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Uncoupled Dynamics Do Not Lead to Nash Equilibrium 

By SERGIU HART AND ANDREU MAS-COLELL* 

It is notoriously difficult to formulate sensi- 
ble adaptive dynamics that guarantee conver- 
gence to Nash equilibrium. In fact, short of 
variants of exhaustive search (deterministic or 
stochastic), there are no general results; of 
course, there are many important, interesting 
and well-studied particular cases. See the books 
of J6rgen W. Weibull (1995), Fernando Vega- 
Redondo (1996), Larry Samuelson (1997), 
Drew Fudenberg and David K. Levine (1998), 
Josef Hofbauer and Karl Sigmund (1998), H. 
Peyton Young (1998), and the discussion in 
Section IV below. 

Here we provide a simple answer to the ques- 
tion: Why is that so? Our answer is that the lack 
of a general result is an intrinsic consequence of 
the natural requirement that dynamics of play be 
"uncoupled" among the players, that is, the ad- 
justment of a player's strategy does not depend 
on the payoff functions (or utility functions) of 
the other players (it may depend on the other 
players' strategies, as well as on the payoff 
function of the player himself). This is a basic 
informational condition for dynamics of the 
"adaptive" or "behavioral" type. 

It is important to emphasize that, unlike the 
existing literature (see Section IV), we make no 
"rationality" assumptions: our dynamics are not 
best-reply dynamics, or better-reply, or payoff- 
improving, or monotonic, and so on. What we 
show is that the impossibility result is due only 
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to an "informational" requirement-that the dy- 
namics be uncoupled. 

I. The Model 

The setting is that of games in strategic (or 
normal) form. Such a game F is given by a finite 
set of players N, and, for each player i E N, a 
strategy set S' (not necessarily finite) and a 
payoff function' u1: HEN Sj -> R. 

We examine differential dynamical systems 
defined on a convex domain X, which will be 
either HieN Si or2 IieN A(S'), and are of the 
form 

)(t) = F(x(t); r), 

or x = F(x; F) for short. We also write this as 
xi = Fi(x; F) for all i, where x = (xi)iEN and3 
F = (Fi)iEN. 

From now on we keep N and (S1)ieN fixed, 
and identify a game F with its N-tuple of payoff 
functions (ui)ieN, and a family of games with a 
set 'U of such N-tuples; the dynamics are thus 

(1) xi = F'(x; (uJ)jEN) for all i E N. 

We consider families of games U where every 
game F E U has a single Nash equilibrium 
x(r). Such families are the most likely to allow 
for well-behaved dynamics. For example, the 
dynamic x = x(r) - x will guarantee conver- 
gence to the Nash equilibrium starting from any 

1 R denotes the real line. 
2 We write A(A) for the set of probability measures 

over A. 
3 For a well-studied example (see for instance Hofbauer 

and Sigmund, 1998), consider the class of "fictitious play"- 
like dynamics: the strategy q'(t) played by i at time t is 
some sort of "good reply" to the past play of the other 
players j, i.e., to the time average xJ(t) of qj(T) for T - t; then 
(after rescaling the time axis) x1 = q' - x- Gi(x; F) - x' 
Fi(x; F). 
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initial condition.4 Note, however, that in this dy- 
namic X depends on jx(F), which, in turn, depends 
on all the components of the game F, in particular 
on uJ for j 0 i. This motivates our next definition. 

We call a dynamical system F(x; F) (defined 
for r in a family of games U) uncoupled if, for 
every player i E N, the function F' does not 
depend on uJ for j ] i; i.e., 

(2) x' = F'(x; ui) for all i E N 

[compare with (1)]. Thus the change in player i's 
strategy can be a function of the current N-tuple of 
strategies x and i's payoff function u' only.5 In 
other words, if the payoff function of player i is 
identical in two games in the family, then at each 
x his strategy x' will change in the same way.6 

If, given a family U with the single-Nash- 
equilibrium property, the dynamical system al- 
ways converges to the unique Nash equilibrium 
of the game for any game r E u1-i.e., if 
F(x(F); F) = 0 and limt,,x(t) = x(F) for any 
solution x(t) (with any initial condition)-then 
we will call F a Nash-convergent dynamic for 
U. To facilitate the analysis, we always restrict 
ourselves to C1 functions F with the additional 
property that at the (unique) rest point x(F) the 
Jacobian matrix J of F( ; F) is hyperbolic and 
(asymptotically) stable-i.e., all eigenvalues of 
J have negative real parts. 

