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Stability and independence

NOTATION:

L countable language;

T complete first-order L-theory;

M monster model of T;

a,b,c... elements or tuples from M (or M¢9);
A, B, C, ... small subsets of M (or M®9).
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Write ¢ | , Bto mean:

Suppose ¢(x, y) € L(A) and ¢(x, b) € tp(c/AU B). Suppose

(b : i < w) is an infinite A-indiscernible sequence of tp(b/A). Then
N\; o(x, b;) is consistent.

Say that tp(c/A U B) does not fork over A, or c is independent from B
over A.
REMARK: This is really non-dividing... .
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Examples:

(1) Let T = ACFp. Then ¢ J/A B < tr.deg(c/AU B) =tr.deg(c/A).
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Examples:

(1) Let T = ACFp. Then ¢ \LA B < tr.deg(c/AU B) = tr.deg(c/A).

(2) Let Ty (k) be the theory of (infinite) vector spaces over a field K.
This is stable and for subspaces C, B of M we have C LCHB B.

(3) L: 2-ary relation symbol R
Tp: directed graphs; each vertex has
one directed edge going out, infinitely z
many coming in; no (undirected) cycles.
Tp is complete and stable.
Write AC M to mean: if a € Aand
a— bthen b € A.
For C,BC M we have: C LCQB B.
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Forking independence
THEOREM. (Shelah) The following properties hold for stable T:

(0) if g € Aut(M): CLAB@chgAgB;

(1) forACBCC: CLAC@CLABand C\LBC;

(2) CLAb@b\LAC;

(3) if CJ/ABthere is a finite By C B with CJ/ABO;

(4) there is a countable Ay C A with ¢ LAO A;

(5) given c and A C Bthereis ¢’ = tp(c/A) with ¢/ 1,B

(6) C\|/AC<:> ¢ € acl(A);

(7) given c and A C B there are < 2% possibilities for tp(c’/B) with
¢ Etp(c/A)and ¢ 1l,B

These properties characterise stability and | .

This extends to M®? and we have:

(7") If Ais algebraically closed in M®? and B O Athen tp(c/A) has a
unique non-forking extension to a type over B.
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Triviality and one-basedness

Properties that mean that | is ‘uncomplicated’:

DEFINITION:

(1) T is one-based if whenever C, B C M9 are algebraically closed
(in M®9) then C \LCHB B.
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(1) T is one-based if whenever C, B C M®9 are algebraically closed
(in M®9) then C \LCHB B.
(2) T istrivial if whenever a \|/A bandc Z(/A a, b, then ¢ j/A aor
c LAb.
EXAMPLES:
@ ACF, is neither trivial nor one-based.

@ Ty (k) is one-based but not trivial: take linearly independent a, b,
thena+b f ab but a+b | aanda+b | b.

@ Tpis one-based and trivial.
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Pseudoplanes

THEOREM: (Pillay, Zilber, Lachlan) T is not one-based iff there is a
complete type definable pseudoplane | in M9,

This means: | = I(x, y) is a complete type (over some parameter set)
such that:

@ if £ I(a, b) then a & acl(b) and b ¢ acl(a) (over the parameters);
Q if = I(a, by) Al(a, b)) A (by # bo) then a € acl(by, bo);

Q if = I(a1,b) Al(az, b) A (a1 # a2) then b € acl(ay, a);
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THEOREM: (Pillay, Zilber, Lachlan) T is not one-based iff there is a
complete type definable pseudoplane | in M9,

This means: | = I(x, y) is a complete type (over some parameter set)
such that:
@ if £ I(a, b) then a & acl(b) and b ¢ acl(a) (over the parameters);
Qif ): I(a, b1) AN /(a, bg) A (b1 % bg) then a € acl(b1 , bg);
Q if = I(a1,b) Al(az, b) A (a1 # a2) then b € acl(ay, a);
IDEA: If |= I(a, b) think of a as a point and b as a line (or curve) and /
as incidence. The axioms have a geometric translation.
EXAMPLE: (Free pseudoplane) Let T, be the undirected version of Tp
and I = tp(a, b/0) where (a, b) is an edge. This is a type definable
pseudoplane, so Ty is not one-based. (It is trivial.)
REMARK: (Hodges) Note that we can view T as a reduct of Tp: pass
to the definable relation R(x, y) v R(y, x). So a reduct of a one-based
theory is not necessarily one-based.
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Ampleness

