
Homogeneous structures, ω-categoricity and
amalgamation constructions ∗

David Evans

Outline.

The main purpose of these lectures is to give an exposition of some basic material on ho-
mogeneous structures, ω-categorical structures and their automorphism groups. There is
nothing new in the the talks: most of what is in the first two sessions will be familiar to
anyone who has done any work in the area; the third session on Hrushovski’s predimension
construction is a bit more specialised.

The plan of the lectures is:

1. Homogeneous structures, Fräıssé’s theorem and examples; ω-categoricity, the Ryll-
Nardzewski Theorem, more examples.

2. Automorphism groups as topological groups; imaginaries and biinterpretability for ω-
categorical structures.

3. Generalizations of the Fräıssé construction. Hrushovski’s predimension construction
and amalgamation. Using the Hrushovski construction to produce ω-categorical struc-
tures.

These notes are rather casual about attribution of results: the references indicated below
provide more background information and detail. In many places, there are strong similarities
to the notes of Macpherson [23].

General background on model theory can be found in standard texts such as [25], [13] or
[27]. A short appendix (Section 4, essentially reproduced from [11]) covers some of the basics.
Introductory material on ω-categoricity can be found in the introduction to [19] (and many
other places), and the book [6] focuses on the connections with permutation groups. The
paper [10] gives a survey of constructions of ω-categorical structures, including the examples
described here. Macpherson’s MALOA lectures [23], and the paper [24], give an extensive
survey of work on homogeneous structures and their automorphism groups. The introduction
to [7] surveys work on classification of homogeneous structures.

∗Notes on a Minicourse given at HIM, Bonn, September 2013. Version: 24 September 2013.

1



1 Homogeneous and ω-categorical structures

1.1 Notation and terminology

Throughout L will denote a first-order language (usually countable). This will always in-
clude a symbol for equality, which all structures will interpret as true equality. We will not
distinguish between an L-structure M and its domain. If ā = (a1, . . . , an) is a finite tuple of
elements of M , we might write ā ∈M (rather than ā ∈Mn).

If M is an L-structure then Aut(M) is the automorphism group of M . We think of this as
acting on the left: so if g ∈ Aut(M) and a ∈M then we write ga or g(a) (rather than ag or
ag). We also think of Aut(M) as acting on Mn via the diagonal action: gā = (ga1, . . . , gan).

If B ⊆M the pointwise stabilizer of B in Aut(M) is

Aut(M/B) = {g ∈ Aut(M) : gb = b ∀b ∈ B}.

If G is a group acting on a set X and a ∈ X then the G-orbit which contains a is {ga :
g ∈ G} ⊆ X. This is the equivalence class containing a for the equivanece relation a ∼ b⇔
(∃g ∈ G)(ga = b). If there is a unique G-orbit on X we say that G is transitive on X. If
a ∈ X, then let Ga = {g ∈ G : ga = a} be the stabilizer of a in G. There is a canonical
bijection, respecting the G-action, betweeen the set of left cosets of Ga in G and the G-orbit
containing a, given by

gGa 7→ ga.

In particular, the index of Ga in G is the cardinality of the G-orbit which contains a. (This
is sometimes called the Orbit- Stabilizer Theorem.)

Exercise: Show that if M is countable and B is a finite subset of M , then Aut(M/B) is a
subgroup of countable index in Aut(M).

1.2 Amalgamation classes and homogeneous structures

We are interested in (countable) structures with ‘large’ automorphism groups. One possible
interpretation of this is the following.

Definition 1.1. An L-structure M is homogeneous if isomorphisms beteween finitely gen-
erated substructures extend to automorphisms of M , that is: if A1, A2 ⊆ M are f.g. sub-
structures and f : A1 → A2 is an isomorphism, then there exists g ∈ Aut(M) such that
g|A1 = f .

Remarks 1.2. 1. (Warning) Suppose M is any L-structure. For each n ∈ N and each
Aut(M)-orbit S on Mn, introduce a new n-ary relation symbol RS into the language.
Call the resulting language L+. We regard M as an L+-structure M+ by interpreting
a new relation symbol RS as the orbit S. Then M+ is a homogeneous L+-structure
and the automorphism group of M+ is still Aut(M).
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2. If L is a finite relational language, then there are only finitely many isomorphism types
of L-structure of any finite size. So if M is a homogeneous L-structure, then Aut(M)
has finitely many orbits on Mn for all n ∈ N.

3. Let L consist of a single 2-ary relation symbol and consider the L-structureM = (Q;≤),
the rationals with their usual ordering. This is a homogeneous L-structure (one way
to see this: use piecewise linear automorphisms).

Definition 1.3. A non-empty class A of finitely generated L-structures is a (Fräıssé) amal-
gamation class if:

1. (IP) A is closed under isomorphisms;

2. (Hereditary Property, HP) A is closed under f.g. substructures;

3. (Joint Embedding Property, JEP) if A1, A2 ∈ A there is C ∈ A and embeddings
fi : Ai → C (i = 1, 2);

4. (Amalgamation Property, AP) if A0, A1, A2 ∈ A and fi : A0 → Ai are embeddings,
there is B ∈ A and embeddings gi : Ai → B with g1 ◦ f1 = g2 ◦ f2.

Remarks 1.4. 1. Note that if ∅ ∈ A then JEP follows from AP.

2. As an example, let L consist of a 2-ary relation symbol R and A the class of all
finite graphs (considered as vertex sets with R interpreted as adjacency). This is an
amalgamation class. To verify AP, regard f1, f2 as inclusions and let B be the disjoint
union of A1 and A2 over A0 with edges RA1 ∪ RA2 . Take g1, g2 to be the natural
inclusions. We refer to B as the free amalgam of A1, A2 over A0 (and sometimes
denote it by A1

∐
A0
A2).

Definition 1.5. Suppose M is an L-structure. The age of M , Age(M) is the class of
structures isomorphic to some f.g. substructure of M .

Theorem 1.6. (Fräıssé’s Theorem)

1. If M is a homogeneous L-structure, then Age(M) is an amalgamation class.

2. Conversely, if A is an amalgamation class of countable L-structures, with countably
many isomorphism types, then there is a countable homogeneous L-structure M with
A = Age(M).

3. Suppose A is as in (2) and M is a countable homogeneous L-structure with age A.
Then M has the property that if A ⊆ M is f.g. and f : A → B is an embedding with
B ∈ A, then there is an embedding g : B → M with g(f(a)) = a for all a ∈ A. This
property determines M up to isomorphism amongst countable structures with age A.

Definition 1.7. In the above, the structure M is determined up to isomorphism by A and
is referred to as the Fräıssé limit, or generic structure of A. The property in (3) is sometimes
called the Extension Property
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Examples 1.8. We give some examples of amalgamation classes and homogeneous struc-
tures. In each case, the language is the ‘natural’ language for the structures.

1. The class of all finite graphs is an amalgamation class. The Fräıssé limit is the random
graph.

2. If n ≥ 3, let Kn denote the complete graph on n vertices. Consider the class of all finite
graphs which do not embed Kn. This is an amalgamation class (free amalgamation
gives AP) and the Fräıssé limit is sometimes called the generic Kn-free graph.

3. As with graphs, the class of all finite directed graphs is an amalgamation class. We can
use a similar idea to (2) to construct continuum many homogeneous directed graphs.
Recall that a tournament is a directed graph with the property that for every two
vertices a, b, one of (a, b), (b, a) is a directed edge. There is an infinite set S of finite
tournaments with the property that if A,B are distinct elements of S then A does not
embed in B. If T is a subset of S, consider the class of finite directed graphs which do
not embed any member of T . This is an amalgamation class (use free alamgamation);
call the Fräıssé limit H(T ). It is easy to see that the elements of S which are in
Age(H(T )) are the elements of S \ T . So the H(T ) are all non-isomorphic. These are
called the Henson digraphs.

4. The class of all finite linear orders is an amalgamation class (but we cannot use free
amalgamation). The Fräıssé limit is isomorphic to (Q;≤).

5. The class of all finite partial orders is an amalgamation class.

6. The class of all finite groups is an amalgamation class. The generic structure is Philip
Hall’s universal locally finite group.

