existence
of bifurcations of still another type in this system:

3) appearance (or disappearance) of a limit cycle of multiplicity 4, and
in particular of multiplicity 2, from a ''condensation of paths."

Very considerable difficulties are encountered when one tries to establish
the presence {or the absence) of bifurcations of this last type, and nothing
certain can be said in our example regarding this point.

Let us consider one further fact relating to separatrix loops. As we
know, the loop formed by a saddle-point separatrix is stable or unstable,
according as the value of P; 4 Q; at the saddle point is negative or positive
(Theorem 44, §29.1). In our example, for e = g,

P (3, y2) + Q) (T2r y2) = y2 1B— 20 (1 -+ Paa)]. (28)

- ‘e
y2=—%+ l/é——% and 1+51'2=~—v—2‘2'-

Therefore

Py (w0, ¥o) + @iz v) = v [ B — 20 =R) (29)

(T (30)

(&0 is the value of e for which the separatrices L, and L, merge forming a
loop; & is the value for which O is a multiple focus). For 0<5<%, it is

readily seen that y, > 1. This and (29), (30) show that

PoAxs, y2) + Q) (2, Y2) = Y2 [ﬁ—ie%:@—)-] >p—2 gé::%‘=0
We have . - established that if the separatrices form a loop for e,<e, the
loop is unstable.

Let us now analyze the changes in the topological structure of {(A) as ¢
increases from 'e; to &, assuming that two further conditions are satisfied:

(a) as e varies from g to g;, no bifurcations of type 3 occur;

(b) there exists a single value g,0f the parameter ¢ at which the
separatrices L, and L; merge forming a loop.

We should stress that the applicability of these conditions (or of either of
them) is not known in advance, and we introduce them as an assumption in
order to proceed with our analysis.

For e = g, the system has no closed paths and the separatrices are
arranged as shown in Figure 161. .

As e increases, the topological structure of the system at first does not
change. It may change only when the parameter crosses its bifurcation
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value. The bifurcation values of the parameter in our case are € and &. We
will show that € < ¢;. Indeed, if £ e,, O, is an unstable node or focus for

e = g4, and the system has a separatrix forming a loop, which loop, as we
have seen before, is zlso unstable. By condition (a), no closed paths may
develop in the system. Therefore, the paths enclosed inside the loop should
go either to the loop or to the point O, for t - +oco, whichisimpossible since
both the loop and the point O, are unstable.

We have thus established that ¢ < &,, Fore =g, the point 0,is a multiple
unstable focus, and for all ¢ between ¢, and & the system has a constant
topological structure (that shown on Figure 191).

As ¢ is further increased, 0, is transformed into a stable focus, and a
simple unstable limit cycle L, is created in its neighborhood ($25.3). The
system acquires the topological structure schematically shown in Figure 193.
As ¢ varies between the limits € << e << g,, this topological structure is
retained.

FIGURE 193. & <Ce < ¢q. FIGURE 174, & = eg.

For e = gy, the separatrices of the saddle point O, form a loop. We will
show that at this instant the limit cycle L, disappears (is "swallowed" by
the separatrix loop), and the loop itself is unstable, i.e., the system has the
structure shown in Figure 194.

Indeed, suppose that the unstable limit cycle L, exists fore = g,. We
know that for ¢ = ¢, the system has no closed paths. Therefore the
structurally stable limit cycle L, should disappear with the increase in e.
This may occur only by merging with some limit cycle created from the
separatrix loop, i.e., as a result of a bifurcation of type 3, which is ruled
out by cordition (a). Thus, the limit cycle must disappear for & = g, and
since the focus in this case is stable, the separatrix loop is unstable
(Figure 194).

As e is further increased, the separatrix loop breaks up. It does not
produce closed paths, since eventually these paths will have to disappear,
which is ruled out by condition (a). Therefore, for ¢ > ¢, the topological
structure of the system is the same as for ¢ = &, (Figure 192).

We thus see that with the aid of conditions (a) and (b) we succeeded in
deriving unambiguously the topological structure of the system for all ¢é>0.
Note that if conditions {a) and (b) {or either of them) are not satisfied,
the number of a priori possible topological structures of course markedly

increases. Thus, if we allow bifurcations of type 3 — creation of a limit
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cycle of multiplicity 2 (from a condensation of paths) or disappearance of a
limit cycle — the topological structure may undergo the following changes:

1} A limit eycle of multiplicity 2 is created.

2) The limit cycle splits into two: an unstable outer cycle L’ and a stable
inner cycle L”.

3) The outer cycle L’ is "swallowed'' into the separatrix loop, and the
separatrix breaks up.

4) The focus changes its stability, and an unstable limit cycle L” is
created.

5} The cycles L” and L merge into a cycle of multiplicity 2, which then
disappears.

There is nothing to prevent the separatrix loop and the type 3 bifurcation
from occurring several times!

Example 16 (the creation of a limit cycle from a multiple focus,
see /37/).

Consider the system

=Bt EHVY =Py, F=—y+@E+Ye=0r )  (31)

for positive values of the parameters y and 8.
The coordinates of the equilibrium states satisfy the equations

rH(E+Vy+8=0, y—@+v)r=0. {(32)

Eliminating y between these equations, we obtain a single equation for
the abscissas of the equilibrium states:

Fz, v, 8) =2+ 2y + (y*+1) 2+ 8 =0. (33)

Since this is a cubic equation, (31) has at least one equilibrium state
and at most three equilibrium states for all the relevant values of the
parameters y and 9.

To determine the exact number of equilibrium states, we will follow
the general instructions outlined in the Introduction to this chapter.
Specifically, we will look for those values of the parameters for which the
equilibrium states have maximum multiplicity. As we shall see, local
analysis near these values of the parameters will solve the problem of the
existence of regions with different number of equilibrium states.

The ordinate y of the equilibrium states is obtained from the equation
y =z (x +y), i.e., it is a single~-valued function of the abscissa. Therefore,
by Definition 15, §7.3, the multiplicity of the equilibrium state (z, y), where
z is a root of equation (33), is equal to the multiplicity of the corresponding
root, i.e., the maximum multiplicity of the equilibrium state of our system
may not exceed 3. Let us try to establish the values of the parameters y and
5 when equation (33) has a triple root. As we know, a triple root should
simultaneously satisfy the three equations

F(z,vy, §)=a+ 2y + (y*+1)z+6=0,
Fi(z, v, 8) =3zt +4yz+(1+92) =0, (34)
Fia(z, v, 8) =6z +4y=0,

From the last equation, we have z= —-y.
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Inserting this result in the second equation and remembering that we are

interested only in positive values of the parameters, we find \'———4,—;/3,
Hence z= —%—3, and 6=—§- 173>0.

We have thus established the existence of a single pair of positive
parameters y and 8§, namely yo=}3, 60=g—1’3, for which system (31) has an
equilibrium state of multiplicity 3. Let this equilibrium state be M, (zy, ¥o),

where 7= — zg 3, Yo = ——%. For these values of the parameters, the system

evidently does not have other equilibrium states.
Since My (zy, ¥o) is a raultiple equilibrium state, A (zo. o) =0 (this also can be
found by a direct compatation). Furthermore,

’ . 4
0 (Zo+ Yo) == Pix (@0, Yo) + Qy (%or Yo) = —2—yo= —5 <0

Investigating the equilibrium state M, by the methods described in QT
(Chapter IX, §21.2, Theorem 65), we conclude that M, is a stable topological
node. By Theorem 35, §23.2, there exist small increments for which the
multiple equilibrium state W, decomposes into three structurally stable
equilibrium states {two nodes and one saddle point) and also increments
which replace M, with a single (stable) structurally stable node. However,
the results of §23 cannot be applied to our case, since we are not dealing
with just any increment to the right-hand sides of the corresponding system,
but only with increments which result from changes in the particular
parameters y and § of the system.

To investigate the possible existence of three equilibrium states, let us
consider the function F (z, vy, 8) (see (33))in the neighborhood of the point
Zg, Vor 80, Let 2 =z + &, vy =170+ h 6 =208+ k.

Seeing that z,, vo, 8, Satisfy equations (34), we readily find that

F(x, vy, 8) =F(zo+8& Yot h o+ k)=
= &% - 2hE% - (4xoh - 2voh -+ h%) § + 230k + 2yoxoh +
fagh? 4tk =E - AL2 - BE-C,

where A=2h, etc.

Let k = — 2x0h — 2yexch — xoh?, i.e., C = 0. The equation F (z. y, 8§) = 0 then
takes the form & (82 + A% 4- B) = 0. One of its roots is &, = 0, and the
character of the other roots depends on the value of the discriminant

A? — 4B = — 162k — 8ok := — 3} 3h. Therefore, if h< 0, and k is selected

as above, the equation F (z, y, 8) = 0 has three different real roots, one of

which is x,, and if 2 > 0, the equation has a single real root z, and two

complex roots. Clearly, if kis sufficiently small in absolute value, & is

also sufficiently small and the parameters y =y, + k&, 6 = 8 + k are positive.
We have thus established that for certain positive values of the parameters

yand 6, system (31) has three equilibrium states, whereas for other values

of the parameters it only has one equilibrium state.”

