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0. Introduction

A conjecture of Zilber from around 1980 asserted that the ‘classical’ examples of strongly
minimal structures – pure set; vector spaces; algebraically closed fields – are ‘essentially’ the
only examples of strongly minimal structures. (Note that by the Cherlin - Zilber Theorem,
this is true for ω-categorical structures.) More precisely, the conjecture could be stated as
saying that a strongly minimal structure which is not one-based interprets an infinite field.

This conjecture was refuted by Ehud Hrushovski in 1988 (in an unpublished manuscript
which was incorporated into [9]). Using a method now described as ‘the Hrushovski con-
struction’ or ‘Hrushovski’s predimension construction’, he produced a strongly minimal
structure which is not one-based, but which does not interpret an infinite group. He also
observed that these structures have some properties - flatness, CM-triviality - which restrict
the complexity of forking.

In [14], Pillay proposed a hierarchy of properties of forking in stable theories:

1-ample ⇐ 2-ample ⇐ . . .⇐ n-ample ⇐ . . .

where

1-ample = not one-based

2-ample = not CM-trivial.

So Hrushovski’s constructions are 1-ample but not 2-ample and Pillay showed that a stable
field is n-ample for all n ∈ N.

It is an open problem whether there is a strongly minimal structure which is 2-ample and
does not interpret an infinite field.

Outside the finite rank context, another restriction on the complexity of forking becomes
relevant: the notion of triviality, discussed in [7]. A structure of finite Morley rank where
forking is trivial is necessarily one-based and it is easy to see that a trivial stable structure
cannot interpret an infinite group. The free pseudoplane is an example of an ω-stable
structure (of infinite rank) which is trivial and not one-based - in fact it is 1-ample and not
2-ample. Baudisch and Pillay [2] constructed an ω-stable structure - a ‘free pseudospace’ -
which is 2-ample and trivial. This has recently been extended by Tent [17] and Baudisch,
Martin-Pizarro and Ziegler [3] to obtain ‘free n-spaces’ which are ω-stable, trivial and
n-ample, but not n+ 1-ample.

Notes on talks given at the British Postgraduate Model Theory Conference, Oxford, 7–9 January, 2015.
1



2 DAVID M. EVANS

A non-trivial, 2-ample, ω-stable structure can easily be obtained by taking the disjoint
union of the free pseudospace with a Hrushovski construction, so care has to be taken in
asking about how to remove the triviality in these constructions.

The plan of the talks is:

(1) The basic Hrushovski construction (the infinite rank version): description of types
and forking; weak elimination of imaginaries.

(2) Complexity of forking in stable theories: one-basedness, CM-triviality and ample-
ness. Triviality. Examples and behaviour under reducts.

(3) Obtaining ampleness: the free pseudospace and other constructions.

1. Hrushovski constructions

The ultimate aim of the construction in [9] is to build a strongly minimal set: a structure
with a dimension on it. We build it from finite structures each of which carries in a natural
way a dimension. We will not describe the whole construction here: what we do will
produce a structure of infinite Morley rank. To obtain a structure of finite Morley rank,
the method needs an extra ingredient, usually referred to as ‘collapse.’ More thorough
references include [20] and [1]. The construction is also discussed in [18].

1.1. Predimension and dimension. Suppose k, `, r are given natural numbers. We
consider a language L having just a r-ary relation symbol R. We work with L-structures
which are models of some ∀-theory T ′ (which will be specified further as we go along).

If B |= T ′ is finite define the predimension of B to be

δ(B) = `|B| − k|RB|.

If B ⊆ A |= T ′ we can regard B as a substructure of A and if B is finite we can consider
δ(B). We let C̄0 be the class of structures A |= T ′ with the property that

δ(B) ≥ 0 for all finite B ⊆ A.

Let C0 be the finite structures in C̄0.
It is easy to see that there is a universal L-theory T0 whose models are precisely the
structures in C̄0.

Examples 1.1. Good examples to have in mind are:

(i) (from [9]) r = 3, k = ` = 1 and T ′ says:

(∀x1x2x3)(R(x1, x2, x3)→
∧
i 6=j

(xi 6= xj))

and for every permutation π of 1, 2, 3:

(∀x1x2x3)(R(x1, x2, x3)↔ R(xπ1, xπ2, xπ3)).

Thus in a model A of these, we can regard the interpretation RA of R as a set of 3-subsets
of A (rather than a set of triples).

(ii) r = 2, ` = 2, k = 1 and T ′ is the theory of graphs.
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Lemma 1.2 (Submodularity). If A ∈ C̄0 and B,C are finite subsets of A, then

δ(B ∪ C) ≤ δ(B) + δ(C)− δ(B ∩ C).

There is equality iff RB∪C = RB∪RC (in which case we say that B,C are freely amalgamated
over their intersection).

Proof. Note that the left-hand side minus the right-hand side of the inequality is:

`(|B ∪ C| − (|B|+ |C| − |B ∩ C|))− k(|RB∪C | − |RB| − |RC |+ |RB∩C |).

As RB∩C = RB ∩RC , this is equal to

−k(|RB∪C | − |RB ∪RC |).
Hence the result. �

If A ⊆ B ∈ C̄0 is finite and for all finite B′ with A ⊆ B′ ⊆ B we have δ(A) ≤ δ(B′), then
we say that A is self-sufficient in B and write A ≤ B.

Lemma 1.3. Suppose B ∈ C0.

(1) If A ≤ B and X ⊆ B, then A ∩X ≤ X.
(2) If A ≤ B and B ≤ C ∈ C0 then A ≤ C.
(3) If A1, A2 ≤ B then A1 ∩ A2 ≤ B.

Proof. (1) Let A ∩X ⊆ Y ⊆ X. Then

δ(A ∪ Y ) ≤ δ(A) + δ(Y )− δ(Y ∩ A).

So as A ∩X = A ∩ Y we have:

δ(Y )− δ(X ∩ A) ≥ δ(A ∪ Y )− δ(A) ≥ 0.

(2) Let A ⊆ X ⊆ C. As B ≤ C we have X ∩ B ≤ X (by (1)) so δ(X ∩ B) ≤ δ(X). Also,
A ⊆ X ∩B ⊆ B so δ(A) ≤ δ(X ∩B), by A ≤ B. So δ(A) ≤ δ(X).

(3) By (1) we have A1 ∩ A2 ≤ A2. So A1 ∩ A2 ≤ B, using (2). �

If B ∈ C̄0 and A ⊆ B then we write A ≤ B when A ∩X ≤ X for all finite X ⊆ B. It can
be checked that the above lemma still holds.

If X is a finite subset of B ∈ C̄0 then there is a finite set C with X ⊆ C ⊆ B and δ(C) as
small as possible. Then by definition, C ≤ B. Now take C as small as possible. By (3) of
the above lemma, C is uniquely determined by X: it is the intersection of all self-sufficient
subsets of B which contain X. We refer to this as the self-sufficient closure of X in B and
denote it by cl≤B(X). Write dB(X) = δ(cl≤B(X)). By the above discussion:

dB(X) = min{δ(C) : X ⊆ C ⊆f B}.

(Where C ⊆f B means C is a finite subset of B.)

