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Abstract. We show that the ℵ0-categorical structures produced
by Hrushovski’s predimension construction with a control function
fit neatly into Shelah’s SOPn hierarchy: if they are not simple,
then they have SOP3 and NSOP4. We also show that structures
produced without using a control function can be undecidable and
have SOP .
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Introduction

In this note we collect together some observations about generic

structures constructed using two variations on Hrushovski’s method

of predimensions.

Before describing the results, we recall briefly some details of the

construction method. The original version of this is in [5], where it

is used to provide a counterexample to Lachlan’s conjecture, and [7],

where it is used to construct a non-modular, supersimple ℵ0-categorical

structure. The book [13] is a very convenient reference for this (see Sec-

tion 6.2.1). Generalisations and reworkings of the method (particularly

relating to simple theories) are also to be found in [2], [9], [10].

We work with a relational language L = {Ri : i ∈ I} with finitely

many relations of each arity. Recall that if B,C are L-structures with

a common substructure A then the free amalgam B
∐

AC of B and C

over A is the L-structure whose domain is the disjoint union of B and

C over A and whose atomic relations are precisely those of B together

with those of C. We suppose that K is a univeral class of L-structures

which is closed under free amalgamation, that is, if B,C ∈ K have

a common substructure A, then B
∐

AC ∈ K. Suppose further that

the Ri are realised by tuples of distinct elements in structures in K
(this is not essential if the language is finite). Denote by K the finite
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structures in K. Note that our assumptions imply that there are only

finitely many isomorphism types of structures in K of any given size.

Now let (αi : i ∈ I) be a sequence of non-negative real numbers.

Define the predmension d0(A) = |A| −
∑

i αi|Ri[A]|, for A ∈ K. If

A ⊆ B ∈ K write A ≤ B to mean d0(A) < d0(B′) for all A ⊂ B′ ⊆ B

and say that A is self-sufficient in B. It should be emphasised that

this notion is fundamentally different from the one used in Hrushovski’s

construction of new strongly minimal sets [6]: we shall say more about

this in Section 2.

For structures in K, one has:

• If X ⊆ B and A ≤ B, then X ∩ A ≤ X;

• If A ≤ B ≤ C, then A ≤ C.

Consequently, for each B ∈ K there is a closure operation given by

clB(X) =
⋂
{A : A ≤ B,X ⊆ A} for X ⊆ B.

The relation ≤ can be extended to infinite structures so that the

above properties still hold: if M ∈ K and A ⊆ M , write A ≤ M to

mean that A ∩X ≤ X for all finite X ⊆M .

In Section 1 we look at the following variation of the construction

(from [5] and [7]). We take a control function: a continuous, strictly in-

creasing function f : R≥0 → R≥0 with f(x)→∞ as x→∞. Consider

the class of L-structures Kf = {A ∈ K : d0(X) ≥ f(|X|) ∀X ⊆ A}.
For suitable choice of f (call these good f), (Kf ,≤) has the free ≤-

amalgamation property: if A0 ≤ A1, A2 ∈ Kf then Ai ≤ A1

∐
A0
A2 ∈

Kf . Thus (Kf ,≤) is an amalgamation class. It follows that there is

a countable structure Mf ∈ Kf which is the union of a chain of finite

self-sufficient substructures and satisfies:

(≤-Extension Property) If A ≤ Mf is finite and A ≤ B ∈ Kf , there

is an embedding of B over A into Mf whose image is self-sufficient in

Mf .

Equivalently, any B ∈ Kf is isomorphic to a self-sufficient substructure

of Mf , and isomorphisms between finite self-sufficient substructures of

Mf extend to automorphisms of Mf : thus the type of a tuple in Mf is

determined by the isomorphism type of its closure.

The structure Mf is unique up to isomorphism and is called the

generic structure associated to the amalgamation class (Kf ,≤) (see [8]).

Note that in Mf , the closure of a finite set A has size bounded above

by f−1(|A|), so the closure is uniformly locally finite and it follows by



SOME REMARKS ON GENERIC STRUCTURES 3

the Ryll-Nardzewski Theorem and the above remark on types that Mf

is ℵ0-categorical.

We shall be particularly concerned with where the theories Th(Mf )

can fit in the hierarchy:

simple ⇒ NSOP3 ⇒ NSOP4 . . .⇒ NSOP.

Here NSOP is the negation of the strict order property and NSOPn
is Shelah’s strengthening of it from [11] (we repeat the definition in

Section 1).