* Our proof is confined to the neighborhood of a miple equilibrium state. I[n this case, the sought results also
can be obtained from a direct .nalysis of the cubic equation F (z, y, 8) = 0.
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On crossing over from one region of parameter values to the other
region, we evidently pass through the bifurcation values of the parameters
for which the system has a multiple (double or triple) equilibrium state.
Since there exists only one pair of values y,, 8, for which the system has a
triple equilibrium state, whereas the values of the parameters for which
the system has one structurally stable or three structurally stable
equilibrium states fill whole regions in the parameter plane, we should
inevitably pass through the parameter values corresponding to the double
equilibrium state on crossing over from one of these regions (the region
with three equilibrium states, say) into the other (that with one equilibrium
state). The equation of the curve in the parameter plane corresponding to
systems with multiple equilibrium states can be found without difficulty.
To this end, we equate to zero the discriminant of the cubic equation (33).
After some manipulations, we obtain the equation

@ (v, 8) =276 —2y (y* 4 9)]2 — 4 (y* — 3)* =0, (35)

which is equivalent to two equations

v (v2 42 (y3— yZ—3
LIRS R 1L V=T _ 4 (v (36)

2v (v2 4 9)—2 (v2—3) /32 —3
§= Y (¥2+9) 9’7 ) V¥ dzf(Y)' (37)

.

We are clearly interested only in positive values of the parameter y which
are greater than or equal to V3. For y =y, =7V3, k@) = f (yo) = %1«"?7: 8o,

i.e., we obtain the point M, (ye, ;) corresponding to a system with a triple
equilibrium state. The curve (35) consisting of two branches (36) and (37)
meeting at a common point M, is shown in Figure 195.

=bfy)
71 &
Iﬂ

sif

a

FIGURE 195

The curve 35 partitions the first quadrant of the parameter plane into
two regions I and II (Figure 195). It is readily seen that the dynamic
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systems corresponding to the points of region I (¢ (v, 8) > 0) have one
{structurally stable) equilibrium state, whereas systems corresponding to
the points of region II (¢ (y. 8) << 0) have three, also structurally stable,
equilibrium states. Systems corresponding to the points of the curve (35)
other than M, have one structurally stable and one double equilibrium state.
Let us now consider the character of the equilibrium states of system(Sl).
The first question is the possible existence of equilibrium states with pure
imaginary characteristiz numbers {a center or a multiple focus from which
a limit cycle may be created). It should be established whether such
equilibrium states exist or not, and if they do, then for what values of the
parameters. For such an equilibrium state,
P. Pyl
“lon ¢!
and ¢ = P; + Q, = 0. For an equilibrium state (z. y) of system (31), as is
readily seen,

A

A= 32% by ¥ 1, (38)
0= —(22-+yz+2). (39)

Let us first establish whether an equilibrium state can exist at all for
which A = 0 and ¢ = U simultaneously.”™ The abscissa of an equilibrium
state of system (31) for which ¢ = 0 simultaneously satisfies equation (33)
and the equation

o= —(z2-yz+2)=0. (40}
Eliminating v between these equations, we obtain
Yy, 8) =2y —3y8 - 6*+2=0. (41)

In the plane of the parameters y, § equation (41) is a curve (a hyperbola),
and only dynamic systems corresponding to the points of this hyperbola may
have equilibrium states with o = 0.

Let us now determine the values of the parameters for which the dynamic
system may have an equilibrium state (z, y) with A = ¢ = 0.

From the equations

A=32 by +y*+1=0, = —(22+yz+2)=0

we readily find z =5LY—V’, Inserting this result in the second equation, we

; —2 .2 -8
find y= 75 Hence r= 3 and, by (33), 6= T

There is thus a single point A (y4, §,) in the parameter plane, with

6 = _8 ., which corresponds to a system having an equilibrium

= 13’

5
V3
state with A = 0, o = 0. Since the condition A = 0 is equivalent to the
existence of a multiple equilibrium state of a dynamic system, i.e., the
existence of a multiple root of equation (33), the point 4 (y,, §,) lies on the

* We are thus considering, as before, equilibrium states of maximum multiplicity.
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curve ¢ (y, §) =0 (see (35)) and is the only common point of this curve and
the curve ¢ (y, §) = 0. It is readily seen that the curves ¢ (y, 8) = 0 and
¥ {y, ) = 0 touch at the point A. Moreover, it can be shown that the branch
¢ (y, 8) = 0 of the hyperbola located in the first quadrant is entirely contained
in region Il (Figure 195). Therefore, the stability of an equilibrium state
with A s 0 can change only for those values of the parameters when
system (31) has three equilibrium states.

Let us try to identify the equilibrium states with ¢ = 0. Since
o = P;+ Qy = — (y + 2), an equilibrium state (z, y) with ¢ =0 has y = — 2.
The abscissa is ¢ = § — 2y in virtue of the first equation in (31). Moving
the origin in the plane (r, y) to coincide with this equilibrium state
® — 2y, —2), i.e., using the substitution of variables

z2=X486—~2y, y=Y-—-2,
we obtain a system

G=X+a—8y—xv, &

ar =
In virtue of the condition o=0, relation (41) is satisfied, and the last
system takes the form

(26— 3y) X — Y - X21-2y2 + 6% — 3y6 + 2.

B X rw—Y—XxY, X _@s-3px—YiXxn. (42)

The equilibrium state (with ¢ = 0) now has the coordinates (0, 0). Its
characteristic equation is

i—A y—G
263y —1—a|=M—I(¥—8 (28—3v)+1]=0. (43)

Depending on the sign of the expression in brackets, the characteristic
roots are either complex conjugate numbers or real numbers of
opposite sign.

It is readily seen that the curves

Yy, 8 =2y>—3y84624+2=0
and (41)
(v—8)(26—3y)+1=0

have a single common point in the first quadrant, namely the point
A (753—, %), and that this is their point of intersection (and not a true point

of contact). The expression (y — 8) (26 — 3y) 4+ 1 therefore retains the same
sign everywhere along the branch AB of the curve (41) (except the point 4)
and an opposite sign everywhere along the branch AC of this curve.

Consgider the points (3, 5) and (9/2, 5) of curve (41); we readily find that the

expression (y—86) (26 — 3y) + 1 is negative on the branch 48 and positive on
the branch AC. Therefore, by (43), if the dynamic system (31) corresponds
to a point on the branch AB, its equilibrium state with ¢ = 0 is a multiple
focus or center (we shall see later on that this is a multiple focus of
multiplicity 1). If the system corresponds to a point on the branch AC, its
equilibrium state with o = 0 is a saddle point.
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The branch AB of the hyperbola (41) partitions the region II into two
subregions II* and II° (Figure 195).

Let us consider the character of the equilibrium states of systems
corresponding to the points of each of these regions. First note that for
any values of the parameters .8 in (31), infinity is absolutely unstable.
Indeed, along a path of system (31)

U oo (2 82y S ) = — 21+ g+ 8al.

It is readily seen tha: for z* 4 y* >> §% the last expression is negative.
Therefore all paths of the system enter into a circle of a sufficiently large
radius centered at the origin as ¢ increases.

Hence it follows, in particular, that the sum of the Poincaré indices
of all the equilibrium states is + 1.

Systems corresponding to points of region I, as we have seen before,
have one equilibrium state, which is moreover structurally stable. Since
its Poincaré index is 1, it is either a node or a focus. It is readily seen —
the infinity being absolutely unstable — that this node (or focus)is stable.

In region II, the system has three simple equilibrium states whose
Poincaré indices add up to 1. Therefore one of these states is a saddle
point, and each of the other two is either a node or a focus. It can be shown
(we omit the proof here) that the nodes or the foci of a system corresponding
to a point inside region II® are stable. On the other hand, the points of the
branch 48 of curve (41) represent systems with three equilibrium states,
one of which is a focus with ¢ = 0.

When we cross over from I1°into 1% across the branch AB, o reverses
its sign and one of the foci consequently becomes unstable. The points of
region 11* therefore represent systems which have one stable and one
unstable focus (or node) and one saddle point.

As we have established before, the points of the curve (35) other than .M,
correspond to systems which have one simple and one double equilibrium
state. On crossing over into region [, the double equilibrium state vanishes,
and on crossing over into region II it decomposes into two simple equilibrium
states.

The point M, corresponds to a system with a triple equilibrium state.

The points of the branch 4B of curve (41) represent systems with one
multiple focus, and the points of the branch AC represent systems which
have a saddle point with ¢ = 0. Finally, the point 4 corresponds to a double
equilibrium state with ¢ ==

Let us now elucidate the position of the equilibrium states in the phase
plane.

To this end, we consider the isoclines of horizontal and vertical inclina-
tions. The isocline of the horizontal inclinations @ (z, y) = 0 is the parabola

y=z(x+y), (44)
and the isocline of the vertical inclinations P(z, y)=0is
yle+y)+z+8=0. (45)

For 8 = vy, this isocline decomposes into two straight lines

z=—y and y=—1 (46)
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If y = 8, (45) is a hyperbola and, for every §, the lines (46) are its
asymptotes.

Figure 196 shows the isocline Q (z, y) = 0 and the family of the isoclines
P (z,y) = 0 for a fixed y = yo > V3 .*

=) \Y z~% ¥

_// 7 z g z
y=7 y=7

= -/
' b
a
z=-g Vs
g z
=
N’ ¥=-7

[+

FIGURE 196, a)8 > yo; D)8 = vo; ¢) 8 < y,.

On the isocline of the horizontal inclinations — the parabola y = (z + v) 2 —
nodes and foci alternate with saddle points (by the Poincaré theorem, §23.3,
Theorem 36). Since out of the possible three equilibrium states, two are
nodes or foci and one is a saddle point, the two extreme equilibrium states
on the parabola are nodes or foci, andthe middle state is a saddle point.

