Automorphism groups and Ramsey properties of sparse graphs.

David Evans Dept. of Mathematics, Imperial College London. Joint work with Jan Hubička and Jaroslav Nešetřil

THEMES:

- Automorphism groups of nice model-theoretic structures acting on compact Hausdorff spaces.
- Connection with structural Ramsey theory (Kechris - Pestov - Todorčević Correspondence)
- Sparse graphs constructed using Hrushovski amalgamations exhibit interesting new phenomena.

THEOREM A: There is a countable ω -categorical structure M with the property that if $H \leq \operatorname{Aut}(M)$ is (extremely) amenable, then H has infinitely many orbits on M^2 .

NOTE: By the Ryll-Nardzewski Theorem, Aut(M) has finitely many orbits on M^n for all $n \in \mathbb{N}$.

くぼう くほう くほう

Joint work with Jan Hubička and Jaroslav Nešetřil

THEMES:

- Automorphism groups of nice model-theoretic structures acting on compact Hausdorff spaces.
- Connection with structural Ramsey theory (Kechris - Pestov - Todorčević Correspondence)
- Sparse graphs constructed using Hrushovski amalgamations exhibit interesting new phenomena.

THEOREM A: There is a countable ω -categorical structure M with the property that if $H \leq \operatorname{Aut}(M)$ is (extremely) amenable, then H has infinitely many orbits on M^2 .

NOTE: By the Ryll-Nardzewski Theorem, Aut(M) has finitely many orbits on M^n for all $n \in \mathbb{N}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Amalgamation classes and Fraïssé limits.

L a 1st-order relational language and *M* a countable *L*-structure. Age(M): class of isomorphism types of finite substructures.

M is *homogeneous* if all isomorphism between finite substructures of *M* extend to automorphisms of *M*. In this case C = Age(M) satisfies:

AMALGAMATION PROPERTY (AP): If $f_1 : A \to B_1$ and $f_2 : A \to B_2$ are embeddings between elements of C, the there is $C \in C$ and embeddings $g_i : B_i \to C$ with $g_1 \circ f_1 = g_2 \circ f_1$.

Conversely: if C is a countable class of isomorphism types of finite *L*-structures which is closed under taking substructures, has the joint embedding property and

 \mathcal{C} has AP,

then there is a countable, homogeneous structure $M(\mathcal{C})$ with $Age(M(\mathcal{C})) = \mathcal{C}$. It is unique up to isomorphism.

C is an *amalgamation class* and M(C) is its *Fraïssé limit*.

Amalgamation classes and Fraïssé limits.

L a 1st-order relational language and *M* a countable *L*-structure. Age(M): class of isomorphism types of finite substructures.

M is *homogeneous* if all isomorphism between finite substructures of *M* extend to automorphisms of *M*. In this case C = Age(M) satisfies:

AMALGAMATION PROPERTY (AP): If $f_1 : A \to B_1$ and $f_2 : A \to B_2$ are embeddings between elements of C, the there is $C \in C$ and embeddings $g_i : B_i \to C$ with $g_1 \circ f_1 = g_2 \circ f_1$.

Conversely: if C is a countable class of isomorphism types of finite *L*-structures which is closed under taking substructures, has the joint embedding property and

 $\ensuremath{\mathcal{C}}$ has AP,

then there is a countable, homogeneous structure $M(\mathcal{C})$ with $Age(M(\mathcal{C})) = \mathcal{C}$. It is unique up to isomorphism.

C is an *amalgamation class* and M(C) is its *Fraïssé limit*.

Amalgamation classes and Fraïssé limits.

L a 1st-order relational language and *M* a countable *L*-structure. Age(M): class of isomorphism types of finite substructures.

M is *homogeneous* if all isomorphism between finite substructures of *M* extend to automorphisms of *M*. In this case C = Age(M) satisfies:

AMALGAMATION PROPERTY (AP): If $f_1 : A \to B_1$ and $f_2 : A \to B_2$ are embeddings between elements of C, the there is $C \in C$ and embeddings $g_i : B_i \to C$ with $g_1 \circ f_1 = g_2 \circ f_1$.

Conversely: if C is a countable class of isomorphism types of finite *L*-structures which is closed under taking substructures, has the joint embedding property and

 $\ensuremath{\mathcal{C}}$ has AP,

then there is a countable, homogeneous structure $M(\mathcal{C})$ with $Age(M(\mathcal{C})) = \mathcal{C}$. It is unique up to isomorphism.

C is an *amalgamation class* and M(C) is its *Fraïssé limit*.

EXAMPLE:

\mathcal{G} the class of all finite graphs; $M(\mathcal{G})$ is the Random Graph.

VARIATION: Can also work with a distinguished notion of embedding / substructure, (C; \leq).

– This is used in the Hrushovski construction.

- \mathcal{G} the class of all finite graphs; $M(\mathcal{G})$ is the Random Graph.
- VARIATION: Can also work with a distinguished notion of embedding / substructure, (C; \leq).
- This is used in the Hrushovski construction.

 L^{\leq} : relational language with \leq .

A: a class of finite L^{\leq} -structures closed under substrs and satisfying JEP and where \leq is a linear ordering.

DEFINITION: Say that A is a Ramsey class if whenever $A \subseteq B \in A$, there is $B \subseteq C \in A$ such that if

$$\gamma: \begin{pmatrix} C \\ A \end{pmatrix} \to \{0, 1\}$$

is a 2-colouring of the copies of *A* in *C*, there is $B' \in {\binom{C}{B}}$ (a copy of *B* in *C*) such that γ is constant on ${\binom{B'}{A}}$.

EXAMPLES: (1) $L = \{\leq\}$. Take A =finite linear orders.

(2) (Nešetřil - Rödl) The class \mathcal{G}^{\leq} of linearly ordered finite graphs.

THEOREM: (Nešetřil) If A is a Ramsey class, then A has the amalgamation property.

