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Stability and independence
NOTATION:
L countable language;
T complete first-order L-theory;
M monster model of T ;
a,b, c . . . elements or tuples from M (or Meq);
A,B,C, . . . small subsets of M (or Meq).

Assume T is stable: there exists λ ≥ ℵ0 such that
|S1(A)| ≤ λ when |A| ≤ λ.

Write c |̂
A

B to mean:
Suppose φ(x , y) ∈ L(A) and φ(x ,b) ∈ tp(c/A ∪ B). Suppose
(bi : i < ω) is an infinite A-indiscernible sequence of tp(b/A). Then∧

i φ(x ,bi) is consistent.

Say that tp(c/A ∪ B) does not fork over A, or c is independent from B
over A.
REMARK: This is really non-dividing... .
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Examples:

(1) Let T = ACFp. Then c |̂
A

B ⇔ tr.deg(c/A ∪ B) = tr.deg(c/A).

(2) Let TV (K ) be the theory of (infinite) vector spaces over a field K .
This is stable and for subspaces C,B of M we have C |̂

C∩B
B.

(3) L: 2-ary relation symbol R
TD: directed graphs; each vertex has
one directed edge going out, infinitely
many coming in; no (undirected) cycles.
TD is complete and stable.
Write A vM to mean: if a ∈ A and
a→ b then b ∈ A.
For C,B vM we have: C |̂

C∩B
B.

!
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Forking independence
THEOREM. (Shelah) The following properties hold for stable T :
(0) if g ∈ Aut(M): c |̂

A
B ⇔ gc |̂

gA
gB ;

(1) for A ⊆ B ⊆ C: c |̂
A

C ⇔ c |̂
A

B and c |̂
B

C;

(2) c |̂
A

b ⇔ b |̂
A

c;

(3) if c 6 |̂
A

B there is a finite B0 ⊆ B with c 6 |̂
A

B0;

(4) there is a countable A0 ⊆ A with c |̂
A0

A;

(5) given c and A ⊆ B there is c′ |= tp(c/A) with c′ |̂
A

B;

(6) c |̂
A

c ⇔ c ∈ acl(A);

(7) given c and A ⊆ B there are ≤ 2ℵ0 possibilities for tp(c′/B) with
c′ |= tp(c/A) and c′ |̂

A
B.

These properties characterise stability and |̂ .

This extends to Meq and we have:
(7′) If A is algebraically closed in Meq and B ⊇ A then tp(c/A) has a

unique non-forking extension to a type over B.
David Evans (UEA) 4 / 16



Triviality and one-basedness

Properties that mean that |̂ is ‘uncomplicated’:

DEFINITION:
(1) T is one-based if whenever C,B ⊆Meq are algebraically closed

(in Meq) then C |̂
C∩B

B.

(2) T is trivial if whenever a |̂
A

b and c 6 |̂
A

a,b, then c 6 |̂
A

a or
c 6 |̂

A
b.

EXAMPLES:
ACFp is neither trivial nor one-based.
TV (K ) is one-based but not trivial: take linearly independent a,b,
then a + b 6 |̂ a,b but a + b |̂ a and a + b |̂ b.
TD is one-based and trivial.
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Pseudoplanes
THEOREM: (Pillay, Zilber, Lachlan) T is not one-based iff there is a
complete type definable pseudoplane I in Meq.

This means: I = I(x , y) is a complete type (over some parameter set)
such that:

1 if |= I(a,b) then a 6∈ acl(b) and b 6∈ acl(a) (over the parameters);
2 if |= I(a,b1) ∧ I(a,b2) ∧ (b1 6= b2) then a ∈ acl(b1,b2);
3 if |= I(a1,b) ∧ I(a2,b) ∧ (a1 6= a2) then b ∈ acl(a1,a2);

IDEA: If |= I(a,b) think of a as a point and b as a line (or curve) and I
as incidence. The axioms have a geometric translation.