Let us now establish which of the two equilibrium states that are not a
saddle point changes its stability on crossing over from II® into II%, i.e.,
which of the states has ¢ = 0. Since o = —y — 2, y + 2 cannot retain a
constant sign for this equilibrium state. Consider the equilibrium state
0, with the least abscissa. It is readily seen that its ordinate y, is always
greater than ~1, since 0, is the intersection point of the parabola with the
branch of the hyperbola extending above the asymptote y = — 1 (Figure 196).
Thus, y, + 2> 0, i.e., only the focus with the largest abscissa may change
its stability.

* Ify <3, ¢(y, 3) > 0 (see (35)) and system (35) has one equilibrium state for all 8.
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Let us now consider the existence of limit cycles for system (31).

We will first show that on passing from branch 48 of curve (41) into
region II°, the multiple focus will create precisely one limit cycle, which
will be unstable.

Using the same substitution of variables as before, i.e., displacing the
origin to coincide with :he multiple focus, we obtain

B Xty Y—XY, (263 X—Y+X (42)

To determine the character of the equilibrium state, let us find the value
of a; (see §24.4, (76)). Computations show that the sign of a3 coincides with
the sign of the ratio

30 —4y
25—3y ° (47)
We thus have to determine the sign of this expression at the points of the
curve AB. This can be done as follows. Consider an auxiliary straight line

56— 8y =0, (48)

which joins the origin w.th the point A(5/}/3.8 V3). It is readily seen that
the branch A8 of curve (41) and the half-lines 356 — 4y = 0 and 26 — 3y = 0
located in the first quadrant lie on the two sides of the line (48).
Expression (47) thus has the same sign on the branch 4B and on the straight
line (48). On the line (48) this expression is positive. Hence, a; > 0.
Then, according to the table at the end of §25.3, the multiple focus is
unstable and its multiplicity is 1; on crossing over into region II°, it be-
comes stable and creates a single unstable limit cycle.

Let us now isolate certain regions in the parameter plane which corre-
spond to systems without closed paths (in particular, without limit cycles).

Consider the straight line z+y=0. We see from the first equation in (31)
that for § =y this line is an integral curve. If §svy, it is a line without
contact. Indeed, for 2= —y andd=yvy, %:6—7#0, i.e., the paths do not
touch this line.

Take Dulac'’s function in the form

@(x,y):—i—. (49)

Z4y

This gives

_9(®P) | 9(0Q) _ —z4+38—2y
Dz, y) = g+ e (50)

This expression reverses its sign on the straight line

r=8—2y. (51)
Hence, by Dulac's criterion, it follows that every closed path of system (31)
crosses the line (51).

For 8 = y the line (51) coincides with the line z + y = 0, which is an
integral curve. Therefore, in this case the system has no closed paths.
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For 8 < y, the line (51) passes to the left of the line z 4+ y = 0, and all
the equilibrium states of the system lie to the right of this line {this can be
checked if we remember that for § <<y, the isocline Q (r, y) = 0 (the parabola)
may only intersect the right branch of the isocline P (z, y) = 0 (the hyperbola),
i.e., the branch which extends to the right of the line = + y = 0; see
Figure 196c). Every closed path of the system should cross the straight
line (51) in virtue of Dulac's criterion. On the other hand, every closed
path should enclose at least one equilibrium state. But then the closed
path should intersect the line without contact z + y == 0 at least at two points,
which is impossible.

We have thus established that for § <y the system has no closed paths,

We will now show that systems corresponding to the points of region 1
(i.e., systems with one equilibrium state) do not have closed paths either.
For 8§y, this has been proved above. Let § > y. In this case, the
equilibrium state of the system is the intersection point of the parabola y =
=z (z + v) with the branch of the hyperbola P (z, y) = 0 which extends to the
left of the line = + y = 0 (see Figure 196a), while the line (51) passes to the
right of the line # 4+ v = 0. Therefore, if there exists a closed path, it
should cross the integral curve z + vy = 0, which is impossible.

Let us now consider the systems corresponding to the points of the line
(35), @y, 8) =0, i.e., the systems with multiple equilibrium states. The
line (35) consists of two branches (36) and (37) (Figure 195). It is readily
seen that § <<y on the branch (37) (and in particular at the point Mo).
Therefore systems corresponding to the points of this branch have no closed
paths. Systems corresponding to the points of the branch (36) which lie in
the region 6 > vy have one structurally stable state — a stable node or focus —
and one double equilibrium state with zero Poincaré index. It is readily
seen (see Figure 196a) that the line without contact z + ¢ = 0 passes between
the focus (or the node) and the line (51) in this case. Therefore, by
Dulac's criterion, no cloged path enclosing a focus may exist. But then
the closed path should encliose the double equilibrium state, and this is
impossible because its Poincaré index is zero.

Multiple equilibrium states corresponding to the points of curve (35)
can be investigated using the results of QT, §21 and §22. The point 4
(Figure 195) is found to represent a system with a degenerate equilibrium
state, and point M, a system with a stable topological node of multiplicity 3
{we have indicated this before). All the other points of the curve o (z, y) = 0
represent systems for which the double equilibrium state is a saddle-node.

It is readily seen that a system with a saddle~node cannot have paths
forming a loop which goes to the saddle-node both for ¢t + — oo and ¢t —+ + oo.
This is proved in the same way as the absence of closed paths.

Now consider some point S, on the segment AD of curve (35) (Figure 195).
The dynamic system corresponding to this point has no closed paths and no
paths forming a loop, as we have seen just now. Moreover, this system
has no multiple foci (0 5= 0, since S, does not coincide with the point 4).

But then we can show that dynamic systems corresponding to points
sufficiently close to S, do not have closed paths either (there is "nowhere"
these paths can be ''created" from; the rigorous proof of this proposition is
left to the reader). In particular, systems corresponding to the points
sufficiently close to Syin region 1I, i.e., systems with three equilibrium
states, have no limit cycles and no closed contours consisting of paths.
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Consider the point S, which is sufficiently close to S, in II? and point S,
which lies in II® below the straight line y = 6. Let §, and 3, be the dynamic
systems corresponding to these points. Since neither system has closed
paths and closed contours consisting of paths, their topological structure
is determined unambiguously. Let us prove this fact.

I. System $;. It has one stable node or focus, one unstable node or
focus, and a saddle point. Since the infinity is unstable, the two «-
separatrices of the saddle point go to a stable focus.” The unstable focus
{or node) clearly lies inside the closed curve formed by the a-separatrices,
one of the w-separatrices of the saddle point goes to this unstable focus
for t—+ — o0, and the other goes to infinity. The corresponding topological
structure is shown in Figure 197.

7 |
4

FIGURE 197 FIGURE 198

II. System S,. It has two stable nodesor foci. The two o-separatrices
of the saddle point go to infinity for t - — o0 and separate the a-separatrices,
which go to the foci for ¢t — + . The
resulting topological structure is shown
in Figure 198.

Now consider the points of region II
which are not close to Sy, but for which
we nevertheless have § >y. To
establish the possible configurations of
the separatrices of the systems corre-
sponding to these points, consider the
isoclines of the horizontal and vertical
inclinations, i.e., curves (32). These
isoclines partition the plane into regions
1 &0 in which z and y retain a constant sign

70 (Figure 199).

Since § >y, one of the equilibrium
states (O; on Figure 199) lies to the left
of the line x = — y,, and the other two

equilibrium states, 0, and O0,, lie to the right of this line (Figure 196a). The
equilibrium state 0, is a saddle point, and O; is a stable focus or node. It is

FIGURE 199

* They form a closed line consisting of paths, but these paths are not a continuation of one another. When
we said above that the system had no clased contours consisting of paths, we meant contours of the type
of hmit continua,
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readily seen that the four separatrices of the saddle point 0, enter — as ¢
increases or decreases — into four of the previously identified regions
adjoining the point O, (this can be shown by the same technique as that
used to classify the saddle point; see QT, §7.3). The following properties
can also be established without difficulty: X

The separatrix located near the point O, in the region where z <0, y <0
is an w-separatrix. We designate it L}. As ¢ decreases, it either crosses
the isocline of horizontal inclinations and leaves the region where
z<0,y<0, or it does not leave this region, going to infinity instead
(i.e., it crosses the cycle without contact of the system).

. The separatrix L; issuing from the saddle point O, into the region where
£>0,5<0 crosses the isocline y = z (z 4 y) with increasing ¢ and enters into
the region where z >0, y > 0 (Figure 199). Indeed, if the separatrix L; does
not leave the region where >0, y < 0 across the parabola, it should go to
the equilibrium state 0,. This is impossible, however, since the saddle
point 0, is located below the point 0, and in the relevant region y <0, i.e.,
y decreases along L7.

We are dealing with the case when 8 >y, i.e., when the straight line (51},
z =8 — 2y, passes to the right of the line without contact x = — y. In this
case, a closed path, if it exists, may not enclose the equilibrium state 0,,
and it only may enclose the focus (or the node) 0,.

It follows from the above that three configurations of separatrices are a
priori possible for the systems being considered (i.e., systems with three
equilibrium states and 6 > y):

1) The separatrix L} goes to infinity across a cycle without contact, and
the separatrix L] either goes to a stable node or focus O, {(as for § < y), or
goes to a stable or semistable limit cycle encircling the equilibrium
state O, (Figure 198).