– What's special about M(A)?

イロト イヨト イヨト イヨト

 L^{\leq} : relational language with \leq .

A: a class of finite L^{\leq} -structures closed under substrs and satisfying JEP and where \leq is a linear ordering.

DEFINITION: Say that A is a Ramsey class if whenever $A \subseteq B \in A$, there is $B \subseteq C \in A$ such that if

$$\gamma: \begin{pmatrix} C \\ A \end{pmatrix} \to \{0, 1\}$$

is a 2-colouring of the copies of *A* in *C*, there is $B' \in {\binom{C}{B}}$ (a copy of *B* in *C*) such that γ is constant on ${\binom{B'}{A}}$.

EXAMPLES: (1) $L = \{\leq\}$. Take A = finite linear orders.

(2) (Nešetřil - Rödl) The class \mathcal{G}^{\leq} of linearly ordered finite graphs.

THEOREM: (Nešetřil) If \mathcal{A} is a Ramsey class, then \mathcal{A} has the amalgamation property.

– What's special about $M(\mathcal{A})$?

イロト イヨト イヨト イヨト

 L^{\leq} : relational language with \leq .

A: a class of finite L^{\leq} -structures closed under substrs and satisfying JEP and where \leq is a linear ordering.

DEFINITION: Say that A is a Ramsey class if whenever $A \subseteq B \in A$, there is $B \subseteq C \in A$ such that if

$$\gamma: \begin{pmatrix} C \\ A \end{pmatrix} \to \{0, 1\}$$

is a 2-colouring of the copies of *A* in *C*, there is $B' \in {\binom{C}{B}}$ (a copy of *B* in *C*) such that γ is constant on ${\binom{B'}{A}}$.

EXAMPLES: (1) $L = \{\leq\}$. Take A = finite linear orders.

(2) (Nešetřil - Rödl) The class \mathcal{G}^{\leq} of linearly ordered finite graphs.

THEOREM: (Nešetřil) If $\mathcal A$ is a Ramsey class, then $\mathcal A$ has the amalgamation property.

– What's special about $M(\mathcal{A})$?

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

 L^{\leq} : relational language with \leq .

A: a class of finite L^{\leq} -structures closed under substrs and satisfying JEP and where \leq is a linear ordering.

DEFINITION: Say that A is a Ramsey class if whenever $A \subseteq B \in A$, there is $B \subseteq C \in A$ such that if

$$\gamma: \begin{pmatrix} C \\ A \end{pmatrix} \to \{0, 1\}$$

is a 2-colouring of the copies of *A* in *C*, there is $B' \in {\binom{C}{B}}$ (a copy of *B* in *C*) such that γ is constant on ${\binom{B'}{A}}$.

EXAMPLES: (1) $L = \{\leq\}$. Take A = finite linear orders.

(2) (Nešetřil - Rödl) The class \mathcal{G}^{\leq} of linearly ordered finite graphs.

THEOREM: (Nešetřil) If \mathcal{A} is a Ramsey class, then \mathcal{A} has the amalgamation property.

– What's special about $M(\mathcal{A})$?

 L^{\leq} : relational language with \leq .

A: a class of finite L^{\leq} -structures closed under substrs and satisfying JEP and where \leq is a linear ordering.

DEFINITION: Say that A is a Ramsey class if whenever $A \subseteq B \in A$, there is $B \subseteq C \in A$ such that if

$$\gamma: \begin{pmatrix} C \\ A \end{pmatrix} \to \{0, 1\}$$

is a 2-colouring of the copies of *A* in *C*, there is $B' \in {\binom{C}{B}}$ (a copy of *B* in *C*) such that γ is constant on ${\binom{B'}{A}}$.

EXAMPLES: (1) $L = \{\leq\}$. Take A = finite linear orders.

(2) (Nešetřil - Rödl) The class \mathcal{G}^{\leq} of linearly ordered finite graphs.

THEOREM: (Nešetřil) If A is a Ramsey class, then A has the amalgamation property.

– What's special about $M(\mathcal{A})$?

 Ω infinite set (usually countable); $Sym(\Omega)$ symmetric group.

 $G \leq \operatorname{Sym}(\Omega) \subseteq \Omega^{\Omega}$ pointwise convergence topology.

Basic open sets: $\{g \in G : g | A = \gamma\}, A \subseteq \Omega$ finite and $\gamma : A \rightarrow \Omega$.

G is a topological group. Sym(Ω) complete metrizable if Ω is countable.

Lemma

 $G \leq \text{Sym}(\Omega)$ is closed iff G = Aut(M) for some 1st order structure M with domain Ω .

INTERESTING EXAMPLES: M countable homogeneous, or ω -categorical.

REMARK: If $G \leq \text{Sym}(\Omega)$ is closed there is a *homogeneous* structure M with Aut(M) = G (but the language may have to be infinite).

< 日 > < 同 > < 回 > < 回 > < □ > <

 Ω infinite set (usually countable); $Sym(\Omega)$ symmetric group.

 $G \leq \operatorname{Sym}(\Omega) \subseteq \Omega^{\Omega}$ pointwise convergence topology.

Basic open sets: $\{g \in G : g | A = \gamma\}, A \subseteq \Omega$ finite and $\gamma : A \rightarrow \Omega$.

G is a topological group. Sym(Ω) complete metrizable if Ω is countable.

Lemma

 $G \leq \text{Sym}(\Omega)$ is closed iff G = Aut(M) for some 1st order structure M with domain Ω .

INTERESTING EXAMPLES: M countable homogeneous, or ω -categorical.

REMARK: If $G \leq \text{Sym}(\Omega)$ is closed there is a *homogeneous* structure M with Aut(M) = G (but the language may have to be infinite).

イロト 不得 トイヨト イヨト

 Ω infinite set (usually countable); $Sym(\Omega)$ symmetric group.

 $G \leq \operatorname{Sym}(\Omega) \subseteq \Omega^{\Omega}$ pointwise convergence topology.

