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David M. Evans

0. Prerequisities and Suggested Reading

I will use David Marker’s book [Mar] as the basic reference for the talks, partly because it’s
likely to be the easiest one to find. Other presentations are available: the books by Hodges
[Hod], Poizat [PoE] are also excellent (and Poizat in French [PoF] is even better). The
classic text on model theory is by Chang and Keisler [ChK]. To go deeper into geometric
stability theory you should look at the books by Baldwin [Bal], Buechler [Bue] and (more
advanced) Pillay [Pil]. For basic material on Logic you could look at Cameron’s book
[Cam].

You can also find a variety of lecture notes on Model Theory on the web: the MODNET
page [Mod] lists a selection of these.

0.1. Logic and Model Theory. Model theory studies and compares mathematical
structures from the point of view of what can be said about them in a formal language.
Throughout these talks, we will be dealing with first-order languages.

I will assume that you are familiar with the terminology, notation and material in Chapter
1 and Chapter 2.1, 2.2 and 2.3 of [Mar]. What follows are some more details about this. I
will assume that you understand what is meant by: a first-order language (with equality)
L; how to build the formulas of L inductively using connectives and quantifiers starting
from atomic formulas; bound and free variables; closed formulas (sentences); L-structures;
the notationM |= φ ‘the formula φ is true in the L-structureM’ (or ‘M is a model of φ’);
L-theories; the theory Th(M) of an L-structure M; elementary equivalence (M ≡ N ).
See [Mar], 1.1 and 1.2 for this.

Because formulas are defined inductively, results are often proved by induction on the
number of connectives and quantifiers in a formula, with the case of atomic formulas as the
base step. A good example of this is the fact that if L-structuresM and N are isomorphic,
then they are elementarily equivalent: see 1.1.10 of [Mar].

The starting point for model theory is the Compactness Theorem: if Σ is a set of closed
L-formulas such that every finite subset of Σ has a model, then Σ has a model. The two
most common proofs of this are using Henkin’s method (cf. [Mar], 2.1) or ultraproducts
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([Mar], 2.5.20, for example). Even if you don’t know the proof of this result, I will assume
that you have seen some applications of it in examples (such as in 2.1 of [Mar]).

Definition 0.1. If M, N are L-structures and M ⊆ N we say that M is an elementary
substructure of N (or N is an elementary extension ofM) if whenever φ(x̄) is an L-formula
and ā is a tuple of elements from M, then

M |= φ(ā)⇔ N |= φ(ā).

In this case we write M � N . More generally an embedding between L-structures is an
elementary embedding if its image is an elemenary substructure of the range.

Note that we can take φ to be a closed formula here, soM� N impliesM≡ N (exercise:
give an example where the converse fails).

It is helpful to think of this in terms of definable sets. Suppose M is an L-structure, b̄ a
tuple of parameters from M and ψ(x̄, b̄) a formula with parameters b̄ and n variables x̄.
The set ψ[M, b̄] = {ā ∈ Mn : M |= ψ(ā, b̄)} is a (parameter)-definable subset of Mn. By
definition, if M� N then ψ[N , b̄] ∩Mn = ψ[M, b̄].

Suppose (I,≤) is an ordered set (such as the natural numbers, or an ordinal), and for each
i ∈ I we have an L-structure Mi. Suppose further that whenever i ≤ j then Mi � Mj.
Then we can considerM =

⋃
i∈IMi as an L-structure in a natural way, and eachMi is a

substructure of M. It can be shown that:

Lemma 0.2 (Elementary Chains). With the above notation Mi �
⋃
j∈IMj.

This is useful for constructing models with particular properties (such as saturation) via a
transfinite induction. For a proof, see 2.3.11 of [Mar].

Theorem 0.3 (Tarski-Vaught Test). Suppose M is a substructure of the L-structure N .
Then M � N if and only if whenever ψ(x, ȳ) is an L-formula and ā is a tuple in M, then
there is d ∈ N such that N |= ψ(d, ā) iff there is such a d in M.

Proof. See 2.3.5 of [Mar]. �

Theorem 0.4 (Löwenheim-Skolem Theorem). Suppose T is a set of closed L-formulas
which has an infinite model M, and κ ≥ |L|. Then T has a model of cardinality κ.

Proof. Extend the language by a set of new constant symbols of size κ. Use the
compactness theorem to show that there is an elementary extension of M of cardinality
≥ κ. Then use the Tarski-Vaught Test to construct an elemenary submodel of this of
cardinality κ. Details are in 2.3.7 of [Mar]. �

An L-theory T is a set of closed L-formulas. If φ is any (closed) L-formula with the property
that any model of T is a model of φ then we say that φ is consequence of T and write T |= φ.
(Some authors require that a theory be consistent - that is, has a model - and be closed
under consequences: I’m following Marker’s usage.) We say that T is complete if for every
closed L-formula φ either φ or ¬φ is a consequence of T . For example, if T = Th(M) for
some L-structureM, then T is a complete (consistent!) L-theory: this isn’t entirely trivial
to prove.
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Definition 0.5 (Categoricity). Suppose T is an L-theory with infinite models and κ is an
infinite cardinal. We say that T is κ-categorical if T has a model of cardinality κ and all
such models are isomorphic.

Note that if κ is at least the cardinality of L, then the Löwenheim-Skolem Theorem says
that there is some model of cardinality κ.

One of the things which model theory tries to do is this. Given an L-structure M, find a
‘nice’ subset T0 ⊆ Th(M) with the property that any formula in Th(M) is a consequence
of T0: we say that T0 axiomatizes Th(M). To show that T0 has the required property,
it is enough to show that it is complete (- exercise in the definitions). If applicable, the
following is a very convenient way of showing a theory is complete (see 2.2.6 of [Mar]):

Theorem 0.6 ( Los-Vaught Test). Suppose T is a consistent L-theory with no finite models,
and T is κ-categorical for some κ ≥ |L|. Then T is complete.

Proof. Suppose not. Then there is some closed formula φ such that neither φ nor ¬φ
is a consequence of T . Thus there are models of T ∪{φ} and T ∪{¬φ}. By the Löwenheim-
Skolem Theorem, we can take these to be of cardinality κ. They are both models of T , so
are isomorphic; however one is a model of φ and the other a model of ¬φ, and this is a
contradiction. �

For examples of the use of this, see [Mar] 2.2.4 and 2.2.5 (algebraically closed fields of
charcteristic p). Also have a look at 2.2.11 of [Mar] for a purely algebraic application of
this (due to Ax).

The definition of one formula being a consequence of a set of formulas is a semantic one:
it is phrased in terms of models. It is also possible to give a syntactic definition of one
L-formula φ being deducible from a set of L-formulas Σ: written Σ ` φ. For our purposes,
it is not necessary to give the precise definition. A deduction of φ from Σ is a finite list of
formulas ending in φ and obeying certain ‘logical rules’. It is checkable line-by-line whether
a finite list is a deduction (– at least, under the reasonable assumption that the language
is recursive). When this is properly set up the main theorem is:

Theorem 0.7 (Gödel’s Completeness Theorem). For a set of closed L-formulas Σ and a
closed L-formula φ we have:

Σ ` φ⇔ Σ |= φ.

(Exercise: deduce the Compactness Theorem from this.)

Using this we can give a better explanation of what is meant by a ‘nice’ axiomatization
in the above. We say that a theory T is decidable if there is an algorithm which, given a
closed formula φ, will decide (in a finite amount of time) whether T |= φ or not. Again,
it’s not really necessary to have a precise definition of ‘algorithm’ here: just think of it as
something which could be implemented on a digital computer in a standard programming
language.

Theorem 0.8. Suppose L is a recursive language and T0 is a recursively enumerable set of
closed L-formulas which is complete (and consistent). Then T0 is decidable.
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Here, recursiveness of L just means that we can (in principle) program a computer to recog-
nise when something is a formula; recursive enumerability of T0 means that the computer
can systematically generate all the formulas in T0: the latter is a priori weaker than being
able to decide whether any given formula is in T0.

Proof. The algorithm is this. By the assumed recursiveness, we can program the
computer to systematically produce all deductions from T0. Of course, the computer will
have to run for ever to produce all deductions, but any particular deduction will appear
after a finite amount of time (but we don’t necessarily know how long we will have to wait).
Now suppose we are given φ. Becuase T0 is complete, after some finite amount of time we
will see a deduction of φ or a deduction of ¬φ: as soon as we see one of these, the computer
can stop. (Also see [Mar], 2.2.8.)

�

For example, the theory of algebraically closed fields of characteristic 0 is a complete re-
cursively enumerable theory in the (recursive) language of rings, so is decidable. Of course,
the given algorithm is not particularly practical.

0.2. Set theory. I will assume basic knowledge of ‘näıve’ Set Theory: Axiom of
Choice, Cardinality, Ordinals, Transfinite induction, Cardinals. What’s needed can be
found in [Mar], Appendix A, or [Cam].

We will work throughout in ZFC: Zermelo-Fraenkel set theory with the Axiom of Choice.

0.3. Algebra. It will be helpful if you know some basics about (algebraically closed)
fields: algebraic independence, transcendence degree.

0.4. Lecture contents.

• Types, quantifier elimination, examples using back-and-forth.
• Closure operations, pregeometries. Algebraic closure and strongly minimal sets/

structures. Isomorphism type determined by dimension.
• Morley’s Categoricity Theorem: some idea of the Baldwin-Lachlan proof (if time).
• Zilber’s trichotomy conjecture. Hrushovski’s construction from [Hru]: the uncol-

lapsed case and the strongly minimal structures.