2) The separatrix L] goes to a stable node or focus 0;, forming a closed
curve together with the separatrix L;, which encloses the separatrix L}.
The separatrix L} goes to an unstable node or focus O, or to an unstable (or
semistable) cycle encircling the equilibrium state 0, (Figure 197).

3) The separatrix L; merges with the separatrix L to form a loop
(Figure 204).

Arguing as before, we can show that if configuration 1 (configuration 2)
is observed for certain values of the parameters, the same configuration
is retained for all close values of the parameters.

As we have seen before, however, both configuration 1 and configuration 2
are possible for different values of the parameters.

Thus, reasoning precisely as the previous example, we will establish
the existence of certain values of the parameters for which the separatrix
extends between saddle points. On every continuous line joining a point of
the type S; with a point of the type S, there evidently exists a point S; which
represents a system with a saddle-to-saddle separatrix. Then it is clear
that region II contains at least one continuous line I' which passes between
the straight line § = y and the branch AB of curve (41), whose points
correspond to dynamic systems with a saddle-~to-saddle separatrix.

We can now investigate the topological structure assuming, as before,
that no closed paths form from path condensations and that all the points
corresponding to systems with a separatrix loop form a non-closed line I
(extending between the branch 48 of curve (41} and the line § = Y
(Figure 200)).
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In region I, the system has a single equilibrium state — a stable node
or focus — and its topological structure is as shown in Figure 201.

Systems corresponding to the points of the segment AME of the line
¢ = 0 other than the point M, have one stable node or focus and a saddle-node
with a stable node region.

Systems corresponding to the points of the
branch AD of the curve ¢ = 0 {other than the
point 4) have a stable node or focus and a
saddle-node with an unstable node region.
Their topological structure is shown in
Figure 202.

On passing from branch 4D to region II,
we obtain systems with one stable and one
unstable node or focus, whose topological
structure is shown in Figure 197.

The topological structure of the systems
7 v on the line AD is analogous to the structure
depicted in Figure 197, but the point 0, is a
multiple unstable focus of multiplicity 1.

In region II (Figure 200), the focus
changes its stability (i.e., it becomes stable), and a single stable limit
cycle is created from the focus. The corresponding topological structure
is shown in Figure 203.

FIGURE 200,

FIGURE 201 FIGURE 202

On I, the limit cycle vanishes, after "being swallowed up'' by the loop
of the separatrix which originates and terminates in the saddle point 0,.

The topological structure of the system is shown in
Figure 204.

In region IV (Figure 200), the separatrix loop
breaks up and the system acquires the topological
structure shown in Figure 198. The point M,corre-
sponds to a dynamic system with a triple equilibrium
state. It is a stable node, and the topological struc-
ture of the system is the same as in Figure 201.
Finally, the dynamic system corresponding to the
point 4 has a stable focus and a degenerate
eqailibrium state. Its topological structure is
FIGURE 203. shown in Figure 205.
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FIGURE 204. FIGURE 205.

We should emphasize that the preceding analysis was carried out using
fairly arbitrary simplifying assumptions, whose validity is by no means
certain. )

Example 17 (the creation of a limit cycle from a closed path of a
conservative system).

Consider a system

==t F=ztr@+po—yayy, (52)

which arises, in particular, in connection with a tube generator operating
in the "soft mode' (see /6/, p.703). Only positive values of the parameters
a, B, y are meaningful, and we will therefore take in our analysis o > 0,
>0 v>0.

System (52) may be considered for small p as being close to the
Hamiltonian system

dz oH dy [Z2:4
iadatr ERE R 3z ° (53)

where H (z, y) =%(x“' + 3. The paths of system (53) are circles centered

at the origin.

Since (53) is a linear conservative system, we may investigate system
{52) using Theorem 75 (§33.2), or the more general Theorem 78. We will
use Theorem 78 here, as it also provides an indication of the stability of
the created limit cycle.

Let

Z==p cost, y=p;sint, (54)

where p; >0, be a closed path of system (53), and G, the circle enclosed
within this path. Let us evaluate the integral

SS [pi=(z, Y) +giy (=, Y)dzdy, where p;=0, gy=(x+Pr—ysd)y

0

(see (B,) in the statement of Theorem 78). We have

S S [Pix (2, 1) + qiy (z, 1)l dzdy = SS (4 Br—y2?) dz dy =
Go Go

Py
§ (o -+ Bp c0s 6 — yp* cos? 8) p dp d8 = - p? (4 — ypD).

ot
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Therefore, condition {(74) of Theorem 78 (§33.4) is satisfied if and only if
, " -
P11 = V ¥ (05)

(we are evidently concerned only with positive pl).
Let us compute the value of ! for this p, (§33.4, (75)). We have

X
I =\ [pix(picoss, pysins) -giy(p,coss, p,sins)ds =

2x
= S (o -~ Bpy cos s — ypl cos® s) ds = 2 — % ypi2n =
0

4
-".’..'tfz—%yﬂ:t.*_::?_:ra < 0.

Applying Theorem 78, we conclude that the closed path (circle)

42 iz .
T = —Ccos{, = —sint
Y 14 ‘/ ¥

of the linear conservative system (53) creates — on ~"ssing to system(52) —
a structurally stable limit cycle which is stable .or p>0 and unstable for
w=<<0.
Example 18 (a system close to a linear conservative system).
Consider the system

=y, y=z+p (ay+By? + yy* + by — epd). (586)

This is a system of type (B,) (§33.2), and here
p(zy, 0y =0, q(z. y, p)=ay+PBy?+vy® - 8y —eys.
Therefore, by (47), §33.2,

2
¥ (275 09, 0) = | (posin B -+ Bp*sin® 6+ yp®sin® 0 +
0
+ 8p*sint 6 —egp®sin®0) sin 0 dO = ,
3 <
=-Tpo(a %—7?9:“‘%993) (57)

¥ (273 po, 0) depends only on the parameters «, y, and e.

In §33.2 we considered the creation of limit cycles from the paths of the
system r= — Y, y = r corresponding to the nonzero roots of the equation
¥ (23 po, 0) = 0. The argument of that section, however, remains valid for
a zero root also (provided such a root exists). o =0 corresponds to the
equilibrium state 0 (0, 0) of the system r=— y.y==zx.

Thus, setting po = 0, we are in fact dealing with the creation of a limit
cycle from an equilibriurm state O (0, 0) of a linear conservative system.
For small u, the point 0 (0, 0)is a focus of system (56), which is stable for
pa << 0 and unstable for pa > 0. Therefore, the periodic solution created
from the equilibrium state 0 (0, 0) when we change over from the linear
system to system (56) with a small p is not a closed path (i.e., not a limit

cycle), but rather the equilibrium state 0 (0, 0) itself.
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Let us investigate the nonzero roots of the equation

P (275 po, 0)=npo(a+%vpé—§89:)=0, (58)

taking vy >0, ¢ >0, and assuming that o may take on both positive and
negative values (this corresponds to the physical conditions of the actual
problem associated with this system; see/6/, Chapter IX, §10).

We should consider only the positive roots of (58). As we have seen
above, for a s 0, the equilibrium state 0 (0, 0) of the original system may
not create a limit cycle.

Setting in (58)

3 5
D‘z=r, T‘Yr‘a, —8‘8=b

and dividing through by np,, we obtain
a+ar—bri=0,
the roots of this equation being “_j_:_gi"ibﬁ.

If 0 <20 and a4 4ba << 0, equation (59) has no real roots.

If, on the other hand, « < 0 and a? + 4bx >0, the two roots of equation (59)
are positive. Therefore, equation (58) has two positive roots which corre -
spond to two limit cycles created from the closed paths of the original
linear system. It is readily seen that the conditions of Theorem 76 {§33.2)
are satisfied and, by this theorem, the system has no other closed paths in
a sufficiently small neighborhood of 0. If p > 0, the equilibrium state
0 (0, 0) is a stable focus for & << 0. Therefore, one of the limit cycles
created (namely, the inner cycle) is unstable, and the outer cycle is stable.

A b

d

4

FIGURE 206
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Between the (negative) a for a® - 4bo < 0 and those for which a? + 4ba > 0,

we have one value o = ¢* = — %< 0 for which a? + 4ba = 0. This value

corresponds to a single positive root p} of equation (37). Calculations show
that ¥, (27; p3,0)= 0; therefore the theory of §33.2 is inapplicable to this case
(see remark to Theorem 75, §33.2). It is readily seen, however, that the
closed path of system (56) corresponding to this gf is a double limit cycle
which separates intotwolimitcycles — a stable and an unstable one — as «
increases.

As a is further increased and passes through zero, the unstable limit
cycle contracts to the equilibrium state, which becomes stable for > 0.

Figure 206, a—d, shows the path configurations of system (56) corre-
sponding to the cases a < a*, a =a*, a* <a <0, a>»0. Itis assumed that
p > 0 is sufficiently small.

Remark. Itis readily seen that the problem of the creation of a limit
cycle from an equilibritm state of the type of a center cannot be solved
with the aid of the sufficient conditions of §33.2. Indeed, these conditions
only prove the existence of an equilibrium state p = 0 for system (B,).

Investigation of the nonzero roots of the equation ¥ (2xn; p, p) = 0, which
go to zero for p — 0, may naturally shed some light on the problem of
creation of a limit cycle from a center-type equilibrium state of system
(Bo). Note that the solution of the equation ¢ (2xr; p, p) = 0 corresponding
to this limit cycle should be sought as an expansion in fractional, and not
integral, powers of p, and, inthe simplestcase, asanexpansioninpowers of

VE.
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1. Theorems of the continuous dependence of the
solutions of a system of differential equations on the
right-hand sides and of the differentiability of solutions

Let

%:Ph(t, Ty L3y - oy Tn)s k=1,2, ..., n, (A)

be a system of differential equations defined in region G of the (n 4+ 1)-
dimensional space. Let Piybe continuous functions which have in G con-
tinuous partial derivatives of first order with respect to the variables
Ty, L2y o v oy Tn.