Basic open sets: $\{g \in G : g | A = \gamma\}, A \subseteq \Omega$ finite and $\gamma : A \rightarrow \Omega$.

G is a topological group. Sym(Ω) complete metrizable if Ω is countable.

Lemma

 $G \leq \text{Sym}(\Omega)$ is closed iff G = Aut(M) for some 1st order structure M with domain Ω .

INTERESTING EXAMPLES: M countable homogeneous, or ω -categorical.

REMARK: If $G \leq \text{Sym}(\Omega)$ is closed there is a *homogeneous* structure M with Aut(M) = G (but the language may have to be infinite).

A D A A B A A B A A B A B B

 Ω infinite set (usually countable); $Sym(\Omega)$ symmetric group.

 $G \leq \operatorname{Sym}(\Omega) \subseteq \Omega^{\Omega}$ pointwise convergence topology.

Basic open sets: $\{g \in G : g | A = \gamma\}, A \subseteq \Omega$ finite and $\gamma : A \rightarrow \Omega$.

G is a topological group. Sym(Ω) complete metrizable if Ω is countable.

Lemma

 $G \leq \text{Sym}(\Omega)$ is closed iff G = Aut(M) for some 1st order structure M with domain Ω .

INTERESTING EXAMPLES: M countable homogeneous, or ω -categorical.

REMARK: If $G \leq \text{Sym}(\Omega)$ is closed there is a *homogeneous* structure M with Aut(M) = G (but the language may have to be infinite).

A D A A B A A B A A B A B B

 Ω infinite set (usually countable); $\operatorname{Sym}(\Omega)$ symmetric group.

 $G \leq \operatorname{Sym}(\Omega) \subseteq \Omega^{\Omega}$ pointwise convergence topology.

Basic open sets: $\{g \in G : g | A = \gamma\}, A \subseteq \Omega$ finite and $\gamma : A \rightarrow \Omega$.

G is a topological group. Sym(Ω) complete metrizable if Ω is countable.

Lemma

 $G \leq \text{Sym}(\Omega)$ is closed iff G = Aut(M) for some 1st order structure M with domain Ω .

INTERESTING EXAMPLES: M countable homogeneous, or ω -categorical.

REMARK: If $G \leq \text{Sym}(\Omega)$ is closed there is a *homogeneous* structure M with Aut(M) = G (but the language may have to be infinite).

A D A A B A A B A A B A B B

G a topological group.

G-flow: compact, Hausdorff, non-empty space X with a continuous *G*-action.

Definition

- *G* is *amenable* if every *G*-flow *X* supports a *G*-invariant Borel probability measure.
- G is extremely amenable if every G-flow has a fixed point.

G a topological group.

G-flow: compact, Hausdorff, non-empty space X with a continuous *G*-action.

Definition

• *G* is *amenable* if every *G*-flow *X* supports a *G*-invariant Borel probability measure.

G is extremely amenable if every G-flow has a fixed point.

G a topological group.

G-flow: compact, Hausdorff, non-empty space X with a continuous *G*-action.

Definition

- *G* is *amenable* if every *G*-flow *X* supports a *G*-invariant Borel probability measure.
- G is extremely amenable if every G-flow has a fixed point.

7/19

G a topological group.

G-flow: compact, Hausdorff, non-empty space X with a continuous *G*-action.

Definition

- *G* is *amenable* if every *G*-flow *X* supports a *G*-invariant Borel probability measure.
- G is extremely amenable if every G-flow has a fixed point.

7/19

- G = Aut(M). Some *G*-flows:
 - Take *G*-invariant $\Delta \subseteq M^n$; consider $Y = \{0, 1\}^{\Delta}$ as a *G*-flow. Also consider *G*-invariant, closed subspaces *X* of *Y*.
 - ③ G-invariant, closed subspaces of S(M), Stone space over M.

EXAMPLE: $G = Sym(\Omega)$. We have a *G*-flow:

 $LO(\Omega) = \{ R \subseteq \Omega^2 : R \text{ is a linear order on } \Omega \}.$

COROLLARY: If $H \leq G$ is e.a. then there is an *H*-invariant linear order on Ω .

Theorem (Pestov, 1998) Aut(\mathbb{Q} ; \leq) is e.a.

- G = Aut(M). Some *G*-flows:
 - Take *G*-invariant $\Delta \subseteq M^n$; consider $Y = \{0, 1\}^{\Delta}$ as a *G*-flow. Also consider *G*-invariant, closed subspaces *X* of *Y*.
 - **2** *G*-invariant, closed subspaces of S(M), Stone space over *M*.

EXAMPLE: $G = Sym(\Omega)$. We have a *G*-flow:

 $LO(\Omega) = \{ R \subseteq \Omega^2 : R \text{ is a linear order on } \Omega \}.$

COROLLARY: If $H \leq G$ is e.a. then there is an *H*-invariant linear order on Ω .

Theorem (Pestov, 1998) Aut(\mathbb{Q} ; \leq) is e.a.

G = Aut(M). Some *G*-flows:

- Take *G*-invariant $\Delta \subseteq M^n$; consider $Y = \{0, 1\}^{\Delta}$ as a *G*-flow. Also consider *G*-invariant, closed subspaces *X* of *Y*.
- **2** *G*-invariant, closed subspaces of S(M), Stone space over *M*.

EXAMPLE: $G = Sym(\Omega)$. We have a *G*-flow:

 $LO(\Omega) = \{ R \subseteq \Omega^2 : R \text{ is a linear order on } \Omega \}.$

COROLLARY: If $H \leq G$ is e.a. then there is an *H*-invariant linear order on Ω .

Theorem (Pestov, 1998) Aut(\mathbb{Q} ; \leq) is e.a.