1. Types, saturation and quantifier elimination

Sample Motivation: We want to analyse whether certain specific theories are complete
and what the definable sets are in certain familiar mathematical structures (we will take
algebraically closed fields as a worthy example here). This is a hard problem, and we need
to develop some machinery before we can tackle it.
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1.1. Types. [This is slightly different to Marker’s presentation in 4.1 of [Mar]: it will
of course be equivalent in the end.]

Suppose L is a first-order language and M an L-structure. Let ā = (a1, . . . , an) ∈ Mn.
The complete type of ā in M (in the variables x̄ = (x1, . . . , xn)) is

tpM(ā) = {φ(x̄) :M |= φ(ā)}.

Notice that Th(M) ⊆ tpM(ā) and that if M � N then tpM(ā) = tpN (ā). We are
interested in the possible sets of formulas tpN (b̄) where b̄ ∈ N �M. We now give a more
intrinsic way of looking at this.

IfM is an L-structure and A ⊆M we define the language L(A) to be L together with new
constant symbols (ca : a ∈ A). We makeM into an L(A)-structure (M;A) by interpreting
the new constant symbol ca by the element a ∈M . (We will be less than rigorous in the use
of this notation as time progresses; in particular we will not normally distinguish betwee a
and the symbol ca.) We refer to this as ‘adding parameters for A’ to the language. Notice
that if A = {a1, . . . , an} then Th(M;A) and tpM(ā) contain the same information.

Define the elementary diagram ∆(M) of the L-structure M to be Th(M;M) (in the
language L(M)). It is easy to show that if we take a model N of this, look at the set M′

of interpretations of the new constant symbols (ca : a ∈ M) and just consider these in the
original language, then M′ is isomorphic to M and N is an elementary extension of M′.

Lemma 1.1. Suppose M is an L-structure. A set p(x̄) of L-formulas (in variables x̄) is of
the form tpN (b̄) for some b̄ ∈ N �M iff p(x̄) ⊇ Th(M) and p(x̄) is a maximal consistent
set of formulas (in the variables x̄).

Proof. (⇒:) Exercise.

(⇐:) We first show that p(x̄) ∪ ∆(M) is consistent. By the Compactness Theorem, it is
enough to show that any finite subset of this is consistent. So it suffices to take θ(x̄) ∈
p(x̄) and χ(m̄) ∈ ∆(M) (where m̄ is a tuple of the new constant symbols which we are
substituting into the L-formula χ(ȳ)), and show that (∃x̄)(θ(x̄) ∧ χ(m̄)) has a model. But
because Th(M) ⊆ p(x̄) is consistent, we have (∃x̄)(θ(x̄)) ∈ Th(M), so in fact (M;M) |=
(∃x̄)(θ(x̄) ∧ χ(m̄)).

By the consistency and the style of argument preceding the lemma, we get b̄ ∈ N � M
with p(x̄) ⊆ tpN(b̄). Maximality then gives the required equality. �

So now we can see that the set of types we are interested in is attached to T = Th(M)
rather thanM. We denote it by Sn(T ) (or Sx̄n(T ) if we need to indicate the variables being
used). By the lemma

Sn(T ) = {tpN (ā) : ā ∈ N |= T}.

This is called the (n-th) Stone space of T . We say ‘space’ because of the following remark
(which we will not use, but which can be helpful in motivating the terminology and some
of the things we do later on).
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Remarks 1.2. The set Sn(T ) can be made into a topological space by taking as basic
open sets the subsets of the form [φ(x̄)] = {p(x̄) ∈ Sn(T ) : φ(x̄) ∈ p(x̄)}. Note that the
complement of this subset is [¬φ(x̄)] so we have a basis of clopen sets here. The topology
is compact: this is essentially the Compactness Theorem. More details can be found on
p.119 of [Mar]

We will also look at types over parameters. Suppose M is an L-structure and A ⊆ M . If
b̄ ∈ N �M, the (complete) type of b̄ over A (in N ) is the set of L(A)-formulas:

tpN (b̄/A) = {φ(x̄, ā) : N |= φ(b̄, ā)}.

The set of these is Sn(Th(M;A)), which is usually denoted by Sn(A). This is of course
ambiguous notation: but when it’s used it is understood that there is in the background a
complete theory T and A is a subset of a fixed model of T .

1.2. Saturation. Throughout T is a complete L-theory with infinite models andM |=
T .

If p(x̄) ∈ Sn(T ) and there is ā ∈M withM |= p(ā) then we say that p(x̄) is realised inM
(of course we can use the same terminology for arbitrary sets of formulas consistent with
T : these are called types over T , as opposed to the complete types). In general, not every
model of T realises all the complete types, but models which have this property are very
convenient.

Definition 1.3. Suppose T is a complete L-theory and κ is an infinite cardinal. We say
that M |= T is κ-saturated if for every subset A ⊆M with |A| < κ every type in S1(A) is
realised in M.

Remarks 1.4. (1) If M is κ-saturated then |M | ≥ κ: the L(M)-type {x 6= a : a ∈ M} is
not realised in M !

(2) If M is κ-saturated then for every natural number n, M realises every type in Sn(A),
for every A of cardinality less than κ (proof by induction on n).

Theorem 1.5. Suppose M is an L-structure and κ is an infinite cardinal. Then M has
an elementary extension which is κ-saturated.

Proof. We sketch this for κ = ω = ℵ0. See 4.3.12 of [Mar] for the general case.

The proof uses the result on elementary chains 0.2 and an amalgamation property for
elementary extensions:

Fact: If M0,M1,M2 |= T and fi : M0 →Mi (for i = 1, 2) are elementary embeddings then
there is N |= T and elementary embeddings gi : Mi → N with g1 ◦ f1 = g2 ◦ f2.

To see this, note that we can assume without loss that the fi are inclusions and M1∩M2 =
M0. Then we only need to show that ∆(M1)∪∆(M2) is consistent, and this is an exercise.

Given the fact, if we have A ⊆M0 �M1 and p(x) ∈ S1(A) realised in someM2 �M0, we
can find N �M1 in which p(x) is realised. Using this repeatedly in a transfinite induction
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and applying 0.2 at the limit stages, we get that: ifM0 |= T there isM1 �M0 such that
if A is a finite subset of M0 and p(x) ∈ S1(A), then p(x) is realised in M1. Now repeat ω
times and apply 0.2 to get what we want. �

Remarks 1.6. This style of recursive construction combining an amalgamation property
with a union-of-a-chain argument occurs throughout model theory, which is why the proof
was sketched in this way.

An L-structureM is called saturated if it is |M|-saturated. Such structures have very nice
properties. For example letting κ = |M |:
Strong κ-homogeneity: if λ < κ and ā, b̄ are λ-tuples inM, then tpM(ā) = tpM(b̄) iff there
is an automorphism α of M with α(ā) = b̄.

κ-universality: Any model of Th(M) of cardinality smaller than κ can be elementarily
embedded in M.

Under set-theoretic hypotheses (such as GCH) it can be shown that any L-structure has
a saturated elementary extension. However, even in ZFC it can be shown that any L-
structure has an elementary extension with the above properties for arbitrarily large κ, but
dropping the requirement that κ be the size of the model. These are referred to as ‘big
models ’or ‘monster models’ and it is common for model theorists to take all the models
they want to work with as living as elementary submodels of such a model. See the remarks
on p.248 of [Mar] for further details and references.

1.3. Quantifier elimination. How should we go about trying to prove the complete-
ness of a given theory? How should we go about trying to describe all the definable subsets
of a given structure? We describe one approach to these questions which is often successful
(in the cases where they have a good answer). This follows closely Chapter 5 of [PoE].
There are variations and generalisations of this approach which are also useful.

Suppose L is a first-order language and let M, N be two L-structures. Suppose ā, b̄ are
tuples inM, N respectively (of the same finite length). A partial isomorphism fromM to
N which connects ā and b̄ is an isomorphism f : 〈ā〉M → 〈b̄〉N with f(ā) = b̄. [Here 〈ā〉M
is the substructure generated by ā in M.]

Exercise: There is such an f iff ā and b̄ have the same quantifier-free type: that is, whenever
φ(x̄) is a quantifier-free L-formula, thenM |= φ(ā)⇔ N |= φ(b̄). [You need to know what
a term is; you can then use induction on length of terms.]

We say that a non-empty set Γ of partial isomorphisms is a back-and-forth system connect-
ing ā and b̄ (in M and N ) if it satisfies:

(i) there exists f ∈ Γ with fā = b̄;
(ii) if f ∈ Γ and a ∈M there exists g ∈ Γ extending f and with a ∈ domg;
(iii) if f ∈ Γ and b ∈ N there exists g ∈ Γ extending f and with b ∈ img.

Theorem 1.7. Suppose M, N are L-structures and n a natural number. Let ā, b̄ be n-
tuples fromM, N respectively. If there is a back-and-forth system connecting ā and b̄, then
tpM(ā) = tpN (b̄). If M, N are ω-saturated, then the converse is true.
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Remarks 1.8. (1) Here we allow that possibility that n = 0: thus the conclusion is that
M, N are elementarily equivalent. The general case can be deduced from this by adding
parameters for ā, b̄.

(2) Here, (ii) is sometimes referred to as ‘forth’, and (iii) as ‘back.’ If (ii) and (iii) are
satisfied (and we do not mention ā, b̄) then we simply refer to Γ as a back-and-forth
system.