Together with (A), we consider a modified system

d 5 -~
”a‘ti‘:Pk(tv Lyy oeny xn)=Ph(tu Lyy onvy xn)'f‘Pk{tu Tyy T2y + v vy XTn), (A)

where P, and hence the "increments' p, are functions satisfying the same
conditions as the function Py (k =1, 2, ..., n). If we are dealing with a
system dependent on a parameter,

%:Pk (2, &4, Ty + v oy Ty B, (A)

the transition from the value py of the parameter to another value p corre-

sponds to a transformation from system (A,,) to a modified system (A,),
and the increments are the functions

pk=Ph(ts Zyy L2y » o5 Tny P')_"Pk (ty Lyy Loy » vy Tpy P‘O)'
The situation is completely analogous for a system dependent on several

parameters.

Theorem 1 (theorem of the continuous dependence of solutions on the
rvight-hand sides of the equations). Let

zh=q>h(t;t0911011207 '--v$n0)=q’k(t>t k=17 2'1 ceesy Ry (1)
be the solution of system (A) satisfying the initial conditions
Px (Zo; Loy 10 T20s - - + 1 Tno) = Thy

which is defined for all t from the interval (x, T), where 1<ty <T.
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Jurther
x = x (& Lo, Troy Z20, »-‘-xn0)=ak(t) (3)

be the solution of system (A) satisfying the same initial conditions. Then,
for any vy and t, <<t <to<<1,<T, and any ¢>0, there exists 6> 0satisfying
the following condition: if |pu(t; 2y &2 ..., 20)|<<®, k=1, 2, ..., n, solution (3)
is defined for all t, v, <t <<, and for every t from this interval we have

l‘fh (85 to, Tyor Taoy ++ -+ Tno) — Fr (45 Lor Tyov Tagw -+ +» Tno) | << €. (4)

Proof. We will only consider ¢€ [4, 1:]. The same reasoning can be
applied to t € [1y, ). Choose some fixed e > 0.

Let G, be a closed bounded region completely contained in G, which is
convex in all the coordinates z; (i = 1.2, . .., n) and contains the part of the
integral curve (1) corresponding to t € It;, T2l Let po be the distance of
this part of the integral curve (1) to the boundary of G, {evidently, p, > 0).
Since G, is a bounded closed region, the following inequalities are satisfied
at every point M (¢ zy, 22, . . .. 2,) of this region:

| Phe, (&5 Ty v ..\ 22) | < B, (5)

where B > (0 is a constant.
Let

r =6h (&5 fov Tyoy Tagy -+ -+ Tno) — @& (¢ Loy Tyos T20s + v -+ Tno)e (6)
The functions &, are defined for all ¢ for which the functions ¢, and ¢, are

a priori defined. They are therefore a priori defined for all ¢ sufficiently
close to . For t = t,, £, = 0. Clearly,

dt - ~ -~ —~
= Pt @1 G2 ooy @) — Pa (@1, @20 ol §a) =
=P(t; ¢80 @25 o @ —8a)—

— Pl @1y G s Ba) T PR (E Fry P oy G) =
n
=% Prx, (5 Mats Te oo Tan) Et - DA (55 @, G - oy Gn)- (')
i=i
where the point (4 M4, Mz -.., Nss) lies on the segment joining the points
¢ P10 Gov o0 @n) and (5 @, Fav - Fa)e
Consider an auxiliary differential equation
d +
7:":”3"'1*6”' (8)
where v=v(¢) is a function of ¢, and 8 >0 is a constant. The solution of this
equation satisfying the condition v (4) =0 is

v = —g—[ean-m—u. (9)

® Convextty in all the coordinates z; indicates that G, together with any pair of its points M (¢, 2y T2, + + +, Tp)
and M’ (¢, 2}, . . ., #n), also contains the entire segment MM’,
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Evidently, for allt, {,<<t< T,

0 <o (1) < o5 [enBlsa=io 1) (10)
and v’ (£) > 0.

Let e*=min {e, -‘;l . For 8>0 we choose any number satisfying the relation

L e —1) <o, (11)

Then, by (10), for all ¢, to<<t<T,,
v(t) << e*. (12)
We will now show that the 8 chosen in this way satisfies the proposition of
the theorem.
Let
|Pk(t§xnx2’---vxn)|<6- (13)
Suppose that the point (¢, N o - es En) and therefore the entire segment

joining it with the point (f, @, @a. ..., @) are contained in G,. By (7), (5),
and (13) we then have (since (¢, i, ..., ) is a point of the relevant segment)

d n
|5 | <B 3 181+s. (14)
da=i
This inequality is a priori satisfied for all ¢ sufficiently close to ¢.
For t=t, £ =0. Therefore, for ¢t sufficiently close to ¢, l‘%—t’i|<6, and hence
ats
-aTl<n6.
On the other hand, for all {€{t, T},

V' (t) =nBv-6n > nd.

It follows from the last inequalities that for all ¢ sufficiently close to
to (t > to),

%gtil<v'(t)

and thus

|§k(t)]=lggi(t)dt|<§v’(t)dt=v(t). (15)

Now suppose that the proposition of the theorem is not satisfied for the
given 8. Then, either solution (3) of (A) is defined only for t€[t, T*], where
T* <7, or it is defined for all t¢ [z, ¢;], but for some ¢ in this segment at
least one of the inequalities

e ()| <e, (16)
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and hence at least one of the inequalities

18 () | <<e* (17)

is broken.

In the former case, there exists ¢, t,<<t<T*<1,, for which the
corresponding point of the integral curve &z =79; () lies outside G, (this
follows from QT, Appendix, §8.1, Theorem A'). Then its distance
from the point (¢, q;(¢). ®2. ..., @a(#)) in G, should be greater than p,, i.e.,
VE@)P+... FE (1) >p,. This is possible, however, only if for some &,

lgk(t)|>-';—°->a*. Thus, :n either case, for some t* t,<<t*<T1,, and at least
for one k, 1<k<n, we have the inequality {& (¢*)|>¢* and hence, by (12),
B () >0 (). (18)

On the other hand, by (15), for all ¢ sufficiently close to & and for all
i=1, 2, ..., n, we have

1B <w(t). (19)

It follows from (18) and (19) that the interval of ¢ values where the two
solutions ¢; (¢) and ¢, (¢) are defined contains a point ¢, t,<<f; <7, which
satisfies the following conditions:

(a) for alli to<i<t,, and for alli=1, 2, ..., n,

18 ()| <v(); (20)
(b} foralli=1%, 2, ..., n,
[B: )| <w(ty), (21)
and at least for one of these i, i=#% say,
[&x (t) | =v (ts). (22)
From (a) and (b) and inequality (12}, it follows that for €[z, #]

VEO TR0+ @< Vrem< )/ n (L) <p,

i__.e., the part of the integral curve a:,=q~:, (t) corresponding to t€[i, t] lies in
G,. Then, by (7) and (8) and in virtue of the assumption|p|<8, k=1, 2, ..., n,
we have

33 1 In n
1= {aoa| < {itole<{[8311+8]a<
te ta g.l to i=1 N
< | 1Bno (1) +nb) dt = X v (t)dt=v (1),
129 1o
i.e., |[Ex(t)|<<v(t), which contradicts (22). This contradiction proves the
theorem.
Theorem 2 (theorem of the continuous dependence of solutions on the

right-hand sides and initial values). Lel

Ty =@y (tv tOy Ty0r L0y o+ »2 .’tno) =Qx (t) (CP)
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be the solution of system (A) corresponding to the initial values ¢,
Zigy Tz00 ..., Tno, Which is defined in the interval (v, T), and

Ty =?l3k (¢ ?m ;1o~ sy ;no) = 5:. (?) (6)

the solution of system (A) corresponding to the initial values o Zoy Tror - +-» Fnoe
Then, for any Tyand 1, 1<t <<ty<t,<<T, and any e>0, there exist $=>0 and
N> 0 which satisfy the following conditions: if

| P& (8, 240 T2y -« -5 2R) | << B, k=1,2, .. .

To—tol<<n u |Zn—zpl<n,  i=1,2, ..., m
the solution (9)is defined fort, ww<it <v,, and for every t from this interval
e —e( <z (k=1,2,...,n).

Proof of Theorem 2 is readily obtained if we change over in (A) to the
variables T and z, defined by the equalities

t=T—"to+ 1o, Zr==2Zir—Tno+ Tno,

and apply Theorem 1, using the compactness of the segment [y, 2] and the
fact that the solution (¢) is defined on a segment [t;—o0, T2+ 0], where ¢ is some
positive number.

Corollary 1. Let @ be a compact set in the (rn+2)-dimensional space
t, fo, Tios T20s - --» Tag, With the functions @ (¢, fo; Zi0s Zag, - - -» Tne) defined every-
where in this space. For every ¢>0, there exist § >0 and n>0 satisfying
the following conditions: if |p,(; oy, sy -+ -y ) | <[ —27[<N [bo—Do| <,
|2ro— Tro| <<m and the point (¢, to; zy, ..., 2a) €Q, the functions ¢, are defined at
the point (", g} 10s - - -» Zno) and

‘Ek (t"7 70; ;iov sy ;no)—qjk (t'- to; Zygy - - L] xn0)1<8
(k=1, 2, ..., n).

