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Joint work with Jan Hubička and Jaroslav Nešetřil

THEMES:
Automorphism groups of nice model-theoretic structures
acting on compact Hausdorff spaces.
Connection with structural Ramsey theory
(Kechris - Pestov - Todorčević Correspondence)
Sparse graphs constructed using Hrushovski amalgamations
exhibit interesting new phenomena.

THEOREM A: There is a countable ω-categorical structure M with the
property that if H ≤ Aut(M) is (extremely) amenable, then H has
infinitely many orbits on M2.

NOTE: By the Ryll-Nardzewski Theorem, Aut(M) has finitely many
orbits on Mn for all n ∈ N.
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Amalgamation classes and Fraïssé limits.

L a 1st-order relational language and M a countable L-structure.
Age(M): class of isomorphism types of finite substructures.
M is homogeneous if all isomorphism between finite substructures of
M extend to automorphisms of M. In this case C = Age(M) satisfies:

AMALGAMATION PROPERTY (AP): If f1 : A→ B1 and f2 : A→ B2 are
embeddings between elements of C, the there is C ∈ C and
embeddings gi : Bi → C with g1 ◦ f1 = g2 ◦ f1.

Conversely: if C is a countable class of isomorphism types of finite
L-structures which is closed under taking substructures, has the joint
embedding property and
C has AP,
then there is a countable, homogeneous structure M(C) with
Age(M(C)) = C. It is unique up to isomorphism.
C is an amalgamation class and M(C) is its Fraïssé limit.
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EXAMPLE:

G the class of all finite graphs; M(G) is the Random Graph.

VARIATION: Can also work with a distinguished notion of embedding /
substructure, (C;≤).
– This is used in the Hrushovski construction.
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Ramsey classes
L≤: relational language with ≤.
A: a class of finite L≤-structures closed under substrs and satisfying
JEP and where ≤ is a linear ordering.

DEFINITION: Say that A is a Ramsey class if whenever A ⊆ B ∈ A,
there is B ⊆ C ∈ A such that if

γ :

(
C
A

)
→ {0,1}

is a 2-colouring of the copies of A in C, there is B′ ∈
(C

B

)
(a copy of B in

C) such that γ is constant on
(B′

A

)
.

EXAMPLES: (1) L = {≤}. Take A = finite linear orders.
(2) (Nešetřil - Rödl) The class G≤ of linearly ordered finite graphs.
THEOREM: (Nešetřil) If A is a Ramsey class, then A has the
amalgamation property.
– What’s special about M(A)?
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(2) (Nešetřil - Rödl) The class G≤ of linearly ordered finite graphs.
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Automorphism groups.

Ω infinite set (usually countable); Sym(Ω) symmetric group.

G ≤ Sym(Ω) ⊆ ΩΩ pointwise convergence topology.

Basic open sets: {g ∈ G : g|A = γ}, A ⊆ Ω finite and γ : A→ Ω.

G is a topological group.
Sym(Ω) complete metrizable if Ω is countable.

Lemma
G ≤ Sym(Ω) is closed iff G = Aut(M) for some 1st order structure M
with domain Ω.

INTERESTING EXAMPLES: M countable homogeneous, or
ω-categorical.

REMARK: If G ≤ Sym(Ω) is closed there is a homogeneous structure
M with Aut(M) = G (but the language may have to be infinite).
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Topological Dynamics

G a topological group.

G-flow: compact, Hausdorff, non-empty space X with a continuous
G-action.

Definition
1 G is amenable if every G-flow X supports a G-invariant Borel

probability measure.
2 G is extremely amenable if every G-flow has a fixed point.
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G-flows

G = Aut(M). Some G-flows:
1 Take G-invariant ∆ ⊆ Mn; consider Y = {0,1}∆ as a G-flow.

Also consider G-invariant, closed subspaces X of Y .
2 G-invariant, closed subspaces of S(M), Stone space over M.

EXAMPLE: G = Sym(Ω). We have a G-flow:

LO(Ω) = {R ⊆ Ω2 : R is a linear order on Ω}.

COROLLARY: If H ≤ G is e.a. then there is an H-invariant linear order
on Ω.

Theorem (Pestov, 1998)
Aut(Q;≤) is e.a.
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The Kechris - Pestov - Todorčević Correspondence

Theorem (KPT, 2005)
Suppose M is a countable, homogeneous, linearly ordered relational
structures with age A. TFAE:

1 Aut(M) is extremely amenable.
2 A is a Ramsey class.

So Ramsey classes correspond to homogeneous structures with e.a.
automorphism groups.

EXAMPLE: G≤ (finite l.o. graphs) is a Ramsey class. Let Γ≤ = M(G≤).
Then Aut(Γ≤) is e.a. The graph reduct Γ is the Random Graph and
Aut(Γ≤) ≤ Aut(Γ).
Note that G≤ is a precompact expansion of G: every A ∈ G expands to
finitely many iso types of structures in G≤.
Equivalently each Aut(Γ)-orbit on Γn splits into finitely many
Aut(Γ≤)-orbits.
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The universal minimal flow

A G-flow X is minimal if every G-orbit on X is dense.

FACT: (Ellis) There is a unique universal minimal G-flow, M(G).

DEF: Let G = Aut(M). Say H ≤ G is precompact if for every G-orbit
∆ ⊆ Mn, H has finitely many orbits on ∆.

KPT; Nguyen Van Thé
Suppose M is a countable L-structure. If G = Aut(M) has a
precompact e.a. closed subgroup H = Aut(N), then M(G) can be
described. In particular, M(G) is metrizable and has a comeagre orbit.
The same is therefore true of every minimal G-flow.

