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1. Angular functions

— Talk about some questions from the paper

Boris Zilber, ‘Non-commutative geometry and new stable struc-
tures’, Newton Institute Preprint Series, NI05048-MAA, Novem-
ber 2005.

NOTATION: For the moment, fix:
e an algebraically closed field (F'; +, -) of characteristic zero;
e multiplicatively independent o, 3 € F’;
e a natural number N;
e a primitive /V-th root of unity €;
o I' = (¢

An angular function (with these data) is a function

ang : F* — T
satisfying, forallt € F":
ang(et) = ang(t)
ang(ft) = ang(t)

ang(at) = eang(t)



Zilber asks the following:

QUESTION: Consider a structure (F), +, -, ang) which is
existentially closed in the class of structures satisfying these
equations. What is the model-theoretic status of this structure?

Is it supersimple?

DEFINITIONS: Associated to any angular function ang there are two

definable subgroups of the multiplicative group of the field:

e The group of periods of ang is
G ={g € F* : ang(gt) = ang(t) Vt € F*};
e the group of quasiperiods of ang is
Gt ={he€ F*:3y el Vte F* ang(ht) = vang(t)}.
Note that

e [ <G<KGT;

e there is a definable homomorphism y : Gt — T with kernel G
(given by ang(ht) = x(h)ang(t) forh € G* andt € F™*);

e the induced map Y : G /G — T'is an isomorphism.



2. Zilber’s examples

EXAMPLE 1: The following explains the terminology ‘angular function.
Take:

o '=C
o ¢ = exp(2mi/N)

e Fork =0,...,N — 1, let P, be the sector of the complex plane
consisting of non-zero complex numbers z with an argument argz
in the range 27k /N < argz < 2mw(k+1)/N.

Define ang : C* — I' by, fort € C*:

ang(t) = " =tV € P,.

NOTE:
e Group of periods: G = R~>°T;
e Group of quasiperiods: G = R”>Y(¢; ), where e; = exp(2mi/N?).

° ((C, +, -, ang) has the strict order property (consider translates of
the definable subset F).



EXAMPLE 2: An example of a non-classical Zariski curve (due to
Hrushovski and Zilber) can be obtained from a suitable angular function.

Given (F'; +, -, a, 3, ang) satisfying the above equations.
Define U,V : F'* — F™* by

Ult) = ot

V(t) = p[ang(t)t.

These are definable permutations of F'* and
VU(t) =eUV(t).

Let

e (T;U,V) denote the set I’ with only the structure given by the
definable permutations U, V;

e p: T — Fbegivenby p(t) = t.

Then the structure ((T;U, V), (F;4,-),p : T — F) is a finite
cover of (F'; 4, -) which is interpretable in (£'; +, -, ang), but not in



3. An answer to the question?
DEFINITION:
e The language L contains:
— the language of rings +, —, -, 0, 1;
— unary predicates F,I", G, G"

— a unary function symbol x

e We have a fixed Lg-structure M consisting of:
— an algebraically closed field F' = F (M) of characteristic 0 ;

— multiplicative subgroups
I=T(M)CG=G(M)CG"=G"(M)CF*
— A surjective homomorphism y : GT — I" with kernel G.

e [ isthe Ly-theory of M.

Assume (for our purposes, without loss) that I is model complete.

Let Ly = Lo U {A} be the expansion of L by an extra unary function
symbol A. Define T'4 to be the theory axiomatized by 7y and axioms:

(i) (A(0) =0) A (Vt)(t #0) — T(A());
(i) (Vt)(Vg)(G(g) — Alg-t) = A(1));
)

(Vg)(G
(i) (Vt)(Vh)(G

vt
VE)(Vh)(GT(h) A (t # 0) — A(h - t) = x(h) - A(t))



Zilber’s Question can then be viewed as asking whether the class of
existentially closed models of 1’4 is axiomatizable, and if so whether
completions of its theory are supersimple.

Theorem 1 (1) If T}y eliminates the quantifier 3°° in the sorts F, F /G
and F /G then T 4 has a model companionT'.

(2) If additionally I\ is simple and I is finite then all completions of 1",
are simple (and in the same simplicity class as ).

Discuss:
e why this follows easily from know results

e '[{ satisfying the hypotheses.



4. Proof of the Theorem

Suppose M = Ty. Write G instead of G(M) etc.

4.1 From angular functions to sections

Consider the natural map v : F*/G — F* /G, given by

v(xG) = xGT.

A section of this is amap s : F*/GT — F* /G which satisfies:
(Vy € F*/GT)(s(y)G" = y).

Given such an s we have that s(tG1)~1tG € GT /G, so
A(t) = x(s(tGT)"MG) € T.

This satisfies 1'4. Let L be the expansion of L obtained by adding a
unary function symbol s between the indicated sorts, and I's obtained
from I by adding the above axiom. Then:

Lemma 2 There is a definable correspondence between the models of
1’4 and the models of I’y which preserves the property of existential
closure. ThusI's has a model companion if and only if I's does.



4.2. Skolem expansions
Suppose L is any first-order language and I’ any L-theory.

DEFINITION: Say that I’ eliminates 3°° (or is algebraically bounded)
if for all L-formulas ¢(x,y) there is a natural number N4 with the
property that for all models M of T" and @ in M, if | M, a| has more
than [Ny elements, then it is infinite.

DEFINITION: Suppose ¢(x, ) is an L-formula, where ¥ is an n-tuple of
variables. Let L™ be the expansion of L by a new n-ary function symbol
0. The LT -theory T'" is axiomatized by 7" together with:

(Vy)((Fz)o(z,y) — (o (), 7).
We referto T as a Skolem expansion of T".