(3) The theorem is essentially due to R. Fräıssé: see [PoE].

(4) The proof of the forward direction proceeds by showing M |= φ(ā) ⇔ N |= φ(b̄) by
induction on the number of quantifiers in φ. For the converse, let Γ be the set of partial
isomorphisms f : 〈ā′〉M → 〈b̄′〉N where ā′, b̄′ are tuples inM, N extending ā, b̄ respectively
and which have the same type. Show that this is a back-and-forth system.

Theorem 1.9. Let T be a consistent L-theory (not necessarily complete). Let n be a positive
integer, x̄ = (x1, . . . , xn) and Σ a non-empty set of formulas in these variables. Then the
following are equivalent:

(a) For every M |= T and n-tuples ā, b̄ ∈ M, if {σ(x̄) ∈ Σ : M |= σ(ā)} = {σ(x̄) ∈
Σ :M |= σ(b̄)}, then tpM(ā) = tpM(b̄);

(b) For every L-formula ψ(x̄) there is a boolean combination θ(x̄) of formulas in Σ
such that T ` (∀x̄)(ψ(x̄)↔ θ(x̄)).

Remarks 1.10. (1) This is most commonly applied where Σ is the set of quantifier-free
formulas. In this case, if the conclusion of (b) holds for all n, then we say that T has
quantifier elimination.
(2) The direction (b) implies (a) is trivial.

Putting the last two results together we get the method for proving completeness and
quantifier elimination of a theory:

Corollary 1.11. Let T be a consistent L-theory. The following are equivalent:

(1) T is complete and has quantifier elimination.
(2) Whenever M and N are ω-saturated models of T , then the set Γ of isomorphisms

from finitely generated substructures of M to finitely generated substructures of N
is a back-and-forth system.

Proof. (1)⇒ (2) : As T is complete andM, N are ω-saturated, they realise the same
types in Sn(T ). In particular, for every ā ∈ M there is b̄ ∈ N and a partial isomorphism
which connects them. So Γ is non-empty. Suppose f ∈ Γ has domain generated by the
finite tuple ā and fā = b̄. Then by the QE, tpM(ā) = tpN (b̄). By the converse direction
of Theorem 1.7 there is a back-and-forth system connecting ā and b̄. By definition, this is
a subset of Γ so it follows easily that Γ satifies (ii) of being a back-and-forth system. The
condition (iii) is similar.

(2) ⇒ (1) : Suppose ā, b̄ are tuples in models M0, N0 of T (respectively) which satisfy
the same quantifier-free formulas. LetM, N be ω-saturated elementary extensions of M0,
N0 respectively. Then there is f : 〈ā〉M → 〈b̄〉N in Γ. By Theorem 1.7, it follows that
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tpM(ā) = tpN (b̄) and so tpM0(ā) = tpN0(b̄). Applying this where ā, b̄ are empty gives that
T is complete. Applying it with M0 = N0 and using Theorem 1.9 gives the QE. �

1.4. Algebraically closed fields. Let L be the language of rings (+,−, ., 0, 1,=).

The L-theory ACF (algebraically closed fields) has axioms:

• the field axioms written in this language
• for each n ≥ 1 the axiom

(∀x0 . . . xn−1)(∃y)(yn + xn−1y
n−1 + . . .+ x1y + x0 = 0).

If p is a prime, let χp be the obvious closed formula which forces the characteristic to be p
and let ACFp be ACF ∪ {χp}. Let ACF0 be ACF ∪ {¬χp : p prime }.

Theorem 1.12. (Tarski-Chevalley) If p is a prime or 0 , then ACFp is complete and has
QE.

Proof. We use Corollary 1.11. So let M, N be ω-saturated models of ACFp. A
finitely generated substructure here consists of the subring generated by some finite set.
Note that any isomorphism between two subrings (of M, N ) automatically extends in a
unique way to an isomorphism between the subfields which they generate. Thus it will be
enough to show that the set Γ of isomorphisms between finitely generated subfields of M
and N is a back-and-forth system.

First, note that the prime subfields of M and N are isomorphic (because they are of
the same characteristic). So Γ is non-empty. We show ‘forth’. So suppose A,B are
finitely generated subfields of M, N respectively (generated by ā, b̄) and f : A→ B is an
isomorphism. Let c ∈ M. We want to find d ∈ N and an isomorphism g : A(c) → B(d)
which extends f .

Case 1: c is algebraic over A. Let F (t) ∈ A[t] (polynomials in t) be the minimum polynomial
of c over A. This is irreducible over A, and A(c) is isomorphic to A[t] modulo the ideal
generated by F . Clearly f(F ) (applying f to the coefficients of F ) is irreducible over B.
Let d be a root of this in N . Then B(d) is isomorphic to B[t] modulo the ideal generated by
f(F ). It follows that there is an isomorphism g : A(c)→ B(d) extending f with g(c) = d.

Case 2: c is not algebraic over B. In this case, A(c) is the field of rational functions in
a single variable over A. So it will suffice to prove that there exists d ∈ N which is not
algebraic over B: for then there is a unique field isomorphism A(c)→ B(d) which extends
f and takes c to d. The existence of d follows from ω-saturation of N . Indeed, consider
the type over b̄:

p(y) = {G(y) 6= 0 : G(t) ∈ B[t] non-zero}.
[Exercise: why can we think of this as a type over b̄ rather than a type over B?]

Any finite subset of this is consistent: for any G there are only finitely many soutions to
G(y) = 0 and N is infinite. So by ω-saturation, there is d ∈ N with N |= p(d). Then d is
not algebraic over B. �
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2. Categoricity and strongly minimal sets

2.1. Overview. Recall that an L-theory T (with infinite models) is κ-categorical if, up
to isomorphism, it has a unique model of cardinality κ. We know by the Löwenheim-Skolem
Theorem, that a first-order theory cannot pin down the isomorphism type of an infinite
structure: we also have to know the cardinality of the structure. Thus, κ-categoricity for
some κ is the best that we can hope for. For ω-categorical theories, the main structural
result is (cf. 4.4.1 of [Mar], for example):

Theorem 2.1 (Ryll-Nardzewski, Engeler, Svenonius). Let L be a countable first-order
language and T a complete L-theory with infinite models. Then the following are equivalent:

(1) T is ω-categorical;
(2) For each n < ω, the Stone space Sn(T ) is finite;
(3) Every countable model of T is ω-saturated;
(4) There is a countable model M of T such that Aut(M) has finitely many orbits on

n-tuples, for all n < ω.

For example, consider the linear ordering (Q;≤). The theory T of this includes sentences
saying that it is a dense linear order without endpoints. By a theorem of Cantor, any two
countable dense linear orders without endpoints are isomorphic, so T is ω-categorical. We
can also see this from (4) above. Given a1 < . . . < an and b1 < . . . < bn in Q, there is a
(piecewise-linear) order preserving bijection Q→ Q which takes ai to bi (for i ≤ n). Then
(4) follows easily from this.

For κ-categorical theories with κ > ω the main result is :

Theorem 2.2 (Morley’s Categoricity Theorem, [Mor]). Suppose L is a countable first-
order language and T an L-theory with infinite models. Suppose that T is κ-categorical for
some uncountable κ. Then T is λ-categorical for all uncountable λ.

The proof of this involves producing a structure theory for T . This is the start of geometric
stability theory and we will say more about this later on. As part of the proof one shows
that a model of T contains a strongly minimal set which controls the isomorphism type of
the model.

2.2. Algebraic closure. Suppose M is an L-structure and A ⊆ M . We say that a
subset D ⊆M is A-definable if there is a formula φ(x, ā) with parameters from A (that is,
an L(A)-formula) such that D = φ(M, ā) = {b ∈M :M |= φ(b, ā)}. The algebraic closure
of A (in M) is the union of the finite A-definable subsets of M , denoted by acl(A).

It is worth noting that if A ⊆M � N then acl(A) is the same whether it is evaluated inM
or N . If φ(x, ā) has exactly n solutions inM then there is an L(A)-formula (∃=nx)φ(x, ā)
which expresses this; so the same is true in N . The formula φ(x, ā) is algebraic if its
solution set φ(M, ā) is finite.

Lemma 2.3. Algebraic closure in M has the following properties:

(1) if A ⊆M then A ⊆ acl(A) = acl(acl(A));
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(2) if A ⊆ B ⊆M then acl(A) ⊆ acl(B);
(3) if b ∈ acl(A) then there is a finite subset A0 of A with b ∈ acl(A0).

Proof. All clear from the definition, except acl(acl(A)) = acl(A). Suppose c is alge-
braic over acl(A). Thus there is a tuple b̄ = (b1, . . . , bn) in acl(A) and a formula ψ(x, b̄)
with only finitely many solutions (say k) in M , one of which is c. Each bi ∈ b̄ is algebraic
over A, so (by using a ∨ of algebraic formulas) there is a L(A)-formula φ(y, ā) with finitely
many solutions, amongst which are the bi. Then the formula

(∃y1 . . . yn)(ψ(x, y1, . . . , yn) ∧ ((∃=kx)ψ(x, y1, . . . , yn)) ∧
∧
i

φ(yi, ā))

has only finitely many solutions, amongst which is c. �

Remarks 2.4. Properties (1), (2) here say that acl is a closure operation; the property (3)
says that it is finitary.