This is the dimension of X in B. It is clear that if X ⊆ Y ⊆f B then dB(X) ≤ dB(Y ).

Exercise: Show that self-sufficient closure is a closure operation, but that it does not
necessarily satisfy the exchange property.

Lemma 1.4. If X, Y are finite subsets of B ∈ C̄0 then

dB(X ∪ Y ) ≤ dB(X) + dB(Y )− dB(X ∩ Y ).



4 DAVID M. EVANS

Proof. Let X ′, Y ′ be the self-sufficient closures of X and Y in B. Then

dB(X ∪ Y ) = dB(X ′ ∪ Y ′) ≤ δ(X ′ ∪ Y ′) ≤ δ(X ′) + δ(Y ′)− δ(X ′ ∩ Y ′).
Now, X ∩Y ⊆ X ′∩Y ′ and the latter is self-sufficient in B. So dB(X ∩Y ) ≤ dB(X ′∩Y ′) =
δ(X ′ ∩ Y ′). The result follows. �

Remarks 1.5. From the proof we can read off when we have equality in the above. Suppose
for simplicity thatX, Y are self-sufficient. Then there is equality in the lemma iffX∪Y ≤ B
and X, Y are freely amalgamated over their intersection.

We now relativise the dimenson function. Suppose B ∈ C̄0 and ā is a tuple of elements in
B and C a finite subset of B. Define the dimension of ā over C to be:

dB(ā/C) = dB(āC)− dB(C).

(Where āC denotes the union of C and the elements in ā.)

Lemma 1.6. If ā, b̄ are tuples in B ∈ C̄0 and C is a finite subset of B then:

(1) dB(āb̄/C) = dB(ā/b̄C) + dB(b̄/C).
(2) dB(āb̄/C) ≤ dB(ā/C) + dB(b̄/C).
(3) If C ′ ⊆ C then dB(ā/C ′) ≥ dB(ā/C).

Proof. Drop the subscript B here. (1) is by definition and (2) follows from (1) and
(3).
To prove (3), let A′ = cl≤(āC ′). Then

d(āC) = d(A′ ∪ C) ≤ d(A′) + d(C)− d(A′ ∩ C) ≤ d(A′) + d(C)− d(C ′).

Rearranging gives what we want. �

We can extend this to arbitrary C ⊆ B. We define dB(ā/C) to be the minimum of d(ā/C ′)
for C ′ ⊆f C. By (3), this is harmless if C is actually finite. It can then be shown that the
above lemma holds for arbitrary C.

1.2. Amalgamation. Suppose B1, B2 are structures in C̄0 (or indeed, just models
of T ′) with a common substructure A. We can assume without loss of generality that
A = B1 ∩ B2. We form another structure E with domain E = B1 ∪ B2 and relations
RE = RB1 ∪ RB2 . We refer to this as the free amalgam of B1 and B2 over A. Henceforth
assume that the class of models of T ′ is closed under free amalgamation.

Lemma 1.7 (Free amalgamation lemma). Suppose B1, B2 ∈ C̄0 have a common substructure
A. Suppose that A ≤ B1. Then the free amalgam E of B1 and B2 over A is in C̄0 and
B2 ≤ E.

Proof. Note that the condition of being in C̄0 is equivalent to the empty set being
self-sufficient. So it suffices to prove B2 ≤ E, for then ∅ ≤ B2 ≤ E, and ∅ ≤ E follows.

Let X be a finite subset of E. Write Xi = X ∩Bi and X0 = X ∩A. We want to show that
X2 ≤ X, so let X2 ⊆ Y ⊆ X. Now, X is the free amalgam of X1 and X2 over X0 so Y is
the free amalgam over X0 of X2 and Y ∩X1, whence δ(Y ) = δ(Y ∩X1) + δ(X2)− δ(X0).
Thus

δ(Y )− δ(X2) = δ(Y ∩X1)− δ(X0).

As A ≤ B1 we have X0 ≤ X1. So as X0 ⊆ Y ∩ X1 ⊆ X1, the above is ≥ 0. Thus
δ(Y ) ≥ δ(X2), as required. �
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Of course, if A ≤ B2 here, then we also obtain B1 ≤ E (by symmetry of the argument).
However, we can usefully obtain something sightly stronger.

Supposem is a natural number. Let Y ⊆ Z ∈ C̄0. Write Y ≤m Z to mean that δ(Y ) ≤ δ(Z ′)
whenever Y ⊆ Z ′ ⊆ Z and |Z ′ \ Y | ≤ m. It is easy to check that Lemma 1.3 holds with ≤
replaced by ≤m throughout (the same proof works).

Lemma 1.8 (Strong free amalgamation lemma). Suppose B1, B2 ∈ C̄0 have a common
substructure A. Suppose that A ≤m B1 and A ≤ B2. Then the free amalgam E of B1 and
B2 over A is in C̄0 and B2 ≤m E and B1 ≤ E.

Proof. By the previous lemma we have ∅ ≤ B1 ≤ E and so E ∈ C̄0. The proof that
B2 ≤m E just requires careful inspection of the above proof. �

1.3. The uncollapsed generic.

Theorem 1.9 (The generic structure for (C0;≤)). There is a countable M∈ C̄0 satisfying
the following properties:

(C1): M is the union of a chain of finite substructures
B1 ≤ B2 ≤ B3 ≤ . . . all of which are in C0.
(C2): If A ≤ M is finite and A ≤ B ∈ C0, then there is an embedding f : B →M with
f(B) ≤M and which is the identity on A.

Moreover M is uniquely determined up to isomorphism by these two properties and is ≤-
homogeneous (meaning: any isomorphism between finite self-sufficient substructures of M
extends to an automorphism of M.

Proof. The construction: First, note that any countable structure in C̄0 satisfies (C1).
To achieve C2, we construct the Bi inductively so that the following (which is equivalent
to C2) holds:

(C2′) If A ≤ Bi and A ≤ B ∈ C0 then there is j ≥ i and a ≤-embedding f : B → Bj which
is the identity on A.

Note that there are countably many isomorphism types of A ≤ B in C0. A standard
‘organisational’ trick allows us to show that we can just do one instance of the problem in
(C2′). But this is what amalgamation does for us: we have A ≤ Bi and A ≤ B so let Bi+1

be the free amalgam of Bi and B over A. Then Bi ≤ Bi+1 and B ≤ Bi+1.

Uniqueness: Suppose M and M′ satisfy these properties. One shows that the set of
isomorphisms A → A′ where A ≤ M and A′ ≤ M′ are finite is a back-and-forth system.
The ‘moreover’ part follows. �

The structureM is referred to as the generic structure for the amalgamation class (C0;≤).

We want to understand Th(M).

1.4. Model theory of M. We want to axiomatize Th(M) and understand types.
Recall that T0 is the set of axioms for the class C̄0, and (C1) holds in any countable model
of these.

The condition in (C2) is not (a priori) first-order: how can we express ‘for all A ≤M’ and
‘f(B) ≤M? The trick is to replace ≤ here by the approximations ≤m.
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Note that for each m, and each n-tuple of variables x̄ there is a formula ψm,n(x̄) with the
property that for every C ∈ C̄0 and n-tuple ā in C we have:

ā ≤m C ⇔ C |= ψm,n(ā).