In ([7], Section 4.3), Hrushovski gives an example where Mf is su-

persimple of SU -rank 1. The point is that by choosing f carefully, the

class Kf is closed under ITD’s (see Definition 1.4) so one has the inde-

pendence theorem holding over closed sets (the argument is also given

in ([13], 6.2.27) and in more generality in ([2], Theorem 3.6)). In an

earlier version of this paper by the first author, it was conjectured that

with a suitable choice of good f , one could arrange that Mf would be

not simple, but have Shelah’s property NSOP3. In fact, we now show

that this is not the case (Theorem 1.9) and either Mf is simple, or it

has SOP3. We prove (– see the end of Section 1.3):

Theorem 0.1. Suppose f is good. Then the following are equivalent:

(1) Mf is simple;

(2) Kf is closed under ITD’s;

(3) Mf has property NSOP3.

We also prove that if f is good, then Mf has the property NSOP4

(Theorem 1.8).

In Section 2 we consider what happens when the function f is the

zero function (so of course does not satisfy f(x) → ∞ as x → ∞).

More precisely, define K0 to be {A ∈ K : ∅ ≤ A}, and similarly K0.

Then (K0,≤) and (K0,≤) satisfy a strong form of the amalgamation

property over ≤-substructures (see 6.2.9 of [13], for example):

(Full ≤-Amalgamation Property) If A1, A2 ∈ K0 have a common sub-

structure A0 and A0 ≤ A1, then A2 ≤ A1

∐
A0
A2 ∈ K0.

As before, there is a unique countable structure M0 ∈ K0 which is

the union of a chain of finite self-sufficient substructures and has the

property that if A ≤ M0 is finite and A ≤ B ∈ K0, then there is

an embedding of B over A into M0 whose image is self-sufficient in
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M0. Again we refer to M0 as the generic structure associated to the

amalgamation class (K0,≤). It is not too hard to show that K0 is

closed under ITD’s, however this is not enough to guarantee a good

model theory for M0. We look at a particular example where this is

the case and show that Th(M0) is undecidable and has the strict order

property (Corollaries 2.3 and 2.5). This answers Question 4.10 in [10]

and contradicts claims in Section 4.2 of [7].

Acknowledgements: Thanks are due to Massoud Pourmahdian for

discussions about Section 2, and to Mirna Dzamonja for the suggestion

to consider the properties SOPn for the Hrushovski constructions, and

for discussions about the material in Section 1. Theorem 1.9 is from

the PhD work [14] of the second author, which was supported by a

grant from the EPSRC of Great Britain.

1. Strong order properties and the structures Mf

1.1. Dimension and the Independence Theorem Diagram. Us-

ing the notation of the Introduction, we make the following assumption

throughout this Section.

Assumption 1.1. Suppose f : R≥0 → R≥0 is a continuous, increasing

function with f(x) → ∞ as x → ∞. Let Kf = {A ∈ K0 : d0(X) ≥
f(|X|) ∀X ⊆ A}. We assume that (Kf ,≤) is closed under free amal-

gamation: if A ≤ B1, B2 ∈ Kf then B1

∐
AB2 ∈ Kf . Let Mf denote

the generic structure for the amalgamation class (Kf ,≤).

Thus Mf ∈ Kf is a countably infinite structure with the ≤-extension

property (for (Kf ,≤)). It is ℵ0-categorical; self-sufficient closure in Mf

is equal to algebraic closure and the type of a tuple in Mf is determined

by the quantifier-free type of its closure. The same is true of any

structure elementarily equivalent to Mf , and we occasionally make use

of a highly saturated and strongly homogeneous elementary extension

Nf of Mf .

Remarks 1.2. Sufficient conditions on f under which Assumption

1.1 holds are well-known. For example if all the αi are integers and

we assume f is piecewise linear with right-derivative f ′ which is a

decreasing function, then the condition 0 < f ′(x) ≤ 1/x will guarantee

that Kf is an amalgamation class, as in Hrushovski’s original paper

[5]. A more general, but similar, sufficient condition can be found in
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([2]; 3.2). For a given f , n ∈ N and e ∈ R≥0 with e ≥ f(n), the

question of whether there is a structure A ∈ Kf with |A| = n and

d0(A) = e is quite delicate (cf. [3], for example), so a straightforward

necessary and sufficient condition on f for Kf to be closed under free

amalgamation should probably not be expected. It should also be noted

that only the values taken by f at the natural numbers are relevant to

the construction of Mf and the above condition on the derivative of f

could equally well be expressed as saying that 0 < f(n+ 1)− f(n) ≤ 1
n

and f(n + 1) − f(n) is decreasing for all natural numbers n. It is

however convenient to regard f as a continuous function defined on all

of R≥0 in order to use notation such as f−1(m). We can of course do

this by taking the piecewise linear function which extends an f defined

at the natural numbers.