We will show that: 

There exist no uncoupled dynamics which 
guarantee Nash convergence. 

Indeed, in the next two sections we present two 
simple families of games (each game having a single 
Nash equilibrium), for which uncoupledness and 
Nash convergence are mutually incompatible. 

More precisely, in each of the two cases we 
exhibit a game Fo and show that:7 

4 The same applies to various generalized Newton meth- 
ods and fixed-point-convergent dynamics. 5 It may depend on the function u'(-), not just on the 
current payoffs u'(x). 

6 What the other players do (i.e., x-i) is much easier to 
observe than why they do it (i.e., their utility functions u-i). 

7 An E-neighborhood of a game Fr = (u)iEN consists of 
all games F = (u')i, satisfying lu'(s) - uo(s)I < e for all 
s E i,EN Si and all i E N. 

THEOREM 1: Let U be a family of games 
containing a neighborhood of the game Fo. 
Then every uncoupled dynamic for U is not 
Nash-convergent. 

Thus an arbitrarily small neighborhood of Fo 
is sufficient for the impossibility result (of 
course, nonexistence for a family U implies 
nonexistence for any larger family U' D U). 

II. An Example with a Continuum of Strategies 

Take N = {1, 2) and S1 = S2 = D, where 
D := {z = (z1, Z2) E R2 : \z11 ? 1} is the unit 
disk. Let ) : D -> D be a continuous function 
that satisfies: 

* )(z) = 2z for z in a neighborhood of 0; and 
* +(+(z)) : z for all z : 0. 

Such a function clearly exists; for instance, 
let us put )(z) = 2z for all lIzll - 13, define 4 
on the circle lizil = 1 to be a rotation by, say, 
r/4, and interpolate linearly on rays between 

|l zl = 1/3 and ||Izl = 1. 
Define the game Fo with payoff functions uo 

and u2 given by8 

uo(xi, xi) := -|' - (i)ll2 for all x, xi E D. 

Fo has a unique Nash equilibrium9 x = (0, 0). 
We embed Fo in the family Uo consisting of 

all games F (ul, u2) where, for each i = 1, 2, 
we have ui(xi, x) = -x - (xJ)ll2, with 

: D -> D a continuous function, such that the 
equation e((j(x')) = xi has a unique solution xi. 
Then x = (x1, x2) is the unique Nash equilib- 
rium of the game'0 F. 

We will now prove that every uncoupled 
dynamic for 'U, is not Nash-convergent. This 
proof contains the essence of our argument, and 

8 We use j := 3 - i throughout this section. In the game 
ro, each player i wants to choose xi so as to match as closely 
as possible a function of the other player's choice, namely, 
4<(x). 

9 x is a pure Nash equilibrium if and only if x1 = (r2) 
and x2 = (1), or xi = 4(4(xi)) for i = 1, 2. There are no 
mixed-strategy equilibria since the best reply of i to any 
mixed strategy of j is always unique and pure. 

10 Moreover x is a strict equilibrium. 
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the technical modifications needed for obtaining 
Theorem 1 are relegated to the Appendix. Let F 
thus be, by contradiction, a dynamic for the 
family 'Uo which is uncoupled and Nash-con- 
vergent. The dynamic can thus be written: x' = 
F'(x', xj; u') for i = 1, 2. 

The following key lemma uses uncoupled- 
ness repeatedly. 

LEMMA 2: Assume that y' is the unique ui- 
best-reply of i to a given yJ, i.e., ul(y1, yO) > 
ui(x', y) for all x' f y'. Then F'(yi, y; u') = 0, 
and the eigenvalues of the 2 X 2 Jacobian 
matrix11 J = (F[k(y', y; u')/xl)k,l=1,2 have 
negative real parts. 