Example 2.5. Let T = ACFp and M |= T . By QE, a formula φ(x, ā) is equivalent
(modulo T ) to a boolean combination of formulas of the form ‘F (x) = 0’, where F is a
polynomial with coefficients in the subfield generated by ā (Exercise!). It follows that in
this example, algebraic closure in the model-theoretic sense is the same as algebraic closure
in the field-theoretic sense.

Lemma 2.6. Suppose M, N are models of a complete theory T and f : A → B is an
elementary map between subsets of M and N (meaning: if ā is a tuple in A, and φ(x̄) is
an L-formula, then M |= φ(ā) ⇔ N |= φ(fā)). Then f extends to an elementary map
between acl(A) and acl(B).

Proof. One way is to embed M and N as elementary submodels of a highly homo-
geneous model (which we can take as M). Then there is an automorphism γ of M with
γ|A = f . One then argues that γacl(A) = acl(γ(A)) = acl(B).

More directly, suppose c ∈ acl(A). Let φ(x, ā) be an algebraic formula satisfied by c with
parameters in A with minimal size of solution set. Minimality means that this isolates
tp(c/A): a formula with parameters in A is in tp(c/A) iff it is implied by φ(x, ā).

As f is elementary, N |= ∃xφ(x, f ā): take d ∈ N satisfying it. Again by elementarity,
φ(x, f ā) is algebraic and isolates tp(d/B). It follows that f ∪ {(c, d)} is elementary.

A Zorn’s lemma argument now shows that f extends to an elementary map acl(A) →
acl(B). �

Exercise: Use the Ryll-Nardzewski Theorem to show that if M is ω-categorical, then
algebraic closure is locally finite: if A ⊆ M is finite, then acl(A) is finite (do this for the
countable model, then explain why it works in any model).

2.3. Strongly minimal sets. Suppose M is an L-structure and D = φ(M, ā) ⊆ M
is an infinite definable subset of M. We say that D (or φ(x, ā)) is strongly minimal if for
every N �M and every definable subset Y of N , either φ(N , ā)∩Y or φ(N , ā)\Y is finite.
It is an exercise to show that this is equivalent to the condition: whenever ψ(x, ȳ) is an
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L-formula, there is n < ω (depending on ψ), such that for all b̄ ∈M, either φ(x, ā)∧ψ(x, b̄)
or φ(x, ā) ∧ (¬ψ(x, b̄)) has at most n solutions.

If M itself is strongly minimal we refer to it as a strongly minimal structure: this is a
property of Th(M). To connect with Marcus’ talks: note that M is strongly minimal iff
the parameter definable subsets of M are the ones which are definable just using formulas
involving =.

Example 2.7. The following are strongly minimal:

(1) ACFp;
(2) An infinite set in the language with just =;
(3) An infinite vector space over a field (or division ring) F in the language

(+,−, 0, (fα : α ∈ F )) (where fα is the function: scalar multiplication by α).

For (1), we already noted that any formula ψ(x, b̄) is equivalent (modulo T ) to a boolean
combination of formulas of the form ‘F (x) = 0’, where F is a polynomial. Each of these has
only finitely many solutions (in any model), so a boolean combination of them has finitely
many, or cofinitely many solutions.

We leave (2), (3) as exercises. First axiomatise the theory and prove QE in the given
language using Corollary 1.11; consideration of the quantifier-free formulas then gives strong
minimality. Note that an ω-saturated model for (3) is an infinite dimensional F -vector
space.

In (2) we have acl(A) = A for all A. In (3), algebraic closure is the same as linear closure
over F .

In each of the above examples we have a notion of dimension: in (1) it is transcendence
degree, in (2) it is cardinality and in (3) it is vector space dimension. In fact, we have a
well-behaved notion of dimension for any strongly minimal set.

Theorem 2.8. Suppose M is strongly minimal. Then algebraic closure satisfies the
Exchange Property: for A ⊆M and a, b ∈M ,

if a ∈ acl(A ∪ {b}) \ acl(A) then b ∈ acl(A ∪ {a}).

Proof. Suppose φ(x, ā, b) is an algebraic formula satisfied by a, where ā ∈ A. Suppose
this has n solutions in M and consider the L(A)-formula χ(y) given by (∃=nx)φ(x, ā, y).
This is satisfied by b and so has infinitely many solutions (otherwise b ∈ acl(A) and so
a ∈ acl(A)). So all but finitely many elements of M satisfy it.

If χ(y) ∧ φ(a, ā, y) has only finitely many solutions, then we have b ∈ acl(A ∪ {a}) as
required.

So suppose this is not the case, and all but k elements of M satisfy it. We obtain a
contradiction. By assumption, a satisfies:

(∃y1 . . . yk)(∀y)(
k∧
i=1

(y 6= yi)→ ((∃=nx)φ(x, ā, y)) ∧ φ(x, ā, y)).

But as M is infinite, at most n elements x satisfy this. So a ∈ acl(A): contradiction. �
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A set X with a finitary closure operation cl on it which satisfies the exchange property is
called a pregeometry (or finitary matroid). A subset Z ⊆ X is independent if for all z ∈ Z
we have z 6∈ cl(Z \ {z}). A basis of Y ⊆ X is a maximal independent subset of Y . Using
Zorn’s lemma, such a subset exists, and it follows from the exchange principle that any two
bases of Y have the same cardinality: this is called the dimension of Y .

Given this, it follows that a strongly minimal structure has associated to it notions of
independence and dimension, coming from the operation of algebraic closure. In the case
of a vector space, these are the usual linear independence and dimension; in the case of
an algebraically closed field, they are algebraic independence and transcendence degree.
[You should be able to adapt the proof that any two bases of a vector space have the same
cardinality to this more general context.]

Lemma 2.9. Suppose T is a strongly minimal theory and A ⊆ M |= T . Then there is a
unique non-algebraic complete 1-type in S1(A).

Proof. Let p(x) consist of non-algebraic formulas φ(x, ā) with parameters in A. By
strong minimality, this is consistent and complete. Any other q(x) ∈ S1(A) contains an
algebraic formula. �

Corollary 2.10. Suppose T is strongly minimalM,N |= T contain A and b̄ = (b1, . . . , bn),
c̄ = (c1, . . . , cn) are n-tuples in M,N respectively which are independent over A (meaning:
independent with respect to algebraic closure over A). Then tpM(b̄/A) = tpN (c̄/A).

Proof. We can work in a large highly homogeneous model of T which contains M
and N as elementary submodels. We might as well assume that this is M. We now argue
by induction on n. By inductive assumption tp(b1 . . . bn−1/A) = tp(c1 . . . cn−1/A) so (by
the strong homogeneity) there is an automorphism γ of M which fixes all elements of A
and sends (b1 . . . bn−1) to c̄′ = (c1 . . . cn−1). Now γbn and cn are non-algebraic over Ac̄′, so
by the lemma, they have the same type over it. Thus tp(b̄/A) = tp(γb̄/A) = tp(c̄/A) as
required. �

Theorem 2.11. Suppose T is a strongly minimal theory and suppose M,N are models of
T of the same dimension κ. Then M and N are isomorphic.

Proof. Let (ai : i < κ) and (b̄i : i < κ) be bases of M, N respectively. By the
Corollary, the bijection ai 7→ bi is an elementary map (meaning: tpM((ai : i < κ)) =
tpN ((bi : i < κ))). But by Lemma 2.6, any elementary map between subsets extends to
an isomorphism between their algebraic closures, so in this case, we get an isomorphism
between M and N . �

Corollary 2.12. Suppose L is a countable language and T is a strongly minimal L-theory.
Then T is κ-categorical for all uncountable κ.

Proof. If A ⊆M |= T , then |A| ≤ |acl(A)| ≤ |A|+ℵ0. So ifM has cardinality κ > ℵ0

and acl(A) = M , then |A| = κ. In particular, a basis ofM has cardinality κ. Now use the
above theorem. �
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This has all been about strongly minimal structures, but we can adapt most of it to strongly
minimal definable sets. Indeed, suppose M is an L-structure and D = φ(M) is a strongly
minimal set (we will assume that this is without parameters: if necessary, for what follows
we can add the necessary parameters for the strongly minimal set to the language).

For A ⊆ D we define aclD(A) = D ∩ acl(A). This gives a pregeometry on D, and we can
refer to independence, dimension etc. with respect to this.

Analogously with Theorem 2.11 we then have (cf. 6.1.11 of [Mar]):

Theorem 2.13. Suppose T is a complete L-theory and φ(x) is a strongly minimal formula
(without parameters). If M and N are models of T in which the dimensions of φ(M) and
φ(N ) are the same, then there is an elementary bijection f : φ(M)→ φ(N ).

3. Morley’s Categoricity Theorem and ω-stability

3.1. ω-stability and total transcendence. Suppose T is a complete L-theory and
λ is an infinite cardinal. We say that T is λ-stable if for everyM |= T and subset A ⊆M
of cardinality at most λ we have |S1(A)| ≤ λ.

Example 3.1. Suppose T is a strongly minimal L-theory and L is countable. Then T is
ω-stable. Indeed, if A is a countable subset of a model of T then acl(A) is countable. There
is a unique non-algebraic complete 1-type over this (by Lemma 2.9); the remaining 1-types
over this are determined by formulas of the form ‘x = a’ (for a ∈ acl(A)). Thus

|S1(A)| ≤ |S1(acl(A))| = |acl(A)|+ 1 ≤ ω.

It is easy to show that if T is λ-stable then for each subset A of size at most λ in a model
of T , and each natural number n, we have |Sn(A)| ≤ λ.