Any structure B in Kf carries a notion of dimension dB associated to

the predimension d0 and a notion of dB-independence. If X, Y ⊆ B are

finite, write dB(X) = d0(clB(X)) and dB(X/Y ) = dB(X ∪Y )− dB(Y ).

For general Y let dB(X/Y ) = inf{dB(X/Y0) : Y0 ⊆ Y finite}. Say that

X,Z are d-independent over Y (in B) if dB(X/Y Z) = dB(X/Y ) and

clB(XY )∩ clB(Y Z) = clB(Y ). If the ambient structure B is clear from

the context (for example if we are working in Mf or Nf ) then we omit

it from the notation. More details of properties of these notions can

be found in the references given in the Introduction. In particular we

note the following (from [2], Lemma 2.3):

Lemma 1.3. Suppose X ≤ Y ≤ B are finite sets and c is a tuple of

elements in B. Then dB(c/Y ) = dB(c/X) if and only if:

(i) clB(cX) ∩ Y = X;

(ii) clB(cX) and Y are freely amalgamated over X;

(iii) dB(cY ) = d0(clB(cX) ∪ Y ). 2

As already remarked in 1.2, the condition that Kf be an amalgama-

tion class can be enforced by an assumption about the growth rate of

f . A stronger assumption on the growth rate (see Theorem 3.6(ii) in

[2], for example) also implies that Mf is simple: if the growth rate of

f is sufficiently slow the independence theorem holds over finite closed

sets in Mf . As in [9] we phrase the latter as a condition on Kf in the

following way.
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Definition 1.4. Let D be an L-structure with substructures Di, Dij

for 0 ≤ i < j ≤ 3 (we allow transposition of the indices in Dij). We

say that (D;Di, Dij) is an independence theorem diagram (ITD) in Kf
if the following hold:

• Dij ∈ Kf ;
• D0j = Dj;

• Di, Dj ≤ Dij;

• Di ∩Dj = D0;

• Dij ∩Djk = Dj;

• Di and Dj are d-independent over D0 in Dij;

• Any instance of an L-relation Ri on D is contained entirely

within some Dij.

Note that there is no assumption here that D ∈ Kf . Indeed, we say

that Kf is closed under ITD’s if whenever (D;Di, Dij) is an ITD in

Kf , then D ∈ Kf .

Theorem 1.5. Suppose that Kf is closed under ITD’s. Then Th(Mf )

is simple. 2

The original proof of this is in [7]. Variations on the original proof

can be found in [2] (cf. the proof of Theorem 3.6 there: the condition

in the above is exactly the assumption (P5) on Mf in [2]), and in [13].

The following lemma from the proof of Theorem 3.6(ii) of [2] will be

useful. The notation X ≤∗ Y means d0(X) ≤ d0(Y1) for all Y1 with

X ⊆ Y1 ⊆ Y .

Lemma 1.6. If (D;Di, Dij) is an independence theorem diagram in

Kf then:

(i) Dij ≤ D;

(ii) Dij ≤ Dij ∪Djk;

(iii) Dij ∪Djk ≤∗ D. 2

In the rest of this section we will be interested in the situation where

the hypotheses of Theorem 1.5 do not hold: in particular, we will prove

a strong version of the converse (Theorem 1.9).

1.2. Strong order properties. Recall the following from ([11], Defi-

nition 2.5).

Definition 1.7. Suppose T is a complete first-order theory and n ≥ 3

is an integer. Say that T has strong order property n (SOPn) if there
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exists a formula φ(x̄, ȳ) and an infinite sequence of distinct tuples (āi :

i < ω) in some model N of T such that

(a) N |= φ(āi, āj) for i < j < ω;

(b) N |= ¬∃x̄0 . . . x̄n−1(φ(x̄0, x̄1) ∧ φ(x̄1, x̄2) ∧ · · · ∧ φ(x̄n−1, x̄0)).

The negation of this property is denoted by NSOPn.

Allowing the formula to have parameters changes nothing. Also, we

may take the sequence (āi : i < ω) to be indiscernible (over whatever

parameters). Condition (b) simply says that there are no directed n-

cycles in the directed graph determined by the relation φ(x̄, ȳ).

As mentioned in the introduction, these properties form a hierarchy.

We shall show that if Th(Mf ) is not simple, then it fits very neatly

into this hierarchy. The notation is as in Assumption 1.1:

Theorem 1.8. The theory Th(Mf ) has the property NSOP4. In par-

ticular, Mf does not have the strict order property.

Theorem 1.9. If Th(Mf) is not simple, then it has SOP3.