PROOF: 
Let rF be the game (u', uj) with u(xi, xi) := 

-||xI - yj12 (i.e., ~j is the constant function 

~J(z) -- y); then (y', yj) is its unique Nash 
equilibrium, and thus Fi(yi, yJ; u') = 0. Apply 
this to player j, to get Fx(x', yJ; uJ) = 0 for all x' 
(since yJ is the unique uJ-best-reply to any x1). 
Hence aF{(x', yi; uJ)lax = 0 for k, I = 1, 2. The 
4 X 4 Jacobian matrix J of F( *, *; 1l) at (y', 
y') is therefore of the form 

j- i K] J 0 L 

The eigenvalues of J-which all have negative 
real parts by assumption-consist of the eigen- 
values of J' together with the eigenvalues of L, 
and the result follows. O 

Putf'(x) := F(x; uo); Lemma 2 implies that 
the eigenvalues of the 2 X 2 Jacobian matrix 
J := (Wfk(0, O)/a)k,l=1,2 have negative real 

parts. Again by Lemma 2, f'(4(xJ), xJ) = 0 for 
all xj, and therefore in particular f'(2xJ, xJ) = 0 
for all xJ in a neighborhood of 0. Differentiating 
and then evaluating at x = (0, 0) gives 

2af (0, o)/Iax + af/(o, o)/ax = o 

for all k, 1 = 1, 2. 

1 Subscripts denote coordinates: xi = (x'i, x2) and F' = 

(F', F2). 

Therefore the 4 x 4 Jacobian matrix J of the 
system (f, f2) at x = (0, 0) is 

r i1 -2/' 
J=- -22 j2 ] 

LEMMA 3: If the eigenvalues of J1 and J2 
have negative real parts, then J has at least one 
eigenvalue with positive real part. 

PROOF: 
The coefficient a3 of A in the characteristic 

polynomial det(J - A) of J equals the negative 
of the sum of the four 3 X 3 principal minors; 
a straightforward computation shows that 

a3 = 3 det(J')trace(J2) + 3 det(J2)trace(J'). 

But det(Ji) > 0 and trace(J') < 0 (since the 
eigenvalues of J' have negative real parts), so 
that a3 < 0. 

Let A1, A2, A3, A4 be the eigenvalues of J. 
Then 

A1A2A3 + AlA2A4 + A1A3A4 + A2A3A4 

= -a3 > 0 

from which it follows that at least one Ar must 
have positive real part. O 

This shows that the unique Nash equilibrium 
x = (0, 0) is unstable for F( ; Fo)-a contra- 
diction which establishes our claim. 

For a suggestive illustration,12 see Figure 
1, which is drawn for x in a neighborhood of (0, 0) 
where (xi) = 2x. In the region 1||1x/2 < Ilx 1l < 

211x211 the dynamic leads "away" from (0, 0) (the 
arrows show that, for x' fixed, the dynamic on x 
must converge to x1 = 2xi-see Lemma 2). 

III. An Example with Finitely Many Strategies 

If the games have a finite number of strate- 
gies (i.e., if the S' are finite), then the state space 
for the dynamics is the space of N-tuples of 
mixed strategies HiEN A(S'). 

12 The actual dynamic is 4-dimensional and may be quite 
complex. 
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11x211 

FIGURE 1. THE DYNAMIC FOR THE GAME Fo OF SECTION II 

AROUND (0, 0) 

Consider a family 'Uo of three-player games 
where each player has two strategies, and the 
payoffs are: 

0, 0, 0 a, 1,0 0,a2, a, , 1 

1,0, a3 0, , a3 1, a2,0 0,0,0 

where all the a1 are close to 1 (say, 1 - E < a1 < 
1 + s for some small s > 0), and, as usual, 
player 1 chooses the row, player 2 the column 
and player 3 the matrix.13 Let Fr be the game 
with a1 = 1 for all i; this game has been intro- 
duced by James Jordan (1993). 

Denote by xl, x2, x3 E [0, 1] the probability 
of the top row, left column, and left matrix, 
respectively. For every game in the family 'Uo 
there is a unique Nash equilibrium:14 x (rI) = 

ai-1/(ai-l + 1). In particular, for Jordan's 
game xo - x(F) = (1/2, 1/2, 1/2). 

Let F be, by way of contradiction, an uncoupled 

13 Each player i wants to mismatch the next player i + 1, 
regardless of what player i - 1 does. (Of course, i + 1 is 
always taken modulo 3.) 

14 In equilibrium: if i plays pure, then i - 1 plays pure, 
so all players play pure-but there is no pure equilibrium; 
if i plays completely mixed, then a'(1 - x+ l) = xi+ 1 

Nash-convergent dynamic 'U. For the game Fo 
(o)i= 1,2,3 we denotef(x, x2, x3) := F(x, x2, x3; 
uo); let J be the 3 X 3 Jacobian matrix off at xo. 