Suppose A ≤ B ∈ C0. Let x̄, ȳ be tuples of variables with x̄ corresponding to the distinct
elements of A and ȳ corresponding to the distinct elements of B \ A. Let DA(x̄) and
DA,B(x̄, ȳ) denote the basic diagrams of A and B respectively. Suppose A,B are of size
n, k respectively. For each m let σmA,B be the closed L-formula:

∀x̄∃ȳ(DA(x̄) ∧ ψm,n(x̄)→ DA,B(x̄, ȳ) ∧ ψm,k(x̄, ȳ)).

Let T consist of T0 together with these σmA,B.

Theorem 1.10. We have that M |= T and T is complete. Moreover, n-tuples c̄1, c̄2 in
models M1,M2 of T have the same type iff c̄1 7→ c̄2 extends to an isomorphism between
cl≤M1

(c̄1) and cl≤M2
(c̄2).

Proof. Step 1: M |= T .
We showM |= σmA,B. So suppose A′ ≤mM is isomorphic to A. We have to find B′ ≤mM
isomorphic to B (over A). Let C = cl≤M(A′). Let E be the free amalgam of C and B over A
(which we identify with A′), and use Lemma 1.8. Then C ≤ E, so we can use (C2) inM to
get a ≤-embedding f : E →M which is the identity on C. Then A′ ≤ fB ≤m fE ≤ M:
so B′ = fB is what we want.

Step 2: If N |= T is ω-saturated, then N satisfies (C2).
Suppose A ≤ N is finite and A ≤ B. Let ā enumerate A and n = |B|. By the σmA,B, (and
compactness) the collection of formulas {DA,B(ā, ȳ) ∧ ψm,n(āȳ) : m < ω} is consistent. So
as N is ω-saturated we get b̄ in N which satisfies all of them. Then āb̄ ≤ N and this gives
what we want.

It then follows easily that if N1, N2 are ω-saturated models of T , then the set of isomor-
phisms between finite ≤-substructures of N1 and N2 is a back-and-forth system (– we also
need to know that any finite subset is contained in a finite ≤-subset). This gives the ‘if’
direction in the statement. For the converse, note that if two tuples have the same type,
then so do their self-sufficient closures (as these are part of the algebraic closure). �

1.5. ω-stability ofM. M is the generic structure for (C0;≤) as in the previous section
and we will let T = Th(M) (this is a harmless change of notation).

Suppose M′ |= T is ω-saturated B ≤M′ and ā is a tuple in M′. There is a finite C ≤ B
with d(ā/B) = d(ā/C) and we can assume that cl(āC)∩B = C (– if not, replace C by this
intersection).

Claim: cl≤(āC) ∪B ≤M′ and is the free amalgam of cl≤(āC) and B over C.

Proof of Claim: Let A = cl(āC). It suffices to prove the claim when B is finite (– by
considering finite closed subsets of the original B). By definition of δ if A, B are not freely
amalgamated over C then δ(cl≤(āB)) ≤ δ(A ∪ B) < δ(A) + δ(B) − δ(C), which, after
rearranging the inequality, contradicts the choice of C. We have a similar contradiction if
δ(cl≤(āB)) < δ(A ∪B), thus A ∪B ≤M′. 2Claim

So tp(ā/B) is determined by C and the isomorphism type of cl(āC). So the number of
1-types over B is at most max(ℵ0, |B|). Thus T is λ-stable for all infinite λ.
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Remarks 1.11. If A ≤M′ |= T is finite then acl(A) = cl≤(A). Indeed, as cl≤(A) is finite,
we have ⊇. On the other hand if b ∈ M′ \ cl≤(A), let B′ = cl≤(bA) and A′ = cl≤(A). We
can assume thatM′ is ω-saturated, so (C2) holds inM′. By considering the free amalgam
of copies of B′ over A′ we obtain infinitely many elements of M′ with the same type as b
over A′. It follows that cl is equal to algebraic closure in models of T .

1.6. Forking in M. We describe forking in models of T = Th(M).

Recall the following characterization of forking in a stable (or simple) theory, working in
a sufficiently saturated model. Suppose C is a set of parameters and a, b are tuples. Say
that a is independent from b over C, written

a |̂
C

b

if:

For every C-indiscernible sequence (bi : i < ω) with tp(bi/C) = tp(b/C) there exists a′

with tp(a′bi/C) = tp(ab/C) for all i < ω.

One also says that tp(a/Cb) does not fork over C, or that tp(a/Cb) is a non-forking
extension of tp(a/C).

Remarks 1.12. What we have defined is non-dividing, which is the same as non-forking
in a stable (or simple) theory.

Theorem 1.13. If A,B,C ⊆M′ |= T then A |̂
C
B iff

• cl≤(AC) ∩ cl≤(BC) = cl≤(C)
• cl≤(AC) and cl≤(BC) are freely amalgamated over cl≤(C)
• cl≤(ABC) = cl ≤ (AC) ∪ cl≤(BC).

Expressed in a different way, if ā is a tuple in M′, then ā |̂
C
B iff d(ā/C) = d(ā/B) and

acl(āC) ∩ acl(B) = acl(C).

Sketch of Proof. Assuming the 3 conditions hold. To simplify the notation we can assume
that A,B are closed and have intersection C and we can assume thatM′ is highly saturated.
We show that tp(A/B) does not divide over C. Suppose (Bi : i < ω) is a sequence of
translates of B over C. Let X be the ≤-closure of the union of these and let Y be the free
amalgam of X and A over C. As Bi ≤ X we have that A and Bi are freely amalgamated
over C and A ∪ Bi ≤ Y . We may assume that Y ≤M′. If A′ denotes the copy of A in Y
then tp(A′Bi) = tp(AB) for each i.

For the converse, we can use the fact that algebraic closure in M1 is self-sufficient closure to
obtain the first bullet point if A |̂

C
B. Moreover, we can assume as before that A,B are

closed and have intersection C. To simplify the argument, assume also that A,B are finite.
Let (Bi : i < ω) be a sequence of translates of B over A which are freely amalgamated over
C and such that the union of any subcollection of them is self-sufficient in M1. Suppose
for a contradiction that A,B are not freely amalgamated over C. Then the same is true of
A and Bi and there is s > 0 such that δ(A ∪Bi) = δ(A) + δ(Bi)− δ(C)− s for all i. Then
one computes that

δ(A ∪
r⋃
i=1

Bi) ≤ δ(
r⋃
i=1

Bi) + δ(A)− C − rs.

If r is large enough, this contradicts
⋃r
i=1Bi ≤Mi. The third bullet point is similar. 2
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Remark 1.14. Suppose B ≤ C ≤ M and a is a tuple in M. It follows from the above
and ≤-homogeneity that there is a unique non-forking extension of tp(a/B) to a type over
C. The type over C gives the type of A′ = cl≤(aB) as specified by tp(a/B) and says that
A′, C are freely amalgamated over B and A′ ∪ C ≤M (a

∧
-definable condition).

So types of tuples over ≤-subsets of M are stationary and it follows that if e ∈ Meq is
algebraic over B ≤M, then it is definable over it.

1.7. Weak elimination of imaginaries. Recall that a structure N has weak elimi-
nation of imaginaries if for every e ∈ N eq we have e ∈ dcl(acl(e) ∩N ).

