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THEMES:

@ Automorphism groups of nice model-theoretic structures
acting on compact Hausdorff spaces.

@ Connection with structural Ramsey theory
(Kechris - Pestov - Todorcevi¢ Correspondence)

@ Sparse graphs constructed using Hrushovski amalgamations
exhibit interesting new phenomena.

THEOREM A: There is a countable w-categorical structure M with the
property that if H < Aut(M) is (extremely) amenable, then H has
infinitely many orbits on M?.

NOTE: By the Ryll-Nardzewski Theorem, Aut(M) has finitely many
orbits on M" for all n € N.



Amalgamation classes and Fraissé limits.

L a 1st-order relational language and M a countable L-structure.
Age(M): class of isomorphism types of finite substructures.

M is homogeneous if all isomorphism between finite substructures of
M extend to automorphisms of M. In this case C = Age(M) satisfies:

AMALGAMATION PROPERTY (AP):Iffy: A— Byand b : A— B, are
embeddings between elements of C, the there is C € C and
embeddings gi: B —» Cwithgyofy = goofy.
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M is homogeneous if all isomorphism between finite substructures of
M extend to automorphisms of M. In this case C = Age(M) satisfies:
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embeddings between elements of C, the there is C € C and
embeddings gi: B —» Cwithgyofy = goofy.

Conversely: if C is a countable class of isomorphism types of finite
L-structures which is closed under taking substructures, has the joint
embedding property and

C has AP,

then there is a countable, homogeneous structure M(C) with
Age(M(C)) = C. Itis unique up to isomorphism.

C is an amalgamation class and M(C) is its Fraissé limit.
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EXAMPLE:
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EXAMPLE:

G the class of all finite graphs; M(G) is the Random Graph.

VARIATION: Can also work with a distinguished notion of embedding /
substructure, (C; <).
— This is used in the Hrushovski construction.
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Ramsey classes
L=: relational language with <.

A: a class of finite L=-structures closed under substrs and satisfying
JEP and where < is a linear ordering.

DEFINITION: Say that A is a Ramsey class if whenever AC B € A,
there is B C C € A such that if

v (2) — {0,1}

is a 2-colouring of the copies of Ain C, there is B' € (&) (a copy of Bin
C) such that  is constant on (5)).
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Ramsey classes

L=: relational language with <.
A: a class of finite L=-structures closed under substrs and satisfying
JEP and where < is a linear ordering.

DEFINITION: Say that A is a Ramsey class if whenever AC B € A,
there is B C C € A such that if

v (j) — {0,1}

is a 2-colouring of the copies of Ain C, there is B' € (&) (a copy of Bin
C) such that  is constant on (5)).

EXAMPLES: (1) L = {<}. Take A = finite linear orders.

(2) (NeSetfil - Rodl) The class G= of linearly ordered finite graphs.

THEOREM: (NeSetril) If A is a Ramsey class, then A has the
amalgamation property.
— What'’s special about M(.A)?
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Q infinite set (usually countable); Sym(£2) symmetric group.

G < Sym(Q) C Q9 pointwise convergence topology.

Basic opensets: {ge G: g|A=~}, AC Qfiniteand v : A — Q.
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Automorphism groups.

Q infinite set (usually countable); Sym(£2) symmetric group.

G < Sym(Q) C Q9 pointwise convergence topology.

Basic opensets: {ge G: g|A=~}, AC Qfiniteand v : A — Q.
G is a topological group.

Sym(€2) complete metrizable if Q2 is countable.

Lemma

G < Sym(9Q) is closed iff G = Aut(M) for some 1st order structure M
with domain Q.

INTERESTING EXAMPLES: M countable homogeneous, or
w-categorical.

REMARK: If G < Sym(Q) is closed there is a homogeneous structure
M with Aut(M) = G (but the language may have to be infinite).
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G-flows

G = Aut(M). Some G-flows:

@ Take G-invariant A C M"; consider Y = {0,1}2 as a G-flow.
Also consider G-invariant, closed subspaces X of Y.

@ G-invariant, closed subspaces of S(M), Stone space over M.

EXAMPLE: G = Sym(£2). We have a G-flow:

LO(Q) = {R C Q?: Ris a linear order on Q}.

COROLLARY: If H < Gis e.a. then there is an H-invariant linear order
on €.

Theorem (Pestov, 1998)
Aut(Q; <) is e.a. J
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The Kechris - Pestov - Todorcevi¢ Correspondence

Theorem (KPT, 2005)

Suppose M is a countable, homogeneous, linearly ordered relational
structures with age A. TFAE:

@ Aut(M) is extremely amenable.
©Q Ais a Ramsey class.

So Ramsey classes correspond to homogeneous structures with e.a.
automorphism groups.

EXAMPLE: G= (finite |.0. graphs) is a Ramsey class. Let 'S = M(G<).
Then Aut(I'=) is e.a. The graph reduct I is the Random Graph and
Aut(T's) < Aut(T).

Note that G=< is a precompact expansion of G: every A € G expands to
finitely many iso types of structures in G=.

Equivalently each Aut(I")-orbit on I'" splits into finitely many
Aut(=)-orbits.
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The universal minimal flow

A G-flow X is minimal if every G-orbit on X is dense.

FAcT: (Ellis) There is a unique universal minimal G-flow, M(G).
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FAcT: (Ellis) There is a unique universal minimal G-flow, M(G).

DEF: Let G = Aut(M). Say H < G is precompact if for every G-orbit
A C M", H has finitely many orbits on A.