You might like to think about why, using the definition, Th(Q;≤) is not λ-stable for any
λ. At least, show that it is not ω-stable.

We say that a complete L-theory T is totally transcendental (or just ‘t.t.’) if there do not
exist a model M |= T , formulas (φη(x, āη) : η ∈ 2<ω) with parameters in M such that

• for each ζ ∈ 2ω, the set {φη(x, āη) : η = ζ|n , n < ω} is consistent;
• for each η ∈ 2<ω, the formulas φη0(x, āη0) and φη1(x, āη1) are inconsistent.

Explanation: Here 2 = {0, 1} and 2<ω is the set of finite sequences of 0’s and 1’s which we
think of as the nodes of a binary tree. At each node η there is a a formula φη(x, āη). The
branches of the tree are the infinite sequences ζ ∈ 2ω. The first condition says that as we
go along a branch we pick up a consistent set of formulas; the second condition says that
the formulas at the successors of any node are inconsistent with each other.

If we have such a ‘tree of formulas’, there is a countable set A from which all the parameters
in the formulas come. On the other hand, going along different branches gives different
types: so there are 2ω types over A. This shows the first part of (cf. 6.2.14 of [Mar]):

Lemma 3.2. If T is ω-stable then it is totally transcendental. If L is countable, then the
converse is also true.
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Note that being t.t. is preserved under adding parameters.

3.2. Prime models. Suppose T is a complete L-theory.

A modelM |= T is a prime model of T if for everyN |= T there is an elementary embedding
M→ N . If A ⊆ M, we say that M is a prime model over A if (M;A) is a prime model
of T (A) = Th(M;A).

Suppose φ(x̄) is an L-formula and p(x̄) ∈ Sn(T ). We say that φ(x̄) isolates p(x̄) if for every
L-formula ψ(x̄)

ψ(x̄) ∈ p(x̄)⇔ T |= (∀x̄)(φ(x̄)→ ψ(x̄)).

We say that p(x̄) is isolated if some formula isolates it.

The following can be expressed as saying that in a t.t. theory, ‘isolated types are dense’
(in the Stone space).

Lemma 3.3. Suppose T is t.t. and θ(x̄) is a consistent formula. Then there is an isolated
type p(x̄) with θ(x̄) ∈ p(x̄).

Proof. If θ(x̄) doesn’t isolate a complete type, there is an L-formula ψ(x̄) such that
both θ(x̄)∧ψ(x̄) and θ(x̄)∧ (¬ψ(x̄)) are consistent. Repeat this argument with both these
formulas. Either we can carry on doing this ω times, in which case we have a tree of
L-formulas which contradicts t.t.; or we arrive at a formula θ(x̄) ∧ . . . which isolates a
complete type. �

Exercise: use a similar argument to show that if T is t.t. then there is a model M |= T
and a strongly minimal formula φ(x, ā) with parameters in M.

Theorem 3.4. Suppose T is such that the conclusion of the above lemma holds for T (A)
whenever A ⊆ M |= T (eg. suppose T is t.t.). Then for every A ⊆ M |= T , there is a
prime model MA of T (A) = Th(M;A). Moreover, we can choose MA so that the type
over A of every tuple of elements of MA is isolated.

Proof. See 4.2.20 of [Mar]. �

3.3. Outline of proof of Morley’s Theorem. We give a very brief outline of a proof
of Morley’s Categoricity Theorem. This proof is due to Baldwin and Lachlan [BaL] and
emphasises the role of strong minimality. Full details can be found in [Mar].

For the rest of this section L is a countable language and T is a complete L-theory (with
infinite models).

Step 1: Suppose T is κ-categorical for some uncountable κ. Then T is totally transcen-
dental.

– See 5.2.10 of [Mar]. Using an Ehrenfeucht-Mostowski construction, there is a model of
cardinality κ in which the number of types over any countable subset which are realized in
the model is countable. From this and κ-categoricity, it follows that T is ω-stable.
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Terminology: Suppose M ≺ N |= T and M 6= N . We say that (M,N ) is a Vaughtian
pair (for T ) if there is a non-algebraic formula φ(x̄) with parameters in M such that
φ(M) = φ(N ).

Step 2: If T is κ-categorical for some uncountable κ, then T has no Vaughtian pairs.

– See 5.2.11 of [Mar]. This is the hardest part of the proof.

Step 3: Suppose T is totally transcendental and has no Vaughtian pairs. Then T is
λ-categorical for every uncountable λ.

Let M0 be a prime model of T . We first argue that there is a strongly minimal formula
φ(x, ā) with parameters in M0. Indeed, using total transcendence, we show (as in the
exercise above) that there is a non-algebraic formula φ(x, ā) with parameters in M0 such
that for any other L(M0)-formula ψ(x, b̄), either φ(x, ā) ∧ ¬ψ(x, b̄) or φ(x, ā) ∧ ψ(x, b̄) is
algebraic. The fact that T has no Vaughtian pairs then implies that φ(x, ā) is strongly
minimal: see 6.1.14 and 6.1.15 of [Mar].

Suppose M |= T has cardinality λ > ω. We can suppose M0 �M. Consider A = φ(M).
There is a prime model M1 over this and we can assume M1 �M. Now φ(M1) = φ(M)
so as there are no Vaughtian pairs, M1 = M. So M is prime over φ(M) and it follows
that |φ(M)| = λ. So φ(M) has dimension λ.

If N |= T also has cardinality λ then again we can assume M0 � N and φ(N ) has
dimension λ. So by Theorem 2.13, there is an elementary bijection f : φ(M) → φ(N )
(over the parameters of φ). As M is prime over φ(M) this extends to an elementary
embedding g : M→ N . But gM = N : otherwise we have a Vaughtian pair. So M and
N are isomorphic.

4. Hrushovski constructions

A conjecture of Zilber from around 1980 asserted that the ‘classical’ examples of strongly
minimal structures – pure set; vector spaces; algebraically closed fields – are ‘essentially’
the only examples of strongly minimal structures.

This conjecture was refuted by Ehud Hrushovski in 1988 (in an unpublished manuscript
which was incorporated into [Hru]). In the rest of my talks, I will describe Hrushovski’s
construction of a ‘new’ strongly minimal set, in much the same way as it appears in [Hru]; a
general framework for these types of constructions can be found in Wagner’s article [Wag].
Zilber’s lectures will discuss contexts in which his conjecture remains true, and ways in
which Hrushovski’s example can be seen as part of ‘classical’ mathematics.

We want to build a strongly minimal set: a structure with a dimension on it. We build it
from finite structures each of which carries in a natural way a dimension.

4.1. Predimension and dimension. The notation will be cumulative for the rest of
the talks.

Throughout this section L will be the language having just a 3-ary relation symbol R. We
work with L-structures which are models of the following sentences T ′:
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(∀x1x2x3)(R(x1, x2, x3)→
∧
i 6=j

(xi 6= xj))

and for every permutation π of 1, 2, 3:

(∀x1x2x3)(R(x1, x2, x3)↔ R(xπ1, xπ2, xπ3)).

Thus in a model A of these, we can regard the interpretation RA of R as a set of 3-subsets
of A (rather than a set of triples).

If B |= T ′ is finite define the predimension of B to be

δ(B) = |B| − |RB|.

If B ⊆ A |= T ′ we can regard B as a substructure of A and if B is finite we can consider
δ(B). We let C̄0 be the class of structures A with the property that

δ(B) ≥ 0 for all finite B ⊆ A.

Let C0 be the finite structures in C̄0.

It is easy to see that there is an L-theory T0 whose models are precisely the structures in
C̄0.

Lemma 4.1 (Submodularity). If A ∈ C̄0 and B,C are finite subsets of A, then

δ(B ∪ C) ≤ δ(B) + δ(C)− δ(B ∩ C).

There is equality iff RB∪C = RB∪RC (in which case we say that B,C are freely amalgamated
over their intersection).

Proof. Note that the left-hand side minus the right-hand side of the inequality is:

(|B ∪ C| − (|B|+ |C| − |B ∩ C|))− (|RB∪C | − |RB| − |RC |+ |RB∩C |).

As RB∩C = RB ∩RC , this is equal to

−(|RB∪C | − |RB ∪RC |).

Hence the result. �

If A ⊆ B ∈ C̄0 is finite and for all finite B′ with A ⊆ B′ ⊆ B we have δ(A) ≤ δ(B′), then
we say that A is self-sufficient in B and write A ≤ B.

Lemma 4.2. Suppose B ∈ C0.

(1) If A ≤ B and X ⊆ B, then A ∩X ≤ X.
(2) If A ≤ B and B ≤ C ∈ C0 then A ≤ C.
(3) If A1, A2 ≤ B then A1 ∩ A2 ≤ B.

Proof. (1) Let A ∩X ⊆ Y ⊆ X. Then

δ(A ∪ Y ) ≤ δ(A) + δ(Y )− δ(Y ∩ A).
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So as A ∩X = A ∩ Y we have:

δ(Y )− δ(X ∩ A) ≥ δ(A ∪ Y )− δ(A) ≥ 0.

(2) Let A ⊆ X ⊆ C. As B ≤ C we have X ∩ B ≤ X (by (1)) so δ(X ∩ B) ≤ δ(X). Also,
A ⊆ X ∩B ⊆ B so δ(A) ≤ δ(X ∩B), by A ≤ B. So δ(A) ≤ δ(X).