Theorem 1.15. The theory T = Th(M) has weak elimination of imaginaries.

The proof of this is taken from ([19], 4.1 and 4.2) where it is attributed to Frank Wagner.

Lemma 1.16. Suppose A,B1, B2, B ≤ M are finite with Bi ⊆ B and A |̂
Bi
B. Then

A |̂
B1∩B2

B.

Proof. Let Ai = cl≤(A ∪Bi). So

• Ai ∩B = Bi;
• Ai ∪B ≤M;
• Ai, B are freely amalgamated over Bi.

Let A′ = A1 ∩ A2 and note that A′ ⊇ A,B1 ∩ B2. From the first of the above we obtain
A′ ∩ B = B1 ∩ B2. From the second, by intersecting we obtain A′ ∪ B ≤ M. Finally one
checks that A′ and B are freely amalgamated over B1 ∩B2. �

Proof of Theorem: Let e ∈ M eq. So there is a ∅-definable equivalence relation E(x, y) on
some ∅-definable set of tuples from M and a tuple a such that e is the E-class aE. By
taking non-forking extensions of tp(a/e) we can find tuples b1, b2 with a, b1, b2 independent
over e and aE = (b1)E = (b2)E. As e ∈ acleq(bi) we have a |̂

bi
b1b2.

Let B = acl(b1) ∩ acl(b2) (where the acl is in M, so equal to cl≤). By the lemma, we
have a |̂

B
b1b2. As e ∈ acl(a) ∩ acl(b1) we have e ∈ acleq(B), so by the previous remark,

e ∈ dcleq(B).

But also b1 |̂ e b2 so B |̂
e
B whence B ⊆ acleq(e). 2

2. Complexity of forking

We work throughout with a complete stable L-theory T ; much of this can be adapted to
simple theories. Unless stated otherwise, all elements will be from a monster model and in
general we will not distinguish between real elements and imaginaries.

2.1. One-basedness.

Definition 2.1. We say that T is one-based if for every stationary type tp(b/A) we have
Cb(b/A) ⊆ acl(b). Equivalently, for all algebraically closed sets A,B we have A |̂

A∩B B.

The theory of a pure set, or of a vector space are examples of one-based theories. In
general any module is one-based and a theorem of Hrushovski and Pillay analyses the
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structure of groups in one-based theories, in particular showing that they are abelian by
finite. One-basedness is preserved by adding or forgetting parameters.

The notion of a pseudoplane goes back to Lachlan and Zilber in the 1970’s; the idea is that
it represents an ‘incidence structure’ of points and curves.

Definition 2.2. We say that a stationary type p = tp(bc/A) is a complete type-definable
pseudoplane (in T ) if

• b 6∈ acl(cA), c 6∈ acl(bA)
• whenever b1c, b2c |= p with b1 6= b2 we have c ∈ acl(b1b2A)
• whenever bc1, bc2 |= p with c1 6= c2 we have b ∈ acl(c1c2A).

Theorem 2.3. (Pillay) T is one-based iff there is no complete type-definable pseudoplane
in T .

Examples 2.4. 1. (The free pseudoplane) Take L to have a single binary relation symbol
R and unary predicates P1, P2. Let T be the theory of an infinitely-branching (unrooted)
tree considered as a bipartite graph with the parts labelled by P1, P2 and the edges given
by R. This is ω-stable of Morley rank ω and has weak elimination of imaginaries. If bc is
an adjacent pair of vertices, then tp(bc/∅) is a complete type-definable pseudoplane in T .

Note that this can be seen as a degenerate case of the Hrushovski construction. In the
notation of Section 1.1, take T ′ to be the theory of (labelled bipartite) graphs without
cycles and the predimension δ(B) = |B| − |RB|. Then cl≤ is ‘convex closure’ and the
dimension counts the number of connected components in this.

2. Take the Hrushovski construction with graphs and predimension δ(B) = 2|B|−|RB|; let
abc ≤M with R(ac), R(bc) holding. Then ab ≤M and c ≤M and Cb(c/ab) = ab 6⊆ acl(c).
So Th(M) is not one-based.

2.2. CM-triviality. The following terminology is due to Hrushovski.

Definition 2.5. The stable theory T is CM-trivial if whenever A ⊆ B are algebraically
closed and c is such that acl(cA) ∩B = A, then Cb(c/A) ⊆ acl(Cb(c/B)).

Lemma 2.6. T is CM-trivial iff whenever A,B,C are algebraically closed and A |̂
A∩B B,

then A ∩ C |̂
A∩B∩C B ∩ C.

Proof. Suppose the condition holds and A,B, c are as in the definition. Let E =
acl(Cb(c/B)) and F = acl(cE). So F |̂

E
B. Intersect with C = acl(cA) and apply

the condition. We obtain c |̂
E∩AA so Cb(c/A) ⊆ E as required. The converse is an

exercise. �

Example 2.7. Each Hrushovski structure M as described in Section 1 is CM -trivial. As
M has weak elimination of imaginaries it suffices to check the condition in the above lemma
for algebraically closed A,B,C ⊆M with A |̂

A∩B B. We can do this using the description

of forking in Theorem 1.13. From this we know that A ∪B ≤M, so (A ∩C) ∪ (B ∩C) ≤
M; also as A,B are freely amalgamated over A ∩ B, we have that A ∩ C and B ∩ C
are freely amalgamated over their intersection. It then follows from Theorem 1.13 that
A ∩ C |̂

A∩B∩C B ∩ C.

Example 2.8. An algebraically closed field K is not CM -trivial. Let a, b, c, d, e, f ∈ K be
algebraically independent transcendentals. Consider the following definable sets in K3:

• P is the plane {(x, y, z) ∈ K3 : z = ax+ by + c};
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• ` is {(x, y, z) ∈ P : y = dx+ e}, a line in P ;
• p is the point (f, g, h) ∈ ` (so h = af + bg + c and g = df + e).

As a definable set, P has canonical parameter [P ] = (a, b, c). Also, [`] = (d, e, (a+bd), be+c)
as it is specified by the equations y = dx + e and z = ax + b(dx + e) + c. Thinking of
transcendence rank, we have p |̂

[`]
[P ]. So acl([`]) = acl(Cb(p/[`], [P ]). We also have

Cb(p/[P ]) = [P ]. So to see non-CM -triviality it will be enough to show:

• [P ] 6⊆ acl([`]) - that is, {a, b, c} 6⊆ acl(d, e, (a+ bd), be+ c);
• acl(p, [P ]) ∩ acl([P ], [`]) = acl([P ]).

The first follows by rank considerations. The second amounts to showing

acl(f, df + e, a, b, c) ∩ acl(a, b, c, d, e) = acl(a, b, c),

which is an exercise.

Remarks 2.9. CM -triviality is preserved under adding or forgetting constants and passing
to imaginary sorts. As far as I know, there is no precise characterisation of CM -trivility
in terms of omitting some type of incidence structure. In the finite rank context, a group
definable in a CM -trivial structure is nilpotent-by-finite. Baudisch’s group is a non-abelian
example of such a group not interpretable in an algebraically closed field.