G = Aut(M). Some *G*-flows:

- Take *G*-invariant $\Delta \subseteq M^n$; consider $Y = \{0, 1\}^{\Delta}$ as a *G*-flow. Also consider *G*-invariant, closed subspaces *X* of *Y*.
- **2** *G*-invariant, closed subspaces of S(M), Stone space over *M*.

EXAMPLE: $G = Sym(\Omega)$. We have a *G*-flow:

 $LO(\Omega) = \{ R \subseteq \Omega^2 : R \text{ is a linear order on } \Omega \}.$

COROLLARY: If $H \leq G$ is e.a. then there is an *H*-invariant linear order on Ω .

Theorem (Pestov, 1998) Aut(\mathbb{Q} ; \leq) is e.a.

G = Aut(M). Some *G*-flows:

- Take *G*-invariant $\Delta \subseteq M^n$; consider $Y = \{0, 1\}^{\Delta}$ as a *G*-flow. Also consider *G*-invariant, closed subspaces *X* of *Y*.
- **2** *G*-invariant, closed subspaces of S(M), Stone space over *M*.

EXAMPLE: $G = Sym(\Omega)$. We have a *G*-flow:

 $LO(\Omega) = \{ R \subseteq \Omega^2 : R \text{ is a linear order on } \Omega \}.$

COROLLARY: If $H \leq G$ is e.a. then there is an *H*-invariant linear order on Ω .

Theorem (Pestov, 1998) Aut(\mathbb{Q} ; \leq) is e.a.

A (10) A (10) A (10) A

The Kechris - Pestov - Todorčević Correspondence

Theorem (KPT, 2005)

Suppose *M* is a countable, homogeneous, linearly ordered relational structures with age A. TFAE:

- Aut(M) is extremely amenable.
- **2** \mathcal{A} is a Ramsey class.

So Ramsey classes correspond to homogeneous structures with e.a. automorphism groups.

EXAMPLE: \mathcal{G}^{\leq} (finite l.o. graphs) is a Ramsey class. Let $\Gamma^{\leq} = M(\mathcal{G}^{\leq})$. Then Aut(Γ^{\leq}) is e.a. The graph reduct Γ is the Random Graph and Aut(Γ^{\leq}) \leq Aut(Γ).

Note that \mathcal{G}^{\leq} is a precompact expansion of \mathcal{G} : every $A \in \mathcal{G}$ expands to finitely many iso types of structures in \mathcal{G}^{\leq} .

Equivalently each $Aut(\Gamma)$ -orbit on Γ^n splits into finitely many $Aut(\Gamma^{\leq})$ -orbits.

э

・ロト ・四ト ・ヨト ・ヨト

A *G*-flow *X* is *minimal* if every *G*-orbit on *X* is dense.

FACT: (Ellis) There is a unique *universal* minimal G-flow, M(G).

DEF: Let G = Aut(M). Say $H \leq G$ is *precompact* if for every *G*-orbit $\Delta \subseteq M^n$, *H* has finitely many orbits on Δ .

KPT; Nguyen Van Thé

Suppose *M* is a countable *L*-structure. If $G = \operatorname{Aut}(M)$ has a precompact e.a. closed subgroup $H = \operatorname{Aut}(N)$, then M(G) can be described. In particular, M(G) is metrizable and has a comeagre orbit. The same is therefore true of every minimal *G*-flow.

EXAMPLES: (1) $M(\text{Sym}(\Omega)) = LO(\Omega)$. (2) If Γ is the random graph, then $M(\text{Aut}(\Gamma)) = LO(\Gamma)$.

A G-flow X is minimal if every G-orbit on X is dense.

FACT: (Ellis) There is a unique *universal* minimal G-flow, M(G).

DEF: Let G = Aut(M). Say $H \le G$ is *precompact* if for every *G*-orbit $\Delta \subseteq M^n$, *H* has finitely many orbits on Δ .

KPT; Nguyen Van Thé

Suppose *M* is a countable *L*-structure. If G = Aut(M) has a precompact e.a. closed subgroup H = Aut(N), then M(G) can be described. In particular, M(G) is metrizable and has a comeagre orbit. The same is therefore true of every minimal *G*-flow.

EXAMPLES: (1) $M(\text{Sym}(\Omega)) = LO(\Omega)$. (2) If Γ is the random graph, then $M(\text{Aut}(\Gamma)) = LO(\Gamma)$.

A G-flow X is minimal if every G-orbit on X is dense.

FACT: (Ellis) There is a unique *universal* minimal G-flow, M(G).

DEF: Let G = Aut(M). Say $H \le G$ is *precompact* if for every *G*-orbit $\Delta \subseteq M^n$, *H* has finitely many orbits on Δ .

KPT; Nguyen Van Thé

Suppose *M* is a countable *L*-structure. If G = Aut(M) has a precompact e.a. closed subgroup H = Aut(N), then M(G) can be described. In particular, M(G) is metrizable and has a comeagre orbit. The same is therefore true of every minimal *G*-flow.

EXAMPLES: (1) $M(\text{Sym}(\Omega)) = LO(\Omega)$. (2) If Γ is the random graph, then $M(\text{Aut}(\Gamma)) = LO(\Gamma)$.

A G-flow X is minimal if every G-orbit on X is dense.

FACT: (Ellis) There is a unique *universal* minimal G-flow, M(G).

DEF: Let G = Aut(M). Say $H \le G$ is *precompact* if for every *G*-orbit $\Delta \subseteq M^n$, *H* has finitely many orbits on Δ .

KPT; Nguyen Van Thé

Suppose *M* is a countable *L*-structure. If G = Aut(M) has a precompact e.a. closed subgroup H = Aut(N), then M(G) can be described. In particular, M(G) is metrizable and has a comeagre orbit. The same is therefore true of every minimal *G*-flow.

EXAMPLES: (1) $M(\text{Sym}(\Omega)) = LO(\Omega)$. (2) If Γ is the random graph, then $M(\text{Aut}(\Gamma)) = LO(\Gamma)$.