(3) By (1) we have A1 ∩ A2 ≤ A2. So A1 ∩ A2 ≤ B, using (2). �

If B ∈ C̄0 and A ⊆ B then we write A ≤ B when A ∩X ≤ X for all finite X ⊆ B. It can
be checked that the above lemma still holds.

If X is a finite subset of B ∈ C̄0 then there is a finite set C with X ⊆ C ⊆ B and δ(C) as
small as possible. Then by definition, C ≤ B. Now take C as small as possible. By (3) of
the above lemma, C is uniquely determined by X: it is the intersection of all self-sufficient
subsets of B which contain X. We refer to this as the self-sufficient closure of X in B and
denote it by cl≤B(X). Write dB(X) = δ(cl≤B(X)). By the above discussion:

dB(X) = min{δ(C) : X ⊆ C ⊆f B}.

(Where C ⊆f B means C is a finite subset of B.)

This is the dimension of X in B. It is clear that if X ⊆ Y ⊆f B then dB(X) ≤ dB(Y ).

Exercise: Show that self-sufficient closure is a closure operation, but that it does not
necessarily satisfy the exchange property.

Lemma 4.3. If X, Y are finite subsets of B ∈ C̄0 then

dB(X ∪ Y ) ≤ dB(X) + dB(Y )− dB(X ∩ Y ).

Proof. Let X ′, Y ′ be the self-sufficient closures of X and Y in B. Then

dB(X ∪ Y ) = dB(X ′ ∪ Y ′) ≤ δ(X ′ ∪ Y ′) ≤ δ(X ′) + δ(Y ′)− δ(X ′ ∩ Y ′).
Now, X ∩Y ⊆ X ′∩Y ′ and the latter is self-sufficient in B. So dB(X ∩Y ) ≤ dB(X ′∩Y ′) =
δ(X ′ ∩ Y ′). The result follows. �

Remarks 4.4. From the proof we can read off when we have equality in the above. Suppose
for simplicity thatX, Y are self-sufficient. Then there is equality in the lemma iffX∪Y ≤ B
and X, Y are freely amalgamated over their intersection.

We now relativise the dimenson function. Suppose B ∈ C̄0 and ā is a tuple of elements in
B and C a finite subset of B. Define the dimension of ā over C to be:

dB(ā/C) = dB(āC)− dB(C).

(Where āC denotes the union of C and the elements in ā.)

Lemma 4.5. If ā, b̄ are tuples in B ∈ C̄0 and C is a finite subset of B then:

(1) dB(āb̄/C) = dB(ā/b̄C) + dB(b̄/C).
(2) dB(āb̄/C) ≤ dB(ā/C) + dB(b̄/C).
(3) If C ′ ⊆ C then dB(ā/C ′) ≥ dB(ā/C).
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Proof. Drop the subscript B here. (1) is by definition and (2) follows from (1) and
(3).
To prove (3), let A′ = cl≤(āC ′). Then

d(āC) = d(A′ ∪ C) ≤ d(A′) + d(C)− d(A′ ∩ C) ≤ d(A′) + d(C)− d(C ′).

Rearranging gives what we want. �

We can extend this to arbitrary C ⊆ B. We define dB(ā/C) to be the minimum of d(ā/C ′)
for C ′ ⊆f C. By (3), this is harmless if C is actually finite. It can then be shown that the
above lemma holds for arbitrary C.

Lemma 4.6. Suppose C ≤ B ∈ C̄0 and a ∈ B. Then 0 ≤ dB(a/C) ≤ 1. Moreover
dB(a/C) = 1 iff {a} ∪ C ≤ B and there is no 3-set in RB which consists of a and two
points of C.

Proof. We can assume C is finite (Ex: why?) and a 6∈ C. Then d(aC) ≤ δ(aC) ≤
δ(a)+δ(C) = 1+δ(C) = 1+d(C). The rest follows from looking at where we have equality,
as in the above remarks. �

We now define another closure operation, which does satisfy exchange.

Suppose C ⊆ B ∈ C̄0. The d-closure of C in B is:

cldB(C) = {a ∈ B : dB(a/C) = 0}.

Theorem 4.7. If B ∈ C̄0 then d-closure in B is a finitary closure operation which satisfies
the exchange condition.

Proof. Note that if dB(a/C) = 0 then dB(a/C ′) = 0 for some finite C ′ ≤ C. So cld

is finitary. Clearly C ⊆ cldB(C) and if C ⊆ D then cldB(C) ⊆ cld(D). It remains to show
cld(cld(C)) = cld(C). We can assume that C is finite. If a ∈ cld(cld(C)) there is a tuple
b̄ = (b1, . . . , bn) in cldB(C) with dB(a/b̄C) = 0. But then (using Lemma 4.5)

d(a/C) = d(a/b̄C) + d(b̄/C) ≤ 0 +
∑
i

d(bi/C) = 0.

So a ∈ cldB(C).

For exchange, suppose a ∈ cldB(C ∪ {b}) \ cld(C). By the above lemma, d(a/C) = 1 and
d(a/Cb) = 0. Then using Lemma 4.5

1 = d(ab/C) = d(b/aC) + d(a/C) = d(b/aC) + 1.

So b ∈ cldB(aC), as required. �

Thus if B ∈ C̄0 then we have a pregeometry (B; cldB).

Lemma 4.8. A finite subset Z = {z1, . . . , zn} of B is independent in the pregeometry
(B; cldB) iff d(Z) = |Z|. Thus, dimension in the sense of the pregeometry is given by dB.
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Proof. If Z is not independent, then cldB(Z) = cldB(Z0) for some proper subset Z0 of
Z. Then d(Z) = d(Z0) ≤ |Z0|. For the converse, note that

d(Z) = d(zn/zn−1 . . . z1) + d(zn−1/zn−2 . . . z1) + . . .+ d(z1).

So if this is < n then d(zi/zi−1 . . . z1) = 0 for some i ≤ n. Then zi ∈ cldB(z1 . . . z1) and Z is
not independent. �

4.2. Amalgamation. Suppose B1, B2 are structures in C̄0 (or indeed, just models
of T ′) with a common substructure A. We can assume without loss of generality that
A = B1 ∩ B2. We form another structure E with domain E = B1 ∪ B2 and relations
RE = RB1 ∪RB2 . We refer to this as the free amalgam of B1 and B2 over A.

Lemma 4.9 (Free amalgamation lemma). Suppose B1, B2 ∈ C̄0 have a common substructure
A. Suppose that A ≤ B1. Then the free amalgam E of B1 and B2 over A is in C̄0 and
B2 ≤ E.

Proof. Note that the condition of being in C̄0 is equivalent to the empty set being
self-sufficient. So it suffices to prove B2 ≤ E, for then ∅ ≤ B2 ≤ E, and ∅ ≤ E follows.

Let X be a finite subset of E. Write Xi = X ∩Bi and X0 = X ∩A. We want to show that
X2 ≤ X, so let X2 ⊆ Y ⊆ X. Now, X is the free amalgam of X1 and X2 over X0 so Y is
the free amalgam over X0 of X2 and Y ∩X1, whence δ(Y ) = δ(Y ∩X1) + δ(X2)− δ(X0).
Thus

δ(Y )− δ(X2) = δ(Y ∩X1)− δ(X0).

As A ≤ B1 we have X0 ≤ X1. So as X0 ⊆ Y ∩ X1 ⊆ X1, the above is ≥ 0. Thus
δ(Y ) ≥ δ(X2), as required. �

Of course, if A ≤ B2 here, then we also obtain B1 ≤ E (by symmetry of the argument).
However, we can usefully obtain something sightly stronger.

Supposem is a natural number. Let Y ⊆ Z ∈ C̄0. Write Y ≤m Z to mean that δ(Y ) ≤ δ(Z ′)
whenever Y ⊆ Z ′ ⊆ Z and |Z ′ \ Y | ≤ m. It is easy to check that Lemma 4.2 holds with ≤
replaced by ≤m throughout (the same proof works).

Lemma 4.10 (Strong free amalgamation lemma). Suppose B1, B2 ∈ C̄0 have a common
substructure A. Suppose that A ≤m B1 and A ≤ B2. Then the free amalgam E of B1 and
B2 over A is in C̄0 and B2 ≤m E and B1 ≤ E.

Proof. By the previous lemma we have ∅ ≤ B1 ≤ E and so E ∈ C̄0. The proof that
B2 ≤m E just requires careful inspection of the above proof. �

4.3. The uncollapsed generic.

Theorem 4.11 (The generic structure for (C0;≤)). There is a countableM∈ C̄0 satisfying
the following properties:

(C1): M is the union of a chain of finite substructures
B1 ≤ B2 ≤ B3 ≤ . . . all of which are in C0.
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(C2): If A ≤ M is finite and A ≤ B ∈ C0, then there is an embedding f : B →M with
f(B) ≤M and which is the identity on A.

Moreover M is uniquely determined up to isomorphism by these two properties and is ≤-
homogeneous (meaning: any isomorphism between finite self-sufficient substructures of M
extends to an automorphism of M.

Proof. The construction: First, note that any countable structure in C̄0 satisfies (C1).
To achieve C2, we construct the Bi inductively so that the following (which is equivalent
to C2) holds:

(C2′) If A ≤ Bi and A ≤ B ∈ C0 then there is j ≥ i and a ≤-embedding f : B → Bj which
is the identity on A.

Note that there are countably many isomorphism types of A ≤ B in C0. A standard
‘organisational’ trick allows us to show that we can just do one instance of the problem in
(C2′). But this is what amalgamation does for us: we have A ≤ Bi and A ≤ B so let Bi+1

be the free amalgam of Bi and B over A. Then Bi ≤ Bi+1 and B ≤ Bi+1.