The following is due to A. Pillay (+ modification by H. Nibling):

DEFINITION: Suppose n > 1 is a natural number. Say that T is
n-ample if there exist Aand ¢y, . . ., ¢, in M such that:

() co /. ,Cn;
(i) cgy...,Ci1 LAC Cit1,...,Cnfor1 <i< n
(i) acl(A, cp) Nacl(A, ¢y) = acl(A);

(iv) acl(A, co,...Ci_1,Ci) Nacl(A, ¢y, .
for1 <i<n,

where acl is in M®9.

..Ci_1, C,'_|_1) = acl(A, Cco--
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Ampleness

The following is due to A. Pillay (+ modification by H. Nibling):

DEFINITION: Suppose n > 1 is a natural number. Say that T is
n-ample if there exist Aand ¢y, . . ., ¢, in M such that:

() o /., o
(i) cgy...,Ci1 LAC Cit1,-..,Cpfor1 <i<n
(i) acl(A, cp) Nacl(A, ¢y) = acl(A);

(iv) acl(A, co,...Ci_1,Ci) Nacl(A, ¢y, .
for1 <i<n,

where acl is in M®9.

..Ci—1, Ci+1) = acl(A, Co. .- C,'_1)

REMARKS:

@ not 1-ample = one-based.
@ not 2-ample = CM-trivial.
Q (n+ 1)-ample = n-ample.
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Questions

Big Question

Is there a strongly minimal T which does not interpret an infinite field
and which is 2-ample?
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Examples

@ Free groups: Z. Sela proved that any two finitely generated,
non-abelian free groups are elementarily equivalent, and their
theory Tyee is stable.

THEOREM: (A. Ould Houcine, K. Tent; 2012) Ty, is n-ample Vn.
Proof uses Sela’s work plus work of C. Perin and R. Sklinos.
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@ Free groups: Z. Sela proved that any two finitely generated,
non-abelian free groups are elementarily equivalent, and their
theory Tyee is stable.

THEOREM: (A. Ould Houcine, K. Tent; 2012) Ty, is n-ample Vn.
Proof uses Sela’s work plus work of C. Perin and R. Sklinos.

@ Free pseudospace: A. Baudisch and A. Pillay (2000) define a free
psudospace: a 3-sorted structure consisting of points, lines,
planes. They show that its theory Tgp is w-stable, trivial and
2-ample.

@ Free n-space: Two recent papers (K. Tent; 2012) and (A.
Baudisch, A. Martin-Pizarro, M. Ziegler; 2012) generalize the
construction of a free pseudspace to construct a free n-space: an
(n+ 1)-sorted structure consisting of points, lines, planes, .... .
They show that its theory is w-stable, trivial, n-ample and not
(n+ 1)-ample (so the ampleness hierarchy is strict).
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Avoiding triviality: 1-ampleness
The Hrushovski construction gives non-trivial, 1-ample structures.
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The Hrushovski construction gives non-trivial, 1-ample structures.
Obtain this in a way which relates it to the free pseudoplane.

Define:
D: directed graphs with at most 2 directed edges out of each vertex;
ACB:ifa— bandac Athen b € A.

Then (D, C) has the full amalgamation property: if AC B € D and
A C C € Dthen the free amalgam E = C[[,BisinDand CC E.

Can form arich structure N for (D,C):if AC Be Darefgand AC N
there is an embedding g : B — N with g|A = id and g(B) C N.

Write down a theory T such that
QOQNET

@ every sufficiently saturated model of T is rich.

It follows that T is complete and stable. Moreover if C, B C N then
C | ;B so T is one-based and trivial.
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The reduct

The following connects this with Hrushovski’s original 1988
construction.

Let M be the undirected reduct of N and T~ = Th(M).