EXAMPLE: (Free pseudoplane) Let TU be the undirected version of TD
and I = tp(a,b/∅) where (a,b) is an edge. This is a type definable
pseudoplane, so TU is not one-based. (It is trivial.)

REMARK: (Hodges) Note that we can view TU as a reduct of TD: pass
to the definable relation R(x , y) ∨ R(y , x). So a reduct of a one-based
theory is not necessarily one-based.
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Ampleness
The following is due to A. Pillay (+ modification by H. Nübling):

DEFINITION: Suppose n ≥ 1 is a natural number. Say that T is
n-ample if there exist A and c0, . . . , cn in M such that:

(i) c0 6 |̂ A
cn;

(ii) c0, . . . , ci−1 |̂ A,ci
ci+1, . . . , cn for 1 ≤ i < n;

(iii) acl(A, c0) ∩ acl(A, c1) = acl(A);
(iv) acl(A, c0, . . . ci−1, ci) ∩ acl(A, c0, . . . ci−1, ci+1) = acl(A, c0 . . . ci−1)

for 1 ≤ i < n,
where acl is in Meq.

REMARKS:
1 not 1-ample ≡ one-based.
2 not 2-ample ≡ CM-trivial.
3 (n + 1)-ample⇒ n-ample.
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Questions

Big Question
Is there a strongly minimal T which does not interpret an infinite field
and which is 2-ample?

REMARKS:
1 Hrushovski’s strongly minimal sets (not involving fields) are

1-ample but not 2-ample.
2 Pillay (2000): an infinite stable field is n-ample for all n.
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Examples

Free groups: Z. Sela proved that any two finitely generated,
non-abelian free groups are elementarily equivalent, and their
theory Tfree is stable.
THEOREM: (A. Ould Houcine, K. Tent; 2012) Tfree is n-ample ∀n.
Proof uses Sela’s work plus work of C. Perin and R. Sklinos.
Free pseudospace: A. Baudisch and A. Pillay (2000) define a free
psudospace: a 3-sorted structure consisting of points, lines,
planes. They show that its theory TBP is ω-stable, trivial and
2-ample.
Free n-space: Two recent papers (K. Tent; 2012) and (A.
Baudisch, A. Martin-Pizarro, M. Ziegler; 2012) generalize the
construction of a free pseudspace to construct a free n-space: an
(n + 1)-sorted structure consisting of points, lines, planes, .... .
They show that its theory is ω-stable, trivial, n-ample and not
(n + 1)-ample (so the ampleness hierarchy is strict).
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Avoiding triviality: 1-ampleness
The Hrushovski construction gives non-trivial, 1-ample structures.
Obtain this in a way which relates it to the free pseudoplane.

Define:
D: directed graphs with at most 2 directed edges out of each vertex;
A v B: if a→ b and a ∈ A then b ∈ A.

Then (D,v) has the full amalgamation property: if A v B ∈ D and
A ⊆ C ∈ D then the free amalgam E = C

∐
A B is in D and C v E .

Can form a rich structure N for (D,v): if A v B ∈ D are fg and A v N
there is an embedding g : B → N with g|A = id and g(B) v N.

Write down a theory T such that
1 N |= T
2 every sufficiently saturated model of T is rich.

It follows that T is complete and stable. Moreover if C,B v N then
C |̂

C∩B
B, so T is one-based and trivial.
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The reduct

The following connects this with Hrushovski’s original 1988
construction.

Let M be the undirected reduct of N and T− = Th(M).

THEOREM (DE; 2005): T− is the theory of the (uncollapsed)
Hrushovski structure with predimension δ(X ) = 2|X | − e(X ). In
particular, it is ω-stable, non-trivial, 1-ample and not 2-ample.

Question:
Can a reduct of a trivial stable structure be non-trivial and strongly
minimal?

Question (Poizat):
Is a reduct of a superstable trivial structure necessarily trivial?