7. (Cherlin, [7]) Let L consist of 3 binary relation symbols G,R,B and consider the class
of finite L-structures where R,G,B are symmetric, and for every pair of elements,
exactly one of R,G,B holds. So these are complete graphs where each edge is coloured
R,G or B. Consider the subclass of structures which omit the triangles:

RBB,GGB,BBB.

This is an amalgamation class. Amalgamation can be performed using only R,G edges,
but a single edge colour will not suffice.

Proof of Theorem 1.6: We sketch a few details of the proof of Fräıssé ’s Theorem.

1. Suppose M is a homogeneous L-structure. We show that Age(M) is an amalgamation
class and that M has the Extension Property in 1.6(3). It is easy to see that Age(M) has
IP, HP and JEP, so we verify AP.

Use the notation in the Definition. Without loss we can assume that A1, A2 ⊆ M and
f1 : A0 → A1 is the inclusion map. Thus f2 : A0 → A2 is an embedding between subsets of
M . Call the image B0. So we have (from f2) an isomorphism A0 → B0. By homogeneity this
extends to an automorphism h of M . Let B be the substructure generated by A1 ∪h−1(A2),
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let g1 : A1 → C be inclusion and g2 : A2 → C be h−1|A2. If a ∈ A0 then g2(f2(a)) = a =
g1(f1(a)), as required.

The proof of EP is similar. There is some embedding k : B → M . Let A′ = k(A).
Then k gives an isomorphism A → A′, which extends to an automorphism h of M . Let
g = h−1 ◦ k : B →M . Then g(a) = a for all a ∈ A, as required.

2. Suppose M,M ′ are countable L-structures with age A and which have EP. Suppose
A ⊆ M and A′ ⊆ M ′ are f.g. substructures and k : A → A′ is an isomorphism. Using a
back-and-forth argument, we can show that that k extends to an isomorphism between M
and M ′. This shows that any two countable structures with EP are isomorphic, and that
any countable structure with EP is homogeneous.

3. To finish the proof, it therefore remains to show that if A is an amalgamation class of
countable L-structures with countably many isomorphism types, then there is a countable
structure M with age A which has EP.

Note first that if A,B ∈ A, then there are countably many embeddings A → B. We build
M inductively as the union of a chain of structures in A:

A0 ⊆ A1 ⊆ A2 ⊆ A3 ⊆ . . . .

When doing this we ensure that:

• if C ∈ A, then C embeds into some Ai;

• if A is a f.g. substructure of Ai and f : A → B ∈ A, then there is j > i such that
there is an embedding g : B → Aj with g(f(a)) = a for all a ∈ A.

Note that there are countably many tasks to perform here; as we have a countable number of
steps at our disposal, it therefore suffices to show that any one of these can be performed. A
task of the first form can be performed using JEP. For the second, suppose the construction
has reached stage k > i. At the next stage we can take Ak+1 which solves the amalgamation
problem A → Ak (inclusion), f : A → B. Specifically, using AP we obtain h : Ak → Ak+1

(which can be taken as inclusion), and g : B → Ak+1 with g(f(a)) = h(a) = a for all a ∈ A,
as required. �

1.3 ω-categoricity

Suppose L is a first-order language. By the cardinality of L we mean the cardinality of the
set of L-formulas. We shall usually work with countable languages. Recall that a closed
L-formula (or L-sentence) is an L-formula without free variables. If M is an L-structure
then a closed formula σ makes an assertion about M which is either true or false (written
M |= σ and M 6|= σ respectively). The theory of M , denoted by Th(M), is the set of closed
formulas which are true in M .

Of course, if M is finite, then Th(M) determines M (up to isomorphism). However, if M is
infinite, then, by the Löwenheim - Skolem Theorems, Th(M) will have at least one model
of every cardinality greater than or equal to the cardinality of L.
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Definition 1.9. Suppose L is a countable language andM is a countably infinite L-structure.
We say that M (or Th(M)) is ω-categorical if every countable model of Th(M) is isomorphic
to M .

Proposition 1.10. Suppose L is countable relational language and M is a countably infinite
homogeneous L-structure. Suppose further that for each n ∈ N, there are finitely many
isomorphism types of substructures of M with n elements. Then M is ω-categorical.

Proof. This will follow from the Ryll-Nardzewski Theorem below, but it’s perhaps instructive
to give a direct proof. For simplicity we do this when the language has only finitely many
relation symbols.

First, note that Th(M) specifies the age of M : for each n we have a closed formula (of the
form (∀x1 . . . xn) . . .) specifying what the isomorphism type of an n-set can be; moreover we
have formulas (of the form (∃x1 . . . xn) . . .) saying that all these are represented.

Second, note that Th(M) also specifies the Extension Property. For each A ⊆ B ∈ Age(M)
we have in Th(M) the closed formula:

(∀x̄)(∃ȳ)(∆A(x̄)→ ∆A,B(x̄, ȳ))

where x̄ is a tuple of variables of length |A| and ∆A(x̄) is the basic diagram of A, indicating
the isomorphism type of A; similarly x̄ȳ has length |B| and ∆A,B(x̄ȳ) is the basic diagram
of B where the variables x̄ pick out the substructure A.

It follows that if M ′ is a model of Th(M) then M ′ has the same age as M and has the
extension property. So if M ′ is countable, then it is isomorphic to M .

We recall some model-theoretic terminlogy. Suppose M is an L-structure and θ(x1, . . . , xn)
an L-formula with free variables amongst x1, . . . , xn. Let

θ[M ] = {(a1, . . . , an) ∈Mn : M |= θ(a1, . . . , an)}.

This is called a ∅-definable subset of Mn. We say that formulas θ(x̄) and ψ(x̄) are equivalent
(modulo Th(M)) if they define the same subset of Mn. Equivalently (∀x̄)(θ(x̄) ↔ ψ(x̄)) ∈
Th(M).

More generally if C ⊆M , a C-definable subset of Mn is of the form

η[M, c̄] = {ā ∈Mn : M |= η(ā, c̄)}

for some L-formula η(x̄, ȳ) and tuple c̄ of elements of C. The c̄ here are called parameters,
and η(x̄, c̄) is a formula with parameters from C.

Suppose ā is an n-tuple of elements of M and C ⊆M . The type of ā over C (in M), written
tpM(ā/C) is the set of formulas η(x̄, c̄) with parameters from C such that M |= η(ā, c̄). Note
that if g ∈ Aut(M/C) then tpM(gā/C) = tpM(ā/C).

Theorem 1.11. (Ryll-Nardzewski, Svenonius, Engeler) Suppose L is a countable first-order
language and M a countably infinite L-structure. Then the following are equivalent:
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1. M is ω-categorical;

2. Aut(M) has finitely many orbits on Mn for all n ∈ N;

3. For each n ∈ N, every n-type of Th(M) is principal;

4. For each n ∈ N there are only finitely many equivalence classes of L-formulas with n
free variables (modulo Th(M)).

Remarks 1.12. 1. For a proof, see for example ([25], 4.4.1). One way to organise the
proof is

(2)⇒ (4)⇒ (3)⇒ (1)⇒ (3)⇒ (2).

All but one of these are either straightforward or an application of compactness. The
exception is (1)⇒ (3) which uses the Omitting Types Theorem.

2. A type is principal if it contains a formula which implies all of the other formulas in
it.

3. It is clear that (2)⇒ (1) gives Proposition 1.10.

4. We say that a group G acting on a set X is oligomorphic if G has finitely many orbits
on Xn for all n ∈ N.

Example 1.13. We give an example of how amalgamation constructions can sometimes be
used to produce ω-categorical structures (and oligomorphic groups) with prescribed proper-
ties.

Suppose (kn : n ∈ N) is a given sequence of natural numbers. We construct an ω-categorical
structure M such that for every n ∈ N, the number of orbits of Aut(M) on Mn is at least
kn. Consider a language L which has kn n-ary relation symbols for each n. Let A consist
of finite L-structures C such that for each relation symbol R, if C |= R(c1, . . . , cn), then
c1, . . . , cn are distinct. This is an amalgamation class (use free amalgamation) and for each
n there are only finitely many, but at least kn, isomorphism types of structures of size n in
A. So the Fräıssé limit M is ω-categorical and has the required property.

Corollary 1.14. Suppose M is ω-categorical.