For any y' (close to 1/2), the unique equilib- 
rium of the game F1 = (u2, u2, u3) in L/o with u3 
given by a3 y /(1 - ) is (yl, 1/2, 1/2), and 
so Fl(y1, 1/2, 1/2; F1) = 0. This holds therefore 
also for Fr since the dynamic is uncoupled: 
f'(y', 1/2, 1/2) = 0 for all yl close to 1/2. 
Hence afl(xo)l/x' = 0. The same applies to the 
other two players, and we conclude that the 
diagonal-and thus the trace-of the Jacobian 
matrix J vanishes. Together with hyperbolicity 
[in fact, det(J) : 0 suffices here], this implies 
the existence of an eigenvalue with positive real 
part,'5 thus establishing our contradiction- 
which proves Theorem 1 in this case. 

We put on record that the uncoupledness of 
the dynamic implies additional structure on J. 
Indeed, we have fl(x', 1/2, x3) = 0 for all x1 
and x3 close to 1/2 [since (xl, 1/2, x3) is the 
unique Nash equilibrium when a' = 1-as in 
Fo-and a2 = x3/(1 - x3), a3 = xl/(1 - xl)]. 
Therefore fl(xo)/ x3 = 0 too, and so J is of the 
form 

-0 c 0- 
J= 0 0 d 

e 0 0 

for some reall6 c, d, e. 
We conclude by observing that the specific- 

ities of the example have played very little role 
in the discussion. In particular, the property that 
the trace of the Jacobian matrix is null, or thatfi 
vanishes over a linear subspace of co-dimension 
1, which is determined from the payoff function 
of player i only, will be true for any uncoupled 
dynamics at the equilibrium of a game with a 
completely mixed Nash equilibrium-provided, 
of course, that the game is embedded in an 
appropriate family of games. 

15 Indeed: otherwise the real parts of all eigenvalues are 
0. The dimension being odd implies that there must be a real 
eigenvalue. Therefore 0 is an eigenvalue-and the determi- 
nant vanishes. 

16 If cde : 0 there is an eigenvalue with positive part, 
and if cde = 0 then 0 is the only eigenvalue. 

VOL. 93 NO. 5 1833 
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IV. Discussion 

(a) There exist uncoupled dynamics converg- 
ing to correlated equilibria17-see Dean 
Foster and Rakesh V. Vohra (1997), Fuden- 
berg and Levine (1999), Hart and Mas- 
Colell (2000),18 and Hart and Mas-Colell 
(2003). It is thus interesting that Nash equi- 
librium, a notion that does not predicate 
coordinated behavior, cannot be guaranteed 
to be reached in an uncoupled way, while 
correlated equilibrium, a notion based on 
coordination, can.19 

(b) In a general economic equilibrium frame- 
work, the parallel of Nash equilibrium is 
Walrasian (competitive) equilibrium. It is 
again well known that there are no dynam- 
ics that guarantee the general convergence 
of prices to equilibrium prices if the dynamic 
has to satisfy natural uncoupledness-like 
conditions, for example, the nondepen- 
dence of the adjustment of the price of one 
commodity on the conditions of the markets 
for other commodities (see Donald G. Saari 
and Carl P. Simon, 1978). 

(c) In a mechanism-design framework, the 
counterpart of the uncoupledness condition 
is Leonid Hurwicz's "privacy-preserving" 
or "decentralized" condition-see Hurwicz 
(1986). 

(d) There are various results in the literature, 
starting with Lloyd S. Shapley (1964, Sec. 
5), showing that certain classes of dynamics 
cannot be Nash-convergent. These dynam- 
ics assume that the players adjust to the 
current state x(t) in a way that is, roughly 
speaking, payoff-improving; this includes 
fictitious play, best-reply dynamics, better- 
reply dynamics, monotonic dynamics, ad- 
justment dynamics, replicator dynamics, 
and so on; see Vincent P. Crawford (1985), 
Jordan (1993), Andrea Gaunesdorfer and 

17 Of course, these dynamics are defined on the appro- 
priate state space of joint distributions A(IiN Si), i.e., 
probability vectors on N-tuples of (pure) strategies. 

18 In fact, the notion of "decoupling" appears in Section 
4 (i) there. 

19 Cum grano salis this may be called the "Coordination 
Conservation Law": there must be some coordination either 
in the equilibrium concept or in the dynamic. 

Hofbauer (1995), Foster and Young (1998, 
2001), and Hofbauer and Sigmund (1998, 
Theorem 8.6.1). All these dynamics are 
necessarily uncoupled (since a player's 
"good reply" to x(t) depends only on his 
own payoff function). Our result shows that 
what underlies such impossibility results is 
not necessarily the rationality-type assump- 
tions on the behavior of the players-but 
rather the informational requirement of 
uncoupledness. 