Corollary 1 follows from the previous theorem. It is proved again by
reductio ad absurdum, and the compactness of Q is used.
Corollary 2. For a system

dxy
2 =Pu(t; 2, 23 ..., Zny 1),

whose right-hand sides are functions of class 1 in ¢, 2y, %, ..., 2», and
continuous functions of the parameter p, the solutions

T=Qx (L, Lo} Tigr « - +y Tnos W)
are continuous functions in all the variables for all those values of the

variables for which they are defined.
Corollary 2 follows directly from Theorem 2.
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Now let the functions P, and P, entering the right-hand sides of (A) and
(A) be functions of class r>» 1. In this case, the solutions ¢, (¢, #; Zy0, T200 - . .»

. ¥n0) , for all the values of the variables for which they are defined, have
continuous (in all the veriables) derivatives: (a) to order r + 1 with respect
to £; (b) to order r with respect to all the variables z,; (c) to order r+ 1
with respect to all the variables, provided it contains at least one differentia-
tion with respect to t (see QT, Appendix, §8.3, Theorem B''). An analogous
proposition applies to @,.

Theovem 3. Let the solution (¢) of system (A) be defined for all
te (g, ), and let o<y < t,<t.<<T. Then, for everye >0, theve exist
8 > 0 and n > 0 satisfying thefollou mgcondztzons if (A)is 6-close to rank r
to\Ayand if 1l —tl <1, 12w —=xz0l<<n (i =1, 2, ..., n) the solution () is
defined for all ¢, v, <t<r., and for these values of the variables

ATERAE T Taos vy Tno) _ ETQ UL toy Tapy oy o) | g
T Lo e i G300 5ot !
ottut Moz iy ... ez dtt 6t 6xll, . axn,, (23)
ivioti+ ... —ipa=mKr+1, 4+t+...+i<Lr

Proof. The partial derivatives of the functions q, satisfy the following
system of differential equations

d
S =Py, G0 Ga -, )
d 7 ogx 0Py 9%
T( dty ) Z TGz aty
1=t (24)
A dgs _ 0 aPy %)
dt oz ;C-' Gx; dr;y
with the initial conditions
§r (Lo. Lo Zyos Loy » - vy Tno) = Tpps
T i
e z=ro=6"’ (25)

(see QT, Appendix, $8.3). The situation is anaiogous with respect to the
partial derivatives of the functions @,. The validity of Theorem 3 directly
follows from Theorem 2, when the latter is applied to system (24) with
initial conditions {25).

Consider the case when the right-hand sides of the system are functions
of some parameter g, i.e., systems of the form

d
:" = Py(t, Tyy T2y ooy Tny B) (k=1,2,...,n). (Au)

The functions P, are defined for allp, y, < p << pz, everywhere in some

region G of the (n + 1)-dimsnsional space ¢, «, 2, ..., 1,. These functions
are assumed to be continuous in all their arguments and to have continuous
partial derivatives with respect to ;. 22, . .., 7, and p to order r inclusive.
Let
xk"‘q'h“v £0v T10s + -+ Tnoy P’)v k:1, 2, caey T, (26)

be a solution of (Au).
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By Corollary 2 of Theorem 2, ¢ are continuous functions in all their
arguments.

Theorem 4. If the functions P, (t, x4, . . ., Za, 1) have coniinuous
partial derivatives to ovder r inclusive inthe variables z;, z,. . . ., x,, 1, the
Junctions ¢ (t, to, T, - . ., Tno, k) RAVeE continuous partial derivatives to order
r inclusive for all those t for which they ave defined, and these pariial
derivatives satisfy the differential equations

d
‘Pk ::Ph(lv P1s P2y ooy Py P')v

"Zaph“ Pis « oo Prs 1) 3'~Pz R L8 3Ph

d
dat az;

=1

d [ 9%y oPy 95 2Py aq; 095 a2Py,

T( 6:;06}1) 2 “bx; Bz 0p + E dx;0%; Op Oxg +2 3x; 5 az; ’
J J 14 joR 0

with the initial conditions
P (fm 20, Zios » -+ Tnoy p’)zxk()v

Jon | 0, J| _gh

W =ty ~ dxyg lz:r,

The proof of Theorem 4 will be found in [17/.

2. A proposition regarding functions of many variables

Let f(x, y) be a function of class N>1in a region containing the point {0,0).
Theovem 5. For every k, 1<k<N, the function f(x, y) may be
represented in a sufficiently small neighborhood of the point (0, 0) in the form

1@ ¥)=Po(z, P+Pi(z, Y+ ... +Palx, y)+P*(z, ), (1)

where P;, i=0, 1, ..., k, are homogeneous polynomials of degree i,

k
Pr(z, y)= Y 24P (z, ), (2)
a=0
and Pj(z, y) is a continuous function which vanishes at x=y=0,
Proof. We will use the Maclaurin formula for functions of a single
variable with the residual term in integral form:

(O k-1 (O
oW =0©@+F ...+ Tl amey L ,),Qw @) (¢ —ds

{see /11/, Vol.2, Sec.306).
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Applying this formula to the function ¢ (¢) = f(¢z, ty) and taking ¢t=1, we find

h—1
Fa =100+ 4 (Z2+2v) 10 0+

=1

1
tat | (o) ren ma—apa 3)

The last term in this equality is designated Q*(z, y). Clearly,

& 1
i aft (zz, zy) k= e
Q*(z, ¥) =g—p a% (C‘i e (1—2) ‘dz)x“ e, (4)

The coefficient before z*-2y* in the last expression is a continuous function
of z and y. We designate it g, (z, ). Let

Pi(x, ¥) =ga(x, ) —8a (0, 0).
Then
g2 (2 V) =£a (0, 0) + Pi(z, y) ()
and
P30, 0)=0. (6)
Inserting {(4) and (5) in (3), we obtain equation (1), where

Po(-"-'v y)=f(0~ O)v
Py (z, y)=—‘17(-;z—z+—:y—y)lf(0, 0), I=1, 2 ..., k—1,

&
Pp(z, y) = 3 £a(0, 0)z*-2y>
a=0
and

Pz, )= [galz: ¥)—ga (0, O)) 2F—y=,

=0

4=

it

The theorem is proved. A similar proposition clearly applies to functions
of n variables.

3. The lemma about the normals of a simple smooth
closed curve

Let L, be a simple closed curve defined by the equations

z=¢(s), y=%(s)
where 9 and ¢+ are periodic functions of period v. We assume that ¢ and ¢
are functions of the second class, and that ¢’ (s) and ¢’ (s) do not vanish
simultaneously for any s.
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Through each point M (@ (s), ¥ (s)) of the path L, we draw a normal to the
path at that point and lay off segments of the length 8V ¢ (5)* 4 ¥’ (s)* on either
side of the point M,

Lemma 1. If 8§ >0 is sufficiently small, no two segmenits of normals
drawn through different points of the curve L, intevsect.

Proof. Since V¢ (s + ¢ (s)* is bounded from above, it suffices to prove
the lemma under the assumption that segments of length 6 are laid
off all the normals. Moreover, it suffices to consider the case
when these segments are laid off on one side of the curve L, (either
all inside the curve or all outside the curve). We assume that both
these conditions are satisfied. Let the proposition of the lemma be false.
Then there exists a sequence of numbers §, -+ 0 (8, > 0) and a sequence of
pairs of points P,, @, of the curve L; such that the segments of normals of
length 8, drawn through the points P, and @, intersect. Since the curve L, is
compact, we may take P, -~ P and Q, — @, where P and Q are points of L,.

Let us first consider the case when P and @ are two different points.

Let M, be the intersection point of the normal segments through the points
P, and Q.. Then p(P,, M,)<6, p(Qn Ma)<6,, and by the triangle inequality

P (P, Q) <p(P, Pa)-+p(Pn, M)+ (Mn, Qn)+p(Qn, Q)<
<p (P, Ppy+ 26,40 (Cns @)

(Figure 207). Since for a sufficiently large n, the right-hand side of the
inequality is as small as desired, whereas the left-hand side is constant,
this inequality cannot be satisfied. P and Q thus may not be two different
points, and we have to consider only the case when they coincide.

FIGURE 207 FIGURE 208

We change over to a new rectangular coordinate system, placing the
origin O at the point P {(which coincides with @), and directing the abscissa
axis along the tangent to L, at 0 (Figure 208). We retain the same notation
as before, i.e., the new coordinates are designated z and y and the
parametric equations of the curve L, are still x = @ (s), ¥y = P (s). Clearly,
¢ and ¢ are functions of the second class and ¢’ (s)* + ¢’ (s)* 5= 0 for any s.

Let the point O of curve L, correspond to the value s, of the parameter s.
Near the point O, the equation of the curve Lyis y = f (). Then

r@=¥8. r@=0, ¥@E)=0 ¢ (s)=0.
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Therefore, near the point z = 0, the function f () has a continuous second
derivative f” (x).

By assumption, the normal segments of length §, > 0 drawn through the
points P, and @, intersect for every n (here 8§, -0, P, -0, Q, - 0). Let
M, (X,,Y,) be an intersection point, and let 2, (a,,b,) and @, (a,,5,). Then
an==a,, and for n—s 0, we have a,— 0, an—0, b, — 0, b, — 0.