1. Two n-tuples are in the same Aut(M)-orbit iff they have the same type over ∅ in M .

2. The ∅-definable subsets of Mn are precisely the Aut(M)-invariant subsets of Mn, that
is, unions of Aut(M)-orbits on Mn.

3. If C ⊆ M is finite, then the C-definable subsets of Mn are precisely the Aut(M/C)-
invariant sets.

Proof. (1) The direction ⇒ is true in general; the other direction is part of the proof of
(3)⇒ (2) in the above.
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(2) It is clear that a ∅-definable subset of Mn is Aut(M)-invariant, so is a union of Aut(M)-
orbits on Mn. It follows that it is enough to show that each such Aut(M)-orbit X is definable.
But this follows from (1) and the fact that types are principal.

(3) Expand the language to the language L(C) by adding new constants for the elements of
C. Regard M as an L(C)-structure (M ;C) in the obvious way and note that a C-definable
subset of Mn is the same thing as a ∅-definable subset of the L(C)-structure (M ;C). The
automorphism group of the latter is Aut(M/C) and as C is finite, this has finitely many
orbits on n-tuples for all n. So (M ;C) is ω-categorical and (3) follows from (2).

The following characterization of homogeneous structures amongst the ω-categorical struc-
tures is worth noting. Recall that an L-structure M (or its theory Th(M)) is said to have
quantifier elimination (QE) if for every n ≥ 1, every L-formula θ(x1, . . . , xn) is equivalent
(modulo Th(M)) to a quantifier-free formula η(x1, . . . , xn).

Theorem 1.15. Suppose M is an ω-categorical L-structure. Then Th(M) has quantifier
elimination iff M is homogeneous.

Proof. (⇒:) Suppose A1, A2 are f.g. substructures of M and f : A1 → A2 is an isomorphism.
So by ω-categoricity, A1, A2 are finite. Let ā1 enumerate A1 and ā2 = f(a2). Then ā1,
ā2 satisfy the same quantifier-free formulas in M . By QE, it follows that tpM(ā1/∅) =
tpM(ā2/∅). By Corollary 1.14(1), there is g ∈ Aut(M) with gā1 = ā2. Thus g extends f , as
required.

(⇐:) If ā, ā′ are tuples in M with the same quantifier free type, then ā 7→ ā′ extends to an
isomorphism f : A → A′ between the substructures generated by ā, ā′. By homogeneity,
there is an automorphism of M extending f and so ā, ā′ have the same type over ∅ in M .
So quantifier-free types determine types (over ∅) in M ; as all types are principal it follows
that every formula is equivalent to a quantifier free formula (in M).

We conclude this subsection with some comments on algebraic closure.

Definition 1.16. Suppose M is an L-structure and A ⊆ M . The algebraic closure acl(A)
of A in M is the union of the finite A-definable subsets of M . In general, acl(A) contains
the substructure generated by A and acl is a closure operation on M .

Lemma 1.17. Suppose M is ω-categorical. Then acl is a uniformly locally finite closure
operation on M : there is a function α : N→ N such that if A ⊆M is finite, then |acl(A)| ≤
α(|A|).

Proof. By the previous corollary, acl(M) is the union of the finite Aut(M/A)-orbits on M ,
so is finite. Note that if g ∈ Aut(M) then acl(gA) = gacl(A). So as there are only finitely
many orbits on finite sets of any given size, there is a uniform bound on the size of the
algebraic closures of these sets.

In particular, if M is ω-categorical there is a uniform bound on the size of n-generator
substructures, for all n ∈ N (of course, if L is a relational language, this is not saying very
much).
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We say that algebraic closure in M is trivial if acl(A) = A for all finite A ⊆ M . If M is
homogeneous, this can be expressed as a condition on its age:

Lemma 1.18. Suppose L is a countable relational language and M is a homogeneous L-
structure which is ω-categorical. Then algebraic closure in M is trivial iff A = Age(M)
satisfies:

(Strong Amalgamation Property) if A0, A1, A2 ∈ A and fi : A0 → Ai are embeddings, there
is B ∈ A and embeddings gi : Ai → B with g1 ◦f1 = g2 ◦f2 and g1(A1)∩g2(A2) = g1(f1(A0)).

Proof. First, suppose A has the strong amalgamation property. Let B ⊆ M be finite and
c 6∈M . We have to show that c is in an infinite Aut(M/B)-orbit, so we show that for every
n ∈ N there are at least n elements in this orbit. Let C be the substructure B ∪ {c}. By
strong amalgamation there is a structure D in A which consists of n distinct copies of C
amalgamated over B; so D = B ∪ {c1, . . . , cn}. We can assume C ⊆ D (say c = c1) and
using the Extension Property of M , we can assume that D ⊆ M . Then the B ∪ {ci} are
isomorphic (over B), so by homogeneity, the ci are in the same Aut(M/B)-orbit.

Conversely, suppose algebraic closure is trivial in M . We modify the proof of AP given
in Theorem 1.6. Use the notation in the Definition. Without loss we can assume that
A1, A2 ⊆ M and f1 : A0 → A1 is the inclusion map. Thus f2 : A0 → A2 is an embedding
between subsets of M . Call the image B0. So we have (from f2) an isomorphism A0 → B0.
By homogeneity this extends to an automorphism h of M . So h−1(A2) ⊇ A0. By Neumann’s
lemma (after applying an element of Aut(M/A0)) we can assume that h−1(A2) ∩ A1 = A0.
Let B = A1 ∪ h−1(A2), let g1 : A1 → C be inclusion and g2 : A2 → C be h−1|A2. If a ∈ A0

then g2(f2(a)) = a = g1(f1(a)), as required.

The proof made use of the following (see Corollary 4.2.2 of [13] for a proof):

Theorem 1.19. (Neumann’s Lemma) Suppose G is a group acting on a set X and all G-
orbits on X are infinite. Suppose B,C are finite subsets of X. Then there is some g ∈ G
with B ∩ gC = ∅.

Examples 1.20. We list some examples of ‘natural’ ω-categorical structures. The first three
have trivial algebraic closure, the rest, non-trivial.

1. A pure set (M ; =). So the language just has equality; the automorphism group is the
full symmetric group Sym(M).

2. A countable structure (M ;E) with an equivalence relation E which has infinitely many
classes, all of which are infinite.

3. The countable, dense linear ordering without endpoints (Q;≤).

4. The countable atomless boolean algebra (B; 0, 1,∧,∨,¬).

5. A vector space V (ℵ0, q) of dimension ℵ0 over a finite field Fq with q elements. Note
that the usual language for vector spaces over a field K consists of +,−, 0, λa(a ∈ K)
where λa is a function symbol for scalar multiplication by a.
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6. Any countable abelian group of finite exponent.

7. A classical (symplectic, orthgonal or Hermitian) space (V (ℵ0, q) : +,−, 0, ...) over a
finite field, where ... consists of the extra structure, such as the bilinear or quadratic
form.

Remarks 1.21. Other ways of constructing ω-categorical structures include interpretation
(see the next section) and boolean powers. The survey [10] discusses the latter in detail.

2 Automorphism groups and imaginaries

In this section we will explain the model-theoretic notion of a structure being interpreted
in another structure and the related concept of imaginary elements. For an ω-categorical
structure, there is a nice way of viewing imaginary elements in terms of a topology on the
automorphism group and we will explain this, leading to a result of Ahlbrandt and Ziegler.
We will not have time to discuss the many other applications and questions around the
topology of automorphism groups. The surveys by Macpherson [23] and Kechris [20] are
good references for these.

2.1 Automorphism groups as topological groups

If X is any non-empty set, the symmetric group G = Sym(X) is the group of all permutations
of X. We regard this as a topological group with open sets being unions of cosets of pointwise
stabilizers of finite sets. In other words, the basic open sets are of the form gG(A) for A ⊆fin X
and g ∈ G. Note here that

G(A) = {h ∈ G : ha = a∀a ∈ A}

so

gG(A) = {h ∈ G : h|A = g|A}.

Note also that each of these basic open sets is also closed (the complement is the union of
the other cosets).

If X is countable (say X = N), this is separable and complete metrizable. To see the latter,
consider d given by, for g1 6= g2,

d(g1, g2) = 1/n where n is as small as possible with g1n 6= g2n.