- Question asked (around 2011) by: Bodirsky, Pinsker, Tsankov; Nešetřil; Nguyen van Thé:
 - If *M* is countable ω-categorical, is there an ω-categorical expansion *N* of *M* with Aut(*N*) extremely amenable? Equivalently, is there a precompact e.a. closed subgroup of Aut(*M*).
- Particularly interesting case: *M* homogeneous in a finite relational language.
- Why ask the question?
 - Ubiquity of ω-categorical structures with e.a. automorphism groups
 - Ubiquity of Ramsey classes
 - Applications: reducts; complexity of CSP's (Bodirsky, Pinsker et al.)
 - Describing M(G) for G closed, oligomorphic permutation group.
 - Evidence. Work on Ramsey expansions of Fraïssé classes: Nešetřil - Rödl; Jasinski, Laflamme, Nguyen van Thé, Woodrow; ...

- Question asked (around 2011) by: Bodirsky, Pinsker, Tsankov; Nešetřil; Nguyen van Thé:
 - If *M* is countable ω-categorical, is there an ω-categorical expansion *N* of *M* with Aut(*N*) extremely amenable? Equivalently, is there a precompact e.a. closed subgroup of Aut(*M*).
- Particularly interesting case: *M* homogeneous in a finite relational language.
- Why ask the question?
 - Ubiquity of ω-categorical structures with e.a. automorphism groups
 - Ubiquity of Ramsey classes
 - Applications: reducts; complexity of CSP's (Bodirsky, Pinsker et al.)
 - Describing M(G) for G closed, oligomorphic permutation group.
 - Evidence. Work on Ramsey expansions of Fraïssé classes: Nešetřil - Rödl; Jasinski, Laflamme, Nguyen van Thé, Woodrow; ...

- Question asked (around 2011) by: Bodirsky, Pinsker, Tsankov; Nešetřil; Nguyen van Thé:
 - If *M* is countable ω-categorical, is there an ω-categorical expansion *N* of *M* with Aut(*N*) extremely amenable? Equivalently, is there a precompact e.a. closed subgroup of Aut(*M*).
- Particularly interesting case: *M* homogeneous in a finite relational language.
- Why ask the question?
 - Ubiquity of ω-categorical structures with e.a. automorphism groups
 - Ubiquity of Ramsey classes
 - Applications: reducts; complexity of CSP's (Bodirsky, Pinsker et al.)
 - Describing M(G) for G closed, oligomorphic permutation group.
 - Evidence. Work on Ramsey expansions of Fraïssé classes: Nešetřil - Rödl; Jasinski, Laflamme, Nguyen van Thé, Woodrow; ...

- Question asked (around 2011) by: Bodirsky, Pinsker, Tsankov; Nešetřil; Nguyen van Thé:
 - If *M* is countable ω-categorical, is there an ω-categorical expansion *N* of *M* with Aut(*N*) extremely amenable? Equivalently, is there a precompact e.a. closed subgroup of Aut(*M*).
- Particularly interesting case: *M* homogeneous in a finite relational language.
- Why ask the question?
 - Ubiquity of ω -categorical structures with e.a. automorphism groups
 - Ubiquity of Ramsey classes
 - Applications: reducts; complexity of CSP's (Bodirsky, Pinsker et al.)
 - Describing M(G) for G closed, oligomorphic permutation group.
 - Evidence. Work on Ramsey expansions of Fraïssé classes: Nešetřil - Rödl; Jasinski, Laflamme, Nguyen van Thé, Woodrow; ...

- Question asked (around 2011) by: Bodirsky, Pinsker, Tsankov; Nešetřil; Nguyen van Thé:
 - If *M* is countable ω-categorical, is there an ω-categorical expansion *N* of *M* with Aut(*N*) extremely amenable? Equivalently, is there a precompact e.a. closed subgroup of Aut(*M*).
- Particularly interesting case: *M* homogeneous in a finite relational language.
- Why ask the question?
 - Ubiquity of ω -categorical structures with e.a. automorphism groups
 - Ubiquity of Ramsey classes
 - Applications: reducts; complexity of CSP's (Bodirsky, Pinsker et al.)
 - Describing M(G) for G closed, oligomorphic permutation group.
 - Evidence. Work on Ramsey expansions of Fraïssé classes: Nešetřil - Rödl; Jasinski, Laflamme, Nguyen van Thé, Woodrow; ...

- Question asked (around 2011) by: Bodirsky, Pinsker, Tsankov; Nešetřil; Nguyen van Thé:
 - If *M* is countable ω-categorical, is there an ω-categorical expansion *N* of *M* with Aut(*N*) extremely amenable? Equivalently, is there a precompact e.a. closed subgroup of Aut(*M*).
- Particularly interesting case: *M* homogeneous in a finite relational language.
- Why ask the question?
 - Ubiquity of ω-categorical structures with e.a. automorphism groups
 - Ubiquity of Ramsey classes
 - Applications: reducts; complexity of CSP's (Bodirsky, Pinsker et al.)
 - Describing M(G) for G closed, oligomorphic permutation group.
 - Evidence. Work on Ramsey expansions of Fraïssé classes: Nešetřil - Rödl; Jasinski, Laflamme, Nguyen van Thé, Woodrow; ...

- Question asked (around 2011) by: Bodirsky, Pinsker, Tsankov; Nešetřil; Nguyen van Thé:
 - If *M* is countable ω-categorical, is there an ω-categorical expansion *N* of *M* with Aut(*N*) extremely amenable? Equivalently, is there a precompact e.a. closed subgroup of Aut(*M*).
- Particularly interesting case: *M* homogeneous in a finite relational language.
- Why ask the question?
 - Ubiquity of ω-categorical structures with e.a. automorphism groups
 - Ubiquity of Ramsey classes
 - Applications: reducts; complexity of CSP's (Bodirsky, Pinsker et al.)
 - Describing M(G) for G closed, oligomorphic permutation group.
 - Evidence. Work on Ramsey expansions of Fraïssé classes: Nešetřil - Rödl; Jasinski, Laflamme, Nguyen van Thé, Woodrow; ...