Proof of Theorem 1.8. Work in a big model Nf of Th(Mf ) and

suppose (ai : i < ω) is an infinite indiscernible sequence of tuples in

Nf (over a finite parameter set, which we may assume to be ∅). Let

p(x0, x1) be the complete type of (a0, a1) in Nf . To show that Th(Mf )

is NSOP4 it will be enough to show that

p(x0, x1) ∪ p(x1, x2) ∪ p(x2, x3) ∪ p(x3, x0)

is consistent.

We now follow the notation and some of the arguments from [2] very

closely. The structureMf is the special case y(B) = |B| of the examples

in ([2], Section 3). The conditions on f in ([2], 3.1) are irrelevant by our

current assumptions on f , so ([2], Theorem 3.6(i)) holds, and (Mf , d0)

has properties (P1-P4, P6, P7) of [2]. The notation d(c/S) is as defined

above (and also defined at the start of Section 2.5 (and on p. 259) of

[2]) and acl denotes algebraic closure in Nf .

Claim: There is a finite set c of parameters such that (ai : i < ω) is

c-indiscernible and for i = 1, 2 we have d(ai/ca0 . . . ai−1) = d(ai/c) (i.e.

a0, a1, a2 are d-independent over c).

The proof is as in paragraphs 2 and 3 of the proof of 2.19(b) in

[2], but we repeat the outline here. Extend the indiscernible sequence

to an indiscernible sequence (ai : i ∈ Z). Let A0 = acl(ai : i < 0).
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Then (ai : i ≥ 0) is A0-indiscernible and d-independent over A0. By

extending the sequence, and then thinning, we may assume that X =

acl(A0ai2) ∩ acl(A0ai0ai1) is constant for i0 < i1 < i2 and then that

(ai : i ∈ ω) is X-indiscernible. By (P7) there is a finite C ⊆ X

such that d(a2/a0a1C) = d(a2/C), and C-indiscernibility gives the d-

independence of a0, a1, a2. (2 Claim)

Note that (as Mf is a generic stucture) tp(ai, aj/c) is determined by

the isomorphism type of Eij = cl(aiajc). Let C = cl(c), let Ei = cl(aic)

and let A = E01 ∪ E12. So by the d-independence of a0, a1, a2 over c

we have that A is the free amalgam of E01 and E12 over E1. Moreover

E0 ∪E2 = A∩E02 ≤ A and E0 ∪E2 is the free amalgam of E0 and E2

over C. By the latter, there is an isomorphism γ : E0 ∪ E2 → E0 ∪ E2

over C which interchanges the tuples a0, a2.

Consider the embeddings h1 : E0 ∪E2 → E02 given by inclusion and

h2 : E0∪E2 → E02 given by appyling γ and then inclusion. Let F be the

free amalgam obtained from these embeddings and gi : E02 → F such

that g1 ◦ h1 = g2 ◦ h2. By assumption F ∈ Kf , so we can assume that

(an isomorphic copy of) F ≤ N . Let a′0 = g1(h1(a0)), a′1 = g1(a1), a′2 =

g1(h1(a2)) and a′3 = g2(a1). Then

tp(a0, a1) = tp(a′0, a
′
1) = tp(a′1, a

′
2) = tp(a′2, a

′
3) = tp(a′3a

′
0)

as required. To see that the types are equal, one simply has to consider

closures of the two tuples (- they are even equal over the image of c in

F ). 2

1.3. Proof of Theorem 1.9. Assumption 1.1 continues to hold thro-

ughout. By Theorem 1.5, if Th(Mf ) is not simple, there is some ITD

(D;Di, Dij) in Kf such that D is not in Kf (and therefore not a sub-

structure of Mf ). From this, we will construct a sequence (āi : i < ω)

in Mf and a formula φ witnessing SOP3. The idea is that each āi con-

sists of independent copies of D1, D2, D3 and the relation φ says that

the different copies are related in the same way as in the Dij. That

D is not a substructure of Mf then gives that the relation φ has no

directed triangles. The precise form of the argument is somewhat more

complicated and we split it into pieces.

1.3.1. The Structures Er. In the following we will often abuse notation

and identify a finite set with some fixed enumeration of the set. For
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example, if X is a finite L-structure we denote by qftp(X) the quantifier

free type of (some fixed enumeration of) X.

Suppose that (D;Di, Dij) is a fixed ITD in Kf .

Definition 1.10. Let r be a positive integer. We define the L-structure

Er to have domain:

Er = D0 ∪
⋃
{Ai, Bi, Ci : 1 ≤ i ≤ r} ∪

⋃
{Zij, Z ′ij, Z ′′ij : 1 ≤ i < j ≤ r}

and such that the following conditions hold:

(1) The intersection of any two sets from {Ai, Bi, Ci : i ≤ r} is D0.