This is a metric for the topology, but it is not complete. To obtain a complete metric,
consider

d′(g1, g2) = d(g1, g2) + d(g−1
1 , g−1

2 ).

This is a complete metric for the topology. So if X is countable, then Sym(X) is a Polish
group.
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Lemma 2.1. Suppose G ≤ Sym(X). Then the closure of G in Sym(X) is

Ḡ = {g ∈ Sym(X) : gY = Y for all G-orbits Y on Xn, ∀n}.

Proof. First, suppose Y is a subset of Xn. We show that {g ∈ Sym(X) : gY = Y } is
closed. If gY 6⊆ Y there is some ȳ ∈ Y with gȳ 6∈ Y ; so if g′ ∈ gGȳ then g′Y 6⊆ Y .
So the complement of {g ∈ Sym(X) : gY ⊆ Y } is open and therefore this set is closed.
Similarly {g ∈ Sym(X) : gY ⊇ Y } is closed so {g ∈ Sym(Y ) : gY = Y } is closed. Thus the
intersection of these over all Y is closed and Ḡ is therefore contained in this intersection.

It follows that {g ∈ Sym(X) : gY = Y for all G-orbits Y on Xn, ∀n} is closed and clearly
it contains G. So it contains Ḡ.

Finally suppose g ∈ Ḡ and Y is a G-orbit on Xn. Then every open neighbourhood of g
contains a point of G. So if ȳ ∈ Y there is h ∈ G with gȳ = hȳ. So gȳ ∈ Y . Likewise
g−1ȳ ∈ Y so gY = Y .

Corollary 2.2. A subgroup G of Sym(X) is closed iff G is the automorphism group of some
first-order structure on X.

Proof. A first-order structure on X is specified by relations and functions on X and the au-
tomorphisms are the permutations which preserve these. Note that a permutation preserves
a function iff it stabilizes (setwise) its graph. So the automorphsim group is the intersection
of the setwise stabilisers of certain subsets of Mn for various n. As in the proof of the lemma,
this is a closed subgroup.

Conversely, if G ≤ Sym(X) consider the structure on X which has a relation for each G-
orbit on Xn, for each finite n. By the proof of the lemma, the automorphism group of this
structure is Ḡ. So if G is closed, the automorphism group is G.

Remarks 2.3. The structure on X constructed above (with relations the G-orbits on Xn)
is sometimes called the canonical structure for G on X. Note that if G is oligomorphic (and
X is countably infinite) this is an ω-categorical structure.

2.2 Interpretations and imaginaries

Some structures can be built out of others in a definable way. The classical example is the
construction of the field of rational numbers from the ring of integers. Another example is
algebraic groups over a particular field.

Formalising this leads to the notion of an interpretation of one structure in another.

Definition 2.4. Suppose K and L are first-order languages, M a K-structure and N an
L-structure. We say that N is interpretable in M if for some n ∈ N there exist:

1. a ∅-definable subset D of Mn;

2. a ∅-definable equivalence relation E on D;
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3. a bijection γ : N → D/E

such that for every ∅-definable subset R of Nm the subset of Mmn given by

R̂ = {(ā1, . . . , ām) ∈ (Mn)m : (γ−1(ā1/E), . . . , γ−1(ām/E)) ∈ R}

is ∅-definable in M .

Thus the set N can be identified with a ∅-definable subset of Mn factored by a ∅-definable
equivalence relation, and with this identification all of the L-structure on N can be derived
from the K-definable structure on M . There is a considerable amount of redundancy in the
definition: it is only necessary to have ∅-definability of R̂ when R is a distinguished constant
or relation, or the graph of a distinguished function.

Example 2.5. Let M be a pure set. Consider the graph (N ;R) whose vertices N are subsets
of size 2 from M and R({a, b}, {c, d})⇔ |{a, b} ∩ {c, d}| = 1. Then N can be interpreted in
M .

If the equivalence relation E in Definition 2.4 is simply equality on D then we say that N
is definable in M . If also D = M then we say that N is a reduct of M (so N just consists
of M with some of its definable structure forgotten). Note that if N is interpretable in
M then the interpretation gives us a homomorphism Aut(M) → Aut(N) (with the above
notation, if g ∈ Aut(M) and b ∈ N then g(b) = γ−1(g(γ(b))). If N is a reduct of M then
Aut(M) ⊆ Aut(N).

Lemma 2.6. Suppose M is an ω-categorical structure and N is a (countably infinite) struc-
ture interpreted in M . Then N is ω-categorical.

Proof. As noted above, Aut(M) acts on N via its action on Mn. Then for every k ∈ N,
there are finitely many orbits of Aut(M) on Nk (because there are finitely many orbits on
Mnk), so there are finitely many orbits of Aut(N) on Nk. so the result follows by Theorem
1.11.

Equivalence classes in D/E as above are referred to as imaginary elements of M . Taking
the set of all imaginary elements (as D and E range over all ∅-definable sets and equivalence
relations) gives us the set M eq. We wish to regard this as a first-order structure, so we
extend the language K of M in a canonical way (to a first-order language Keq), and part
of the Keq-theory of M eq describes how the imaginary elements correspond in a ∅-definable
way to the original K-structure M .

More formally, for each such ∅-definable equivalence relation E on a ∅-definable subset of
Mn we introduce an extra ‘sort’ SE of elements consisting of the set of E-classes on D. We
add to the language a 1-ary predicate to pick out these elements and a new n-ary function
symbol for the natural map πE : D → D/E. The theory contains the formulas saying that
πE is surjective and (∀x̄ȳ)(πE(x̄) = πE(ȳ) ↔ E(x̄, ȳ)). (This is sometimes done only for
∅-definable equivalence relations on Mn; note that any of our equvalence relations can be
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extended to such, by making classes of tuples outside D to be singletons. If we do this the
definable structure is essentially the same.)

The reader can consult ([13], Section 4.3) for the precise details of how to do all of this.
Once we have this concept, it makes sense to extend notions such as ‘parameter definable’,
‘types’, ‘algebraic closure’ etc. to subsets of M eq. Again we refer the reader to ([13]) for
further details if the need arises.

Note that a structure N is interpretable in M iff it is definable in M eq.

2.3 Biinterpretability of ω-categorical structures

Recall that if M is an L-structure, then an element e of M eq is an equivalence class of some
∅-definable equivalence relation E on Mn (for some n ∈ N). So there is some ā ∈ Mn such
that e = ā/E. Also recall that the action of G = Aut(M) on M extends in a natural way to
an action on M eq: we have g(e) = g(ā)/E for g ∈ G.

Theorem 2.7. Suppose M is an ω-categorical structure. The open subgroups of G = Aut(M)
are precisely the subgroups of the form Ge = Aut(M/e) for e ∈M eq.

Proof. First, let e ∈ M eq. So e = ā/E for some ∅-definable equivalence relation E on a
∅-definable subset D of Mn and ā ∈ D. Then clearly Gā ≤ Ge. So Ge is the union of the
cosets of Gā which it contains. Therefore Ge is open in G. (Note that this does not use
ω-categoricity.)

Conversely, suppose H ≤ G is open. As pointwise stabilizers of finite sets form a base
of open neighbourhoods of the identity, there is some n-tuple ā such that Gā ≤ H. Let
D = {gā : g ∈ G} be the G-orbit which contains b̄. Define the 2-ary relation E on D by:

E(g1ā, g2ā)⇔ g−1
2 g1 ∈ H.

One checks easily that this is well-defined and is a G-invariant equivalence relation on D.
As M is ω-categorical, E is a ∅-definable subset of M2n (Corollary 1.14(2)).

Let e = ā/E. So e ∈M eq. By definition

g ∈ Ge ⇔ g ∈ H.

So H = Ge, as required.

Remarks 2.8. Note that the proof shows that the open subgroups containing Gā are of
the form Ge where e is the equivalence class containing ā for some G-invariant equivalence
relation E on Mn. Such an equivalence class is a union of Gā-orbits on Mn. There are
only finitely many such orbits (because G has finitely many orbits on M2n) so there are
only finitely many possibilities for the class ā/E. It follows that there are only finitely many
subgroups of G which contain Gā; it then follows that there are only countably many open
subgroups of G.
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Theorem 2.9. (Ahlbrandt and Ziegler; Coquand) Suppose M , N are ω-categorical struc-
tures. Then Aut(M) and Aut(N) are isomorphic as topological groups iff M and N are
biinterpretable.