KPT; Nguyen Van Thé

Suppose M is a countable L-structure. If G = Aut(M) has a
precompact e.a. closed subgroup H = Aut(N), then M(G) can be
described. In particular, M(G) is metrizable and has a comeagre orbit.
The same is therefore true of every minimal G-flow.
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FAcT: (Ellis) There is a unique universal minimal G-flow, M(G).

DEF: Let G = Aut(M). Say H < Gis precompact if for every G-orbit
A C M", H has finitely many orbits on A.

KPT; Nguyen Van Thé

Suppose M is a countable L-structure. If G = Aut(M) has a
precompact e.a. closed subgroup H = Aut(N), then M(G) can be
described. In particular, M(G) is metrizable and has a comeagre orbit.
The same is therefore true of every minimal G-flow.

EXAMPLES: (1) M(Sym(Q2)) = LO(RQ).
(2) If I' is the random graph, then M(Aut(I")) = LO(T).

COROLLARY: Sym(2) and Aut(I") are amenable.
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Nesetfil; Nguyen van Thé:
» If M is countable w-categorical, is there an w-categorical expansion

N of M with Aut(N) extremely amenable? Equivalently, is there a
precompact e.a. closed subgroup of Aut(M).

@ Particularly interesting case: M homogeneous in a finite relational
language.
@ Why ask the question?

Ubiquity of w-categorical structures with e.a. automorphism groups
Ubiquity of Ramsey classes

Applications: reducts; complexity of CSP’s (Bodirsky, Pinsker et al.)
Describing M(G) for G closed, oligomorphic permutation group.
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@ Question asked (around 2011) by: Bodirsky, Pinsker, Tsankov;
Nesetfil; Nguyen van Thé:
» If M is countable w-categorical, is there an w-categorical expansion

N of M with Aut(N) extremely amenable? Equivalently, is there a
precompact e.a. closed subgroup of Aut(M).

@ Particularly interesting case: M homogeneous in a finite relational
language.

@ Why ask the question?

Ubiquity of w-categorical structures with e.a. automorphism groups

Ubiquity of Ramsey classes

Applications: reducts; complexity of CSP’s (Bodirsky, Pinsker et al.)

Describing M(G) for G closed, oligomorphic permutation group.

Evidence. Work on Ramsey expansions of Fraissé classes:

Nesetfil - Rddl; Jasinski, Laflamme, Nguyen van Thé, Woodrow; ...

v
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FACT: (Hrushovski) There is an w-categorical 2-sparse graph Mg with
all vertices of infinite valency.
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Theorem A

FACT: (Hrushovski) There is an w-categorical 2-sparse graph Mg with
all vertices of infinite valency.

Theorem A’ (DE, Jan HubiCka and Jaroslav NeSetfil)

Suppose M is a countable, k-sparse graph of infinite valency. If
H < Aut(M) is amenable, then H has infinitely many orbits on M2,

COROLLARY: There is no precompact amenable subgroup of Aut(MF).
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Proof of Thm A’: Step 1

@ Suppose M is a graph with all vertices of infinite valency and
H < Aut(M) has finitely many orbits on M?.

@ If c € M let H; denote the stabilizer of cin H.

@ For ¢ € M let cl(c) be the union of the finite H¢-orbits on M.

@ Thereis ne Ns.t. |cl(c)| < nforall c € M.

@ If b e cl(c) then cl(b) C cl(c).

@ STEP 1: There are adjacent a, b € M such that b is in an infinite
Hz-orbit and ais in an infinite Hp-orbit.

PROOF: Suppose there do not exist such a, b. Then for every edge
a,bin M either a € cl(b) or b € cl(a). Take b with cl(b) of maximal
size. There is a ¢ cl(b) adjacent to b. By assumption, cl(a) D cl(b):
contradiction.
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Proof of Thm A’: step 2

@ GIVEN: M is a k-sparse graph, H < Aut(M), and a,b € M are
adjacent and such that a in an infinite Hp-orbit and b is in an
infinite H,-orbit.

@ Show H is not amenable.
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Further results

THEOREM B: Suppose Y C X(Aut(Mr)) is a minimal Aut(Mg)-subflow.
Then all Aut(Mg)-orbits on Y are meagre in Y.

Other things: Find e.a. subgroups of Aut(Mr) which are maximal e.a. ;
likewise for amenable subgroups...
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Open Questions

QUESTION: (Bodirsky, ...) If M is a structure homogeneous for a finite
relational language, is there a precompact e.a. subgroup H < Aut(M)?

SIDE QUESTION: Is there a homogeneous structure in a finite
relational language in which a sparse graph of infinite valency can be
interpreted?

QUESTION: (A. Ivanov) If M is w-categorical and Aut(M) is amenable,
is there a precompact e.a. subgroup H < Aut(M)?



Hrushovski’s construction |

@ G: class of finite graphs (A; R)
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@ G: class of finite graphs (A; R)
@ IfCCAcglet
3(C) = 2|C| - [RIC]|-
(Predimension of C.)
@ If AC BeCwrite A<y Bif §(X) > 6(A) whenever A C X C B.
@ Note: If A<y B <q Cthen A<, C.
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Hrushovski’s construction Il

@ F:R2% - R20 an increasing function which tends to infinity.

@ Let
Gr={A€G:4(Y)=>F(Y]) forall Y C A}.

@ For suitable F the class (Gr, <g) has free amalgamation over
<g4-Substructures.

@ In this case the Fraissé limit construction gives a countable graph
Mg characterised by:
» Mk is the union of a chain of finite <g4-subgraphs;
» every graph in Gg is isomorphic to a <4-subgraph of M;
» isomorphisms between finite <g-subgraphs of Mg extend to
automorphisms.

@ The graph ME is 2-sparse and w-categorical.
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