(2) We have the following isomorphisms:

• qftp(AiBjZij/D0) = qftp(D1D2D12/D0)

• qftp(BiCjZ
′
ij/D0) = qftp(D2D3D23/D0)

• qftp(CiAjZ
′′
ij/D0) = qftp(D1D3D13/D0).

So in particular Ai, Bj ≤ Zij, Bi, Cj ≤ Z
′
ij, and Ci, Aj ≤ Z

′′
ij for

i < j.

(3) The intersection of any two sets from {Zij, Z
′
ij, Z

′′
ij : i < j ≤ r}

is D0 if the index sets are disjoint, or the appropriate member

of {Ai, Bi, Ci} if the index sets intersect in i.

(4) The only instances of L-relations Rk in Er are those occurring

within each Zij, Z
′
ij or Z

′′
ij.

The main aim of this subsection is to show that Er ∈ Kf . Before

doing that we prove a preliminary lemma.

Let Ar =
⋃
i≤r Ai,B

r =
⋃
i≤r Bi,C

r =
⋃
i≤r Ci.

Lemma 1.11. For all natural numbers r ≥ 1, if D0 ≤ Er, then

Ar,Br,Cr ≤ Er.

Proof: We prove the lemma for Ar: the other cases follow by symmetry.

Let Z = B1 ∪ Ar ∪
⋃r
i<j Zij.

Claim 1: d0(Z) = d0(Ar) + d0(Br)− d0(D0).

By definition Zij is isomorphic to D12 so as D1, D2 are d-independent

in D12 we have d0(Zij) = d0(Ai) + d0(Bj) − d0(D0) = d0(AiBj) by

Lemma 1.3. Thus

d0(Z) = d0(B1 ∪ Ar ∪
⋃
i<j≤r

AiBj)

= d0(A1 . . . ArB1 . . . Br)

= d0(A1 . . . Ar) + d0(B1 . . . Br)− d0(D0),
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as required.

In Claims 2, 3 and 4, cl and d denote clZ and dZ respectively.

Claim 2: d(Ar) = d0(Ar) and d(Br) = d0(Br).

Put A = cl(Ar) and B = cl(Br). By assumption, D0 ≤ Er so

D0 ≤ Z. Moreover d(Ar/D0) ≥ d(Ar/Br) so

d0(A)− d(D0) ≥ d0(Z)− d0(B) (as Z = clZ(AB))

i.e. d0(A)− d(D0) ≥ d0(Ar)− d0(Br)− d0(D0)− d0(B) (by Claim 1).

But this holds iff d0(A) − d0(Ar) ≥ d0(Br) − d0(B). Since d0(A) ≤
d0(Ar) the left hand side of the equation is less than or equal to 0.

Similarly the right side must be greater than or equal to 0 so the only

possibility is that we have equality everywhere and d0(A) = d0(Ar),

d0(B) = d0(Br) as required.

Claim 3: A ∩B = D0.

Clearly Z = cl(ArBr) = cl(AB). We know that:

d0(A ∩B) ≤ d0(A) + d0(B)− d0(AB).

However since cl(AB) = Z we have

d0(A) + d0(B)− d0(AB) ≤ d0(A) + d0(B)− d0(Z)

= d0(Ar) + d0(Br)− d0(Z)

= d0(D0) (by Claim 1).

Thus d0(D0) ≥ d0(A∩B). As D0 ≤ A∩B we must have D0 = A∩B,

as required.

Claim 4: Ar ≤ Z.

Let Wij = Zij\(Bj\D0). For fixed i the substructure
⋃
i<jWij is a

free amalgam of the Wij over Ai. As Ai ≤ Zij it follows that Ai ≤ Wij,

so Ai ≤
⋃
i<jWij. As

⋃
1≤i<j≤rWij is the free amalgam of these over

D0, it follows that Ar ≤
⋃

1≤i<j≤rWij. Thus A ∩
⋃

1≤i<j≤rWij = Ar.

But by Claim 3, A ∩B = D0. Thus A = Ar.

Claim 5: Z ≤ Er

Note that by symmetry of the argument, we also have Br ≤ Z and

by Claim 1, Ar and Br are d-independent in Z over D0. We can make

the obvious definition of Z′ and Z′′ and again by the symmetry of the

situation, Br,Cr ≤ Z′ and are d-independent etc. Thus we can view

Er as obtained as an ITD with constituent parts Ar,Br,Cr (as the Di
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in the definition) and Z,Z′,Z′′ (as the Dij). Claim 5 then follows from

Lemma 1.6(i).