Before proving this, we explain what is meant by saying that M,N are biinterpretable.

Informally, this means that M is interpretable in N (without parameters) and N is inter-
pretable in N and the ‘composite’ interpretations of M in itself and N in itself are definable.

Example 2.10. Consider the followng two structures. The structure M consists of a pure
set. The structure N consists of a pure set in which each point is ‘doubled’; more formally we
have (N ;E) where N is countably infinite and E is an equivalence relation with all classes of
size 2. Then M is interpretable in N : let γ : M → N/E be any bijection. We also have an
interpretation of N in M : let D consist of two copies M × {0}, M × {1} of M (this can be
arranged1). There is a bijection δ : N → D such that for all a ∈M , δγ(a) = {(a, 0), (a, 1)}.
So each of M , N can be interpreted in the other. As Aut(M) and Aut(N) are not isomorphic
as groups, the structures are not biinterpretable.

Definition 2.11. Suppose M , N are two structures. If N is interpretable in M then there is
an injective map α : N → M eq (with image contained in finitely many sorts) such that any
∅-definable subset of Nn maps under α to a ∅-definable subset of M eq. Note that α extends
canonically to a map α̃ : N eq →M eq which maps ∅-definable sets to ∅-definable sets.

Suppose also that M is interpretable in N via β : M → N eq. Let β̃ : M eq → N eq be the
corresponding extension. We obtain interpretations of M and N in themselves:

α̃ ◦ β : M →M eq and β̃ ◦ α : N → N eq.

We say that M , N are biinterpretable if α and β can be chosen so that these compositions
are ∅-definable maps (in M eq and N eq respectively).

Remarks 2.12. In the example, the composition γ̃ ◦ δ̃ gives a map σ : N/E → N with the
property that σ(c) ∈ c for all c ∈ N/E. Such a map cannot be ∅-definable in N .

Proof of Theorem 2.9: Suppose M , N are biinterpretable and α, β are as in the defini-
tion. Note that α induces a homomorphism α∗ : Aut(M) → Aut(N) given by α∗(g)(b) =
α−1g(α(b)) (for g ∈ Aut(M) and b ∈ N). It is continuous as the preimage of Aut(N/b)
contains Aut(M/α(b)) (for b ∈ N). Likewise, we have a continuous homomorphism β∗ :
Aut(N)→ Aut(M).

Now, β∗α∗ : Aut(M)→ Aut(M) and for g ∈ G and a ∈M we have:

β∗α∗(g)(a) = β−1α∗(g)β(a) = β−1α̃−1g(α̃β(a)).

By the definability (and hence Aut(M)-invariance) of α̃β we have α̃β(ga) = g(α̃β(a)), thus
β∗α∗(g)(a) = g(a), whence β∗α∗ is the identity. Likewise α∗β∗ is the identity, so Aut(M)
and Aut(N) are isomorphic topological groups.

1After the lecture, G. Cherlin pointed out that Shelah explains how to do this in his book on Classification
Theory. Consider M3 quotiented by the definable equivalence relation:
(c, a, b) ∼ (c′, a′, b′) ⇔ ((a = b) ∧ (a′ = b′) ∧ (c = c′)) ∨ ((a 6= b) ∧ (a′ 6= b′) ∧ (c = c′)). Note that here, for
each c ∈M , the triples (c, a, b) fall into two equivalence classes.
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Conversely, suppose γ : Aut(M) → Aut(N) is an isomorphism of topological groups. Let
a1, . . . , ar be representatives of the Aut(N)-orbits on N . For each i ≤ r, there is ei ∈ M eq

such that γ−1(Aut(M/ei)) = Aut(N/ai) (by Theorem 2.7). If a ∈ N there is a unique i
and some g ∈ Aut(N) with a = gai. Define α(a) = γ−1(g)(ei). One checks that this is
well-defined and the resulting α : N → M eq is an interpretation of N in M . Moreover, if
g ∈ Aut(M) and a ∈ N then α∗(g)(a) = γ(g)(a).

Similarly, we use γ to define an interpretation β : M → N eq of M in N where β∗(g) = γ−1(g).

We claim that α̃β is definable in M eq. To do this, it will suffice to show that if g ∈ Aut(M)
fixes a ∈ M , then it fixes α̃β(a). Note that β∗α∗(g) = g, so what we want follows from the
computation of β∗α∗(g)(a) above. �

Example 2.13. Consider again the Example 2.5. We have an interpretation α : N →M eq,
but also the elements of M can be ‘coded’ as elements of N eq in the following way. Note
that the only way that four vertices in the graph (N ;R) can form a complete graph is if
they share a common element of M . Let D be the definable subset of N4 consisting of
4-tuples of distinct vertices forming a complete graph; let E be the definable relation on
this such that E(ā, b̄) holds iff there is a complete graph on the union of the points in ā, b̄.
This is a definable equivalence relation on D and the equivalence classes D/E correspond
to the elements of M . One can then show that α∗ : Aut(M) → Aut(N) is a topological
isomorphism.

3 The Hrushovski construction

3.1 An extension of Fräıssé’s Theorem

We give a generalization of Fräıssé ’s Theorem 1.6. Further generalizations are possible
(though the basic structure of the proof is always the same). For example a general category-
theoretic version of the Fräıssé construction can be found in [9] and Section 2.6 of [21].

We shall work with a class K of finite L-structures and a distinguished class of substructures
A v B, pronounced ‘A is a nice substructure of B’ (the terminology is not standard). If
B ∈ K, then an embedding f : A→ B is a v-embedding if f(A) v B. We shall assume that
v satisfies:

(N1) If B ∈ K then B v B (so isomorphisms are v-embeddings);

(N2) If A v B v C (and A,B,C ∈ K), then A v C (so if f : A → B and g : B → C are
v-embeddings, then g ◦ f : A→ C is a v-embedding).

We say that (K,v) is an amalgamation class if:

• K is closed under isomorphisms and has countably many isomorphism types (and
countably many embeddings between any pair of elements);
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• K is closed under v-substructures;

• K has the JEP for v-embeddings;

• K has AP for v-embeddings: if A0, A1, A2 are in K and f1 : A0 → A1 and f2 : A0 → A2

are v-embeddings, there is B ∈ K and v-embeddings gi : Ai → B (for i = 1, 2) with
g1 ◦ f1 = g2 ◦ f2.

Remarks 3.1. 1. If v is just ‘substructure’ then this is the same as what was previously
defined as a (Fräıssé ) amalgamation class.

2. The notion A v B is only defined when B is finite and it will be convenient to extend
this to the situation where B is the union of a v-chain of finite substructures. We can
do this as follows.

Suppose M is a countable L-structure and there are finite Mi ⊆ M (with i ∈ N) such
that M = ∪i∈NMi and M1 vM2 vM3 v . . .. Then for finite A ⊆M we define A vM
to mean that A v Mi for some i ∈ N. Note that a priori this depends on the choice
of Mi, though the notation does not reflect this.

A condition on (K,v) which guarantees that this does not depend on the choice of the Mi

is:

(N3) Suppose A v B ∈ K and A ⊆ C ⊆ B with C ∈ K. Then A v C.

Indeed, suppose this holds and we also write M as the union of a v-chain

M ′
1 vM ′

2 vM ′
3 v . . . .

Suppose A vMi. There exist j, k such that

Mi ⊆M ′
j ⊆Mk.

As Mi vMk and M ′
j ∈ K, (N3) implies that Mi vM ′

j, so A vM ′
j.

The generalisation of the amalgamation construction is:

Theorem 3.2. Suppose (K,v) is an amalgamation class of finite L-structures and v satis-
fies (N1) and (N2). Then there is a countable L-structure M and finite substructures Mi ∈ K
(for i ∈ N) such that:

1. M1 vM2 vM3 v . . . and M = ∪i∈NMi;

2. every A ∈ K is isomorphic to a v-substructure of M ;

3. (Extension Property) if A v M is finite and f : A → B ∈ K is a v-embedding then
there is a v-embedding g : B →M such that g(f(a)) for all a ∈ A.
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Moreover, M is determined up to isomorphism by these properties and if A1, A2 v M and
h : A1 → A2 is an isomorphism, then h extends to an automorphsim of M (which can be
taken to preserve v).