2.3. Ampleness. The following is a slight modification of the definition introduced
by Pillay in [14].

Definition 2.10. Suppose n ≥ 1 is a natural number. A complete stable theory T is
n-ample if (in some model of T , possibly after naming some parameters) there exist tuples
a0, . . . , an such that:
(i) an 6 |̂ a0;
(ii) an . . . ai+1 |̂ ai a0 . . . ai−1 for 1 ≤ i < n;

(iii) acl(a0) ∩ acl(a1) = acl(∅);
(iv) acl(a0 . . . ai−1ai) ∩ acl(a0 . . . ai−1ai+1) = acl(a0 . . . ai−1) for 1 ≤ i < n.
Here acl is algebraic closure in the T eq sense.

Lemma 2.11. (1) If T is n-ample then it is n− 1-ample.
(2) T is not 1-ample iff it is one-based.
(3) T is not 2-ample iff it is CM-trivial.

Proof. (1) Clear.

(2) Compare with Definition 2.1.

(3) Suppose a0, a1, a2 withness 2-ampleness. We show c = a2, A = acl(a0), B = acl(a0, a1)
witness non-CM-triviality. Note that acl(cA) ∩ B = A. As a0 |̂ a1 a2 we have Cb(c/B) ⊆
acl(a1). So if Cb(c/A) ⊆ Cb(c/B) we would have Cb(c/A) ⊆ acl(a1)∩A = acl(∅), so a0 |̂ a2
- a contradiction. The converse is similar (or can be obtained using Lemma 2.6). �

Remarks 2.12. It is fairly clear that n-ampleness is preserved under adding or forgetting
parameters. A stable theory which (type) interprets an infinite field is n-ample for all
n: this is shown in [14] following the idea of Example 2.8. Pillay conjectures that there
is a non-abelian simple group of finite Morley rank which is not 3-ample (and so is a
counterexample to the Cherlin - Zilber Algebraicity Conjecture). The intuition behind this
seems to be that the proof that a bad group is 2-ample in [12] breaks down for 3-ampleness.
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A non-abelian free group is n-ample for all n (a result of Ould Houcine and Tent [11]); as
far as I’m aware, it is still an open problem whether an infinite field is interpretable.

Recent work of Tent and Baudisch, Martin-Pizarro and Ziegler ([17, 3]) shows that Pillay’s
hierarchy is strict: for every n there is a stable theory which is n-ample but not n+1-ample.

2.4. Triviality. The basic reference here is [7].

Definition 2.13. A stable theory is trivial if, for every three tuples a, b, c of elements and
any set A of parameters from some model, if a, b, c are pairwise independent over A, then
a, b, c are independent over A.

This is not particularly interesting in the finite rank context: a superstable trivial theory
with all types having finite U -rank is one-based ([7], Proposition 9). It can be shown that
triviality is preserved by adding or forgetting constants and including imaginary sorts. No
infinite group is interpretable in a trivial, stable theory (think of the generic type).

Example 2.14. Let T be the theory of the free pseudoplane in Example 2.4 (1). We
show that T is trivial. Recall that algebraic closure is convex-closure and non-forking is as
given in the Hrushovski examples (Theorem 1.13). Suppose A,B,C are algebraically closed
sets which are pairwise independent over (and contain) the algebraically closed set E. So
A ∪B,A ∪B and B ∪C are algebraically closed. In general in this example, the algebraic
closure of a set is the union of the algebraic closures of its 2-element subsets, and it follows
that A∪B ∪C is algebraically closed. As A,B,C are pairwise freely amalgamated over E,
it follows that A,B ∪ C are freely amalgamated over E, so A |̂

E
B ∪ C, as required.

Example 2.15. (Example 2.4 (2) again.) Take the Hrushovski construction with graphs
and predimension δ(B) = 2|B| − |RB|; let a1a2a3b ≤ M with R(aib) holding (and no
other edges). Then aiaj ≤ M and so the ai are pairwise independent. But a1 6 |̂ a2a3 as
b ∈ cl(a1a2a3). So this example is not trivial.

2.5. Reducts. If M, N are two structures on the same underlying set we say that
M is a reduct of N if (for every n) every ∅-definable subset of Mn is also ∅-definable in
N n. Note that in this case, if N1 is a model of Th(N ) then there is, canonically, a reduct
of N1 which is a model of Th(M). So we also say that Th(M) is a reduct of Th(N ).
Note also that if we assume that N ,M are Morleyized (so in each case the language has a
relation symbol for each ∅-definable subset), then this accords with the traditional notion
of a reduct where one restricts to a sublanguage.

Some properties are preserved under reducts:

Lemma 2.16. Suppose M is a reduct of N .

(1) If N is λ-stable, so is M.
(2) If N is κ-saturated, so is M.
(3) Suppose N is stable and saturated. Let A ⊆ N be small and algebraically closed in
N . If tpN (a/Ab) does not fork over A (in the sense of N ), then tpM(a/Ab) does
not fork over A (in the sense of M).

One might expect that forking becomes less complicated when passing to a reduct, but this
is not the case.

Example 2.17. (Compare the free pseudoplane, Example 2.4) Take L to have a single
binary relation symbol R′ and let T ′ be the theory of an infinitely-branching (unrooted)
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directed tree tree where each vertex has exactly one directed edge coming out from it.
The models of T ′ consist of disjoint copies of such directed trees; T ′ is ω-stable of Morley
rank ω and has weak elimination of imaginaries. If X ⊆ M |= T ′ then acl(X) consists
of ‘descendants’ of the vertices in X, that is, the closure under taking successors. If A,B
are algebraically closed then A |̂

A∩B B, so T ′ is one-based. Moreover, if A,B,C are

algebraically closed and pairwise independent over (algebraically closed) E then B ∪ C is
algebraically closed and E ⊆ A ∩ (B ∪ C). So A |̂

E
B ∪ C. It follows that T ′ is trivial.

Note that we can regard the free pseudoplane as a reduct of this by ‘forgetting’ the direction
on edges. More formally, we take the reduct to the definable relation R(x, y) given by
R′(x, y) ∨ R′(y, x). This gives an example of a (trivial) one-based theory T ′ with a reduct
T which is not one-based (but which is still trivial). This cannot happen in the finite rank
case.

Theorem 2.18. ([4]) Suppose T ′ is a superstable theory in which all types have finite
U-rank. If T ′ is one-based, then every reduct of T ′ is also one-based.

There is a corresponding result for CM-triviality.

Theorem 2.19. ([10]) Suppose T ′ is a superstable theory in which all types have finite
U-rank. If T ′ is CM-trivial, then every reduct of T ′ is also CM-trivial.

Question 2.20. Is there a corresponding result for ‘not n-ample’ for n ≥ 2?

The following (essentailly from [5, 6]) shows that triviality is not necessarily preserved
under taking reducts, answering a question in [7].

Example 2.21. (2-out digraphs: compare the directed version of the free pseudoplane,
Example 2.17.) The language L has a single binary relation symbol R′ and the theory T ′0
has as its models the class D̄0 of loopless digraphs in which each vertex has at most two
successors, that is, at most two directed edges coming out from it. If A ⊆ B ∈ D̄0 write
A v B to mean that it is closed under successors, i.e. if a ∈ A, b ∈ B and B |= R′(a, b), then
b ∈ A. Note that if X ⊆ B there is a smallest successor-closed subset cl′B(X) containing it.