THEOREM (DE; 2005): T~ is the theory of the (uncollapsed)
Hrushovski structure with predimension §(X) = 2|X| — e(X). In
particular, it is w-stable, non-trivial, 1-ample and not 2-ample.
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The reduct

The following connects this with Hrushovski’s original 1988
construction.

Let M be the undirected reduct of N and T~ = Th(M).

THEOREM (DE; 2005): T~ is the theory of the (uncollapsed)
Hrushovski structure with predimension §(X) = 2|X| — e(X). In
particular, it is w-stable, non-trivial, 1-ample and not 2-ample.

Question:

Can a reduct of a trivial stable structure be non-trivial and strongly
minimal?

Question (Poizat):
Is a reduct of a superstable trivial structure necessarily trivial?
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Avoiding triviality: n-ampleness

Theorem (DE, 2003)

There is a trivial stable theory with a non-trivial reduct which is
n-ample for all n
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REMARKS:

@ There is a gap in the original proof; the problem is in the
axiomatization of the rich struture before taking the reduct.
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Avoiding triviality: n-ampleness

Theorem (DE, 2003 ; DE, 2013)

There is a trivial stable theory with a non-trivial reduct which is
n-ample for all n< 3.

REMARKS:

@ There is a gap in the original proof; the problem is in the
axiomatization of the rich struture before taking the reduct.

@ n =2 case is similar to the Baudisch-Pillay free pseudospace.

© n = 3is different from free 3-space.

David Evans (UEA)

12/16



n = 2: the trivial structure

£y: 3-sorted directed graphs; at most
2 edges out of each vertex. |
&: those satisfying the following #: With a; of sort i,

dop < ay — az =
(3b)[ag — b— axoray — b«— aorag «— b — as].
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n = 2: the trivial structure

&y 3-sorted directed graphs; at most |
2 edges out of each vertex. \

&: those satisfying the following #: With a; of sort i,

dop < ay — az =
(3b)[ag — b— axoray — b«— aorag «— b — as].

(€, C) has the full Amalgamation Property and so
there is a rich structure V for (£,C).
Let U be the undirected reduct of V.

Theorem

@ Th(V) is stable, one-based and trivial;
@ Th(U) is stable, non-trivial and 2-ample.
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Axiomatizing V

£ is not closed under substructures. However:

LEMMA: Suppose B € £ and A C Biis closed under successors of
vertices of sorts 0,2. Then A € £. In particular, if C C B is finite there is
afinte AC Bwith CC Ac £ and |A| < 2|C|.
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LEMMA: Suppose B € £ and A C Biis closed under successors of
vertices of sorts 0,2. Then A € £. In particular, if C C B is finite there is
afinte AC Bwith CC Ac £ and |A| < 2|C|.

For X C A € £ with Afinite there is a formula ox 4 such that if E € &:
E ): OX,A <

for every embedding g : X — E there is an extension f : A — E such
that successors of elements of f(A\ X) are in A.

Then Th(V) is axiomatised by the axioms for £ and these ox 4.
QUESTION: Is the undirected reduct U superstable?

REMARK: This is a variation on the 2003 construction; it's not clear
whether that construction can be made to work.
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Final Remarks:

@ Similar construction for n > 2: the Lemma fails. There is a
substitute result in case n = 3.

David Evans (UEA) 15/16



Final Remarks:

@ Similar construction for n > 2: the Lemma fails. There is a
substitute result in case n = 3.

© Open: Is there a stable T which is not trivial, n-ample for n > 3
and which does not interpret an infinite group? (See next slide.)
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Postscript

After the talk, E. Bouscaren and C. Laskowski pointed out that (2) on
the previous slide is not the right question. One can take the ‘disjoint
union’ of the n-space of Tent / Baudisch et al. and Hrushovski’s s.m.
set: the result is not trivial (because of the s.m. set) and n-ample
(because of the n-space). Perhaps the correct question is to ask for a
stable n-ample T which does not interpret an infinite group and where
n-ampleness is withessed by elements whose types which are
orthogonal to all trivial types. This excludes these ‘disjoint union’
examples, but | do not know whether the examples given for n = 2,3
actually satisfy this condition.
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