Note that in the above v is with respect to the chain of Mi. When we apply the result
here, the v will satisfy (N3) so this dependence is irrelevant. We refer to the property in
the ‘Moreover’ part as v-homogeneity and say that M is the generic structure of the class
(K,v).

Proof of Theorem 3.2: This is very similar to the proof of Theorem 1.6 so we will only give
an outline.

Existence of M : Build the Mi inductively ensuring that:

• if C ∈ K there is an i and a v-embedding f : C →Mi;

• if A v Mi and A v B ∈ K then there is j ≥ i and a v-embedding g : B → Mj with
g(a) = a for all a ∈ A.

To perform tasks of the first type, we use JEP; for the second type we can use AP as in the
proof of 1.6. There are only countably many tasks to perform, so we can arrange that all
are completed during the construction of the Mi.

Uniqueness and v-homogeneity: Suppose M ′
1 vM ′

2 v . . . is a v-chain whose union M ′ also
satisfies (1-3). Write v′ for v in M ′ with respect to the M ′

i . As in the proof of 1.6, one uses
the Extension Property to show that

S = {f : A→ A′ : f an isomorphism and A vM, A′ v′ M ′ finite}

is a back-and-forth system (which is non-empty because of JEP).

It follows that if f : A → A′ is in S then there is an isomorphism h : M → M ′ which
extends f . Moreover, the back-and-forth construction of h will ensure that h(Mi) v′ M ′ and
h−1(M ′

i) vM for all i, so h(B) v′ M ′ ⇔ B vM (for finite B ⊆M). �

As with Theorem 1.6, there is a converse statement. We omit the proof.

Theorem 3.3. Suppose M is a countable L-structure and (K,v) (satisfying (N1), (N2)) is
such that M = ∪i∈NMi for Mi ∈ K with Mi v Mi+1. Suppose also that K is the class of
isomorphism types of v-substructures of M and that M is v-homogeneous (with respect to
the v-chain). Then Then (K,v) is an amalgamation class. �

Remarks 3.4. Suppose K in Theorem 3.2 has only finitely many isomorphism types of
structure of each finite size. Suppose also that there is a function F : N → N such that if
B ∈ K and A ⊆ B with |A| ≤ n, then there is C v B with A ⊆ C and |C| ≤ F (n). Then
the generic structure M is ω-categorical.

To see this we note that Aut(M) has finitely many orbits on Mn. Indeed, by v-homogeneity
there are finitely many orbits on {c̄ ∈ MF (n) : c̄ v M} and any ā ∈ Mn can be extended to
an element of this set.
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3.2 Hrushovski’s predimension construction

Notation 3.5. Fix an integer n ≥ 2 and a positive real number α. Let L be a language
with a single n-ary relation symbol R. We work with the class C̄ of L-structures A where R
is symmetric and irreflexive. Thus, the set RA of instances of R in A can be thought of as a
set of n-subsets from A, so RA ⊆ [A]n. If A is finite, define the predimension of A to be:

δ(A) = α|A| − |RA|.

Remarks 3.6. 1. This can be done more generally. The condition of R being symmetric
is not really necessary (but for example, if n = 2, then I prefer to work with graphs
rather than directed graphs). We can also have a family of atomic relations (Ri : i ∈ I)
in L and work with a predimension δ(A) = α|A| −

∑
i∈I βi|RA

i | where βi ≥ 0.

2. If α = m/` ∈ Q we will rescale δ as δ(A) = m|A| − `|RA|.

Lemma 3.7. (Submodularity) Suppose A ∈ C̄ and B,C are finite subsets of A. Then

δ(B ∪ C) ≤ δ(B) + δ(C)− δ(B ∩ C).

Moreover, there is equality here iff RB∪C = RB ∪RC (that is, B are freely amalgamated over
B ∩ C in A).

Proof. Note that

δ(B) + δ(C)− δ(B ∩ C)− δ(B ∪ C)

= −(|RB|+ |RC | − |RB∩C | − |RB∪C |)
= |RB∪C | − (|RB|+ |RC | − |RB ∩RC |)

= |RB∪C | − |RB ∪RC | ≥ 0

with equality iff RB∪C = RB ∪RC .

Definition 3.8. Suppose B ∈ C̄ and A ⊆ B is finite.

1. Write A ≤s B if δ(A) ≤ B′ for all finite B′ with A ⊆ B′ ⊆ B and say that A is
self-sufficient in B.

2. Write A ≤d B if δ(A) < δ(B′) for all finite B′ with A ⊂ B′ ⊆ B and say that A is
d-closed in B.

Remarks 3.9. 1. Take n = 2 and α = 2. So δ(A) is ‘twice number of vertices minus
number of edges’. If B consists of 3 vertices a, b, c with edges ab, bc and A = {a, c},
then A ≤s B but A 6≤d B.

2. In general, if A ≤d B then A ≤s B.
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3. If α is irrational and B finite, then A ≤s B implies A ≤d B. Otherwise there is
A ⊂ B′ ⊆ B with δ(A) = δ(B′). Then α = (|RB′| − |RA|)/(|B′| − |A|), which is
rational.

Lemma 3.10. Let B ∈ C̄ and let ≤ denote either ≤s or ≤d.

1. If A ≤ B is finite and X ⊆ B, then A ∩X ≤ X.

2. If A,C are finite and A ≤ C ≤ B, then A ≤ B.

3. If A1, A2 and finite and A1, A2 ≤ B, then A1 ∩ A2 ≤ B.

Proof. (1) Let Y ⊆ X be finite with A ∩ X ⊂ Y . Note that Y ∩ A = X ∩ A. Then by
submodularity:

δ(A ∪ Y ) ≤ δ(A) + δ(Y )− δ(Y ∩ A) so δ(A ∪ Y ) ≤ δ(A) + δ(Y )− δ(X ∩ A).

Therefore
δ(Y )− δ(A ∩X) ≥ δ(A ∪ Y )− δ(A).

If A ≤s B, this is ≥ 0. If A ≤d B, it is > 0.

(2) We give the proof for ≤s; the proof for ≤d is similar. Let A ⊂ X ⊆fin B. By (1),
C ∩X ≤s X so

δ(A) ≤ δ(X ∩ C) ≤ δ(X)

(the first of these coming from A ≤s C).

(3) By (1) A1 ∩ A2 ≤ A1, so the result follows from (2).

Remarks 3.11. If B is finite, then (3) shows that if A ⊆ B and S = {A1 : A ⊆ A1 ≤ B},
then

⋂
S ≤ B. So there is a smallest ≤s (or ≤d) subset of B which contains A: denote it by

clsB(A) (or cldB(A)) respectively. It is easy to see that clsB and cldB are closure operations on
B.

Lemma 3.12. For finite A ⊆ B ∈ C̄ we have δ(A) ≥ δ(cldB(A)).

Proof. Amongst all the subsets X of B containing A, consider the ones for which δ(X) is
as small as possible. Amongst these, choose one, C, with as many elements as possible.
Clearly δ(C) ≥ δ(A) and if C ⊂ D ⊆ B, then δ(C) < δ(D). So C ≤d B and therefore
A ⊆ cldB(A) ≤d C ≤d B. By choice of C we have δ(C) ≤ δ(cldB(A)), therefore C = cldB(A).
The result follows.

From Lemma 3.10, the notions of distinguished substructure ≤s and ≤d satisfy (N1), (N2)
and (N3) (for the finite structures in C̄). However, we do not have the JEP. For example,
suppose B1, B2 ∈ C̄ are finite and δ(B2) < 0. Let C be the free amalgam (disjoint union) of
B1 and B2. Then δ(B1)+δ(B2) < δ(B1) so B1 6≤s C. So it makes sense to exclude structures
of negative predimension.
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Definition 3.13. Let
C̄0 = {B ∈ C̄ : ∅ ≤s B}

and
C̄>0 = {B ∈ C̄ : ∅ ≤d B}.