EXAMPLES: (1) M(Sym(Ω)) = LO(Ω).
(2) If Γ is the random graph, then M(Aut(Γ)) = LO(Γ).

COROLLARY: Sym(Ω) and Aut(Γ) are amenable.
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Question

Question asked (around 2011) by: Bodirsky, Pinsker, Tsankov;
Nešetřil; Nguyen van Thé:

I If M is countable ω-categorical, is there an ω-categorical expansion
N of M with Aut(N) extremely amenable? Equivalently, is there a
precompact e.a. closed subgroup of Aut(M).

Particularly interesting case: M homogeneous in a finite relational
language.
Why ask the question?

I Ubiquity of ω-categorical structures with e.a. automorphism groups
I Ubiquity of Ramsey classes
I Applications: reducts; complexity of CSP’s (Bodirsky, Pinsker et al.)
I Describing M(G) for G closed, oligomorphic permutation group.
I Evidence. Work on Ramsey expansions of Fraïssé classes:

Nešetřil - Rödl; Jasinski, Laflamme, Nguyen van Thé, Woodrow; ...
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Nešetřil - Rödl; Jasinski, Laflamme, Nguyen van Thé, Woodrow; ...

11 / 19



Sparse graphs.

DEF: Suppose k ∈ N. A graph M = (M; E) is k-sparse if for all finite
A ⊆ M we have |E [A]| ≤ k |A|.

FACT: If the graph M = (M; E) is k -sparse, then it is k-orientable:
the edges of M can be directed so that each vertex has at most k
directed edges coming out.

DEF: If M is k -sparse, let

X (M) = {D ⊆ M2 : (M; D) is a k -orientation of M} ⊆ {0,1}M2
.

Note that this is an Aut(M)-flow.
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Theorem A

FACT: (Hrushovski) There is an ω-categorical 2-sparse graph MF with
all vertices of infinite valency.

Theorem A′ (DE, Jan Hubička and Jaroslav Nešetřil)
Suppose M is a countable, k -sparse graph of infinite valency. If
H ≤ Aut(M) is amenable, then H has infinitely many orbits on M2.

COROLLARY: There is no precompact amenable subgroup of Aut(MF ).
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Proof of Thm A′: Step 1

Suppose M is a graph with all vertices of infinite valency and
H ≤ Aut(M) has finitely many orbits on M2.
If c ∈ M let Hc denote the stabilizer of c in H.
For c ∈ M let cl(c) be the union of the finite Hc-orbits on M.
There is n ∈ N s.t. |cl(c)| ≤ n for all c ∈ M.
If b ∈ cl(c) then cl(b) ⊆ cl(c).
STEP 1: There are adjacent a,b ∈ M such that b is in an infinite
Ha-orbit and a is in an infinite Hb-orbit.

PROOF: Suppose there do not exist such a,b. Then for every edge
a,b in M either a ∈ cl(b) or b ∈ cl(a). Take b with cl(b) of maximal
size. There is a 6∈ cl(b) adjacent to b. By assumption, cl(a) ⊃ cl(b):
contradiction.
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Proof of Thm A′: step 2
GIVEN: M is a k -sparse graph, H ≤ Aut(M), and a,b ∈ M are
adjacent and such that a in an infinite Hb-orbit and b is in an
infinite Ha-orbit.
Show H is not amenable.
Suppose there is an H-invariant probability measure µ on X (M).
Let S(ab) = {D ∈ X (M) : (a,b) ∈ D}. May assume
p = µ(S(ab)) > 0.
Let b1, . . . ,bn be in the same Ha-orbit as b and si the
characteristic function of S(abi). Note µ(S(abi)) = p.
For D ∈ X (M),∑

i≤n

si(D) ≤ k so
∫

D∈X(M)

∑
i≤n

si(D)dµ(D) ≤ k .

So np ≤ k : contradiction.
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Further results

THEOREM B: Suppose Y ⊆ X (Aut(MF )) is a minimal Aut(MF )-subflow.
Then all Aut(MF )-orbits on Y are meagre in Y .

Other things: Find e.a. subgroups of Aut(MF ) which are maximal e.a. ;
likewise for amenable subgroups...
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Open Questions

QUESTION: (Bodirsky, . . . ) If M is a structure homogeneous for a finite
relational language, is there a precompact e.a. subgroup H ≤ Aut(M)?

SIDE QUESTION: Is there a homogeneous structure in a finite
relational language in which a sparse graph of infinite valency can be
interpreted?

QUESTION: (A. Ivanov) If M is ω-categorical and Aut(M) is amenable,
is there a precompact e.a. subgroup H ≤ Aut(M)?
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Hrushovski’s construction I

G: class of finite graphs (A; R)

If C ⊆ A ∈ G let
δ(C) = 2|C| − |R[C]|.

(Predimension of C.)
If A ⊆ B ∈ C write A ≤d B if δ(X ) > δ(A) whenever A ⊂ X ⊆ B.
Note: If A ≤d B ≤d C then A ≤d C.
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Hrushovski’s construction II

F : R≥0 → R≥0 an increasing function which tends to infinity.
Let

GF = {A ∈ G : δ(Y ) ≥ F (|Y |) for all Y ⊆ A}.

For suitable F the class (GF ,≤d ) has free amalgamation over
≤d -substructures.
In this case the Fraïssé limit construction gives a countable graph
MF characterised by:

I MF is the union of a chain of finite ≤d -subgraphs;
I every graph in GF is isomorphic to a ≤d -subgraph of MF ;
I isomorphisms between finite ≤d -subgraphs of MF extend to

automorphisms.

The graph MF is 2-sparse and ω-categorical.
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