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

- Question asked (around 2011) by: Bodirsky, Pinsker, Tsankov; Nešetřil; Nguyen van Thé:
 - If *M* is countable ω-categorical, is there an ω-categorical expansion *N* of *M* with Aut(*N*) extremely amenable? Equivalently, is there a precompact e.a. closed subgroup of Aut(*M*).
- Particularly interesting case: *M* homogeneous in a finite relational language.
- Why ask the question?
 - Ubiquity of ω-categorical structures with e.a. automorphism groups
 - Ubiquity of Ramsey classes
 - Applications: reducts; complexity of CSP's (Bodirsky, Pinsker et al.)
 - Describing M(G) for G closed, oligomorphic permutation group.
 - Evidence. Work on Ramsey expansions of Fraïssé classes: Nešetřil - Rödl; Jasinski, Laflamme, Nguyen van Thé, Woodrow; ...

DEF: Suppose $k \in \mathbb{N}$. A graph M = (M; E) is *k*-sparse if for all finite $A \subseteq M$ we have $|E[A]| \le k|A|$.

FACT: If the graph M = (M; E) is *k*-sparse, then it is *k*-orientable: the edges of *M* can be directed so that each vertex has at most *k* directed edges coming out.

DEF: If M is k-sparse, let

 $X(M) = \{D \subseteq M^2 : (M; D) \text{ is a } k \text{-orientation of } M\} \subseteq \{0, 1\}^{M^2}.$

Note that this is an Aut(M)-flow.

DEF: Suppose $k \in \mathbb{N}$. A graph M = (M; E) is *k*-sparse if for all finite $A \subseteq M$ we have $|E[A]| \leq k|A|$.

FACT: If the graph M = (M; E) is *k*-sparse, then it is *k*-orientable: the edges of *M* can be directed so that each vertex has at most *k* directed edges coming out.

DEF: If *M* is *k*-sparse, let

 $X(M) = \{ D \subseteq M^2 : (M; D) \text{ is a } k \text{-orientation of } M \} \subseteq \{0, 1\}^{M^2}.$

Note that this is an Aut(M)-flow.

DEF: Suppose $k \in \mathbb{N}$. A graph M = (M; E) is *k*-sparse if for all finite $A \subseteq M$ we have $|E[A]| \leq k|A|$.

FACT: If the graph M = (M; E) is *k*-sparse, then it is *k*-orientable: the edges of *M* can be directed so that each vertex has at most *k* directed edges coming out.

DEF: If *M* is *k*-sparse, let

$$X(M) = \{D \subseteq M^2 : (M; D) \text{ is a } k \text{-orientation of } M\} \subseteq \{0, 1\}^{M^2}$$

Note that this is an Aut(M)-flow.

A B F A B F

DEF: Suppose $k \in \mathbb{N}$. A graph M = (M; E) is *k*-sparse if for all finite $A \subseteq M$ we have $|E[A]| \leq k|A|$.

FACT: If the graph M = (M; E) is *k*-sparse, then it is *k*-orientable: the edges of *M* can be directed so that each vertex has at most *k* directed edges coming out.

DEF: If *M* is *k*-sparse, let

$$X(M) = \{D \subseteq M^2 : (M; D) \text{ is a } k \text{-orientation of } M\} \subseteq \{0, 1\}^{M^2}$$

Note that this is an Aut(M)-flow.

A B F A B F

Theorem A

FACT: (Hrushovski) There is an ω -categorical 2-sparse graph M_F with all vertices of infinite valency.

Theorem A' (DE, Jan Hubička and Jaroslav Nešetřil) Suppose *M* is a countable, *k*-sparse graph of infinite valency. If $H \le \operatorname{Aut}(M)$ is amenable, then *H* has infinitely many orbits on M^2 .

COROLLARY: There is no precompact amenable subgroup of $Aut(M_F)$.

Theorem A

FACT: (Hrushovski) There is an ω -categorical 2-sparse graph M_F with all vertices of infinite valency.

Theorem A' (DE, Jan Hubička and Jaroslav Nešetřil) Suppose *M* is a countable, *k*-sparse graph of infinite valency. If $H \leq \operatorname{Aut}(M)$ is amenable, then *H* has infinitely many orbits on M^2 .

COROLLARY: There is no precompact amenable subgroup of $Aut(M_F)$.

< 回 > < 三 > < 三 >

Theorem A

FACT: (Hrushovski) There is an ω -categorical 2-sparse graph M_F with all vertices of infinite valency.

Theorem A' (DE, Jan Hubička and Jaroslav Nešetřil) Suppose *M* is a countable, *k*-sparse graph of infinite valency. If $H \leq \operatorname{Aut}(M)$ is amenable, then *H* has infinitely many orbits on M^2 .

COROLLARY: There is no precompact amenable subgroup of $Aut(M_F)$.

.

- Suppose *M* is a graph with all vertices of infinite valency and $H \leq Aut(M)$ has finitely many orbits on M^2 .
- If $c \in M$ let H_c denote the stabilizer of c in H.
- For $c \in M$ let cl(c) be the union of the finite H_c -orbits on M.
- There is $n \in \mathbb{N}$ s.t. $|cl(c)| \le n$ for all $c \in M$.
- If $b \in cl(c)$ then $cl(b) \subseteq cl(c)$.
- STEP 1: There are adjacent a, b ∈ M such that b is in an infinite H_a-orbit and a is in an infinite H_b-orbit.

PROOF: Suppose there do not exist such *a*, *b*. Then for every edge *a*, *b* in *M* either $a \in cl(b)$ or $b \in cl(a)$. Take *b* with cl(b) of maximal size. There is $a \notin cl(b)$ adjacent to *b*. By assumption, $cl(a) \supset cl(b)$: contradiction.