Clearly the relation v is transitive. It also satisfies the following strong version of free
amalgamation:

Lemma 2.22. Suppose A v B ∈ D̄0 and A ⊆ C ∈ D̄0. Let F be the free amalgam of B and
C over A. Then C v F ∈ D̄0.

The class (D0;v) is therefore an amalgamation class and so, as in Theorem 1.9, there is a
countable generic structure N ∈ D̄0 characterised by the properties:

(D1): N is the union of a chain of finite substructures B1 v B2 v B3 v . . . all of which
are in D0.

(D2): If A v N is finite and A v B ∈ D0, then there is an embedding f : B → N with
f(B) v N and which is the identity on A.

Theorem 2.23. Let M denote the undirected reduct of the digraph N . Then M is the
Hrushovski structure constructed from the predimension δ(A) = 2|A| − |RA| as in Theorem
1.9. In particular, M is neither trivial nor one-based.

Proof. We sketch the main ideas. The key point is the following lemma, the first part
of which is a consequence of Hall’s Marriage Theorem.
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Lemma 2.24. Let C0 denote the class of finite graphs A with ∅ ≤ A, as in Section 1.1, using
the given predimension. Then:

(1) C0 is precisely the class of undirected reducts of the digraphs in D0. Moreover,
if A ⊆ B ∈ C0 then A ≤ B iff the edges in B can be directed to give a digraph
B′ ∈ D0 with A v B′.

(2) Suppose A v B ∈ D0 and let A′ ∈ D0 have the same vertex set and undirected
reduct as A. Let B′ be the result of replacing A by A′ in B. Then A′ v B′ ∈ D0.

We now show thatM satisfies the two conditions in Theorem 1.9. Condition (C1) follows
from (D1) and (1) of the Lemma. For (C2), suppose A ≤M is finite and A v B ∈ C0. By
(1), the edges of B can be directed to give a digraph B′ ∈ D0 so that A v B′. By (2) we
can assume that the induced subdigraph on A is the same as in N . There is a finite C v N
with A ⊆ N . The free amalgam F of B′ and C over A is in D0 and C v F . Applying (D2)
and taking reducts then gives what we want for (C2). This finishes the proof of Theorem
2.23. �

The point of the example is then to observe:

Lemma 2.25. Th(N ) is stable, trivial and one-based.

So the Hrushovski construction M - which is neither trivial nor one-based - is a reduct of
the trivial, one-based structure N .

Proof. (of Lemma.) Let Σ′ consist of axioms describing the class of finite structures
D0, together with the axioms σX,Y for X v Y ∈ D0 stating that for every copy X ′ of X
there is a copy Y ′ of Y containing it in which the successors of all vertices in Y ′ \X ′ are in
Y ′. One then shows that:

(a) N |= Σ′;

(b) if N1,N2 are ω-saturated models of Σ′ then the set of isomorphisms f : A1 → A2 where
Ai v Ni are finitely generated, is a back-and-forth system.

So Σ′ axiomatises Th(N ) and types are determined by quantifier-free types of closures.
Note that, in a model of Th(N ), for closed A and a tuple b we have that cl′(bA) is the free
amalgam of cl′(b) and A over their intersection, so one can count types to obtain stability.
One easily shows that two closed sets are independent over their intersection and this gives
one-basedness; triviality follows as the closure of a set is the union of the closures of its
elements.

�

Question 2.26. Is a reduct of finite U -rank of a trivial, one-based stable theory necessarily
one-based? Are Hrushovski’s strongly minimal structures in [9] reducts of trivial theories?

Question 2.27. Is a reduct of a superstable trivial (one-based) theory necessarily trivial?

3. Obtaining ampleness

3.1. The Baudisch-Pillay pseudospace. We shall describe the ’free pseudospace’
constructed by Baudisch and Pillay [2], a structure which is 2-ample and trivial. This
construction has recently been extended by Tent [17] and Baudisch, Martin-Pizarro and
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Ziegler [3] to obtain ‘free n-spaces’ which are ω-stable, trivial and n-ample, but not n+ 1-
ample. Our presentation is a mixture of that in [2] and the more recent [3, 17].

Definition 3.1. Let L be a first-order language with unary predicates A0,A1,A2 and a
binary relation symbol R. A coloured 2-space is a tripartite (undirected) graph A with
vertices A0(A),A1(A), A2(A) referred to, respectively as points, lines and planes, such that
adjacencies (given by R) are between points and line and between lines and planes.We refer
to adjacency here as incidence.

We could make the corresponding definition of a coloured N -space for any N ≥ 1. Note
that the free pseudoplane, a model of the theory described in Example 2.4 (1), is a coloured
1-space.

Definition 3.2. Suppose A is a coloured 2-space.

(1) If a is a plane in A let A1(a) consist of the lines incident with a and A0(a) the set
of points incident with these (the points on the plane a). Similarly if c is a point,
define A1(c),A2(c).

(2) If d, d′ ∈ A a path between d and d′ is a sequence d = d0, d1, . . . , dn = d′ of adjacent
vertices with no repetitions except possibly d = d′. If d = d′ we refer to this path
as a circle. The length of a path is the number of distinct vertices in it.

Definition 3.3. The set Σ of axioms expresses that we are working with a coloured 2-space
and the following hold:

(Σ1) (a): the points and lines form a free pseudoplane; dually, (b) the lines and planes
form a free pseudoplane.

(Σ2) (a): for every plane a, A0(a),A1(a) is a free pseudoplane; (b) the dual.

(Σ3) (a): If a, a′ are distinct planes the set of points on both of them is empty, a singleton,
or the set of points incident to a line (in A1(a) ∩ A1(a

′)); (b) the dual.

(Σ4)n (a): Suppose a is a plane and a, b, . . . , b′, a is a circle of length n. Then there is a
path between b, b′ of length at most n− 1 which consists only of points and lines incident
with a and the points come from the original circle.

(Σ4)n (b): the dual.

A free pseudospace is a model of Σ.

Theorem 3.4. ([2]) The L-formulas Σ axiomatise a complete consistent theory which is
ω-stable, trivial and 2-ample. Moreover, if a0, a1, a2 are an incident point, line, plane triple,
then a0, a1, a2 withnesses 2-ampleness (over ∅).

We will not prove this (it is most of [2]). Instead we describe a Fräıssé-style construction of
a model of Σ along the lines given in [3] and [17] (though some aspects are present in [2]).
In the following, by a flag in a coloured 2-space A we mean an incident point-line-plane
triple a0, a1, a2.

Definition 3.5. Suppose B is coloured 2-space and A ⊆ B. We say that B is obtained
from A by a strong operation if A = B or one of the following holds:

• B \ A is a flag with no incidences to elements of A;
• B \ A is a point or plane incident to a single line in A;
• B \A is a line b1 and there is a flag a0, a1, a2 in A such that a0, b1, a2 is a flag, and

there are no other incidences involving b1;
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• B \A is an incident line, plane pair b1, b2 such that b1 is incident to a single point
in A and no planes, and b2 is not incident to anything in A.
• The dual of the above.

