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Fourier transform f̂(k) =
1

2π

∫ ∞
−∞

f(x) e−ikx dx

Fourier integral f(x) =

∫ ∞
−∞

f̂(k) eikx dk.

Convolution (f ? g)(x) =

∫ ∞
−∞

f(t)g(x− t) dt.

1. (i) Show that an analytic function is harmonic.

(ii) The Lagrangian

L =
ml2

2

(
θ̇2 + sin2 θ φ̇2

)
+

Iφ̇2

2
+mgl cos θ,

describes the motion of a simple pendulum of length l mounted on a freely rotating
turntable with moment of inertia I. Here θ and φ are generalised coordinates and
g, I, l and m are constants. Obtain the equations of motion. Are any of the
generalised coordinates cyclic?

(iii) Compute the contour integral ∮
C

dz

ez + e−z
,

where C is a circle of unit radius centred at z = i (take the orientation anti-
clockwise).

(iv) Use the identity

1

2π

∞∑
n=−∞

e−inx =
∞∑

m=−∞

δ(x− 2πm),

to derive Poisson’s summation formula
∞∑

n=−∞

f̂(n) =
∞∑

m=−∞

f(2πm).

A discussion of the convergence of the two infinite series is not required.

(v) The functions f and g are defined by f(x) = θ(x) and g(x) = xe−x
2
. Find

(f ∗ g)(x). Here θ is the Heaviside function defined by θ(x) = 1 for x > 0 and
θ(x) = 0 for x < 0.

(vi) The functions

a) tanh z b)
ez

ez + 2
c) cosh(z2 − 4)

are expanded as Taylor series about z = 0. In each case give the radius of
convergence.

(vii) Define what is meant by polar and axial vectors. What kind of vector is the cross
product of a polar and an axial vector? Briefly justify your answer.

(viii) Obtain a rational approximation to
√

11 by applying the Newton-Raphson method
to f(x) = x2 − 11 (start with the initial guess x0 = 3 and compute x1 and
x2).

[Total 40 marks]
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2. (i) The area of the surface of revolution obtained by rotating a curve y = y(x) > 0
for a ≤ x ≤ b about the x-axis is

A = 2π

∫ b

a

y(x)
√

1 + (y′(x))2 dx

Show that if A is stationary then

y2

1 + y′2
= constant.

(ii) The volume, V , enclosed by the surface of revolution considered in part (i) is given
by the integral

V = π

∫ b

a

(y(x))2 dx.

Assuming that y(a) = 0, what shape should the surface be so that V is stationary
for fixed A?

[Hint: As in part (i) find a relation between y′ and y. This relation includes
constants. Use y(a) = 0 to fix one of these constants and then solve to find y as
a function of x.]

[Total 30 marks]
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3. (i) Let f(z) = ln z. Show that f(z) = u(x, y)+iv(x, y) satisfies the Cauchy-Riemann
equations (except at z = 0 and any branch cut).

(ii) Show that

P

∫ ∞
−∞

dx

x2 − 1
= 0.

Is it true that

P

∫ ∞
−∞

dx

(x− a1)(x− a2)...(x− an)
= 0?

Here a1, a2, ..., an are distinct (ai 6= aj for i 6= j) real constants.

(iii) Compute the integral ∫ ∞
0

dx

1 + x5
.

Hint: integrate f(z) = 1/(z5 + 1) over the contour C in the diagram below:

-
C R

-

6

2
5
π

[Total 30 marks]
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4. (i) Using contour integration, or otherwise, show that the Fourier transform of

f(x) =
1

x+ ia
, (a real and positive)

is f̂(k) = −ie−kaθ(k).

(ii) Obtain in the form of a Fourier integral a particular solution to the complex ODE

ẍ(t) + γẋ(t) + Ω2x(t) =
1

t+ ia
,

where a, γ and Ω2 are positive constants. Find a particular solution to the real
ODE

ẍ(t) + γẋ(t) + Ω2x(t) =
t

t2 + a2
.

(iii) Find a solution, φ(x, t), to the diffusion equation

∂2φ

∂x2
= D

∂φ

∂t
, (D > 0)

subject to the initial condition φ(x, t = 0) = e−ax
2

where a is a positive constant

Hint: write φ(x, t) in the Fourier integral form

φ(x, t) =

∫ ∞
−∞

φ̂(k, t)eikxdk.

Find φ̂(k, t) and evaluate the Fourier integral explicitly.

The following standard integral may be quoted without proof∫ ∞
−∞

e−ax
2+bxdx =

√
π

a
exp

(
b2

4a

)
(a > 0, b ∈ C).

[Total 30 marks]
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5. (i) Prove the identity
εijpεklp = δikδjl − δilδjk.

and use the result to show that

A× (B×C) = (A ·C)B− (A ·B)C.

(ii) The Lorentz force law for a charged particle in a magnetic field B is

dp

dt
= qv ×B.

Show that this can be written in the form

ṗi = q(∂iAj − ∂jAi)ẋj,

where A is the vector potential defined through B = ∇×A.

(iii) Simpson’s rule is based on the approximation∫ b

a

f(x) dx ≈ b− a
6

[
f(a) + 4f

(
1
2
(a+ b)

)
+ f(b)

]
.

Show that this is exact for the quadratic f(x) = px2 + qx + r where p, q and r
are constants. Apply the approximation to the integral∫ 1

0

dx

1 + x2

and compare with the exact result.

[Total 30 marks]
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