David Evans (UEA) 11 / 16



The reduct

The following connects this with Hrushovski’s original 1988
construction.

Let M be the undirected reduct of N and T− = Th(M).

THEOREM (DE; 2005): T− is the theory of the (uncollapsed)
Hrushovski structure with predimension δ(X ) = 2|X | − e(X ). In
particular, it is ω-stable, non-trivial, 1-ample and not 2-ample.

Question:
Can a reduct of a trivial stable structure be non-trivial and strongly
minimal?

Question (Poizat):
Is a reduct of a superstable trivial structure necessarily trivial?

David Evans (UEA) 11 / 16



The reduct

The following connects this with Hrushovski’s original 1988
construction.

Let M be the undirected reduct of N and T− = Th(M).

THEOREM (DE; 2005): T− is the theory of the (uncollapsed)
Hrushovski structure with predimension δ(X ) = 2|X | − e(X ). In
particular, it is ω-stable, non-trivial, 1-ample and not 2-ample.

Question:
Can a reduct of a trivial stable structure be non-trivial and strongly
minimal?

Question (Poizat):
Is a reduct of a superstable trivial structure necessarily trivial?

David Evans (UEA) 11 / 16



Avoiding triviality: n-ampleness

Theorem (DE, 2003)

; DE, 2013)

There is a trivial stable theory with a non-trivial reduct which is
n-ample for all n

≤ 3.

REMARKS:
1 There is a gap in the original proof; the problem is in the

axiomatization of the rich struture before taking the reduct.
2 n = 2 case is similar to the Baudisch-Pillay free pseudospace.
3 n = 3 is different from free 3-space.
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n = 2: the trivial structure

E0: 3-sorted directed graphs; at most
2 edges out of each vertex.

0 1 2

E : those satisfying the following θ: With ai of sort i ,

a0 ← a1 → a2 ⇒
(∃b)[a0 → b → a2 or a0 → b ← a2 or a0 ← b ← a2].

(E ,v) has the full Amalgamation Property and so
there is a rich structure V for (E ,v).
Let U be the undirected reduct of V .

Theorem
1 Th(V ) is stable, one-based and trivial;
2 Th(U) is stable, non-trivial and 2-ample.
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Axiomatizing V

E is not closed under substructures. However:

LEMMA: Suppose B ∈ E and A ⊆ B is closed under successors of
vertices of sorts 0,2. Then A ∈ E . In particular, if C ⊆ B is finite there is
a finite A ⊆ B with C ⊆ A ∈ E and |A| ≤ 2|C|.

For X v A ∈ E with A finite there is a formula σX ,A such that if E ∈ E :

E |= σX ,A ⇔
for every embedding g : X → E there is an extension f : A→ E such
that successors of elements of f (A \ X ) are in A.

Then Th(V ) is axiomatised by the axioms for E and these σX ,A.

QUESTION: Is the undirected reduct U superstable?

REMARK: This is a variation on the 2003 construction; it’s not clear
whether that construction can be made to work.
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Final Remarks:

1 Similar construction for n > 2: the Lemma fails. There is a
substitute result in case n = 3.

2 Open: Is there a stable T which is not trivial, n-ample for n > 3
and which does not interpret an infinite group? (See next slide.)
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Postscript

After the talk, E. Bouscaren and C. Laskowski pointed out that (2) on
the previous slide is not the right question. One can take the ‘disjoint
union’ of the n-space of Tent / Baudisch et al. and Hrushovski’s s.m.
set: the result is not trivial (because of the s.m. set) and n-ample
(because of the n-space). Perhaps the correct question is to ask for a
stable n-ample T which does not interpret an infinite group and where
n-ampleness is witnessed by elements whose types which are
orthogonal to all trivial types. This excludes these ‘disjoint union’
examples, but I do not know whether the examples given for n = 2,3
actually satisfy this condition.
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