We say that A ≤ B if B can be obtained from A by a (possibly transfinite) sequence of
strong operations A ≤ A1 ≤ A2 ≤ . . . ≤ B.

We let C̄ denote the class of coloured 2-spaces B with ∅ ≤ B; let C denote the finite ones.

Note that if B ∈ C̄ then every vertex is in a flag. The relation ≤ is clearly transitive, and
it is easy to see that if ∅ ≤ A ≤ B1, B2 ∈ C̄ then the free amalgam F of B1 and B2 over A
is in C̄. We then have the following:

Proposition 3.6. There is a sequence of finite structures (in C)

∅ ≤ B1 ≤ B2 ≤ B3 ≤ . . .

with the ‘richness’ property that if ∅ ≤ A ≤ Bi and A ≤ C ∈ C, then there is j ≥ i and an
embedding f : C → Bj with f(C) ≤ Bj and which is the identity on A.

Let M∞ denote the union of this sequence. Then the countable structure M∞ is uniquely
determined up to isomorphism by these properties and is ≤-homogeneous (meaning: if
∅ ≤ A1, A2 ≤M∞ and f : A1 → A2 is an isomorphism, then f extends to an automorphism
of M∞).

Theorem 3.7. The countable structure M∞ is an ω-saturated model of Σ.

Proof. We sketch the fact that M∞ |= Σ (the ω-saturation requires a full under-
standing of the types). The parts of the pseudoplane conditions in (Σ1, 2) which relate to
there being infinitely many points on a line etc. follow from the richness property in the
definition of M∞.

For the remaining parts of (Σ1, 2), which state that there are no cycles in the point-line
structure or the line-plane structure, and for the remaining axioms, we check that these
properties are preserved under strong operations.

For example, suppose B is obtained from A by a strong operation and (Σ4) holds in A.
Suppose a is a plane in B and C = a, b, . . . , b′, a is a circle in B which is not in A. Then
B must have been obtained from A by adding a new line b1 forming a flag a0, b1, a2 with
vertices a0, a2 ∈ A. By assumption, there is a1 ∈ A such that a0, a1, a2 is a flag. The flag
a0, b1, a2 must appear in C. We now consider various cases.

Case 1: b, b′ ∈ A and a1 6∈ C. Then C ′ obtained by replacing b1 in C by a1 is a circle in A
with the same points as C. Apply (Σ4) in A to this.

Case 2: b, b′ ∈ A and a1 ∈ C. So there is a (shorter) circle in A of the form ab . . . a1 . . . b
′a

with points a subset of those in C. Apply (Σ4) to this in A.

Case 3: b = b1 (so a = a2) and a1 6∈ C. Let C ′ be the circle in A as in Case 1. Find
an appropriate path a1 . . . b in A. If this uses a0 we have a path b1a0 . . . b

′ of the same
length. If not, it is of length ≤ n− 3 (where n is the length of C) and so b1a0a1 . . . b

′ is an
appropriate path of length ≤ n− 1, as required.

Case 4: b = b1 and a1 ∈ C. If a1 = b′, use b1a0a1 as the required path. Otherwise we can
‘shorten’ the part of the circle in A as in Case 2 and apply the argument of Case 3.

�



16 DAVID M. EVANS

Theorem 3.7 can be used to show that a flag a0a1a2 ≤ M∞ witnesses 2-ampleness: the
proof is very similar to the proof of Theorem 3.15 given below.

3.2. Ampleness via reducts. We have already seen that some of the constructions
witnessing various degrees of ampleness have ‘directed’ counterparts which are trivial and
one-based. Specifically,

• The free pseudoplane (1-ample) is a reduct of the directed free pseodoplane (one-
based) with out-valency 1.
• The Hrushovski construction with graphs and a predimension ‘twice number of

vertices minus number of edges’ (1-ample) is a reduct of the generic structure
(trivial, one-based) arising from finite 2-out digraphs.

Recall also that the free pseudoplane can also be seen as a degenerate case of the Hrushovski
construction.

The construction ofM∞ via strong operations suggests that there is a directed counterpart
where the pseudoplanes involved are of out-valency 1, and it was shown by Grunert [8] that
M∞ is indeed a reduct of a trivial, one-based structure.

These considerations suggested the approach in [5] for obtaining a non-trivial stable struc-
ture which is n-ample as a reduct of a ‘directed’ trivial, one-based stable structure (where
the out-valencies are finite but greater than 1). Unfortunately there is a gap in the argu-
ment in [5] (specifically in the proof of the stability of the directed structure in ([5], Lemma
2.4)). By modifying the argument, I can fill the gap in the cases n = 2, 3. I will finish
these notes by describing the construction in the case n = 2. The argument for n = 3 is
significantly harder.

Definition 3.8. Work with the language L of Definition 3.1 and consider the class D̄0 of
directed coloured 2-spaces where each vertex has at most 2 directed edges coming out of it.
If A ⊆ D ∈ D̄0, write A v D if A is closed under successors (in D) and let cl′D denote the
operation of successor-closure in D.

We let D̄ consist of the structures A ∈ D̄0 which satisfy the following additional property:

If

a0 ← a1 → a2

is a flag in A, there is b1 ∈ A1(A) with

a0 → b1 → a2 or a0 → b1 ← a2 or a0 ← b1 ← a2.

We refer to a0 ← a1 → a2 here as a problem path and a0, b1, a2 as a solution to it.

The point of the extra condition is the following:

Lemma 3.9. Suppose B v A ∈ D̄. Then B ∈ D̄. Moreover, if b0, b2 ∈ B are of types 0, 2
and there is a1 ∈ A of type 1 such that b0, a1, b2 is a flag, then there is a flag b0, b1, b2 in B.

We have the following amalgamation lemma:

Lemma 3.10. Suppose B,C ∈ D̄ and A ⊆ B, A v C. Then the free amalgam F of B,C
over A is in D̄.

Remarks 3.11. By using a Fräıssé - style construction, one can show that there is some
N ∈ D̄ with the property that:
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(*) If U v N is finitely generated and U v V ∈ D̄ is finitely generated, there is an
embedding f : V → N with f(V ) v N and which is the identity on U .

We refer to such stuctures as rich. We would like to produce a consistent theory T2
containing the axioms Σ for D̄ with the property that all of its sufficiently saturated models
are rich. It will then follow that T2 is complete and the type of a tuple is determined by
the quantifier free type of its closure, using a standard back-and-forth argument.

Lemma 3.12. Suppose C ⊆ V ∈ D̄ is closed under successors of vertices of types 0, 2.
Then C ∈ D̄. In particular, if C0 ⊆ V is finite, there is a finite C ⊆ V containing C0 with
C ∈ D̄ (and |C| can be bounded in terms of the size of C0).

Proof. If a0 ← a1 → a2 is a problem path in C then it has a solution a0, b, a2 in V . By
considering the possible directions on the edges in this, one sees that b must be a successor
of a0 or a2, so by assumption on C, it is in C.