The equations of the normals to the curve L, at the points P, and ¢, are
respectively written in the form

T—an=— " (@n) (Y—bn)y, T—@n=—f (@) (y— Bp).

Inserting for £ and y in these equations the coordinates X, and Y, of the
point M, and subtracting term by term, we obtain after simple manipulations

Yolf (a—n)_,f’ (a.)] = En_an -+ (Bn —b) f (En) +ba [f (Zn) —f (ar.)]-' (1 )
From the Lagrange formula
F @)= F (@) = F* (n) (@n —an) (2)

and
Fn’—bn=f(;n)‘f(an):f'(nn)(;n—an)' (3)

where &, and n, lie between a, and ¢, and therefore go to zero for n —» co.
Inserting (2) and (3) in (i) and dividing through by (a,—a,), we obtain

Yuf" (Ba) =1+ " (0a) " (@n) + bnf" (&)
and taking the limit
Lim Yo/ (3s) = 1.

On the other hand,

V0 <V (Yo — 2]~ (Xn— an)E < 8y
Since b, — 0 and §, — 0, we have Y, — 0. Therefore
11’!3 Yaf"(8n) =0,

which contradicts (4) This proves the lemma.

4. Proof of the differentiability of the function R{p. )
with respect to p

We will first prove an auxiliary proposition. Let the function f(z, y) be
defined in the circle 22 ~y*< R? where it is continuously differentiable with
respect to r and y to soms2 order N> 1, and (0, 0)=0.

Consider the function j*(p, 8) defined as follows:

(o 9)—-——;—[(pc056, psin0) for p+£0,
(0, 8) =75 (0, 0)cos 847, (0, 0)sin 6.

(1)
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Since by assumption f(z, y) is a function of class N, then for p=40 and for
all 8, f*(p, 9) has continuous partial derivatives with respect to ¢ to order N.
The next lemma establishes the existence and the continuity of the
derivatives of the function f*(p, 0) with respect to p for p=0.

Lemma 2. If f(=z, y)is a function of class N>1 in the circle 2 + yP*< R?,
then

(@) for every®, f* (p, 0)is continuously diffeventiable in p to order N — 1;

N
(b} for p—0, the function p -u;f’n;—e—) goes to zero uniformly in 6.

Proof. If f(z, y)is a homogeneous polynomial of degree n»1, the lemma
can be directly verified (it suffices to check the proposition for a single
term of the form z*™*). It is moreover clear that if the lemma is true for
two functions, it is also true for their sum. It is therefore sufficient to
prove the lemma for the function

N

R
B u)=f@ =3 (3 o, .0 0ateyr).
q=0

A=1

All the derivative of this function to order N inclusive vanish at the point
(0,0). Thus, in our proof of the lemma, we may assume without loss of
generality that all the derivatives of the function f (z, y) to order N inclusive
vanish at the point (o, 0). If this is so, we have from Taylor's formula

N
1 v — = N
F@, ) =7 2 CRfN-p,0 (@ 9) 2" 79", (2)
=0

where z and y are numbers lying between 0 and z and 0 and y, respectively,
which in general depend on the point (x, ). Inserting for z and y the polar
coordinates pcos® and psin@, we find f(x, y) =p¥F (z, y), where

N
F, n)=—1\1,—,2 CRfwv—pyo (B, 1) cosN—PBsin® 8. (3)

p=0

Similarly, using the Taylor series of the functionffq)urvr, 1<ggN—-1, 0Kr<y,
under the same assumption and remembering that the partial derivatives

of the function f(z, y) to order N inclusive vanish at {0, 0), we obtain

N—g
1 = - —g—
f(:q)""'ur (z, y)=—(N-——-_q_)!— 2 Ctpv—qf;hl;!)—r-—pyfi-p (zqr, yqr) -'ZN e pyp
p=0

f(:q)—',," (@ ¥)= PV~ F g (Tgr» Yar)s

N—g
For(E, )= Tlv_i_q)_f M C?;_qj%’_,_pun,p (&, ) cosN-2-P 9 sin? 0, (5)
p=0

and z, and y,, lie between 0 and z and 0 and y, respectively. F(§ 1) and
F.. (%, v) are evidently continuous functions of §, n which vanish at {=n=0.
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Differentiating the function
f(z, y)=F(pcosH, psin0)
g times with respect tc p (1<g<.¥—1), we obtain
54 e Qs
d—pq—j(z, y):é‘l0 CefShr,r (z, y)cos?" Bsin”8. (6)

Inserting for f.(:i)—rvr (¢, y) its expression from (4) and dividing through by
p¥-9, we obtain

q

4 off (x, ¥) - - qe o3
P —fd—w—= Z) CoFgr (Tgr. Yqr) 03T Bsin™ 8.
r—

If p— 0, we have z— 0. y— 0, ;qr —» 0, ;'zr — 0, and therefore F, (;q,, qu) — 0.
The expression

1 @y _ N (28
o et pe=N 301 (7)

(1 €9V —1) thus also goes to zero forp— 0 (um’formly in 8). It further
follows from (2) that the expression

1
also goes to zero for p-— 0, uniformly in 6.
Let us now prove proposition (a) of the lemma. We first take ps=0and
apply the Leibnitz rule to obtain expressions for derivatives of order & of
the function

*(p, 6)=%/(pcoso, psin @) (see (1)), wherei<ikg<N—1.

The Leibnitz rule gives

ak(_i_(ocos(),psin()) ) N
. 0) _ o ) _Segodtten
" apk o FTEpT T aph
k
- &
=(X ci(—1» q(k—q)!pq-"—a‘%)p"-"—’- (9)

a=0

Since (8) and (9) for p— 0 go to zero uniformly in 6, we clearly have for
p—0,

%f* (p, 0)
0 (10)
uniformly in 8. Moreover, by (1) and (2), for p—0,
(o, 8)—0 (11)

uniformly in 0.
By (10) and (11), proposition (a) of the lemma will be proved if we show
that f* (0, ) = 0 and that the function f* (p, 9) for p =0 (i.e., at any point (0, )]
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is differentiable with respect to p to order N — 1 and the corresponding
derivatives vanish. Clearly,

(0, 8)=0

according to the original definition of the function f* (p, 6) (since f; and f, by
assumption vanish at the point (0, 8)). Taking ¥ > 1, we will prove the
existence of the first partial derivative with respect to p of the function

* (o, 8) at the point (0,0). Expression (9) is clearly inapplicable, since it
holds true for ps=0 only. We should thus compute the partial derivative
directly, as the limit of the expression

* (p, B)—7*(0, @ *(p, 0 s
P[00 _[6:0_IED _ov-i (pong(z, y). (12)

The factor in parentheses is (8), which for p —+ 0 goes to zero uniformly in 8.
The limit of {(12), i.e., the derivative of the function f* (p, 8) at the point (0, 8),
thus exists and is equal to zero. By (10), we thus conclude that the first
derivative with respect to p of the function f* (p, 8)is continuous atp = 0.

Now suppose that we have established the existence and the continuity
of the partial derivatives with respect to p to order pg N — 2 for the
function f* (p, 8) at the point (0, 6). Then, by (10), all these derivatives {(to
order p inclusive) vanish.

Letus find the (» 4 1)-th derivative with respect to p of the function f (p, 8)
at the point (0, 8) by the direct technique, i.e., as the limit of the expression

oPf* (p, 8)  a7f* (0, 6) ap( 1 )
-1

JpP FpP
P = Bps ° (1 3 )

Using equality (8) (for k=p<N—2) and the properties of {7) and (8), we can

directly show that the last expression goes to zero for p— 0. This indicates

7% (p, 8)
app+

that the derivative at the point (0, 8) exists and is equal to zero.

Then by (10), this derivative is continuous at the point (0, 8). We have thus
proved proposition (a) of the lemma.

Let us now prove proposition (b). For p5=0, flz y)=F(pcosH, psinB) =
=f*(p, 0)p. Using the Leibnitz rule,

Ny il A b
oV =P TN (14)

N
For p — 0, the left-hand side :—pl—f goes to zero uniformly in 6 (this follows

from (6), which is also valid for ¢ = N, and from our assumption concerning
the function f (z, y)). The second term on the right in (14) differs from (10)
by a constant factor only, and it therefore also goes to zero uniformly in 6
N
for p - 0. But then the first term on the rightp ::T’/T‘ necessarily goes to zero
uniformly in 6. Q. E.D.
Let us now proceed with the main proposition of this subsection. Consider
the system
dx

O —ar— Pyt 9@ ¥ AL —Pr-toy+v(z v), (15)
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where B0, and the functions ¢ and ¢ together with their first derivatives
vanish at the point {0, C). Let

F(p, 8)=ap-L@(pcosB, psin0)cosO +Pp(pcosO, psinb)sin 6, (16)

cos 6 — sin 6

(D(p, e)=¢(pcosep,psine) qu(pcosf:).psinb)

(17)
for p#0 and
(0, 8) =0,

. F@.9
R(p, 9)——3:@‘(‘,_—9)- (18)

Lemma 3. If(15) is a system of class N> 1 and p*>0is sufficiently
small, the function R(p. 8) has continuous partial derivatives with respect
to p to order N inclusive at every point (p, 8) of the region — <8< = oo,
O<|pl<<p* (Lemma 3, §24).

Proof. The condition ¢(0, 8) =0 shows that for p=0 the functions

‘p(pmsi’)‘ esin®) ang ¢(pc°sg' 2389 i (17) are defined and are equal to zero.