Theorem 3 (P. Winkler, 1975) Suppose I’ is a model-complete L-
theory which eliminates 3°°. Then any Skolem expansion Tt of T' has
a model companion (TT)*.

Proof of Theorem 1 (1) The theory 1T is the Skolem expansion of 1
with respect to the formula ¢(z, y):

(z € F/G)N(y € F/GT) A (2GT =1y).
Apply Winkler's Theorem.

(2) If I is finite, then the map v is |I"|-to-1. So the Skolem expansion
Ts is an algebraic Skolem expansion. Results of Nibling (Arch. Math.
Logic, 2004) then give what we want.
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5. Not the finite cover property

How to verify that Ty = Th(F;T',G,G™",,...) eliminates 3° in

the various sorts?

THEOREM: (Shelah) For a complete theory I', the following are equiva-
lent:

(1) I' does not have the finite cover property;

(2) T’ is stable and T'? eliminates 3°°.

— The property of being algebraically bounded in all (real and imaginary)
sorts is referred to as weak nfcp.

There are various technologies available for checking that a (stable) 7'
has nfcp. For example:

e if " is non-multidimensional, then I has nfcp

e belles paires (Poizat)
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6. A better answer?

Theorem 4 Suppose F’ is an algebraically closed field of characteristic
zero of infinite transcendence rank and o, 3 € F' are multiplicatively
independent. Let N be a natural number, € a primitive N -th root of 1 and
I'=(e);G = (aV,3,€);and GT = (a, B, ¢). Definex : GT — T
to have kernel G and x(a) = €. Then:

(i) To = Th(F;+,—,-,0,1,T',G,G™, x) is superstable of Lascar
rank w and has nfcp.

(i) T'a has a model completion 1" and all completions of this are
supersimple of SU -rank w.

Proof: (i) All of the structure is definable in (F, G, «, 3, €). It's well
known that this is superstable of Lascar rank w: see Pillay’s paper
‘Lang’s conjecture and model theory! The argument in Pillay’s paper
also gives non-multidimensionality, hence nfcp.

(i) This follows from part (i) and Theorem 1. O

QUESTION: Using an omitting-types theorem for e.c. models, one can
show that there is a countable model of 1" in which the group of periods
is precisely G = (oY, 3, €). Is there a model in which the field is C
and the group of periods is still G?
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7. Green points and variations.

Zilber's paper: Do this where the group of periods ( is (a variation of)
Poizat’s ‘green points;’ consider the case where I is infinite (but small).

7.1. Green points.

Bruno Poizat, ‘LEgalité au cube’, JSL 66 (2001):
LANGUAGE Lg: +, —,-, 0,1 and a 1-ary predicate §

CLass C: structures (A, G(A)) where:

e A is an algebraically closed field of characteristic 0 and finite
transcendence rank

e (G(A) is a torsion-free divisible subgroup of A*

e 0(A;) = 2trdeg(A1) —rkq(G(A1)) > 0 for every algebraically
closed subfield A of A.

EMBEDDINGS: A < B (€ C)means §(A) < §(B) for all algebraically
closed A C B; C B.

(C, S) has the amalgamation property and we can construct a universal-
homogeneous structure (F, G(F")) for the class. Poizat shows how
to axiomatize Tc = Th(F,G(F')) (using results of Ax/ Zilber on
intersecting algebraic varieties with tori). 1 is w-stable of Morley rank
w.2 and the subgroup G has Morley rank w. Using similar methods and
belles paires one has:

Proposition 5 T has nfcp.
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7.2. Variations:
VARIATION 1:

TG: Same as Poizat's Tz, but G = Z2. This is superstable of U-rank
w.2 and has nfcp.
For suitable a;, 3 € C* and h € R let

-
GO = exp(i@Z + g

R).
N2 Tt OR)

THEOREM: (Zilber) Assuming Schanuel’s conjecture, Ty = Th(C,Gy).

As for Theorem 4, (and assuming SC) one then has:

Theorem 6 With the above notation, letI' = (e); G = Go.I'; and
GT = exp((2mi/hN)Z + (a/hN)Z + BR).I" and x(a) = .
Then:

(i) To = Th(C;+,—,-,0,1,T", G, G, x) is superstable of Lascar
rank w.2 and has nfcp.

(i) T'a has a model companion I and all completions of this are
supersimple of SU -rank w.2.

QUESTION: Zilber gives an explicit construction of an angular function
ang n; with the above data. Is it a model of 17} ?
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VARIATION 2: Infinite I".

LANGUAGE: +, —, -, 0, 1; unary predicates G, I', I'* and unary func-

tions Y, X_l.

CLASS: algebraically closed fields A of characteristic zero; multiplicative
subgroups G(A),T'(A), ' (A) with the properties that

e I'(A) CG(A)andG(A)NTT(A) =1;
e the groups G(A) and I'(A) are elementarily equivalent to Z;
e x: I''(A) - T'(A)and x ! : T(A) — I'" (A) are mutually

inverse group isomorphisms;

e the predimension inequality 0 > 0 holds, where

§(A) = 2.trdeg(A) — rko(G(A)) — 3.rko(T'(A)).

THEORY TG: like Poizat’s T¢.
Define G = G.I't andextend y : Gt — T,

Obtain Lg-theory I which is superstable of Lascar rank w.2 with nfcp.
So part (i) of Theorem 1 applies and we have a model companion 1" of
1'4. As I' is infinite, this is NOT simple.

QUESTION: Zilber has natural candidates for models of 7 and 1. Are
they in fact models?
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