The lemma now follows from Claims 4 and 5. 2

Theorem 1.12. For all natural numbers r ≥ 1 we have D0 ≤ Er and

Er ∈ Kf .

Proof: We prove this by induction on r, the case r = 1 being trivial

(E1 is just the free amalgam of A1, B1, C1 over D0).

For the inductive step, suppose that D0 ≤ Er ∈ Kf . By Lemma 1.11

we also know that Ar,Br,Cr ≤ Er. We want to show that Er ≤ Er+1

and Er+1 ∈ Kf .
We obtain Er+1 from Er in three stages, adding in turn Br+1 and all

of its corresponding Zi,r+1 to Er, then Cr+1 and the Z ′i,r+1, then Ar+1

and the Z ′′i,r+1.

Let Br+1 =
⋃
i≤r Zi,r+1. As this is a free amalgam of the Zi,r+1 over

Br+1, it is in Kf . Using Lemma 1.6(i) and the fact that the Ai are d-

independent over D0, one obtains that Ar ≤ Br+1. Let Er
∗ be the free

amalgam of Br+1 and Er over Ar. Then Er ≤ Er
∗ and (by Assumption

1.1) Er
∗ ∈ Kf .

For the next step we put Cr+1 =
⋃

1≤r Z
′
i,r+1; since it is a free

amalgam it belongs to Kf . Let Er
∗∗ be the free amalgam of Cr+1 and

Er
∗ over Br. As in the previous step we have Er

∗ ≤ Er
∗∗ ∈ Kf .

Finally let Ar+1 =
⋃

1≤r Z
′′
i,r+1. This is in Kf and Er+1 is the free

amalgam of Ar+1 and and Er
∗∗ over Cr. Thus, as in the previous steps,

Er
∗∗ ≤ Er+1 ∈ Kf . As we have D0 ≤ Er ≤ Er

∗ ≤ Er
∗∗ ≤ Er+1, this

completes the inductive step. 2

1.3.2. Witnessing SOP3. Suppose now that Kf satisfies Assumption

1.1 and (D;Di, Dij) is an ITD in Kf with D 6∈ Kf . Consider the struc-

tures Er ∈ Kf constructed from this ITD as in the previous subsection.

Inside E2r we have two substructures isomorphic to Er:

X =
⋃

1≤i<j≤r

Zij ∪ Z ′ij ∪ Z ′′ij

Y =
⋃

r+1≤i<j≤2r

Zij ∪ Z ′ij ∪ Z ′′ij.

We consider these as being enumerated in some fixed way compati-

ble with the isomorphism and let η be an L-formula describing the
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quantifier-free type of X (with this enumeration). Let x̄, ȳ be tuples

of variables of length |Er| and z̄ a tuple of variables of length |E2r|.
Let ζ(x̄, ȳ, z̄) describe the quantifier-free type of (X, Y,E2r). Define the

formula φr(x̄, ȳ) to be:

η(x̄) ∧ η(ȳ) ∧ (∃z̄)ζ(x̄, ȳ, z̄).

Lemma 1.13. There exists an infinite sequence of distinct tuples (Xi :

i < ω) in Mf such that Mf |= φr(Xi, Xj) for all i < j.

Proof: By saturation ofMf , we may assume that all Er are≤-subsets of

Mf . The lemma follows by taking Xk =
⋃

1+rk≤i<j≤(r+1)k Zij ∪Z ′ij ∪Z ′′ij
(suitably enumerated). 2

Thus Theorem 1.9 will follow from:

Lemma 1.14. With the above notation, there is a natural number s

such that if r ≥ s then

Mf 6|= ∃στυ φr(σ, τ) ∧ φr(τ, υ) ∧ φr(υ, σ).

Proof. We show that if r is large enough and Mf |= φr(σ, τ)∧φr(τ, υ)∧
φr(υ, σ) then we have a copy of the forbidden D as a substructure of

Mf . Before continuing however we require more notation. Without

loss of generality concentrate on the σ case; the τ, υ cases being defined

analogously.

By definition of φr, the tuple σ enumerates a substructure of Mf

which is isomorphic to Er. In the notation of Definition 1.10, denote

its corresponding substructures Ai, Bi, Ci respectively as Aσi , B
σ
i , C

σ
i .

Next, for i, j ≤ r let Z(ij), Z ′(ij), Z ′′(ij) satisfy

• qftp(Aσi B
τ
jZ(ij)) = qftp(D1D2D12)

• qftp(Bτ
i C

υ
j Z
′(ij)) = qftp(D2D3D23)

• qftp(Cυ
i A

σ
jZ
′′(ij)) = qftp(D3D1D31).