So
B ∈ C̄0 iff for all non-empty, finite A ⊆ B we have δ(A) ≥ 0,

and
B ∈ C̄>0 iff for all non-empty, finite A ⊆ B we have δ(A) > 0.

Let C0 and C>0 denote the finite members of these classes.

Remarks 3.14. If A ∈ C0 then |RA| ≤ α|A|: the structures in C0 are sparse.

For example, if n = 2, α = 1 and A ∈ C0, then each connected component of A has at most
one cycle, so this case is not very interesting. The case α = 2 is more interesting.

Lemma 3.15. The classes (C>0,≤d) and (C0,≤s) are free amalgamation classes and (N1),
(N2), (N3) hold.

Proof. We verify this for (C>0,≤d): the proof for the other class is almost identical.

It remains to consider the amalgamation property (the JEP is a special case of this). We
show the following stronger form. Let A ⊆ B1, B2 ∈ C>0 and A ≤d B1. Let E be the free
amalgam of B1 and B2 over A. We claim that B2 ≤d E. Note that once we have the claim,
we have ∅ ≤d B2 ≤d E, so ∅ ≤d E and therefore E ∈ C>0.

To establish the claim, let B2 ⊂ X ⊆ E. So X = B2∪Y where Y = X ∩B1 ⊃ A. Moreover,
X is the free almalgam of B2 and Y over A, so

δ(X) = δ(B2 ∪ Y ) = δ(B2) + δ(Y )− δ(A).

So
δ(X)− δ(B2) = δ(Y )− δ(A) > 0

as A ≤d B1.

Remarks 3.16. Using Theorem 3.2, we can build a countable generic structure M>0 for
(C>0,≤d) (and M0 for (C0,≤s)). However, neither of these will be ω-categorical: if A ⊆M>0

is finite there is no uniform bound on the size of cld(A) in terms of |A| (and there is a similar
problem in M0).

Remarks 3.17. 1. The theory of M0 is stable (and ω-stable if α is rational).

2. If n = 2 and α is irrational then Th(M0) is the limit theory as k →∞ of random finite
graphs on k vertices where edges are chosen with probability k−1/α ([5, 26]).

3. In general if α is rational then Th(M>0) is bad. For example if n = 2 and α = 2 then
Th(M>0) has the independence and strict order properties; it encodes the theory of
finite graphs, so is undecidable.
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3.3 Construction of ω-categorical examples

Following [14], we will consider subclasses of (C>0,≤d) in which d-closure is uniformly
bounded. More precisely we have the following definition.

Definition 3.18. Let F : R≥0 → R≥0 be a continuous, increasing function with F (x)→∞
as x→∞, and F (0) = 0. Let

CF = {B ∈ C>0 : δ(A) ≥ F (|A|) for all A ⊆ B}.

Theorem 3.19. 1. If B ∈ CF and A ⊆ B then

|cldB(A)| ≤ F−1(α|A|).

2. If (CF ,≤d) is an amalgamation class, then the generic structure MF is ω-categorical.

3. If (CF ,≤d) is a free amalgamation class and A ⊆MF is finite, then

aclMF
(A) = cldMF

(A).

Proof. (1) By Lemma 3.12 we have δ(cldB(A)) ≤ δ(A) ≤ α|A|. Thus (by definition of CF ) we
have |cldB(A)| ≤ F−1(α|A|).
(2) This follows from Remarks 3.4.

(3) As cldMF
(A) is finite and invariant under Aut(MF/A), it is contained in aclMF

(A). On
the other hand, if B ≤d MF is finite and B ≤d C ≤d MF (C finite), then for c ∈ C \ B the
Aut(MF/B)-orbit containing c is infinite. The proof of this is as in the proof of Lemma 1.18.
Using free amalgamation and the Extension Property for MF , we see that MF contains a
copy (over B) of the free amalgam of k distinct copies of C. The copies of c inside these are
all in the same Aut(MF/B)-orbit as c. As k is arbitrary here, we obtain the result.

Example 3.20. Let m, ` ∈ N and α = m/`. Work with the integer-valued predimension
δ(A) = m|A| − `|RA|. Let F as in Definition 3.18 be such that:

• F is piecewise smooth;

• the right derivative F ′ is non-increasing;

• F ′(x) ≤ 1/x for all x > 0.

The we claim that (CF ,≤d) is a free amalgamation class.

Indeed, suppose A ≤d B1, B2 ∈ CF and let E be the free amalgam of B1 and B2 over A. We
need to show that E ∈ CF . Clearly we may assume A 6= Bi.

Suppose X ⊆ E. We need to show that δ(X) ≥ F (|X|). Now, X is the free amalgam over
A∩X of B1 ∩X and B2 ∩X and A∩X ≤d Bi ∩X (by Lemma 3.10(1)). So we can assume
X = E and check that δ(E) ≥ F (|E|).
Note that δ(E) = δ(B1) + δ(B2)− δ(A) and |E| = |B1|+ |B2| − |A|.
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The effect of the conditions on F is that for x, y ≥ 0

F (x+ y) ≤ F (x) + yF ′(x) ≤ F (x) + y/x.

We can assume that
δ(B2)− δ(A)

|B2| − |A|
≥ δ(B1)− δ(A)

|B1| − |A|
and note that the latter is at least 1/|B1| (as δ is integer-valued and A ≤d B1).

Then

δ(E) = δ(B1) + (|B2| − |A|)
δ(B2)− δ(A)

|B2| − |A|
≥ F (|B1|) + (|B2| − |A|)/|B1| ≥ F (|E|)

(taking x = |B1| and y = |B2| − |A|).
This concludes the proof of the claim.

Example 3.21. We use this to produce an example of a connected ω-categorical graph
whose automorphism group is transitive on vertices and edges, and whose smallest cycle is
a 5-gon.

Let n = 2, α = 2. So we are working with graphs and the predimension:

δ(A) = 2|A| − |RA|.

Take
F (1) = 2;F (2) = 3;F (5) = 5;F (k) = log(k) + 5− log(5) for k ≥ 5.

Then one can check that:

• The smallest cycle in CF is a 5-gon;

• If a ∈ A ∈ CF then a ≤d A

• If ab ⊆ B ∈ CF is an edge then ab ≤d B

• (CF ,≤d) is an amalgamation class (the proof of AP in the previous example applies if
at least one of B1, B2 has size ≥ 5; the other cases can be checked individually).

• The Fräıssé limit MF is connected. Given non-adjacent a, b ∈MF consider A = cld(ab).
As δ(A) ≤ δ(ab) = 4 we have |A| ≤ 3. So either A is a path of length 2 (with endpoints
a, b) or A = ab, so ab ≤d MF . In the latter case, consider a path B of length 3 with
end points a, b. Then ab ≤d B so there is a ≤d copy of B in MF over ab. In particular,
ab are at distance 3 in MF .

It follows that the smallest cycle in the Fräıssé limit MF is a 5-cycle and Aut(MF ) is transitive
on vertices and edges. In fact, the argument shows that MF is distance transitive of diameter
3.
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Example 3.22. Take α > 1 irrational. Let A ≤d B (with A 6= B) and note that

0 < δ(B)− δ(A) = α|B \ A| − |RB \RA| = (|B| − |A|)(α− |RB \RA|/|B \ A|).

So
0 < (δ(B)− δ(A))/(|B| − |A|) = α− q

for some q ∈ Q, q > 0.

For any N ∈ N let

η(α,N) = min(α− a

b
: b ≤ N,

a

b
≤ α).

Note that η(α,N) ≥ η(α,N + 1) and in the above:

(δ(B)− δ(A))/(|B| − |A|) ≥ η(α, |B|).

Claim: α can be chosen so that
∑∞

N=1 η(α,N) diverges.

Suppose we have the claim. For such an α let Fα : R≥0 → R≥0 be the piecewise linear hull
with Fα(N) =

∑N
k=1 η(α, k).

Then the proof in Example 3.20 shows that (CFα ,≤d) is an amalgamation class and the
generic structures MFα is ω-categorical.

One way to establish the claim is to use the Baire Category Theorem. For any α let

i(α) =
∞∑
N=1

η(α,N)

allowing i(α) =∞.

One shows that for each M ∈ N, the set

{α > 1 : i(α) > M}

is open and dense in the interval (1,∞).