It is thus clear that these functions are generated from the functions ¢(z, y)
and ¥ (z, y), respectively, like the functions f*(p, 8) from f(z, y) (see (1)).
Therefore, Lemma 2 is applicable to the functions

_(pcosg. p sin 0) and ¥ (p cos ?) p sin @)

and, using equations (13)—(18) and the inequality B + @ (p, 8) == 0 (which is
satisfied for every point (p, 6) of the relevant region for a sufficiently small
p*}, we conclude that the function R (p, 9) also has continuous partial
derivatives with respect to pto order ¥ — 1 inclusive at every point

(0. 0) (0< ] p | < p* for any 8)and to order N inclusive at every point where p == 0.
We thus only have to establish the existence of a continuous ¥ -th derivative with
respect to p at points where p = 0. We represent R (p. 0) as a product of two
functions

R(p, 8)=F(p,

1
Vsrom

t
and find < _# using the Leibnitz rule (this is permissible, since each of the

SN =
PYCES
factors has partial derivatives with respect to p to order N—1 inclusive at
every point (p, 6)). Simple manipulations show that

N R B0 F.o o
L T o) BEOF g1 (19)

where H(p, 8) is a polyncmial in the functions

GV —1 N—-2
oF ' 'F @, D i)

Yp T Gy T G

ap
Hp, )
B+ @)Y
point (p, 8) (0<|p|<<p* for any 8). To prove the lemma, we thus have to

The expression is clearly continuously differentiable in p at every
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establish existence and continuity of the derivative with respect to p of the
expression

Fp,8) " 'o(p, 8)
B+ apN—1 (20)

at the point (0, 0). We will first prove the existence of this derivative for
p=0. For p=0, F(p, 8)=0, and expression (20) thus vanishes. Therefore,

F(p, 8) a”-’o(p,m . [ F(p, 8) 1 aN—io(p. 0)
{ap B+ gh- ]}p— },L‘f,‘[ (E+<p)- N ]

“},ijf,‘ {F(?; . (B-i-io)’ [cose ail:"'—-ii (%)_sme apN—1 ]} (21)

A X b h . . . Nt gy N e
ccording to the above, the partial derivatives P, (—‘-,—) and T (T) go

to definite limits for p—> 0, which are respectively equal to the values of
these derivatives at the point (0, 8). Furthermore, lim®(p, 8)=0, and

lim .8 -y
p—~+0 P
is equal to

=a., Hence it follows that the limit on the right in (21) exists and

N—1
—ﬁ—,—llus- 9 apm_(ﬂ' Ll »
p+

{%%[ Fp, 9 &¥- ‘o<p 0)

R R 1} o= g lim

p-+0

N~ ‘m(p 8)

(22)

We have thus established the existence of the partial derivative of (20) with
respect to p for p=0.

We will now prove the continuity of this derivative at the point (0, 8). To
this end, let us find

lim 2 [ £ & &= ‘®<p, ) ]

S Lo (23)

For ps£0, we have

o [ Fip.8) N o, 0) ]_
o LB+ T i1 =

Fp. 8) V-1 2F (p, 9)?,1
=@ror "1 (+Op

N (%
F (p, 9) [ ( [ )
T prop L8 0

The last term can be written in the form

L Ee9 [PaNa(pig) cos8—p Lag’v i

B+0p o
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and the expression in

F(p 6 1
I3 BroE

brackets goes to zero by proposition (b) of Lemma 2. Moreover,

lm‘if'(()» 6):0, and

il

For p— 0, we have —a,

R . , . F(p, 9)
liz. Fj (p, 6) - , 8)=1lim 28 g
lin. Fo (p, 8)- Fp (0, 8)=lim —2— =a

By (24) we then have

a F(p.® oY i@, 8) ] -2 F )
p?

Hm — - -
o0 90 L (B+@)2 gp¥-1 o0 0p¥T?t

Relations (22) and (25) show that the partial derivative with respect to p of

exists and is con-

N—1
the expression (20) and therefore of the function ':p‘v_?

tinuous at the point (0, €). This completes the proof of the lemma.,

5. A remark concerning the definition of a
structurally stable dynamic system

In our definition of a structurally stable dynamic system in W
(Definition 10, §6.1), we had to introduce a larger region H enclosing the
relevant region W. We will now explain why this was unavoidable. Consider
a dynamic system (A) defined in some region &, which has an unstable
triple limit cycle L, in this region (Definition 28, §26.2). Let W be the
closed region bounded by the cycle L,, and suppose that " contains a
structurally stable focus O and that all the paths of system (A) in W, except
the focus O and the cycle L,, are spirals which go to 0 for ¢+ + o and to
Ly for ¢t - — oo {an example of such a system is provided by system (B,) with
k=3 in Example 10, §27.2, see Figure 121). There exist arbitrarily small
modifications of system (A) which cause the cycle L, to decompose into three
cycles (Theorem 42, §27.1), and system (A) therefore should be regarded
as structurally unstable in W. On the other hand, for any e > 0, there exists
§ > 0 such that if (A) is §-close to (A) to rank 3, we have

Il

(W, A =(Ww. 4), (1)
where W is some region. Thispropositionfollows from the fact that any (&)
sufficiently close to (A) has one, two, or three closed paths near L,
(Theorems 42 and 43, §27). The innermost of these paths is a limit cycle
which is unstable from -he inside, and the region bounded by this cycle may
be used as W. Relation (1) shows that if we were to consider W itself, rather
than the larger region &, in Definition 10, §6.1, system (A) with a triple
limit cycle would come out as a structurally unstable system.
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SUBJECT INDEX

Attraction elements (sirks) 141

Bifurcation point 205
value of the parameter 208
Bifurcations of a dynamic system
202, 205
in the neighboraood of a
multiple limit cycle 282
in the neighborhood of a
multiple focus 259
in the neighborhood of a
multiple focus of
multiplicity 1 261
of systems of first degree of
structural instability 375
Branching point of an analytical
function 389

Canonical form of dynamic system
(near an equilibrium state) 68— 70
Canonical neighborhood
limit cycle 142
node or focus 142
saddle point 143
Canonical neighborhoods, regular
system 144
Cells of dynamic systems 141,175
of one type 177
of structurally stable systems
doubly connected 177
simply connected 177,179
Characteristic index of a closed
path 118
¢- Closeness of dynamic systems
23,24
of functions to rank r 2
of regions 27
of regular transformation to
identity transformation 27, 28
to rank r 24
Conjugate elementary arcs 146

Conservative dynamic system 404,
408 ]
Continuation of boundary arc 140
of corner arc 140
Covering of a sphere
closed 52-—54
open 52
Creation of a closed path from a
multiple limit cycle 127
of a limit cycle from condensation
of paths 217
from infinity 217
from a loop of a saddle-node
separatrix 332, 324, 326
from a loop of a saddle-point
separatrix 309, 311, 319
from a multiple focus 254
limit cycle 277
Curvilinear coordinates in the
neighborhood of a closed path 110
Cycle without contact 145
Cyclic systems of solutions 389

Decomposition of a multiple equili-
brium state into structurally stable
equilibrium states 218

Degree of structural instability of
dynamic systems 206, 207

Density of integral invariant 402

Elementary a- and w-arcs 145
Equilibrium state, multiple 65
decomposition into
structurally stable
equilibrium states 218
of multiplicity r 65
simple 66
e-Extension of a region 151

Focal value, first 92
calculation 244

481




Focal values 243, 244
Hamiltonian dynamic system 405

e -Identity of partitions into paths
in a plane region 31
on a sphere 58

Integral invariant 402
density 402

Limit cycle (also see Creation of a
limit cycle)
multiple 103
of multiplicity % 108
semistable 107
simple 103,109
stable 107
unstable 107
Loop, see Separatrix loop
Lyapunov value 244

Method of small parameter
(Poincar€ method) 409
Metric in the space of dynamic
systems in a plane region 51— 52
on a sphere 52—54
Multiple equilibrium state, decom-
position into structurally stable
states 218
Multiplicity of a common point of
two curves 15
of a limit cycle 108,272
of a multiple focus 243
of an equilibrium state 65
of a root of a function 7,10
relative to a given class of
functions 13,14

Newton's polygon 387,392
Normal boundary of a region 139

Poincaré method 401

Region of stability in the large of a
sink 189
with normal boundary 139
Regular partition of a region 146

system of canonical neighbor-
hoods 144

Repulsion elements (sources) 141

Rotation of vector field of a dynamic
system 29

Saddle-to-saddle separatrix 97
Semistable limit cycle 107
Separatrix loop of a saddle-node,
creation of a limit cycle 322,
324, 326
of a saddle point, creation
of a limit cycle 309, 311, 319
stable 301,304
saddle-to-saddle 97
Simple intersection point of two
curves 15
root of a function 8
Singular elements 141
paths. semipaths, arcs of paths
140, 141
Sinks 141
Sources 141
Stable limit cycle 107
separatrix loop 301,304
Structural instability, degree of
206, 207
Structurally stable dynamic system in
a plane region 55
on a sphere 58
intersection point of two
curves 15
path 62
root of a function 8
Structural stability of dynamic systems
relative to a given space 59
Structurally unstable path 62
closed path 133
separatrix loop 301, 304
Succession function on an arc without
contact near a closed path 104, 378
on a normal to a closed path
116
on 4 ray from a focus 91— 92,
240
Symmetry of phase portrait 190
Systems close to conservative 408, 409
to Hamiltonian 408, 418
of first degree of structural
instability 206, 331

g~Translation of a set 31

Unstable limit cycle 107
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