Finally let |Z(ij)| = lAB, |Z ′(ij)| = lBC and |Z ′′(ij)| = lCA.

Claim: If r is large enough there exist k,m, n ≤ r such that Z(km) ∩
Z ′(mn) = Bτ

m, Z ′(mn) ∩ Z ′′(nk) = Cυ
n , and Z ′′(nk) ∩ Z(km) = Aσk .

We will take k = 1. For m ≤ r, let C[m] = {j : Z(1m) ∩ Z ′(mj) =

Bτ
m}. Since there are at most lAB choices of j with Bτ

m 6= Z(1m) ∩
Z ′(mj) we have |C[m]| ≥ r − lAB. Now consider C[1] ∩ C[2] . . . ∩
C[2lCA+1]. Each term has size at least r− lAB and so this intersection

excludes a maximum of lAB(2lCA + 1) natural numbers ≤ r; setting
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s = lAB(2lCA + 1) + 1, then for r ≥ s this intersection will be non-

empty.

Suppose r ≥ s and let n be an element in the above intersection.

If m ≤ 2lCA + 1 then Z(1m) ∩ Z ′(mn) = Bτ
m, by choice of n. The

potential problem is that Z ′′(n1) may intersect Z(1m) by more than

the desired Aσ1 or Z ′(mn) by more than the desired Cυ
n . There are at

most lCA choices of m such that Aσ1 6= Z(1m) ∩ Z ′′(n1) and also at

most lCA choices of m such that Cυ
n 6= Z ′(mn)∩Z ′′(n1). However since

there are 2lCA + 1 choices for m, there is at least one m ≤ 2lCA + 1

such that Aσ1 = Z(1m) ∩ Z ′′(n1) and Cυ
m = Z ′(mn) ∩ Z ′′(n1). This

establishes the claim.

Now take k,m, n as in the claim. To ease the notation let T1 =

Aσk , T2 = Bτ
m, T3 = Cυ

n and T12 = Z(km), T23 = Z ′(mn), T31 = Z ′′(nk).

Put T = T12∪T23∪T31. Since T ⊆Mf we have T ∈ Kf . As Tij∩Tjk = Tj
and Tij is isomorphic to Dij from the ITD, we may construct a bijection

ξ : D → T which preserves the L-relations Ri. Thus if W ⊆ D then

d0(W ) ≥ d0(ξW ), and as W ⊆ T ∈ Kf , this is ≥ f(|ξ(W )|). As ξ is a

bijection, we obtain d0(W ) ≥ f(|W |) for all W ⊆ D. By definition of

Kf , we therefore have D ∈ Kf : a contradiction. �

Proof of Theorem 0.1:We already noted in the preamble to the Theorem

that (2)⇒ (1). The argument in this subsection shows that if Kf is not

closed under ITD’s, then Mf has SOP3. As simplicity always implies

NSOP3 we therefore have (1)⇒ (3)⇒ (2). 2

2. Th(M0) is bad

To keep the ideas clear, we shall work with a particular example. So

in this section we assume that the language L has (apart from equality)

a single ternary relation R. The class K consists of L-structures in

which this is symmetric and only realised by distinct triples of elements.

If A ∈ K, then d0(A) = |A| − |R[A]|, where by R[A] we mean the set

of 3-subsets of A picked out by R (rather than the set of 3-tuples).

We shall be working with the class K0 = {A ∈ K : ∅ ≤ A} and

the notion of embedding A ≤ B, meaning d0(A) < d0(B′) for all A ⊂
B′ ⊆ B, as before. Note that there is a different notion of embedding

introduced in [6]: A ≤∗ B meaning d0(A) ≤ d0(B′) for all A ⊂ B′ ⊆ B.

Both (K0,≤) and (K0,≤∗) are amalgamation classes, however, their

respective generic structures M0 and M∗
0 behave very differently. It is
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well-known that M∗
0 is ω-stable (of Morley rank ω), but as we shall see,

the model theory of M0 is bad.

Note that if a, b, c ∈ A ∈ K and A |= R(a, b, c), then c ∈ clA(a, b).

The idea is to encode graphs into the closures of pairs of elements. A

similar (but more difficult) type of encoding is used in Section 3 of [12].

Define predicates V , E as follows:

V (x; y, z)↔ R(x, y, z)

and

E(x1, x2; y, z)↔ V (x1; y, z) ∧ V (x2; y, z) ∧ (∃w)R(x1, x2, w).