3

・ロト ・四ト ・ヨト ・ヨト

- Suppose *M* is a graph with all vertices of infinite valency and $H \leq Aut(M)$ has finitely many orbits on M^2 .
- If $c \in M$ let H_c denote the stabilizer of c in H.
- For $c \in M$ let cl(c) be the union of the finite H_c -orbits on M.
- There is $n \in \mathbb{N}$ s.t. $|cl(c)| \le n$ for all $c \in M$.
- If $b \in cl(c)$ then $cl(b) \subseteq cl(c)$.
- STEP 1: There are adjacent a, b ∈ M such that b is in an infinite H_a-orbit and a is in an infinite H_b-orbit.

PROOF: Suppose there do not exist such *a*, *b*. Then for every edge *a*, *b* in *M* either $a \in cl(b)$ or $b \in cl(a)$. Take *b* with cl(b) of maximal size. There is $a \notin cl(b)$ adjacent to *b*. By assumption, $cl(a) \supset cl(b)$: contradiction.

3

・ロト ・四ト ・ヨト ・ヨト

- GIVEN: *M* is a *k*-sparse graph, *H* ≤ Aut(*M*), and *a*, *b* ∈ *M* are adjacent and such that *a* in an infinite *H_b*-orbit and *b* is in an infinite *H_a*-orbit.
- Show *H* is not amenable.
- Suppose there is an *H*-invariant probability measure μ on *X*(*M*).
- Let $S(ab) = \{D \in X(M) : (a, b) \in D\}$. May assume $p = \mu(S(ab)) > 0$.
- Let b₁,..., b_n be in the same H_a-orbit as b and s_i the characteristic function of S(ab_i). Note μ(S(ab_i)) = p.
- For $D \in X(M)$,

$$\sum_{i\leq n} s_i(D) \leq k$$
 so $\int_{D\in X(M)} \sum_{i\leq n} s_i(D) d\mu(D) \leq k$

• So $np \le k$: contradiction.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- GIVEN: *M* is a *k*-sparse graph, *H* ≤ Aut(*M*), and *a*, *b* ∈ *M* are adjacent and such that *a* in an infinite *H_b*-orbit and *b* is in an infinite *H_a*-orbit.
- Show *H* is not amenable.
- Suppose there is an *H*-invariant probability measure μ on *X*(*M*).
- Let $S(ab) = \{D \in X(M) : (a, b) \in D\}$. May assume $p = \mu(S(ab)) > 0$.
- Let b₁,..., b_n be in the same H_a-orbit as b and s_i the characteristic function of S(ab_i). Note μ(S(ab_i)) = p.
- For $D \in X(M)$,

$$\sum_{i\leq n} s_i(D) \leq k$$
 so $\int_{D\in X(M)} \sum_{i\leq n} s_i(D) d\mu(D) \leq k$.

• So
$$np \le k$$
: contradiction.

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

- GIVEN: *M* is a *k*-sparse graph, *H* ≤ Aut(*M*), and *a*, *b* ∈ *M* are adjacent and such that *a* in an infinite *H_b*-orbit and *b* is in an infinite *H_a*-orbit.
- Show *H* is not amenable.
- Suppose there is an *H*-invariant probability measure μ on *X*(*M*).
- Let $S(ab) = \{D \in X(M) : (a, b) \in D\}$. May assume $p = \mu(S(ab)) > 0$.
- Let b₁,..., b_n be in the same H_a-orbit as b and s_i the characteristic function of S(ab_i). Note μ(S(ab_i)) = p.

• For $D \in X(M)$,

$$\sum_{i\leq n} s_i(D) \leq k$$
 so $\int_{D\in X(M)} \sum_{i\leq n} s_i(D) d\mu(D) \leq k$.

• So
$$np \le k$$
: contradiction.

- GIVEN: *M* is a *k*-sparse graph, *H* ≤ Aut(*M*), and *a*, *b* ∈ *M* are adjacent and such that *a* in an infinite *H_b*-orbit and *b* is in an infinite *H_a*-orbit.
- Show *H* is not amenable.
- Suppose there is an *H*-invariant probability measure μ on *X*(*M*).
- Let $S(ab) = \{D \in X(M) : (a, b) \in D\}$. May assume $p = \mu(S(ab)) > 0$.
- Let b₁,..., b_n be in the same H_a-orbit as b and s_i the characteristic function of S(ab_i). Note μ(S(ab_i)) = p.
- For $D \in X(M)$,

$$\sum_{i\leq n} s_i(D) \leq k$$
 so $\int_{D\in X(M)} \sum_{i\leq n} s_i(D) d\mu(D) \leq k.$

• So $np \le k$: contradiction.

- GIVEN: *M* is a *k*-sparse graph, *H* ≤ Aut(*M*), and *a*, *b* ∈ *M* are adjacent and such that *a* in an infinite *H_b*-orbit and *b* is in an infinite *H_a*-orbit.
- Show *H* is not amenable.
- Suppose there is an *H*-invariant probability measure μ on *X*(*M*).
- Let $S(ab) = \{D \in X(M) : (a, b) \in D\}$. May assume $p = \mu(S(ab)) > 0$.
- Let b₁,..., b_n be in the same H_a-orbit as b and s_i the characteristic function of S(ab_i). Note μ(S(ab_i)) = p.
- For $D \in X(M)$,

$$\sum_{i\leq n} s_i(D) \leq k$$
 so $\int_{D\in X(M)} \sum_{i\leq n} s_i(D) d\mu(D) \leq k.$

• So $np \le k$: contradiction.

Further results

THEOREM B: Suppose $Y \subseteq X(\operatorname{Aut}(M_F))$ is a minimal $\operatorname{Aut}(M_F)$ -subflow. Then all $\operatorname{Aut}(M_F)$ -orbits on Y are meagre in Y.

Other things: Find e.a. subgroups of $Aut(M_F)$ which are maximal e.a. ; likewise for amenable subgroups...