Uniqueness: Suppose M and M′ satisfy these properties. One shows that the set of
isomorphisms A → A′ where A ≤ M and A′ ≤ M′ are finite is a back-and-forth system.
The ‘moreover’ part follows. �

The structureM is referred to as the generic structure for the amalgamation class (C0;≤).

We want to understand Th(M).

4.4. Model theory of M. We want to axiomatize Th(M) and understand types.
Recall that T0 is the set of axioms for the class C̄0, and (C1) holds in any countable model
of these.

The condition in (C2) is not (a priori) first-order: how can we express ‘for all A ≤M’ and
‘f(B) ≤M? The trick is to replace ≤ here by the approximations ≤m.

Note that for each m, and each n-tuple of variables x̄ there is a formula ψm,n(x̄) with the
property that for every C ∈ C̄0 and n-tuple ā in C we have:

ā ≤m C ⇔ C |= ψm,n(ā).

Suppose A ≤ B ∈ C0. Let x̄, ȳ be tuples of variables with x̄ corresponding to the distinct
elements of A and ȳ corresponding to the distinct elements of B \ A. Let DA(x̄) and
DA,B(x̄, ȳ) denote the basic diagrams of A and B respectively. Suppose A,B are of size
n, k respectively. For each m let σmA,B be the closed L-formula:

∀x̄∃ȳ(DA(x̄) ∧ ψm,n(x̄)→ DA,B(x̄, ȳ) ∧ ψm,k(x̄, ȳ)).

Let T consist of T0 together with these σmA,B.

Theorem 4.12. We have that M |= T and T is complete. Moreover, n-tuples c̄1, c̄2 in
models M1,M2 of T have the same type iff c̄1 7→ c̄2 extends to an isomorphism between
cl≤M1

(c̄1) and cl≤M2
(c̄2).
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Proof. Step 1: M |= T .
We showM |= σmA,B. So suppose A′ ≤mM is isomorphic to A. We have to find B′ ≤mM
isomorphic to B (over A). Let C = cl≤M(A′). Let E be the free amalgam of C and B over A
(which we identify with A′), and use Lemma 4.10. Then C ≤ E, so we can use (C2) inM
to get a ≤-embedding f : E →M which is the identity on C. Then A′ ≤ fB ≤m fE ≤M:
so B′ = fB is what we want.

Step 2: If N |= T is ω-saturated, then N satisfies (C2).
Suppose A ≤ N is finite and A ≤ B. Let ā enumerate A and n = |B|. By the σmA,B, (and
compactness) the collection of formulas {DA,B(ā, ȳ) ∧ ψm,n(āȳ) : m < ω} is consistent. So
as N is ω-saturated we get b̄ in N which satisfies all of them. Then āb̄ ≤ N and this gives
what we want.

It then follows easily that if N1, N2 are ω-saturated models of T , then the set of isomor-
phisms between finite ≤-substructures of N1 and N2 is a back-and-forth system (– we also
need to know that any finite subset is contained in a finite ≤-subset). Using Theorem 1.7
this gives the ‘if’ direction in the statement. For the converse, note that if two tuples have
the same type, then so do their self-sufficient closures (as these are part of the algebraic
closure). �

4.5. ω-stability ofM. M is the generic structure for (C0;≤) as in the previous section
and we will let T = Th(M) (this is a harmless change of notation).

Suppose M′ |= T is ω-saturated B ≤M′ and ā is a tuple in M′. There is a finite C ≤ B
with d(ā/B) = d(ā/C) and we can assume that cl(āC)∩B = C (– if not, replace C by this
intersection).

Claim: cl≤(āC) ∪B ≤M′ and is the free amalgam of cl≤(āC) and B over C.

Proof of claim: Let A = cl≤(āC).

Proof of Claim: Let A = cl(āC). It suffices to prove the claim when B is finite (– by
considering finite closed subsets of the original B). By definition of δ if A, B are not freely
amalgamated over C then δ(cl≤(āB)) ≤ δ(A ∪ B) < δ(A) + δ(B) − δ(C), which, after
rearranging the inequality, contradicts the choice of C. We have a similar contradiction if
δ(cl≤(āB)) < δ(A ∪B), thus A ∪B ≤M′. 2Claim

So tp(ā/B) is determined by C and the isomorphism type of cl(āC). So the number of
1-types over B is at most max(ℵ0, |B|). Thus T is λ-stable for all infinite λ.

Remarks 4.13. If A ≤M′ |= T is finite then acl(A) = cl≤(A). Indeed, as cl≤(A) is finite,
we have ⊇. On the other hand if b ∈ M′ \ cl≤(A), let B′ = cl≤(bA) and A′ = cl≤(A). We
can assume thatM′ is ω-saturated, so (C2) holds inM′. By considering the free amalgam
of copies of B′ over A′ we obtain infinitely many elements of M′ with the same type as b
over A′.

Note that by Lemma 4.6, if a, a′ ∈M′ and d(a/B) = d(a′/B) = 1 then tp(a/B) = tp(a′/B).

Summary: We have built an ω-stable structureM which has a predimension on it; moreover
elements of dimension 1 over a set have the same type over the set. HOWEVER,M is not
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strongly minimal: there are types of dimension 0 which are not algebraic. To produce a
strongly minimal structure by these methods requires an extra twist.

[An aside:

If you know about forking, here is a characterization of it in models of T .

Theorem 4.14. If A,B,C ⊆M′ |= T then A |̂
C
B iff

• cl≤(AC) ∩ cl≤(BC) = cl≤(C)
• cl≤(AC) and cl≤(BC) are freely amalgamated over cl≤(C)
• cl≤(ABC) = cl ≤ (AC) ∪ cl≤(BC).

Expressed in a different way, if ā is a tuple in M′, then ā |̂
C
B iff d(ā/C) = d(ā/B) and

acl(āC) ∩ acl(B) = acl(C).

Sketch of Proof. Assuming the 3 conditions hold. To simplify the notation we can assume
that A,B are closed and have intersection C and we can assume thatM′ is highly saturated.
We show that tp(A/B) does not divide over C. Suppose (Bi : i < ω) is a sequence of
translates of B over C. Let X be the ≤-closure of the union of these and let Y be the free
amalgam of X and A over C. As Bi ≤ X we have that A and Bi are freely amalgamated
over C and A ∪ Bi ≤ Y . We may assume that Y ≤M′. If A′ denotes the copy of A in Y
then tp(A′Bi) = tp(AB) for each i.

For the converse, we can use the fact that algebraic closure in M1 is self-sufficient closure to
obtain the first bullet point if A |̂

C
B. Moreover, we can assume as before that A,B are

closed and have intersection C. To simplify the argument, assume also that A,B are finite.
Let (Bi : i < ω) be a sequence of translates of B over A which are freely amalgamated over
C and such that the union of any subcollection of them is self-sufficient in M1. Suppose
for a contradiction that A,B are not freely amalgamated over C. Then the same is true of
A and Bi and there is s > 0 such that δ(A ∪Bi) = δ(A) + δ(Bi)− δ(C)− s for all i. Then
one computes that

δ(A ∪
r⋃
i=1

Bi) ≤ δ(
r⋃
i=1

Bi) + δ(A)− C − rs.

If r is large enough, this contradicts
⋃r
i=1Bi ≤Mi. The third bullet point is similar. 2

You can use this to show that the 1-type of dimension 1 is a regular type of U -rank ω. It
can also be shown that Th(M) has Morley rank ω.]

4.6. The strongly minimal case. All of this is taken from [Hru].

Definition 4.15. (1) We say that X ≤ Y ∈ C0 is an algebraic extension if X 6= Y and
δ(X) = δ(Y ).

(2) An algebraic extension X ≤ Y is simply algebraic if there does not exists Y ′ with
X ⊂ Y ′ ⊂ Y and δ(X) = δ(Y ′).

(3) A simply algebraic extension X ≤ Y is minimally simply algebraic (msa) if there does
not exist X ′ ⊂ X such that X ′ ≤ X ′ ∪ (Y \X) is simply algebraic.
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Exercise: Construct some examples of msa extensions.

Remarks 4.16. (1) If X ≤ Y is an algebraic extension then there exist X = X1 ≤ X2 ≤
. . . ≤ Xn = Y such that each Xi ≤ Xi+1 is simply algebraic.

(2) If X ≤ Y is simply algebraic, let X0 ⊆ X be the elements of X which lie is a relation
in RY \RX . Then X0 ≤ X0 ∪ (Y \X) is msa.

[Explanation if it makes sense, otherwise ignore: If X ≤ Y ≤ M′ |= T is simply algebraic
then tp(Y/X) is a minimal type (ie of U -rank 1); if it is msa then X can be thought of as
the canonical base.]

Definition 4.17. Let µ be a function from the set of isomorphism types of msa extensions
to the natural numbers.

Let C̄µ be consist of structures C ∈ C̄0 with the following property for each msa X ≤ Y :
Suppose X ′, Y ′1 , . . . , Y

′
n ⊆ C are such that Y ′i ∩ Y ′j = X (for i 6= j) and there are isomor-

phisms Y → Y ′i which all send X to X ′ in the same way. Then n ≤ µ(X, Y ). Let Cµ be
the finite structures in C̄µ.