(e) In a two-population evolutionary context, 
Alexander Vasin (1999) shows that dynam- 
ics that depend only on the vector of pay- 
offs of each pure strategy against the 
current state-a special class of uncoupled 
dynamics-cannot be Nash-convergent. 

(f) There exist uncoupled dynamics that are 
guaranteed to converge to (the set of) Nash 
equilibria for specialfamilies of games, like 
two-person zero-sum games, two-person 
potential games, dominance-solvable games, 
and others;20 for some recent work see 
Hofbauer and William H. Sandholm (2002) 
and Hart and Mas-Colell (2003). 

(g) There exist uncoupled dynamics that are 
most of the time close to Nash equilibria, 
but are not Nash-convergent (they exit in- 
finitely often any neighborhood of Nash 
equilibria); see Foster and Young (2002). 

(h) Sufficient epistemic conditions for Nash 
equilibrium-see Robert J. Aumann and 
Adam Brandenburger (1995, Preliminary 
Observation, p. 1161)-are for each player 
i to know the N-tuple of strategies x and his 
own payoff function ui. But that is precisely 
the information a player uses in an uncou- 
pled dynamic-which we have shown not 
to yield Nash equilibrium. This points out 
the difference between the static and the 
dynamic frameworks: converging to equi- 
librium is a more stringent requirement than 
being in equilibrium. 

(i) By their nature, differential equations allow 
strategies to be conditioned only on the 
limited information of the past captured by 

20 A special family of games may be thought of as giving 
information on the other players' payoff function (e.g., in 
two-person zero-sum games and potential games, u' of one 

player determines uj of the other player). 

1834 DECEMBER 2003 



HART AND MAS-COLELL: UNCOUPLED DYNAMICS 

the state variable. It may thus be of interest 
to investigate the topic of this paper in more 
general settings. 

APPENDIX 

We show here how to modify the argument of 
Section II in order to prove Theorem 1. Con- 
sider a family of games U' that is a neighbor- 
hood of Fo, and thus is certain to contain only 
those games in 'U1 that are close to Fr. The 
proof of Lemma 2 uses payoff functions of the 
form uJ(xi, x) = -Ixj - J112 that do not depend 
on the other player's strategy x' (i.e., e is the 
constant function e(z) y'). Since the proof in 
Section II needs the result of Lemma 2 only for 
y' in a neighborhood of 0, we will replace the 
above constant function e with a function that is 
constant in a neighborhood of the origin and is 
close to >. 

We will thus construct for each a E D with 
Ilall < E a function Ca: D -- D such that: (1) 
I||la - (l||1 CE for some constant C > 0; (2) 
4la(Z) = a for all l||z|| 2E; (3) )(P(1a(Z)) = Z if 
and only if z = (a) = 2a; and (4) qib(a(Z)) = 
z if and only if z = ,fb(a) = b. The games 
corresponding to ((, iiy) and to (<fi, ?,y), for 
I.ll < E/2 and x' close to 2yJ, are therefore in 
Uo [by (3) and (4)], are close to Fo [by (1)], and 
we can use them to obtain the result of Lemma 
2 [by (2)]. 

The q functions may be constructed as fol- 
lows: (i) a(z) := a for |z| zll 2s; (ii) ia(Z):= 
0 for |Izll = 3s; (iii) la(Z) is a rotation of +b(z) by 
the angle s for I|lzl > 4e; and (iv) interpolate 
linearly on rays in each one of the two regions 
2e < | zll < 3e and 38 < ilzil < 4e. 

It can be checked that conditions (1)-(4) 
above are indeed satisfied.21 

21 (1) and (2) are immediate. For (3), let z = ((w) and 
w = lak(z). If Ilzil - 3E, then w = aa for some a E [0, 1], 
therefore I||w| < E and z = +(w) = 2w, so in fact 1||1z < 2E 
and w = a. If lizil > 3E, then, denoting by O(x) the angle of 
x and recalling that 4 rotates by an angle between 0 and 7r/4, 
we have 0(z) - 0(w) = O((b(w)) - O(w) E [0, sr/4], 
whereas 0(w) - 0(z) = O(a(z)) - O(z) = O(4(z)) + e - 
0(z) E [E, 7r/4 + E], a contradiction. (4) is proven in a 
similar way. 
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