3.4 Some history

The Hrushovski construction first appeared in the unpublished notes [14, 15]. In [14],
Hrushovski produces a strictly stable ω-categorical structure, giving a counterexample to
Lachlan’s conjecture (Example 3.22 here). The paper also contains the construction of an
ω-categorical pseudoplane using an integer-valued predimension, a control function and d-
closed embeddings (Example 3.21). The notes [15], which were extended into the paper
[17], construct a strongly minimal set which is a counterexample to Zilber’s conjecture. An
intermediate stage in the construction gives a new ω-stable structure of infinite Morley rank
(the strutures M0 in Remarks 3.16 here). A survey of this material which gives an ax-
iomatic treatment of the construction under the assumption of finiteness of self-sufficient
closure is given by Wagner in [28]. An axiomatic treatment without assuming finiteness of
self-sufficient closure is given by Baldwin and Shi [1].
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In unpublished notes [18] Hrushovski showed that a further condition on the function F in
Example 3.20 produces supersimple ω-categorical structures MF . An axiomatic treatment
is given in [12] and a direct approach is given in Section 6.2.1 of Wagner’s book [29]. The
latter gives a different proof of simplicity (using the Kim - Pillay characterization in terms
of existence of a suitable notion of independence).

Further model-theoretic applications of the construction given by Hrushovski are the con-
struction of strongly minimal sets [17] and the fusion construction [16]. The former requires
an additional amalgamation result (‘algebraic amalgamation’ in [17]; now usually called the
‘collapse’). The latter produces, for example, a strongly minimal structure having as reducts
two algebraically closed fields of different characteristics. A very readable exposition of this
is given in [4].

The construction has been used to produce algebraic structures of finite Morley rank which
differ from classical examples (bad fields [3]; non-algebraic nilpotent groups [2]). Moreover,
there are many surprising and subtle conections between the construction and other areas
of mathematics. For example: random graphs [26, 5], transcendence theory and complex
exponentiation [30], and the papers [21], [8].

4 A short Appendix on Model Theory

4.1 First-order languages and structures

In a first-order language one has an alphabet of symbols and certain finite sequences of
these symbol (the formulas of the language) are the objects of interest. The symbols are
connectives ∧ (and), ∨ (or), ¬ (not); quantifiers ∀ and ∃; punctuation (parentheses and
commas); variables; and constant, relation and function symbols, with each of the last two
coming equipped with a finite ‘arity’ specifying how many arguments it has. The number of
these constant, relation and function symbols (together with their arities) is referred to as
the signature of the language.

The terms of the language are built inductively. Any variable or constant symbol is a term
and if f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn) is also a term
(all terms are built in this way).

Now we can build the formulas of the language. Again, this is done inductively. If R is an
n-ary relation symbol in the language and t1, . . . , tn are terms then R(t1, . . . , tn) is a formula
(an atomic formula). If φ, ψ are formulas and x a variable, then (φ) ∧ (ψ), (φ) ∨ (ψ), ¬(φ),
∀x(φ), ∃x(φ) are formulas (of higher ‘complexity’). A formula not involving any quantifiers
is called quantifier free or open. There is a natural notion of a free variable in a formula, and
when we write a formula as φ(x1, . . . , xm) we mean that its free variables are amongst the
variables x1, . . . , xm. A formula with no free variables is called a sentence. For more details
the reader could consult ([13], Section 2.1).

If L is a first-order language then an L-structure consists of a set M equipped with a
constant (that is, a distinguished element of M), n-ary relation (that is, a subset of Mn),
and n-ary function Mn → M for each constant symbol and n-ary relation and function
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symbol in L. If φ(x1, . . . , xm) is an L-formula and a1, . . . , am ∈ M then one can ‘read’
φ(a1, . . . , am) as a statement about the behaviour of a1, . . . , am and these constants, relations
and functions (interpreting each constant, relation or function symbol as the corresponding
constant, relation or function of M), which is either true or false. If it is true, then we write

M |= φ(a1, . . . , am).

All of this can of course be made completely precise (defined inductively on the complexity
of φ): see ([13], Section 2.1) again. We shall always have = as a binary relation symbol in L
and interpret it as true equality in any L-structure.

If Φ is a set of L-sentences and M an L-structure we say that M is a model of Φ (and write
M |= Φ) if every sentence in Φ is true in M . If there is a model of Φ we say that Φ is
consistent. The set of L-sentences true in M is called the theory of M . Two L-structures
M1 and M2 are elementarily equivalent if they have the same theory. This is written as
M1 ≡ M2. Thus in this case the structures M1 and M2 cannot be distinguished using the
language L. The following basic result of model theory shows that one should not expect
first-order languages to be able to completely describe infinite structures.

Theorem 4.1. (Löwenheim-Skolem) Let L be a first-order language with signature of car-
dinality λ. Let µ, ν be cardinals with µ, ν ≥ max(λ,ℵ0), and suppose M1 is an L-structure
with cardinality µ. Then there exists an L-structure M2 elementarily equivalent to M1 and
of cardinality ν.

The ‘upward’ part of this result (where ν ≥ µ) follows easily from the fundamental theorem
of model theory:

Theorem 4.2. (The Compactness Theorem) Let L be a first-order language and Φ a set of
L-sentences. If every finite subset of Φ is consistent, then Φ is consistent.

The original version of this is due to Gödel (1931). Proofs (using a method due to Henkin
(1949)) can be found in ([13], Theorem 6.1.1). Algebraists may prefer the proof using
ultraproducts and the theorem of  Los ([13], Theorem 9.5.1).

If M , N are L-structures with M ⊆ N and the distinguished relations, functions (and
constants) of N extend those of M , then we say that M is a substructure of N . If also for
every L-formula φ(x1, . . . , xm) and a1, . . . , am ∈M we have

M |= φ(a1, . . . , am)⇔ N |= φ(a1, . . . , am)

then we say that M is an elementary substructures of N (and that N is an elementary
extension of M) and write M � N . A stronger version of the Löwenheim-Skolem Theorem
(4.1) is true: the smaller of M1, M2 may be taken to be an elementary substructure of the
larger. Proofs can be found in ([13], Corollaries 3.1.5 and 6.1.4).

4.2 Definable sets; types

Suppose L is a first-order language and M an L-structure. Let n ∈ N. A subset A
of Mn is called (parameter) definable if there exist b1, . . . , bm ∈ M and an L-formula
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φ(x1, . . . , xn, y1, . . . , ym) with

A = {ā ∈Mn : M |= φ(ā, b̄)}.

If the parameters b̄ can be taken from the subset X ⊆ M then A is said to be X-definable.
The union of the finite X-definable subsets of M is called the algebraic closure of X, denoted
by acl(X), and the union of the X-definable singleton subsets of M is the definable closure
of X, denoted by dcl(X). It is not hard to check that both of these are indeed closure
operations on M .

So the definable subsets of Mn are the ones which can be described using L-formulas (and
parameters). Conversely one could take a particular n-tuple ā ∈Mn and a set of parameters
A ⊆ M and ask what the language L can say about ā (in terms of A and M). This gives
the notion of the type of ā over A, which by definition is

tpM(ā/A) = {φ(x1, . . . , xn, b1, . . . , bm) : b1, . . . , bm ∈ A, M |= φ(ā, b̄)}

(the superscript M is dropped if this is clear from the context). It is sometimes useful to
consider the type of ā (over A) using only certain L-formulas. For example, for the quantifier
free type of ā over A one takes only quantifier free φ in the above definition. It is also possible
to define the type of an infinite sequence of elements of M . The reader can consult ([13],
Section 6.3) for further details here.

More generally, a (complete) n-type over A is a set of L-formulas with parameters from A
equal to tpN(ā/A) for some elementary extension N of M and some ā ∈ Mn. There is no
reason to suppose, for arbitrary M and A, that this type should be realised in M , that
is, there exists ā′ ∈ Mn with tpM(ā′/A) = tpN(ā/A). For example, this would clearly be
impossible if A = M and ā 6∈ Mn. However, it can happen that for some infinite cardinal
κ if |A| < κ then every complete n-type over A is realised in M : in this case M is called
κ-saturated, and if κ = |M | then M is saturated. The reader should consult ([13], Chapter
10) for more on this.
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