So if C ∈ C̄µ there are at most µ(X, Y ) (disjoint) copies of Y over X, whenever X ⊆ C
and X ≤ Y is msa. In particular, if b is in one of these copies, then b is in the algebraic
closure of X. Thus, by Remarks 4.16:

Lemma 4.18. Suppose C ∈ C̄µ and B ⊆ C. If dB(a/B) = 0 then a is algebraic over B.

Theorem 4.19 (Amalgamation Lemma). Suppose that for every msa X ≤ Y we have
µ(X, Y ) ≥ δ(X). Then (C̄, µ) is an amalgamation class: if B1, B2 ∈ C̄µ and fi : A→ Bi are
≤-embeddings, then there exists C ∈ C̄µ and ≤-embeddings gi : Bi → C with g1◦f1 = g2◦f2.

Of course, we cannot necessarily take C here to be the free amalgam of B1 and B2 over A.
However, using the same proof as before, we have:

Theorem 4.20 (The generic structure for (Cµ;≤)). Suppose µ(X, Y ) ≥ δ(X) for all msa
X ≤ Y . Then there is a countable Mµ ∈ C̄µ satisfying the following properties:

(C1(µ)): Mµ is the union of a chain of finite substructures
B1 ≤ B2 ≤ B3 ≤ . . . all of which are in Cµ.

(C2(µ)): If A ≤ Mµ is finite and A ≤ B ∈ Cµ, then there is an embedding f : B →Mµ

with f(B) ≤Mµ and which is the identity on A.

Moreover Mµ is uniquely determined up to isomorphism by these two properties and is
≤-homogeneous (meaning: any isomorphism between finite self-sufficient substructures of
Mµ extends to an automorphism of Mµ).

Theorem 4.21. With the above notation, Th(Mµ) is strongly minimal.

It is easy to see (using C2(µ)) that if A ⊆ Mµ is finite, and b, b′ ∈ Mµ are such that
d(b/A) = d(b′/A), then there is an automorphism ofMµ which fixes A and sends b to b′. It
follows that tp(b/acl(A)) = tp(b′/acl(A)). However, we cannot immediately conclude from
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this that there is a unique non-algebraic 1-type over A: we do not know a priori thatMµ

is ω-saturated.

As in our analysis of Th(M), in order to prove Theorem 4.21, we need a stronger version
of the amalgamation property.

Theorem 4.22 (Strong algebraic amalgamation property). Suppose µ(X, Y ) ≥ δ(X) for
all msa X ≤ Y . Suppose A ⊆ B1, B2 ∈ Cµ and A ≤ B1 is simply algebraic. Let E be the
free amalgam of B1 and B2 over A. Then B ∈ Cµ unless one of the following holds:

(1) There is some X ⊆ A such that X ≤ Y = X∪(B1\A) is msa, and B2 contains µ(X, Y )
copies of Y which are pairwise disjoint over X.

(2) There is a set Z ⊆ B2 such that Z ∩ A 6≤ Z and B1 contains a copy of Z.

Note that if A ≤ B, then (2) cannot occur. The amalgamation lemma 4.19 follows fairly
easily from this (in case (1) we can amalgamate by identifying B1 \A with one of the copies
of Y \X over X, noting that as B1 ∈ Cµ at least one of these must be in B2).

We now write down axioms Tµ whose models N satisfy:

(A1) N ∈ C̄µ;

(A2) For each n,m there is a set of size n with no relations on it which is ≤m in N ;

(A3) Suppose A ⊆ N and A ≤ B is simply algebraic. Suppose furthermore that whenever
Z ⊆M has an isomorphic copy in B, then A∩Z ≤ Z. THEN there are µ(X, Y ) copies of
B over A in N which are pairwise disjoint over A.

Theorem 4.23. We haveMµ |= Tµ andMµ is ω-saturated. ThusMµ is strongly minimal.

Proof. (Sketch)

Step 1: Mµ |= Tµ. A1, A2 are easy. To see that axioms A3 hold, use Theorem 4.22.

Step 2: If N ,N ′ are models of Tµ of infinite dimension, then the set of isomorphisms
between finite ≤-substructures is a back-and-forth system between N and N ′.
Step 3: By step 2, asMµ is infinite dimensional, it is isomorphic to any countable elemen-
tary extension of itself. It follows that Mµ is ω-saturated.

Step 4: Mµ is minimal and therefore, by ω-saturation, it is strongly minimal. Indeed,
suppose φ(x, ā) is non-algebraic. By a compactness argument and ω-saturation, there is
b ∈ Mµ with Mµ |= φ(b, ā) and b 6∈ acl(ā). If ¬φ(x, ā) is non-algebraic then similarly,
there is b′ ∈ Mµ with Mµ |= φ(b′, ā) and b′ 6∈ acl(A). But then, as we already noted,
tp(b/ā) = tp(b′/ā) which is impossible. �
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Exercises I

LMS/EPSRC Short Course on Model Theory, Leeds, July 18-23, 2010.
Exercises on David Evans’ lectures 1 and 2.

A selection of problems of varying difficulty: choose something appropriate to your back-
ground. Some of them are just something to think about. Do some of question 5.

1. (See the description of the Stone space topology in Remark 1.2.) Suppose T is a
complete L-theory. Use the Compactness Theorem to prove that Sn(T ) is a compact
topological space.

2. A type p(x̄) ∈ Sn(T ) is isolated if there is a formula θ(x̄) ∈ p(x̄) such that [θ(x̄)] =
{p(x̄)}.
(i) Compare this with the definition of an isolated point in a topological space.

(ii) Show that p(x̄) is isolated by θ(x̄) iff for every formula φ(x̄) and modelM of T , either
M |= (∀x̄)(θ(x̄)→ φ(x̄)) or M |= (∀x̄)(θ(x̄)→ ¬φ(x̄)).

(iii) Prove that if p(x̄) is isolated and M is any model of T , there is ā ∈M which realises
p(x̄).

3. Suppose M1, M2 are countable, ω-saturated models of a complete theory T . Prove
that M1 and M2 are isomorphic.

4. Prove Theorem 1.9.

5. In each of the following, a language L (with equality) is given and a theory T is described.
In each case, write down axioms for T and prove completeness and quantifier elimination
of T .

(i) L has a single binary relation symbol E and T says that E is an equivalence relation
with infinitely many classes and all classes are infinite.

(ii) L just has =; the models of T are the infinite sets.

(iii) F is a fixed field and L = (+,−, 0, (fα : α ∈ F )); T is the theory of infinite vector
spaces in this language (with +,−, 0 the operations and zero in the vector space , and fα
is the unary function: scalar multiplication by α).

(iv) L has a 2-ary relation symbol ≤ and the models of T are the dense linear orders without
endpoints.

(v) L has a 2-ary relation symbol ≤ and a 1-ary predicate P (x). The models of T are the
dense linear orders without endpoints in which P (x) picks out a subset which is dense and
whose complement is dense.

6. Let L be the language (+,−, 0). Let G be the abelian group (Z; +,−, 0) regarded as
an L-structure. Prove that Th(G) does not have quantifier elimination. Try to write down
axioms for Th(G).

7. Use the Ryll-Nardzewski Theorem (2.1) to show that ifM is ω-categorical then algebraic
closure is locally finite: if A is a finite subset of M then acl(A) is finite.
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8. If T is one of the theories in question 5 and A ⊆ M |= T , describe the complete types
in S1(A) (for example, for A = ∅, or A infinite). Express |S1(A)| in terms of |A|.
9. Using 5(iii) prove that an infinite vector space (thought of as an L-structure in the given
way) is strongly minimal. Show that algebraic closure is the same as linear closure (and
therefore dimension is linear dimension).

10. Suppose (X; cl) is a pregeometry and Z is a basis of X. Prove that cl(Z) = X.
Show that any two bases of X have the same cardinality. [First show that a1, . . . , an ∈
cl(b1, . . . , bm) are independent, then n ≤ m.]

Exercises II

LMS/EPSRC Short Course on Model Theory, Leeds, July 18-23, 2010.
Exercises on David Evans’ lectures for the Tuesday afternoon session.

1. Show that if T is totally transcendental then there is a model M |= T and a strongly
minimal formula φ(x, ā) with parameters in M.
Variation: Use the same argument to show that ifM |= T there is an L(M)-formula φ(x, ā)
which is minimal in M (meaning: for every L(M)-formula ψ(x) either φ(x, ā) ∧ ψ(x) or
φ(x, ā) ∧ ¬ψ(x) is algebraic).

2. Suppose M is an L-structure and ψ(x, ȳ) an L-formula such that for each n < ω there
is a tuple ān ∈ M with the property that ψ(x, ān) is algebraic and has ≥ n solutions (in
M). Prove that Th(M) has a Vaughtian pair.

The following use the notation of Section 4 of the notes.

3. Give an example of A ≤ B ∈ C0 with δ(A) = δ(B) = 3, |B \A| = 3 and if A ⊂ B′ ⊂ B,
then δ(B′) > δ(A).
(Harder) Do this with |B \ A| = n.

4. Give an example of B ∈ C0 where cl≤B does not satisfy the exchange property.

5. (Easy) Give an example of B ∈ C0 and a, b ∈ B such that cldB({a, b}) 6= cldB(a) ∪ cldB(b).

6. (Harder) Let B be a finite set and R a set of subsets of size 3 of B. Consider the
structure (B;R). Show that B ∈ C0 iff there is an injective function t : R → B with
t(r) ∈ r for each r ∈ R.
[ ⇐ is fairly easy; ⇒ uses Hall’s Marriage Theorem.]
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