Further results

- THEOREM B: Suppose $Y \subseteq X(\operatorname{Aut}(M_F))$ is a minimal $\operatorname{Aut}(M_F)$ -subflow. Then all $\operatorname{Aut}(M_F)$ -orbits on Y are meagre in Y.
- Other things: Find e.a. subgroups of $Aut(M_F)$ which are maximal e.a.; likewise for amenable subgroups...

Open Questions

QUESTION: (Bodirsky, ...) If *M* is a structure homogeneous for a finite relational language, is there a precompact e.a. subgroup $H \le Aut(M)$?

SIDE QUESTION: Is there a homogeneous structure in a finite relational language in which a sparse graph of infinite valency can be interpreted?

QUESTION: (A. Ivanov) If *M* is ω -categorical and Aut(*M*) is amenable, is there a precompact e.a. subgroup $H \leq Aut(M)$?

Open Questions

QUESTION: (Bodirsky, ...) If *M* is a structure homogeneous for a finite relational language, is there a precompact e.a. subgroup $H \le Aut(M)$?

SIDE QUESTION: Is there a homogeneous structure in a finite relational language in which a sparse graph of infinite valency can be interpreted?

QUESTION: (A. Ivanov) If *M* is ω -categorical and Aut(*M*) is amenable, is there a precompact e.a. subgroup $H \leq \text{Aut}(M)$?

Open Questions

QUESTION: (Bodirsky, ...) If *M* is a structure homogeneous for a finite relational language, is there a precompact e.a. subgroup $H \leq Aut(M)$?

SIDE QUESTION: Is there a homogeneous structure in a finite relational language in which a sparse graph of infinite valency can be interpreted?

QUESTION: (A. Ivanov) If *M* is ω -categorical and Aut(*M*) is amenable, is there a precompact e.a. subgroup $H \leq Aut(M)$?

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Hrushovski's construction I

- G: class of finite graphs (A; R)
- If $C \subseteq A \in \mathcal{G}$ let

$$\delta(\boldsymbol{C}) = 2|\boldsymbol{C}| - |\boldsymbol{R}[\boldsymbol{C}]|.$$

(Predimension of *C*.)

If A ⊆ B ∈ C write A ≤_d B if δ(X) > δ(A) whenever A ⊂ X ⊆ B.
Note: If A ≤_d B ≤_d C then A ≤_d C.

Hrushovski's construction I

- G: class of finite graphs (A; R)
- If $C \subseteq A \in \mathcal{G}$ let

$$\delta(\boldsymbol{C}) = 2|\boldsymbol{C}| - |\boldsymbol{R}[\boldsymbol{C}]|.$$

(Predimension of *C*.)

If A ⊆ B ∈ C write A ≤_d B if δ(X) > δ(A) whenever A ⊂ X ⊆ B.
Note: If A ≤_d B ≤_d C then A ≤_d C.

Hrushovski's construction I

- G: class of finite graphs (A; R)
- If $C \subseteq A \in \mathcal{G}$ let

$$\delta(\boldsymbol{C}) = 2|\boldsymbol{C}| - |\boldsymbol{R}[\boldsymbol{C}]|.$$

(Predimension of *C*.)

- If $A \subseteq B \in C$ write $A \leq_d B$ if $\delta(X) > \delta(A)$ whenever $A \subset X \subseteq B$.
- Note: If $A \leq_d B \leq_d C$ then $A \leq_d C$.

Hrushovski's construction II

F : ℝ^{≥0} → ℝ^{≥0} an increasing function which tends to infinity.
Let

 $\mathcal{G}_F = \{ A \in \mathcal{G} : \delta(Y) \ge F(|Y|) \text{ for all } Y \subseteq A \}.$

- For suitable *F* the class (\mathcal{G}_F, \leq_d) has free amalgamation over \leq_d -substructures.
- In this case the Fraïssé limit construction gives a countable graph M_F characterised by:
 - M_F is the union of a chain of finite \leq_d -subgraphs;
 - every graph in \mathcal{G}_F is isomorphic to a \leq_d -subgraph of M_F ;
 - isomorphisms between finite \leq_d -subgraphs of M_F extend to automorphisms.
- The graph M_F is 2-sparse and ω -categorical.

Hrushovski's construction II

F : ℝ^{≥0} → ℝ^{≥0} an increasing function which tends to infinity.
Let

 $\mathcal{G}_F = \{ A \in \mathcal{G} : \delta(Y) \ge F(|Y|) \text{ for all } Y \subseteq A \}.$

- For suitable *F* the class (\mathcal{G}_F, \leq_d) has free amalgamation over \leq_d -substructures.
- In this case the Fraïssé limit construction gives a countable graph M_F characterised by:
 - M_F is the union of a chain of finite \leq_d -subgraphs;
 - every graph in \mathcal{G}_F is isomorphic to a \leq_d -subgraph of M_F ;
 - ► isomorphisms between finite ≤_d-subgraphs of M_F extend to automorphisms.
- The graph M_F is 2-sparse and ω -categorical.

Hrushovski's construction II

F : ℝ^{≥0} → ℝ^{≥0} an increasing function which tends to infinity.
Let

$$\mathcal{G}_F = \{ A \in \mathcal{G} : \delta(Y) \ge F(|Y|) \text{ for all } Y \subseteq A \}.$$

- For suitable *F* the class (\mathcal{G}_F, \leq_d) has free amalgamation over \leq_d -substructures.
- In this case the Fraïssé limit construction gives a countable graph M_F characterised by:
 - M_F is the union of a chain of finite \leq_d -subgraphs;
 - every graph in \mathcal{G}_F is isomorphic to a \leq_d -subgraph of M_F ;
 - ► isomorphisms between finite ≤_d-subgraphs of M_F extend to automorphisms.
- The graph M_F is 2-sparse and ω -categorical.

▲圖▶ ▲国▶ ▲国≯