The second part follows from the first by taking C to be the set of successors in V (neces-
sarily of type 1) of vertices of types 0, 2 in C0. The boundedness comes from the bound on
the number of successors in V . �

As in 2.1 of [5], for each pair X v A ∈ D̄ with A finite, there is a closed formula σX,A such
that if V ∈ D̄ then V |= σX,A iff for every embedding g : X → V , there is an extension
f : A→ V such that cl′(f(A)) is the free amalgam of cl′(X) and f(A) over X. (To express
the latter condition, it suffies to indicate that the successors of elements of f(A \X) are in
f(A).)

Let T2 consist of the axioms Σ describing D̄, together with all these σX,A.

Lemma 3.13. (1) If N ∈ D̄ is rich, then N |= T2.
(2) If N |= T2 is sufficiently saturated, then it is rich.

Proof. (1) Suppose g : X → N is an embedding and let U be the closure of g(X) in
N . By the amalgamation lemma 3.10, the free amalgam V of A and U over X is in D̄ (and
is finitely generated), and U v V . So by richness, we can extend g in the required way.

(2) Suppose U v N and U v V are finitely generated. Given a finite C0 ⊆ V we can find a
finite C ⊆ V containing it which is in D (Lemma 3.12). We can also ensure that C contains
all successors in U of C \ U . Then X = U ∩ C v C and U,C are freely amalgamated over
X. Moreover, if Y ⊆ U is finite and closed under successors of points of types 0, 2, then
(by Lemma 3.12), Y ∈ D̄ and Y ∪ C is the free amalgam of Y and C over X, and is in
D̄. So we can use the axiom σY,Y ∪C in N to obtain a copy of C over Y in N in which all
successors of points in C \X are in X.

By increasing Y and using saturation (say, ω1-saturation, but ω-saturation will suffice as
U is finitely generated), we obtain a copy of C over U which is freely amalgamated with U
over X and whose union with U is closed in N . This is not quite what we want (because of
course, elements of C may have successors in V which are outside U). It does however show
consistency of the set of formulas consisting of the basic diagram of U , the basic diagram
of V and formulas expressing that the successor of a point in V is again a point of V . So
by saturation, there is a v-closed copy of V over U in N , as required for richness. �

Corollary 3.14. (1) The theory T2 is complete and consistent and isomorphisms
between closed substructures of models of T2 are elementary. Algebraic closure in
a model of T2 is equal to v-closure.
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(2) The theory T2 is stable. If A,B,C are closed subsets of a model of T2 with A∩B =
C, then A |̂

C
B. It follows that T2 is one-based and trivial.

Proof. This is all as described for Lemma 2.4 of [5] but with the above lemma filling
the gap. �

Let N be a large saturated model of T2 and M the undirected reduct of N . Then M is
stable and a saturated model of its theory. In the following, we denote the undirected edge
relation in the reducts by r.

Theorem 3.15. We have that Th(M) is 2-ample and non-trivial.

The proof of this is as in [5], but we outline the details here.

Definition 3.16. Let C̄ denote the class of undirected reducts of the structures in D̄. If
C ∈ D̄ is the reduct of D ∈ D̄, refer to D as an orientation of C. If A ⊆ C ∈ C̄ write
A ≤ C to mean that there is an orientation of C in which A is a succesor-closed subset.

Lemma 3.17. (1) If A v D ∈ D̄ and A′ ∈ D̄ has the same undirected reduct as A,
then the result D′ of replacing A in D by A′ is also in D̄.

(2) The relation ≤ is transitive on C̄ and C̄ is closed under free amalgamation over
≤-subsets.

Recall that N is a large saturated model of T2 and M its undirected reduct. In the
following, ‘small’ means of cardinality less than that of N .

Proposition 3.18. (1) If A v N is small and A′ ∈ D̄ has the same undirected reduct
as A, then the result N ′ of replacing A in N by A′ is a saturated model of T2.

(2) If A ⊆ M is small then A ≤ M iff there is an orientation of M which is a
saturated model of T2 in which A is closed.

(3) If A ≤M is small and β : A→ B is a ≤-embedding with B ∈ C̄ small, there is a
≤-embedding γ : B →M with γ ◦ β the identity on A.

(4) If A1, A2 ≤ M are small and α : A1 → A2 is an isomorphism then α can be
extended to an automorphism of M.

We do not have a full characterization of forking in M, but the following is useful. The
proof is similar to that for the Hrushovski construction given in Theorem 1.13.

Proposition 3.19. Suppose A,B,C are small ≤-subsets ofM with A∩B = C, A∪B ≤M
and A ∪B the free amalgam of A,B over C. Then A |̂ M

C
B.

We now verify the 2-ampleness in Theorem 3.15.

Let A = {a, b, c} v N be such that a, b, c is a flag in N . So abc ≤M. We claim:

(i) a |̂ M
b
c;

(ii) a 6 |̂ M c;
(iii) acl(a) ∩ acl(b) = acl(∅);
(iv) acl(ab) ∩ acl(ac) = acl(a).

(i) We can orient A as a → b ← c. Thus {b}, {a, b}, {c, b} ≤ M, and so (i) follows from
Proposition 3.19.
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(ii) As in (i) but using a different orientation we have that {c} ≤ M. Let C = {ci : i <
ω} ≤ M be of type 2. Thus ci ≤M for each i, and these are indiscernible and of the same
type as c over ∅. We show that there is no a′ ∈M with tp(a′ci) = tp(ac) for all i. Suppose
there is such an a′. In particular, there is a flag a′bici for each i. There is an orientation
of M in which C is v-closed. We can assume that each a′bici is not a problem path, so as
ci is closed in the orientation, we must have a′ → bi → ci. As there can be at most 4 such
directed paths from a′ we have a contradiction.

(iii) Suppose e ∈ acl(a) ∩ acl(b). There is a sequence {bj : j < ω} of distinct elements of
M of type 1 with b = b0, M |= r(a, bj) for each j, and B = {a, b0, b1 . . .} ≤ M. Then
abj ≤M and the bj are all of the same type over a (by automorphisms). The same is true
of any pair of the bj. As e ∈ acl(a) it follows that b0, b1 have the same type over ae.

Thus e ∈ acl(a) ∩ acl(b1), so e ∈ acl(b0) ∩ acl(b1). Now, Proposition 3.19 shows that

b0 |̂ M b1, which implies acl(b0) ∩ acl(b1) = acl(∅).
(iv) This is similar to (iii). Take e ∈ acl(ab) ∩ acl(ac). There exist distinct (bj : j < ω) of
type 1 with b = b0 and D = {a, c, bj : j < ω} ≤ M with r(a, bj) ∧ r(bj, c) for all j being
the only atomic relations on D. To see this, note that the orientation with

R(a, b0) ∧R(c, b0) ∧
∧
j>0

R(bj, a) ∧R(bj, c)

is in D. By replacing b0 by any of the other bj, we see that abjc ≤ D ≤M. In particular,
the bj are of the same type over ac. As e ∈ acl(ac) we can therefore assume that b0, b1 are
of the same type over ace, so e ∈ acl(ab0)∩ acl(ab1). By choosing a different orientation we
can see ab0 ≤ ab0b1 ≤ ab0b1c ≤ M (– take an orientation of D where b0, b1 are successors

of a and successors of c). Thus by Proposition 3.19 again, b0 |̂ Ma b1 and so e ∈ acl(a).

Question 3.20. Is Th(M) superstable?

I suspect that the answer is ‘no’, but do not have a proof.
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