If a, b ∈ A ∈ K0 then Γ(a, b, A) is the graph with vertex set V [A; a, b]

and edges E[A; a, b]. Note that the vertex set here is in clA(a, b) and

any edge is witnessed in clA(a, b). Thus if A ≤ B then Γ(a, b, A) =

Γ(a, b, B).

Now, if Γ is any graph, there is AΓ ∈ K0 and aΓ, bΓ ∈ AΓ with

Γ(aΓ, bΓ, AΓ) isomorphic to Γ. Indeed, suppose Γ has vertex set S and

edge set U ⊆ [S]2. Let AΓ be the disjoint union of {aΓ, bΓ}, S and

U with the relation R[AΓ] consisting of {aΓ, bΓ, s} for all s ∈ S, and

{s1, s2, u} for all u = {s1, s2} ∈ U . It is easy to check that AΓ ∈ K0

and all points in AΓ are in the closure of aΓ, bΓ.

Given any first-order sentence σ in the language of graphs (with

binary relation S) we construct an L-formula θσ(y, z) by replacing all

atomic subformulas S(x1, x2) in σ by E(x1, x2; y, z) and replacing any

quantifier ∀x by ∀x ∈ V (x; y, z) (and likewise ∃x by ∃x ∈ V (x; y, z)).

Lemma 2.1. For any M ∈ K0 and a, b ∈M we have:

Γ(a, b,M) |= σ ⇔M |= θσ(a, b).

Proof. This is essentially a triviality: cf. Theorem 5.3.2 in [4]. 2

Now let M0 be the generic structure for the class (K0,≤), as in the

introduction.

Theorem 2.2. Suppose σ is a sentence in the language of graphs. Then

there is a finite model of σ iff M0 |= (∃y, z)θσ(y, z).

Proof. If there is a finite model Γ of σ then we can find A ≤ M0

with AΓ
∼= A. Then by the lemma, M0 |= θσ(aΓ, bΓ), as required.
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Conversely suppose a, b ∈ M0 and M0 |= θσ(a, b). Then Γ(a, b,M0)

is a graph which is a model of σ. It is finite, as it is contained in

clM0(a, b). 2

Corollary 2.3. Th(M0) is undecidable.

Proof. The construction of θσ from σ is obviously recursive. On the

other hand, the theory of all finite graphs is undecidable (by Trakhten-

brot’s Theorem, cf. [4]). So the same is true of Th(M0), by the above.

2

Theorem 2.4. Suppose σ is a sentence in the language of graphs which

has arbitrarily large finite models. Then some infinite model of σ is

interpretable in a model of Th(M0).

Proof. The formulas θσ(a, b) ∧ ‘|V (x; a, b)| ≥ n’ (for n ∈ N) are

consistent with Th(M0) by assumption. So by compactness there is a

model M of Th(M0) and a, b ∈ M such that Γ(a, b,M) is an infinite

model of σ (by Lemma 2.1). 2

Corollary 2.5. Th(M0) has the strict order property.

Proof. We can construct a family of finite graphs in which arbi-

trarily large finite linear orderings are uniformly interpretable. There

is a sentence in the language of graphs which implies that the inter-

preted stucture is a linear ordering (again, this is by Theorem 5.3.2 of

[4]). Thus, arguing by compactness as in the previous proof, there is

a model M of Th(M0) and a, b ∈ M such that the interpreted struc-

ture in Γ(a, b,M) is an infinite linear ordering. But Γ(a, b,M) is itself

interpreted in M . 2

The reader will have noticed that the proofs used only the local

finiteness of closure and ≤-universality of M0 (i.e. every A ∈ K0 is

isomorphic to some self-sufficient substructure of M0).

The undecidability result means that Th(M0) is not recursively ax-

iomatisable. In particular, the semigeneric theory Tsgen given in ([10],

Definition 3.27) following [1], does not axiomatize Th(M0) (for the no-

tation there, we take T0 as the universal theory describing K0). We

have Tsgen ⊆ Th(M0) (essentially, because of the full form of the amal-

gamation property), so we conclude that Tsgen is not complete. In fact,

it is useful to see this in a different way. It is fairly easy to show that if

A ∈ K0, then there is a model M of Tsgen which has A as a self-sufficient
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substructure. Let σ be some formula in the language of graphs which

has only infinite models, let Γ be such a model and A = AΓ. Then

M |= (∃y, z)θσ(y, z), but of course M0 6|= (∃y, z)θσ(y, z).

The undecidability and SOP rested on transferring properties of fi-

nite structures to M0. So one possible positive property left for Th(M0)

is the following:

Question 2.6. Does Th(M0) have the finite model property?
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